blob: 21d9bb377be82e024d058487590d173e80294cfe [file] [log] [blame]
/*
This file is part of drd, a data race detector.
Copyright (C) 2006-2007 Bart Van Assche
bart.vanassche@gmail.com
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307, USA.
The GNU General Public License is contained in the file COPYING.
*/
#include "pub_tool_basics.h" // Addr, SizeT
#include "pub_tool_debuginfo.h" // VG_(get_objname)()
#include "pub_tool_libcassert.h" // tl_assert()
#include "pub_tool_libcbase.h" // VG_(memset)
#include "pub_tool_libcprint.h" // VG_(printf)
#include "pub_tool_machine.h" // VG_(get_IP)()
#include "pub_tool_mallocfree.h" // VG_(malloc), VG_(free)
#include "pub_drd_bitmap.h"
#include "drd_bitmap.h"
#include "drd_error.h"
#include "drd_suppression.h"
// Local constants.
static ULong s_bitmap_creation_count;
// Local function declarations.
static void bm2_merge(struct bitmap2* const bm2l,
const struct bitmap2* const bm2r);
// Function definitions.
struct bitmap* bm_new()
{
struct bitmap* bm;
// If this assert fails, fix the definition of BITS_PER_BITS_PER_UWORD
// in drd_bitmap.h.
tl_assert((1 << BITS_PER_BITS_PER_UWORD) == BITS_PER_UWORD);
bm = VG_(malloc)(sizeof(*bm));
tl_assert(bm);
bm->oset = VG_(OSetGen_Create)(0, 0, VG_(malloc), VG_(free));
s_bitmap_creation_count++;
return bm;
}
void bm_delete(struct bitmap* const bm)
{
tl_assert(bm);
VG_(OSetGen_Destroy)(bm->oset);
VG_(free)(bm);
}
/**
* Record an access of type access_type at addresses a in bitmap bm.
*/
static
__inline__
void bm_access_1(struct bitmap* const bm,
const Addr a,
const BmAccessTypeT access_type)
{
struct bitmap2* p2;
struct bitmap1* p1;
UWord* p0;
SPLIT_ADDRESS(a);
tl_assert(bm);
p2 = bm2_lookup_or_insert(bm, a1);
p1 = &p2->bm1;
p0 = (access_type == eLoad) ? p1->bm0_r : p1->bm0_w;
bm0_set(p0, a0);
}
static
void bm_access_4_nonaligned(struct bitmap* const bm,
const Addr a,
const BmAccessTypeT access_type)
{
bm_access_1(bm, a + 0, access_type);
bm_access_1(bm, a + 1, access_type);
bm_access_1(bm, a + 2, access_type);
bm_access_1(bm, a + 3, access_type);
}
static
__inline__
void bm_access_4_aligned(struct bitmap* const bm,
const Addr a,
const BmAccessTypeT access_type)
{
struct bitmap2* p2;
struct bitmap1* p1;
UWord* p0;
SPLIT_ADDRESS(a);
tl_assert(bm);
p2 = bm2_lookup_or_insert(bm, a1);
p1 = &p2->bm1;
p0 = (access_type == eLoad) ? p1->bm0_r : p1->bm0_w;
bm0_set(p0, a0+0);
bm0_set(p0, a0+1);
bm0_set(p0, a0+2);
bm0_set(p0, a0+3);
}
/**
* Record an access of type access_type at addresses a .. a + 3 in bitmap bm.
*/
void bm_access_4(struct bitmap* const bm,
const Addr a,
const BmAccessTypeT access_type)
{
tl_assert(bm);
if ((a & 3) != 0)
{
bm_access_4_nonaligned(bm, a, access_type);
}
else
{
bm_access_4_aligned(bm, a, access_type);
}
}
/**
* Record an access of type access_type at addresses a .. a + size - 1 in
* bitmap bm.
*/
void bm_access_range(struct bitmap* const bm,
const Addr a,
const SizeT size,
const BmAccessTypeT access_type)
{
tl_assert(bm);
tl_assert(size > 0);
if (size == 4)
bm_access_4(bm, a, access_type);
else if (size == 1)
bm_access_1(bm, a, access_type);
else
{
Addr b;
for (b = a; b != a + size; b++)
{
bm_access_1(bm, b, access_type);
}
}
}
Bool bm_has(const struct bitmap* const bm,
const Addr a1,
const Addr a2,
const BmAccessTypeT access_type)
{
Addr b;
for (b = a1; b < a2; b++)
{
if (! bm_has_1(bm, b, access_type))
{
return False;
}
}
return True;
}
Bool bm_has_any(const struct bitmap* const bm,
const Addr a1,
const Addr a2,
const BmAccessTypeT access_type)
{
Addr b;
tl_assert(bm);
for (b = a1; b < a2; b++)
{
if (bm_has_1(bm, b, access_type))
{
return True;
}
}
return False;
}
/* Return a non-zero value if there is a read access, write access or both */
/* to any of the addresses in the range [ a1, a2 [ in bitmap bm. */
UWord bm_has_any_access(const struct bitmap* const bm,
const Addr a1,
const Addr a2)
{
Addr b, b_next;
tl_assert(bm);
for (b = a1; b < a2; b = b_next)
{
struct bitmap2* bm2 = bm_lookup(bm, b);
b_next = (b & ~ADDR0_MASK) + ADDR0_COUNT;
if (b_next > a2)
{
b_next = a2;
}
if (bm2)
{
Addr b_start;
Addr b_end;
UWord b0;
if ((bm2->addr << ADDR0_BITS) < a1)
b_start = a1;
else
if ((bm2->addr << ADDR0_BITS) < a2)
b_start = (bm2->addr << ADDR0_BITS);
else
break;
tl_assert(a1 <= b_start && b_start <= a2);
if ((bm2->addr << ADDR0_BITS) + ADDR0_COUNT < a2)
b_end = (bm2->addr << ADDR0_BITS) + ADDR0_COUNT;
else
b_end = a2;
#if 0
VG_(message)(Vg_DebugMsg,
"in 0x%lx 0x%lx / cur 0x%lx 0x%lx / out 0x%lx 0x%lx",
a1, a2,
(bm2->addr << ADDR0_BITS),
(bm2->addr << ADDR0_BITS) + ADDR0_COUNT,
b_start, b_end);
#endif
tl_assert(a1 <= b_end && b_end <= a2);
tl_assert(b_start < b_end);
tl_assert((b_start & ADDR0_MASK) <= ((b_end - 1) & ADDR0_MASK));
for (b0 = b_start & ADDR0_MASK; b0 <= ((b_end - 1) & ADDR0_MASK); b0++)
{
const struct bitmap1* const p1 = &bm2->bm1;
const UWord mask
= bm0_is_set(p1->bm0_r, b0) | bm0_is_set(p1->bm0_w, b0);
if (mask)
{
return mask;
}
}
}
}
return 0;
}
/**
* Report whether an access of type access_type at address a is recorded in
* bitmap bm.
* @return != 0 means true, and == 0 means false
*/
UWord bm_has_1(const struct bitmap* const bm,
const Addr a,
const BmAccessTypeT access_type)
{
struct bitmap2* p2;
struct bitmap1* p1;
UWord* p0;
const UWord a0 = a & ADDR0_MASK;
tl_assert(bm);
p2 = bm_lookup(bm, a);
if (p2)
{
p1 = &p2->bm1;
p0 = (access_type == eLoad) ? p1->bm0_r : p1->bm0_w;
return bm0_is_set(p0, a0);
}
return 0;
}
static __inline__
void bm1_clear(struct bitmap1* const bm1, const Addr a1, const Addr a2)
{
UWord idx;
UWord mask;
#if 0
// Commented out the assert statements below because of performance reasons.
tl_assert(a1);
tl_assert(a1 <= a2);
tl_assert(UWORD_MSB(a1) == UWORD_MSB(a2)
|| UWORD_MSB(a1) == UWORD_MSB(a2 - 1));
#endif
idx = (a1 & ADDR0_MASK) >> BITS_PER_BITS_PER_UWORD;
/* mask: a contiguous series of one bits. The first bit set is bit */
/* UWORD_LSB(a2-1), and the last bit set is UWORD_LSB(a1). */
mask = UWORD_LSB(a2) ? bm0_mask(a2) - bm0_mask(a1) : - bm0_mask(a1);
bm1->bm0_r[idx] &= ~mask;
bm1->bm0_w[idx] &= ~mask;
}
void bm_clear_all(const struct bitmap* const bm)
{
struct bitmap2* bm2;
VG_(OSetGen_ResetIter)(bm->oset);
for ( ; (bm2 = VG_(OSetGen_Next)(bm->oset)) != 0; )
{
struct bitmap1* const bm1 = &bm2->bm1;
tl_assert(bm1);
VG_(memset)(&bm1->bm0_r[0], 0, sizeof(bm1->bm0_r));
VG_(memset)(&bm1->bm0_w[0], 0, sizeof(bm1->bm0_w));
}
}
#if 1
// New and fast implementation.
void bm_clear(const struct bitmap* const bm,
const Addr a1,
const Addr a2)
{
Addr b, b_next;
tl_assert(bm);
tl_assert(a1);
tl_assert(a1 <= a2);
for (b = a1; b < a2; b = b_next)
{
struct bitmap2* const p2 = bm_lookup(bm, b);
b_next = (b & ~ADDR0_MASK) + ADDR0_COUNT;
if (b_next > a2)
{
b_next = a2;
}
if (p2)
{
Addr c = b;
if (UWORD_LSB(c))
{
Addr c_next = UWORD_MSB(c) + BITS_PER_UWORD;
if (c_next > b_next)
c_next = b_next;
bm1_clear(&p2->bm1, c, c_next);
c = c_next;
}
if (UWORD_LSB(c) == 0)
{
const Addr c_next = UWORD_MSB(b_next);
tl_assert(UWORD_LSB(c) == 0);
tl_assert(UWORD_LSB(c_next) == 0);
tl_assert(c_next <= b_next);
tl_assert(c <= c_next);
if (c_next > c)
{
UWord idx = (c & ADDR0_MASK) >> BITS_PER_BITS_PER_UWORD;
VG_(memset)(&p2->bm1.bm0_r[idx], 0, (c_next - c) / 8);
VG_(memset)(&p2->bm1.bm0_w[idx], 0, (c_next - c) / 8);
c = c_next;
}
}
if (c != b_next)
{
bm1_clear(&p2->bm1, c, b_next);
}
}
}
}
#else
// Old and slow implementation
void bm_clear(const struct bitmap* const bm,
const Addr a1,
const Addr a2)
{
Addr b, b_next, c;
tl_assert(bm);
tl_assert(a1);
tl_assert(a1 <= a2);
for (b = a1; b < a2; b = b_next)
{
struct bitmap2* const p2 = bm_lookup(bm, b);
b_next = (b & ~ADDR0_MASK) + ADDR0_COUNT;
if (b_next > a2)
{
b_next = a2;
}
if (p2)
{
for (c = b; c < b_next; c++)
{
const UWord c0 = c & ADDR0_MASK;
p2->bm1.bm0_r[c0 / (8*sizeof(UWord))]
&= ~(1UL << (c0 % (8*sizeof(UWord))));
p2->bm1.bm0_w[c0 / (8*sizeof(UWord))]
&= ~(1UL << (c0 % (8*sizeof(UWord))));
}
}
}
}
#endif
static
__inline__
UWord bm_has_conflict_with_1(const struct bitmap* const bm,
const Addr a,
const BmAccessTypeT access_type)
{
struct bitmap2* p2;
const UWord a0 = a & ADDR0_MASK;
tl_assert(bm);
p2 = bm_lookup(bm, a);
if (p2)
{
if (access_type == eLoad)
{
return bm0_is_set(p2->bm1.bm0_w, a0);
}
else
{
tl_assert(access_type == eStore);
return (bm0_is_set(p2->bm1.bm0_r, a0)
| bm0_is_set(p2->bm1.bm0_w, a0));
}
}
return False;
}
/**
* Return true if the access to [a,a+size[ of type access_type conflicts with
* any access stored in bitmap bm.
*/
Bool bm_has_conflict_with(const struct bitmap* const bm,
const Addr a1,
const Addr a2,
const BmAccessTypeT access_type)
{
Addr b;
for (b = a1; b != a2; b++)
{
if (bm_has_conflict_with_1(bm, b, access_type))
{
return True;
}
}
return False;
}
void bm_swap(struct bitmap* const bm1, struct bitmap* const bm2)
{
OSet* const tmp = bm1->oset;
bm1->oset = bm2->oset;
bm2->oset = tmp;
}
void bm_merge2(struct bitmap* const lhs,
const struct bitmap* const rhs)
{
struct bitmap2* bm2l;
const struct bitmap2* bm2r;
// First step: allocate any missing bitmaps in *lhs.
VG_(OSetGen_ResetIter)(rhs->oset);
for ( ; (bm2r = VG_(OSetGen_Next)(rhs->oset)) != 0; )
{
bm2_lookup_or_insert(lhs, bm2r->addr);
}
VG_(OSetGen_ResetIter)(lhs->oset);
VG_(OSetGen_ResetIter)(rhs->oset);
for ( ; (bm2r = VG_(OSetGen_Next)(rhs->oset)) != 0; )
{
do
{
bm2l = VG_(OSetGen_Next)(lhs->oset);
//VG_(message)(Vg_DebugMsg, "0x%x 0x%x", bm2l->addr, bm2r->addr);
} while (bm2l->addr < bm2r->addr);
tl_assert(bm2l->addr == bm2r->addr);
bm2_merge(bm2l, bm2r);
}
}
/**
* Report whether there are any RW / WR / WW patterns in lhs and rhs.
* @param lhs First bitmap.
* @param rhs Bitmap to be compared with lhs.
* @return !=0 if there are data races, == 0 if there are none.
*/
int bm_has_races(const struct bitmap* const lhs,
const struct bitmap* const rhs)
{
VG_(OSetGen_ResetIter)(lhs->oset);
VG_(OSetGen_ResetIter)(rhs->oset);
for (;;)
{
const struct bitmap2* bm2l = VG_(OSetGen_Next)(lhs->oset);
const struct bitmap2* bm2r = VG_(OSetGen_Next)(rhs->oset);
const struct bitmap1* bm1l;
const struct bitmap1* bm1r;
unsigned k;
while (bm2l && bm2r && bm2l->addr != bm2r->addr)
{
if (bm2l->addr < bm2r->addr)
bm2l = VG_(OSetGen_Next)(lhs->oset);
else
bm2r = VG_(OSetGen_Next)(rhs->oset);
}
if (bm2l == 0 || bm2r == 0)
break;
bm1l = &bm2l->bm1;
bm1r = &bm2r->bm1;
for (k = 0; k < BITMAP1_UWORD_COUNT; k++)
{
unsigned b;
for (b = 0; b < BITS_PER_UWORD; b++)
{
UWord const access
= ((bm1l->bm0_r[k] & bm0_mask(b)) ? LHS_R : 0)
| ((bm1l->bm0_w[k] & bm0_mask(b)) ? LHS_W : 0)
| ((bm1r->bm0_r[k] & bm0_mask(b)) ? RHS_R : 0)
| ((bm1r->bm0_w[k] & bm0_mask(b)) ? RHS_W : 0);
Addr const a = MAKE_ADDRESS(bm2l->addr, k * BITS_PER_UWORD | b);
if (HAS_RACE(access) && ! drd_is_suppressed(a, a + 1))
{
return 1;
}
}
}
}
return 0;
}
#ifdef OLD_RACE_DETECTION_ALGORITHM
/**
* Report RW / WR / WW patterns between lhs and rhs.
* @param tid1 Thread ID of lhs.
* @param tid2 Thread ID of rhs.
* @param lhs First bitmap.
* @param rhs Bitmap to be compared with lhs.
* @return Number of reported ranges with data races.
*/
void bm_report_races(const ThreadId tid1,
const ThreadId tid2,
const struct bitmap* const lhs,
const struct bitmap* const rhs)
{
Addr range_begin = 0;
Addr range_end = 0;
UWord range_access = 0;
VG_(message)(Vg_UserMsg, "Data addresses accessed by both segments:");
VG_(OSetGen_ResetIter)(lhs->oset);
VG_(OSetGen_ResetIter)(rhs->oset);
for (;;)
{
const struct bitmap2* bm2l = VG_(OSetGen_Next)(lhs->oset);
const struct bitmap2* bm2r = VG_(OSetGen_Next)(rhs->oset);
const struct bitmap1* bm1l;
const struct bitmap1* bm1r;
unsigned k;
while (bm2l && bm2r && bm2l->addr != bm2r->addr)
{
if (bm2l->addr < bm2r->addr)
bm2l = VG_(OSetGen_Next)(lhs->oset);
else
bm2r = VG_(OSetGen_Next)(rhs->oset);
}
if (bm2l == 0 || bm2r == 0)
break;
bm1l = &bm2l->bm1;
bm1r = &bm2r->bm1;
for (k = 0; k < BITMAP1_UWORD_COUNT; k++)
{
unsigned b;
for (b = 0; b < BITS_PER_UWORD; b++)
{
UWord const access
= ((bm1l->bm0_r[k] & bm0_mask(b)) ? LHS_R : 0)
| ((bm1l->bm0_w[k] & bm0_mask(b)) ? LHS_W : 0)
| ((bm1r->bm0_r[k] & bm0_mask(b)) ? RHS_R : 0)
| ((bm1r->bm0_w[k] & bm0_mask(b)) ? RHS_W : 0);
Addr const a = MAKE_ADDRESS(bm2l->addr, k * BITS_PER_UWORD | b);
if (access == range_access)
range_end = a + 1;
else
{
tl_assert(range_begin < range_end);
if (HAS_RACE(range_access)
&& ! drd_is_suppressed(range_begin, range_end))
{
DataRaceInfo dri;
dri.tid1 = tid1;
dri.tid2 = tid2;
dri.range_begin = range_begin;
dri.range_end = range_end;
dri.range_access = range_access;
tl_assert(dri.range_begin < dri.range_end);
#if 0
VG_(maybe_record_error)(tid1,
DataRaceErr,
VG_(get_IP)(tid1), // where
"data race",
&dri);
#else
drd_report_data_race(&dri);
#endif
}
range_access = access;
range_begin = a;
range_end = a + 1;
}
}
}
}
}
#endif
void bm_print(const struct bitmap* const bm)
{
struct bitmap2* bm2;
VG_(OSetGen_ResetIter)(bm->oset);
for ( ; (bm2 = VG_(OSetGen_Next)(bm->oset)) != 0; )
{
const struct bitmap1* const bm1 = &bm2->bm1;
unsigned k;
for (k = 0; k < BITMAP1_UWORD_COUNT; k++)
{
unsigned b;
for (b = 0; b < BITS_PER_UWORD; b++)
{
int const r = bm1->bm0_r[k] & bm0_mask(b);
int const w = bm1->bm0_w[k] & bm0_mask(b);
Addr const a = MAKE_ADDRESS(bm2->addr, k * BITS_PER_UWORD | b);
if (r || w)
{
VG_(printf)("0x%08lx %c %c\n",
(Addr)(a),
w ? 'W' : ' ', r ? 'R' : ' ');
}
}
}
}
}
ULong bm_get_bitmap_creation_count(void)
{
return s_bitmap_creation_count;
}
ULong bm_get_bitmap2_creation_count(void)
{
return s_bitmap2_creation_count;
}
static void bm2_merge(struct bitmap2* const bm2l,
const struct bitmap2* const bm2r)
{
unsigned k;
tl_assert(bm2l->addr == bm2r->addr);
for (k = 0; k < BITMAP1_UWORD_COUNT; k++)
{
bm2l->bm1.bm0_r[k] |= bm2r->bm1.bm0_r[k];
}
for (k = 0; k < BITMAP1_UWORD_COUNT; k++)
{
bm2l->bm1.bm0_w[k] |= bm2r->bm1.bm0_w[k];
}
}
#if 0
/* Unit test */
static
struct { Addr address; SizeT size; BmAccessTypeT access_type; }
s_args[] = {
{ 0, 1, eLoad },
{ 666, 4, eLoad },
{ 667, 2, eStore },
{ 1024, 1, eStore },
{ 0x0000ffff, 1, eLoad },
{ 0x0001ffff, 1, eLoad },
{ 0x00ffffff, 1, eLoad },
{ 0xffffffff, 1, eStore },
};
void bm_test(void)
{
struct bitmap* bm;
struct bitmap* bm2;
int i, j;
VG_(printf)("Start of DRD BM unit test.\n");
bm = bm_new();
for (i = 0; i < sizeof(s_args)/sizeof(s_args[0]); i++)
{
bm_access_range(bm, s_args[i].address,
s_args[i].size, s_args[i].access_type);
}
VG_(printf)("Map contents -- should contain 10 addresses:\n");
bm_print(bm);
for (i = 0; i < sizeof(s_args)/sizeof(s_args[0]); i++)
{
for (j = 0; j < s_args[i].size; j++)
{
tl_assert(bm_has_1(bm, s_args[i].address + j, s_args[i].access_type));
}
}
VG_(printf)("Merge result:\n");
bm2 = bm_merge(bm, bm);
bm_print(bm);
bm_delete(bm);
bm_delete(bm2);
VG_(printf)("End of DRD BM unit test.\n");
}
#endif
/*
* Local variables:
* c-basic-offset: 3
* End:
*/