blob: 3bd6e50dc36ab34054c6cbe67948274a075ef3c4 [file] [log] [blame]
#include <time.h>
#include <stdlib.h>
#include <stdint.h>
#include <assert.h>
#include <string.h>
#include <stdio.h>
#include "../memcheck.h"
// Test VALGRIND_CREATE_MEMPOOL_EXT features, the VALGRIND_MEMPOOL_METAPOOL and
// VALGRIND_MEMPOOL_AUTO_FREE flags.
// Also show that without these, having a custom allocator that:
// - Allocates a MEMPOOL
// - Uses ITSELF to get large blocks to populate the pool (so these are marked
// as MALLOCLIKE blocks)
// - Then passes out MALLOCLIKE blocks out of these pool blocks
// Was not previously supported by the 'loose model' for mempools in memcheck
// because it spotted these (correctly) as overlapping blocks (test case 3
// below).
// The VALGRIND_MEMPOOL_METAPOOL says not to treat these as overlaps.
//
// Also, when one of these metapool blocks is freed, memcheck will not auto-free
// the MALLOCLIKE blocks allocated from the meta-pool, and report them as leaks.
// When VALGRIND_MEMPOOL_AUTO_FREE is passed, no such leaks are reported.
// This is for custom allocators that destroy a pool without freeing the objects
// allocated from it, because that is the defined behaviour of the allocator.
struct pool
{
size_t allocated;
size_t used;
uint8_t *buf;
};
struct cell
{
struct cell *next;
char x[16 - sizeof(void*)];
};
static struct pool _PlainPool, *PlainPool = &_PlainPool;
static struct pool _MetaPool, *MetaPool = &_MetaPool;
#define N 10
#define POOL_BLOCK_SIZE 4096
#define NOISE_SIZE 256
// For easy testing, the plain mempool uses N allocations, the
// metapool 2 * N (so 10 reported leaks are from the plain pool, 20 must be
// from the metapool).
static int MetaPoolFlags = 0;
static int CleanupBeforeExit = 0;
static int GenerateNoise = 0;
static int NoiseCounter = 0;
static struct cell *cells_plain[2 * N];
static struct cell *cells_meta[2 * N];
static unsigned char *noise[3 * N];
static char PlainBlock[POOL_BLOCK_SIZE];
static char MetaBlock[POOL_BLOCK_SIZE];
void create_meta_pool (void)
{
VALGRIND_CREATE_MEMPOOL_EXT(MetaPool, 0, 0, MetaPoolFlags);
VALGRIND_MEMPOOL_ALLOC(MetaPool, MetaBlock, POOL_BLOCK_SIZE);
MetaPool->buf = (uint8_t *) MetaBlock;
MetaPool->allocated = POOL_BLOCK_SIZE;
MetaPool->used = 0;
/* A pool-block is expected to have metadata, and the core of
valgrind sees a MALLOCLIKE_BLOCK that starts at the same address
as a MEMPOOLBLOCK as a MEMPOOLBLOCK, hence never as a leak.
Introduce such some simulated metadata.
*/
MetaPool->buf += sizeof(uint8_t);
MetaPool->used += sizeof(uint8_t);
}
static void create_plain_pool (void)
{
VALGRIND_CREATE_MEMPOOL(PlainPool, 0, 0);
PlainPool->buf = (uint8_t *) PlainBlock;
PlainPool->allocated = POOL_BLOCK_SIZE;
PlainPool->used = 0;
/* Same overhead */
PlainPool->buf += sizeof(uint8_t);
PlainPool->used += sizeof(uint8_t);
}
static void *allocate_meta_style (struct pool *p, size_t n)
{
void *a = p->buf + p->used;
assert(p->used + n < p->allocated);
// Simulate a custom allocator that allocates memory either directly for
// the application or for a custom memory pool: All are marked as MALLOCLIKE.
VALGRIND_MALLOCLIKE_BLOCK(a, n, 0, 0);
p->used += n;
return a;
}
static void *allocate_plain_style (struct pool *p, size_t n)
{
void *a = p->buf + p->used;
assert(p->used + n < p->allocated);
// And this is custom allocator that knows that it is allocating from a pool.
VALGRIND_MEMPOOL_ALLOC(p, a, n);
p->used += n;
return a;
}
/* flags */
static void set_flags ( int n )
{
switch (n) {
// Case 0: No special flags. VALGRIND_CREATE_MEMPOOL_EXT is same as
// VALGRIND_CREATE_MEMPOOL.
// When mempools are destroyed, the METAPOOL leaks because auto-free is
// missing. Must show 2*N (20) leaks.
// The VALGRIND_MEMPOOL_ALLOC items from the plain pool are automatically
// destroyed. CleanupBeforeExit means the metapool is freed and destroyed
// (simulating an app that cleans up before it exits), and when false it
// simply exits with the pool unaltered.
case 0:
MetaPoolFlags = 0;
CleanupBeforeExit = 1;
break;
// Case 1: VALGRIND_MEMPOOL_METAPOOL, no auto-free.
// Without explicit free, these MALLOCLIKE_BLOCK blocks are considered
// leaks. So this case should show same as case 0: 20 leaks.
case 1:
MetaPoolFlags = VALGRIND_MEMPOOL_METAPOOL;
CleanupBeforeExit = 1;
break;
// Same as before, but now the MALLOCLIKE blocks are auto-freed.
// Must show 0 leaks.
case 2:
MetaPoolFlags = VALGRIND_MEMPOOL_METAPOOL | VALGRIND_MEMPOOL_AUTO_FREE;
CleanupBeforeExit = 1;
break;
case 3: // Note: this is incorrect behaviour, and aborts valgrind.
// (so it is not exercised during regression testing).
// Just auto-free, not marked with meta pool flag.
// This is an error, and will cause valgrind to abort when the pool
// is created.
MetaPoolFlags = VALGRIND_MEMPOOL_AUTO_FREE;
CleanupBeforeExit = 1;
break;
case 4:
// No auto-free, no cleanup. Leaves overlapping blocks detected
// by valgrind, but those are ignored because of the METAPOOL.
// So, no crash, no problems, but 20 leaks.
MetaPoolFlags = VALGRIND_MEMPOOL_METAPOOL;
CleanupBeforeExit = 0;
break;
case 5:
// Main reason for the VALGRIND_MEMPOOL_METAPOOL flags: When not
// specified, and the application has a memorypool that has MALLOC_LIKE
// overlapping allocations, that leaves block(s) that overlap.
// Causes a fatal error.
// The METAPOOL allows the overlap. Test must show that without that
// flag, a fatal error occurs.
MetaPoolFlags = 0;
CleanupBeforeExit = 0;
break;
case 6:
// Test the VG_(HT_remove_at_Iter)() function, which removes a chunk
// from a hashlist without the need to reset the iterator. The pool
// is auto_freed, and the best test for the function (besides the ones
// already done above) is by allocating lots of other chunks that are
// NOT part of the pool so the MC_Alloc lists contain other stuff.
// That will make the iterator find stuff AND skip stuff.
MetaPoolFlags = VALGRIND_MEMPOOL_METAPOOL | VALGRIND_MEMPOOL_AUTO_FREE;
CleanupBeforeExit = 1;
GenerateNoise = 1;
break;
default:
assert(0);
}
}
static void GenerateNoisyBit (void)
{
// In case the HT_remove_at_Iter messes up the administration, the wrong
// blocks may be deleted from the list, making access to these noise-blocks
// invalid. So fill 256-byte blocks with easily tested contents.
noise[NoiseCounter] = malloc(NOISE_SIZE);
assert(noise[NoiseCounter] != NULL);
memset(noise[NoiseCounter],(unsigned char) (NoiseCounter % 256), NOISE_SIZE);
NoiseCounter++;
}
static void CheckNoiseContents (void)
{
int i;
for (i = 0; i < NoiseCounter; i++) {
unsigned char Check = (unsigned char) ( i % 256);
int j;
for (j = 0; j < NOISE_SIZE; j++) {
assert(noise[i][j] == Check);
}
}
}
int main( int argc, char** argv )
{
int arg;
size_t i;
assert(argc == 2 || argc == 3);
assert(argv[1]);
assert(strlen(argv[1]) == 1);
assert(argv[1][0] >= '0' && argv[1][0] <= '9');
arg = atoi( argv[1] );
set_flags( arg );
create_plain_pool();
create_meta_pool();
// N plain allocs
for (i = 0; i < N; ++i) {
cells_plain[i] = allocate_plain_style(PlainPool,sizeof(struct cell));
if (GenerateNoise)
GenerateNoisyBit();
}
// 2*N meta allocs
for (i = 0; i < 2 * N; ++i) {
cells_meta[i] = allocate_meta_style(MetaPool,sizeof(struct cell));
if (GenerateNoise)
GenerateNoisyBit();
}
// Leak the memory from the pools by losing the pointers.
for (i = 0; i < N; ++i) {
cells_plain[i] = NULL;
}
for (i = 0; i < 2 * N; ++i) {
cells_meta[i] = NULL;
}
if (GenerateNoise)
CheckNoiseContents();
// This must free MALLOCLIKE allocations from the pool when
// VALGRIND_MEMPOOL_AUTO_FREE
// is set for the pool and report leaks when not.
if (CleanupBeforeExit) {
VALGRIND_MEMPOOL_FREE(MetaPool, MetaBlock);
if (GenerateNoise)
CheckNoiseContents();
VALGRIND_DESTROY_MEMPOOL(MetaPool);
if (GenerateNoise)
CheckNoiseContents();
}
// Cleanup.
VALGRIND_DESTROY_MEMPOOL(PlainPool);
if (GenerateNoise)
CheckNoiseContents();
// Try to trigger an error in the bookkeeping by freeing the noise bits.
// Valgrind should report no leaks, and zero memory in use. If the
// new HT_remove_at_Iter function would corrupt the bookkeeping in any
// way, this should bring it out!
if (GenerateNoise) {
for (i = 0; i < NoiseCounter; i++)
free(noise[i]);
}
// Perf test
if (argc == 3) {
struct pool perf_plain_pool;
void *perf_plain_block;
struct pool perf_meta_pool;
void *perf_meta_block;
size_t pool_block_size;
int n;
int nr_elts = atoi( argv[2] );
time_t dnow;
#define tprintf(...) (dnow = time(NULL), \
printf(__VA_ARGS__), \
printf(" %s", ctime(&dnow)))
pool_block_size = nr_elts * sizeof(struct cell) + sizeof(uint8_t) + 1;
// Create perf meta pool
VALGRIND_CREATE_MEMPOOL_EXT
(&perf_meta_pool, 0, 0,
VALGRIND_MEMPOOL_METAPOOL | VALGRIND_MEMPOOL_AUTO_FREE);
perf_meta_block = malloc(pool_block_size);
VALGRIND_MEMPOOL_ALLOC(&perf_meta_pool, perf_meta_block,
pool_block_size);
perf_meta_pool.buf = (uint8_t *) perf_meta_block;
perf_meta_pool.allocated = pool_block_size;
perf_meta_pool.used = 0;
perf_meta_pool.buf += sizeof(uint8_t);
perf_meta_pool.used += sizeof(uint8_t);
// Create perf plain pool
VALGRIND_CREATE_MEMPOOL(&perf_plain_pool, 0, 0);
perf_plain_block = malloc(pool_block_size);
perf_plain_pool.buf = (uint8_t *) perf_plain_block;
perf_plain_pool.allocated = pool_block_size;;
perf_plain_pool.used = 0;
perf_plain_pool.buf += sizeof(uint8_t);
perf_plain_pool.used += sizeof(uint8_t);
tprintf("allocating %d elts", nr_elts);
for (n = 0; n < nr_elts; n++) {
(void) allocate_meta_style (&perf_meta_pool, sizeof(struct cell));
(void) allocate_plain_style (&perf_plain_pool, sizeof(struct cell));
}
tprintf("freeing mempool");
VALGRIND_MEMPOOL_FREE(&perf_meta_pool, perf_meta_block);
tprintf("destroying mempool");
VALGRIND_DESTROY_MEMPOOL(&perf_meta_pool);
tprintf("done");
}
return 0;
}