| |
| /*--------------------------------------------------------------------*/ |
| /*--- begin guest_amd64_toIR.c ---*/ |
| /*--------------------------------------------------------------------*/ |
| |
| /* |
| This file is part of Valgrind, a dynamic binary instrumentation |
| framework. |
| |
| Copyright (C) 2004-2011 OpenWorks LLP |
| info@open-works.net |
| |
| This program is free software; you can redistribute it and/or |
| modify it under the terms of the GNU General Public License as |
| published by the Free Software Foundation; either version 2 of the |
| License, or (at your option) any later version. |
| |
| This program is distributed in the hope that it will be useful, but |
| WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with this program; if not, write to the Free Software |
| Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA |
| 02110-1301, USA. |
| |
| The GNU General Public License is contained in the file COPYING. |
| |
| Neither the names of the U.S. Department of Energy nor the |
| University of California nor the names of its contributors may be |
| used to endorse or promote products derived from this software |
| without prior written permission. |
| */ |
| |
| /* Translates AMD64 code to IR. */ |
| |
| /* TODO: |
| |
| All Puts to CC_OP/CC_DEP1/CC_DEP2/CC_NDEP should really be checked |
| to ensure a 64-bit value is being written. |
| |
| x87 FP Limitations: |
| |
| * all arithmetic done at 64 bits |
| |
| * no FP exceptions, except for handling stack over/underflow |
| |
| * FP rounding mode observed only for float->int conversions and |
| int->float conversions which could lose accuracy, and for |
| float-to-float rounding. For all other operations, |
| round-to-nearest is used, regardless. |
| |
| * FP sin/cos/tan/sincos: C2 flag is always cleared. IOW the |
| simulation claims the argument is in-range (-2^63 <= arg <= 2^63) |
| even when it isn't. |
| |
| * some of the FCOM cases could do with testing -- not convinced |
| that the args are the right way round. |
| |
| * FSAVE does not re-initialise the FPU; it should do |
| |
| * FINIT not only initialises the FPU environment, it also zeroes |
| all the FP registers. It should leave the registers unchanged. |
| |
| RDTSC returns zero, always. |
| |
| SAHF should cause eflags[1] == 1, and in fact it produces 0. As |
| per Intel docs this bit has no meaning anyway. Since PUSHF is the |
| only way to observe eflags[1], a proper fix would be to make that |
| bit be set by PUSHF. |
| |
| This module uses global variables and so is not MT-safe (if that |
| should ever become relevant). |
| */ |
| |
| /* Notes re address size overrides (0x67). |
| |
| According to the AMD documentation (24594 Rev 3.09, Sept 2003, |
| "AMD64 Architecture Programmer's Manual Volume 3: General-Purpose |
| and System Instructions"), Section 1.2.3 ("Address-Size Override |
| Prefix"): |
| |
| 0x67 applies to all explicit memory references, causing the top |
| 32 bits of the effective address to become zero. |
| |
| 0x67 has no effect on stack references (push/pop); these always |
| use a 64-bit address. |
| |
| 0x67 changes the interpretation of instructions which implicitly |
| reference RCX/RSI/RDI, so that in fact ECX/ESI/EDI are used |
| instead. These are: |
| |
| cmp{s,sb,sw,sd,sq} |
| in{s,sb,sw,sd} |
| jcxz, jecxz, jrcxz |
| lod{s,sb,sw,sd,sq} |
| loop{,e,bz,be,z} |
| mov{s,sb,sw,sd,sq} |
| out{s,sb,sw,sd} |
| rep{,e,ne,nz} |
| sca{s,sb,sw,sd,sq} |
| sto{s,sb,sw,sd,sq} |
| xlat{,b} */ |
| |
| /* "Special" instructions. |
| |
| This instruction decoder can decode three special instructions |
| which mean nothing natively (are no-ops as far as regs/mem are |
| concerned) but have meaning for supporting Valgrind. A special |
| instruction is flagged by the 16-byte preamble 48C1C703 48C1C70D |
| 48C1C73D 48C1C733 (in the standard interpretation, that means: rolq |
| $3, %rdi; rolq $13, %rdi; rolq $61, %rdi; rolq $51, %rdi). |
| Following that, one of the following 3 are allowed (standard |
| interpretation in parentheses): |
| |
| 4887DB (xchgq %rbx,%rbx) %RDX = client_request ( %RAX ) |
| 4887C9 (xchgq %rcx,%rcx) %RAX = guest_NRADDR |
| 4887D2 (xchgq %rdx,%rdx) call-noredir *%RAX |
| |
| Any other bytes following the 16-byte preamble are illegal and |
| constitute a failure in instruction decoding. This all assumes |
| that the preamble will never occur except in specific code |
| fragments designed for Valgrind to catch. |
| |
| No prefixes may precede a "Special" instruction. |
| */ |
| |
| /* casLE (implementation of lock-prefixed insns) and rep-prefixed |
| insns: the side-exit back to the start of the insn is done with |
| Ijk_Boring. This is quite wrong, it should be done with |
| Ijk_NoRedir, since otherwise the side exit, which is intended to |
| restart the instruction for whatever reason, could go somewhere |
| entirely else. Doing it right (with Ijk_NoRedir jumps) would make |
| no-redir jumps performance critical, at least for rep-prefixed |
| instructions, since all iterations thereof would involve such a |
| jump. It's not such a big deal with casLE since the side exit is |
| only taken if the CAS fails, that is, the location is contended, |
| which is relatively unlikely. |
| |
| Note also, the test for CAS success vs failure is done using |
| Iop_CasCmp{EQ,NE}{8,16,32,64} rather than the ordinary |
| Iop_Cmp{EQ,NE} equivalents. This is so as to tell Memcheck that it |
| shouldn't definedness-check these comparisons. See |
| COMMENT_ON_CasCmpEQ in memcheck/mc_translate.c for |
| background/rationale. |
| */ |
| |
| /* LOCK prefixed instructions. These are translated using IR-level |
| CAS statements (IRCAS) and are believed to preserve atomicity, even |
| from the point of view of some other process racing against a |
| simulated one (presumably they communicate via a shared memory |
| segment). |
| |
| Handlers which are aware of LOCK prefixes are: |
| dis_op2_G_E (add, or, adc, sbb, and, sub, xor) |
| dis_cmpxchg_G_E (cmpxchg) |
| dis_Grp1 (add, or, adc, sbb, and, sub, xor) |
| dis_Grp3 (not, neg) |
| dis_Grp4 (inc, dec) |
| dis_Grp5 (inc, dec) |
| dis_Grp8_Imm (bts, btc, btr) |
| dis_bt_G_E (bts, btc, btr) |
| dis_xadd_G_E (xadd) |
| */ |
| |
| |
| #include "libvex_basictypes.h" |
| #include "libvex_ir.h" |
| #include "libvex.h" |
| #include "libvex_guest_amd64.h" |
| |
| #include "main_util.h" |
| #include "main_globals.h" |
| #include "guest_generic_bb_to_IR.h" |
| #include "guest_generic_x87.h" |
| #include "guest_amd64_defs.h" |
| |
| |
| /*------------------------------------------------------------*/ |
| /*--- Globals ---*/ |
| /*------------------------------------------------------------*/ |
| |
| /* These are set at the start of the translation of an insn, right |
| down in disInstr_AMD64, so that we don't have to pass them around |
| endlessly. They are all constant during the translation of any |
| given insn. */ |
| |
| /* These are set at the start of the translation of a BB, so |
| that we don't have to pass them around endlessly. */ |
| |
| /* We need to know this to do sub-register accesses correctly. */ |
| static Bool host_is_bigendian; |
| |
| /* Pointer to the guest code area (points to start of BB, not to the |
| insn being processed). */ |
| static UChar* guest_code; |
| |
| /* The guest address corresponding to guest_code[0]. */ |
| static Addr64 guest_RIP_bbstart; |
| |
| /* The guest address for the instruction currently being |
| translated. */ |
| static Addr64 guest_RIP_curr_instr; |
| |
| /* The IRSB* into which we're generating code. */ |
| static IRSB* irsb; |
| |
| /* For ensuring that %rip-relative addressing is done right. A read |
| of %rip generates the address of the next instruction. It may be |
| that we don't conveniently know that inside disAMode(). For sanity |
| checking, if the next insn %rip is needed, we make a guess at what |
| it is, record that guess here, and set the accompanying Bool to |
| indicate that -- after this insn's decode is finished -- that guess |
| needs to be checked. */ |
| |
| /* At the start of each insn decode, is set to (0, False). |
| After the decode, if _mustcheck is now True, _assumed is |
| checked. */ |
| |
| static Addr64 guest_RIP_next_assumed; |
| static Bool guest_RIP_next_mustcheck; |
| |
| |
| /*------------------------------------------------------------*/ |
| /*--- Helpers for constructing IR. ---*/ |
| /*------------------------------------------------------------*/ |
| |
| /* Generate a new temporary of the given type. */ |
| static IRTemp newTemp ( IRType ty ) |
| { |
| vassert(isPlausibleIRType(ty)); |
| return newIRTemp( irsb->tyenv, ty ); |
| } |
| |
| /* Add a statement to the list held by "irsb". */ |
| static void stmt ( IRStmt* st ) |
| { |
| addStmtToIRSB( irsb, st ); |
| } |
| |
| /* Generate a statement "dst := e". */ |
| static void assign ( IRTemp dst, IRExpr* e ) |
| { |
| stmt( IRStmt_WrTmp(dst, e) ); |
| } |
| |
| static IRExpr* unop ( IROp op, IRExpr* a ) |
| { |
| return IRExpr_Unop(op, a); |
| } |
| |
| static IRExpr* binop ( IROp op, IRExpr* a1, IRExpr* a2 ) |
| { |
| return IRExpr_Binop(op, a1, a2); |
| } |
| |
| static IRExpr* triop ( IROp op, IRExpr* a1, IRExpr* a2, IRExpr* a3 ) |
| { |
| return IRExpr_Triop(op, a1, a2, a3); |
| } |
| |
| static IRExpr* mkexpr ( IRTemp tmp ) |
| { |
| return IRExpr_RdTmp(tmp); |
| } |
| |
| static IRExpr* mkU8 ( ULong i ) |
| { |
| vassert(i < 256); |
| return IRExpr_Const(IRConst_U8( (UChar)i )); |
| } |
| |
| static IRExpr* mkU16 ( ULong i ) |
| { |
| vassert(i < 0x10000ULL); |
| return IRExpr_Const(IRConst_U16( (UShort)i )); |
| } |
| |
| static IRExpr* mkU32 ( ULong i ) |
| { |
| vassert(i < 0x100000000ULL); |
| return IRExpr_Const(IRConst_U32( (UInt)i )); |
| } |
| |
| static IRExpr* mkU64 ( ULong i ) |
| { |
| return IRExpr_Const(IRConst_U64(i)); |
| } |
| |
| static IRExpr* mkU ( IRType ty, ULong i ) |
| { |
| switch (ty) { |
| case Ity_I8: return mkU8(i); |
| case Ity_I16: return mkU16(i); |
| case Ity_I32: return mkU32(i); |
| case Ity_I64: return mkU64(i); |
| default: vpanic("mkU(amd64)"); |
| } |
| } |
| |
| static void storeLE ( IRExpr* addr, IRExpr* data ) |
| { |
| stmt( IRStmt_Store(Iend_LE, addr, data) ); |
| } |
| |
| static IRExpr* loadLE ( IRType ty, IRExpr* addr ) |
| { |
| return IRExpr_Load(Iend_LE, ty, addr); |
| } |
| |
| static IROp mkSizedOp ( IRType ty, IROp op8 ) |
| { |
| vassert(op8 == Iop_Add8 || op8 == Iop_Sub8 |
| || op8 == Iop_Mul8 |
| || op8 == Iop_Or8 || op8 == Iop_And8 || op8 == Iop_Xor8 |
| || op8 == Iop_Shl8 || op8 == Iop_Shr8 || op8 == Iop_Sar8 |
| || op8 == Iop_CmpEQ8 || op8 == Iop_CmpNE8 |
| || op8 == Iop_CasCmpNE8 |
| || op8 == Iop_Not8 ); |
| switch (ty) { |
| case Ity_I8: return 0 +op8; |
| case Ity_I16: return 1 +op8; |
| case Ity_I32: return 2 +op8; |
| case Ity_I64: return 3 +op8; |
| default: vpanic("mkSizedOp(amd64)"); |
| } |
| } |
| |
| static |
| IRExpr* doScalarWidening ( Int szSmall, Int szBig, Bool signd, IRExpr* src ) |
| { |
| if (szSmall == 1 && szBig == 4) { |
| return unop(signd ? Iop_8Sto32 : Iop_8Uto32, src); |
| } |
| if (szSmall == 1 && szBig == 2) { |
| return unop(signd ? Iop_8Sto16 : Iop_8Uto16, src); |
| } |
| if (szSmall == 2 && szBig == 4) { |
| return unop(signd ? Iop_16Sto32 : Iop_16Uto32, src); |
| } |
| if (szSmall == 1 && szBig == 8 && !signd) { |
| return unop(Iop_8Uto64, src); |
| } |
| if (szSmall == 1 && szBig == 8 && signd) { |
| return unop(Iop_8Sto64, src); |
| } |
| if (szSmall == 2 && szBig == 8 && !signd) { |
| return unop(Iop_16Uto64, src); |
| } |
| if (szSmall == 2 && szBig == 8 && signd) { |
| return unop(Iop_16Sto64, src); |
| } |
| vpanic("doScalarWidening(amd64)"); |
| } |
| |
| |
| |
| /*------------------------------------------------------------*/ |
| /*--- Debugging output ---*/ |
| /*------------------------------------------------------------*/ |
| |
| /* Bomb out if we can't handle something. */ |
| __attribute__ ((noreturn)) |
| static void unimplemented ( HChar* str ) |
| { |
| vex_printf("amd64toIR: unimplemented feature\n"); |
| vpanic(str); |
| } |
| |
| #define DIP(format, args...) \ |
| if (vex_traceflags & VEX_TRACE_FE) \ |
| vex_printf(format, ## args) |
| |
| #define DIS(buf, format, args...) \ |
| if (vex_traceflags & VEX_TRACE_FE) \ |
| vex_sprintf(buf, format, ## args) |
| |
| |
| /*------------------------------------------------------------*/ |
| /*--- Offsets of various parts of the amd64 guest state. ---*/ |
| /*------------------------------------------------------------*/ |
| |
| #define OFFB_RAX offsetof(VexGuestAMD64State,guest_RAX) |
| #define OFFB_RBX offsetof(VexGuestAMD64State,guest_RBX) |
| #define OFFB_RCX offsetof(VexGuestAMD64State,guest_RCX) |
| #define OFFB_RDX offsetof(VexGuestAMD64State,guest_RDX) |
| #define OFFB_RSP offsetof(VexGuestAMD64State,guest_RSP) |
| #define OFFB_RBP offsetof(VexGuestAMD64State,guest_RBP) |
| #define OFFB_RSI offsetof(VexGuestAMD64State,guest_RSI) |
| #define OFFB_RDI offsetof(VexGuestAMD64State,guest_RDI) |
| #define OFFB_R8 offsetof(VexGuestAMD64State,guest_R8) |
| #define OFFB_R9 offsetof(VexGuestAMD64State,guest_R9) |
| #define OFFB_R10 offsetof(VexGuestAMD64State,guest_R10) |
| #define OFFB_R11 offsetof(VexGuestAMD64State,guest_R11) |
| #define OFFB_R12 offsetof(VexGuestAMD64State,guest_R12) |
| #define OFFB_R13 offsetof(VexGuestAMD64State,guest_R13) |
| #define OFFB_R14 offsetof(VexGuestAMD64State,guest_R14) |
| #define OFFB_R15 offsetof(VexGuestAMD64State,guest_R15) |
| |
| #define OFFB_RIP offsetof(VexGuestAMD64State,guest_RIP) |
| |
| #define OFFB_FS_ZERO offsetof(VexGuestAMD64State,guest_FS_ZERO) |
| #define OFFB_GS_0x60 offsetof(VexGuestAMD64State,guest_GS_0x60) |
| |
| #define OFFB_CC_OP offsetof(VexGuestAMD64State,guest_CC_OP) |
| #define OFFB_CC_DEP1 offsetof(VexGuestAMD64State,guest_CC_DEP1) |
| #define OFFB_CC_DEP2 offsetof(VexGuestAMD64State,guest_CC_DEP2) |
| #define OFFB_CC_NDEP offsetof(VexGuestAMD64State,guest_CC_NDEP) |
| |
| #define OFFB_FPREGS offsetof(VexGuestAMD64State,guest_FPREG[0]) |
| #define OFFB_FPTAGS offsetof(VexGuestAMD64State,guest_FPTAG[0]) |
| #define OFFB_DFLAG offsetof(VexGuestAMD64State,guest_DFLAG) |
| #define OFFB_ACFLAG offsetof(VexGuestAMD64State,guest_ACFLAG) |
| #define OFFB_IDFLAG offsetof(VexGuestAMD64State,guest_IDFLAG) |
| #define OFFB_FTOP offsetof(VexGuestAMD64State,guest_FTOP) |
| #define OFFB_FC3210 offsetof(VexGuestAMD64State,guest_FC3210) |
| #define OFFB_FPROUND offsetof(VexGuestAMD64State,guest_FPROUND) |
| |
| #define OFFB_SSEROUND offsetof(VexGuestAMD64State,guest_SSEROUND) |
| #define OFFB_YMM0 offsetof(VexGuestAMD64State,guest_YMM0) |
| #define OFFB_YMM1 offsetof(VexGuestAMD64State,guest_YMM1) |
| #define OFFB_YMM2 offsetof(VexGuestAMD64State,guest_YMM2) |
| #define OFFB_YMM3 offsetof(VexGuestAMD64State,guest_YMM3) |
| #define OFFB_YMM4 offsetof(VexGuestAMD64State,guest_YMM4) |
| #define OFFB_YMM5 offsetof(VexGuestAMD64State,guest_YMM5) |
| #define OFFB_YMM6 offsetof(VexGuestAMD64State,guest_YMM6) |
| #define OFFB_YMM7 offsetof(VexGuestAMD64State,guest_YMM7) |
| #define OFFB_YMM8 offsetof(VexGuestAMD64State,guest_YMM8) |
| #define OFFB_YMM9 offsetof(VexGuestAMD64State,guest_YMM9) |
| #define OFFB_YMM10 offsetof(VexGuestAMD64State,guest_YMM10) |
| #define OFFB_YMM11 offsetof(VexGuestAMD64State,guest_YMM11) |
| #define OFFB_YMM12 offsetof(VexGuestAMD64State,guest_YMM12) |
| #define OFFB_YMM13 offsetof(VexGuestAMD64State,guest_YMM13) |
| #define OFFB_YMM14 offsetof(VexGuestAMD64State,guest_YMM14) |
| #define OFFB_YMM15 offsetof(VexGuestAMD64State,guest_YMM15) |
| #define OFFB_YMM16 offsetof(VexGuestAMD64State,guest_YMM16) |
| |
| #define OFFB_EMWARN offsetof(VexGuestAMD64State,guest_EMWARN) |
| #define OFFB_TISTART offsetof(VexGuestAMD64State,guest_TISTART) |
| #define OFFB_TILEN offsetof(VexGuestAMD64State,guest_TILEN) |
| |
| #define OFFB_NRADDR offsetof(VexGuestAMD64State,guest_NRADDR) |
| |
| |
| /*------------------------------------------------------------*/ |
| /*--- Helper bits and pieces for deconstructing the ---*/ |
| /*--- amd64 insn stream. ---*/ |
| /*------------------------------------------------------------*/ |
| |
| /* This is the AMD64 register encoding -- integer regs. */ |
| #define R_RAX 0 |
| #define R_RCX 1 |
| #define R_RDX 2 |
| #define R_RBX 3 |
| #define R_RSP 4 |
| #define R_RBP 5 |
| #define R_RSI 6 |
| #define R_RDI 7 |
| #define R_R8 8 |
| #define R_R9 9 |
| #define R_R10 10 |
| #define R_R11 11 |
| #define R_R12 12 |
| #define R_R13 13 |
| #define R_R14 14 |
| #define R_R15 15 |
| |
| /* This is the Intel register encoding -- segment regs. */ |
| #define R_ES 0 |
| #define R_CS 1 |
| #define R_SS 2 |
| #define R_DS 3 |
| #define R_FS 4 |
| #define R_GS 5 |
| |
| |
| /* Various simple conversions */ |
| |
| static ULong extend_s_8to64 ( UChar x ) |
| { |
| return (ULong)((((Long)x) << 56) >> 56); |
| } |
| |
| static ULong extend_s_16to64 ( UShort x ) |
| { |
| return (ULong)((((Long)x) << 48) >> 48); |
| } |
| |
| static ULong extend_s_32to64 ( UInt x ) |
| { |
| return (ULong)((((Long)x) << 32) >> 32); |
| } |
| |
| /* Figure out whether the mod and rm parts of a modRM byte refer to a |
| register or memory. If so, the byte will have the form 11XXXYYY, |
| where YYY is the register number. */ |
| inline |
| static Bool epartIsReg ( UChar mod_reg_rm ) |
| { |
| return toBool(0xC0 == (mod_reg_rm & 0xC0)); |
| } |
| |
| /* Extract the 'g' field from a modRM byte. This only produces 3 |
| bits, which is not a complete register number. You should avoid |
| this function if at all possible. */ |
| inline |
| static Int gregLO3ofRM ( UChar mod_reg_rm ) |
| { |
| return (Int)( (mod_reg_rm >> 3) & 7 ); |
| } |
| |
| /* Ditto the 'e' field of a modRM byte. */ |
| inline |
| static Int eregLO3ofRM ( UChar mod_reg_rm ) |
| { |
| return (Int)(mod_reg_rm & 0x7); |
| } |
| |
| /* Get a 8/16/32-bit unsigned value out of the insn stream. */ |
| |
| static inline UChar getUChar ( Long delta ) |
| { |
| UChar v = guest_code[delta+0]; |
| return v; |
| } |
| |
| static UInt getUDisp16 ( Long delta ) |
| { |
| UInt v = guest_code[delta+1]; v <<= 8; |
| v |= guest_code[delta+0]; |
| return v & 0xFFFF; |
| } |
| |
| //.. static UInt getUDisp ( Int size, Long delta ) |
| //.. { |
| //.. switch (size) { |
| //.. case 4: return getUDisp32(delta); |
| //.. case 2: return getUDisp16(delta); |
| //.. case 1: return getUChar(delta); |
| //.. default: vpanic("getUDisp(x86)"); |
| //.. } |
| //.. return 0; /*notreached*/ |
| //.. } |
| |
| |
| /* Get a byte value out of the insn stream and sign-extend to 64 |
| bits. */ |
| static Long getSDisp8 ( Long delta ) |
| { |
| return extend_s_8to64( guest_code[delta] ); |
| } |
| |
| /* Get a 16-bit value out of the insn stream and sign-extend to 64 |
| bits. */ |
| static Long getSDisp16 ( Long delta ) |
| { |
| UInt v = guest_code[delta+1]; v <<= 8; |
| v |= guest_code[delta+0]; |
| return extend_s_16to64( (UShort)v ); |
| } |
| |
| /* Get a 32-bit value out of the insn stream and sign-extend to 64 |
| bits. */ |
| static Long getSDisp32 ( Long delta ) |
| { |
| UInt v = guest_code[delta+3]; v <<= 8; |
| v |= guest_code[delta+2]; v <<= 8; |
| v |= guest_code[delta+1]; v <<= 8; |
| v |= guest_code[delta+0]; |
| return extend_s_32to64( v ); |
| } |
| |
| /* Get a 64-bit value out of the insn stream. */ |
| static Long getDisp64 ( Long delta ) |
| { |
| ULong v = 0; |
| v |= guest_code[delta+7]; v <<= 8; |
| v |= guest_code[delta+6]; v <<= 8; |
| v |= guest_code[delta+5]; v <<= 8; |
| v |= guest_code[delta+4]; v <<= 8; |
| v |= guest_code[delta+3]; v <<= 8; |
| v |= guest_code[delta+2]; v <<= 8; |
| v |= guest_code[delta+1]; v <<= 8; |
| v |= guest_code[delta+0]; |
| return v; |
| } |
| |
| /* Note: because AMD64 doesn't allow 64-bit literals, it is an error |
| if this is called with size==8. Should not happen. */ |
| static Long getSDisp ( Int size, Long delta ) |
| { |
| switch (size) { |
| case 4: return getSDisp32(delta); |
| case 2: return getSDisp16(delta); |
| case 1: return getSDisp8(delta); |
| default: vpanic("getSDisp(amd64)"); |
| } |
| } |
| |
| static ULong mkSizeMask ( Int sz ) |
| { |
| switch (sz) { |
| case 1: return 0x00000000000000FFULL; |
| case 2: return 0x000000000000FFFFULL; |
| case 4: return 0x00000000FFFFFFFFULL; |
| case 8: return 0xFFFFFFFFFFFFFFFFULL; |
| default: vpanic("mkSzMask(amd64)"); |
| } |
| } |
| |
| static Int imin ( Int a, Int b ) |
| { |
| return (a < b) ? a : b; |
| } |
| |
| static IRType szToITy ( Int n ) |
| { |
| switch (n) { |
| case 1: return Ity_I8; |
| case 2: return Ity_I16; |
| case 4: return Ity_I32; |
| case 8: return Ity_I64; |
| default: vex_printf("\nszToITy(%d)\n", n); |
| vpanic("szToITy(amd64)"); |
| } |
| } |
| |
| |
| /*------------------------------------------------------------*/ |
| /*--- For dealing with prefixes. ---*/ |
| /*------------------------------------------------------------*/ |
| |
| /* The idea is to pass around an int holding a bitmask summarising |
| info from the prefixes seen on the current instruction, including |
| info from the REX byte. This info is used in various places, but |
| most especially when making sense of register fields in |
| instructions. |
| |
| The top 8 bits of the prefix are 0x55, just as a hacky way to |
| ensure it really is a valid prefix. |
| |
| Things you can safely assume about a well-formed prefix: |
| * at most one segment-override bit (CS,DS,ES,FS,GS,SS) is set. |
| * if REX is not present then REXW,REXR,REXX,REXB will read |
| as zero. |
| * F2 and F3 will not both be 1. |
| */ |
| |
| typedef UInt Prefix; |
| |
| #define PFX_ASO (1<<0) /* address-size override present (0x67) */ |
| #define PFX_66 (1<<1) /* operand-size override-to-16 present (0x66) */ |
| #define PFX_REX (1<<2) /* REX byte present (0x40 to 0x4F) */ |
| #define PFX_REXW (1<<3) /* REX W bit, if REX present, else 0 */ |
| #define PFX_REXR (1<<4) /* REX R bit, if REX present, else 0 */ |
| #define PFX_REXX (1<<5) /* REX X bit, if REX present, else 0 */ |
| #define PFX_REXB (1<<6) /* REX B bit, if REX present, else 0 */ |
| #define PFX_LOCK (1<<7) /* bus LOCK prefix present (0xF0) */ |
| #define PFX_F2 (1<<8) /* REP/REPE/REPZ prefix present (0xF2) */ |
| #define PFX_F3 (1<<9) /* REPNE/REPNZ prefix present (0xF3) */ |
| #define PFX_CS (1<<10) /* CS segment prefix present (0x2E) */ |
| #define PFX_DS (1<<11) /* DS segment prefix present (0x3E) */ |
| #define PFX_ES (1<<12) /* ES segment prefix present (0x26) */ |
| #define PFX_FS (1<<13) /* FS segment prefix present (0x64) */ |
| #define PFX_GS (1<<14) /* GS segment prefix present (0x65) */ |
| #define PFX_SS (1<<15) /* SS segment prefix present (0x36) */ |
| #define PFX_VEX (1<<16) /* VEX prefix present (0xC4 or 0xC5) */ |
| #define PFX_VEXL (1<<17) /* VEX L bit, if VEX present, else 0 */ |
| /* The extra register field VEX.vvvv is encoded (after not-ing it) as |
| PFX_VEXnV3 .. PFX_VEXnV0, so these must occupy adjacent bit |
| positions. */ |
| #define PFX_VEXnV0 (1<<18) /* ~VEX vvvv[0], if VEX present, else 0 */ |
| #define PFX_VEXnV1 (1<<19) /* ~VEX vvvv[1], if VEX present, else 0 */ |
| #define PFX_VEXnV2 (1<<20) /* ~VEX vvvv[2], if VEX present, else 0 */ |
| #define PFX_VEXnV3 (1<<21) /* ~VEX vvvv[3], if VEX present, else 0 */ |
| |
| |
| #define PFX_EMPTY 0x55000000 |
| |
| static Bool IS_VALID_PFX ( Prefix pfx ) { |
| return toBool((pfx & 0xFF000000) == PFX_EMPTY); |
| } |
| |
| static Bool haveREX ( Prefix pfx ) { |
| return toBool(pfx & PFX_REX); |
| } |
| |
| static Int getRexW ( Prefix pfx ) { |
| return (pfx & PFX_REXW) ? 1 : 0; |
| } |
| static Int getRexR ( Prefix pfx ) { |
| return (pfx & PFX_REXR) ? 1 : 0; |
| } |
| static Int getRexX ( Prefix pfx ) { |
| return (pfx & PFX_REXX) ? 1 : 0; |
| } |
| static Int getRexB ( Prefix pfx ) { |
| return (pfx & PFX_REXB) ? 1 : 0; |
| } |
| |
| /* Check a prefix doesn't have F2 or F3 set in it, since usually that |
| completely changes what instruction it really is. */ |
| static Bool haveF2orF3 ( Prefix pfx ) { |
| return toBool((pfx & (PFX_F2|PFX_F3)) > 0); |
| } |
| static Bool haveF2 ( Prefix pfx ) { |
| return toBool((pfx & PFX_F2) > 0); |
| } |
| static Bool haveF3 ( Prefix pfx ) { |
| return toBool((pfx & PFX_F3) > 0); |
| } |
| |
| static Bool have66 ( Prefix pfx ) { |
| return toBool((pfx & PFX_66) > 0); |
| } |
| static Bool haveASO ( Prefix pfx ) { |
| return toBool((pfx & PFX_ASO) > 0); |
| } |
| |
| /* Return True iff pfx has 66 set and F2 and F3 clear */ |
| static Bool have66noF2noF3 ( Prefix pfx ) |
| { |
| return |
| toBool((pfx & (PFX_66|PFX_F2|PFX_F3)) == PFX_66); |
| } |
| |
| /* Return True iff pfx has F2 set and 66 and F3 clear */ |
| static Bool haveF2no66noF3 ( Prefix pfx ) |
| { |
| return |
| toBool((pfx & (PFX_66|PFX_F2|PFX_F3)) == PFX_F2); |
| } |
| |
| /* Return True iff pfx has F3 set and 66 and F2 clear */ |
| static Bool haveF3no66noF2 ( Prefix pfx ) |
| { |
| return |
| toBool((pfx & (PFX_66|PFX_F2|PFX_F3)) == PFX_F3); |
| } |
| |
| /* Return True iff pfx has F3 set and F2 clear */ |
| static Bool haveF3noF2 ( Prefix pfx ) |
| { |
| return |
| toBool((pfx & (PFX_F2|PFX_F3)) == PFX_F3); |
| } |
| |
| /* Return True iff pfx has F2 set and F3 clear */ |
| static Bool haveF2noF3 ( Prefix pfx ) |
| { |
| return |
| toBool((pfx & (PFX_F2|PFX_F3)) == PFX_F2); |
| } |
| |
| /* Return True iff pfx has 66, F2 and F3 clear */ |
| static Bool haveNo66noF2noF3 ( Prefix pfx ) |
| { |
| return |
| toBool((pfx & (PFX_66|PFX_F2|PFX_F3)) == 0); |
| } |
| |
| /* Return True iff pfx has any of 66, F2 and F3 set */ |
| static Bool have66orF2orF3 ( Prefix pfx ) |
| { |
| return toBool( ! haveNo66noF2noF3(pfx) ); |
| } |
| |
| /* Return True iff pfx has 66 or F2 set */ |
| static Bool have66orF2 ( Prefix pfx ) |
| { |
| return toBool((pfx & (PFX_66|PFX_F2)) > 0); |
| } |
| |
| /* Clear all the segment-override bits in a prefix. */ |
| static Prefix clearSegBits ( Prefix p ) |
| { |
| return |
| p & ~(PFX_CS | PFX_DS | PFX_ES | PFX_FS | PFX_GS | PFX_SS); |
| } |
| |
| /* Get the (inverted, hence back to "normal") VEX.vvvv field. */ |
| static UInt getVexNvvvv ( Prefix pfx ) { |
| UInt r = (UInt)pfx; |
| r /= (UInt)PFX_VEXnV0; /* pray this turns into a shift */ |
| return r & 0xF; |
| } |
| |
| static Bool haveVEX ( Prefix pfx ) { |
| return toBool(pfx & PFX_VEX); |
| } |
| |
| static Int getVexL ( Prefix pfx ) { |
| return (pfx & PFX_VEXL) ? 1 : 0; |
| } |
| |
| |
| /*------------------------------------------------------------*/ |
| /*--- For dealing with escapes ---*/ |
| /*------------------------------------------------------------*/ |
| |
| |
| /* Escapes come after the prefixes, but before the primary opcode |
| byte. They escape the primary opcode byte into a bigger space. |
| The 0xF0000000 isn't significant, except so as to make it not |
| overlap valid Prefix values, for sanity checking. |
| */ |
| |
| typedef |
| enum { |
| ESC_NONE=0xF0000000, // none |
| ESC_0F, // 0F |
| ESC_0F38, // 0F 38 |
| ESC_0F3A // 0F 3A |
| } |
| Escape; |
| |
| |
| /*------------------------------------------------------------*/ |
| /*--- For dealing with integer registers ---*/ |
| /*------------------------------------------------------------*/ |
| |
| /* This is somewhat complex. The rules are: |
| |
| For 64, 32 and 16 bit register references, the e or g fields in the |
| modrm bytes supply the low 3 bits of the register number. The |
| fourth (most-significant) bit of the register number is supplied by |
| the REX byte, if it is present; else that bit is taken to be zero. |
| |
| The REX.R bit supplies the high bit corresponding to the g register |
| field, and the REX.B bit supplies the high bit corresponding to the |
| e register field (when the mod part of modrm indicates that modrm's |
| e component refers to a register and not to memory). |
| |
| The REX.X bit supplies a high register bit for certain registers |
| in SIB address modes, and is generally rarely used. |
| |
| For 8 bit register references, the presence of the REX byte itself |
| has significance. If there is no REX present, then the 3-bit |
| number extracted from the modrm e or g field is treated as an index |
| into the sequence %al %cl %dl %bl %ah %ch %dh %bh -- that is, the |
| old x86 encoding scheme. |
| |
| But if there is a REX present, the register reference is |
| interpreted in the same way as for 64/32/16-bit references: a high |
| bit is extracted from REX, giving a 4-bit number, and the denoted |
| register is the lowest 8 bits of the 16 integer registers denoted |
| by the number. In particular, values 3 through 7 of this sequence |
| do not refer to %ah %ch %dh %bh but instead to the lowest 8 bits of |
| %rsp %rbp %rsi %rdi. |
| |
| The REX.W bit has no bearing at all on register numbers. Instead |
| its presence indicates that the operand size is to be overridden |
| from its default value (32 bits) to 64 bits instead. This is in |
| the same fashion that an 0x66 prefix indicates the operand size is |
| to be overridden from 32 bits down to 16 bits. When both REX.W and |
| 0x66 are present there is a conflict, and REX.W takes precedence. |
| |
| Rather than try to handle this complexity using a single huge |
| function, several smaller ones are provided. The aim is to make it |
| as difficult as possible to screw up register decoding in a subtle |
| and hard-to-track-down way. |
| |
| Because these routines fish around in the host's memory (that is, |
| in the guest state area) for sub-parts of guest registers, their |
| correctness depends on the host's endianness. So far these |
| routines only work for little-endian hosts. Those for which |
| endianness is important have assertions to ensure sanity. |
| */ |
| |
| |
| /* About the simplest question you can ask: where do the 64-bit |
| integer registers live (in the guest state) ? */ |
| |
| static Int integerGuestReg64Offset ( UInt reg ) |
| { |
| switch (reg) { |
| case R_RAX: return OFFB_RAX; |
| case R_RCX: return OFFB_RCX; |
| case R_RDX: return OFFB_RDX; |
| case R_RBX: return OFFB_RBX; |
| case R_RSP: return OFFB_RSP; |
| case R_RBP: return OFFB_RBP; |
| case R_RSI: return OFFB_RSI; |
| case R_RDI: return OFFB_RDI; |
| case R_R8: return OFFB_R8; |
| case R_R9: return OFFB_R9; |
| case R_R10: return OFFB_R10; |
| case R_R11: return OFFB_R11; |
| case R_R12: return OFFB_R12; |
| case R_R13: return OFFB_R13; |
| case R_R14: return OFFB_R14; |
| case R_R15: return OFFB_R15; |
| default: vpanic("integerGuestReg64Offset(amd64)"); |
| } |
| } |
| |
| |
| /* Produce the name of an integer register, for printing purposes. |
| reg is a number in the range 0 .. 15 that has been generated from a |
| 3-bit reg-field number and a REX extension bit. irregular denotes |
| the case where sz==1 and no REX byte is present. */ |
| |
| static |
| HChar* nameIReg ( Int sz, UInt reg, Bool irregular ) |
| { |
| static HChar* ireg64_names[16] |
| = { "%rax", "%rcx", "%rdx", "%rbx", "%rsp", "%rbp", "%rsi", "%rdi", |
| "%r8", "%r9", "%r10", "%r11", "%r12", "%r13", "%r14", "%r15" }; |
| static HChar* ireg32_names[16] |
| = { "%eax", "%ecx", "%edx", "%ebx", "%esp", "%ebp", "%esi", "%edi", |
| "%r8d", "%r9d", "%r10d","%r11d","%r12d","%r13d","%r14d","%r15d" }; |
| static HChar* ireg16_names[16] |
| = { "%ax", "%cx", "%dx", "%bx", "%sp", "%bp", "%si", "%di", |
| "%r8w", "%r9w", "%r10w","%r11w","%r12w","%r13w","%r14w","%r15w" }; |
| static HChar* ireg8_names[16] |
| = { "%al", "%cl", "%dl", "%bl", "%spl", "%bpl", "%sil", "%dil", |
| "%r8b", "%r9b", "%r10b","%r11b","%r12b","%r13b","%r14b","%r15b" }; |
| static HChar* ireg8_irregular[8] |
| = { "%al", "%cl", "%dl", "%bl", "%ah", "%ch", "%dh", "%bh" }; |
| |
| vassert(reg < 16); |
| if (sz == 1) { |
| if (irregular) |
| vassert(reg < 8); |
| } else { |
| vassert(irregular == False); |
| } |
| |
| switch (sz) { |
| case 8: return ireg64_names[reg]; |
| case 4: return ireg32_names[reg]; |
| case 2: return ireg16_names[reg]; |
| case 1: if (irregular) { |
| return ireg8_irregular[reg]; |
| } else { |
| return ireg8_names[reg]; |
| } |
| default: vpanic("nameIReg(amd64)"); |
| } |
| } |
| |
| /* Using the same argument conventions as nameIReg, produce the |
| guest state offset of an integer register. */ |
| |
| static |
| Int offsetIReg ( Int sz, UInt reg, Bool irregular ) |
| { |
| vassert(reg < 16); |
| if (sz == 1) { |
| if (irregular) |
| vassert(reg < 8); |
| } else { |
| vassert(irregular == False); |
| } |
| |
| /* Deal with irregular case -- sz==1 and no REX present */ |
| if (sz == 1 && irregular) { |
| switch (reg) { |
| case R_RSP: return 1+ OFFB_RAX; |
| case R_RBP: return 1+ OFFB_RCX; |
| case R_RSI: return 1+ OFFB_RDX; |
| case R_RDI: return 1+ OFFB_RBX; |
| default: break; /* use the normal case */ |
| } |
| } |
| |
| /* Normal case */ |
| return integerGuestReg64Offset(reg); |
| } |
| |
| |
| /* Read the %CL register :: Ity_I8, for shift/rotate operations. */ |
| |
| static IRExpr* getIRegCL ( void ) |
| { |
| vassert(!host_is_bigendian); |
| return IRExpr_Get( OFFB_RCX, Ity_I8 ); |
| } |
| |
| |
| /* Write to the %AH register. */ |
| |
| static void putIRegAH ( IRExpr* e ) |
| { |
| vassert(!host_is_bigendian); |
| vassert(typeOfIRExpr(irsb->tyenv, e) == Ity_I8); |
| stmt( IRStmt_Put( OFFB_RAX+1, e ) ); |
| } |
| |
| |
| /* Read/write various widths of %RAX, as it has various |
| special-purpose uses. */ |
| |
| static HChar* nameIRegRAX ( Int sz ) |
| { |
| switch (sz) { |
| case 1: return "%al"; |
| case 2: return "%ax"; |
| case 4: return "%eax"; |
| case 8: return "%rax"; |
| default: vpanic("nameIRegRAX(amd64)"); |
| } |
| } |
| |
| static IRExpr* getIRegRAX ( Int sz ) |
| { |
| vassert(!host_is_bigendian); |
| switch (sz) { |
| case 1: return IRExpr_Get( OFFB_RAX, Ity_I8 ); |
| case 2: return IRExpr_Get( OFFB_RAX, Ity_I16 ); |
| case 4: return unop(Iop_64to32, IRExpr_Get( OFFB_RAX, Ity_I64 )); |
| case 8: return IRExpr_Get( OFFB_RAX, Ity_I64 ); |
| default: vpanic("getIRegRAX(amd64)"); |
| } |
| } |
| |
| static void putIRegRAX ( Int sz, IRExpr* e ) |
| { |
| IRType ty = typeOfIRExpr(irsb->tyenv, e); |
| vassert(!host_is_bigendian); |
| switch (sz) { |
| case 8: vassert(ty == Ity_I64); |
| stmt( IRStmt_Put( OFFB_RAX, e )); |
| break; |
| case 4: vassert(ty == Ity_I32); |
| stmt( IRStmt_Put( OFFB_RAX, unop(Iop_32Uto64,e) )); |
| break; |
| case 2: vassert(ty == Ity_I16); |
| stmt( IRStmt_Put( OFFB_RAX, e )); |
| break; |
| case 1: vassert(ty == Ity_I8); |
| stmt( IRStmt_Put( OFFB_RAX, e )); |
| break; |
| default: vpanic("putIRegRAX(amd64)"); |
| } |
| } |
| |
| |
| /* Read/write various widths of %RDX, as it has various |
| special-purpose uses. */ |
| |
| static HChar* nameIRegRDX ( Int sz ) |
| { |
| switch (sz) { |
| case 1: return "%dl"; |
| case 2: return "%dx"; |
| case 4: return "%edx"; |
| case 8: return "%rdx"; |
| default: vpanic("nameIRegRDX(amd64)"); |
| } |
| } |
| |
| static IRExpr* getIRegRDX ( Int sz ) |
| { |
| vassert(!host_is_bigendian); |
| switch (sz) { |
| case 1: return IRExpr_Get( OFFB_RDX, Ity_I8 ); |
| case 2: return IRExpr_Get( OFFB_RDX, Ity_I16 ); |
| case 4: return unop(Iop_64to32, IRExpr_Get( OFFB_RDX, Ity_I64 )); |
| case 8: return IRExpr_Get( OFFB_RDX, Ity_I64 ); |
| default: vpanic("getIRegRDX(amd64)"); |
| } |
| } |
| |
| static void putIRegRDX ( Int sz, IRExpr* e ) |
| { |
| vassert(!host_is_bigendian); |
| vassert(typeOfIRExpr(irsb->tyenv, e) == szToITy(sz)); |
| switch (sz) { |
| case 8: stmt( IRStmt_Put( OFFB_RDX, e )); |
| break; |
| case 4: stmt( IRStmt_Put( OFFB_RDX, unop(Iop_32Uto64,e) )); |
| break; |
| case 2: stmt( IRStmt_Put( OFFB_RDX, e )); |
| break; |
| case 1: stmt( IRStmt_Put( OFFB_RDX, e )); |
| break; |
| default: vpanic("putIRegRDX(amd64)"); |
| } |
| } |
| |
| |
| /* Simplistic functions to deal with the integer registers as a |
| straightforward bank of 16 64-bit regs. */ |
| |
| static IRExpr* getIReg64 ( UInt regno ) |
| { |
| return IRExpr_Get( integerGuestReg64Offset(regno), |
| Ity_I64 ); |
| } |
| |
| static void putIReg64 ( UInt regno, IRExpr* e ) |
| { |
| vassert(typeOfIRExpr(irsb->tyenv,e) == Ity_I64); |
| stmt( IRStmt_Put( integerGuestReg64Offset(regno), e ) ); |
| } |
| |
| static HChar* nameIReg64 ( UInt regno ) |
| { |
| return nameIReg( 8, regno, False ); |
| } |
| |
| |
| /* Simplistic functions to deal with the lower halves of integer |
| registers as a straightforward bank of 16 32-bit regs. */ |
| |
| static IRExpr* getIReg32 ( UInt regno ) |
| { |
| vassert(!host_is_bigendian); |
| return unop(Iop_64to32, |
| IRExpr_Get( integerGuestReg64Offset(regno), |
| Ity_I64 )); |
| } |
| |
| static void putIReg32 ( UInt regno, IRExpr* e ) |
| { |
| vassert(typeOfIRExpr(irsb->tyenv,e) == Ity_I32); |
| stmt( IRStmt_Put( integerGuestReg64Offset(regno), |
| unop(Iop_32Uto64,e) ) ); |
| } |
| |
| static HChar* nameIReg32 ( UInt regno ) |
| { |
| return nameIReg( 4, regno, False ); |
| } |
| |
| |
| /* Simplistic functions to deal with the lower quarters of integer |
| registers as a straightforward bank of 16 16-bit regs. */ |
| |
| static IRExpr* getIReg16 ( UInt regno ) |
| { |
| vassert(!host_is_bigendian); |
| return IRExpr_Get( integerGuestReg64Offset(regno), |
| Ity_I16 ); |
| } |
| |
| static void putIReg16 ( UInt regno, IRExpr* e ) |
| { |
| vassert(typeOfIRExpr(irsb->tyenv,e) == Ity_I16); |
| stmt( IRStmt_Put( integerGuestReg64Offset(regno), |
| unop(Iop_16Uto64,e) ) ); |
| } |
| |
| static HChar* nameIReg16 ( UInt regno ) |
| { |
| return nameIReg( 2, regno, False ); |
| } |
| |
| |
| /* Sometimes what we know is a 3-bit register number, a REX byte, and |
| which field of the REX byte is to be used to extend to a 4-bit |
| number. These functions cater for that situation. |
| */ |
| static IRExpr* getIReg64rexX ( Prefix pfx, UInt lo3bits ) |
| { |
| vassert(lo3bits < 8); |
| vassert(IS_VALID_PFX(pfx)); |
| return getIReg64( lo3bits | (getRexX(pfx) << 3) ); |
| } |
| |
| static HChar* nameIReg64rexX ( Prefix pfx, UInt lo3bits ) |
| { |
| vassert(lo3bits < 8); |
| vassert(IS_VALID_PFX(pfx)); |
| return nameIReg( 8, lo3bits | (getRexX(pfx) << 3), False ); |
| } |
| |
| static HChar* nameIRegRexB ( Int sz, Prefix pfx, UInt lo3bits ) |
| { |
| vassert(lo3bits < 8); |
| vassert(IS_VALID_PFX(pfx)); |
| vassert(sz == 8 || sz == 4 || sz == 2 || sz == 1); |
| return nameIReg( sz, lo3bits | (getRexB(pfx) << 3), |
| toBool(sz==1 && !haveREX(pfx)) ); |
| } |
| |
| static IRExpr* getIRegRexB ( Int sz, Prefix pfx, UInt lo3bits ) |
| { |
| vassert(lo3bits < 8); |
| vassert(IS_VALID_PFX(pfx)); |
| vassert(sz == 8 || sz == 4 || sz == 2 || sz == 1); |
| if (sz == 4) { |
| sz = 8; |
| return unop(Iop_64to32, |
| IRExpr_Get( |
| offsetIReg( sz, lo3bits | (getRexB(pfx) << 3), |
| toBool(sz==1 && !haveREX(pfx)) ), |
| szToITy(sz) |
| ) |
| ); |
| } else { |
| return IRExpr_Get( |
| offsetIReg( sz, lo3bits | (getRexB(pfx) << 3), |
| toBool(sz==1 && !haveREX(pfx)) ), |
| szToITy(sz) |
| ); |
| } |
| } |
| |
| static void putIRegRexB ( Int sz, Prefix pfx, UInt lo3bits, IRExpr* e ) |
| { |
| vassert(lo3bits < 8); |
| vassert(IS_VALID_PFX(pfx)); |
| vassert(sz == 8 || sz == 4 || sz == 2 || sz == 1); |
| vassert(typeOfIRExpr(irsb->tyenv, e) == szToITy(sz)); |
| stmt( IRStmt_Put( |
| offsetIReg( sz, lo3bits | (getRexB(pfx) << 3), |
| toBool(sz==1 && !haveREX(pfx)) ), |
| sz==4 ? unop(Iop_32Uto64,e) : e |
| )); |
| } |
| |
| |
| /* Functions for getting register numbers from modrm bytes and REX |
| when we don't have to consider the complexities of integer subreg |
| accesses. |
| */ |
| /* Extract the g reg field from a modRM byte, and augment it using the |
| REX.R bit from the supplied REX byte. The R bit usually is |
| associated with the g register field. |
| */ |
| static UInt gregOfRexRM ( Prefix pfx, UChar mod_reg_rm ) |
| { |
| Int reg = (Int)( (mod_reg_rm >> 3) & 7 ); |
| reg += (pfx & PFX_REXR) ? 8 : 0; |
| return reg; |
| } |
| |
| /* Extract the e reg field from a modRM byte, and augment it using the |
| REX.B bit from the supplied REX byte. The B bit usually is |
| associated with the e register field (when modrm indicates e is a |
| register, that is). |
| */ |
| static UInt eregOfRexRM ( Prefix pfx, UChar mod_reg_rm ) |
| { |
| Int rm; |
| vassert(epartIsReg(mod_reg_rm)); |
| rm = (Int)(mod_reg_rm & 0x7); |
| rm += (pfx & PFX_REXB) ? 8 : 0; |
| return rm; |
| } |
| |
| |
| /* General functions for dealing with integer register access. */ |
| |
| /* Produce the guest state offset for a reference to the 'g' register |
| field in a modrm byte, taking into account REX (or its absence), |
| and the size of the access. |
| */ |
| static UInt offsetIRegG ( Int sz, Prefix pfx, UChar mod_reg_rm ) |
| { |
| UInt reg; |
| vassert(!host_is_bigendian); |
| vassert(IS_VALID_PFX(pfx)); |
| vassert(sz == 8 || sz == 4 || sz == 2 || sz == 1); |
| reg = gregOfRexRM( pfx, mod_reg_rm ); |
| return offsetIReg( sz, reg, toBool(sz == 1 && !haveREX(pfx)) ); |
| } |
| |
| static |
| IRExpr* getIRegG ( Int sz, Prefix pfx, UChar mod_reg_rm ) |
| { |
| if (sz == 4) { |
| sz = 8; |
| return unop(Iop_64to32, |
| IRExpr_Get( offsetIRegG( sz, pfx, mod_reg_rm ), |
| szToITy(sz) )); |
| } else { |
| return IRExpr_Get( offsetIRegG( sz, pfx, mod_reg_rm ), |
| szToITy(sz) ); |
| } |
| } |
| |
| static |
| void putIRegG ( Int sz, Prefix pfx, UChar mod_reg_rm, IRExpr* e ) |
| { |
| vassert(typeOfIRExpr(irsb->tyenv,e) == szToITy(sz)); |
| if (sz == 4) { |
| e = unop(Iop_32Uto64,e); |
| } |
| stmt( IRStmt_Put( offsetIRegG( sz, pfx, mod_reg_rm ), e ) ); |
| } |
| |
| static |
| HChar* nameIRegG ( Int sz, Prefix pfx, UChar mod_reg_rm ) |
| { |
| return nameIReg( sz, gregOfRexRM(pfx,mod_reg_rm), |
| toBool(sz==1 && !haveREX(pfx)) ); |
| } |
| |
| |
| /* Produce the guest state offset for a reference to the 'e' register |
| field in a modrm byte, taking into account REX (or its absence), |
| and the size of the access. eregOfRexRM will assert if mod_reg_rm |
| denotes a memory access rather than a register access. |
| */ |
| static UInt offsetIRegE ( Int sz, Prefix pfx, UChar mod_reg_rm ) |
| { |
| UInt reg; |
| vassert(!host_is_bigendian); |
| vassert(IS_VALID_PFX(pfx)); |
| vassert(sz == 8 || sz == 4 || sz == 2 || sz == 1); |
| reg = eregOfRexRM( pfx, mod_reg_rm ); |
| return offsetIReg( sz, reg, toBool(sz == 1 && !haveREX(pfx)) ); |
| } |
| |
| static |
| IRExpr* getIRegE ( Int sz, Prefix pfx, UChar mod_reg_rm ) |
| { |
| if (sz == 4) { |
| sz = 8; |
| return unop(Iop_64to32, |
| IRExpr_Get( offsetIRegE( sz, pfx, mod_reg_rm ), |
| szToITy(sz) )); |
| } else { |
| return IRExpr_Get( offsetIRegE( sz, pfx, mod_reg_rm ), |
| szToITy(sz) ); |
| } |
| } |
| |
| static |
| void putIRegE ( Int sz, Prefix pfx, UChar mod_reg_rm, IRExpr* e ) |
| { |
| vassert(typeOfIRExpr(irsb->tyenv,e) == szToITy(sz)); |
| if (sz == 4) { |
| e = unop(Iop_32Uto64,e); |
| } |
| stmt( IRStmt_Put( offsetIRegE( sz, pfx, mod_reg_rm ), e ) ); |
| } |
| |
| static |
| HChar* nameIRegE ( Int sz, Prefix pfx, UChar mod_reg_rm ) |
| { |
| return nameIReg( sz, eregOfRexRM(pfx,mod_reg_rm), |
| toBool(sz==1 && !haveREX(pfx)) ); |
| } |
| |
| |
| /*------------------------------------------------------------*/ |
| /*--- For dealing with XMM registers ---*/ |
| /*------------------------------------------------------------*/ |
| |
| static Int ymmGuestRegOffset ( UInt ymmreg ) |
| { |
| switch (ymmreg) { |
| case 0: return OFFB_YMM0; |
| case 1: return OFFB_YMM1; |
| case 2: return OFFB_YMM2; |
| case 3: return OFFB_YMM3; |
| case 4: return OFFB_YMM4; |
| case 5: return OFFB_YMM5; |
| case 6: return OFFB_YMM6; |
| case 7: return OFFB_YMM7; |
| case 8: return OFFB_YMM8; |
| case 9: return OFFB_YMM9; |
| case 10: return OFFB_YMM10; |
| case 11: return OFFB_YMM11; |
| case 12: return OFFB_YMM12; |
| case 13: return OFFB_YMM13; |
| case 14: return OFFB_YMM14; |
| case 15: return OFFB_YMM15; |
| default: vpanic("ymmGuestRegOffset(amd64)"); |
| } |
| } |
| |
| static Int xmmGuestRegOffset ( UInt xmmreg ) |
| { |
| /* Correct for little-endian host only. */ |
| vassert(!host_is_bigendian); |
| return ymmGuestRegOffset( xmmreg ); |
| } |
| |
| /* Lanes of vector registers are always numbered from zero being the |
| least significant lane (rightmost in the register). */ |
| |
| static Int xmmGuestRegLane16offset ( UInt xmmreg, Int laneno ) |
| { |
| /* Correct for little-endian host only. */ |
| vassert(!host_is_bigendian); |
| vassert(laneno >= 0 && laneno < 8); |
| return xmmGuestRegOffset( xmmreg ) + 2 * laneno; |
| } |
| |
| static Int xmmGuestRegLane32offset ( UInt xmmreg, Int laneno ) |
| { |
| /* Correct for little-endian host only. */ |
| vassert(!host_is_bigendian); |
| vassert(laneno >= 0 && laneno < 4); |
| return xmmGuestRegOffset( xmmreg ) + 4 * laneno; |
| } |
| |
| static Int xmmGuestRegLane64offset ( UInt xmmreg, Int laneno ) |
| { |
| /* Correct for little-endian host only. */ |
| vassert(!host_is_bigendian); |
| vassert(laneno >= 0 && laneno < 2); |
| return xmmGuestRegOffset( xmmreg ) + 8 * laneno; |
| } |
| |
| static Int ymmGuestRegLane128offset ( UInt ymmreg, Int laneno ) |
| { |
| /* Correct for little-endian host only. */ |
| vassert(!host_is_bigendian); |
| vassert(laneno >= 0 && laneno < 2); |
| return ymmGuestRegOffset( ymmreg ) + 16 * laneno; |
| } |
| |
| static IRExpr* getXMMReg ( UInt xmmreg ) |
| { |
| return IRExpr_Get( xmmGuestRegOffset(xmmreg), Ity_V128 ); |
| } |
| |
| static IRExpr* getXMMRegLane64 ( UInt xmmreg, Int laneno ) |
| { |
| return IRExpr_Get( xmmGuestRegLane64offset(xmmreg,laneno), Ity_I64 ); |
| } |
| |
| static IRExpr* getXMMRegLane64F ( UInt xmmreg, Int laneno ) |
| { |
| return IRExpr_Get( xmmGuestRegLane64offset(xmmreg,laneno), Ity_F64 ); |
| } |
| |
| static IRExpr* getXMMRegLane32 ( UInt xmmreg, Int laneno ) |
| { |
| return IRExpr_Get( xmmGuestRegLane32offset(xmmreg,laneno), Ity_I32 ); |
| } |
| |
| static IRExpr* getXMMRegLane32F ( UInt xmmreg, Int laneno ) |
| { |
| return IRExpr_Get( xmmGuestRegLane32offset(xmmreg,laneno), Ity_F32 ); |
| } |
| |
| static IRExpr* getXMMRegLane16 ( UInt xmmreg, Int laneno ) |
| { |
| return IRExpr_Get( xmmGuestRegLane16offset(xmmreg,laneno), Ity_I16 ); |
| } |
| |
| static void putXMMReg ( UInt xmmreg, IRExpr* e ) |
| { |
| vassert(typeOfIRExpr(irsb->tyenv,e) == Ity_V128); |
| stmt( IRStmt_Put( xmmGuestRegOffset(xmmreg), e ) ); |
| } |
| |
| static void putXMMRegLane64 ( UInt xmmreg, Int laneno, IRExpr* e ) |
| { |
| vassert(typeOfIRExpr(irsb->tyenv,e) == Ity_I64); |
| stmt( IRStmt_Put( xmmGuestRegLane64offset(xmmreg,laneno), e ) ); |
| } |
| |
| static void putXMMRegLane64F ( UInt xmmreg, Int laneno, IRExpr* e ) |
| { |
| vassert(typeOfIRExpr(irsb->tyenv,e) == Ity_F64); |
| stmt( IRStmt_Put( xmmGuestRegLane64offset(xmmreg,laneno), e ) ); |
| } |
| |
| static void putXMMRegLane32F ( UInt xmmreg, Int laneno, IRExpr* e ) |
| { |
| vassert(typeOfIRExpr(irsb->tyenv,e) == Ity_F32); |
| stmt( IRStmt_Put( xmmGuestRegLane32offset(xmmreg,laneno), e ) ); |
| } |
| |
| static void putXMMRegLane32 ( UInt xmmreg, Int laneno, IRExpr* e ) |
| { |
| vassert(typeOfIRExpr(irsb->tyenv,e) == Ity_I32); |
| stmt( IRStmt_Put( xmmGuestRegLane32offset(xmmreg,laneno), e ) ); |
| } |
| |
| static void putXMMRegLane16 ( UInt xmmreg, Int laneno, IRExpr* e ) |
| { |
| vassert(typeOfIRExpr(irsb->tyenv,e) == Ity_I16); |
| stmt( IRStmt_Put( xmmGuestRegLane16offset(xmmreg,laneno), e ) ); |
| } |
| |
| static IRExpr* getYMMReg ( UInt xmmreg ) |
| { |
| return IRExpr_Get( ymmGuestRegOffset(xmmreg), Ity_V256 ); |
| } |
| |
| static IRExpr* getYMMRegLane128 ( UInt ymmreg, Int laneno ) |
| { |
| return IRExpr_Get( ymmGuestRegLane128offset(ymmreg,laneno), Ity_V128 ); |
| } |
| |
| static void putYMMReg ( UInt ymmreg, IRExpr* e ) |
| { |
| vassert(typeOfIRExpr(irsb->tyenv,e) == Ity_V256); |
| stmt( IRStmt_Put( ymmGuestRegOffset(ymmreg), e ) ); |
| } |
| |
| static void putYMMRegLane128 ( UInt ymmreg, Int laneno, IRExpr* e ) |
| { |
| vassert(typeOfIRExpr(irsb->tyenv,e) == Ity_V128); |
| stmt( IRStmt_Put( ymmGuestRegLane128offset(ymmreg,laneno), e ) ); |
| } |
| |
| static IRExpr* mkV128 ( UShort mask ) |
| { |
| return IRExpr_Const(IRConst_V128(mask)); |
| } |
| |
| /* Write the low half of a YMM reg and zero out the upper half. */ |
| static void putYMMRegLoAndZU ( UInt ymmreg, IRExpr* e ) |
| { |
| putYMMRegLane128( ymmreg, 0, e ); |
| putYMMRegLane128( ymmreg, 1, mkV128(0) ); |
| } |
| |
| static IRExpr* mkAnd1 ( IRExpr* x, IRExpr* y ) |
| { |
| vassert(typeOfIRExpr(irsb->tyenv,x) == Ity_I1); |
| vassert(typeOfIRExpr(irsb->tyenv,y) == Ity_I1); |
| return unop(Iop_64to1, |
| binop(Iop_And64, |
| unop(Iop_1Uto64,x), |
| unop(Iop_1Uto64,y))); |
| } |
| |
| /* Generate a compare-and-swap operation, operating on memory at |
| 'addr'. The expected value is 'expVal' and the new value is |
| 'newVal'. If the operation fails, then transfer control (with a |
| no-redir jump (XXX no -- see comment at top of this file)) to |
| 'restart_point', which is presumably the address of the guest |
| instruction again -- retrying, essentially. */ |
| static void casLE ( IRExpr* addr, IRExpr* expVal, IRExpr* newVal, |
| Addr64 restart_point ) |
| { |
| IRCAS* cas; |
| IRType tyE = typeOfIRExpr(irsb->tyenv, expVal); |
| IRType tyN = typeOfIRExpr(irsb->tyenv, newVal); |
| IRTemp oldTmp = newTemp(tyE); |
| IRTemp expTmp = newTemp(tyE); |
| vassert(tyE == tyN); |
| vassert(tyE == Ity_I64 || tyE == Ity_I32 |
| || tyE == Ity_I16 || tyE == Ity_I8); |
| assign(expTmp, expVal); |
| cas = mkIRCAS( IRTemp_INVALID, oldTmp, Iend_LE, addr, |
| NULL, mkexpr(expTmp), NULL, newVal ); |
| stmt( IRStmt_CAS(cas) ); |
| stmt( IRStmt_Exit( |
| binop( mkSizedOp(tyE,Iop_CasCmpNE8), |
| mkexpr(oldTmp), mkexpr(expTmp) ), |
| Ijk_Boring, /*Ijk_NoRedir*/ |
| IRConst_U64( restart_point ), |
| OFFB_RIP |
| )); |
| } |
| |
| |
| /*------------------------------------------------------------*/ |
| /*--- Helpers for %rflags. ---*/ |
| /*------------------------------------------------------------*/ |
| |
| /* -------------- Evaluating the flags-thunk. -------------- */ |
| |
| /* Build IR to calculate all the eflags from stored |
| CC_OP/CC_DEP1/CC_DEP2/CC_NDEP. Returns an expression :: |
| Ity_I64. */ |
| static IRExpr* mk_amd64g_calculate_rflags_all ( void ) |
| { |
| IRExpr** args |
| = mkIRExprVec_4( IRExpr_Get(OFFB_CC_OP, Ity_I64), |
| IRExpr_Get(OFFB_CC_DEP1, Ity_I64), |
| IRExpr_Get(OFFB_CC_DEP2, Ity_I64), |
| IRExpr_Get(OFFB_CC_NDEP, Ity_I64) ); |
| IRExpr* call |
| = mkIRExprCCall( |
| Ity_I64, |
| 0/*regparm*/, |
| "amd64g_calculate_rflags_all", &amd64g_calculate_rflags_all, |
| args |
| ); |
| /* Exclude OP and NDEP from definedness checking. We're only |
| interested in DEP1 and DEP2. */ |
| call->Iex.CCall.cee->mcx_mask = (1<<0) | (1<<3); |
| return call; |
| } |
| |
| /* Build IR to calculate some particular condition from stored |
| CC_OP/CC_DEP1/CC_DEP2/CC_NDEP. Returns an expression :: |
| Ity_Bit. */ |
| static IRExpr* mk_amd64g_calculate_condition ( AMD64Condcode cond ) |
| { |
| IRExpr** args |
| = mkIRExprVec_5( mkU64(cond), |
| IRExpr_Get(OFFB_CC_OP, Ity_I64), |
| IRExpr_Get(OFFB_CC_DEP1, Ity_I64), |
| IRExpr_Get(OFFB_CC_DEP2, Ity_I64), |
| IRExpr_Get(OFFB_CC_NDEP, Ity_I64) ); |
| IRExpr* call |
| = mkIRExprCCall( |
| Ity_I64, |
| 0/*regparm*/, |
| "amd64g_calculate_condition", &amd64g_calculate_condition, |
| args |
| ); |
| /* Exclude the requested condition, OP and NDEP from definedness |
| checking. We're only interested in DEP1 and DEP2. */ |
| call->Iex.CCall.cee->mcx_mask = (1<<0) | (1<<1) | (1<<4); |
| return unop(Iop_64to1, call); |
| } |
| |
| /* Build IR to calculate just the carry flag from stored |
| CC_OP/CC_DEP1/CC_DEP2/CC_NDEP. Returns an expression :: Ity_I64. */ |
| static IRExpr* mk_amd64g_calculate_rflags_c ( void ) |
| { |
| IRExpr** args |
| = mkIRExprVec_4( IRExpr_Get(OFFB_CC_OP, Ity_I64), |
| IRExpr_Get(OFFB_CC_DEP1, Ity_I64), |
| IRExpr_Get(OFFB_CC_DEP2, Ity_I64), |
| IRExpr_Get(OFFB_CC_NDEP, Ity_I64) ); |
| IRExpr* call |
| = mkIRExprCCall( |
| Ity_I64, |
| 0/*regparm*/, |
| "amd64g_calculate_rflags_c", &amd64g_calculate_rflags_c, |
| args |
| ); |
| /* Exclude OP and NDEP from definedness checking. We're only |
| interested in DEP1 and DEP2. */ |
| call->Iex.CCall.cee->mcx_mask = (1<<0) | (1<<3); |
| return call; |
| } |
| |
| |
| /* -------------- Building the flags-thunk. -------------- */ |
| |
| /* The machinery in this section builds the flag-thunk following a |
| flag-setting operation. Hence the various setFlags_* functions. |
| */ |
| |
| static Bool isAddSub ( IROp op8 ) |
| { |
| return toBool(op8 == Iop_Add8 || op8 == Iop_Sub8); |
| } |
| |
| static Bool isLogic ( IROp op8 ) |
| { |
| return toBool(op8 == Iop_And8 || op8 == Iop_Or8 || op8 == Iop_Xor8); |
| } |
| |
| /* U-widen 8/16/32/64 bit int expr to 64. */ |
| static IRExpr* widenUto64 ( IRExpr* e ) |
| { |
| switch (typeOfIRExpr(irsb->tyenv,e)) { |
| case Ity_I64: return e; |
| case Ity_I32: return unop(Iop_32Uto64, e); |
| case Ity_I16: return unop(Iop_16Uto64, e); |
| case Ity_I8: return unop(Iop_8Uto64, e); |
| default: vpanic("widenUto64"); |
| } |
| } |
| |
| /* S-widen 8/16/32/64 bit int expr to 32. */ |
| static IRExpr* widenSto64 ( IRExpr* e ) |
| { |
| switch (typeOfIRExpr(irsb->tyenv,e)) { |
| case Ity_I64: return e; |
| case Ity_I32: return unop(Iop_32Sto64, e); |
| case Ity_I16: return unop(Iop_16Sto64, e); |
| case Ity_I8: return unop(Iop_8Sto64, e); |
| default: vpanic("widenSto64"); |
| } |
| } |
| |
| /* Narrow 8/16/32/64 bit int expr to 8/16/32/64. Clearly only some |
| of these combinations make sense. */ |
| static IRExpr* narrowTo ( IRType dst_ty, IRExpr* e ) |
| { |
| IRType src_ty = typeOfIRExpr(irsb->tyenv,e); |
| if (src_ty == dst_ty) |
| return e; |
| if (src_ty == Ity_I32 && dst_ty == Ity_I16) |
| return unop(Iop_32to16, e); |
| if (src_ty == Ity_I32 && dst_ty == Ity_I8) |
| return unop(Iop_32to8, e); |
| if (src_ty == Ity_I64 && dst_ty == Ity_I32) |
| return unop(Iop_64to32, e); |
| if (src_ty == Ity_I64 && dst_ty == Ity_I16) |
| return unop(Iop_64to16, e); |
| if (src_ty == Ity_I64 && dst_ty == Ity_I8) |
| return unop(Iop_64to8, e); |
| |
| vex_printf("\nsrc, dst tys are: "); |
| ppIRType(src_ty); |
| vex_printf(", "); |
| ppIRType(dst_ty); |
| vex_printf("\n"); |
| vpanic("narrowTo(amd64)"); |
| } |
| |
| |
| /* Set the flags thunk OP, DEP1 and DEP2 fields. The supplied op is |
| auto-sized up to the real op. */ |
| |
| static |
| void setFlags_DEP1_DEP2 ( IROp op8, IRTemp dep1, IRTemp dep2, IRType ty ) |
| { |
| Int ccOp = 0; |
| switch (ty) { |
| case Ity_I8: ccOp = 0; break; |
| case Ity_I16: ccOp = 1; break; |
| case Ity_I32: ccOp = 2; break; |
| case Ity_I64: ccOp = 3; break; |
| default: vassert(0); |
| } |
| switch (op8) { |
| case Iop_Add8: ccOp += AMD64G_CC_OP_ADDB; break; |
| case Iop_Sub8: ccOp += AMD64G_CC_OP_SUBB; break; |
| default: ppIROp(op8); |
| vpanic("setFlags_DEP1_DEP2(amd64)"); |
| } |
| stmt( IRStmt_Put( OFFB_CC_OP, mkU64(ccOp)) ); |
| stmt( IRStmt_Put( OFFB_CC_DEP1, widenUto64(mkexpr(dep1))) ); |
| stmt( IRStmt_Put( OFFB_CC_DEP2, widenUto64(mkexpr(dep2))) ); |
| } |
| |
| |
| /* Set the OP and DEP1 fields only, and write zero to DEP2. */ |
| |
| static |
| void setFlags_DEP1 ( IROp op8, IRTemp dep1, IRType ty ) |
| { |
| Int ccOp = 0; |
| switch (ty) { |
| case Ity_I8: ccOp = 0; break; |
| case Ity_I16: ccOp = 1; break; |
| case Ity_I32: ccOp = 2; break; |
| case Ity_I64: ccOp = 3; break; |
| default: vassert(0); |
| } |
| switch (op8) { |
| case Iop_Or8: |
| case Iop_And8: |
| case Iop_Xor8: ccOp += AMD64G_CC_OP_LOGICB; break; |
| default: ppIROp(op8); |
| vpanic("setFlags_DEP1(amd64)"); |
| } |
| stmt( IRStmt_Put( OFFB_CC_OP, mkU64(ccOp)) ); |
| stmt( IRStmt_Put( OFFB_CC_DEP1, widenUto64(mkexpr(dep1))) ); |
| stmt( IRStmt_Put( OFFB_CC_DEP2, mkU64(0)) ); |
| } |
| |
| |
| /* For shift operations, we put in the result and the undershifted |
| result. Except if the shift amount is zero, the thunk is left |
| unchanged. */ |
| |
| static void setFlags_DEP1_DEP2_shift ( IROp op64, |
| IRTemp res, |
| IRTemp resUS, |
| IRType ty, |
| IRTemp guard ) |
| { |
| Int ccOp = 0; |
| switch (ty) { |
| case Ity_I8: ccOp = 0; break; |
| case Ity_I16: ccOp = 1; break; |
| case Ity_I32: ccOp = 2; break; |
| case Ity_I64: ccOp = 3; break; |
| default: vassert(0); |
| } |
| |
| vassert(guard); |
| |
| /* Both kinds of right shifts are handled by the same thunk |
| operation. */ |
| switch (op64) { |
| case Iop_Shr64: |
| case Iop_Sar64: ccOp += AMD64G_CC_OP_SHRB; break; |
| case Iop_Shl64: ccOp += AMD64G_CC_OP_SHLB; break; |
| default: ppIROp(op64); |
| vpanic("setFlags_DEP1_DEP2_shift(amd64)"); |
| } |
| |
| /* DEP1 contains the result, DEP2 contains the undershifted value. */ |
| stmt( IRStmt_Put( OFFB_CC_OP, |
| IRExpr_Mux0X( mkexpr(guard), |
| IRExpr_Get(OFFB_CC_OP,Ity_I64), |
| mkU64(ccOp))) ); |
| stmt( IRStmt_Put( OFFB_CC_DEP1, |
| IRExpr_Mux0X( mkexpr(guard), |
| IRExpr_Get(OFFB_CC_DEP1,Ity_I64), |
| widenUto64(mkexpr(res)))) ); |
| stmt( IRStmt_Put( OFFB_CC_DEP2, |
| IRExpr_Mux0X( mkexpr(guard), |
| IRExpr_Get(OFFB_CC_DEP2,Ity_I64), |
| widenUto64(mkexpr(resUS)))) ); |
| } |
| |
| |
| /* For the inc/dec case, we store in DEP1 the result value and in NDEP |
| the former value of the carry flag, which unfortunately we have to |
| compute. */ |
| |
| static void setFlags_INC_DEC ( Bool inc, IRTemp res, IRType ty ) |
| { |
| Int ccOp = inc ? AMD64G_CC_OP_INCB : AMD64G_CC_OP_DECB; |
| |
| switch (ty) { |
| case Ity_I8: ccOp += 0; break; |
| case Ity_I16: ccOp += 1; break; |
| case Ity_I32: ccOp += 2; break; |
| case Ity_I64: ccOp += 3; break; |
| default: vassert(0); |
| } |
| |
| /* This has to come first, because calculating the C flag |
| may require reading all four thunk fields. */ |
| stmt( IRStmt_Put( OFFB_CC_NDEP, mk_amd64g_calculate_rflags_c()) ); |
| stmt( IRStmt_Put( OFFB_CC_OP, mkU64(ccOp)) ); |
| stmt( IRStmt_Put( OFFB_CC_DEP1, widenUto64(mkexpr(res))) ); |
| stmt( IRStmt_Put( OFFB_CC_DEP2, mkU64(0)) ); |
| } |
| |
| |
| /* Multiplies are pretty much like add and sub: DEP1 and DEP2 hold the |
| two arguments. */ |
| |
| static |
| void setFlags_MUL ( IRType ty, IRTemp arg1, IRTemp arg2, ULong base_op ) |
| { |
| switch (ty) { |
| case Ity_I8: |
| stmt( IRStmt_Put( OFFB_CC_OP, mkU64(base_op+0) ) ); |
| break; |
| case Ity_I16: |
| stmt( IRStmt_Put( OFFB_CC_OP, mkU64(base_op+1) ) ); |
| break; |
| case Ity_I32: |
| stmt( IRStmt_Put( OFFB_CC_OP, mkU64(base_op+2) ) ); |
| break; |
| case Ity_I64: |
| stmt( IRStmt_Put( OFFB_CC_OP, mkU64(base_op+3) ) ); |
| break; |
| default: |
| vpanic("setFlags_MUL(amd64)"); |
| } |
| stmt( IRStmt_Put( OFFB_CC_DEP1, widenUto64(mkexpr(arg1)) )); |
| stmt( IRStmt_Put( OFFB_CC_DEP2, widenUto64(mkexpr(arg2)) )); |
| } |
| |
| |
| /* -------------- Condition codes. -------------- */ |
| |
| /* Condition codes, using the AMD encoding. */ |
| |
| static HChar* name_AMD64Condcode ( AMD64Condcode cond ) |
| { |
| switch (cond) { |
| case AMD64CondO: return "o"; |
| case AMD64CondNO: return "no"; |
| case AMD64CondB: return "b"; |
| case AMD64CondNB: return "ae"; /*"nb";*/ |
| case AMD64CondZ: return "e"; /*"z";*/ |
| case AMD64CondNZ: return "ne"; /*"nz";*/ |
| case AMD64CondBE: return "be"; |
| case AMD64CondNBE: return "a"; /*"nbe";*/ |
| case AMD64CondS: return "s"; |
| case AMD64CondNS: return "ns"; |
| case AMD64CondP: return "p"; |
| case AMD64CondNP: return "np"; |
| case AMD64CondL: return "l"; |
| case AMD64CondNL: return "ge"; /*"nl";*/ |
| case AMD64CondLE: return "le"; |
| case AMD64CondNLE: return "g"; /*"nle";*/ |
| case AMD64CondAlways: return "ALWAYS"; |
| default: vpanic("name_AMD64Condcode"); |
| } |
| } |
| |
| static |
| AMD64Condcode positiveIse_AMD64Condcode ( AMD64Condcode cond, |
| /*OUT*/Bool* needInvert ) |
| { |
| vassert(cond >= AMD64CondO && cond <= AMD64CondNLE); |
| if (cond & 1) { |
| *needInvert = True; |
| return cond-1; |
| } else { |
| *needInvert = False; |
| return cond; |
| } |
| } |
| |
| |
| /* -------------- Helpers for ADD/SUB with carry. -------------- */ |
| |
| /* Given ta1, ta2 and tres, compute tres = ADC(ta1,ta2) and set flags |
| appropriately. |
| |
| Optionally, generate a store for the 'tres' value. This can either |
| be a normal store, or it can be a cas-with-possible-failure style |
| store: |
| |
| if taddr is IRTemp_INVALID, then no store is generated. |
| |
| if taddr is not IRTemp_INVALID, then a store (using taddr as |
| the address) is generated: |
| |
| if texpVal is IRTemp_INVALID then a normal store is |
| generated, and restart_point must be zero (it is irrelevant). |
| |
| if texpVal is not IRTemp_INVALID then a cas-style store is |
| generated. texpVal is the expected value, restart_point |
| is the restart point if the store fails, and texpVal must |
| have the same type as tres. |
| |
| */ |
| static void helper_ADC ( Int sz, |
| IRTemp tres, IRTemp ta1, IRTemp ta2, |
| /* info about optional store: */ |
| IRTemp taddr, IRTemp texpVal, Addr32 restart_point ) |
| { |
| UInt thunkOp; |
| IRType ty = szToITy(sz); |
| IRTemp oldc = newTemp(Ity_I64); |
| IRTemp oldcn = newTemp(ty); |
| IROp plus = mkSizedOp(ty, Iop_Add8); |
| IROp xor = mkSizedOp(ty, Iop_Xor8); |
| |
| vassert(typeOfIRTemp(irsb->tyenv, tres) == ty); |
| |
| switch (sz) { |
| case 8: thunkOp = AMD64G_CC_OP_ADCQ; break; |
| case 4: thunkOp = AMD64G_CC_OP_ADCL; break; |
| case 2: thunkOp = AMD64G_CC_OP_ADCW; break; |
| case 1: thunkOp = AMD64G_CC_OP_ADCB; break; |
| default: vassert(0); |
| } |
| |
| /* oldc = old carry flag, 0 or 1 */ |
| assign( oldc, binop(Iop_And64, |
| mk_amd64g_calculate_rflags_c(), |
| mkU64(1)) ); |
| |
| assign( oldcn, narrowTo(ty, mkexpr(oldc)) ); |
| |
| assign( tres, binop(plus, |
| binop(plus,mkexpr(ta1),mkexpr(ta2)), |
| mkexpr(oldcn)) ); |
| |
| /* Possibly generate a store of 'tres' to 'taddr'. See comment at |
| start of this function. */ |
| if (taddr != IRTemp_INVALID) { |
| if (texpVal == IRTemp_INVALID) { |
| vassert(restart_point == 0); |
| storeLE( mkexpr(taddr), mkexpr(tres) ); |
| } else { |
| vassert(typeOfIRTemp(irsb->tyenv, texpVal) == ty); |
| /* .. and hence 'texpVal' has the same type as 'tres'. */ |
| casLE( mkexpr(taddr), |
| mkexpr(texpVal), mkexpr(tres), restart_point ); |
| } |
| } |
| |
| stmt( IRStmt_Put( OFFB_CC_OP, mkU64(thunkOp) ) ); |
| stmt( IRStmt_Put( OFFB_CC_DEP1, widenUto64(mkexpr(ta1)) )); |
| stmt( IRStmt_Put( OFFB_CC_DEP2, widenUto64(binop(xor, mkexpr(ta2), |
| mkexpr(oldcn)) )) ); |
| stmt( IRStmt_Put( OFFB_CC_NDEP, mkexpr(oldc) ) ); |
| } |
| |
| |
| /* Given ta1, ta2 and tres, compute tres = SBB(ta1,ta2) and set flags |
| appropriately. As with helper_ADC, possibly generate a store of |
| the result -- see comments on helper_ADC for details. |
| */ |
| static void helper_SBB ( Int sz, |
| IRTemp tres, IRTemp ta1, IRTemp ta2, |
| /* info about optional store: */ |
| IRTemp taddr, IRTemp texpVal, Addr32 restart_point ) |
| { |
| UInt thunkOp; |
| IRType ty = szToITy(sz); |
| IRTemp oldc = newTemp(Ity_I64); |
| IRTemp oldcn = newTemp(ty); |
| IROp minus = mkSizedOp(ty, Iop_Sub8); |
| IROp xor = mkSizedOp(ty, Iop_Xor8); |
| |
| vassert(typeOfIRTemp(irsb->tyenv, tres) == ty); |
| |
| switch (sz) { |
| case 8: thunkOp = AMD64G_CC_OP_SBBQ; break; |
| case 4: thunkOp = AMD64G_CC_OP_SBBL; break; |
| case 2: thunkOp = AMD64G_CC_OP_SBBW; break; |
| case 1: thunkOp = AMD64G_CC_OP_SBBB; break; |
| default: vassert(0); |
| } |
| |
| /* oldc = old carry flag, 0 or 1 */ |
| assign( oldc, binop(Iop_And64, |
| mk_amd64g_calculate_rflags_c(), |
| mkU64(1)) ); |
| |
| assign( oldcn, narrowTo(ty, mkexpr(oldc)) ); |
| |
| assign( tres, binop(minus, |
| binop(minus,mkexpr(ta1),mkexpr(ta2)), |
| mkexpr(oldcn)) ); |
| |
| /* Possibly generate a store of 'tres' to 'taddr'. See comment at |
| start of this function. */ |
| if (taddr != IRTemp_INVALID) { |
| if (texpVal == IRTemp_INVALID) { |
| vassert(restart_point == 0); |
| storeLE( mkexpr(taddr), mkexpr(tres) ); |
| } else { |
| vassert(typeOfIRTemp(irsb->tyenv, texpVal) == ty); |
| /* .. and hence 'texpVal' has the same type as 'tres'. */ |
| casLE( mkexpr(taddr), |
| mkexpr(texpVal), mkexpr(tres), restart_point ); |
| } |
| } |
| |
| stmt( IRStmt_Put( OFFB_CC_OP, mkU64(thunkOp) ) ); |
| stmt( IRStmt_Put( OFFB_CC_DEP1, widenUto64(mkexpr(ta1) )) ); |
| stmt( IRStmt_Put( OFFB_CC_DEP2, widenUto64(binop(xor, mkexpr(ta2), |
| mkexpr(oldcn)) )) ); |
| stmt( IRStmt_Put( OFFB_CC_NDEP, mkexpr(oldc) ) ); |
| } |
| |
| |
| /* -------------- Helpers for disassembly printing. -------------- */ |
| |
| static HChar* nameGrp1 ( Int opc_aux ) |
| { |
| static HChar* grp1_names[8] |
| = { "add", "or", "adc", "sbb", "and", "sub", "xor", "cmp" }; |
| if (opc_aux < 0 || opc_aux > 7) vpanic("nameGrp1(amd64)"); |
| return grp1_names[opc_aux]; |
| } |
| |
| static HChar* nameGrp2 ( Int opc_aux ) |
| { |
| static HChar* grp2_names[8] |
| = { "rol", "ror", "rcl", "rcr", "shl", "shr", "shl", "sar" }; |
| if (opc_aux < 0 || opc_aux > 7) vpanic("nameGrp2(amd64)"); |
| return grp2_names[opc_aux]; |
| } |
| |
| static HChar* nameGrp4 ( Int opc_aux ) |
| { |
| static HChar* grp4_names[8] |
| = { "inc", "dec", "???", "???", "???", "???", "???", "???" }; |
| if (opc_aux < 0 || opc_aux > 1) vpanic("nameGrp4(amd64)"); |
| return grp4_names[opc_aux]; |
| } |
| |
| static HChar* nameGrp5 ( Int opc_aux ) |
| { |
| static HChar* grp5_names[8] |
| = { "inc", "dec", "call*", "call*", "jmp*", "jmp*", "push", "???" }; |
| if (opc_aux < 0 || opc_aux > 6) vpanic("nameGrp5(amd64)"); |
| return grp5_names[opc_aux]; |
| } |
| |
| static HChar* nameGrp8 ( Int opc_aux ) |
| { |
| static HChar* grp8_names[8] |
| = { "???", "???", "???", "???", "bt", "bts", "btr", "btc" }; |
| if (opc_aux < 4 || opc_aux > 7) vpanic("nameGrp8(amd64)"); |
| return grp8_names[opc_aux]; |
| } |
| |
| //.. static HChar* nameSReg ( UInt sreg ) |
| //.. { |
| //.. switch (sreg) { |
| //.. case R_ES: return "%es"; |
| //.. case R_CS: return "%cs"; |
| //.. case R_SS: return "%ss"; |
| //.. case R_DS: return "%ds"; |
| //.. case R_FS: return "%fs"; |
| //.. case R_GS: return "%gs"; |
| //.. default: vpanic("nameSReg(x86)"); |
| //.. } |
| //.. } |
| |
| static HChar* nameMMXReg ( Int mmxreg ) |
| { |
| static HChar* mmx_names[8] |
| = { "%mm0", "%mm1", "%mm2", "%mm3", "%mm4", "%mm5", "%mm6", "%mm7" }; |
| if (mmxreg < 0 || mmxreg > 7) vpanic("nameMMXReg(amd64,guest)"); |
| return mmx_names[mmxreg]; |
| } |
| |
| static HChar* nameXMMReg ( Int xmmreg ) |
| { |
| static HChar* xmm_names[16] |
| = { "%xmm0", "%xmm1", "%xmm2", "%xmm3", |
| "%xmm4", "%xmm5", "%xmm6", "%xmm7", |
| "%xmm8", "%xmm9", "%xmm10", "%xmm11", |
| "%xmm12", "%xmm13", "%xmm14", "%xmm15" }; |
| if (xmmreg < 0 || xmmreg > 15) vpanic("nameXMMReg(amd64)"); |
| return xmm_names[xmmreg]; |
| } |
| |
| static HChar* nameMMXGran ( Int gran ) |
| { |
| switch (gran) { |
| case 0: return "b"; |
| case 1: return "w"; |
| case 2: return "d"; |
| case 3: return "q"; |
| default: vpanic("nameMMXGran(amd64,guest)"); |
| } |
| } |
| |
| static HChar nameISize ( Int size ) |
| { |
| switch (size) { |
| case 8: return 'q'; |
| case 4: return 'l'; |
| case 2: return 'w'; |
| case 1: return 'b'; |
| default: vpanic("nameISize(amd64)"); |
| } |
| } |
| |
| static HChar* nameYMMReg ( Int ymmreg ) |
| { |
| static HChar* ymm_names[16] |
| = { "%ymm0", "%ymm1", "%ymm2", "%ymm3", |
| "%ymm4", "%ymm5", "%ymm6", "%ymm7", |
| "%ymm8", "%ymm9", "%ymm10", "%ymm11", |
| "%ymm12", "%ymm13", "%ymm14", "%ymm15" }; |
| if (ymmreg < 0 || ymmreg > 15) vpanic("nameYMMReg(amd64)"); |
| return ymm_names[ymmreg]; |
| } |
| |
| |
| /*------------------------------------------------------------*/ |
| /*--- JMP helpers ---*/ |
| /*------------------------------------------------------------*/ |
| |
| static void jmp_lit( /*MOD*/DisResult* dres, |
| IRJumpKind kind, Addr64 d64 ) |
| { |
| vassert(dres->whatNext == Dis_Continue); |
| vassert(dres->len == 0); |
| vassert(dres->continueAt == 0); |
| vassert(dres->jk_StopHere == Ijk_INVALID); |
| dres->whatNext = Dis_StopHere; |
| dres->jk_StopHere = kind; |
| stmt( IRStmt_Put( OFFB_RIP, mkU64(d64) ) ); |
| } |
| |
| static void jmp_treg( /*MOD*/DisResult* dres, |
| IRJumpKind kind, IRTemp t ) |
| { |
| vassert(dres->whatNext == Dis_Continue); |
| vassert(dres->len == 0); |
| vassert(dres->continueAt == 0); |
| vassert(dres->jk_StopHere == Ijk_INVALID); |
| dres->whatNext = Dis_StopHere; |
| dres->jk_StopHere = kind; |
| stmt( IRStmt_Put( OFFB_RIP, mkexpr(t) ) ); |
| } |
| |
| static |
| void jcc_01 ( /*MOD*/DisResult* dres, |
| AMD64Condcode cond, Addr64 d64_false, Addr64 d64_true ) |
| { |
| Bool invert; |
| AMD64Condcode condPos; |
| vassert(dres->whatNext == Dis_Continue); |
| vassert(dres->len == 0); |
| vassert(dres->continueAt == 0); |
| vassert(dres->jk_StopHere == Ijk_INVALID); |
| dres->whatNext = Dis_StopHere; |
| dres->jk_StopHere = Ijk_Boring; |
| condPos = positiveIse_AMD64Condcode ( cond, &invert ); |
| if (invert) { |
| stmt( IRStmt_Exit( mk_amd64g_calculate_condition(condPos), |
| Ijk_Boring, |
| IRConst_U64(d64_false), |
| OFFB_RIP ) ); |
| stmt( IRStmt_Put( OFFB_RIP, mkU64(d64_true) ) ); |
| } else { |
| stmt( IRStmt_Exit( mk_amd64g_calculate_condition(condPos), |
| Ijk_Boring, |
| IRConst_U64(d64_true), |
| OFFB_RIP ) ); |
| stmt( IRStmt_Put( OFFB_RIP, mkU64(d64_false) ) ); |
| } |
| } |
| |
| /* Let new_rsp be the %rsp value after a call/return. Let nia be the |
| guest address of the next instruction to be executed. |
| |
| This function generates an AbiHint to say that -128(%rsp) |
| .. -1(%rsp) should now be regarded as uninitialised. |
| */ |
| static |
| void make_redzone_AbiHint ( VexAbiInfo* vbi, |
| IRTemp new_rsp, IRTemp nia, HChar* who ) |
| { |
| Int szB = vbi->guest_stack_redzone_size; |
| vassert(szB >= 0); |
| |
| /* A bit of a kludge. Currently the only AbI we've guested AMD64 |
| for is ELF. So just check it's the expected 128 value |
| (paranoia). */ |
| vassert(szB == 128); |
| |
| if (0) vex_printf("AbiHint: %s\n", who); |
| vassert(typeOfIRTemp(irsb->tyenv, new_rsp) == Ity_I64); |
| vassert(typeOfIRTemp(irsb->tyenv, nia) == Ity_I64); |
| if (szB > 0) |
| stmt( IRStmt_AbiHint( |
| binop(Iop_Sub64, mkexpr(new_rsp), mkU64(szB)), |
| szB, |
| mkexpr(nia) |
| )); |
| } |
| |
| |
| /*------------------------------------------------------------*/ |
| /*--- Disassembling addressing modes ---*/ |
| /*------------------------------------------------------------*/ |
| |
| static |
| HChar* segRegTxt ( Prefix pfx ) |
| { |
| if (pfx & PFX_CS) return "%cs:"; |
| if (pfx & PFX_DS) return "%ds:"; |
| if (pfx & PFX_ES) return "%es:"; |
| if (pfx & PFX_FS) return "%fs:"; |
| if (pfx & PFX_GS) return "%gs:"; |
| if (pfx & PFX_SS) return "%ss:"; |
| return ""; /* no override */ |
| } |
| |
| |
| /* 'virtual' is an IRExpr* holding a virtual address. Convert it to a |
| linear address by adding any required segment override as indicated |
| by sorb, and also dealing with any address size override |
| present. */ |
| static |
| IRExpr* handleAddrOverrides ( VexAbiInfo* vbi, |
| Prefix pfx, IRExpr* virtual ) |
| { |
| /* --- segment overrides --- */ |
| if (pfx & PFX_FS) { |
| if (vbi->guest_amd64_assume_fs_is_zero) { |
| /* Note that this is a linux-kernel specific hack that relies |
| on the assumption that %fs is always zero. */ |
| /* return virtual + guest_FS_ZERO. */ |
| virtual = binop(Iop_Add64, virtual, |
| IRExpr_Get(OFFB_FS_ZERO, Ity_I64)); |
| } else { |
| unimplemented("amd64 %fs segment override"); |
| } |
| } |
| |
| if (pfx & PFX_GS) { |
| if (vbi->guest_amd64_assume_gs_is_0x60) { |
| /* Note that this is a darwin-kernel specific hack that relies |
| on the assumption that %gs is always 0x60. */ |
| /* return virtual + guest_GS_0x60. */ |
| virtual = binop(Iop_Add64, virtual, |
| IRExpr_Get(OFFB_GS_0x60, Ity_I64)); |
| } else { |
| unimplemented("amd64 %gs segment override"); |
| } |
| } |
| |
| /* cs, ds, es and ss are simply ignored in 64-bit mode. */ |
| |
| /* --- address size override --- */ |
| if (haveASO(pfx)) |
| virtual = unop(Iop_32Uto64, unop(Iop_64to32, virtual)); |
| |
| return virtual; |
| } |
| |
| //.. { |
| //.. Int sreg; |
| //.. IRType hWordTy; |
| //.. IRTemp ldt_ptr, gdt_ptr, seg_selector, r64; |
| //.. |
| //.. if (sorb == 0) |
| //.. /* the common case - no override */ |
| //.. return virtual; |
| //.. |
| //.. switch (sorb) { |
| //.. case 0x3E: sreg = R_DS; break; |
| //.. case 0x26: sreg = R_ES; break; |
| //.. case 0x64: sreg = R_FS; break; |
| //.. case 0x65: sreg = R_GS; break; |
| //.. default: vpanic("handleAddrOverrides(x86,guest)"); |
| //.. } |
| //.. |
| //.. hWordTy = sizeof(HWord)==4 ? Ity_I32 : Ity_I64; |
| //.. |
| //.. seg_selector = newTemp(Ity_I32); |
| //.. ldt_ptr = newTemp(hWordTy); |
| //.. gdt_ptr = newTemp(hWordTy); |
| //.. r64 = newTemp(Ity_I64); |
| //.. |
| //.. assign( seg_selector, unop(Iop_16Uto32, getSReg(sreg)) ); |
| //.. assign( ldt_ptr, IRExpr_Get( OFFB_LDT, hWordTy )); |
| //.. assign( gdt_ptr, IRExpr_Get( OFFB_GDT, hWordTy )); |
| //.. |
| //.. /* |
| //.. Call this to do the translation and limit checks: |
| //.. ULong x86g_use_seg_selector ( HWord ldt, HWord gdt, |
| //.. UInt seg_selector, UInt virtual_addr ) |
| //.. */ |
| //.. assign( |
| //.. r64, |
| //.. mkIRExprCCall( |
| //.. Ity_I64, |
| //.. 0/*regparms*/, |
| //.. "x86g_use_seg_selector", |
| //.. &x86g_use_seg_selector, |
| //.. mkIRExprVec_4( mkexpr(ldt_ptr), mkexpr(gdt_ptr), |
| //.. mkexpr(seg_selector), virtual) |
| //.. ) |
| //.. ); |
| //.. |
| //.. /* If the high 32 of the result are non-zero, there was a |
| //.. failure in address translation. In which case, make a |
| //.. quick exit. |
| //.. */ |
| //.. stmt( |
| //.. IRStmt_Exit( |
| //.. binop(Iop_CmpNE32, unop(Iop_64HIto32, mkexpr(r64)), mkU32(0)), |
| //.. Ijk_MapFail, |
| //.. IRConst_U32( guest_eip_curr_instr ) |
| //.. ) |
| //.. ); |
| //.. |
| //.. /* otherwise, here's the translated result. */ |
| //.. return unop(Iop_64to32, mkexpr(r64)); |
| //.. } |
| |
| |
| /* Generate IR to calculate an address indicated by a ModRM and |
| following SIB bytes. The expression, and the number of bytes in |
| the address mode, are returned (the latter in *len). Note that |
| this fn should not be called if the R/M part of the address denotes |
| a register instead of memory. If print_codegen is true, text of |
| the addressing mode is placed in buf. |
| |
| The computed address is stored in a new tempreg, and the |
| identity of the tempreg is returned. |
| |
| extra_bytes holds the number of bytes after the amode, as supplied |
| by the caller. This is needed to make sense of %rip-relative |
| addresses. Note that the value that *len is set to is only the |
| length of the amode itself and does not include the value supplied |
| in extra_bytes. |
| */ |
| |
| static IRTemp disAMode_copy2tmp ( IRExpr* addr64 ) |
| { |
| IRTemp tmp = newTemp(Ity_I64); |
| assign( tmp, addr64 ); |
| return tmp; |
| } |
| |
| static |
| IRTemp disAMode ( /*OUT*/Int* len, |
| VexAbiInfo* vbi, Prefix pfx, Long delta, |
| /*OUT*/HChar* buf, Int extra_bytes ) |
| { |
| UChar mod_reg_rm = getUChar(delta); |
| delta++; |
| |
| buf[0] = (UChar)0; |
| vassert(extra_bytes >= 0 && extra_bytes < 10); |
| |
| /* squeeze out the reg field from mod_reg_rm, since a 256-entry |
| jump table seems a bit excessive. |
| */ |
| mod_reg_rm &= 0xC7; /* is now XX000YYY */ |
| mod_reg_rm = toUChar(mod_reg_rm | (mod_reg_rm >> 3)); |
| /* is now XX0XXYYY */ |
| mod_reg_rm &= 0x1F; /* is now 000XXYYY */ |
| switch (mod_reg_rm) { |
| |
| /* REX.B==0: (%rax) .. (%rdi), not including (%rsp) or (%rbp). |
| REX.B==1: (%r8) .. (%r15), not including (%r12) or (%r13). |
| */ |
| case 0x00: case 0x01: case 0x02: case 0x03: |
| /* ! 04 */ /* ! 05 */ case 0x06: case 0x07: |
| { UChar rm = toUChar(mod_reg_rm & 7); |
| DIS(buf, "%s(%s)", segRegTxt(pfx), nameIRegRexB(8,pfx,rm)); |
| *len = 1; |
| return disAMode_copy2tmp( |
| handleAddrOverrides(vbi, pfx, getIRegRexB(8,pfx,rm))); |
| } |
| |
| /* REX.B==0: d8(%rax) ... d8(%rdi), not including d8(%rsp) |
| REX.B==1: d8(%r8) ... d8(%r15), not including d8(%r12) |
| */ |
| case 0x08: case 0x09: case 0x0A: case 0x0B: |
| /* ! 0C */ case 0x0D: case 0x0E: case 0x0F: |
| { UChar rm = toUChar(mod_reg_rm & 7); |
| Long d = getSDisp8(delta); |
| if (d == 0) { |
| DIS(buf, "%s(%s)", segRegTxt(pfx), nameIRegRexB(8,pfx,rm)); |
| } else { |
| DIS(buf, "%s%lld(%s)", segRegTxt(pfx), d, nameIRegRexB(8,pfx,rm)); |
| } |
| *len = 2; |
| return disAMode_copy2tmp( |
| handleAddrOverrides(vbi, pfx, |
| binop(Iop_Add64,getIRegRexB(8,pfx,rm),mkU64(d)))); |
| } |
| |
| /* REX.B==0: d32(%rax) ... d32(%rdi), not including d32(%rsp) |
| REX.B==1: d32(%r8) ... d32(%r15), not including d32(%r12) |
| */ |
| case 0x10: case 0x11: case 0x12: case 0x13: |
| /* ! 14 */ case 0x15: case 0x16: case 0x17: |
| { UChar rm = toUChar(mod_reg_rm & 7); |
| Long d = getSDisp32(delta); |
| DIS(buf, "%s%lld(%s)", segRegTxt(pfx), d, nameIRegRexB(8,pfx,rm)); |
| *len = 5; |
| return disAMode_copy2tmp( |
| handleAddrOverrides(vbi, pfx, |
| binop(Iop_Add64,getIRegRexB(8,pfx,rm),mkU64(d)))); |
| } |
| |
| /* REX.B==0: a register, %rax .. %rdi. This shouldn't happen. */ |
| /* REX.B==1: a register, %r8 .. %r16. This shouldn't happen. */ |
| case 0x18: case 0x19: case 0x1A: case 0x1B: |
| case 0x1C: case 0x1D: case 0x1E: case 0x1F: |
| vpanic("disAMode(amd64): not an addr!"); |
| |
| /* RIP + disp32. This assumes that guest_RIP_curr_instr is set |
| correctly at the start of handling each instruction. */ |
| case 0x05: |
| { Long d = getSDisp32(delta); |
| *len = 5; |
| DIS(buf, "%s%lld(%%rip)", segRegTxt(pfx), d); |
| /* We need to know the next instruction's start address. |
| Try and figure out what it is, record the guess, and ask |
| the top-level driver logic (bbToIR_AMD64) to check we |
| guessed right, after the instruction is completely |
| decoded. */ |
| guest_RIP_next_mustcheck = True; |
| guest_RIP_next_assumed = guest_RIP_bbstart |
| + delta+4 + extra_bytes; |
| return disAMode_copy2tmp( |
| handleAddrOverrides(vbi, pfx, |
| binop(Iop_Add64, mkU64(guest_RIP_next_assumed), |
| mkU64(d)))); |
| } |
| |
| case 0x04: { |
| /* SIB, with no displacement. Special cases: |
| -- %rsp cannot act as an index value. |
| If index_r indicates %rsp, zero is used for the index. |
| -- when mod is zero and base indicates RBP or R13, base is |
| instead a 32-bit sign-extended literal. |
| It's all madness, I tell you. Extract %index, %base and |
| scale from the SIB byte. The value denoted is then: |
| | %index == %RSP && (%base == %RBP || %base == %R13) |
| = d32 following SIB byte |
| | %index == %RSP && !(%base == %RBP || %base == %R13) |
| = %base |
| | %index != %RSP && (%base == %RBP || %base == %R13) |
| = d32 following SIB byte + (%index << scale) |
| | %index != %RSP && !(%base == %RBP || %base == %R13) |
| = %base + (%index << scale) |
| */ |
| UChar sib = getUChar(delta); |
| UChar scale = toUChar((sib >> 6) & 3); |
| UChar index_r = toUChar((sib >> 3) & 7); |
| UChar base_r = toUChar(sib & 7); |
| /* correct since #(R13) == 8 + #(RBP) */ |
| Bool base_is_BPor13 = toBool(base_r == R_RBP); |
| Bool index_is_SP = toBool(index_r == R_RSP && 0==getRexX(pfx)); |
| delta++; |
| |
| if ((!index_is_SP) && (!base_is_BPor13)) { |
| if (scale == 0) { |
| DIS(buf, "%s(%s,%s)", segRegTxt(pfx), |
| nameIRegRexB(8,pfx,base_r), |
| nameIReg64rexX(pfx,index_r)); |
| } else { |
| DIS(buf, "%s(%s,%s,%d)", segRegTxt(pfx), |
| nameIRegRexB(8,pfx,base_r), |
| nameIReg64rexX(pfx,index_r), 1<<scale); |
| } |
| *len = 2; |
| return |
| disAMode_copy2tmp( |
| handleAddrOverrides(vbi, pfx, |
| binop(Iop_Add64, |
| getIRegRexB(8,pfx,base_r), |
| binop(Iop_Shl64, getIReg64rexX(pfx,index_r), |
| mkU8(scale))))); |
| } |
| |
| if ((!index_is_SP) && base_is_BPor13) { |
| Long d = getSDisp32(delta); |
| DIS(buf, "%s%lld(,%s,%d)", segRegTxt(pfx), d, |
| nameIReg64rexX(pfx,index_r), 1<<scale); |
| *len = 6; |
| return |
| disAMode_copy2tmp( |
| handleAddrOverrides(vbi, pfx, |
| binop(Iop_Add64, |
| binop(Iop_Shl64, getIReg64rexX(pfx,index_r), |
| mkU8(scale)), |
| mkU64(d)))); |
| } |
| |
| if (index_is_SP && (!base_is_BPor13)) { |
| DIS(buf, "%s(%s)", segRegTxt(pfx), nameIRegRexB(8,pfx,base_r)); |
| *len = 2; |
| return disAMode_copy2tmp( |
| handleAddrOverrides(vbi, pfx, getIRegRexB(8,pfx,base_r))); |
| } |
| |
| if (index_is_SP && base_is_BPor13) { |
| Long d = getSDisp32(delta); |
| DIS(buf, "%s%lld", segRegTxt(pfx), d); |
| *len = 6; |
| return disAMode_copy2tmp( |
| handleAddrOverrides(vbi, pfx, mkU64(d))); |
| } |
| |
| vassert(0); |
| } |
| |
| /* SIB, with 8-bit displacement. Special cases: |
| -- %esp cannot act as an index value. |
| If index_r indicates %esp, zero is used for the index. |
| Denoted value is: |
| | %index == %ESP |
| = d8 + %base |
| | %index != %ESP |
| = d8 + %base + (%index << scale) |
| */ |
| case 0x0C: { |
| UChar sib = getUChar(delta); |
| UChar scale = toUChar((sib >> 6) & 3); |
| UChar index_r = toUChar((sib >> 3) & 7); |
| UChar base_r = toUChar(sib & 7); |
| Long d = getSDisp8(delta+1); |
| |
| if (index_r == R_RSP && 0==getRexX(pfx)) { |
| DIS(buf, "%s%lld(%s)", segRegTxt(pfx), |
| d, nameIRegRexB(8,pfx,base_r)); |
| *len = 3; |
| return disAMode_copy2tmp( |
| handleAddrOverrides(vbi, pfx, |
| binop(Iop_Add64, getIRegRexB(8,pfx,base_r), mkU64(d)) )); |
| } else { |
| if (scale == 0) { |
| DIS(buf, "%s%lld(%s,%s)", segRegTxt(pfx), d, |
| nameIRegRexB(8,pfx,base_r), |
| nameIReg64rexX(pfx,index_r)); |
| } else { |
| DIS(buf, "%s%lld(%s,%s,%d)", segRegTxt(pfx), d, |
| nameIRegRexB(8,pfx,base_r), |
| nameIReg64rexX(pfx,index_r), 1<<scale); |
| } |
| *len = 3; |
| return |
| disAMode_copy2tmp( |
| handleAddrOverrides(vbi, pfx, |
| binop(Iop_Add64, |
| binop(Iop_Add64, |
| getIRegRexB(8,pfx,base_r), |
| binop(Iop_Shl64, |
| getIReg64rexX(pfx,index_r), mkU8(scale))), |
| mkU64(d)))); |
| } |
| vassert(0); /*NOTREACHED*/ |
| } |
| |
| /* SIB, with 32-bit displacement. Special cases: |
| -- %rsp cannot act as an index value. |
| If index_r indicates %rsp, zero is used for the index. |
| Denoted value is: |
| | %index == %RSP |
| = d32 + %base |
| | %index != %RSP |
| = d32 + %base + (%index << scale) |
| */ |
| case 0x14: { |
| UChar sib = getUChar(delta); |
| UChar scale = toUChar((sib >> 6) & 3); |
| UChar index_r = toUChar((sib >> 3) & 7); |
| UChar base_r = toUChar(sib & 7); |
| Long d = getSDisp32(delta+1); |
| |
| if (index_r == R_RSP && 0==getRexX(pfx)) { |
| DIS(buf, "%s%lld(%s)", segRegTxt(pfx), |
| d, nameIRegRexB(8,pfx,base_r)); |
| *len = 6; |
| return disAMode_copy2tmp( |
| handleAddrOverrides(vbi, pfx, |
| binop(Iop_Add64, getIRegRexB(8,pfx,base_r), mkU64(d)) )); |
| } else { |
| if (scale == 0) { |
| DIS(buf, "%s%lld(%s,%s)", segRegTxt(pfx), d, |
| nameIRegRexB(8,pfx,base_r), |
| nameIReg64rexX(pfx,index_r)); |
| } else { |
| DIS(buf, "%s%lld(%s,%s,%d)", segRegTxt(pfx), d, |
| nameIRegRexB(8,pfx,base_r), |
| nameIReg64rexX(pfx,index_r), 1<<scale); |
| } |
| *len = 6; |
| return |
| disAMode_copy2tmp( |
| handleAddrOverrides(vbi, pfx, |
| binop(Iop_Add64, |
| binop(Iop_Add64, |
| getIRegRexB(8,pfx,base_r), |
| binop(Iop_Shl64, |
| getIReg64rexX(pfx,index_r), mkU8(scale))), |
| mkU64(d)))); |
| } |
| vassert(0); /*NOTREACHED*/ |
| } |
| |
| default: |
| vpanic("disAMode(amd64)"); |
| return 0; /*notreached*/ |
| } |
| } |
| |
| |
| /* Figure out the number of (insn-stream) bytes constituting the amode |
| beginning at delta. Is useful for getting hold of literals beyond |
| the end of the amode before it has been disassembled. */ |
| |
| static UInt lengthAMode ( Prefix pfx, Long delta ) |
| { |
| UChar mod_reg_rm = getUChar(delta); |
| delta++; |
| |
| /* squeeze out the reg field from mod_reg_rm, since a 256-entry |
| jump table seems a bit excessive. |
| */ |
| mod_reg_rm &= 0xC7; /* is now XX000YYY */ |
| mod_reg_rm = toUChar(mod_reg_rm | (mod_reg_rm >> 3)); |
| /* is now XX0XXYYY */ |
| mod_reg_rm &= 0x1F; /* is now 000XXYYY */ |
| switch (mod_reg_rm) { |
| |
| /* REX.B==0: (%rax) .. (%rdi), not including (%rsp) or (%rbp). |
| REX.B==1: (%r8) .. (%r15), not including (%r12) or (%r13). |
| */ |
| case 0x00: case 0x01: case 0x02: case 0x03: |
| /* ! 04 */ /* ! 05 */ case 0x06: case 0x07: |
| return 1; |
| |
| /* REX.B==0: d8(%rax) ... d8(%rdi), not including d8(%rsp) |
| REX.B==1: d8(%r8) ... d8(%r15), not including d8(%r12) |
| */ |
| case 0x08: case 0x09: case 0x0A: case 0x0B: |
| /* ! 0C */ case 0x0D: case 0x0E: case 0x0F: |
| return 2; |
| |
| /* REX.B==0: d32(%rax) ... d32(%rdi), not including d32(%rsp) |
| REX.B==1: d32(%r8) ... d32(%r15), not including d32(%r12) |
| */ |
| case 0x10: case 0x11: case 0x12: case 0x13: |
| /* ! 14 */ case 0x15: case 0x16: case 0x17: |
| return 5; |
| |
| /* REX.B==0: a register, %rax .. %rdi. This shouldn't happen. */ |
| /* REX.B==1: a register, %r8 .. %r16. This shouldn't happen. */ |
| /* Not an address, but still handled. */ |
| case 0x18: case 0x19: case 0x1A: case 0x1B: |
| case 0x1C: case 0x1D: case 0x1E: case 0x1F: |
| return 1; |
| |
| /* RIP + disp32. */ |
| case 0x05: |
| return 5; |
| |
| case 0x04: { |
| /* SIB, with no displacement. */ |
| UChar sib = getUChar(delta); |
| UChar base_r = toUChar(sib & 7); |
| /* correct since #(R13) == 8 + #(RBP) */ |
| Bool base_is_BPor13 = toBool(base_r == R_RBP); |
| |
| if (base_is_BPor13) { |
| return 6; |
| } else { |
| return 2; |
| } |
| } |
| |
| /* SIB, with 8-bit displacement. */ |
| case 0x0C: |
| return 3; |
| |
| /* SIB, with 32-bit displacement. */ |
| case 0x14: |
| return 6; |
| |
| default: |
| vpanic("lengthAMode(amd64)"); |
| return 0; /*notreached*/ |
| } |
| } |
| |
| |
| /*------------------------------------------------------------*/ |
| /*--- Disassembling common idioms ---*/ |
| /*------------------------------------------------------------*/ |
| |
| /* Handle binary integer instructions of the form |
| op E, G meaning |
| op reg-or-mem, reg |
| Is passed the a ptr to the modRM byte, the actual operation, and the |
| data size. Returns the address advanced completely over this |
| instruction. |
| |
| E(src) is reg-or-mem |
| G(dst) is reg. |
| |
| If E is reg, --> GET %G, tmp |
| OP %E, tmp |
| PUT tmp, %G |
| |
| If E is mem and OP is not reversible, |
| --> (getAddr E) -> tmpa |
| LD (tmpa), tmpa |
| GET %G, tmp2 |
| OP tmpa, tmp2 |
| PUT tmp2, %G |
| |
| If E is mem and OP is reversible |
| --> (getAddr E) -> tmpa |
| LD (tmpa), tmpa |
| OP %G, tmpa |
| PUT tmpa, %G |
| */ |
| static |
| ULong dis_op2_E_G ( VexAbiInfo* vbi, |
| Prefix pfx, |
| Bool addSubCarry, |
| IROp op8, |
| Bool keep, |
| Int size, |
| Long delta0, |
| HChar* t_amd64opc ) |
| { |
| HChar dis_buf[50]; |
| Int len; |
| IRType ty = szToITy(size); |
| IRTemp dst1 = newTemp(ty); |
| IRTemp src = newTemp(ty); |
| IRTemp dst0 = newTemp(ty); |
| UChar rm = getUChar(delta0); |
| IRTemp addr = IRTemp_INVALID; |
| |
| /* addSubCarry == True indicates the intended operation is |
| add-with-carry or subtract-with-borrow. */ |
| if (addSubCarry) { |
| vassert(op8 == Iop_Add8 || op8 == Iop_Sub8); |
| vassert(keep); |
| } |
| |
| if (epartIsReg(rm)) { |
| /* Specially handle XOR reg,reg, because that doesn't really |
| depend on reg, and doing the obvious thing potentially |
| generates a spurious value check failure due to the bogus |
| dependency. */ |
| if ((op8 == Iop_Xor8 || (op8 == Iop_Sub8 && addSubCarry)) |
| && offsetIRegG(size,pfx,rm) == offsetIRegE(size,pfx,rm)) { |
| if (False && op8 == Iop_Sub8) |
| vex_printf("vex amd64->IR: sbb %%r,%%r optimisation(1)\n"); |
| putIRegG(size,pfx,rm, mkU(ty,0)); |
| } |
| |
| assign( dst0, getIRegG(size,pfx,rm) ); |
| assign( src, getIRegE(size,pfx,rm) ); |
| |
| if (addSubCarry && op8 == Iop_Add8) { |
| helper_ADC( size, dst1, dst0, src, |
| /*no store*/IRTemp_INVALID, IRTemp_INVALID, 0 ); |
| putIRegG(size, pfx, rm, mkexpr(dst1)); |
| } else |
| if (addSubCarry && op8 == Iop_Sub8) { |
| helper_SBB( size, dst1, dst0, src, |
| /*no store*/IRTemp_INVALID, IRTemp_INVALID, 0 ); |
| putIRegG(size, pfx, rm, mkexpr(dst1)); |
| } else { |
| assign( dst1, binop(mkSizedOp(ty,op8), mkexpr(dst0), mkexpr(src)) ); |
| if (isAddSub(op8)) |
| setFlags_DEP1_DEP2(op8, dst0, src, ty); |
| else |
| setFlags_DEP1(op8, dst1, ty); |
| if (keep) |
| putIRegG(size, pfx, rm, mkexpr(dst1)); |
| } |
| |
| DIP("%s%c %s,%s\n", t_amd64opc, nameISize(size), |
| nameIRegE(size,pfx,rm), |
| nameIRegG(size,pfx,rm)); |
| return 1+delta0; |
| } else { |
| /* E refers to memory */ |
| addr = disAMode ( &len, vbi, pfx, delta0, dis_buf, 0 ); |
| assign( dst0, getIRegG(size,pfx,rm) ); |
| assign( src, loadLE(szToITy(size), mkexpr(addr)) ); |
| |
| if (addSubCarry && op8 == Iop_Add8) { |
| helper_ADC( size, dst1, dst0, src, |
| /*no store*/IRTemp_INVALID, IRTemp_INVALID, 0 ); |
| putIRegG(size, pfx, rm, mkexpr(dst1)); |
| } else |
| if (addSubCarry && op8 == Iop_Sub8) { |
| helper_SBB( size, dst1, dst0, src, |
| /*no store*/IRTemp_INVALID, IRTemp_INVALID, 0 ); |
| putIRegG(size, pfx, rm, mkexpr(dst1)); |
| } else { |
| assign( dst1, binop(mkSizedOp(ty,op8), mkexpr(dst0), mkexpr(src)) ); |
| if (isAddSub(op8)) |
| setFlags_DEP1_DEP2(op8, dst0, src, ty); |
| else |
| setFlags_DEP1(op8, dst1, ty); |
| if (keep) |
| putIRegG(size, pfx, rm, mkexpr(dst1)); |
| } |
| |
| DIP("%s%c %s,%s\n", t_amd64opc, nameISize(size), |
| dis_buf, nameIRegG(size, pfx, rm)); |
| return len+delta0; |
| } |
| } |
| |
| |
| |
| /* Handle binary integer instructions of the form |
| op G, E meaning |
| op reg, reg-or-mem |
| Is passed the a ptr to the modRM byte, the actual operation, and the |
| data size. Returns the address advanced completely over this |
| instruction. |
| |
| G(src) is reg. |
| E(dst) is reg-or-mem |
| |
| If E is reg, --> GET %E, tmp |
| OP %G, tmp |
| PUT tmp, %E |
| |
| If E is mem, --> (getAddr E) -> tmpa |
| LD (tmpa), tmpv |
| OP %G, tmpv |
| ST tmpv, (tmpa) |
| */ |
| static |
| ULong dis_op2_G_E ( VexAbiInfo* vbi, |
| Prefix pfx, |
| Bool addSubCarry, |
| IROp op8, |
| Bool keep, |
| Int size, |
| Long delta0, |
| HChar* t_amd64opc ) |
| { |
| HChar dis_buf[50]; |
| Int len; |
| IRType ty = szToITy(size); |
| IRTemp dst1 = newTemp(ty); |
| IRTemp src = newTemp(ty); |
| IRTemp dst0 = newTemp(ty); |
| UChar rm = getUChar(delta0); |
| IRTemp addr = IRTemp_INVALID; |
| |
| /* addSubCarry == True indicates the intended operation is |
| add-with-carry or subtract-with-borrow. */ |
| if (addSubCarry) { |
| vassert(op8 == Iop_Add8 || op8 == Iop_Sub8); |
| vassert(keep); |
| } |
| |
| if (epartIsReg(rm)) { |
| /* Specially handle XOR reg,reg, because that doesn't really |
| depend on reg, and doing the obvious thing potentially |
| generates a spurious value check failure due to the bogus |
| dependency. Ditto SBB reg,reg. */ |
| if ((op8 == Iop_Xor8 || (op8 == Iop_Sub8 && addSubCarry)) |
| && offsetIRegG(size,pfx,rm) == offsetIRegE(size,pfx,rm)) { |
| putIRegE(size,pfx,rm, mkU(ty,0)); |
| } |
| |
| assign(dst0, getIRegE(size,pfx,rm)); |
| assign(src, getIRegG(size,pfx,rm)); |
| |
| if (addSubCarry && op8 == Iop_Add8) { |
| helper_ADC( size, dst1, dst0, src, |
| /*no store*/IRTemp_INVALID, IRTemp_INVALID, 0 ); |
| putIRegE(size, pfx, rm, mkexpr(dst1)); |
| } else |
| if (addSubCarry && op8 == Iop_Sub8) { |
| helper_SBB( size, dst1, dst0, src, |
| /*no store*/IRTemp_INVALID, IRTemp_INVALID, 0 ); |
| putIRegE(size, pfx, rm, mkexpr(dst1)); |
| } else { |
| assign(dst1, binop(mkSizedOp(ty,op8), mkexpr(dst0), mkexpr(src))); |
| if (isAddSub(op8)) |
| setFlags_DEP1_DEP2(op8, dst0, src, ty); |
| else |
| setFlags_DEP1(op8, dst1, ty); |
| if (keep) |
| putIRegE(size, pfx, rm, mkexpr(dst1)); |
| } |
| |
| DIP("%s%c %s,%s\n", t_amd64opc, nameISize(size), |
| nameIRegG(size,pfx,rm), |
| nameIRegE(size,pfx,rm)); |
| return 1+delta0; |
| } |
| |
| /* E refers to memory */ |
| { |
| addr = disAMode ( &len, vbi, pfx, delta0, dis_buf, 0 ); |
| assign(dst0, loadLE(ty,mkexpr(addr))); |
| assign(src, getIRegG(size,pfx,rm)); |
| |
| if (addSubCarry && op8 == Iop_Add8) { |
| if (pfx & PFX_LOCK) { |
| /* cas-style store */ |
| helper_ADC( size, dst1, dst0, src, |
| /*store*/addr, dst0/*expVal*/, guest_RIP_curr_instr ); |
| } else { |
| /* normal store */ |
| helper_ADC( size, dst1, dst0, src, |
| /*store*/addr, IRTemp_INVALID, 0 ); |
| } |
| } else |
| if (addSubCarry && op8 == Iop_Sub8) { |
| if (pfx & PFX_LOCK) { |
| /* cas-style store */ |
| helper_SBB( size, dst1, dst0, src, |
| /*store*/addr, dst0/*expVal*/, guest_RIP_curr_instr ); |
| } else { |
| /* normal store */ |
| helper_SBB( size, dst1, dst0, src, |
| /*store*/addr, IRTemp_INVALID, 0 ); |
| } |
| } else { |
| assign(dst1, binop(mkSizedOp(ty,op8), mkexpr(dst0), mkexpr(src))); |
| if (keep) { |
| if (pfx & PFX_LOCK) { |
| if (0) vex_printf("locked case\n" ); |
| casLE( mkexpr(addr), |
| mkexpr(dst0)/*expval*/, |
| mkexpr(dst1)/*newval*/, guest_RIP_curr_instr ); |
| } else { |
| if (0) vex_printf("nonlocked case\n"); |
| storeLE(mkexpr(addr), mkexpr(dst1)); |
| } |
| } |
| if (isAddSub(op8)) |
| setFlags_DEP1_DEP2(op8, dst0, src, ty); |
| else |
| setFlags_DEP1(op8, dst1, ty); |
| } |
| |
| DIP("%s%c %s,%s\n", t_amd64opc, nameISize(size), |
| nameIRegG(size,pfx,rm), dis_buf); |
| return len+delta0; |
| } |
| } |
| |
| |
| /* Handle move instructions of the form |
| mov E, G meaning |
| mov reg-or-mem, reg |
| Is passed the a ptr to the modRM byte, and the data size. Returns |
| the address advanced completely over this instruction. |
| |
| E(src) is reg-or-mem |
| G(dst) is reg. |
| |
| If E is reg, --> GET %E, tmpv |
| PUT tmpv, %G |
| |
| If E is mem --> (getAddr E) -> tmpa |
| LD (tmpa), tmpb |
| PUT tmpb, %G |
| */ |
| static |
| ULong dis_mov_E_G ( VexAbiInfo* vbi, |
| Prefix pfx, |
| Int size, |
| Long delta0 ) |
| { |
| Int len; |
| UChar rm = getUChar(delta0); |
| HChar dis_buf[50]; |
| |
| if (epartIsReg(rm)) { |
| putIRegG(size, pfx, rm, getIRegE(size, pfx, rm)); |
| DIP("mov%c %s,%s\n", nameISize(size), |
| nameIRegE(size,pfx,rm), |
| nameIRegG(size,pfx,rm)); |
| return 1+delta0; |
| } |
| |
| /* E refers to memory */ |
| { |
| IRTemp addr = disAMode ( &len, vbi, pfx, delta0, dis_buf, 0 ); |
| putIRegG(size, pfx, rm, loadLE(szToITy(size), mkexpr(addr))); |
| DIP("mov%c %s,%s\n", nameISize(size), |
| dis_buf, |
| nameIRegG(size,pfx,rm)); |
| return delta0+len; |
| } |
| } |
| |
| |
| /* Handle move instructions of the form |
| mov G, E meaning |
| mov reg, reg-or-mem |
| Is passed the a ptr to the modRM byte, and the data size. Returns |
| the address advanced completely over this instruction. |
| |
| G(src) is reg. |
| E(dst) is reg-or-mem |
| |
| If E is reg, --> GET %G, tmp |
| PUT tmp, %E |
| |
| If E is mem, --> (getAddr E) -> tmpa |
| GET %G, tmpv |
| ST tmpv, (tmpa) |
| */ |
| static |
| ULong dis_mov_G_E ( VexAbiInfo* vbi, |
| Prefix pfx, |
| Int size, |
| Long delta0 ) |
| { |
| Int len; |
| UChar rm = getUChar(delta0); |
| HChar dis_buf[50]; |
| |
| if (epartIsReg(rm)) { |
| putIRegE(size, pfx, rm, getIRegG(size, pfx, rm)); |
| DIP("mov%c %s,%s\n", nameISize(size), |
| nameIRegG(size,pfx,rm), |
| nameIRegE(size,pfx,rm)); |
| return 1+delta0; |
| } |
| |
| /* E refers to memory */ |
| { |
| IRTemp addr = disAMode ( &len, vbi, pfx, delta0, dis_buf, 0 ); |
| storeLE( mkexpr(addr), getIRegG(size, pfx, rm) ); |
| DIP("mov%c %s,%s\n", nameISize(size), |
| nameIRegG(size,pfx,rm), |
| dis_buf); |
| return len+delta0; |
| } |
| } |
| |
| |
| /* op $immediate, AL/AX/EAX/RAX. */ |
| static |
| ULong dis_op_imm_A ( Int size, |
| Bool carrying, |
| IROp op8, |
| Bool keep, |
| Long delta, |
| HChar* t_amd64opc ) |
| { |
| Int size4 = imin(size,4); |
| IRType ty = szToITy(size); |
| IRTemp dst0 = newTemp(ty); |
| IRTemp src = newTemp(ty); |
| IRTemp dst1 = newTemp(ty); |
| Long lit = getSDisp(size4,delta); |
| assign(dst0, getIRegRAX(size)); |
| assign(src, mkU(ty,lit & mkSizeMask(size))); |
| |
| if (isAddSub(op8) && !carrying) { |
| assign(dst1, binop(mkSizedOp(ty,op8), mkexpr(dst0), mkexpr(src)) ); |
| setFlags_DEP1_DEP2(op8, dst0, src, ty); |
| } |
| else |
| if (isLogic(op8)) { |
| vassert(!carrying); |
| assign(dst1, binop(mkSizedOp(ty,op8), mkexpr(dst0), mkexpr(src)) ); |
| setFlags_DEP1(op8, dst1, ty); |
| } |
| else |
| if (op8 == Iop_Add8 && carrying) { |
| helper_ADC( size, dst1, dst0, src, |
| /*no store*/IRTemp_INVALID, IRTemp_INVALID, 0 ); |
| } |
| else |
| if (op8 == Iop_Sub8 && carrying) { |
| helper_SBB( size, dst1, dst0, src, |
| /*no store*/IRTemp_INVALID, IRTemp_INVALID, 0 ); |
| } |
| else |
| vpanic("dis_op_imm_A(amd64,guest)"); |
| |
| if (keep) |
| putIRegRAX(size, mkexpr(dst1)); |
| |
| DIP("%s%c $%lld, %s\n", t_amd64opc, nameISize(size), |
| lit, nameIRegRAX(size)); |
| return delta+size4; |
| } |
| |
| |
| /* Sign- and Zero-extending moves. */ |
| static |
| ULong dis_movx_E_G ( VexAbiInfo* vbi, |
| Prefix pfx, |
| Long delta, Int szs, Int szd, Bool sign_extend ) |
| { |
| UChar rm = getUChar(delta); |
| if (epartIsReg(rm)) { |
| putIRegG(szd, pfx, rm, |
| doScalarWidening( |
| szs,szd,sign_extend, |
| getIRegE(szs,pfx,rm))); |
| DIP("mov%c%c%c %s,%s\n", sign_extend ? 's' : 'z', |
| nameISize(szs), |
| nameISize(szd), |
| nameIRegE(szs,pfx,rm), |
| nameIRegG(szd,pfx,rm)); |
| return 1+delta; |
| } |
| |
| /* E refers to memory */ |
| { |
| Int len; |
| HChar dis_buf[50]; |
| IRTemp addr = disAMode ( &len, vbi, pfx, delta, dis_buf, 0 ); |
| putIRegG(szd, pfx, rm, |
| doScalarWidening( |
| szs,szd,sign_extend, |
| loadLE(szToITy(szs),mkexpr(addr)))); |
| DIP("mov%c%c%c %s,%s\n", sign_extend ? 's' : 'z', |
| nameISize(szs), |
| nameISize(szd), |
| dis_buf, |
| nameIRegG(szd,pfx,rm)); |
| return len+delta; |
| } |
| } |
| |
| |
| /* Generate code to divide ArchRegs RDX:RAX / EDX:EAX / DX:AX / AX by |
| the 64 / 32 / 16 / 8 bit quantity in the given IRTemp. */ |
| static |
| void codegen_div ( Int sz, IRTemp t, Bool signed_divide ) |
| { |
| /* special-case the 64-bit case */ |
| if (sz == 8) { |
| IROp op = signed_divide ? Iop_DivModS128to64 |
| : Iop_DivModU128to64; |
| IRTemp src128 = newTemp(Ity_I128); |
| IRTemp dst128 = newTemp(Ity_I128); |
| assign( src128, binop(Iop_64HLto128, |
| getIReg64(R_RDX), |
| getIReg64(R_RAX)) ); |
| assign( dst128, binop(op, mkexpr(src128), mkexpr(t)) ); |
| putIReg64( R_RAX, unop(Iop_128to64,mkexpr(dst128)) ); |
| putIReg64( R_RDX, unop(Iop_128HIto64,mkexpr(dst128)) ); |
| } else { |
| IROp op = signed_divide ? Iop_DivModS64to32 |
| : Iop_DivModU64to32; |
| IRTemp src64 = newTemp(Ity_I64); |
| IRTemp dst64 = newTemp(Ity_I64); |
| switch (sz) { |
| case 4: |
| assign( src64, |
| binop(Iop_32HLto64, getIRegRDX(4), getIRegRAX(4)) ); |
| assign( dst64, |
| binop(op, mkexpr(src64), mkexpr(t)) ); |
| putIRegRAX( 4, unop(Iop_64to32,mkexpr(dst64)) ); |
| putIRegRDX( 4, unop(Iop_64HIto32,mkexpr(dst64)) ); |
| break; |
| case 2: { |
| IROp widen3264 = signed_divide ? Iop_32Sto64 : Iop_32Uto64; |
| IROp widen1632 = signed_divide ? Iop_16Sto32 : Iop_16Uto32; |
| assign( src64, unop(widen3264, |
| binop(Iop_16HLto32, |
| getIRegRDX(2), |
| getIRegRAX(2))) ); |
| assign( dst64, binop(op, mkexpr(src64), unop(widen1632,mkexpr(t))) ); |
| putIRegRAX( 2, unop(Iop_32to16,unop(Iop_64to32,mkexpr(dst64))) ); |
| putIRegRDX( 2, unop(Iop_32to16,unop(Iop_64HIto32,mkexpr(dst64))) ); |
| break; |
| } |
| case 1: { |
| IROp widen3264 = signed_divide ? Iop_32Sto64 : Iop_32Uto64; |
| IROp widen1632 = signed_divide ? Iop_16Sto32 : Iop_16Uto32; |
| IROp widen816 = signed_divide ? Iop_8Sto16 : Iop_8Uto16; |
| assign( src64, unop(widen3264, |
| unop(widen1632, getIRegRAX(2))) ); |
| assign( dst64, |
| binop(op, mkexpr(src64), |
| unop(widen1632, unop(widen816, mkexpr(t)))) ); |
| putIRegRAX( 1, unop(Iop_16to8, |
| unop(Iop_32to16, |
| unop(Iop_64to32,mkexpr(dst64)))) ); |
| putIRegAH( unop(Iop_16to8, |
| unop(Iop_32to16, |
| unop(Iop_64HIto32,mkexpr(dst64)))) ); |
| break; |
| } |
| default: |
| vpanic("codegen_div(amd64)"); |
| } |
| } |
| } |
| |
| static |
| ULong dis_Grp1 ( VexAbiInfo* vbi, |
| Prefix pfx, |
| Long delta, UChar modrm, |
| Int am_sz, Int d_sz, Int sz, Long d64 ) |
| { |
| Int len; |
| HChar dis_buf[50]; |
| IRType ty = szToITy(sz); |
| IRTemp dst1 = newTemp(ty); |
| IRTemp src = newTemp(ty); |
| IRTemp dst0 = newTemp(ty); |
| IRTemp addr = IRTemp_INVALID; |
| IROp op8 = Iop_INVALID; |
| ULong mask = mkSizeMask(sz); |
| |
| switch (gregLO3ofRM(modrm)) { |
| case 0: op8 = Iop_Add8; break; case 1: op8 = Iop_Or8; break; |
| case 2: break; // ADC |
| case 3: break; // SBB |
| case 4: op8 = Iop_And8; break; case 5: op8 = Iop_Sub8; break; |
| case 6: op8 = Iop_Xor8; break; case 7: op8 = Iop_Sub8; break; |
| /*NOTREACHED*/ |
| default: vpanic("dis_Grp1(amd64): unhandled case"); |
| } |
| |
| if (epartIsReg(modrm)) { |
| vassert(am_sz == 1); |
| |
| assign(dst0, getIRegE(sz,pfx,modrm)); |
| assign(src, mkU(ty,d64 & mask)); |
| |
| if (gregLO3ofRM(modrm) == 2 /* ADC */) { |
| helper_ADC( sz, dst1, dst0, src, |
| /*no store*/IRTemp_INVALID, IRTemp_INVALID, 0 ); |
| } else |
| if (gregLO3ofRM(modrm) == 3 /* SBB */) { |
| helper_SBB( sz, dst1, dst0, src, |
| /*no store*/IRTemp_INVALID, IRTemp_INVALID, 0 ); |
| } else { |
| assign(dst1, binop(mkSizedOp(ty,op8), mkexpr(dst0), mkexpr(src))); |
| if (isAddSub(op8)) |
| setFlags_DEP1_DEP2(op8, dst0, src, ty); |
| else |
| setFlags_DEP1(op8, dst1, ty); |
| } |
| |
| if (gregLO3ofRM(modrm) < 7) |
| putIRegE(sz, pfx, modrm, mkexpr(dst1)); |
| |
| delta += (am_sz + d_sz); |
| DIP("%s%c $%lld, %s\n", |
| nameGrp1(gregLO3ofRM(modrm)), nameISize(sz), d64, |
| nameIRegE(sz,pfx,modrm)); |
| } else { |
| addr = disAMode ( &len, vbi, pfx, delta, dis_buf, /*xtra*/d_sz ); |
| |
| assign(dst0, loadLE(ty,mkexpr(addr))); |
| assign(src, mkU(ty,d64 & mask)); |
| |
| if (gregLO3ofRM(modrm) == 2 /* ADC */) { |
| if (pfx & PFX_LOCK) { |
| /* cas-style store */ |
| helper_ADC( sz, dst1, dst0, src, |
| /*store*/addr, dst0/*expVal*/, guest_RIP_curr_instr ); |
| } else { |
| /* normal store */ |
| helper_ADC( sz, dst1, dst0, src, |
| /*store*/addr, IRTemp_INVALID, 0 ); |
| } |
| } else |
| if (gregLO3ofRM(modrm) == 3 /* SBB */) { |
| if (pfx & PFX_LOCK) { |
| /* cas-style store */ |
| helper_SBB( sz, dst1, dst0, src, |
| /*store*/addr, dst0/*expVal*/, guest_RIP_curr_instr ); |
| } else { |
| /* normal store */ |
| helper_SBB( sz, dst1, dst0, src, |
| /*store*/addr, IRTemp_INVALID, 0 ); |
| } |
| } else { |
| assign(dst1, binop(mkSizedOp(ty,op8), mkexpr(dst0), mkexpr(src))); |
| if (gregLO3ofRM(modrm) < 7) { |
| if (pfx & PFX_LOCK) { |
| casLE( mkexpr(addr), mkexpr(dst0)/*expVal*/, |
| mkexpr(dst1)/*newVal*/, |
| guest_RIP_curr_instr ); |
| } else { |
| storeLE(mkexpr(addr), mkexpr(dst1)); |
| } |
| } |
| if (isAddSub(op8)) |
| setFlags_DEP1_DEP2(op8, dst0, src, ty); |
| else |
| setFlags_DEP1(op8, dst1, ty); |
| } |
| |
| delta += (len+d_sz); |
| DIP("%s%c $%lld, %s\n", |
| nameGrp1(gregLO3ofRM(modrm)), nameISize(sz), |
| d64, dis_buf); |
| } |
| return delta; |
| } |
| |
| |
| /* Group 2 extended opcodes. shift_expr must be an 8-bit typed |
| expression. */ |
| |
| static |
| ULong dis_Grp2 ( VexAbiInfo* vbi, |
| Prefix pfx, |
| Long delta, UChar modrm, |
| Int am_sz, Int d_sz, Int sz, IRExpr* shift_expr, |
| HChar* shift_expr_txt, Bool* decode_OK ) |
| { |
| /* delta on entry points at the modrm byte. */ |
| HChar dis_buf[50]; |
| Int len; |
| Bool isShift, isRotate, isRotateC; |
| IRType ty = szToITy(sz); |
| IRTemp dst0 = newTemp(ty); |
| IRTemp dst1 = newTemp(ty); |
| IRTemp addr = IRTemp_INVALID; |
| |
| *decode_OK = True; |
| |
| vassert(sz == 1 || sz == 2 || sz == 4 || sz == 8); |
| |
| /* Put value to shift/rotate in dst0. */ |
| if (epartIsReg(modrm)) { |
| assign(dst0, getIRegE(sz, pfx, modrm)); |
| delta += (am_sz + d_sz); |
| } else { |
| addr = disAMode ( &len, vbi, pfx, delta, dis_buf, /*xtra*/d_sz ); |
| assign(dst0, loadLE(ty,mkexpr(addr))); |
| delta += len + d_sz; |
| } |
| |
| isShift = False; |
| switch (gregLO3ofRM(modrm)) { case 4: case 5: case 6: case 7: isShift = True; } |
| |
| isRotate = False; |
| switch (gregLO3ofRM(modrm)) { case 0: case 1: isRotate = True; } |
| |
| isRotateC = False; |
| switch (gregLO3ofRM(modrm)) { case 2: case 3: isRotateC = True; } |
| |
| if (!isShift && !isRotate && !isRotateC) { |
| /*NOTREACHED*/ |
| vpanic("dis_Grp2(Reg): unhandled case(amd64)"); |
| } |
| |
| if (isRotateC) { |
| /* Call a helper; this insn is so ridiculous it does not deserve |
| better. One problem is, the helper has to calculate both the |
| new value and the new flags. This is more than 64 bits, and |
| there is no way to return more than 64 bits from the helper. |
| Hence the crude and obvious solution is to call it twice, |
| using the sign of the sz field to indicate whether it is the |
| value or rflags result we want. |
| */ |
| Bool left = toBool(gregLO3ofRM(modrm) == 2); |
| IRExpr** argsVALUE; |
| IRExpr** argsRFLAGS; |
| |
| IRTemp new_value = newTemp(Ity_I64); |
| IRTemp new_rflags = newTemp(Ity_I64); |
| IRTemp old_rflags = newTemp(Ity_I64); |
| |
| assign( old_rflags, widenUto64(mk_amd64g_calculate_rflags_all()) ); |
| |
| argsVALUE |
| = mkIRExprVec_4( widenUto64(mkexpr(dst0)), /* thing to rotate */ |
| widenUto64(shift_expr), /* rotate amount */ |
| mkexpr(old_rflags), |
| mkU64(sz) ); |
| assign( new_value, |
| mkIRExprCCall( |
| Ity_I64, |
| 0/*regparm*/, |
| left ? "amd64g_calculate_RCL" : "amd64g_calculate_RCR", |
| left ? &amd64g_calculate_RCL : &amd64g_calculate_RCR, |
| argsVALUE |
| ) |
| ); |
| |
| argsRFLAGS |
| = mkIRExprVec_4( widenUto64(mkexpr(dst0)), /* thing to rotate */ |
| widenUto64(shift_expr), /* rotate amount */ |
| mkexpr(old_rflags), |
| mkU64(-sz) ); |
| assign( new_rflags, |
| mkIRExprCCall( |
| Ity_I64, |
| 0/*regparm*/, |
| left ? "amd64g_calculate_RCL" : "amd64g_calculate_RCR", |
| left ? &amd64g_calculate_RCL : &amd64g_calculate_RCR, |
| argsRFLAGS |
| ) |
| ); |
| |
| assign( dst1, narrowTo(ty, mkexpr(new_value)) ); |
| stmt( IRStmt_Put( OFFB_CC_OP, mkU64(AMD64G_CC_OP_COPY) )); |
| stmt( IRStmt_Put( OFFB_CC_DEP1, mkexpr(new_rflags) )); |
| stmt( IRStmt_Put( OFFB_CC_DEP2, mkU64(0) )); |
| stmt( IRStmt_Put( OFFB_CC_NDEP, mkU64(0) )); |
| } |
| |
| else |
| if (isShift) { |
| |
| IRTemp pre64 = newTemp(Ity_I64); |
| IRTemp res64 = newTemp(Ity_I64); |
| IRTemp res64ss = newTemp(Ity_I64); |
| IRTemp shift_amt = newTemp(Ity_I8); |
| UChar mask = toUChar(sz==8 ? 63 : 31); |
| IROp op64; |
| |
| switch (gregLO3ofRM(modrm)) { |
| case 4: op64 = Iop_Shl64; break; |
| case 5: op64 = Iop_Shr64; break; |
| case 6: op64 = Iop_Shl64; break; |
| case 7: op64 = Iop_Sar64; break; |
| /*NOTREACHED*/ |
| default: vpanic("dis_Grp2:shift"); break; |
| } |
| |
| /* Widen the value to be shifted to 64 bits, do the shift, and |
| narrow back down. This seems surprisingly long-winded, but |
| unfortunately the AMD semantics requires that 8/16/32-bit |
| shifts give defined results for shift values all the way up |
| to 32, and this seems the simplest way to do it. It has the |
| advantage that the only IR level shifts generated are of 64 |
| bit values, and the shift amount is guaranteed to be in the |
| range 0 .. 63, thereby observing the IR semantics requiring |
| all shift values to be in the range 0 .. 2^word_size-1. |
| |
| Therefore the shift amount is masked with 63 for 64-bit shifts |
| and 31 for all others. |
| */ |
| /* shift_amt = shift_expr & MASK, regardless of operation size */ |
| assign( shift_amt, binop(Iop_And8, shift_expr, mkU8(mask)) ); |
| |
| /* suitably widen the value to be shifted to 64 bits. */ |
| assign( pre64, op64==Iop_Sar64 ? widenSto64(mkexpr(dst0)) |
| : widenUto64(mkexpr(dst0)) ); |
| |
| /* res64 = pre64 `shift` shift_amt */ |
| assign( res64, binop(op64, mkexpr(pre64), mkexpr(shift_amt)) ); |
| |
| /* res64ss = pre64 `shift` ((shift_amt - 1) & MASK) */ |
| assign( res64ss, |
| binop(op64, |
| mkexpr(pre64), |
| binop(Iop_And8, |
| binop(Iop_Sub8, |
| mkexpr(shift_amt), mkU8(1)), |
| mkU8(mask))) ); |
| |
| /* Build the flags thunk. */ |
| setFlags_DEP1_DEP2_shift(op64, res64, res64ss, ty, shift_amt); |
| |
| /* Narrow the result back down. */ |
| assign( dst1, narrowTo(ty, mkexpr(res64)) ); |
| |
| } /* if (isShift) */ |
| |
| else |
| if (isRotate) { |
| Int ccOp = ty==Ity_I8 ? 0 : (ty==Ity_I16 ? 1 |
| : (ty==Ity_I32 ? 2 : 3)); |
| Bool left = toBool(gregLO3ofRM(modrm) == 0); |
| IRTemp rot_amt = newTemp(Ity_I8); |
| IRTemp rot_amt64 = newTemp(Ity_I8); |
| IRTemp oldFlags = newTemp(Ity_I64); |
| UChar mask = toUChar(sz==8 ? 63 : 31); |
| |
| /* rot_amt = shift_expr & mask */ |
| /* By masking the rotate amount thusly, the IR-level Shl/Shr |
| expressions never shift beyond the word size and thus remain |
| well defined. */ |
| assign(rot_amt64, binop(Iop_And8, shift_expr, mkU8(mask))); |
| |
| if (ty == Ity_I64) |
| assign(rot_amt, mkexpr(rot_amt64)); |
| else |
| assign(rot_amt, binop(Iop_And8, mkexpr(rot_amt64), mkU8(8*sz-1))); |
| |
| if (left) { |
| |
| /* dst1 = (dst0 << rot_amt) | (dst0 >>u (wordsize-rot_amt)) */ |
| assign(dst1, |
| binop( mkSizedOp(ty,Iop_Or8), |
| binop( mkSizedOp(ty,Iop_Shl8), |
| mkexpr(dst0), |
| mkexpr(rot_amt) |
| ), |
| binop( mkSizedOp(ty,Iop_Shr8), |
| mkexpr(dst0), |
| binop(Iop_Sub8,mkU8(8*sz), mkexpr(rot_amt)) |
| ) |
| ) |
| ); |
| ccOp += AMD64G_CC_OP_ROLB; |
| |
| } else { /* right */ |
| |
| /* dst1 = (dst0 >>u rot_amt) | (dst0 << (wordsize-rot_amt)) */ |
| assign(dst1, |
| binop( mkSizedOp(ty,Iop_Or8), |
| binop( mkSizedOp(ty,Iop_Shr8), |
| mkexpr(dst0), |
| mkexpr(rot_amt) |
| ), |
| binop( mkSizedOp(ty,Iop_Shl8), |
| mkexpr(dst0), |
| binop(Iop_Sub8,mkU8(8*sz), mkexpr(rot_amt)) |
| ) |
| ) |
| ); |
| ccOp += AMD64G_CC_OP_RORB; |
| |
| } |
| |
| /* dst1 now holds the rotated value. Build flag thunk. We |
| need the resulting value for this, and the previous flags. |
| Except don't set it if the rotate count is zero. */ |
| |
| assign(oldFlags, mk_amd64g_calculate_rflags_all()); |
| |
| /* CC_DEP1 is the rotated value. CC_NDEP is flags before. */ |
| stmt( IRStmt_Put( OFFB_CC_OP, |
| IRExpr_Mux0X( mkexpr(rot_amt64), |
| IRExpr_Get(OFFB_CC_OP,Ity_I64), |
| mkU64(ccOp))) ); |
| stmt( IRStmt_Put( OFFB_CC_DEP1, |
| IRExpr_Mux0X( mkexpr(rot_amt64), |
| IRExpr_Get(OFFB_CC_DEP1,Ity_I64), |
| widenUto64(mkexpr(dst1)))) ); |
| stmt( IRStmt_Put( OFFB_CC_DEP2, |
| IRExpr_Mux0X( mkexpr(rot_amt64), |
| IRExpr_Get(OFFB_CC_DEP2,Ity_I64), |
| mkU64(0))) ); |
| stmt( IRStmt_Put( OFFB_CC_NDEP, |
| IRExpr_Mux0X( mkexpr(rot_amt64), |
| IRExpr_Get(OFFB_CC_NDEP,Ity_I64), |
| mkexpr(oldFlags))) ); |
| } /* if (isRotate) */ |
| |
| /* Save result, and finish up. */ |
| if (epartIsReg(modrm)) { |
| putIRegE(sz, pfx, modrm, mkexpr(dst1)); |
| if (vex_traceflags & VEX_TRACE_FE) { |
| vex_printf("%s%c ", |
| nameGrp2(gregLO3ofRM(modrm)), nameISize(sz) ); |
| if (shift_expr_txt) |
| vex_printf("%s", shift_expr_txt); |
| else |
| ppIRExpr(shift_expr); |
| vex_printf(", %s\n", nameIRegE(sz,pfx,modrm)); |
| } |
| } else { |
| storeLE(mkexpr(addr), mkexpr(dst1)); |
| if (vex_traceflags & VEX_TRACE_FE) { |
| vex_printf("%s%c ", |
| nameGrp2(gregLO3ofRM(modrm)), nameISize(sz) ); |
| if (shift_expr_txt) |
| vex_printf("%s", shift_expr_txt); |
| else |
| ppIRExpr(shift_expr); |
| vex_printf(", %s\n", dis_buf); |
| } |
| } |
| return delta; |
| } |
| |
| |
| /* Group 8 extended opcodes (but BT/BTS/BTC/BTR only). */ |
| static |
| ULong dis_Grp8_Imm ( VexAbiInfo* vbi, |
| Prefix pfx, |
| Long delta, UChar modrm, |
| Int am_sz, Int sz, ULong src_val, |
| Bool* decode_OK ) |
| { |
| /* src_val denotes a d8. |
| And delta on entry points at the modrm byte. */ |
| |
| IRType ty = szToITy(sz); |
| IRTemp t2 = newTemp(Ity_I64); |
| IRTemp t2m = newTemp(Ity_I64); |
| IRTemp t_addr = IRTemp_INVALID; |
| HChar dis_buf[50]; |
| ULong mask; |
| |
| /* we're optimists :-) */ |
| *decode_OK = True; |
| |
| /* Limit src_val -- the bit offset -- to something within a word. |
| The Intel docs say that literal offsets larger than a word are |
| masked in this way. */ |
| switch (sz) { |
| case 2: src_val &= 15; break; |
| case 4: src_val &= 31; break; |
| case 8: src_val &= 63; break; |
| default: *decode_OK = False; return delta; |
| } |
| |
| /* Invent a mask suitable for the operation. */ |
| switch (gregLO3ofRM(modrm)) { |
| case 4: /* BT */ mask = 0; break; |
| case 5: /* BTS */ mask = 1ULL << src_val; break; |
| case 6: /* BTR */ mask = ~(1ULL << src_val); break; |
| case 7: /* BTC */ mask = 1ULL << src_val; break; |
| /* If this needs to be extended, probably simplest to make a |
| new function to handle the other cases (0 .. 3). The |
| Intel docs do however not indicate any use for 0 .. 3, so |
| we don't expect this to happen. */ |
| default: *decode_OK = False; return delta; |
| } |
| |
| /* Fetch the value to be tested and modified into t2, which is |
| 64-bits wide regardless of sz. */ |
| if (epartIsReg(modrm)) { |
| vassert(am_sz == 1); |
| assign( t2, widenUto64(getIRegE(sz, pfx, modrm)) ); |
| delta += (am_sz + 1); |
| DIP("%s%c $0x%llx, %s\n", nameGrp8(gregLO3ofRM(modrm)), |
| nameISize(sz), |
| src_val, nameIRegE(sz,pfx,modrm)); |
| } else { |
| Int len; |
| t_addr = disAMode ( &len, vbi, pfx, delta, dis_buf, 1 ); |
| delta += (len+1); |
| assign( t2, widenUto64(loadLE(ty, mkexpr(t_addr))) ); |
| DIP("%s%c $0x%llx, %s\n", nameGrp8(gregLO3ofRM(modrm)), |
| nameISize(sz), |
| src_val, dis_buf); |
| } |
| |
| /* Compute the new value into t2m, if non-BT. */ |
| switch (gregLO3ofRM(modrm)) { |
| case 4: /* BT */ |
| break; |
| case 5: /* BTS */ |
| assign( t2m, binop(Iop_Or64, mkU64(mask), mkexpr(t2)) ); |
| break; |
| case 6: /* BTR */ |
| assign( t2m, binop(Iop_And64, mkU64(mask), mkexpr(t2)) ); |
| break; |
| case 7: /* BTC */ |
| assign( t2m, binop(Iop_Xor64, mkU64(mask), mkexpr(t2)) ); |
| break; |
| default: |
| /*NOTREACHED*/ /*the previous switch guards this*/ |
| vassert(0); |
| } |
| |
| /* Write the result back, if non-BT. */ |
| if (gregLO3ofRM(modrm) != 4 /* BT */) { |
| if (epartIsReg(modrm)) { |
| putIRegE(sz, pfx, modrm, narrowTo(ty, mkexpr(t2m))); |
| } else { |
| if (pfx & PFX_LOCK) { |
| casLE( mkexpr(t_addr), |
| narrowTo(ty, mkexpr(t2))/*expd*/, |
| narrowTo(ty, mkexpr(t2m))/*new*/, |
| guest_RIP_curr_instr ); |
| } else { |
| storeLE(mkexpr(t_addr), narrowTo(ty, mkexpr(t2m))); |
| } |
| } |
| } |
| |
| /* Copy relevant bit from t2 into the carry flag. */ |
| /* Flags: C=selected bit, O,S,Z,A,P undefined, so are set to zero. */ |
| stmt( IRStmt_Put( OFFB_CC_OP, mkU64(AMD64G_CC_OP_COPY) )); |
| stmt( IRStmt_Put( OFFB_CC_DEP2, mkU64(0) )); |
| stmt( IRStmt_Put( |
| OFFB_CC_DEP1, |
| binop(Iop_And64, |
| binop(Iop_Shr64, mkexpr(t2), mkU8(src_val)), |
| mkU64(1)) |
| )); |
| /* Set NDEP even though it isn't used. This makes redundant-PUT |
| elimination of previous stores to this field work better. */ |
| stmt( IRStmt_Put( OFFB_CC_NDEP, mkU64(0) )); |
| |
| return delta; |
| } |
| |
| |
| /* Signed/unsigned widening multiply. Generate IR to multiply the |
| value in RAX/EAX/AX/AL by the given IRTemp, and park the result in |
| RDX:RAX/EDX:EAX/DX:AX/AX. |
| */ |
| static void codegen_mulL_A_D ( Int sz, Bool syned, |
| IRTemp tmp, HChar* tmp_txt ) |
| { |
| IRType ty = szToITy(sz); |
| IRTemp t1 = newTemp(ty); |
| |
| assign( t1, getIRegRAX(sz) ); |
| |
| switch (ty) { |
| case Ity_I64: { |
| IRTemp res128 = newTemp(Ity_I128); |
| IRTemp resHi = newTemp(Ity_I64); |
| IRTemp resLo = newTemp(Ity_I64); |
| IROp mulOp = syned ? Iop_MullS64 : Iop_MullU64; |
| UInt tBaseOp = syned ? AMD64G_CC_OP_SMULB : AMD64G_CC_OP_UMULB; |
| setFlags_MUL ( Ity_I64, t1, tmp, tBaseOp ); |
| assign( res128, binop(mulOp, mkexpr(t1), mkexpr(tmp)) ); |
| assign( resHi, unop(Iop_128HIto64,mkexpr(res128))); |
| assign( resLo, unop(Iop_128to64,mkexpr(res128))); |
| putIReg64(R_RDX, mkexpr(resHi)); |
| putIReg64(R_RAX, mkexpr(resLo)); |
| break; |
| } |
| case Ity_I32: { |
| IRTemp res64 = newTemp(Ity_I64); |
| IRTemp resHi = newTemp(Ity_I32); |
| IRTemp resLo = newTemp(Ity_I32); |
| IROp mulOp = syned ? Iop_MullS32 : Iop_MullU32; |
| UInt tBaseOp = syned ? AMD64G_CC_OP_SMULB : AMD64G_CC_OP_UMULB; |
| setFlags_MUL ( Ity_I32, t1, tmp, tBaseOp ); |
| assign( res64, binop(mulOp, mkexpr(t1), mkexpr(tmp)) ); |
| assign( resHi, unop(Iop_64HIto32,mkexpr(res64))); |
| assign( resLo, unop(Iop_64to32,mkexpr(res64))); |
| putIRegRDX(4, mkexpr(resHi)); |
| putIRegRAX(4, mkexpr(resLo)); |
| break; |
| } |
| case Ity_I16: { |
| IRTemp res32 = newTemp(Ity_I32); |
| IRTemp resHi = newTemp(Ity_I16); |
| IRTemp resLo = newTemp(Ity_I16); |
| IROp mulOp = syned ? Iop_MullS16 : Iop_MullU16; |
| UInt tBaseOp = syned ? AMD64G_CC_OP_SMULB : AMD64G_CC_OP_UMULB; |
| setFlags_MUL ( Ity_I16, t1, tmp, tBaseOp ); |
| assign( res32, binop(mulOp, mkexpr(t1), mkexpr(tmp)) ); |
| assign( resHi, unop(Iop_32HIto16,mkexpr(res32))); |
| assign( resLo, unop(Iop_32to16,mkexpr(res32))); |
| putIRegRDX(2, mkexpr(resHi)); |
| putIRegRAX(2, mkexpr(resLo)); |
| break; |
| } |
| case Ity_I8: { |
| IRTemp res16 = newTemp(Ity_I16); |
| IRTemp resHi = newTemp(Ity_I8); |
| IRTemp resLo = newTemp(Ity_I8); |
| IROp mulOp = syned ? Iop_MullS8 : Iop_MullU8; |
| UInt tBaseOp = syned ? AMD64G_CC_OP_SMULB : AMD64G_CC_OP_UMULB; |
| setFlags_MUL ( Ity_I8, t1, tmp, tBaseOp ); |
| assign( res16, binop(mulOp, mkexpr(t1), mkexpr(tmp)) ); |
| assign( resHi, unop(Iop_16HIto8,mkexpr(res16))); |
| assign( resLo, unop(Iop_16to8,mkexpr(res16))); |
| putIRegRAX(2, mkexpr(res16)); |
| break; |
| } |
| default: |
| ppIRType(ty); |
| vpanic("codegen_mulL_A_D(amd64)"); |
| } |
| DIP("%s%c %s\n", syned ? "imul" : "mul", nameISize(sz), tmp_txt); |
| } |
| |
| |
| /* Group 3 extended opcodes. */ |
| static |
| ULong dis_Grp3 ( VexAbiInfo* vbi, |
| Prefix pfx, Int sz, Long delta, Bool* decode_OK ) |
| { |
| Long d64; |
| UChar modrm; |
| HChar dis_buf[50]; |
| Int len; |
| IRTemp addr; |
| IRType ty = szToITy(sz); |
| IRTemp t1 = newTemp(ty); |
| IRTemp dst1, src, dst0; |
| *decode_OK = True; |
| modrm = getUChar(delta); |
| if (epartIsReg(modrm)) { |
| switch (gregLO3ofRM(modrm)) { |
| case 0: { /* TEST */ |
| delta++; |
| d64 = getSDisp(imin(4,sz), delta); |
| delta += imin(4,sz); |
| dst1 = newTemp(ty); |
| assign(dst1, binop(mkSizedOp(ty,Iop_And8), |
| getIRegE(sz,pfx,modrm), |
| mkU(ty, d64 & mkSizeMask(sz)))); |
| setFlags_DEP1( Iop_And8, dst1, ty ); |
| DIP("test%c $%lld, %s\n", |
| nameISize(sz), d64, |
| nameIRegE(sz, pfx, modrm)); |
| break; |
| } |
| case 1: |
| *decode_OK = False; |
| return delta; |
| case 2: /* NOT */ |
| delta++; |
| putIRegE(sz, pfx, modrm, |
| unop(mkSizedOp(ty,Iop_Not8), |
| getIRegE(sz, pfx, modrm))); |
| DIP("not%c %s\n", nameISize(sz), |
| nameIRegE(sz, pfx, modrm)); |
| break; |
| case 3: /* NEG */ |
| delta++; |
| dst0 = newTemp(ty); |
| src = newTemp(ty); |
| dst1 = newTemp(ty); |
| assign(dst0, mkU(ty,0)); |
| assign(src, getIRegE(sz, pfx, modrm)); |
| assign(dst1, binop(mkSizedOp(ty,Iop_Sub8), mkexpr(dst0), |
| mkexpr(src))); |
| setFlags_DEP1_DEP2(Iop_Sub8, dst0, src, ty); |
| putIRegE(sz, pfx, modrm, mkexpr(dst1)); |
| DIP("neg%c %s\n", nameISize(sz), nameIRegE(sz, pfx, modrm)); |
| break; |
| case 4: /* MUL (unsigned widening) */ |
| delta++; |
| src = newTemp(ty); |
| assign(src, getIRegE(sz,pfx,modrm)); |
| codegen_mulL_A_D ( sz, False, src, |
| nameIRegE(sz,pfx,modrm) ); |
| break; |
| case 5: /* IMUL (signed widening) */ |
| delta++; |
| src = newTemp(ty); |
| assign(src, getIRegE(sz,pfx,modrm)); |
| codegen_mulL_A_D ( sz, True, src, |
| nameIRegE(sz,pfx,modrm) ); |
| break; |
| case 6: /* DIV */ |
| delta++; |
| assign( t1, getIRegE(sz, pfx, modrm) ); |
| codegen_div ( sz, t1, False ); |
| DIP("div%c %s\n", nameISize(sz), |
| nameIRegE(sz, pfx, modrm)); |
| break; |
| case 7: /* IDIV */ |
| delta++; |
| assign( t1, getIRegE(sz, pfx, modrm) ); |
| codegen_div ( sz, t1, True ); |
| DIP("idiv%c %s\n", nameISize(sz), |
| nameIRegE(sz, pfx, modrm)); |
| break; |
| default: |
| /*NOTREACHED*/ |
| vpanic("Grp3(amd64,R)"); |
| } |
| } else { |
| addr = disAMode ( &len, vbi, pfx, delta, dis_buf, |
| /* we have to inform disAMode of any immediate |
| bytes used */ |
| gregLO3ofRM(modrm)==0/*TEST*/ |
| ? imin(4,sz) |
| : 0 |
| ); |
| t1 = newTemp(ty); |
| delta += len; |
| assign(t1, loadLE(ty,mkexpr(addr))); |
| switch (gregLO3ofRM(modrm)) { |
| case 0: { /* TEST */ |
| d64 = getSDisp(imin(4,sz), delta); |
| delta += imin(4,sz); |
| dst1 = newTemp(ty); |
| assign(dst1, binop(mkSizedOp(ty,Iop_And8), |
| mkexpr(t1), |
| mkU(ty, d64 & mkSizeMask(sz)))); |
| setFlags_DEP1( Iop_And8, dst1, ty ); |
| DIP("test%c $%lld, %s\n", nameISize(sz), d64, dis_buf); |
| break; |
| } |
| case 1: |
| *decode_OK = False; |
| return delta; |
| case 2: /* NOT */ |
| dst1 = newTemp(ty); |
| assign(dst1, unop(mkSizedOp(ty,Iop_Not8), mkexpr(t1))); |
| if (pfx & PFX_LOCK) { |
| casLE( mkexpr(addr), mkexpr(t1)/*expd*/, mkexpr(dst1)/*new*/, |
| guest_RIP_curr_instr ); |
| } else { |
| storeLE( mkexpr(addr), mkexpr(dst1) ); |
| } |
| DIP("not%c %s\n", nameISize(sz), dis_buf); |
| break; |
| case 3: /* NEG */ |
| dst0 = newTemp(ty); |
| src = newTemp(ty); |
| dst1 = newTemp(ty); |
| assign(dst0, mkU(ty,0)); |
| assign(src, mkexpr(t1)); |
| assign(dst1, binop(mkSizedOp(ty,Iop_Sub8), mkexpr(dst0), |
| mkexpr(src))); |
| if (pfx & PFX_LOCK) { |
| casLE( mkexpr(addr), mkexpr(t1)/*expd*/, mkexpr(dst1)/*new*/, |
| guest_RIP_curr_instr ); |
| } else { |
| storeLE( mkexpr(addr), mkexpr(dst1) ); |
| } |
| setFlags_DEP1_DEP2(Iop_Sub8, dst0, src, ty); |
| DIP("neg%c %s\n", nameISize(sz), dis_buf); |
| break; |
| case 4: /* MUL (unsigned widening) */ |
| codegen_mulL_A_D ( sz, False, t1, dis_buf ); |
| break; |
| case 5: /* IMUL */ |
| codegen_mulL_A_D ( sz, True, t1, dis_buf ); |
| break; |
| case 6: /* DIV */ |
| codegen_div ( sz, t1, False ); |
| DIP("div%c %s\n", nameISize(sz), dis_buf); |
| break; |
| case 7: /* IDIV */ |
| codegen_div ( sz, t1, True ); |
| DIP("idiv%c %s\n", nameISize(sz), dis_buf); |
| break; |
| default: |
| /*NOTREACHED*/ |
| vpanic("Grp3(amd64,M)"); |
| } |
| } |
| return delta; |
| } |
| |
| |
| /* Group 4 extended opcodes. */ |
| static |
| ULong dis_Grp4 ( VexAbiInfo* vbi, |
| Prefix pfx, Long delta, Bool* decode_OK ) |
| { |
| Int alen; |
| UChar modrm; |
| HChar dis_buf[50]; |
| IRType ty = Ity_I8; |
| IRTemp t1 = newTemp(ty); |
| IRTemp t2 = newTemp(ty); |
| |
| *decode_OK = True; |
| |
| modrm = getUChar(delta); |
| if (epartIsReg(modrm)) { |
| assign(t1, getIRegE(1, pfx, modrm)); |
| switch (gregLO3ofRM(modrm)) { |
| case 0: /* INC */ |
| assign(t2, binop(Iop_Add8, mkexpr(t1), mkU8(1))); |
| putIRegE(1, pfx, modrm, mkexpr(t2)); |
| setFlags_INC_DEC( True, t2, ty ); |
| break; |
| case 1: /* DEC */ |
| assign(t2, binop(Iop_Sub8, mkexpr(t1), mkU8(1))); |
| putIRegE(1, pfx, modrm, mkexpr(t2)); |
| setFlags_INC_DEC( False, t2, ty ); |
| break; |
| default: |
| *decode_OK = False; |
| return delta; |
| } |
| delta++; |
| DIP("%sb %s\n", nameGrp4(gregLO3ofRM(modrm)), |
| nameIRegE(1, pfx, modrm)); |
| } else { |
| IRTemp addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| assign( t1, loadLE(ty, mkexpr(addr)) ); |
| switch (gregLO3ofRM(modrm)) { |
| case 0: /* INC */ |
| assign(t2, binop(Iop_Add8, mkexpr(t1), mkU8(1))); |
| if (pfx & PFX_LOCK) { |
| casLE( mkexpr(addr), mkexpr(t1)/*expd*/, mkexpr(t2)/*new*/, |
| guest_RIP_curr_instr ); |
| } else { |
| storeLE( mkexpr(addr), mkexpr(t2) ); |
| } |
| setFlags_INC_DEC( True, t2, ty ); |
| break; |
| case 1: /* DEC */ |
| assign(t2, binop(Iop_Sub8, mkexpr(t1), mkU8(1))); |
| if (pfx & PFX_LOCK) { |
| casLE( mkexpr(addr), mkexpr(t1)/*expd*/, mkexpr(t2)/*new*/, |
| guest_RIP_curr_instr ); |
| } else { |
| storeLE( mkexpr(addr), mkexpr(t2) ); |
| } |
| setFlags_INC_DEC( False, t2, ty ); |
| break; |
| default: |
| *decode_OK = False; |
| return delta; |
| } |
| delta += alen; |
| DIP("%sb %s\n", nameGrp4(gregLO3ofRM(modrm)), dis_buf); |
| } |
| return delta; |
| } |
| |
| |
| /* Group 5 extended opcodes. */ |
| static |
| ULong dis_Grp5 ( VexAbiInfo* vbi, |
| Prefix pfx, Int sz, Long delta, |
| /*MOD*/DisResult* dres, /*OUT*/Bool* decode_OK ) |
| { |
| Int len; |
| UChar modrm; |
| HChar dis_buf[50]; |
| IRTemp addr = IRTemp_INVALID; |
| IRType ty = szToITy(sz); |
| IRTemp t1 = newTemp(ty); |
| IRTemp t2 = IRTemp_INVALID; |
| IRTemp t3 = IRTemp_INVALID; |
| Bool showSz = True; |
| |
| *decode_OK = True; |
| |
| modrm = getUChar(delta); |
| if (epartIsReg(modrm)) { |
| assign(t1, getIRegE(sz,pfx,modrm)); |
| switch (gregLO3ofRM(modrm)) { |
| case 0: /* INC */ |
| t2 = newTemp(ty); |
| assign(t2, binop(mkSizedOp(ty,Iop_Add8), |
| mkexpr(t1), mkU(ty,1))); |
| setFlags_INC_DEC( True, t2, ty ); |
| putIRegE(sz,pfx,modrm, mkexpr(t2)); |
| break; |
| case 1: /* DEC */ |
| t2 = newTemp(ty); |
| assign(t2, binop(mkSizedOp(ty,Iop_Sub8), |
| mkexpr(t1), mkU(ty,1))); |
| setFlags_INC_DEC( False, t2, ty ); |
| putIRegE(sz,pfx,modrm, mkexpr(t2)); |
| break; |
| case 2: /* call Ev */ |
| /* Ignore any sz value and operate as if sz==8. */ |
| if (!(sz == 4 || sz == 8)) goto unhandled; |
| sz = 8; |
| t3 = newTemp(Ity_I64); |
| assign(t3, getIRegE(sz,pfx,modrm)); |
| t2 = newTemp(Ity_I64); |
| assign(t2, binop(Iop_Sub64, getIReg64(R_RSP), mkU64(8))); |
| putIReg64(R_RSP, mkexpr(t2)); |
| storeLE( mkexpr(t2), mkU64(guest_RIP_bbstart+delta+1)); |
| make_redzone_AbiHint(vbi, t2, t3/*nia*/, "call-Ev(reg)"); |
| jmp_treg(dres, Ijk_Call, t3); |
| vassert(dres->whatNext == Dis_StopHere); |
| showSz = False; |
| break; |
| case 4: /* jmp Ev */ |
| /* Ignore any sz value and operate as if sz==8. */ |
| if (!(sz == 4 || sz == 8)) goto unhandled; |
| sz = 8; |
| t3 = newTemp(Ity_I64); |
| assign(t3, getIRegE(sz,pfx,modrm)); |
| jmp_treg(dres, Ijk_Boring, t3); |
| vassert(dres->whatNext == Dis_StopHere); |
| showSz = False; |
| break; |
| default: |
| *decode_OK = False; |
| return delta; |
| } |
| delta++; |
| DIP("%s%c %s\n", nameGrp5(gregLO3ofRM(modrm)), |
| showSz ? nameISize(sz) : ' ', |
| nameIRegE(sz, pfx, modrm)); |
| } else { |
| addr = disAMode ( &len, vbi, pfx, delta, dis_buf, 0 ); |
| if (gregLO3ofRM(modrm) != 2 && gregLO3ofRM(modrm) != 4 |
| && gregLO3ofRM(modrm) != 6) { |
| assign(t1, loadLE(ty,mkexpr(addr))); |
| } |
| switch (gregLO3ofRM(modrm)) { |
| case 0: /* INC */ |
| t2 = newTemp(ty); |
| assign(t2, binop(mkSizedOp(ty,Iop_Add8), |
| mkexpr(t1), mkU(ty,1))); |
| if (pfx & PFX_LOCK) { |
| casLE( mkexpr(addr), |
| mkexpr(t1), mkexpr(t2), guest_RIP_curr_instr ); |
| } else { |
| storeLE(mkexpr(addr),mkexpr(t2)); |
| } |
| setFlags_INC_DEC( True, t2, ty ); |
| break; |
| case 1: /* DEC */ |
| t2 = newTemp(ty); |
| assign(t2, binop(mkSizedOp(ty,Iop_Sub8), |
| mkexpr(t1), mkU(ty,1))); |
| if (pfx & PFX_LOCK) { |
| casLE( mkexpr(addr), |
| mkexpr(t1), mkexpr(t2), guest_RIP_curr_instr ); |
| } else { |
| storeLE(mkexpr(addr),mkexpr(t2)); |
| } |
| setFlags_INC_DEC( False, t2, ty ); |
| break; |
| case 2: /* call Ev */ |
| /* Ignore any sz value and operate as if sz==8. */ |
| if (!(sz == 4 || sz == 8)) goto unhandled; |
| sz = 8; |
| t3 = newTemp(Ity_I64); |
| assign(t3, loadLE(Ity_I64,mkexpr(addr))); |
| t2 = newTemp(Ity_I64); |
| assign(t2, binop(Iop_Sub64, getIReg64(R_RSP), mkU64(8))); |
| putIReg64(R_RSP, mkexpr(t2)); |
| storeLE( mkexpr(t2), mkU64(guest_RIP_bbstart+delta+len)); |
| make_redzone_AbiHint(vbi, t2, t3/*nia*/, "call-Ev(mem)"); |
| jmp_treg(dres, Ijk_Call, t3); |
| vassert(dres->whatNext == Dis_StopHere); |
| showSz = False; |
| break; |
| case 4: /* JMP Ev */ |
| /* Ignore any sz value and operate as if sz==8. */ |
| if (!(sz == 4 || sz == 8)) goto unhandled; |
| sz = 8; |
| t3 = newTemp(Ity_I64); |
| assign(t3, loadLE(Ity_I64,mkexpr(addr))); |
| jmp_treg(dres, Ijk_Boring, t3); |
| vassert(dres->whatNext == Dis_StopHere); |
| showSz = False; |
| break; |
| case 6: /* PUSH Ev */ |
| /* There is no encoding for 32-bit operand size; hence ... */ |
| if (sz == 4) sz = 8; |
| if (!(sz == 8 || sz == 2)) goto unhandled; |
| if (sz == 8) { |
| t3 = newTemp(Ity_I64); |
| assign(t3, loadLE(Ity_I64,mkexpr(addr))); |
| t2 = newTemp(Ity_I64); |
| assign( t2, binop(Iop_Sub64,getIReg64(R_RSP),mkU64(sz)) ); |
| putIReg64(R_RSP, mkexpr(t2) ); |
| storeLE( mkexpr(t2), mkexpr(t3) ); |
| break; |
| } else { |
| goto unhandled; /* awaiting test case */ |
| } |
| default: |
| unhandled: |
| *decode_OK = False; |
| return delta; |
| } |
| delta += len; |
| DIP("%s%c %s\n", nameGrp5(gregLO3ofRM(modrm)), |
| showSz ? nameISize(sz) : ' ', |
| dis_buf); |
| } |
| return delta; |
| } |
| |
| |
| /*------------------------------------------------------------*/ |
| /*--- Disassembling string ops (including REP prefixes) ---*/ |
| /*------------------------------------------------------------*/ |
| |
| /* Code shared by all the string ops */ |
| static |
| void dis_string_op_increment ( Int sz, IRTemp t_inc ) |
| { |
| UChar logSz; |
| if (sz == 8 || sz == 4 || sz == 2) { |
| logSz = 1; |
| if (sz == 4) logSz = 2; |
| if (sz == 8) logSz = 3; |
| assign( t_inc, |
| binop(Iop_Shl64, IRExpr_Get( OFFB_DFLAG, Ity_I64 ), |
| mkU8(logSz) ) ); |
| } else { |
| assign( t_inc, |
| IRExpr_Get( OFFB_DFLAG, Ity_I64 ) ); |
| } |
| } |
| |
| static |
| void dis_string_op( void (*dis_OP)( Int, IRTemp, Prefix pfx ), |
| Int sz, HChar* name, Prefix pfx ) |
| { |
| IRTemp t_inc = newTemp(Ity_I64); |
| /* Really we ought to inspect the override prefixes, but we don't. |
| The following assertion catches any resulting sillyness. */ |
| vassert(pfx == clearSegBits(pfx)); |
| dis_string_op_increment(sz, t_inc); |
| dis_OP( sz, t_inc, pfx ); |
| DIP("%s%c\n", name, nameISize(sz)); |
| } |
| |
| static |
| void dis_MOVS ( Int sz, IRTemp t_inc, Prefix pfx ) |
| { |
| IRType ty = szToITy(sz); |
| IRTemp td = newTemp(Ity_I64); /* RDI */ |
| IRTemp ts = newTemp(Ity_I64); /* RSI */ |
| IRExpr *incd, *incs; |
| |
| if (haveASO(pfx)) { |
| assign( td, unop(Iop_32Uto64, getIReg32(R_RDI)) ); |
| assign( ts, unop(Iop_32Uto64, getIReg32(R_RSI)) ); |
| } else { |
| assign( td, getIReg64(R_RDI) ); |
| assign( ts, getIReg64(R_RSI) ); |
| } |
| |
| storeLE( mkexpr(td), loadLE(ty,mkexpr(ts)) ); |
| |
| incd = binop(Iop_Add64, mkexpr(td), mkexpr(t_inc)); |
| incs = binop(Iop_Add64, mkexpr(ts), mkexpr(t_inc)); |
| if (haveASO(pfx)) { |
| incd = unop(Iop_32Uto64, unop(Iop_64to32, incd)); |
| incs = unop(Iop_32Uto64, unop(Iop_64to32, incs)); |
| } |
| putIReg64( R_RDI, incd ); |
| putIReg64( R_RSI, incs ); |
| } |
| |
| static |
| void dis_LODS ( Int sz, IRTemp t_inc, Prefix pfx ) |
| { |
| IRType ty = szToITy(sz); |
| IRTemp ts = newTemp(Ity_I64); /* RSI */ |
| IRExpr *incs; |
| |
| if (haveASO(pfx)) |
| assign( ts, unop(Iop_32Uto64, getIReg32(R_RSI)) ); |
| else |
| assign( ts, getIReg64(R_RSI) ); |
| |
| putIRegRAX ( sz, loadLE(ty, mkexpr(ts)) ); |
| |
| incs = binop(Iop_Add64, mkexpr(ts), mkexpr(t_inc)); |
| if (haveASO(pfx)) |
| incs = unop(Iop_32Uto64, unop(Iop_64to32, incs)); |
| putIReg64( R_RSI, incs ); |
| } |
| |
| static |
| void dis_STOS ( Int sz, IRTemp t_inc, Prefix pfx ) |
| { |
| IRType ty = szToITy(sz); |
| IRTemp ta = newTemp(ty); /* rAX */ |
| IRTemp td = newTemp(Ity_I64); /* RDI */ |
| IRExpr *incd; |
| |
| assign( ta, getIRegRAX(sz) ); |
| |
| if (haveASO(pfx)) |
| assign( td, unop(Iop_32Uto64, getIReg32(R_RDI)) ); |
| else |
| assign( td, getIReg64(R_RDI) ); |
| |
| storeLE( mkexpr(td), mkexpr(ta) ); |
| |
| incd = binop(Iop_Add64, mkexpr(td), mkexpr(t_inc)); |
| if (haveASO(pfx)) |
| incd = unop(Iop_32Uto64, unop(Iop_64to32, incd)); |
| putIReg64( R_RDI, incd ); |
| } |
| |
| static |
| void dis_CMPS ( Int sz, IRTemp t_inc, Prefix pfx ) |
| { |
| IRType ty = szToITy(sz); |
| IRTemp tdv = newTemp(ty); /* (RDI) */ |
| IRTemp tsv = newTemp(ty); /* (RSI) */ |
| IRTemp td = newTemp(Ity_I64); /* RDI */ |
| IRTemp ts = newTemp(Ity_I64); /* RSI */ |
| IRExpr *incd, *incs; |
| |
| if (haveASO(pfx)) { |
| assign( td, unop(Iop_32Uto64, getIReg32(R_RDI)) ); |
| assign( ts, unop(Iop_32Uto64, getIReg32(R_RSI)) ); |
| } else { |
| assign( td, getIReg64(R_RDI) ); |
| assign( ts, getIReg64(R_RSI) ); |
| } |
| |
| assign( tdv, loadLE(ty,mkexpr(td)) ); |
| |
| assign( tsv, loadLE(ty,mkexpr(ts)) ); |
| |
| setFlags_DEP1_DEP2 ( Iop_Sub8, tsv, tdv, ty ); |
| |
| incd = binop(Iop_Add64, mkexpr(td), mkexpr(t_inc)); |
| incs = binop(Iop_Add64, mkexpr(ts), mkexpr(t_inc)); |
| if (haveASO(pfx)) { |
| incd = unop(Iop_32Uto64, unop(Iop_64to32, incd)); |
| incs = unop(Iop_32Uto64, unop(Iop_64to32, incs)); |
| } |
| putIReg64( R_RDI, incd ); |
| putIReg64( R_RSI, incs ); |
| } |
| |
| static |
| void dis_SCAS ( Int sz, IRTemp t_inc, Prefix pfx ) |
| { |
| IRType ty = szToITy(sz); |
| IRTemp ta = newTemp(ty); /* rAX */ |
| IRTemp td = newTemp(Ity_I64); /* RDI */ |
| IRTemp tdv = newTemp(ty); /* (RDI) */ |
| IRExpr *incd; |
| |
| assign( ta, getIRegRAX(sz) ); |
| |
| if (haveASO(pfx)) |
| assign( td, unop(Iop_32Uto64, getIReg32(R_RDI)) ); |
| else |
| assign( td, getIReg64(R_RDI) ); |
| |
| assign( tdv, loadLE(ty,mkexpr(td)) ); |
| |
| setFlags_DEP1_DEP2 ( Iop_Sub8, ta, tdv, ty ); |
| |
| incd = binop(Iop_Add64, mkexpr(td), mkexpr(t_inc)); |
| if (haveASO(pfx)) |
| incd = unop(Iop_32Uto64, unop(Iop_64to32, incd)); |
| putIReg64( R_RDI, incd ); |
| } |
| |
| |
| /* Wrap the appropriate string op inside a REP/REPE/REPNE. We assume |
| the insn is the last one in the basic block, and so emit a jump to |
| the next insn, rather than just falling through. */ |
| static |
| void dis_REP_op ( /*MOD*/DisResult* dres, |
| AMD64Condcode cond, |
| void (*dis_OP)(Int, IRTemp, Prefix), |
| Int sz, Addr64 rip, Addr64 rip_next, HChar* name, |
| Prefix pfx ) |
| { |
| IRTemp t_inc = newTemp(Ity_I64); |
| IRTemp tc; |
| IRExpr* cmp; |
| |
| /* Really we ought to inspect the override prefixes, but we don't. |
| The following assertion catches any resulting sillyness. */ |
| vassert(pfx == clearSegBits(pfx)); |
| |
| if (haveASO(pfx)) { |
| tc = newTemp(Ity_I32); /* ECX */ |
| assign( tc, getIReg32(R_RCX) ); |
| cmp = binop(Iop_CmpEQ32, mkexpr(tc), mkU32(0)); |
| } else { |
| tc = newTemp(Ity_I64); /* RCX */ |
| assign( tc, getIReg64(R_RCX) ); |
| cmp = binop(Iop_CmpEQ64, mkexpr(tc), mkU64(0)); |
| } |
| |
| stmt( IRStmt_Exit( cmp, Ijk_Boring, |
| IRConst_U64(rip_next), OFFB_RIP ) ); |
| |
| if (haveASO(pfx)) |
| putIReg32(R_RCX, binop(Iop_Sub32, mkexpr(tc), mkU32(1)) ); |
| else |
| putIReg64(R_RCX, binop(Iop_Sub64, mkexpr(tc), mkU64(1)) ); |
| |
| dis_string_op_increment(sz, t_inc); |
| dis_OP (sz, t_inc, pfx); |
| |
| if (cond == AMD64CondAlways) { |
| jmp_lit(dres, Ijk_Boring, rip); |
| vassert(dres->whatNext == Dis_StopHere); |
| } else { |
| stmt( IRStmt_Exit( mk_amd64g_calculate_condition(cond), |
| Ijk_Boring, |
| IRConst_U64(rip), |
| OFFB_RIP ) ); |
| jmp_lit(dres, Ijk_Boring, rip_next); |
| vassert(dres->whatNext == Dis_StopHere); |
| } |
| DIP("%s%c\n", name, nameISize(sz)); |
| } |
| |
| |
| /*------------------------------------------------------------*/ |
| /*--- Arithmetic, etc. ---*/ |
| /*------------------------------------------------------------*/ |
| |
| /* IMUL E, G. Supplied eip points to the modR/M byte. */ |
| static |
| ULong dis_mul_E_G ( VexAbiInfo* vbi, |
| Prefix pfx, |
| Int size, |
| Long delta0 ) |
| { |
| Int alen; |
| HChar dis_buf[50]; |
| UChar rm = getUChar(delta0); |
| IRType ty = szToITy(size); |
| IRTemp te = newTemp(ty); |
| IRTemp tg = newTemp(ty); |
| IRTemp resLo = newTemp(ty); |
| |
| assign( tg, getIRegG(size, pfx, rm) ); |
| if (epartIsReg(rm)) { |
| assign( te, getIRegE(size, pfx, rm) ); |
| } else { |
| IRTemp addr = disAMode( &alen, vbi, pfx, delta0, dis_buf, 0 ); |
| assign( te, loadLE(ty,mkexpr(addr)) ); |
| } |
| |
| setFlags_MUL ( ty, te, tg, AMD64G_CC_OP_SMULB ); |
| |
| assign( resLo, binop( mkSizedOp(ty, Iop_Mul8), mkexpr(te), mkexpr(tg) ) ); |
| |
| putIRegG(size, pfx, rm, mkexpr(resLo) ); |
| |
| if (epartIsReg(rm)) { |
| DIP("imul%c %s, %s\n", nameISize(size), |
| nameIRegE(size,pfx,rm), |
| nameIRegG(size,pfx,rm)); |
| return 1+delta0; |
| } else { |
| DIP("imul%c %s, %s\n", nameISize(size), |
| dis_buf, |
| nameIRegG(size,pfx,rm)); |
| return alen+delta0; |
| } |
| } |
| |
| |
| /* IMUL I * E -> G. Supplied rip points to the modR/M byte. */ |
| static |
| ULong dis_imul_I_E_G ( VexAbiInfo* vbi, |
| Prefix pfx, |
| Int size, |
| Long delta, |
| Int litsize ) |
| { |
| Long d64; |
| Int alen; |
| HChar dis_buf[50]; |
| UChar rm = getUChar(delta); |
| IRType ty = szToITy(size); |
| IRTemp te = newTemp(ty); |
| IRTemp tl = newTemp(ty); |
| IRTemp resLo = newTemp(ty); |
| |
| vassert(/*size == 1 ||*/ size == 2 || size == 4 || size == 8); |
| |
| if (epartIsReg(rm)) { |
| assign(te, getIRegE(size, pfx, rm)); |
| delta++; |
| } else { |
| IRTemp addr = disAMode( &alen, vbi, pfx, delta, dis_buf, |
| imin(4,litsize) ); |
| assign(te, loadLE(ty, mkexpr(addr))); |
| delta += alen; |
| } |
| d64 = getSDisp(imin(4,litsize),delta); |
| delta += imin(4,litsize); |
| |
| d64 &= mkSizeMask(size); |
| assign(tl, mkU(ty,d64)); |
| |
| assign( resLo, binop( mkSizedOp(ty, Iop_Mul8), mkexpr(te), mkexpr(tl) )); |
| |
| setFlags_MUL ( ty, te, tl, AMD64G_CC_OP_SMULB ); |
| |
| putIRegG(size, pfx, rm, mkexpr(resLo)); |
| |
| DIP("imul%c $%lld, %s, %s\n", |
| nameISize(size), d64, |
| ( epartIsReg(rm) ? nameIRegE(size,pfx,rm) : dis_buf ), |
| nameIRegG(size,pfx,rm) ); |
| return delta; |
| } |
| |
| |
| /* Generate an IR sequence to do a popcount operation on the supplied |
| IRTemp, and return a new IRTemp holding the result. 'ty' may be |
| Ity_I16, Ity_I32 or Ity_I64 only. */ |
| static IRTemp gen_POPCOUNT ( IRType ty, IRTemp src ) |
| { |
| Int i; |
| if (ty == Ity_I16) { |
| IRTemp old = IRTemp_INVALID; |
| IRTemp nyu = IRTemp_INVALID; |
| IRTemp mask[4], shift[4]; |
| for (i = 0; i < 4; i++) { |
| mask[i] = newTemp(ty); |
| shift[i] = 1 << i; |
| } |
| assign(mask[0], mkU16(0x5555)); |
| assign(mask[1], mkU16(0x3333)); |
| assign(mask[2], mkU16(0x0F0F)); |
| assign(mask[3], mkU16(0x00FF)); |
| old = src; |
| for (i = 0; i < 4; i++) { |
| nyu = newTemp(ty); |
| assign(nyu, |
| binop(Iop_Add16, |
| binop(Iop_And16, |
| mkexpr(old), |
| mkexpr(mask[i])), |
| binop(Iop_And16, |
| binop(Iop_Shr16, mkexpr(old), mkU8(shift[i])), |
| mkexpr(mask[i])))); |
| old = nyu; |
| } |
| return nyu; |
| } |
| if (ty == Ity_I32) { |
| IRTemp old = IRTemp_INVALID; |
| IRTemp nyu = IRTemp_INVALID; |
| IRTemp mask[5], shift[5]; |
| for (i = 0; i < 5; i++) { |
| mask[i] = newTemp(ty); |
| shift[i] = 1 << i; |
| } |
| assign(mask[0], mkU32(0x55555555)); |
| assign(mask[1], mkU32(0x33333333)); |
| assign(mask[2], mkU32(0x0F0F0F0F)); |
| assign(mask[3], mkU32(0x00FF00FF)); |
| assign(mask[4], mkU32(0x0000FFFF)); |
| old = src; |
| for (i = 0; i < 5; i++) { |
| nyu = newTemp(ty); |
| assign(nyu, |
| binop(Iop_Add32, |
| binop(Iop_And32, |
| mkexpr(old), |
| mkexpr(mask[i])), |
| binop(Iop_And32, |
| binop(Iop_Shr32, mkexpr(old), mkU8(shift[i])), |
| mkexpr(mask[i])))); |
| old = nyu; |
| } |
| return nyu; |
| } |
| if (ty == Ity_I64) { |
| IRTemp old = IRTemp_INVALID; |
| IRTemp nyu = IRTemp_INVALID; |
| IRTemp mask[6], shift[6]; |
| for (i = 0; i < 6; i++) { |
| mask[i] = newTemp(ty); |
| shift[i] = 1 << i; |
| } |
| assign(mask[0], mkU64(0x5555555555555555ULL)); |
| assign(mask[1], mkU64(0x3333333333333333ULL)); |
| assign(mask[2], mkU64(0x0F0F0F0F0F0F0F0FULL)); |
| assign(mask[3], mkU64(0x00FF00FF00FF00FFULL)); |
| assign(mask[4], mkU64(0x0000FFFF0000FFFFULL)); |
| assign(mask[5], mkU64(0x00000000FFFFFFFFULL)); |
| old = src; |
| for (i = 0; i < 6; i++) { |
| nyu = newTemp(ty); |
| assign(nyu, |
| binop(Iop_Add64, |
| binop(Iop_And64, |
| mkexpr(old), |
| mkexpr(mask[i])), |
| binop(Iop_And64, |
| binop(Iop_Shr64, mkexpr(old), mkU8(shift[i])), |
| mkexpr(mask[i])))); |
| old = nyu; |
| } |
| return nyu; |
| } |
| /*NOTREACHED*/ |
| vassert(0); |
| } |
| |
| |
| /* Generate an IR sequence to do a count-leading-zeroes operation on |
| the supplied IRTemp, and return a new IRTemp holding the result. |
| 'ty' may be Ity_I16, Ity_I32 or Ity_I64 only. In the case where |
| the argument is zero, return the number of bits in the word (the |
| natural semantics). */ |
| static IRTemp gen_LZCNT ( IRType ty, IRTemp src ) |
| { |
| vassert(ty == Ity_I64 || ty == Ity_I32 || ty == Ity_I16); |
| |
| IRTemp src64 = newTemp(Ity_I64); |
| assign(src64, widenUto64( mkexpr(src) )); |
| |
| IRTemp src64x = newTemp(Ity_I64); |
| assign(src64x, |
| binop(Iop_Shl64, mkexpr(src64), |
| mkU8(64 - 8 * sizeofIRType(ty)))); |
| |
| // Clz64 has undefined semantics when its input is zero, so |
| // special-case around that. |
| IRTemp res64 = newTemp(Ity_I64); |
| assign(res64, |
| IRExpr_Mux0X( |
| unop(Iop_1Uto8, |
| binop(Iop_CmpEQ64, mkexpr(src64x), mkU64(0))), |
| unop(Iop_Clz64, mkexpr(src64x)), |
| mkU64(8 * sizeofIRType(ty)) |
| )); |
| |
| IRTemp res = newTemp(ty); |
| assign(res, narrowTo(ty, mkexpr(res64))); |
| return res; |
| } |
| |
| |
| /*------------------------------------------------------------*/ |
| /*--- ---*/ |
| /*--- x87 FLOATING POINT INSTRUCTIONS ---*/ |
| /*--- ---*/ |
| /*------------------------------------------------------------*/ |
| |
| /* --- Helper functions for dealing with the register stack. --- */ |
| |
| /* --- Set the emulation-warning pseudo-register. --- */ |
| |
| static void put_emwarn ( IRExpr* e /* :: Ity_I32 */ ) |
| { |
| vassert(typeOfIRExpr(irsb->tyenv, e) == Ity_I32); |
| stmt( IRStmt_Put( OFFB_EMWARN, e ) ); |
| } |
| |
| /* --- Produce an IRExpr* denoting a 64-bit QNaN. --- */ |
| |
| static IRExpr* mkQNaN64 ( void ) |
| { |
| /* QNaN is 0 2047 1 0(51times) |
| == 0b 11111111111b 1 0(51times) |
| == 0x7FF8 0000 0000 0000 |
| */ |
| return IRExpr_Const(IRConst_F64i(0x7FF8000000000000ULL)); |
| } |
| |
| /* --------- Get/put the top-of-stack pointer :: Ity_I32 --------- */ |
| |
| static IRExpr* get_ftop ( void ) |
| { |
| return IRExpr_Get( OFFB_FTOP, Ity_I32 ); |
| } |
| |
| static void put_ftop ( IRExpr* e ) |
| { |
| vassert(typeOfIRExpr(irsb->tyenv, e) == Ity_I32); |
| stmt( IRStmt_Put( OFFB_FTOP, e ) ); |
| } |
| |
| /* --------- Get/put the C3210 bits. --------- */ |
| |
| static IRExpr* /* :: Ity_I64 */ get_C3210 ( void ) |
| { |
| return IRExpr_Get( OFFB_FC3210, Ity_I64 ); |
| } |
| |
| static void put_C3210 ( IRExpr* e /* :: Ity_I64 */ ) |
| { |
| vassert(typeOfIRExpr(irsb->tyenv, e) == Ity_I64); |
| stmt( IRStmt_Put( OFFB_FC3210, e ) ); |
| } |
| |
| /* --------- Get/put the FPU rounding mode. --------- */ |
| static IRExpr* /* :: Ity_I32 */ get_fpround ( void ) |
| { |
| return unop(Iop_64to32, IRExpr_Get( OFFB_FPROUND, Ity_I64 )); |
| } |
| |
| static void put_fpround ( IRExpr* /* :: Ity_I32 */ e ) |
| { |
| vassert(typeOfIRExpr(irsb->tyenv, e) == Ity_I32); |
| stmt( IRStmt_Put( OFFB_FPROUND, unop(Iop_32Uto64,e) ) ); |
| } |
| |
| |
| /* --------- Synthesise a 2-bit FPU rounding mode. --------- */ |
| /* Produces a value in 0 .. 3, which is encoded as per the type |
| IRRoundingMode. Since the guest_FPROUND value is also encoded as |
| per IRRoundingMode, we merely need to get it and mask it for |
| safety. |
| */ |
| static IRExpr* /* :: Ity_I32 */ get_roundingmode ( void ) |
| { |
| return binop( Iop_And32, get_fpround(), mkU32(3) ); |
| } |
| |
| static IRExpr* /* :: Ity_I32 */ get_FAKE_roundingmode ( void ) |
| { |
| return mkU32(Irrm_NEAREST); |
| } |
| |
| |
| /* --------- Get/set FP register tag bytes. --------- */ |
| |
| /* Given i, and some expression e, generate 'ST_TAG(i) = e'. */ |
| |
| static void put_ST_TAG ( Int i, IRExpr* value ) |
| { |
| IRRegArray* descr; |
| vassert(typeOfIRExpr(irsb->tyenv, value) == Ity_I8); |
| descr = mkIRRegArray( OFFB_FPTAGS, Ity_I8, 8 ); |
| stmt( IRStmt_PutI( mkIRPutI(descr, get_ftop(), i, value) ) ); |
| } |
| |
| /* Given i, generate an expression yielding 'ST_TAG(i)'. This will be |
| zero to indicate "Empty" and nonzero to indicate "NonEmpty". */ |
| |
| static IRExpr* get_ST_TAG ( Int i ) |
| { |
| IRRegArray* descr = mkIRRegArray( OFFB_FPTAGS, Ity_I8, 8 ); |
| return IRExpr_GetI( descr, get_ftop(), i ); |
| } |
| |
| |
| /* --------- Get/set FP registers. --------- */ |
| |
| /* Given i, and some expression e, emit 'ST(i) = e' and set the |
| register's tag to indicate the register is full. The previous |
| state of the register is not checked. */ |
| |
| static void put_ST_UNCHECKED ( Int i, IRExpr* value ) |
| { |
| IRRegArray* descr; |
| vassert(typeOfIRExpr(irsb->tyenv, value) == Ity_F64); |
| descr = mkIRRegArray( OFFB_FPREGS, Ity_F64, 8 ); |
| stmt( IRStmt_PutI( mkIRPutI(descr, get_ftop(), i, value) ) ); |
| /* Mark the register as in-use. */ |
| put_ST_TAG(i, mkU8(1)); |
| } |
| |
| /* Given i, and some expression e, emit |
| ST(i) = is_full(i) ? NaN : e |
| and set the tag accordingly. |
| */ |
| |
| static void put_ST ( Int i, IRExpr* value ) |
| { |
| put_ST_UNCHECKED( i, |
| IRExpr_Mux0X( get_ST_TAG(i), |
| /* 0 means empty */ |
| value, |
| /* non-0 means full */ |
| mkQNaN64() |
| ) |
| ); |
| } |
| |
| |
| /* Given i, generate an expression yielding 'ST(i)'. */ |
| |
| static IRExpr* get_ST_UNCHECKED ( Int i ) |
| { |
| IRRegArray* descr = mkIRRegArray( OFFB_FPREGS, Ity_F64, 8 ); |
| return IRExpr_GetI( descr, get_ftop(), i ); |
| } |
| |
| |
| /* Given i, generate an expression yielding |
| is_full(i) ? ST(i) : NaN |
| */ |
| |
| static IRExpr* get_ST ( Int i ) |
| { |
| return |
| IRExpr_Mux0X( get_ST_TAG(i), |
| /* 0 means empty */ |
| mkQNaN64(), |
| /* non-0 means full */ |
| get_ST_UNCHECKED(i)); |
| } |
| |
| |
| /* Adjust FTOP downwards by one register. */ |
| |
| static void fp_push ( void ) |
| { |
| put_ftop( binop(Iop_Sub32, get_ftop(), mkU32(1)) ); |
| } |
| |
| /* Adjust FTOP upwards by one register, and mark the vacated register |
| as empty. */ |
| |
| static void fp_pop ( void ) |
| { |
| put_ST_TAG(0, mkU8(0)); |
| put_ftop( binop(Iop_Add32, get_ftop(), mkU32(1)) ); |
| } |
| |
| /* Clear the C2 bit of the FPU status register, for |
| sin/cos/tan/sincos. */ |
| |
| static void clear_C2 ( void ) |
| { |
| put_C3210( binop(Iop_And64, get_C3210(), mkU64(~AMD64G_FC_MASK_C2)) ); |
| } |
| |
| /* Invent a plausible-looking FPU status word value: |
| ((ftop & 7) << 11) | (c3210 & 0x4700) |
| */ |
| static IRExpr* get_FPU_sw ( void ) |
| { |
| return |
| unop(Iop_32to16, |
| binop(Iop_Or32, |
| binop(Iop_Shl32, |
| binop(Iop_And32, get_ftop(), mkU32(7)), |
| mkU8(11)), |
| binop(Iop_And32, unop(Iop_64to32, get_C3210()), |
| mkU32(0x4700)) |
| )); |
| } |
| |
| |
| /* ------------------------------------------------------- */ |
| /* Given all that stack-mangling junk, we can now go ahead |
| and describe FP instructions. |
| */ |
| |
| /* ST(0) = ST(0) `op` mem64/32(addr) |
| Need to check ST(0)'s tag on read, but not on write. |
| */ |
| static |
| void fp_do_op_mem_ST_0 ( IRTemp addr, HChar* op_txt, HChar* dis_buf, |
| IROp op, Bool dbl ) |
| { |
| DIP("f%s%c %s\n", op_txt, dbl?'l':'s', dis_buf); |
| if (dbl) { |
| put_ST_UNCHECKED(0, |
| triop( op, |
| get_FAKE_roundingmode(), /* XXXROUNDINGFIXME */ |
| get_ST(0), |
| loadLE(Ity_F64,mkexpr(addr)) |
| )); |
| } else { |
| put_ST_UNCHECKED(0, |
| triop( op, |
| get_FAKE_roundingmode(), /* XXXROUNDINGFIXME */ |
| get_ST(0), |
| unop(Iop_F32toF64, loadLE(Ity_F32,mkexpr(addr))) |
| )); |
| } |
| } |
| |
| |
| /* ST(0) = mem64/32(addr) `op` ST(0) |
| Need to check ST(0)'s tag on read, but not on write. |
| */ |
| static |
| void fp_do_oprev_mem_ST_0 ( IRTemp addr, HChar* op_txt, HChar* dis_buf, |
| IROp op, Bool dbl ) |
| { |
| DIP("f%s%c %s\n", op_txt, dbl?'l':'s', dis_buf); |
| if (dbl) { |
| put_ST_UNCHECKED(0, |
| triop( op, |
| get_FAKE_roundingmode(), /* XXXROUNDINGFIXME */ |
| loadLE(Ity_F64,mkexpr(addr)), |
| get_ST(0) |
| )); |
| } else { |
| put_ST_UNCHECKED(0, |
| triop( op, |
| get_FAKE_roundingmode(), /* XXXROUNDINGFIXME */ |
| unop(Iop_F32toF64, loadLE(Ity_F32,mkexpr(addr))), |
| get_ST(0) |
| )); |
| } |
| } |
| |
| |
| /* ST(dst) = ST(dst) `op` ST(src). |
| Check dst and src tags when reading but not on write. |
| */ |
| static |
| void fp_do_op_ST_ST ( HChar* op_txt, IROp op, UInt st_src, UInt st_dst, |
| Bool pop_after ) |
| { |
| DIP("f%s%s st(%u), st(%u)\n", op_txt, pop_after?"p":"", st_src, st_dst ); |
| put_ST_UNCHECKED( |
| st_dst, |
| triop( op, |
| get_FAKE_roundingmode(), /* XXXROUNDINGFIXME */ |
| get_ST(st_dst), |
| get_ST(st_src) ) |
| ); |
| if (pop_after) |
| fp_pop(); |
| } |
| |
| /* ST(dst) = ST(src) `op` ST(dst). |
| Check dst and src tags when reading but not on write. |
| */ |
| static |
| void fp_do_oprev_ST_ST ( HChar* op_txt, IROp op, UInt st_src, UInt st_dst, |
| Bool pop_after ) |
| { |
| DIP("f%s%s st(%u), st(%u)\n", op_txt, pop_after?"p":"", st_src, st_dst ); |
| put_ST_UNCHECKED( |
| st_dst, |
| triop( op, |
| get_FAKE_roundingmode(), /* XXXROUNDINGFIXME */ |
| get_ST(st_src), |
| get_ST(st_dst) ) |
| ); |
| if (pop_after) |
| fp_pop(); |
| } |
| |
| /* %rflags(Z,P,C) = UCOMI( st(0), st(i) ) */ |
| static void fp_do_ucomi_ST0_STi ( UInt i, Bool pop_after ) |
| { |
| DIP("fucomi%s %%st(0),%%st(%u)\n", pop_after ? "p" : "", i); |
| /* This is a bit of a hack (and isn't really right). It sets |
| Z,P,C,O correctly, but forces A and S to zero, whereas the Intel |
| documentation implies A and S are unchanged. |
| */ |
| /* It's also fishy in that it is used both for COMIP and |
| UCOMIP, and they aren't the same (although similar). */ |
| stmt( IRStmt_Put( OFFB_CC_OP, mkU64(AMD64G_CC_OP_COPY) )); |
| stmt( IRStmt_Put( OFFB_CC_DEP2, mkU64(0) )); |
| stmt( IRStmt_Put( |
| OFFB_CC_DEP1, |
| binop( Iop_And64, |
| unop( Iop_32Uto64, |
| binop(Iop_CmpF64, get_ST(0), get_ST(i))), |
| mkU64(0x45) |
| ))); |
| if (pop_after) |
| fp_pop(); |
| } |
| |
| |
| /* returns |
| 32to16( if e32 <s -32768 || e32 >s 32767 then -32768 else e32 ) |
| */ |
| static IRExpr* x87ishly_qnarrow_32_to_16 ( IRExpr* e32 ) |
| { |
| IRTemp t32 = newTemp(Ity_I32); |
| assign( t32, e32 ); |
| return |
| IRExpr_Mux0X( |
| unop(Iop_1Uto8, |
| binop(Iop_CmpLT64U, |
| unop(Iop_32Uto64, |
| binop(Iop_Add32, mkexpr(t32), mkU32(32768))), |
| mkU64(65536))), |
| mkU16( 0x8000 ), |
| unop(Iop_32to16, mkexpr(t32))); |
| } |
| |
| |
| static |
| ULong dis_FPU ( /*OUT*/Bool* decode_ok, |
| VexAbiInfo* vbi, Prefix pfx, Long delta ) |
| { |
| Int len; |
| UInt r_src, r_dst; |
| HChar dis_buf[50]; |
| IRTemp t1, t2; |
| |
| /* On entry, delta points at the second byte of the insn (the modrm |
| byte).*/ |
| UChar first_opcode = getUChar(delta-1); |
| UChar modrm = getUChar(delta+0); |
| |
| /* -+-+-+-+-+-+-+-+-+-+-+-+ 0xD8 opcodes +-+-+-+-+-+-+-+ */ |
| |
| if (first_opcode == 0xD8) { |
| if (modrm < 0xC0) { |
| |
| /* bits 5,4,3 are an opcode extension, and the modRM also |
| specifies an address. */ |
| IRTemp addr = disAMode( &len, vbi, pfx, delta, dis_buf, 0 ); |
| delta += len; |
| |
| switch (gregLO3ofRM(modrm)) { |
| |
| case 0: /* FADD single-real */ |
| fp_do_op_mem_ST_0 ( addr, "add", dis_buf, Iop_AddF64, False ); |
| break; |
| |
| case 1: /* FMUL single-real */ |
| fp_do_op_mem_ST_0 ( addr, "mul", dis_buf, Iop_MulF64, False ); |
| break; |
| |
| case 2: /* FCOM single-real */ |
| DIP("fcoms %s\n", dis_buf); |
| /* This forces C1 to zero, which isn't right. */ |
| /* The AMD documentation suggests that forcing C1 to |
| zero is correct (Eliot Moss) */ |
| put_C3210( |
| unop( Iop_32Uto64, |
| binop( Iop_And32, |
| binop(Iop_Shl32, |
| binop(Iop_CmpF64, |
| get_ST(0), |
| unop(Iop_F32toF64, |
| loadLE(Ity_F32,mkexpr(addr)))), |
| mkU8(8)), |
| mkU32(0x4500) |
| ))); |
| break; |
| |
| case 3: /* FCOMP single-real */ |
| /* The AMD documentation suggests that forcing C1 to |
| zero is correct (Eliot Moss) */ |
| DIP("fcomps %s\n", dis_buf); |
| /* This forces C1 to zero, which isn't right. */ |
| put_C3210( |
| unop( Iop_32Uto64, |
| binop( Iop_And32, |
| binop(Iop_Shl32, |
| binop(Iop_CmpF64, |
| get_ST(0), |
| unop(Iop_F32toF64, |
| loadLE(Ity_F32,mkexpr(addr)))), |
| mkU8(8)), |
| mkU32(0x4500) |
| ))); |
| fp_pop(); |
| break; |
| |
| case 4: /* FSUB single-real */ |
| fp_do_op_mem_ST_0 ( addr, "sub", dis_buf, Iop_SubF64, False ); |
| break; |
| |
| case 5: /* FSUBR single-real */ |
| fp_do_oprev_mem_ST_0 ( addr, "subr", dis_buf, Iop_SubF64, False ); |
| break; |
| |
| case 6: /* FDIV single-real */ |
| fp_do_op_mem_ST_0 ( addr, "div", dis_buf, Iop_DivF64, False ); |
| break; |
| |
| case 7: /* FDIVR single-real */ |
| fp_do_oprev_mem_ST_0 ( addr, "divr", dis_buf, Iop_DivF64, False ); |
| break; |
| |
| default: |
| vex_printf("unhandled opc_aux = 0x%2x\n", gregLO3ofRM(modrm)); |
| vex_printf("first_opcode == 0xD8\n"); |
| goto decode_fail; |
| } |
| } else { |
| delta++; |
| switch (modrm) { |
| |
| case 0xC0 ... 0xC7: /* FADD %st(?),%st(0) */ |
| fp_do_op_ST_ST ( "add", Iop_AddF64, modrm - 0xC0, 0, False ); |
| break; |
| |
| case 0xC8 ... 0xCF: /* FMUL %st(?),%st(0) */ |
| fp_do_op_ST_ST ( "mul", Iop_MulF64, modrm - 0xC8, 0, False ); |
| break; |
| |
| /* Dunno if this is right */ |
| case 0xD0 ... 0xD7: /* FCOM %st(?),%st(0) */ |
| r_dst = (UInt)modrm - 0xD0; |
| DIP("fcom %%st(0),%%st(%d)\n", r_dst); |
| /* This forces C1 to zero, which isn't right. */ |
| put_C3210( |
| unop(Iop_32Uto64, |
| binop( Iop_And32, |
| binop(Iop_Shl32, |
| binop(Iop_CmpF64, get_ST(0), get_ST(r_dst)), |
| mkU8(8)), |
| mkU32(0x4500) |
| ))); |
| break; |
| |
| /* Dunno if this is right */ |
| case 0xD8 ... 0xDF: /* FCOMP %st(?),%st(0) */ |
| r_dst = (UInt)modrm - 0xD8; |
| DIP("fcomp %%st(0),%%st(%d)\n", r_dst); |
| /* This forces C1 to zero, which isn't right. */ |
| put_C3210( |
| unop(Iop_32Uto64, |
| binop( Iop_And32, |
| binop(Iop_Shl32, |
| binop(Iop_CmpF64, get_ST(0), get_ST(r_dst)), |
| mkU8(8)), |
| mkU32(0x4500) |
| ))); |
| fp_pop(); |
| break; |
| |
| case 0xE0 ... 0xE7: /* FSUB %st(?),%st(0) */ |
| fp_do_op_ST_ST ( "sub", Iop_SubF64, modrm - 0xE0, 0, False ); |
| break; |
| |
| case 0xE8 ... 0xEF: /* FSUBR %st(?),%st(0) */ |
| fp_do_oprev_ST_ST ( "subr", Iop_SubF64, modrm - 0xE8, 0, False ); |
| break; |
| |
| case 0xF0 ... 0xF7: /* FDIV %st(?),%st(0) */ |
| fp_do_op_ST_ST ( "div", Iop_DivF64, modrm - 0xF0, 0, False ); |
| break; |
| |
| case 0xF8 ... 0xFF: /* FDIVR %st(?),%st(0) */ |
| fp_do_oprev_ST_ST ( "divr", Iop_DivF64, modrm - 0xF8, 0, False ); |
| break; |
| |
| default: |
| goto decode_fail; |
| } |
| } |
| } |
| |
| /* -+-+-+-+-+-+-+-+-+-+-+-+ 0xD9 opcodes +-+-+-+-+-+-+-+ */ |
| else |
| if (first_opcode == 0xD9) { |
| if (modrm < 0xC0) { |
| |
| /* bits 5,4,3 are an opcode extension, and the modRM also |
| specifies an address. */ |
| IRTemp addr = disAMode( &len, vbi, pfx, delta, dis_buf, 0 ); |
| delta += len; |
| |
| switch (gregLO3ofRM(modrm)) { |
| |
| case 0: /* FLD single-real */ |
| DIP("flds %s\n", dis_buf); |
| fp_push(); |
| put_ST(0, unop(Iop_F32toF64, |
| loadLE(Ity_F32, mkexpr(addr)))); |
| break; |
| |
| case 2: /* FST single-real */ |
| DIP("fsts %s\n", dis_buf); |
| storeLE(mkexpr(addr), |
| binop(Iop_F64toF32, get_roundingmode(), get_ST(0))); |
| break; |
| |
| case 3: /* FSTP single-real */ |
| DIP("fstps %s\n", dis_buf); |
| storeLE(mkexpr(addr), |
| binop(Iop_F64toF32, get_roundingmode(), get_ST(0))); |
| fp_pop(); |
| break; |
| |
| case 4: { /* FLDENV m28 */ |
| /* Uses dirty helper: |
| VexEmWarn amd64g_do_FLDENV ( VexGuestX86State*, HWord ) */ |
| IRTemp ew = newTemp(Ity_I32); |
| IRTemp w64 = newTemp(Ity_I64); |
| IRDirty* d = unsafeIRDirty_0_N ( |
| 0/*regparms*/, |
| "amd64g_dirtyhelper_FLDENV", |
| &amd64g_dirtyhelper_FLDENV, |
| mkIRExprVec_1( mkexpr(addr) ) |
| ); |
| d->needsBBP = True; |
| d->tmp = w64; |
| /* declare we're reading memory */ |
| d->mFx = Ifx_Read; |
| d->mAddr = mkexpr(addr); |
| d->mSize = 28; |
| |
| /* declare we're writing guest state */ |
| d->nFxState = 4; |
| vex_bzero(&d->fxState, sizeof(d->fxState)); |
| |
| d->fxState[0].fx = Ifx_Write; |
| d->fxState[0].offset = OFFB_FTOP; |
| d->fxState[0].size = sizeof(UInt); |
| |
| d->fxState[1].fx = Ifx_Write; |
| d->fxState[1].offset = OFFB_FPTAGS; |
| d->fxState[1].size = 8 * sizeof(UChar); |
| |
| d->fxState[2].fx = Ifx_Write; |
| d->fxState[2].offset = OFFB_FPROUND; |
| d->fxState[2].size = sizeof(ULong); |
| |
| d->fxState[3].fx = Ifx_Write; |
| d->fxState[3].offset = OFFB_FC3210; |
| d->fxState[3].size = sizeof(ULong); |
| |
| stmt( IRStmt_Dirty(d) ); |
| |
| /* ew contains any emulation warning we may need to |
| issue. If needed, side-exit to the next insn, |
| reporting the warning, so that Valgrind's dispatcher |
| sees the warning. */ |
| assign(ew, unop(Iop_64to32,mkexpr(w64)) ); |
| put_emwarn( mkexpr(ew) ); |
| stmt( |
| IRStmt_Exit( |
| binop(Iop_CmpNE32, mkexpr(ew), mkU32(0)), |
| Ijk_EmWarn, |
| IRConst_U64( guest_RIP_bbstart+delta ), |
| OFFB_RIP |
| ) |
| ); |
| |
| DIP("fldenv %s\n", dis_buf); |
| break; |
| } |
| |
| case 5: {/* FLDCW */ |
| /* The only thing we observe in the control word is the |
| rounding mode. Therefore, pass the 16-bit value |
| (x87 native-format control word) to a clean helper, |
| getting back a 64-bit value, the lower half of which |
| is the FPROUND value to store, and the upper half of |
| which is the emulation-warning token which may be |
| generated. |
| */ |
| /* ULong amd64h_check_fldcw ( ULong ); */ |
| IRTemp t64 = newTemp(Ity_I64); |
| IRTemp ew = newTemp(Ity_I32); |
| DIP("fldcw %s\n", dis_buf); |
| assign( t64, mkIRExprCCall( |
| Ity_I64, 0/*regparms*/, |
| "amd64g_check_fldcw", |
| &amd64g_check_fldcw, |
| mkIRExprVec_1( |
| unop( Iop_16Uto64, |
| loadLE(Ity_I16, mkexpr(addr))) |
| ) |
| ) |
| ); |
| |
| put_fpround( unop(Iop_64to32, mkexpr(t64)) ); |
| assign( ew, unop(Iop_64HIto32, mkexpr(t64) ) ); |
| put_emwarn( mkexpr(ew) ); |
| /* Finally, if an emulation warning was reported, |
| side-exit to the next insn, reporting the warning, |
| so that Valgrind's dispatcher sees the warning. */ |
| stmt( |
| IRStmt_Exit( |
| binop(Iop_CmpNE32, mkexpr(ew), mkU32(0)), |
| Ijk_EmWarn, |
| IRConst_U64( guest_RIP_bbstart+delta ), |
| OFFB_RIP |
| ) |
| ); |
| break; |
| } |
| |
| case 6: { /* FNSTENV m28 */ |
| /* Uses dirty helper: |
| void amd64g_do_FSTENV ( VexGuestAMD64State*, HWord ) */ |
| IRDirty* d = unsafeIRDirty_0_N ( |
| 0/*regparms*/, |
| "amd64g_dirtyhelper_FSTENV", |
| &amd64g_dirtyhelper_FSTENV, |
| mkIRExprVec_1( mkexpr(addr) ) |
| ); |
| d->needsBBP = True; |
| /* declare we're writing memory */ |
| d->mFx = Ifx_Write; |
| d->mAddr = mkexpr(addr); |
| d->mSize = 28; |
| |
| /* declare we're reading guest state */ |
| d->nFxState = 4; |
| vex_bzero(&d->fxState, sizeof(d->fxState)); |
| |
| d->fxState[0].fx = Ifx_Read; |
| d->fxState[0].offset = OFFB_FTOP; |
| d->fxState[0].size = sizeof(UInt); |
| |
| d->fxState[1].fx = Ifx_Read; |
| d->fxState[1].offset = OFFB_FPTAGS; |
| d->fxState[1].size = 8 * sizeof(UChar); |
| |
| d->fxState[2].fx = Ifx_Read; |
| d->fxState[2].offset = OFFB_FPROUND; |
| d->fxState[2].size = sizeof(ULong); |
| |
| d->fxState[3].fx = Ifx_Read; |
| d->fxState[3].offset = OFFB_FC3210; |
| d->fxState[3].size = sizeof(ULong); |
| |
| stmt( IRStmt_Dirty(d) ); |
| |
| DIP("fnstenv %s\n", dis_buf); |
| break; |
| } |
| |
| case 7: /* FNSTCW */ |
| /* Fake up a native x87 FPU control word. The only |
| thing it depends on is FPROUND[1:0], so call a clean |
| helper to cook it up. */ |
| /* ULong amd64g_create_fpucw ( ULong fpround ) */ |
| DIP("fnstcw %s\n", dis_buf); |
| storeLE( |
| mkexpr(addr), |
| unop( Iop_64to16, |
| mkIRExprCCall( |
| Ity_I64, 0/*regp*/, |
| "amd64g_create_fpucw", &amd64g_create_fpucw, |
| mkIRExprVec_1( unop(Iop_32Uto64, get_fpround()) ) |
| ) |
| ) |
| ); |
| break; |
| |
| default: |
| vex_printf("unhandled opc_aux = 0x%2x\n", gregLO3ofRM(modrm)); |
| vex_printf("first_opcode == 0xD9\n"); |
| goto decode_fail; |
| } |
| |
| } else { |
| delta++; |
| switch (modrm) { |
| |
| case 0xC0 ... 0xC7: /* FLD %st(?) */ |
| r_src = (UInt)modrm - 0xC0; |
| DIP("fld %%st(%u)\n", r_src); |
| t1 = newTemp(Ity_F64); |
| assign(t1, get_ST(r_src)); |
| fp_push(); |
| put_ST(0, mkexpr(t1)); |
| break; |
| |
| case 0xC8 ... 0xCF: /* FXCH %st(?) */ |
| r_src = (UInt)modrm - 0xC8; |
| DIP("fxch %%st(%u)\n", r_src); |
| t1 = newTemp(Ity_F64); |
| t2 = newTemp(Ity_F64); |
| assign(t1, get_ST(0)); |
| assign(t2, get_ST(r_src)); |
| put_ST_UNCHECKED(0, mkexpr(t2)); |
| put_ST_UNCHECKED(r_src, mkexpr(t1)); |
| break; |
| |
| case 0xE0: /* FCHS */ |
| DIP("fchs\n"); |
| put_ST_UNCHECKED(0, unop(Iop_NegF64, get_ST(0))); |
| break; |
| |
| case 0xE1: /* FABS */ |
| DIP("fabs\n"); |
| put_ST_UNCHECKED(0, unop(Iop_AbsF64, get_ST(0))); |
| break; |
| |
| case 0xE5: { /* FXAM */ |
| /* This is an interesting one. It examines %st(0), |
| regardless of whether the tag says it's empty or not. |
| Here, just pass both the tag (in our format) and the |
| value (as a double, actually a ULong) to a helper |
| function. */ |
| IRExpr** args |
| = mkIRExprVec_2( unop(Iop_8Uto64, get_ST_TAG(0)), |
| unop(Iop_ReinterpF64asI64, |
| get_ST_UNCHECKED(0)) ); |
| put_C3210(mkIRExprCCall( |
| Ity_I64, |
| 0/*regparm*/, |
| "amd64g_calculate_FXAM", &amd64g_calculate_FXAM, |
| args |
| )); |
| DIP("fxam\n"); |
| break; |
| } |
| |
| case 0xE8: /* FLD1 */ |
| DIP("fld1\n"); |
| fp_push(); |
| /* put_ST(0, IRExpr_Const(IRConst_F64(1.0))); */ |
| put_ST(0, IRExpr_Const(IRConst_F64i(0x3ff0000000000000ULL))); |
| break; |
| |
| case 0xE9: /* FLDL2T */ |
| DIP("fldl2t\n"); |
| fp_push(); |
| /* put_ST(0, IRExpr_Const(IRConst_F64(3.32192809488736234781))); */ |
| put_ST(0, IRExpr_Const(IRConst_F64i(0x400a934f0979a371ULL))); |
| break; |
| |
| case 0xEA: /* FLDL2E */ |
| DIP("fldl2e\n"); |
| fp_push(); |
| /* put_ST(0, IRExpr_Const(IRConst_F64(1.44269504088896340739))); */ |
| put_ST(0, IRExpr_Const(IRConst_F64i(0x3ff71547652b82feULL))); |
| break; |
| |
| case 0xEB: /* FLDPI */ |
| DIP("fldpi\n"); |
| fp_push(); |
| /* put_ST(0, IRExpr_Const(IRConst_F64(3.14159265358979323851))); */ |
| put_ST(0, IRExpr_Const(IRConst_F64i(0x400921fb54442d18ULL))); |
| break; |
| |
| case 0xEC: /* FLDLG2 */ |
| DIP("fldlg2\n"); |
| fp_push(); |
| /* put_ST(0, IRExpr_Const(IRConst_F64(0.301029995663981143))); */ |
| put_ST(0, IRExpr_Const(IRConst_F64i(0x3fd34413509f79ffULL))); |
| break; |
| |
| case 0xED: /* FLDLN2 */ |
| DIP("fldln2\n"); |
| fp_push(); |
| /* put_ST(0, IRExpr_Const(IRConst_F64(0.69314718055994530942))); */ |
| put_ST(0, IRExpr_Const(IRConst_F64i(0x3fe62e42fefa39efULL))); |
| break; |
| |
| case 0xEE: /* FLDZ */ |
| DIP("fldz\n"); |
| fp_push(); |
| /* put_ST(0, IRExpr_Const(IRConst_F64(0.0))); */ |
| put_ST(0, IRExpr_Const(IRConst_F64i(0x0000000000000000ULL))); |
| break; |
| |
| case 0xF0: /* F2XM1 */ |
| DIP("f2xm1\n"); |
| put_ST_UNCHECKED(0, |
| binop(Iop_2xm1F64, |
| get_FAKE_roundingmode(), /* XXXROUNDINGFIXME */ |
| get_ST(0))); |
| break; |
| |
| case 0xF1: /* FYL2X */ |
| DIP("fyl2x\n"); |
| put_ST_UNCHECKED(1, |
| triop(Iop_Yl2xF64, |
| get_FAKE_roundingmode(), /* XXXROUNDINGFIXME */ |
| get_ST(1), |
| get_ST(0))); |
| fp_pop(); |
| break; |
| |
| case 0xF2: /* FPTAN */ |
| DIP("ftan\n"); |
| put_ST_UNCHECKED(0, |
| binop(Iop_TanF64, |
| get_FAKE_roundingmode(), /* XXXROUNDINGFIXME */ |
| get_ST(0))); |
| fp_push(); |
| put_ST(0, IRExpr_Const(IRConst_F64(1.0))); |
| clear_C2(); /* HACK */ |
| break; |
| |
| case 0xF3: /* FPATAN */ |
| DIP("fpatan\n"); |
| put_ST_UNCHECKED(1, |
| triop(Iop_AtanF64, |
| get_FAKE_roundingmode(), /* XXXROUNDINGFIXME */ |
| get_ST(1), |
| get_ST(0))); |
| fp_pop(); |
| break; |
| |
| case 0xF4: { /* FXTRACT */ |
| IRTemp argF = newTemp(Ity_F64); |
| IRTemp sigF = newTemp(Ity_F64); |
| IRTemp expF = newTemp(Ity_F64); |
| IRTemp argI = newTemp(Ity_I64); |
| IRTemp sigI = newTemp(Ity_I64); |
| IRTemp expI = newTemp(Ity_I64); |
| DIP("fxtract\n"); |
| assign( argF, get_ST(0) ); |
| assign( argI, unop(Iop_ReinterpF64asI64, mkexpr(argF))); |
| assign( sigI, |
| mkIRExprCCall( |
| Ity_I64, 0/*regparms*/, |
| "x86amd64g_calculate_FXTRACT", |
| &x86amd64g_calculate_FXTRACT, |
| mkIRExprVec_2( mkexpr(argI), |
| mkIRExpr_HWord(0)/*sig*/ )) |
| ); |
| assign( expI, |
| mkIRExprCCall( |
| Ity_I64, 0/*regparms*/, |
| "x86amd64g_calculate_FXTRACT", |
| &x86amd64g_calculate_FXTRACT, |
| mkIRExprVec_2( mkexpr(argI), |
| mkIRExpr_HWord(1)/*exp*/ )) |
| ); |
| assign( sigF, unop(Iop_ReinterpI64asF64, mkexpr(sigI)) ); |
| assign( expF, unop(Iop_ReinterpI64asF64, mkexpr(expI)) ); |
| /* exponent */ |
| put_ST_UNCHECKED(0, mkexpr(expF) ); |
| fp_push(); |
| /* significand */ |
| put_ST(0, mkexpr(sigF) ); |
| break; |
| } |
| |
| case 0xF5: { /* FPREM1 -- IEEE compliant */ |
| IRTemp a1 = newTemp(Ity_F64); |
| IRTemp a2 = newTemp(Ity_F64); |
| DIP("fprem1\n"); |
| /* Do FPREM1 twice, once to get the remainder, and once |
| to get the C3210 flag values. */ |
| assign( a1, get_ST(0) ); |
| assign( a2, get_ST(1) ); |
| put_ST_UNCHECKED(0, |
| triop(Iop_PRem1F64, |
| get_FAKE_roundingmode(), /* XXXROUNDINGFIXME */ |
| mkexpr(a1), |
| mkexpr(a2))); |
| put_C3210( |
| unop(Iop_32Uto64, |
| triop(Iop_PRem1C3210F64, |
| get_FAKE_roundingmode(), /* XXXROUNDINGFIXME */ |
| mkexpr(a1), |
| mkexpr(a2)) )); |
| break; |
| } |
| |
| case 0xF7: /* FINCSTP */ |
| DIP("fincstp\n"); |
| put_ftop( binop(Iop_Add32, get_ftop(), mkU32(1)) ); |
| break; |
| |
| case 0xF8: { /* FPREM -- not IEEE compliant */ |
| IRTemp a1 = newTemp(Ity_F64); |
| IRTemp a2 = newTemp(Ity_F64); |
| DIP("fprem\n"); |
| /* Do FPREM twice, once to get the remainder, and once |
| to get the C3210 flag values. */ |
| assign( a1, get_ST(0) ); |
| assign( a2, get_ST(1) ); |
| put_ST_UNCHECKED(0, |
| triop(Iop_PRemF64, |
| get_FAKE_roundingmode(), /* XXXROUNDINGFIXME */ |
| mkexpr(a1), |
| mkexpr(a2))); |
| put_C3210( |
| unop(Iop_32Uto64, |
| triop(Iop_PRemC3210F64, |
| get_FAKE_roundingmode(), /* XXXROUNDINGFIXME */ |
| mkexpr(a1), |
| mkexpr(a2)) )); |
| break; |
| } |
| |
| case 0xF9: /* FYL2XP1 */ |
| DIP("fyl2xp1\n"); |
| put_ST_UNCHECKED(1, |
| triop(Iop_Yl2xp1F64, |
| get_FAKE_roundingmode(), /* XXXROUNDINGFIXME */ |
| get_ST(1), |
| get_ST(0))); |
| fp_pop(); |
| break; |
| |
| case 0xFA: /* FSQRT */ |
| DIP("fsqrt\n"); |
| put_ST_UNCHECKED(0, |
| binop(Iop_SqrtF64, |
| get_FAKE_roundingmode(), /* XXXROUNDINGFIXME */ |
| get_ST(0))); |
| break; |
| |
| case 0xFB: { /* FSINCOS */ |
| IRTemp a1 = newTemp(Ity_F64); |
| assign( a1, get_ST(0) ); |
| DIP("fsincos\n"); |
| put_ST_UNCHECKED(0, |
| binop(Iop_SinF64, |
| get_FAKE_roundingmode(), /* XXXROUNDINGFIXME */ |
| mkexpr(a1))); |
| fp_push(); |
| put_ST(0, |
| binop(Iop_CosF64, |
| get_FAKE_roundingmode(), /* XXXROUNDINGFIXME */ |
| mkexpr(a1))); |
| clear_C2(); /* HACK */ |
| break; |
| } |
| |
| case 0xFC: /* FRNDINT */ |
| DIP("frndint\n"); |
| put_ST_UNCHECKED(0, |
| binop(Iop_RoundF64toInt, get_roundingmode(), get_ST(0)) ); |
| break; |
| |
| case 0xFD: /* FSCALE */ |
| DIP("fscale\n"); |
| put_ST_UNCHECKED(0, |
| triop(Iop_ScaleF64, |
| get_FAKE_roundingmode(), /* XXXROUNDINGFIXME */ |
| get_ST(0), |
| get_ST(1))); |
| break; |
| |
| case 0xFE: /* FSIN */ |
| DIP("fsin\n"); |
| put_ST_UNCHECKED(0, |
| binop(Iop_SinF64, |
| get_FAKE_roundingmode(), /* XXXROUNDINGFIXME */ |
| get_ST(0))); |
| clear_C2(); /* HACK */ |
| break; |
| |
| case 0xFF: /* FCOS */ |
| DIP("fcos\n"); |
| put_ST_UNCHECKED(0, |
| binop(Iop_CosF64, |
| get_FAKE_roundingmode(), /* XXXROUNDINGFIXME */ |
| get_ST(0))); |
| clear_C2(); /* HACK */ |
| break; |
| |
| default: |
| goto decode_fail; |
| } |
| } |
| } |
| |
| /* -+-+-+-+-+-+-+-+-+-+-+-+ 0xDA opcodes +-+-+-+-+-+-+-+ */ |
| else |
| if (first_opcode == 0xDA) { |
| |
| if (modrm < 0xC0) { |
| |
| /* bits 5,4,3 are an opcode extension, and the modRM also |
| specifies an address. */ |
| IROp fop; |
| IRTemp addr = disAMode( &len, vbi, pfx, delta, dis_buf, 0 ); |
| delta += len; |
| switch (gregLO3ofRM(modrm)) { |
| |
| case 0: /* FIADD m32int */ /* ST(0) += m32int */ |
| DIP("fiaddl %s\n", dis_buf); |
| fop = Iop_AddF64; |
| goto do_fop_m32; |
| |
| case 1: /* FIMUL m32int */ /* ST(0) *= m32int */ |
| DIP("fimull %s\n", dis_buf); |
| fop = Iop_MulF64; |
| goto do_fop_m32; |
| |
| case 4: /* FISUB m32int */ /* ST(0) -= m32int */ |
| DIP("fisubl %s\n", dis_buf); |
| fop = Iop_SubF64; |
| goto do_fop_m32; |
| |
| case 5: /* FISUBR m32int */ /* ST(0) = m32int - ST(0) */ |
| DIP("fisubrl %s\n", dis_buf); |
| fop = Iop_SubF64; |
| goto do_foprev_m32; |
| |
| case 6: /* FIDIV m32int */ /* ST(0) /= m32int */ |
| DIP("fisubl %s\n", dis_buf); |
| fop = Iop_DivF64; |
| goto do_fop_m32; |
| |
| case 7: /* FIDIVR m32int */ /* ST(0) = m32int / ST(0) */ |
| DIP("fidivrl %s\n", dis_buf); |
| fop = Iop_DivF64; |
| goto do_foprev_m32; |
| |
| do_fop_m32: |
| put_ST_UNCHECKED(0, |
| triop(fop, |
| get_FAKE_roundingmode(), /* XXXROUNDINGFIXME */ |
| get_ST(0), |
| unop(Iop_I32StoF64, |
| loadLE(Ity_I32, mkexpr(addr))))); |
| break; |
| |
| do_foprev_m32: |
| put_ST_UNCHECKED(0, |
| triop(fop, |
| get_FAKE_roundingmode(), /* XXXROUNDINGFIXME */ |
| unop(Iop_I32StoF64, |
| loadLE(Ity_I32, mkexpr(addr))), |
| get_ST(0))); |
| break; |
| |
| default: |
| vex_printf("unhandled opc_aux = 0x%2x\n", gregLO3ofRM(modrm)); |
| vex_printf("first_opcode == 0xDA\n"); |
| goto decode_fail; |
| } |
| |
| } else { |
| |
| delta++; |
| switch (modrm) { |
| |
| case 0xC0 ... 0xC7: /* FCMOVB ST(i), ST(0) */ |
| r_src = (UInt)modrm - 0xC0; |
| DIP("fcmovb %%st(%u), %%st(0)\n", r_src); |
| put_ST_UNCHECKED(0, |
| IRExpr_Mux0X( |
| unop(Iop_1Uto8, |
| mk_amd64g_calculate_condition(AMD64CondB)), |
| get_ST(0), get_ST(r_src)) ); |
| break; |
| |
| case 0xC8 ... 0xCF: /* FCMOVE(Z) ST(i), ST(0) */ |
| r_src = (UInt)modrm - 0xC8; |
| DIP("fcmovz %%st(%u), %%st(0)\n", r_src); |
| put_ST_UNCHECKED(0, |
| IRExpr_Mux0X( |
| unop(Iop_1Uto8, |
| mk_amd64g_calculate_condition(AMD64CondZ)), |
| get_ST(0), get_ST(r_src)) ); |
| break; |
| |
| case 0xD0 ... 0xD7: /* FCMOVBE ST(i), ST(0) */ |
| r_src = (UInt)modrm - 0xD0; |
| DIP("fcmovbe %%st(%u), %%st(0)\n", r_src); |
| put_ST_UNCHECKED(0, |
| IRExpr_Mux0X( |
| unop(Iop_1Uto8, |
| mk_amd64g_calculate_condition(AMD64CondBE)), |
| get_ST(0), get_ST(r_src)) ); |
| break; |
| |
| case 0xD8 ... 0xDF: /* FCMOVU ST(i), ST(0) */ |
| r_src = (UInt)modrm - 0xD8; |
| DIP("fcmovu %%st(%u), %%st(0)\n", r_src); |
| put_ST_UNCHECKED(0, |
| IRExpr_Mux0X( |
| unop(Iop_1Uto8, |
| mk_amd64g_calculate_condition(AMD64CondP)), |
| get_ST(0), get_ST(r_src)) ); |
| break; |
| |
| case 0xE9: /* FUCOMPP %st(0),%st(1) */ |
| DIP("fucompp %%st(0),%%st(1)\n"); |
| /* This forces C1 to zero, which isn't right. */ |
| put_C3210( |
| unop(Iop_32Uto64, |
| binop( Iop_And32, |
| binop(Iop_Shl32, |
| binop(Iop_CmpF64, get_ST(0), get_ST(1)), |
| mkU8(8)), |
| mkU32(0x4500) |
| ))); |
| fp_pop(); |
| fp_pop(); |
| break; |
| |
| default: |
| goto decode_fail; |
| } |
| |
| } |
| } |
| |
| /* -+-+-+-+-+-+-+-+-+-+-+-+ 0xDB opcodes +-+-+-+-+-+-+-+ */ |
| else |
| if (first_opcode == 0xDB) { |
| if (modrm < 0xC0) { |
| |
| /* bits 5,4,3 are an opcode extension, and the modRM also |
| specifies an address. */ |
| IRTemp addr = disAMode( &len, vbi, pfx, delta, dis_buf, 0 ); |
| delta += len; |
| |
| switch (gregLO3ofRM(modrm)) { |
| |
| case 0: /* FILD m32int */ |
| DIP("fildl %s\n", dis_buf); |
| fp_push(); |
| put_ST(0, unop(Iop_I32StoF64, |
| loadLE(Ity_I32, mkexpr(addr)))); |
| break; |
| |
| case 1: /* FISTTPL m32 (SSE3) */ |
| DIP("fisttpl %s\n", dis_buf); |
| storeLE( mkexpr(addr), |
| binop(Iop_F64toI32S, mkU32(Irrm_ZERO), get_ST(0)) ); |
| fp_pop(); |
| break; |
| |
| case 2: /* FIST m32 */ |
| DIP("fistl %s\n", dis_buf); |
| storeLE( mkexpr(addr), |
| binop(Iop_F64toI32S, get_roundingmode(), get_ST(0)) ); |
| break; |
| |
| case 3: /* FISTP m32 */ |
| DIP("fistpl %s\n", dis_buf); |
| storeLE( mkexpr(addr), |
| binop(Iop_F64toI32S, get_roundingmode(), get_ST(0)) ); |
| fp_pop(); |
| break; |
| |
| case 5: { /* FLD extended-real */ |
| /* Uses dirty helper: |
| ULong amd64g_loadF80le ( ULong ) |
| addr holds the address. First, do a dirty call to |
| get hold of the data. */ |
| IRTemp val = newTemp(Ity_I64); |
| IRExpr** args = mkIRExprVec_1 ( mkexpr(addr) ); |
| |
| IRDirty* d = unsafeIRDirty_1_N ( |
| val, |
| 0/*regparms*/, |
| "amd64g_dirtyhelper_loadF80le", |
| &amd64g_dirtyhelper_loadF80le, |
| args |
| ); |
| /* declare that we're reading memory */ |
| d->mFx = Ifx_Read; |
| d->mAddr = mkexpr(addr); |
| d->mSize = 10; |
| |
| /* execute the dirty call, dumping the result in val. */ |
| stmt( IRStmt_Dirty(d) ); |
| fp_push(); |
| put_ST(0, unop(Iop_ReinterpI64asF64, mkexpr(val))); |
| |
| DIP("fldt %s\n", dis_buf); |
| break; |
| } |
| |
| case 7: { /* FSTP extended-real */ |
| /* Uses dirty helper: |
| void amd64g_storeF80le ( ULong addr, ULong data ) |
| */ |
| IRExpr** args |
| = mkIRExprVec_2( mkexpr(addr), |
| unop(Iop_ReinterpF64asI64, get_ST(0)) ); |
| |
| IRDirty* d = unsafeIRDirty_0_N ( |
| 0/*regparms*/, |
| "amd64g_dirtyhelper_storeF80le", |
| &amd64g_dirtyhelper_storeF80le, |
| args |
| ); |
| /* declare we're writing memory */ |
| d->mFx = Ifx_Write; |
| d->mAddr = mkexpr(addr); |
| d->mSize = 10; |
| |
| /* execute the dirty call. */ |
| stmt( IRStmt_Dirty(d) ); |
| fp_pop(); |
| |
| DIP("fstpt\n %s", dis_buf); |
| break; |
| } |
| |
| default: |
| vex_printf("unhandled opc_aux = 0x%2x\n", gregLO3ofRM(modrm)); |
| vex_printf("first_opcode == 0xDB\n"); |
| goto decode_fail; |
| } |
| |
| } else { |
| |
| delta++; |
| switch (modrm) { |
| |
| case 0xC0 ... 0xC7: /* FCMOVNB ST(i), ST(0) */ |
| r_src = (UInt)modrm - 0xC0; |
| DIP("fcmovnb %%st(%u), %%st(0)\n", r_src); |
| put_ST_UNCHECKED(0, |
| IRExpr_Mux0X( |
| unop(Iop_1Uto8, |
| mk_amd64g_calculate_condition(AMD64CondNB)), |
| get_ST(0), get_ST(r_src)) ); |
| break; |
| |
| case 0xC8 ... 0xCF: /* FCMOVNE(NZ) ST(i), ST(0) */ |
| r_src = (UInt)modrm - 0xC8; |
| DIP("fcmovnz %%st(%u), %%st(0)\n", r_src); |
| put_ST_UNCHECKED( |
| 0, |
| IRExpr_Mux0X( |
| unop(Iop_1Uto8, |
| mk_amd64g_calculate_condition(AMD64CondNZ)), |
| get_ST(0), |
| get_ST(r_src) |
| ) |
| ); |
| break; |
| |
| case 0xD0 ... 0xD7: /* FCMOVNBE ST(i), ST(0) */ |
| r_src = (UInt)modrm - 0xD0; |
| DIP("fcmovnbe %%st(%u), %%st(0)\n", r_src); |
| put_ST_UNCHECKED( |
| 0, |
| IRExpr_Mux0X( |
| unop(Iop_1Uto8, |
| mk_amd64g_calculate_condition(AMD64CondNBE)), |
| get_ST(0), |
| get_ST(r_src) |
| ) |
| ); |
| break; |
| |
| case 0xD8 ... 0xDF: /* FCMOVNU ST(i), ST(0) */ |
| r_src = (UInt)modrm - 0xD8; |
| DIP("fcmovnu %%st(%u), %%st(0)\n", r_src); |
| put_ST_UNCHECKED( |
| 0, |
| IRExpr_Mux0X( |
| unop(Iop_1Uto8, |
| mk_amd64g_calculate_condition(AMD64CondNP)), |
| get_ST(0), |
| get_ST(r_src) |
| ) |
| ); |
| break; |
| |
| case 0xE2: |
| DIP("fnclex\n"); |
| break; |
| |
| case 0xE3: { |
| /* Uses dirty helper: |
| void amd64g_do_FINIT ( VexGuestAMD64State* ) */ |
| IRDirty* d = unsafeIRDirty_0_N ( |
| 0/*regparms*/, |
| "amd64g_dirtyhelper_FINIT", |
| &amd64g_dirtyhelper_FINIT, |
| mkIRExprVec_0() |
| ); |
| d->needsBBP = True; |
| |
| /* declare we're writing guest state */ |
| d->nFxState = 5; |
| vex_bzero(&d->fxState, sizeof(d->fxState)); |
| |
| d->fxState[0].fx = Ifx_Write; |
| d->fxState[0].offset = OFFB_FTOP; |
| d->fxState[0].size = sizeof(UInt); |
| |
| d->fxState[1].fx = Ifx_Write; |
| d->fxState[1].offset = OFFB_FPREGS; |
| d->fxState[1].size = 8 * sizeof(ULong); |
| |
| d->fxState[2].fx = Ifx_Write; |
| d->fxState[2].offset = OFFB_FPTAGS; |
| d->fxState[2].size = 8 * sizeof(UChar); |
| |
| d->fxState[3].fx = Ifx_Write; |
| d->fxState[3].offset = OFFB_FPROUND; |
| d->fxState[3].size = sizeof(ULong); |
| |
| d->fxState[4].fx = Ifx_Write; |
| d->fxState[4].offset = OFFB_FC3210; |
| d->fxState[4].size = sizeof(ULong); |
| |
| stmt( IRStmt_Dirty(d) ); |
| |
| DIP("fninit\n"); |
| break; |
| } |
| |
| case 0xE8 ... 0xEF: /* FUCOMI %st(0),%st(?) */ |
| fp_do_ucomi_ST0_STi( (UInt)modrm - 0xE8, False ); |
| break; |
| |
| case 0xF0 ... 0xF7: /* FCOMI %st(0),%st(?) */ |
| fp_do_ucomi_ST0_STi( (UInt)modrm - 0xF0, False ); |
| break; |
| |
| default: |
| goto decode_fail; |
| } |
| } |
| } |
| |
| /* -+-+-+-+-+-+-+-+-+-+-+-+ 0xDC opcodes +-+-+-+-+-+-+-+ */ |
| else |
| if (first_opcode == 0xDC) { |
| if (modrm < 0xC0) { |
| |
| /* bits 5,4,3 are an opcode extension, and the modRM also |
| specifies an address. */ |
| IRTemp addr = disAMode( &len, vbi, pfx, delta, dis_buf, 0 ); |
| delta += len; |
| |
| switch (gregLO3ofRM(modrm)) { |
| |
| case 0: /* FADD double-real */ |
| fp_do_op_mem_ST_0 ( addr, "add", dis_buf, Iop_AddF64, True ); |
| break; |
| |
| case 1: /* FMUL double-real */ |
| fp_do_op_mem_ST_0 ( addr, "mul", dis_buf, Iop_MulF64, True ); |
| break; |
| |
| //.. case 2: /* FCOM double-real */ |
| //.. DIP("fcoml %s\n", dis_buf); |
| //.. /* This forces C1 to zero, which isn't right. */ |
| //.. put_C3210( |
| //.. binop( Iop_And32, |
| //.. binop(Iop_Shl32, |
| //.. binop(Iop_CmpF64, |
| //.. get_ST(0), |
| //.. loadLE(Ity_F64,mkexpr(addr))), |
| //.. mkU8(8)), |
| //.. mkU32(0x4500) |
| //.. )); |
| //.. break; |
| |
| case 3: /* FCOMP double-real */ |
| DIP("fcompl %s\n", dis_buf); |
| /* This forces C1 to zero, which isn't right. */ |
| put_C3210( |
| unop(Iop_32Uto64, |
| binop( Iop_And32, |
| binop(Iop_Shl32, |
| binop(Iop_CmpF64, |
| get_ST(0), |
| loadLE(Ity_F64,mkexpr(addr))), |
| mkU8(8)), |
| mkU32(0x4500) |
| ))); |
| fp_pop(); |
| break; |
| |
| case 4: /* FSUB double-real */ |
| fp_do_op_mem_ST_0 ( addr, "sub", dis_buf, Iop_SubF64, True ); |
| break; |
| |
| case 5: /* FSUBR double-real */ |
| fp_do_oprev_mem_ST_0 ( addr, "subr", dis_buf, Iop_SubF64, True ); |
| break; |
| |
| case 6: /* FDIV double-real */ |
| fp_do_op_mem_ST_0 ( addr, "div", dis_buf, Iop_DivF64, True ); |
| break; |
| |
| case 7: /* FDIVR double-real */ |
| fp_do_oprev_mem_ST_0 ( addr, "divr", dis_buf, Iop_DivF64, True ); |
| break; |
| |
| default: |
| vex_printf("unhandled opc_aux = 0x%2x\n", gregLO3ofRM(modrm)); |
| vex_printf("first_opcode == 0xDC\n"); |
| goto decode_fail; |
| } |
| |
| } else { |
| |
| delta++; |
| switch (modrm) { |
| |
| case 0xC0 ... 0xC7: /* FADD %st(0),%st(?) */ |
| fp_do_op_ST_ST ( "add", Iop_AddF64, 0, modrm - 0xC0, False ); |
| break; |
| |
| case 0xC8 ... 0xCF: /* FMUL %st(0),%st(?) */ |
| fp_do_op_ST_ST ( "mul", Iop_MulF64, 0, modrm - 0xC8, False ); |
| break; |
| |
| case 0xE0 ... 0xE7: /* FSUBR %st(0),%st(?) */ |
| fp_do_oprev_ST_ST ( "subr", Iop_SubF64, 0, modrm - 0xE0, False ); |
| break; |
| |
| case 0xE8 ... 0xEF: /* FSUB %st(0),%st(?) */ |
| fp_do_op_ST_ST ( "sub", Iop_SubF64, 0, modrm - 0xE8, False ); |
| break; |
| |
| case 0xF0 ... 0xF7: /* FDIVR %st(0),%st(?) */ |
| fp_do_oprev_ST_ST ( "divr", Iop_DivF64, 0, modrm - 0xF0, False ); |
| break; |
| |
| case 0xF8 ... 0xFF: /* FDIV %st(0),%st(?) */ |
| fp_do_op_ST_ST ( "div", Iop_DivF64, 0, modrm - 0xF8, False ); |
| break; |
| |
| default: |
| goto decode_fail; |
| } |
| |
| } |
| } |
| |
| /* -+-+-+-+-+-+-+-+-+-+-+-+ 0xDD opcodes +-+-+-+-+-+-+-+ */ |
| else |
| if (first_opcode == 0xDD) { |
| |
| if (modrm < 0xC0) { |
| |
| /* bits 5,4,3 are an opcode extension, and the modRM also |
| specifies an address. */ |
| IRTemp addr = disAMode( &len, vbi, pfx, delta, dis_buf, 0 ); |
| delta += len; |
| |
| switch (gregLO3ofRM(modrm)) { |
| |
| case 0: /* FLD double-real */ |
| DIP("fldl %s\n", dis_buf); |
| fp_push(); |
| put_ST(0, loadLE(Ity_F64, mkexpr(addr))); |
| break; |
| |
| case 1: /* FISTTPQ m64 (SSE3) */ |
| DIP("fistppll %s\n", dis_buf); |
| storeLE( mkexpr(addr), |
| binop(Iop_F64toI64S, mkU32(Irrm_ZERO), get_ST(0)) ); |
| fp_pop(); |
| break; |
| |
| case 2: /* FST double-real */ |
| DIP("fstl %s\n", dis_buf); |
| storeLE(mkexpr(addr), get_ST(0)); |
| break; |
| |
| case 3: /* FSTP double-real */ |
| DIP("fstpl %s\n", dis_buf); |
| storeLE(mkexpr(addr), get_ST(0)); |
| fp_pop(); |
| break; |
| |
| case 4: { /* FRSTOR m94/m108 */ |
| IRTemp ew = newTemp(Ity_I32); |
| IRTemp w64 = newTemp(Ity_I64); |
| IRDirty* d; |
| if ( have66(pfx) ) { |
| /* Uses dirty helper: |
| VexEmWarn amd64g_dirtyhelper_FRSTORS |
| ( VexGuestAMD64State*, HWord ) */ |
| d = unsafeIRDirty_0_N ( |
| 0/*regparms*/, |
| "amd64g_dirtyhelper_FRSTORS", |
| &amd64g_dirtyhelper_FRSTORS, |
| mkIRExprVec_1( mkexpr(addr) ) |
| ); |
| d->mSize = 94; |
| } else { |
| /* Uses dirty helper: |
| VexEmWarn amd64g_dirtyhelper_FRSTOR |
| ( VexGuestAMD64State*, HWord ) */ |
| d = unsafeIRDirty_0_N ( |
| 0/*regparms*/, |
| "amd64g_dirtyhelper_FRSTOR", |
| &amd64g_dirtyhelper_FRSTOR, |
| mkIRExprVec_1( mkexpr(addr) ) |
| ); |
| d->mSize = 108; |
| } |
| |
| d->needsBBP = True; |
| d->tmp = w64; |
| /* declare we're reading memory */ |
| d->mFx = Ifx_Read; |
| d->mAddr = mkexpr(addr); |
| /* d->mSize set above */ |
| |
| /* declare we're writing guest state */ |
| d->nFxState = 5; |
| vex_bzero(&d->fxState, sizeof(d->fxState)); |
| |
| d->fxState[0].fx = Ifx_Write; |
| d->fxState[0].offset = OFFB_FTOP; |
| d->fxState[0].size = sizeof(UInt); |
| |
| d->fxState[1].fx = Ifx_Write; |
| d->fxState[1].offset = OFFB_FPREGS; |
| d->fxState[1].size = 8 * sizeof(ULong); |
| |
| d->fxState[2].fx = Ifx_Write; |
| d->fxState[2].offset = OFFB_FPTAGS; |
| d->fxState[2].size = 8 * sizeof(UChar); |
| |
| d->fxState[3].fx = Ifx_Write; |
| d->fxState[3].offset = OFFB_FPROUND; |
| d->fxState[3].size = sizeof(ULong); |
| |
| d->fxState[4].fx = Ifx_Write; |
| d->fxState[4].offset = OFFB_FC3210; |
| d->fxState[4].size = sizeof(ULong); |
| |
| stmt( IRStmt_Dirty(d) ); |
| |
| /* ew contains any emulation warning we may need to |
| issue. If needed, side-exit to the next insn, |
| reporting the warning, so that Valgrind's dispatcher |
| sees the warning. */ |
| assign(ew, unop(Iop_64to32,mkexpr(w64)) ); |
| put_emwarn( mkexpr(ew) ); |
| stmt( |
| IRStmt_Exit( |
| binop(Iop_CmpNE32, mkexpr(ew), mkU32(0)), |
| Ijk_EmWarn, |
| IRConst_U64( guest_RIP_bbstart+delta ), |
| OFFB_RIP |
| ) |
| ); |
| |
| if ( have66(pfx) ) { |
| DIP("frstors %s\n", dis_buf); |
| } else { |
| DIP("frstor %s\n", dis_buf); |
| } |
| break; |
| } |
| |
| case 6: { /* FNSAVE m94/m108 */ |
| IRDirty *d; |
| if ( have66(pfx) ) { |
| /* Uses dirty helper: |
| void amd64g_dirtyhelper_FNSAVES ( VexGuestX86State*, HWord ) */ |
| d = unsafeIRDirty_0_N ( |
| 0/*regparms*/, |
| "amd64g_dirtyhelper_FNSAVES", |
| &amd64g_dirtyhelper_FNSAVES, |
| mkIRExprVec_1( mkexpr(addr) ) |
| ); |
| d->mSize = 94; |
| } else { |
| /* Uses dirty helper: |
| void amd64g_dirtyhelper_FNSAVE ( VexGuestX86State*, HWord ) */ |
| d = unsafeIRDirty_0_N ( |
| 0/*regparms*/, |
| "amd64g_dirtyhelper_FNSAVE", |
| &amd64g_dirtyhelper_FNSAVE, |
| mkIRExprVec_1( mkexpr(addr) ) |
| ); |
| d->mSize = 108; |
| } |
| d->needsBBP = True; |
| /* declare we're writing memory */ |
| d->mFx = Ifx_Write; |
| d->mAddr = mkexpr(addr); |
| /* d->mSize set above */ |
| |
| /* declare we're reading guest state */ |
| d->nFxState = 5; |
| vex_bzero(&d->fxState, sizeof(d->fxState)); |
| |
| d->fxState[0].fx = Ifx_Read; |
| d->fxState[0].offset = OFFB_FTOP; |
| d->fxState[0].size = sizeof(UInt); |
| |
| d->fxState[1].fx = Ifx_Read; |
| d->fxState[1].offset = OFFB_FPREGS; |
| d->fxState[1].size = 8 * sizeof(ULong); |
| |
| d->fxState[2].fx = Ifx_Read; |
| d->fxState[2].offset = OFFB_FPTAGS; |
| d->fxState[2].size = 8 * sizeof(UChar); |
| |
| d->fxState[3].fx = Ifx_Read; |
| d->fxState[3].offset = OFFB_FPROUND; |
| d->fxState[3].size = sizeof(ULong); |
| |
| d->fxState[4].fx = Ifx_Read; |
| d->fxState[4].offset = OFFB_FC3210; |
| d->fxState[4].size = sizeof(ULong); |
| |
| stmt( IRStmt_Dirty(d) ); |
| |
| if ( have66(pfx) ) { |
| DIP("fnsaves %s\n", dis_buf); |
| } else { |
| DIP("fnsave %s\n", dis_buf); |
| } |
| break; |
| } |
| |
| case 7: { /* FNSTSW m16 */ |
| IRExpr* sw = get_FPU_sw(); |
| vassert(typeOfIRExpr(irsb->tyenv, sw) == Ity_I16); |
| storeLE( mkexpr(addr), sw ); |
| DIP("fnstsw %s\n", dis_buf); |
| break; |
| } |
| |
| default: |
| vex_printf("unhandled opc_aux = 0x%2x\n", gregLO3ofRM(modrm)); |
| vex_printf("first_opcode == 0xDD\n"); |
| goto decode_fail; |
| } |
| } else { |
| delta++; |
| switch (modrm) { |
| |
| case 0xC0 ... 0xC7: /* FFREE %st(?) */ |
| r_dst = (UInt)modrm - 0xC0; |
| DIP("ffree %%st(%u)\n", r_dst); |
| put_ST_TAG ( r_dst, mkU8(0) ); |
| break; |
| |
| case 0xD0 ... 0xD7: /* FST %st(0),%st(?) */ |
| r_dst = (UInt)modrm - 0xD0; |
| DIP("fst %%st(0),%%st(%u)\n", r_dst); |
| /* P4 manual says: "If the destination operand is a |
| non-empty register, the invalid-operation exception |
| is not generated. Hence put_ST_UNCHECKED. */ |
| put_ST_UNCHECKED(r_dst, get_ST(0)); |
| break; |
| |
| case 0xD8 ... 0xDF: /* FSTP %st(0),%st(?) */ |
| r_dst = (UInt)modrm - 0xD8; |
| DIP("fstp %%st(0),%%st(%u)\n", r_dst); |
| /* P4 manual says: "If the destination operand is a |
| non-empty register, the invalid-operation exception |
| is not generated. Hence put_ST_UNCHECKED. */ |
| put_ST_UNCHECKED(r_dst, get_ST(0)); |
| fp_pop(); |
| break; |
| |
| case 0xE0 ... 0xE7: /* FUCOM %st(0),%st(?) */ |
| r_dst = (UInt)modrm - 0xE0; |
| DIP("fucom %%st(0),%%st(%u)\n", r_dst); |
| /* This forces C1 to zero, which isn't right. */ |
| put_C3210( |
| unop(Iop_32Uto64, |
| binop( Iop_And32, |
| binop(Iop_Shl32, |
| binop(Iop_CmpF64, get_ST(0), get_ST(r_dst)), |
| mkU8(8)), |
| mkU32(0x4500) |
| ))); |
| break; |
| |
| case 0xE8 ... 0xEF: /* FUCOMP %st(0),%st(?) */ |
| r_dst = (UInt)modrm - 0xE8; |
| DIP("fucomp %%st(0),%%st(%u)\n", r_dst); |
| /* This forces C1 to zero, which isn't right. */ |
| put_C3210( |
| unop(Iop_32Uto64, |
| binop( Iop_And32, |
| binop(Iop_Shl32, |
| binop(Iop_CmpF64, get_ST(0), get_ST(r_dst)), |
| mkU8(8)), |
| mkU32(0x4500) |
| ))); |
| fp_pop(); |
| break; |
| |
| default: |
| goto decode_fail; |
| } |
| } |
| } |
| |
| /* -+-+-+-+-+-+-+-+-+-+-+-+ 0xDE opcodes +-+-+-+-+-+-+-+ */ |
| else |
| if (first_opcode == 0xDE) { |
| |
| if (modrm < 0xC0) { |
| |
| /* bits 5,4,3 are an opcode extension, and the modRM also |
| specifies an address. */ |
| IROp fop; |
| IRTemp addr = disAMode( &len, vbi, pfx, delta, dis_buf, 0 ); |
| delta += len; |
| |
| switch (gregLO3ofRM(modrm)) { |
| |
| case 0: /* FIADD m16int */ /* ST(0) += m16int */ |
| DIP("fiaddw %s\n", dis_buf); |
| fop = Iop_AddF64; |
| goto do_fop_m16; |
| |
| case 1: /* FIMUL m16int */ /* ST(0) *= m16int */ |
| DIP("fimulw %s\n", dis_buf); |
| fop = Iop_MulF64; |
| goto do_fop_m16; |
| |
| case 4: /* FISUB m16int */ /* ST(0) -= m16int */ |
| DIP("fisubw %s\n", dis_buf); |
| fop = Iop_SubF64; |
| goto do_fop_m16; |
| |
| case 5: /* FISUBR m16int */ /* ST(0) = m16int - ST(0) */ |
| DIP("fisubrw %s\n", dis_buf); |
| fop = Iop_SubF64; |
| goto do_foprev_m16; |
| |
| case 6: /* FIDIV m16int */ /* ST(0) /= m16int */ |
| DIP("fisubw %s\n", dis_buf); |
| fop = Iop_DivF64; |
| goto do_fop_m16; |
| |
| case 7: /* FIDIVR m16int */ /* ST(0) = m16int / ST(0) */ |
| DIP("fidivrw %s\n", dis_buf); |
| fop = Iop_DivF64; |
| goto do_foprev_m16; |
| |
| do_fop_m16: |
| put_ST_UNCHECKED(0, |
| triop(fop, |
| get_FAKE_roundingmode(), /* XXXROUNDINGFIXME */ |
| get_ST(0), |
| unop(Iop_I32StoF64, |
| unop(Iop_16Sto32, |
| loadLE(Ity_I16, mkexpr(addr)))))); |
| break; |
| |
| do_foprev_m16: |
| put_ST_UNCHECKED(0, |
| triop(fop, |
| get_FAKE_roundingmode(), /* XXXROUNDINGFIXME */ |
| unop(Iop_I32StoF64, |
| unop(Iop_16Sto32, |
| loadLE(Ity_I16, mkexpr(addr)))), |
| get_ST(0))); |
| break; |
| |
| default: |
| vex_printf("unhandled opc_aux = 0x%2x\n", gregLO3ofRM(modrm)); |
| vex_printf("first_opcode == 0xDE\n"); |
| goto decode_fail; |
| } |
| |
| } else { |
| |
| delta++; |
| switch (modrm) { |
| |
| case 0xC0 ... 0xC7: /* FADDP %st(0),%st(?) */ |
| fp_do_op_ST_ST ( "add", Iop_AddF64, 0, modrm - 0xC0, True ); |
| break; |
| |
| case 0xC8 ... 0xCF: /* FMULP %st(0),%st(?) */ |
| fp_do_op_ST_ST ( "mul", Iop_MulF64, 0, modrm - 0xC8, True ); |
| break; |
| |
| case 0xD9: /* FCOMPP %st(0),%st(1) */ |
| DIP("fcompp %%st(0),%%st(1)\n"); |
| /* This forces C1 to zero, which isn't right. */ |
| put_C3210( |
| unop(Iop_32Uto64, |
| binop( Iop_And32, |
| binop(Iop_Shl32, |
| binop(Iop_CmpF64, get_ST(0), get_ST(1)), |
| mkU8(8)), |
| mkU32(0x4500) |
| ))); |
| fp_pop(); |
| fp_pop(); |
| break; |
| |
| case 0xE0 ... 0xE7: /* FSUBRP %st(0),%st(?) */ |
| fp_do_oprev_ST_ST ( "subr", Iop_SubF64, 0, modrm - 0xE0, True ); |
| break; |
| |
| case 0xE8 ... 0xEF: /* FSUBP %st(0),%st(?) */ |
| fp_do_op_ST_ST ( "sub", Iop_SubF64, 0, modrm - 0xE8, True ); |
| break; |
| |
| case 0xF0 ... 0xF7: /* FDIVRP %st(0),%st(?) */ |
| fp_do_oprev_ST_ST ( "divr", Iop_DivF64, 0, modrm - 0xF0, True ); |
| break; |
| |
| case 0xF8 ... 0xFF: /* FDIVP %st(0),%st(?) */ |
| fp_do_op_ST_ST ( "div", Iop_DivF64, 0, modrm - 0xF8, True ); |
| break; |
| |
| default: |
| goto decode_fail; |
| } |
| |
| } |
| } |
| |
| /* -+-+-+-+-+-+-+-+-+-+-+-+ 0xDF opcodes +-+-+-+-+-+-+-+ */ |
| else |
| if (first_opcode == 0xDF) { |
| |
| if (modrm < 0xC0) { |
| |
| /* bits 5,4,3 are an opcode extension, and the modRM also |
| specifies an address. */ |
| IRTemp addr = disAMode( &len, vbi, pfx, delta, dis_buf, 0 ); |
| delta += len; |
| |
| switch (gregLO3ofRM(modrm)) { |
| |
| case 0: /* FILD m16int */ |
| DIP("fildw %s\n", dis_buf); |
| fp_push(); |
| put_ST(0, unop(Iop_I32StoF64, |
| unop(Iop_16Sto32, |
| loadLE(Ity_I16, mkexpr(addr))))); |
| break; |
| |
| case 1: /* FISTTPS m16 (SSE3) */ |
| DIP("fisttps %s\n", dis_buf); |
| storeLE( mkexpr(addr), |
| x87ishly_qnarrow_32_to_16( |
| binop(Iop_F64toI32S, mkU32(Irrm_ZERO), get_ST(0)) )); |
| fp_pop(); |
| break; |
| |
| case 2: /* FIST m16 */ |
| DIP("fists %s\n", dis_buf); |
| storeLE( mkexpr(addr), |
| x87ishly_qnarrow_32_to_16( |
| binop(Iop_F64toI32S, get_roundingmode(), get_ST(0)) )); |
| break; |
| |
| case 3: /* FISTP m16 */ |
| DIP("fistps %s\n", dis_buf); |
| storeLE( mkexpr(addr), |
| x87ishly_qnarrow_32_to_16( |
| binop(Iop_F64toI32S, get_roundingmode(), get_ST(0)) )); |
| fp_pop(); |
| break; |
| |
| case 5: /* FILD m64 */ |
| DIP("fildll %s\n", dis_buf); |
| fp_push(); |
| put_ST(0, binop(Iop_I64StoF64, |
| get_roundingmode(), |
| loadLE(Ity_I64, mkexpr(addr)))); |
| break; |
| |
| case 7: /* FISTP m64 */ |
| DIP("fistpll %s\n", dis_buf); |
| storeLE( mkexpr(addr), |
| binop(Iop_F64toI64S, get_roundingmode(), get_ST(0)) ); |
| fp_pop(); |
| break; |
| |
| default: |
| vex_printf("unhandled opc_aux = 0x%2x\n", gregLO3ofRM(modrm)); |
| vex_printf("first_opcode == 0xDF\n"); |
| goto decode_fail; |
| } |
| |
| } else { |
| |
| delta++; |
| switch (modrm) { |
| |
| case 0xC0: /* FFREEP %st(0) */ |
| DIP("ffreep %%st(%d)\n", 0); |
| put_ST_TAG ( 0, mkU8(0) ); |
| fp_pop(); |
| break; |
| |
| case 0xE0: /* FNSTSW %ax */ |
| DIP("fnstsw %%ax\n"); |
| /* Invent a plausible-looking FPU status word value and |
| dump it in %AX: |
| ((ftop & 7) << 11) | (c3210 & 0x4700) |
| */ |
| putIRegRAX( |
| 2, |
| unop(Iop_32to16, |
| binop(Iop_Or32, |
| binop(Iop_Shl32, |
| binop(Iop_And32, get_ftop(), mkU32(7)), |
| mkU8(11)), |
| binop(Iop_And32, |
| unop(Iop_64to32, get_C3210()), |
| mkU32(0x4700)) |
| ))); |
| break; |
| |
| case 0xE8 ... 0xEF: /* FUCOMIP %st(0),%st(?) */ |
| fp_do_ucomi_ST0_STi( (UInt)modrm - 0xE8, True ); |
| break; |
| |
| case 0xF0 ... 0xF7: /* FCOMIP %st(0),%st(?) */ |
| /* not really right since COMIP != UCOMIP */ |
| fp_do_ucomi_ST0_STi( (UInt)modrm - 0xF0, True ); |
| break; |
| |
| default: |
| goto decode_fail; |
| } |
| } |
| |
| } |
| |
| else |
| goto decode_fail; |
| |
| *decode_ok = True; |
| return delta; |
| |
| decode_fail: |
| *decode_ok = False; |
| return delta; |
| } |
| |
| |
| /*------------------------------------------------------------*/ |
| /*--- ---*/ |
| /*--- MMX INSTRUCTIONS ---*/ |
| /*--- ---*/ |
| /*------------------------------------------------------------*/ |
| |
| /* Effect of MMX insns on x87 FPU state (table 11-2 of |
| IA32 arch manual, volume 3): |
| |
| Read from, or write to MMX register (viz, any insn except EMMS): |
| * All tags set to Valid (non-empty) -- FPTAGS[i] := nonzero |
| * FP stack pointer set to zero |
| |
| EMMS: |
| * All tags set to Invalid (empty) -- FPTAGS[i] := zero |
| * FP stack pointer set to zero |
| */ |
| |
| static void do_MMX_preamble ( void ) |
| { |
| Int i; |
| IRRegArray* descr = mkIRRegArray( OFFB_FPTAGS, Ity_I8, 8 ); |
| IRExpr* zero = mkU32(0); |
| IRExpr* tag1 = mkU8(1); |
| put_ftop(zero); |
| for (i = 0; i < 8; i++) |
| stmt( IRStmt_PutI( mkIRPutI(descr, zero, i, tag1) ) ); |
| } |
| |
| static void do_EMMS_preamble ( void ) |
| { |
| Int i; |
| IRRegArray* descr = mkIRRegArray( OFFB_FPTAGS, Ity_I8, 8 ); |
| IRExpr* zero = mkU32(0); |
| IRExpr* tag0 = mkU8(0); |
| put_ftop(zero); |
| for (i = 0; i < 8; i++) |
| stmt( IRStmt_PutI( mkIRPutI(descr, zero, i, tag0) ) ); |
| } |
| |
| |
| static IRExpr* getMMXReg ( UInt archreg ) |
| { |
| vassert(archreg < 8); |
| return IRExpr_Get( OFFB_FPREGS + 8 * archreg, Ity_I64 ); |
| } |
| |
| |
| static void putMMXReg ( UInt archreg, IRExpr* e ) |
| { |
| vassert(archreg < 8); |
| vassert(typeOfIRExpr(irsb->tyenv,e) == Ity_I64); |
| stmt( IRStmt_Put( OFFB_FPREGS + 8 * archreg, e ) ); |
| } |
| |
| |
| /* Helper for non-shift MMX insns. Note this is incomplete in the |
| sense that it does not first call do_MMX_preamble() -- that is the |
| responsibility of its caller. */ |
| |
| static |
| ULong dis_MMXop_regmem_to_reg ( VexAbiInfo* vbi, |
| Prefix pfx, |
| Long delta, |
| UChar opc, |
| HChar* name, |
| Bool show_granularity ) |
| { |
| HChar dis_buf[50]; |
| UChar modrm = getUChar(delta); |
| Bool isReg = epartIsReg(modrm); |
| IRExpr* argL = NULL; |
| IRExpr* argR = NULL; |
| IRExpr* argG = NULL; |
| IRExpr* argE = NULL; |
| IRTemp res = newTemp(Ity_I64); |
| |
| Bool invG = False; |
| IROp op = Iop_INVALID; |
| void* hAddr = NULL; |
| HChar* hName = NULL; |
| Bool eLeft = False; |
| |
| # define XXX(_name) do { hAddr = &_name; hName = #_name; } while (0) |
| |
| switch (opc) { |
| /* Original MMX ones */ |
| case 0xFC: op = Iop_Add8x8; break; |
| case 0xFD: op = Iop_Add16x4; break; |
| case 0xFE: op = Iop_Add32x2; break; |
| |
| case 0xEC: op = Iop_QAdd8Sx8; break; |
| case 0xED: op = Iop_QAdd16Sx4; break; |
| |
| case 0xDC: op = Iop_QAdd8Ux8; break; |
| case 0xDD: op = Iop_QAdd16Ux4; break; |
| |
| case 0xF8: op = Iop_Sub8x8; break; |
| case 0xF9: op = Iop_Sub16x4; break; |
| case 0xFA: op = Iop_Sub32x2; break; |
| |
| case 0xE8: op = Iop_QSub8Sx8; break; |
| case 0xE9: op = Iop_QSub16Sx4; break; |
| |
| case 0xD8: op = Iop_QSub8Ux8; break; |
| case 0xD9: op = Iop_QSub16Ux4; break; |
| |
| case 0xE5: op = Iop_MulHi16Sx4; break; |
| case 0xD5: op = Iop_Mul16x4; break; |
| case 0xF5: XXX(amd64g_calculate_mmx_pmaddwd); break; |
| |
| case 0x74: op = Iop_CmpEQ8x8; break; |
| case 0x75: op = Iop_CmpEQ16x4; break; |
| case 0x76: op = Iop_CmpEQ32x2; break; |
| |
| case 0x64: op = Iop_CmpGT8Sx8; break; |
| case 0x65: op = Iop_CmpGT16Sx4; break; |
| case 0x66: op = Iop_CmpGT32Sx2; break; |
| |
| case 0x6B: op = Iop_QNarrowBin32Sto16Sx4; eLeft = True; break; |
| case 0x63: op = Iop_QNarrowBin16Sto8Sx8; eLeft = True; break; |
| case 0x67: op = Iop_QNarrowBin16Sto8Ux8; eLeft = True; break; |
| |
| case 0x68: op = Iop_InterleaveHI8x8; eLeft = True; break; |
| case 0x69: op = Iop_InterleaveHI16x4; eLeft = True; break; |
| case 0x6A: op = Iop_InterleaveHI32x2; eLeft = True; break; |
| |
| case 0x60: op = Iop_InterleaveLO8x8; eLeft = True; break; |
| case 0x61: op = Iop_InterleaveLO16x4; eLeft = True; break; |
| case 0x62: op = Iop_InterleaveLO32x2; eLeft = True; break; |
| |
| case 0xDB: op = Iop_And64; break; |
| case 0xDF: op = Iop_And64; invG = True; break; |
| case 0xEB: op = Iop_Or64; break; |
| case 0xEF: /* Possibly do better here if argL and argR are the |
| same reg */ |
| op = Iop_Xor64; break; |
| |
| /* Introduced in SSE1 */ |
| case 0xE0: op = Iop_Avg8Ux8; break; |
| case 0xE3: op = Iop_Avg16Ux4; break; |
| case 0xEE: op = Iop_Max16Sx4; break; |
| case 0xDE: op = Iop_Max8Ux8; break; |
| case 0xEA: op = Iop_Min16Sx4; break; |
| case 0xDA: op = Iop_Min8Ux8; break; |
| case 0xE4: op = Iop_MulHi16Ux4; break; |
| case 0xF6: XXX(amd64g_calculate_mmx_psadbw); break; |
| |
| /* Introduced in SSE2 */ |
| case 0xD4: op = Iop_Add64; break; |
| case 0xFB: op = Iop_Sub64; break; |
| |
| default: |
| vex_printf("\n0x%x\n", (Int)opc); |
| vpanic("dis_MMXop_regmem_to_reg"); |
| } |
| |
| # undef XXX |
| |
| argG = getMMXReg(gregLO3ofRM(modrm)); |
| if (invG) |
| argG = unop(Iop_Not64, argG); |
| |
| if (isReg) { |
| delta++; |
| argE = getMMXReg(eregLO3ofRM(modrm)); |
| } else { |
| Int len; |
| IRTemp addr = disAMode( &len, vbi, pfx, delta, dis_buf, 0 ); |
| delta += len; |
| argE = loadLE(Ity_I64, mkexpr(addr)); |
| } |
| |
| if (eLeft) { |
| argL = argE; |
| argR = argG; |
| } else { |
| argL = argG; |
| argR = argE; |
| } |
| |
| if (op != Iop_INVALID) { |
| vassert(hName == NULL); |
| vassert(hAddr == NULL); |
| assign(res, binop(op, argL, argR)); |
| } else { |
| vassert(hName != NULL); |
| vassert(hAddr != NULL); |
| assign( res, |
| mkIRExprCCall( |
| Ity_I64, |
| 0/*regparms*/, hName, hAddr, |
| mkIRExprVec_2( argL, argR ) |
| ) |
| ); |
| } |
| |
| putMMXReg( gregLO3ofRM(modrm), mkexpr(res) ); |
| |
| DIP("%s%s %s, %s\n", |
| name, show_granularity ? nameMMXGran(opc & 3) : "", |
| ( isReg ? nameMMXReg(eregLO3ofRM(modrm)) : dis_buf ), |
| nameMMXReg(gregLO3ofRM(modrm)) ); |
| |
| return delta; |
| } |
| |
| |
| /* Vector by scalar shift of G by the amount specified at the bottom |
| of E. This is a straight copy of dis_SSE_shiftG_byE. */ |
| |
| static ULong dis_MMX_shiftG_byE ( VexAbiInfo* vbi, |
| Prefix pfx, Long delta, |
| HChar* opname, IROp op ) |
| { |
| HChar dis_buf[50]; |
| Int alen, size; |
| IRTemp addr; |
| Bool shl, shr, sar; |
| UChar rm = getUChar(delta); |
| IRTemp g0 = newTemp(Ity_I64); |
| IRTemp g1 = newTemp(Ity_I64); |
| IRTemp amt = newTemp(Ity_I64); |
| IRTemp amt8 = newTemp(Ity_I8); |
| |
| if (epartIsReg(rm)) { |
| assign( amt, getMMXReg(eregLO3ofRM(rm)) ); |
| DIP("%s %s,%s\n", opname, |
| nameMMXReg(eregLO3ofRM(rm)), |
| nameMMXReg(gregLO3ofRM(rm)) ); |
| delta++; |
| } else { |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| assign( amt, loadLE(Ity_I64, mkexpr(addr)) ); |
| DIP("%s %s,%s\n", opname, |
| dis_buf, |
| nameMMXReg(gregLO3ofRM(rm)) ); |
| delta += alen; |
| } |
| assign( g0, getMMXReg(gregLO3ofRM(rm)) ); |
| assign( amt8, unop(Iop_64to8, mkexpr(amt)) ); |
| |
| shl = shr = sar = False; |
| size = 0; |
| switch (op) { |
| case Iop_ShlN16x4: shl = True; size = 32; break; |
| case Iop_ShlN32x2: shl = True; size = 32; break; |
| case Iop_Shl64: shl = True; size = 64; break; |
| case Iop_ShrN16x4: shr = True; size = 16; break; |
| case Iop_ShrN32x2: shr = True; size = 32; break; |
| case Iop_Shr64: shr = True; size = 64; break; |
| case Iop_SarN16x4: sar = True; size = 16; break; |
| case Iop_SarN32x2: sar = True; size = 32; break; |
| default: vassert(0); |
| } |
| |
| if (shl || shr) { |
| assign( |
| g1, |
| IRExpr_Mux0X( |
| unop(Iop_1Uto8,binop(Iop_CmpLT64U,mkexpr(amt),mkU64(size))), |
| mkU64(0), |
| binop(op, mkexpr(g0), mkexpr(amt8)) |
| ) |
| ); |
| } else |
| if (sar) { |
| assign( |
| g1, |
| IRExpr_Mux0X( |
| unop(Iop_1Uto8,binop(Iop_CmpLT64U,mkexpr(amt),mkU64(size))), |
| binop(op, mkexpr(g0), mkU8(size-1)), |
| binop(op, mkexpr(g0), mkexpr(amt8)) |
| ) |
| ); |
| } else { |
| vassert(0); |
| } |
| |
| putMMXReg( gregLO3ofRM(rm), mkexpr(g1) ); |
| return delta; |
| } |
| |
| |
| /* Vector by scalar shift of E by an immediate byte. This is a |
| straight copy of dis_SSE_shiftE_imm. */ |
| |
| static |
| ULong dis_MMX_shiftE_imm ( Long delta, HChar* opname, IROp op ) |
| { |
| Bool shl, shr, sar; |
| UChar rm = getUChar(delta); |
| IRTemp e0 = newTemp(Ity_I64); |
| IRTemp e1 = newTemp(Ity_I64); |
| UChar amt, size; |
| vassert(epartIsReg(rm)); |
| vassert(gregLO3ofRM(rm) == 2 |
| || gregLO3ofRM(rm) == 4 || gregLO3ofRM(rm) == 6); |
| amt = getUChar(delta+1); |
| delta += 2; |
| DIP("%s $%d,%s\n", opname, |
| (Int)amt, |
| nameMMXReg(eregLO3ofRM(rm)) ); |
| |
| assign( e0, getMMXReg(eregLO3ofRM(rm)) ); |
| |
| shl = shr = sar = False; |
| size = 0; |
| switch (op) { |
| case Iop_ShlN16x4: shl = True; size = 16; break; |
| case Iop_ShlN32x2: shl = True; size = 32; break; |
| case Iop_Shl64: shl = True; size = 64; break; |
| case Iop_SarN16x4: sar = True; size = 16; break; |
| case Iop_SarN32x2: sar = True; size = 32; break; |
| case Iop_ShrN16x4: shr = True; size = 16; break; |
| case Iop_ShrN32x2: shr = True; size = 32; break; |
| case Iop_Shr64: shr = True; size = 64; break; |
| default: vassert(0); |
| } |
| |
| if (shl || shr) { |
| assign( e1, amt >= size |
| ? mkU64(0) |
| : binop(op, mkexpr(e0), mkU8(amt)) |
| ); |
| } else |
| if (sar) { |
| assign( e1, amt >= size |
| ? binop(op, mkexpr(e0), mkU8(size-1)) |
| : binop(op, mkexpr(e0), mkU8(amt)) |
| ); |
| } else { |
| vassert(0); |
| } |
| |
| putMMXReg( eregLO3ofRM(rm), mkexpr(e1) ); |
| return delta; |
| } |
| |
| |
| /* Completely handle all MMX instructions except emms. */ |
| |
| static |
| ULong dis_MMX ( Bool* decode_ok, |
| VexAbiInfo* vbi, Prefix pfx, Int sz, Long delta ) |
| { |
| Int len; |
| UChar modrm; |
| HChar dis_buf[50]; |
| UChar opc = getUChar(delta); |
| delta++; |
| |
| /* dis_MMX handles all insns except emms. */ |
| do_MMX_preamble(); |
| |
| switch (opc) { |
| |
| case 0x6E: |
| if (sz == 4) { |
| /* MOVD (src)ireg32-or-mem32 (E), (dst)mmxreg (G)*/ |
| modrm = getUChar(delta); |
| if (epartIsReg(modrm)) { |
| delta++; |
| putMMXReg( |
| gregLO3ofRM(modrm), |
| binop( Iop_32HLto64, |
| mkU32(0), |
| getIReg32(eregOfRexRM(pfx,modrm)) ) ); |
| DIP("movd %s, %s\n", |
| nameIReg32(eregOfRexRM(pfx,modrm)), |
| nameMMXReg(gregLO3ofRM(modrm))); |
| } else { |
| IRTemp addr = disAMode( &len, vbi, pfx, delta, dis_buf, 0 ); |
| delta += len; |
| putMMXReg( |
| gregLO3ofRM(modrm), |
| binop( Iop_32HLto64, |
| mkU32(0), |
| loadLE(Ity_I32, mkexpr(addr)) ) ); |
| DIP("movd %s, %s\n", dis_buf, nameMMXReg(gregLO3ofRM(modrm))); |
| } |
| } |
| else |
| if (sz == 8) { |
| /* MOVD (src)ireg64-or-mem64 (E), (dst)mmxreg (G)*/ |
| modrm = getUChar(delta); |
| if (epartIsReg(modrm)) { |
| delta++; |
| putMMXReg( gregLO3ofRM(modrm), |
| getIReg64(eregOfRexRM(pfx,modrm)) ); |
| DIP("movd %s, %s\n", |
| nameIReg64(eregOfRexRM(pfx,modrm)), |
| nameMMXReg(gregLO3ofRM(modrm))); |
| } else { |
| IRTemp addr = disAMode( &len, vbi, pfx, delta, dis_buf, 0 ); |
| delta += len; |
| putMMXReg( gregLO3ofRM(modrm), |
| loadLE(Ity_I64, mkexpr(addr)) ); |
| DIP("movd{64} %s, %s\n", dis_buf, nameMMXReg(gregLO3ofRM(modrm))); |
| } |
| } |
| else { |
| goto mmx_decode_failure; |
| } |
| break; |
| |
| case 0x7E: |
| if (sz == 4) { |
| /* MOVD (src)mmxreg (G), (dst)ireg32-or-mem32 (E) */ |
| modrm = getUChar(delta); |
| if (epartIsReg(modrm)) { |
| delta++; |
| putIReg32( eregOfRexRM(pfx,modrm), |
| unop(Iop_64to32, getMMXReg(gregLO3ofRM(modrm)) ) ); |
| DIP("movd %s, %s\n", |
| nameMMXReg(gregLO3ofRM(modrm)), |
| nameIReg32(eregOfRexRM(pfx,modrm))); |
| } else { |
| IRTemp addr = disAMode( &len, vbi, pfx, delta, dis_buf, 0 ); |
| delta += len; |
| storeLE( mkexpr(addr), |
| unop(Iop_64to32, getMMXReg(gregLO3ofRM(modrm)) ) ); |
| DIP("movd %s, %s\n", nameMMXReg(gregLO3ofRM(modrm)), dis_buf); |
| } |
| } |
| else |
| if (sz == 8) { |
| /* MOVD (src)mmxreg (G), (dst)ireg64-or-mem64 (E) */ |
| modrm = getUChar(delta); |
| if (epartIsReg(modrm)) { |
| delta++; |
| putIReg64( eregOfRexRM(pfx,modrm), |
| getMMXReg(gregLO3ofRM(modrm)) ); |
| DIP("movd %s, %s\n", |
| nameMMXReg(gregLO3ofRM(modrm)), |
| nameIReg64(eregOfRexRM(pfx,modrm))); |
| } else { |
| IRTemp addr = disAMode( &len, vbi, pfx, delta, dis_buf, 0 ); |
| delta += len; |
| storeLE( mkexpr(addr), |
| getMMXReg(gregLO3ofRM(modrm)) ); |
| DIP("movd{64} %s, %s\n", nameMMXReg(gregLO3ofRM(modrm)), dis_buf); |
| } |
| } else { |
| goto mmx_decode_failure; |
| } |
| break; |
| |
| case 0x6F: |
| /* MOVQ (src)mmxreg-or-mem, (dst)mmxreg */ |
| if (sz != 4 |
| && /*ignore redundant REX.W*/!(sz==8 && haveNo66noF2noF3(pfx))) |
| goto mmx_decode_failure; |
| modrm = getUChar(delta); |
| if (epartIsReg(modrm)) { |
| delta++; |
| putMMXReg( gregLO3ofRM(modrm), getMMXReg(eregLO3ofRM(modrm)) ); |
| DIP("movq %s, %s\n", |
| nameMMXReg(eregLO3ofRM(modrm)), |
| nameMMXReg(gregLO3ofRM(modrm))); |
| } else { |
| IRTemp addr = disAMode( &len, vbi, pfx, delta, dis_buf, 0 ); |
| delta += len; |
| putMMXReg( gregLO3ofRM(modrm), loadLE(Ity_I64, mkexpr(addr)) ); |
| DIP("movq %s, %s\n", |
| dis_buf, nameMMXReg(gregLO3ofRM(modrm))); |
| } |
| break; |
| |
| case 0x7F: |
| /* MOVQ (src)mmxreg, (dst)mmxreg-or-mem */ |
| if (sz != 4 |
| && /*ignore redundant REX.W*/!(sz==8 && haveNo66noF2noF3(pfx))) |
| goto mmx_decode_failure; |
| modrm = getUChar(delta); |
| if (epartIsReg(modrm)) { |
| /* Fall through. The assembler doesn't appear to generate |
| these. */ |
| goto mmx_decode_failure; |
| } else { |
| IRTemp addr = disAMode( &len, vbi, pfx, delta, dis_buf, 0 ); |
| delta += len; |
| storeLE( mkexpr(addr), getMMXReg(gregLO3ofRM(modrm)) ); |
| DIP("mov(nt)q %s, %s\n", |
| nameMMXReg(gregLO3ofRM(modrm)), dis_buf); |
| } |
| break; |
| |
| case 0xFC: |
| case 0xFD: |
| case 0xFE: /* PADDgg (src)mmxreg-or-mem, (dst)mmxreg */ |
| if (sz != 4) |
| goto mmx_decode_failure; |
| delta = dis_MMXop_regmem_to_reg ( vbi, pfx, delta, opc, "padd", True ); |
| break; |
| |
| case 0xEC: |
| case 0xED: /* PADDSgg (src)mmxreg-or-mem, (dst)mmxreg */ |
| if (sz != 4 |
| && /*ignore redundant REX.W*/!(sz==8 && haveNo66noF2noF3(pfx))) |
| goto mmx_decode_failure; |
| delta = dis_MMXop_regmem_to_reg ( vbi, pfx, delta, opc, "padds", True ); |
| break; |
| |
| case 0xDC: |
| case 0xDD: /* PADDUSgg (src)mmxreg-or-mem, (dst)mmxreg */ |
| if (sz != 4) |
| goto mmx_decode_failure; |
| delta = dis_MMXop_regmem_to_reg ( vbi, pfx, delta, opc, "paddus", True ); |
| break; |
| |
| case 0xF8: |
| case 0xF9: |
| case 0xFA: /* PSUBgg (src)mmxreg-or-mem, (dst)mmxreg */ |
| if (sz != 4) |
| goto mmx_decode_failure; |
| delta = dis_MMXop_regmem_to_reg ( vbi, pfx, delta, opc, "psub", True ); |
| break; |
| |
| case 0xE8: |
| case 0xE9: /* PSUBSgg (src)mmxreg-or-mem, (dst)mmxreg */ |
| if (sz != 4) |
| goto mmx_decode_failure; |
| delta = dis_MMXop_regmem_to_reg ( vbi, pfx, delta, opc, "psubs", True ); |
| break; |
| |
| case 0xD8: |
| case 0xD9: /* PSUBUSgg (src)mmxreg-or-mem, (dst)mmxreg */ |
| if (sz != 4) |
| goto mmx_decode_failure; |
| delta = dis_MMXop_regmem_to_reg ( vbi, pfx, delta, opc, "psubus", True ); |
| break; |
| |
| case 0xE5: /* PMULHW (src)mmxreg-or-mem, (dst)mmxreg */ |
| if (sz != 4) |
| goto mmx_decode_failure; |
| delta = dis_MMXop_regmem_to_reg ( vbi, pfx, delta, opc, "pmulhw", False ); |
| break; |
| |
| case 0xD5: /* PMULLW (src)mmxreg-or-mem, (dst)mmxreg */ |
| if (sz != 4) |
| goto mmx_decode_failure; |
| delta = dis_MMXop_regmem_to_reg ( vbi, pfx, delta, opc, "pmullw", False ); |
| break; |
| |
| case 0xF5: /* PMADDWD (src)mmxreg-or-mem, (dst)mmxreg */ |
| vassert(sz == 4); |
| delta = dis_MMXop_regmem_to_reg ( vbi, pfx, delta, opc, "pmaddwd", False ); |
| break; |
| |
| case 0x74: |
| case 0x75: |
| case 0x76: /* PCMPEQgg (src)mmxreg-or-mem, (dst)mmxreg */ |
| if (sz != 4) |
| goto mmx_decode_failure; |
| delta = dis_MMXop_regmem_to_reg ( vbi, pfx, delta, opc, "pcmpeq", True ); |
| break; |
| |
| case 0x64: |
| case 0x65: |
| case 0x66: /* PCMPGTgg (src)mmxreg-or-mem, (dst)mmxreg */ |
| if (sz != 4) |
| goto mmx_decode_failure; |
| delta = dis_MMXop_regmem_to_reg ( vbi, pfx, delta, opc, "pcmpgt", True ); |
| break; |
| |
| case 0x6B: /* PACKSSDW (src)mmxreg-or-mem, (dst)mmxreg */ |
| if (sz != 4) |
| goto mmx_decode_failure; |
| delta = dis_MMXop_regmem_to_reg ( vbi, pfx, delta, opc, "packssdw", False ); |
| break; |
| |
| case 0x63: /* PACKSSWB (src)mmxreg-or-mem, (dst)mmxreg */ |
| if (sz != 4) |
| goto mmx_decode_failure; |
| delta = dis_MMXop_regmem_to_reg ( vbi, pfx, delta, opc, "packsswb", False ); |
| break; |
| |
| case 0x67: /* PACKUSWB (src)mmxreg-or-mem, (dst)mmxreg */ |
| if (sz != 4) |
| goto mmx_decode_failure; |
| delta = dis_MMXop_regmem_to_reg ( vbi, pfx, delta, opc, "packuswb", False ); |
| break; |
| |
| case 0x68: |
| case 0x69: |
| case 0x6A: /* PUNPCKHgg (src)mmxreg-or-mem, (dst)mmxreg */ |
| if (sz != 4 |
| && /*ignore redundant REX.W*/!(sz==8 && haveNo66noF2noF3(pfx))) |
| goto mmx_decode_failure; |
| delta = dis_MMXop_regmem_to_reg ( vbi, pfx, delta, opc, "punpckh", True ); |
| break; |
| |
| case 0x60: |
| case 0x61: |
| case 0x62: /* PUNPCKLgg (src)mmxreg-or-mem, (dst)mmxreg */ |
| if (sz != 4 |
| && /*ignore redundant REX.W*/!(sz==8 && haveNo66noF2noF3(pfx))) |
| goto mmx_decode_failure; |
| delta = dis_MMXop_regmem_to_reg ( vbi, pfx, delta, opc, "punpckl", True ); |
| break; |
| |
| case 0xDB: /* PAND (src)mmxreg-or-mem, (dst)mmxreg */ |
| if (sz != 4) |
| goto mmx_decode_failure; |
| delta = dis_MMXop_regmem_to_reg ( vbi, pfx, delta, opc, "pand", False ); |
| break; |
| |
| case 0xDF: /* PANDN (src)mmxreg-or-mem, (dst)mmxreg */ |
| if (sz != 4) |
| goto mmx_decode_failure; |
| delta = dis_MMXop_regmem_to_reg ( vbi, pfx, delta, opc, "pandn", False ); |
| break; |
| |
| case 0xEB: /* POR (src)mmxreg-or-mem, (dst)mmxreg */ |
| if (sz != 4) |
| goto mmx_decode_failure; |
| delta = dis_MMXop_regmem_to_reg ( vbi, pfx, delta, opc, "por", False ); |
| break; |
| |
| case 0xEF: /* PXOR (src)mmxreg-or-mem, (dst)mmxreg */ |
| if (sz != 4) |
| goto mmx_decode_failure; |
| delta = dis_MMXop_regmem_to_reg ( vbi, pfx, delta, opc, "pxor", False ); |
| break; |
| |
| # define SHIFT_BY_REG(_name,_op) \ |
| delta = dis_MMX_shiftG_byE(vbi, pfx, delta, _name, _op); \ |
| break; |
| |
| /* PSLLgg (src)mmxreg-or-mem, (dst)mmxreg */ |
| case 0xF1: SHIFT_BY_REG("psllw", Iop_ShlN16x4); |
| case 0xF2: SHIFT_BY_REG("pslld", Iop_ShlN32x2); |
| case 0xF3: SHIFT_BY_REG("psllq", Iop_Shl64); |
| |
| /* PSRLgg (src)mmxreg-or-mem, (dst)mmxreg */ |
| case 0xD1: SHIFT_BY_REG("psrlw", Iop_ShrN16x4); |
| case 0xD2: SHIFT_BY_REG("psrld", Iop_ShrN32x2); |
| case 0xD3: SHIFT_BY_REG("psrlq", Iop_Shr64); |
| |
| /* PSRAgg (src)mmxreg-or-mem, (dst)mmxreg */ |
| case 0xE1: SHIFT_BY_REG("psraw", Iop_SarN16x4); |
| case 0xE2: SHIFT_BY_REG("psrad", Iop_SarN32x2); |
| |
| # undef SHIFT_BY_REG |
| |
| case 0x71: |
| case 0x72: |
| case 0x73: { |
| /* (sz==4): PSLLgg/PSRAgg/PSRLgg mmxreg by imm8 */ |
| UChar byte2, subopc; |
| if (sz != 4) |
| goto mmx_decode_failure; |
| byte2 = getUChar(delta); /* amode / sub-opcode */ |
| subopc = toUChar( (byte2 >> 3) & 7 ); |
| |
| # define SHIFT_BY_IMM(_name,_op) \ |
| do { delta = dis_MMX_shiftE_imm(delta,_name,_op); \ |
| } while (0) |
| |
| if (subopc == 2 /*SRL*/ && opc == 0x71) |
| SHIFT_BY_IMM("psrlw", Iop_ShrN16x4); |
| else if (subopc == 2 /*SRL*/ && opc == 0x72) |
| SHIFT_BY_IMM("psrld", Iop_ShrN32x2); |
| else if (subopc == 2 /*SRL*/ && opc == 0x73) |
| SHIFT_BY_IMM("psrlq", Iop_Shr64); |
| |
| else if (subopc == 4 /*SAR*/ && opc == 0x71) |
| SHIFT_BY_IMM("psraw", Iop_SarN16x4); |
| else if (subopc == 4 /*SAR*/ && opc == 0x72) |
| SHIFT_BY_IMM("psrad", Iop_SarN32x2); |
| |
| else if (subopc == 6 /*SHL*/ && opc == 0x71) |
| SHIFT_BY_IMM("psllw", Iop_ShlN16x4); |
| else if (subopc == 6 /*SHL*/ && opc == 0x72) |
| SHIFT_BY_IMM("pslld", Iop_ShlN32x2); |
| else if (subopc == 6 /*SHL*/ && opc == 0x73) |
| SHIFT_BY_IMM("psllq", Iop_Shl64); |
| |
| else goto mmx_decode_failure; |
| |
| # undef SHIFT_BY_IMM |
| break; |
| } |
| |
| case 0xF7: { |
| IRTemp addr = newTemp(Ity_I64); |
| IRTemp regD = newTemp(Ity_I64); |
| IRTemp regM = newTemp(Ity_I64); |
| IRTemp mask = newTemp(Ity_I64); |
| IRTemp olddata = newTemp(Ity_I64); |
| IRTemp newdata = newTemp(Ity_I64); |
| |
| modrm = getUChar(delta); |
| if (sz != 4 || (!epartIsReg(modrm))) |
| goto mmx_decode_failure; |
| delta++; |
| |
| assign( addr, handleAddrOverrides( vbi, pfx, getIReg64(R_RDI) )); |
| assign( regM, getMMXReg( eregLO3ofRM(modrm) )); |
| assign( regD, getMMXReg( gregLO3ofRM(modrm) )); |
| assign( mask, binop(Iop_SarN8x8, mkexpr(regM), mkU8(7)) ); |
| assign( olddata, loadLE( Ity_I64, mkexpr(addr) )); |
| assign( newdata, |
| binop(Iop_Or64, |
| binop(Iop_And64, |
| mkexpr(regD), |
| mkexpr(mask) ), |
| binop(Iop_And64, |
| mkexpr(olddata), |
| unop(Iop_Not64, mkexpr(mask)))) ); |
| storeLE( mkexpr(addr), mkexpr(newdata) ); |
| DIP("maskmovq %s,%s\n", nameMMXReg( eregLO3ofRM(modrm) ), |
| nameMMXReg( gregLO3ofRM(modrm) ) ); |
| break; |
| } |
| |
| /* --- MMX decode failure --- */ |
| default: |
| mmx_decode_failure: |
| *decode_ok = False; |
| return delta; /* ignored */ |
| |
| } |
| |
| *decode_ok = True; |
| return delta; |
| } |
| |
| |
| /*------------------------------------------------------------*/ |
| /*--- More misc arithmetic and other obscure insns. ---*/ |
| /*------------------------------------------------------------*/ |
| |
| /* Generate base << amt with vacated places filled with stuff |
| from xtra. amt guaranteed in 0 .. 63. */ |
| static |
| IRExpr* shiftL64_with_extras ( IRTemp base, IRTemp xtra, IRTemp amt ) |
| { |
| /* if amt == 0 |
| then base |
| else (base << amt) | (xtra >>u (64-amt)) |
| */ |
| return |
| IRExpr_Mux0X( |
| mkexpr(amt), |
| mkexpr(base), |
| binop(Iop_Or64, |
| binop(Iop_Shl64, mkexpr(base), mkexpr(amt)), |
| binop(Iop_Shr64, mkexpr(xtra), |
| binop(Iop_Sub8, mkU8(64), mkexpr(amt))) |
| ) |
| ); |
| } |
| |
| /* Generate base >>u amt with vacated places filled with stuff |
| from xtra. amt guaranteed in 0 .. 63. */ |
| static |
| IRExpr* shiftR64_with_extras ( IRTemp xtra, IRTemp base, IRTemp amt ) |
| { |
| /* if amt == 0 |
| then base |
| else (base >>u amt) | (xtra << (64-amt)) |
| */ |
| return |
| IRExpr_Mux0X( |
| mkexpr(amt), |
| mkexpr(base), |
| binop(Iop_Or64, |
| binop(Iop_Shr64, mkexpr(base), mkexpr(amt)), |
| binop(Iop_Shl64, mkexpr(xtra), |
| binop(Iop_Sub8, mkU8(64), mkexpr(amt))) |
| ) |
| ); |
| } |
| |
| /* Double length left and right shifts. Apparently only required in |
| v-size (no b- variant). */ |
| static |
| ULong dis_SHLRD_Gv_Ev ( VexAbiInfo* vbi, |
| Prefix pfx, |
| Long delta, UChar modrm, |
| Int sz, |
| IRExpr* shift_amt, |
| Bool amt_is_literal, |
| HChar* shift_amt_txt, |
| Bool left_shift ) |
| { |
| /* shift_amt :: Ity_I8 is the amount to shift. shift_amt_txt is used |
| for printing it. And eip on entry points at the modrm byte. */ |
| Int len; |
| HChar dis_buf[50]; |
| |
| IRType ty = szToITy(sz); |
| IRTemp gsrc = newTemp(ty); |
| IRTemp esrc = newTemp(ty); |
| IRTemp addr = IRTemp_INVALID; |
| IRTemp tmpSH = newTemp(Ity_I8); |
| IRTemp tmpSS = newTemp(Ity_I8); |
| IRTemp tmp64 = IRTemp_INVALID; |
| IRTemp res64 = IRTemp_INVALID; |
| IRTemp rss64 = IRTemp_INVALID; |
| IRTemp resTy = IRTemp_INVALID; |
| IRTemp rssTy = IRTemp_INVALID; |
| Int mask = sz==8 ? 63 : 31; |
| |
| vassert(sz == 2 || sz == 4 || sz == 8); |
| |
| /* The E-part is the destination; this is shifted. The G-part |
| supplies bits to be shifted into the E-part, but is not |
| changed. |
| |
| If shifting left, form a double-length word with E at the top |
| and G at the bottom, and shift this left. The result is then in |
| the high part. |
| |
| If shifting right, form a double-length word with G at the top |
| and E at the bottom, and shift this right. The result is then |
| at the bottom. */ |
| |
| /* Fetch the operands. */ |
| |
| assign( gsrc, getIRegG(sz, pfx, modrm) ); |
| |
| if (epartIsReg(modrm)) { |
| delta++; |
| assign( esrc, getIRegE(sz, pfx, modrm) ); |
| DIP("sh%cd%c %s, %s, %s\n", |
| ( left_shift ? 'l' : 'r' ), nameISize(sz), |
| shift_amt_txt, |
| nameIRegG(sz, pfx, modrm), nameIRegE(sz, pfx, modrm)); |
| } else { |
| addr = disAMode ( &len, vbi, pfx, delta, dis_buf, |
| /* # bytes following amode */ |
| amt_is_literal ? 1 : 0 ); |
| delta += len; |
| assign( esrc, loadLE(ty, mkexpr(addr)) ); |
| DIP("sh%cd%c %s, %s, %s\n", |
| ( left_shift ? 'l' : 'r' ), nameISize(sz), |
| shift_amt_txt, |
| nameIRegG(sz, pfx, modrm), dis_buf); |
| } |
| |
| /* Calculate the masked shift amount (tmpSH), the masked subshift |
| amount (tmpSS), the shifted value (res64) and the subshifted |
| value (rss64). */ |
| |
| assign( tmpSH, binop(Iop_And8, shift_amt, mkU8(mask)) ); |
| assign( tmpSS, binop(Iop_And8, |
| binop(Iop_Sub8, mkexpr(tmpSH), mkU8(1) ), |
| mkU8(mask))); |
| |
| tmp64 = newTemp(Ity_I64); |
| res64 = newTemp(Ity_I64); |
| rss64 = newTemp(Ity_I64); |
| |
| if (sz == 2 || sz == 4) { |
| |
| /* G is xtra; E is data */ |
| /* what a freaking nightmare: */ |
| if (sz == 4 && left_shift) { |
| assign( tmp64, binop(Iop_32HLto64, mkexpr(esrc), mkexpr(gsrc)) ); |
| assign( res64, |
| binop(Iop_Shr64, |
| binop(Iop_Shl64, mkexpr(tmp64), mkexpr(tmpSH)), |
| mkU8(32)) ); |
| assign( rss64, |
| binop(Iop_Shr64, |
| binop(Iop_Shl64, mkexpr(tmp64), mkexpr(tmpSS)), |
| mkU8(32)) ); |
| } |
| else |
| if (sz == 4 && !left_shift) { |
| assign( tmp64, binop(Iop_32HLto64, mkexpr(gsrc), mkexpr(esrc)) ); |
| assign( res64, binop(Iop_Shr64, mkexpr(tmp64), mkexpr(tmpSH)) ); |
| assign( rss64, binop(Iop_Shr64, mkexpr(tmp64), mkexpr(tmpSS)) ); |
| } |
| else |
| if (sz == 2 && left_shift) { |
| assign( tmp64, |
| binop(Iop_32HLto64, |
| binop(Iop_16HLto32, mkexpr(esrc), mkexpr(gsrc)), |
| binop(Iop_16HLto32, mkexpr(gsrc), mkexpr(gsrc)) |
| )); |
| /* result formed by shifting [esrc'gsrc'gsrc'gsrc] */ |
| assign( res64, |
| binop(Iop_Shr64, |
| binop(Iop_Shl64, mkexpr(tmp64), mkexpr(tmpSH)), |
| mkU8(48)) ); |
| /* subshift formed by shifting [esrc'0000'0000'0000] */ |
| assign( rss64, |
| binop(Iop_Shr64, |
| binop(Iop_Shl64, |
| binop(Iop_Shl64, unop(Iop_16Uto64, mkexpr(esrc)), |
| mkU8(48)), |
| mkexpr(tmpSS)), |
| mkU8(48)) ); |
| } |
| else |
| if (sz == 2 && !left_shift) { |
| assign( tmp64, |
| binop(Iop_32HLto64, |
| binop(Iop_16HLto32, mkexpr(gsrc), mkexpr(gsrc)), |
| binop(Iop_16HLto32, mkexpr(gsrc), mkexpr(esrc)) |
| )); |
| /* result formed by shifting [gsrc'gsrc'gsrc'esrc] */ |
| assign( res64, binop(Iop_Shr64, mkexpr(tmp64), mkexpr(tmpSH)) ); |
| /* subshift formed by shifting [0000'0000'0000'esrc] */ |
| assign( rss64, binop(Iop_Shr64, |
| unop(Iop_16Uto64, mkexpr(esrc)), |
| mkexpr(tmpSS)) ); |
| } |
| |
| } else { |
| |
| vassert(sz == 8); |
| if (left_shift) { |
| assign( res64, shiftL64_with_extras( esrc, gsrc, tmpSH )); |
| assign( rss64, shiftL64_with_extras( esrc, gsrc, tmpSS )); |
| } else { |
| assign( res64, shiftR64_with_extras( gsrc, esrc, tmpSH )); |
| assign( rss64, shiftR64_with_extras( gsrc, esrc, tmpSS )); |
| } |
| |
| } |
| |
| resTy = newTemp(ty); |
| rssTy = newTemp(ty); |
| assign( resTy, narrowTo(ty, mkexpr(res64)) ); |
| assign( rssTy, narrowTo(ty, mkexpr(rss64)) ); |
| |
| /* Put result back and write the flags thunk. */ |
| setFlags_DEP1_DEP2_shift ( left_shift ? Iop_Shl64 : Iop_Sar64, |
| resTy, rssTy, ty, tmpSH ); |
| |
| if (epartIsReg(modrm)) { |
| putIRegE(sz, pfx, modrm, mkexpr(resTy)); |
| } else { |
| storeLE( mkexpr(addr), mkexpr(resTy) ); |
| } |
| |
| if (amt_is_literal) delta++; |
| return delta; |
| } |
| |
| |
| /* Handle BT/BTS/BTR/BTC Gv, Ev. Apparently b-size is not |
| required. */ |
| |
| typedef enum { BtOpNone, BtOpSet, BtOpReset, BtOpComp } BtOp; |
| |
| static HChar* nameBtOp ( BtOp op ) |
| { |
| switch (op) { |
| case BtOpNone: return ""; |
| case BtOpSet: return "s"; |
| case BtOpReset: return "r"; |
| case BtOpComp: return "c"; |
| default: vpanic("nameBtOp(amd64)"); |
| } |
| } |
| |
| |
| static |
| ULong dis_bt_G_E ( VexAbiInfo* vbi, |
| Prefix pfx, Int sz, Long delta, BtOp op ) |
| { |
| HChar dis_buf[50]; |
| UChar modrm; |
| Int len; |
| IRTemp t_fetched, t_bitno0, t_bitno1, t_bitno2, t_addr0, |
| t_addr1, t_rsp, t_mask, t_new; |
| |
| vassert(sz == 2 || sz == 4 || sz == 8); |
| |
| t_fetched = t_bitno0 = t_bitno1 = t_bitno2 |
| = t_addr0 = t_addr1 = t_rsp |
| = t_mask = t_new = IRTemp_INVALID; |
| |
| t_fetched = newTemp(Ity_I8); |
| t_new = newTemp(Ity_I8); |
| t_bitno0 = newTemp(Ity_I64); |
| t_bitno1 = newTemp(Ity_I64); |
| t_bitno2 = newTemp(Ity_I8); |
| t_addr1 = newTemp(Ity_I64); |
| modrm = getUChar(delta); |
| |
| assign( t_bitno0, widenSto64(getIRegG(sz, pfx, modrm)) ); |
| |
| if (epartIsReg(modrm)) { |
| delta++; |
| /* Get it onto the client's stack. Oh, this is a horrible |
| kludge. See https://bugs.kde.org/show_bug.cgi?id=245925. |
| Because of the ELF ABI stack redzone, there may be live data |
| up to 128 bytes below %RSP. So we can't just push it on the |
| stack, else we may wind up trashing live data, and causing |
| impossible-to-find simulation errors. (Yes, this did |
| happen.) So we need to drop RSP before at least 128 before |
| pushing it. That unfortunately means hitting Memcheck's |
| fast-case painting code. Ideally we should drop more than |
| 128, to reduce the chances of breaking buggy programs that |
| have live data below -128(%RSP). Memcheck fast-cases moves |
| of 288 bytes due to the need to handle ppc64-linux quickly, |
| so let's use 288. Of course the real fix is to get rid of |
| this kludge entirely. */ |
| t_rsp = newTemp(Ity_I64); |
| t_addr0 = newTemp(Ity_I64); |
| |
| vassert(vbi->guest_stack_redzone_size == 128); |
| assign( t_rsp, binop(Iop_Sub64, getIReg64(R_RSP), mkU64(288)) ); |
| putIReg64(R_RSP, mkexpr(t_rsp)); |
| |
| storeLE( mkexpr(t_rsp), getIRegE(sz, pfx, modrm) ); |
| |
| /* Make t_addr0 point at it. */ |
| assign( t_addr0, mkexpr(t_rsp) ); |
| |
| /* Mask out upper bits of the shift amount, since we're doing a |
| reg. */ |
| assign( t_bitno1, binop(Iop_And64, |
| mkexpr(t_bitno0), |
| mkU64(sz == 8 ? 63 : sz == 4 ? 31 : 15)) ); |
| |
| } else { |
| t_addr0 = disAMode ( &len, vbi, pfx, delta, dis_buf, 0 ); |
| delta += len; |
| assign( t_bitno1, mkexpr(t_bitno0) ); |
| } |
| |
| /* At this point: t_addr0 is the address being operated on. If it |
| was a reg, we will have pushed it onto the client's stack. |
| t_bitno1 is the bit number, suitably masked in the case of a |
| reg. */ |
| |
| /* Now the main sequence. */ |
| assign( t_addr1, |
| binop(Iop_Add64, |
| mkexpr(t_addr0), |
| binop(Iop_Sar64, mkexpr(t_bitno1), mkU8(3))) ); |
| |
| /* t_addr1 now holds effective address */ |
| |
| assign( t_bitno2, |
| unop(Iop_64to8, |
| binop(Iop_And64, mkexpr(t_bitno1), mkU64(7))) ); |
| |
| /* t_bitno2 contains offset of bit within byte */ |
| |
| if (op != BtOpNone) { |
| t_mask = newTemp(Ity_I8); |
| assign( t_mask, binop(Iop_Shl8, mkU8(1), mkexpr(t_bitno2)) ); |
| } |
| |
| /* t_mask is now a suitable byte mask */ |
| |
| assign( t_fetched, loadLE(Ity_I8, mkexpr(t_addr1)) ); |
| |
| if (op != BtOpNone) { |
| switch (op) { |
| case BtOpSet: |
| assign( t_new, |
| binop(Iop_Or8, mkexpr(t_fetched), mkexpr(t_mask)) ); |
| break; |
| case BtOpComp: |
| assign( t_new, |
| binop(Iop_Xor8, mkexpr(t_fetched), mkexpr(t_mask)) ); |
| break; |
| case BtOpReset: |
| assign( t_new, |
| binop(Iop_And8, mkexpr(t_fetched), |
| unop(Iop_Not8, mkexpr(t_mask))) ); |
| break; |
| default: |
| vpanic("dis_bt_G_E(amd64)"); |
| } |
| if ((pfx & PFX_LOCK) && !epartIsReg(modrm)) { |
| casLE( mkexpr(t_addr1), mkexpr(t_fetched)/*expd*/, |
| mkexpr(t_new)/*new*/, |
| guest_RIP_curr_instr ); |
| } else { |
| storeLE( mkexpr(t_addr1), mkexpr(t_new) ); |
| } |
| } |
| |
| /* Side effect done; now get selected bit into Carry flag */ |
| /* Flags: C=selected bit, O,S,Z,A,P undefined, so are set to zero. */ |
| stmt( IRStmt_Put( OFFB_CC_OP, mkU64(AMD64G_CC_OP_COPY) )); |
| stmt( IRStmt_Put( OFFB_CC_DEP2, mkU64(0) )); |
| stmt( IRStmt_Put( |
| OFFB_CC_DEP1, |
| binop(Iop_And64, |
| binop(Iop_Shr64, |
| unop(Iop_8Uto64, mkexpr(t_fetched)), |
| mkexpr(t_bitno2)), |
| mkU64(1))) |
| ); |
| /* Set NDEP even though it isn't used. This makes redundant-PUT |
| elimination of previous stores to this field work better. */ |
| stmt( IRStmt_Put( OFFB_CC_NDEP, mkU64(0) )); |
| |
| /* Move reg operand from stack back to reg */ |
| if (epartIsReg(modrm)) { |
| /* t_rsp still points at it. */ |
| /* only write the reg if actually modifying it; doing otherwise |
| zeroes the top half erroneously when doing btl due to |
| standard zero-extend rule */ |
| if (op != BtOpNone) |
| putIRegE(sz, pfx, modrm, loadLE(szToITy(sz), mkexpr(t_rsp)) ); |
| putIReg64(R_RSP, binop(Iop_Add64, mkexpr(t_rsp), mkU64(288)) ); |
| } |
| |
| DIP("bt%s%c %s, %s\n", |
| nameBtOp(op), nameISize(sz), nameIRegG(sz, pfx, modrm), |
| ( epartIsReg(modrm) ? nameIRegE(sz, pfx, modrm) : dis_buf ) ); |
| |
| return delta; |
| } |
| |
| |
| |
| /* Handle BSF/BSR. Only v-size seems necessary. */ |
| static |
| ULong dis_bs_E_G ( VexAbiInfo* vbi, |
| Prefix pfx, Int sz, Long delta, Bool fwds ) |
| { |
| Bool isReg; |
| UChar modrm; |
| HChar dis_buf[50]; |
| |
| IRType ty = szToITy(sz); |
| IRTemp src = newTemp(ty); |
| IRTemp dst = newTemp(ty); |
| IRTemp src64 = newTemp(Ity_I64); |
| IRTemp dst64 = newTemp(Ity_I64); |
| IRTemp src8 = newTemp(Ity_I8); |
| |
| vassert(sz == 8 || sz == 4 || sz == 2); |
| |
| modrm = getUChar(delta); |
| isReg = epartIsReg(modrm); |
| if (isReg) { |
| delta++; |
| assign( src, getIRegE(sz, pfx, modrm) ); |
| } else { |
| Int len; |
| IRTemp addr = disAMode( &len, vbi, pfx, delta, dis_buf, 0 ); |
| delta += len; |
| assign( src, loadLE(ty, mkexpr(addr)) ); |
| } |
| |
| DIP("bs%c%c %s, %s\n", |
| fwds ? 'f' : 'r', nameISize(sz), |
| ( isReg ? nameIRegE(sz, pfx, modrm) : dis_buf ), |
| nameIRegG(sz, pfx, modrm)); |
| |
| /* First, widen src to 64 bits if it is not already. */ |
| assign( src64, widenUto64(mkexpr(src)) ); |
| |
| /* Generate an 8-bit expression which is zero iff the |
| original is zero, and nonzero otherwise */ |
| assign( src8, |
| unop(Iop_1Uto8, |
| binop(Iop_CmpNE64, |
| mkexpr(src64), mkU64(0))) ); |
| |
| /* Flags: Z is 1 iff source value is zero. All others |
| are undefined -- we force them to zero. */ |
| stmt( IRStmt_Put( OFFB_CC_OP, mkU64(AMD64G_CC_OP_COPY) )); |
| stmt( IRStmt_Put( OFFB_CC_DEP2, mkU64(0) )); |
| stmt( IRStmt_Put( |
| OFFB_CC_DEP1, |
| IRExpr_Mux0X( mkexpr(src8), |
| /* src==0 */ |
| mkU64(AMD64G_CC_MASK_Z), |
| /* src!=0 */ |
| mkU64(0) |
| ) |
| )); |
| /* Set NDEP even though it isn't used. This makes redundant-PUT |
| elimination of previous stores to this field work better. */ |
| stmt( IRStmt_Put( OFFB_CC_NDEP, mkU64(0) )); |
| |
| /* Result: iff source value is zero, we can't use |
| Iop_Clz64/Iop_Ctz64 as they have no defined result in that case. |
| But anyway, amd64 semantics say the result is undefined in |
| such situations. Hence handle the zero case specially. */ |
| |
| /* Bleh. What we compute: |
| |
| bsf64: if src == 0 then {dst is unchanged} |
| else Ctz64(src) |
| |
| bsr64: if src == 0 then {dst is unchanged} |
| else 63 - Clz64(src) |
| |
| bsf32: if src == 0 then {dst is unchanged} |
| else Ctz64(32Uto64(src)) |
| |
| bsr32: if src == 0 then {dst is unchanged} |
| else 63 - Clz64(32Uto64(src)) |
| |
| bsf16: if src == 0 then {dst is unchanged} |
| else Ctz64(32Uto64(16Uto32(src))) |
| |
| bsr16: if src == 0 then {dst is unchanged} |
| else 63 - Clz64(32Uto64(16Uto32(src))) |
| */ |
| |
| /* The main computation, guarding against zero. */ |
| assign( dst64, |
| IRExpr_Mux0X( |
| mkexpr(src8), |
| /* src == 0 -- leave dst unchanged */ |
| widenUto64( getIRegG( sz, pfx, modrm ) ), |
| /* src != 0 */ |
| fwds ? unop(Iop_Ctz64, mkexpr(src64)) |
| : binop(Iop_Sub64, |
| mkU64(63), |
| unop(Iop_Clz64, mkexpr(src64))) |
| ) |
| ); |
| |
| if (sz == 2) |
| assign( dst, unop(Iop_64to16, mkexpr(dst64)) ); |
| else |
| if (sz == 4) |
| assign( dst, unop(Iop_64to32, mkexpr(dst64)) ); |
| else |
| assign( dst, mkexpr(dst64) ); |
| |
| /* dump result back */ |
| putIRegG( sz, pfx, modrm, mkexpr(dst) ); |
| |
| return delta; |
| } |
| |
| |
| /* swap rAX with the reg specified by reg and REX.B */ |
| static |
| void codegen_xchg_rAX_Reg ( Prefix pfx, Int sz, UInt regLo3 ) |
| { |
| IRType ty = szToITy(sz); |
| IRTemp t1 = newTemp(ty); |
| IRTemp t2 = newTemp(ty); |
| vassert(sz == 2 || sz == 4 || sz == 8); |
| vassert(regLo3 < 8); |
| if (sz == 8) { |
| assign( t1, getIReg64(R_RAX) ); |
| assign( t2, getIRegRexB(8, pfx, regLo3) ); |
| putIReg64( R_RAX, mkexpr(t2) ); |
| putIRegRexB(8, pfx, regLo3, mkexpr(t1) ); |
| } else if (sz == 4) { |
| assign( t1, getIReg32(R_RAX) ); |
| assign( t2, getIRegRexB(4, pfx, regLo3) ); |
| putIReg32( R_RAX, mkexpr(t2) ); |
| putIRegRexB(4, pfx, regLo3, mkexpr(t1) ); |
| } else { |
| assign( t1, getIReg16(R_RAX) ); |
| assign( t2, getIRegRexB(2, pfx, regLo3) ); |
| putIReg16( R_RAX, mkexpr(t2) ); |
| putIRegRexB(2, pfx, regLo3, mkexpr(t1) ); |
| } |
| DIP("xchg%c %s, %s\n", |
| nameISize(sz), nameIRegRAX(sz), |
| nameIRegRexB(sz,pfx, regLo3)); |
| } |
| |
| |
| static |
| void codegen_SAHF ( void ) |
| { |
| /* Set the flags to: |
| (amd64g_calculate_flags_all() & AMD64G_CC_MASK_O) |
| -- retain the old O flag |
| | (%AH & (AMD64G_CC_MASK_S|AMD64G_CC_MASK_Z|AMD64G_CC_MASK_A |
| |AMD64G_CC_MASK_P|AMD64G_CC_MASK_C) |
| */ |
| ULong mask_SZACP = AMD64G_CC_MASK_S|AMD64G_CC_MASK_Z|AMD64G_CC_MASK_A |
| |AMD64G_CC_MASK_C|AMD64G_CC_MASK_P; |
| IRTemp oldflags = newTemp(Ity_I64); |
| assign( oldflags, mk_amd64g_calculate_rflags_all() ); |
| stmt( IRStmt_Put( OFFB_CC_OP, mkU64(AMD64G_CC_OP_COPY) )); |
| stmt( IRStmt_Put( OFFB_CC_NDEP, mkU64(0) )); |
| stmt( IRStmt_Put( OFFB_CC_DEP2, mkU64(0) )); |
| stmt( IRStmt_Put( OFFB_CC_DEP1, |
| binop(Iop_Or64, |
| binop(Iop_And64, mkexpr(oldflags), mkU64(AMD64G_CC_MASK_O)), |
| binop(Iop_And64, |
| binop(Iop_Shr64, getIReg64(R_RAX), mkU8(8)), |
| mkU64(mask_SZACP)) |
| ) |
| )); |
| } |
| |
| |
| static |
| void codegen_LAHF ( void ) |
| { |
| /* AH <- EFLAGS(SF:ZF:0:AF:0:PF:1:CF) */ |
| IRExpr* rax_with_hole; |
| IRExpr* new_byte; |
| IRExpr* new_rax; |
| ULong mask_SZACP = AMD64G_CC_MASK_S|AMD64G_CC_MASK_Z|AMD64G_CC_MASK_A |
| |AMD64G_CC_MASK_C|AMD64G_CC_MASK_P; |
| |
| IRTemp flags = newTemp(Ity_I64); |
| assign( flags, mk_amd64g_calculate_rflags_all() ); |
| |
| rax_with_hole |
| = binop(Iop_And64, getIReg64(R_RAX), mkU64(~0xFF00ULL)); |
| new_byte |
| = binop(Iop_Or64, binop(Iop_And64, mkexpr(flags), mkU64(mask_SZACP)), |
| mkU64(1<<1)); |
| new_rax |
| = binop(Iop_Or64, rax_with_hole, |
| binop(Iop_Shl64, new_byte, mkU8(8))); |
| putIReg64(R_RAX, new_rax); |
| } |
| |
| |
| static |
| ULong dis_cmpxchg_G_E ( /*OUT*/Bool* ok, |
| VexAbiInfo* vbi, |
| Prefix pfx, |
| Int size, |
| Long delta0 ) |
| { |
| HChar dis_buf[50]; |
| Int len; |
| |
| IRType ty = szToITy(size); |
| IRTemp acc = newTemp(ty); |
| IRTemp src = newTemp(ty); |
| IRTemp dest = newTemp(ty); |
| IRTemp dest2 = newTemp(ty); |
| IRTemp acc2 = newTemp(ty); |
| IRTemp cond8 = newTemp(Ity_I8); |
| IRTemp addr = IRTemp_INVALID; |
| UChar rm = getUChar(delta0); |
| |
| /* There are 3 cases to consider: |
| |
| reg-reg: ignore any lock prefix, generate sequence based |
| on Mux0X |
| |
| reg-mem, not locked: ignore any lock prefix, generate sequence |
| based on Mux0X |
| |
| reg-mem, locked: use IRCAS |
| */ |
| |
| if (epartIsReg(rm)) { |
| /* case 1 */ |
| assign( dest, getIRegE(size, pfx, rm) ); |
| delta0++; |
| assign( src, getIRegG(size, pfx, rm) ); |
| assign( acc, getIRegRAX(size) ); |
| setFlags_DEP1_DEP2(Iop_Sub8, acc, dest, ty); |
| assign( cond8, unop(Iop_1Uto8, mk_amd64g_calculate_condition(AMD64CondZ)) ); |
| assign( dest2, IRExpr_Mux0X(mkexpr(cond8), mkexpr(dest), mkexpr(src)) ); |
| assign( acc2, IRExpr_Mux0X(mkexpr(cond8), mkexpr(dest), mkexpr(acc)) ); |
| putIRegRAX(size, mkexpr(acc2)); |
| putIRegE(size, pfx, rm, mkexpr(dest2)); |
| DIP("cmpxchg%c %s,%s\n", nameISize(size), |
| nameIRegG(size,pfx,rm), |
| nameIRegE(size,pfx,rm) ); |
| } |
| else if (!epartIsReg(rm) && !(pfx & PFX_LOCK)) { |
| /* case 2 */ |
| addr = disAMode ( &len, vbi, pfx, delta0, dis_buf, 0 ); |
| assign( dest, loadLE(ty, mkexpr(addr)) ); |
| delta0 += len; |
| assign( src, getIRegG(size, pfx, rm) ); |
| assign( acc, getIRegRAX(size) ); |
| setFlags_DEP1_DEP2(Iop_Sub8, acc, dest, ty); |
| assign( cond8, unop(Iop_1Uto8, mk_amd64g_calculate_condition(AMD64CondZ)) ); |
| assign( dest2, IRExpr_Mux0X(mkexpr(cond8), mkexpr(dest), mkexpr(src)) ); |
| assign( acc2, IRExpr_Mux0X(mkexpr(cond8), mkexpr(dest), mkexpr(acc)) ); |
| putIRegRAX(size, mkexpr(acc2)); |
| storeLE( mkexpr(addr), mkexpr(dest2) ); |
| DIP("cmpxchg%c %s,%s\n", nameISize(size), |
| nameIRegG(size,pfx,rm), dis_buf); |
| } |
| else if (!epartIsReg(rm) && (pfx & PFX_LOCK)) { |
| /* case 3 */ |
| /* src is new value. acc is expected value. dest is old value. |
| Compute success from the output of the IRCAS, and steer the |
| new value for RAX accordingly: in case of success, RAX is |
| unchanged. */ |
| addr = disAMode ( &len, vbi, pfx, delta0, dis_buf, 0 ); |
| delta0 += len; |
| assign( src, getIRegG(size, pfx, rm) ); |
| assign( acc, getIRegRAX(size) ); |
| stmt( IRStmt_CAS( |
| mkIRCAS( IRTemp_INVALID, dest, Iend_LE, mkexpr(addr), |
| NULL, mkexpr(acc), NULL, mkexpr(src) ) |
| )); |
| setFlags_DEP1_DEP2(Iop_Sub8, acc, dest, ty); |
| assign( cond8, unop(Iop_1Uto8, mk_amd64g_calculate_condition(AMD64CondZ)) ); |
| assign( acc2, IRExpr_Mux0X(mkexpr(cond8), mkexpr(dest), mkexpr(acc)) ); |
| putIRegRAX(size, mkexpr(acc2)); |
| DIP("cmpxchg%c %s,%s\n", nameISize(size), |
| nameIRegG(size,pfx,rm), dis_buf); |
| } |
| else vassert(0); |
| |
| *ok = True; |
| return delta0; |
| } |
| |
| |
| /* Handle conditional move instructions of the form |
| cmovcc E(reg-or-mem), G(reg) |
| |
| E(src) is reg-or-mem |
| G(dst) is reg. |
| |
| If E is reg, --> GET %E, tmps |
| GET %G, tmpd |
| CMOVcc tmps, tmpd |
| PUT tmpd, %G |
| |
| If E is mem --> (getAddr E) -> tmpa |
| LD (tmpa), tmps |
| GET %G, tmpd |
| CMOVcc tmps, tmpd |
| PUT tmpd, %G |
| */ |
| static |
| ULong dis_cmov_E_G ( VexAbiInfo* vbi, |
| Prefix pfx, |
| Int sz, |
| AMD64Condcode cond, |
| Long delta0 ) |
| { |
| UChar rm = getUChar(delta0); |
| HChar dis_buf[50]; |
| Int len; |
| |
| IRType ty = szToITy(sz); |
| IRTemp tmps = newTemp(ty); |
| IRTemp tmpd = newTemp(ty); |
| |
| if (epartIsReg(rm)) { |
| assign( tmps, getIRegE(sz, pfx, rm) ); |
| assign( tmpd, getIRegG(sz, pfx, rm) ); |
| |
| putIRegG( sz, pfx, rm, |
| IRExpr_Mux0X( unop(Iop_1Uto8, |
| mk_amd64g_calculate_condition(cond)), |
| mkexpr(tmpd), |
| mkexpr(tmps) ) |
| ); |
| DIP("cmov%s %s,%s\n", name_AMD64Condcode(cond), |
| nameIRegE(sz,pfx,rm), |
| nameIRegG(sz,pfx,rm)); |
| return 1+delta0; |
| } |
| |
| /* E refers to memory */ |
| { |
| IRTemp addr = disAMode ( &len, vbi, pfx, delta0, dis_buf, 0 ); |
| assign( tmps, loadLE(ty, mkexpr(addr)) ); |
| assign( tmpd, getIRegG(sz, pfx, rm) ); |
| |
| putIRegG( sz, pfx, rm, |
| IRExpr_Mux0X( unop(Iop_1Uto8, |
| mk_amd64g_calculate_condition(cond)), |
| mkexpr(tmpd), |
| mkexpr(tmps) ) |
| ); |
| |
| DIP("cmov%s %s,%s\n", name_AMD64Condcode(cond), |
| dis_buf, |
| nameIRegG(sz,pfx,rm)); |
| return len+delta0; |
| } |
| } |
| |
| |
| static |
| ULong dis_xadd_G_E ( /*OUT*/Bool* decode_ok, |
| VexAbiInfo* vbi, |
| Prefix pfx, Int sz, Long delta0 ) |
| { |
| Int len; |
| UChar rm = getUChar(delta0); |
| HChar dis_buf[50]; |
| |
| IRType ty = szToITy(sz); |
| IRTemp tmpd = newTemp(ty); |
| IRTemp tmpt0 = newTemp(ty); |
| IRTemp tmpt1 = newTemp(ty); |
| |
| /* There are 3 cases to consider: |
| |
| reg-reg: ignore any lock prefix, |
| generate 'naive' (non-atomic) sequence |
| |
| reg-mem, not locked: ignore any lock prefix, generate 'naive' |
| (non-atomic) sequence |
| |
| reg-mem, locked: use IRCAS |
| */ |
| |
| if (epartIsReg(rm)) { |
| /* case 1 */ |
| assign( tmpd, getIRegE(sz, pfx, rm) ); |
| assign( tmpt0, getIRegG(sz, pfx, rm) ); |
| assign( tmpt1, binop(mkSizedOp(ty,Iop_Add8), |
| mkexpr(tmpd), mkexpr(tmpt0)) ); |
| setFlags_DEP1_DEP2( Iop_Add8, tmpd, tmpt0, ty ); |
| putIRegG(sz, pfx, rm, mkexpr(tmpd)); |
| putIRegE(sz, pfx, rm, mkexpr(tmpt1)); |
| DIP("xadd%c %s, %s\n", |
| nameISize(sz), nameIRegG(sz,pfx,rm), |
| nameIRegE(sz,pfx,rm)); |
| *decode_ok = True; |
| return 1+delta0; |
| } |
| else if (!epartIsReg(rm) && !(pfx & PFX_LOCK)) { |
| /* case 2 */ |
| IRTemp addr = disAMode ( &len, vbi, pfx, delta0, dis_buf, 0 ); |
| assign( tmpd, loadLE(ty, mkexpr(addr)) ); |
| assign( tmpt0, getIRegG(sz, pfx, rm) ); |
| assign( tmpt1, binop(mkSizedOp(ty,Iop_Add8), |
| mkexpr(tmpd), mkexpr(tmpt0)) ); |
| setFlags_DEP1_DEP2( Iop_Add8, tmpd, tmpt0, ty ); |
| storeLE( mkexpr(addr), mkexpr(tmpt1) ); |
| putIRegG(sz, pfx, rm, mkexpr(tmpd)); |
| DIP("xadd%c %s, %s\n", |
| nameISize(sz), nameIRegG(sz,pfx,rm), dis_buf); |
| *decode_ok = True; |
| return len+delta0; |
| } |
| else if (!epartIsReg(rm) && (pfx & PFX_LOCK)) { |
| /* case 3 */ |
| IRTemp addr = disAMode ( &len, vbi, pfx, delta0, dis_buf, 0 ); |
| assign( tmpd, loadLE(ty, mkexpr(addr)) ); |
| assign( tmpt0, getIRegG(sz, pfx, rm) ); |
| assign( tmpt1, binop(mkSizedOp(ty,Iop_Add8), |
| mkexpr(tmpd), mkexpr(tmpt0)) ); |
| casLE( mkexpr(addr), mkexpr(tmpd)/*expVal*/, |
| mkexpr(tmpt1)/*newVal*/, guest_RIP_curr_instr ); |
| setFlags_DEP1_DEP2( Iop_Add8, tmpd, tmpt0, ty ); |
| putIRegG(sz, pfx, rm, mkexpr(tmpd)); |
| DIP("xadd%c %s, %s\n", |
| nameISize(sz), nameIRegG(sz,pfx,rm), dis_buf); |
| *decode_ok = True; |
| return len+delta0; |
| } |
| /*UNREACHED*/ |
| vassert(0); |
| } |
| |
| //.. /* Move 16 bits from Ew (ireg or mem) to G (a segment register). */ |
| //.. |
| //.. static |
| //.. UInt dis_mov_Ew_Sw ( UChar sorb, Long delta0 ) |
| //.. { |
| //.. Int len; |
| //.. IRTemp addr; |
| //.. UChar rm = getUChar(delta0); |
| //.. HChar dis_buf[50]; |
| //.. |
| //.. if (epartIsReg(rm)) { |
| //.. putSReg( gregOfRM(rm), getIReg(2, eregOfRM(rm)) ); |
| //.. DIP("movw %s,%s\n", nameIReg(2,eregOfRM(rm)), nameSReg(gregOfRM(rm))); |
| //.. return 1+delta0; |
| //.. } else { |
| //.. addr = disAMode ( &len, sorb, delta0, dis_buf ); |
| //.. putSReg( gregOfRM(rm), loadLE(Ity_I16, mkexpr(addr)) ); |
| //.. DIP("movw %s,%s\n", dis_buf, nameSReg(gregOfRM(rm))); |
| //.. return len+delta0; |
| //.. } |
| //.. } |
| //.. |
| //.. /* Move 16 bits from G (a segment register) to Ew (ireg or mem). If |
| //.. dst is ireg and sz==4, zero out top half of it. */ |
| //.. |
| //.. static |
| //.. UInt dis_mov_Sw_Ew ( UChar sorb, |
| //.. Int sz, |
| //.. UInt delta0 ) |
| //.. { |
| //.. Int len; |
| //.. IRTemp addr; |
| //.. UChar rm = getUChar(delta0); |
| //.. HChar dis_buf[50]; |
| //.. |
| //.. vassert(sz == 2 || sz == 4); |
| //.. |
| //.. if (epartIsReg(rm)) { |
| //.. if (sz == 4) |
| //.. putIReg(4, eregOfRM(rm), unop(Iop_16Uto32, getSReg(gregOfRM(rm)))); |
| //.. else |
| //.. putIReg(2, eregOfRM(rm), getSReg(gregOfRM(rm))); |
| //.. |
| //.. DIP("mov %s,%s\n", nameSReg(gregOfRM(rm)), nameIReg(sz,eregOfRM(rm))); |
| //.. return 1+delta0; |
| //.. } else { |
| //.. addr = disAMode ( &len, sorb, delta0, dis_buf ); |
| //.. storeLE( mkexpr(addr), getSReg(gregOfRM(rm)) ); |
| //.. DIP("mov %s,%s\n", nameSReg(gregOfRM(rm)), dis_buf); |
| //.. return len+delta0; |
| //.. } |
| //.. } |
| //.. |
| //.. |
| //.. static |
| //.. void dis_push_segreg ( UInt sreg, Int sz ) |
| //.. { |
| //.. IRTemp t1 = newTemp(Ity_I16); |
| //.. IRTemp ta = newTemp(Ity_I32); |
| //.. vassert(sz == 2 || sz == 4); |
| //.. |
| //.. assign( t1, getSReg(sreg) ); |
| //.. assign( ta, binop(Iop_Sub32, getIReg(4, R_ESP), mkU32(sz)) ); |
| //.. putIReg(4, R_ESP, mkexpr(ta)); |
| //.. storeLE( mkexpr(ta), mkexpr(t1) ); |
| //.. |
| //.. DIP("pushw %s\n", nameSReg(sreg)); |
| //.. } |
| //.. |
| //.. static |
| //.. void dis_pop_segreg ( UInt sreg, Int sz ) |
| //.. { |
| //.. IRTemp t1 = newTemp(Ity_I16); |
| //.. IRTemp ta = newTemp(Ity_I32); |
| //.. vassert(sz == 2 || sz == 4); |
| //.. |
| //.. assign( ta, getIReg(4, R_ESP) ); |
| //.. assign( t1, loadLE(Ity_I16, mkexpr(ta)) ); |
| //.. |
| //.. putIReg(4, R_ESP, binop(Iop_Add32, mkexpr(ta), mkU32(sz)) ); |
| //.. putSReg( sreg, mkexpr(t1) ); |
| //.. DIP("pop %s\n", nameSReg(sreg)); |
| //.. } |
| |
| static |
| void dis_ret ( /*MOD*/DisResult* dres, VexAbiInfo* vbi, ULong d64 ) |
| { |
| IRTemp t1 = newTemp(Ity_I64); |
| IRTemp t2 = newTemp(Ity_I64); |
| IRTemp t3 = newTemp(Ity_I64); |
| assign(t1, getIReg64(R_RSP)); |
| assign(t2, loadLE(Ity_I64,mkexpr(t1))); |
| assign(t3, binop(Iop_Add64, mkexpr(t1), mkU64(8+d64))); |
| putIReg64(R_RSP, mkexpr(t3)); |
| make_redzone_AbiHint(vbi, t3, t2/*nia*/, "ret"); |
| jmp_treg(dres, Ijk_Ret, t2); |
| vassert(dres->whatNext == Dis_StopHere); |
| } |
| |
| |
| /*------------------------------------------------------------*/ |
| /*--- SSE/SSE2/SSE3 helpers ---*/ |
| /*------------------------------------------------------------*/ |
| |
| /* Worker function; do not call directly. |
| Handles full width G = G `op` E and G = (not G) `op` E. |
| */ |
| |
| static ULong dis_SSE_E_to_G_all_wrk ( |
| VexAbiInfo* vbi, |
| Prefix pfx, Long delta, |
| HChar* opname, IROp op, |
| Bool invertG |
| ) |
| { |
| HChar dis_buf[50]; |
| Int alen; |
| IRTemp addr; |
| UChar rm = getUChar(delta); |
| IRExpr* gpart |
| = invertG ? unop(Iop_NotV128, getXMMReg(gregOfRexRM(pfx,rm))) |
| : getXMMReg(gregOfRexRM(pfx,rm)); |
| if (epartIsReg(rm)) { |
| putXMMReg( gregOfRexRM(pfx,rm), |
| binop(op, gpart, |
| getXMMReg(eregOfRexRM(pfx,rm))) ); |
| DIP("%s %s,%s\n", opname, |
| nameXMMReg(eregOfRexRM(pfx,rm)), |
| nameXMMReg(gregOfRexRM(pfx,rm)) ); |
| return delta+1; |
| } else { |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| putXMMReg( gregOfRexRM(pfx,rm), |
| binop(op, gpart, |
| loadLE(Ity_V128, mkexpr(addr))) ); |
| DIP("%s %s,%s\n", opname, |
| dis_buf, |
| nameXMMReg(gregOfRexRM(pfx,rm)) ); |
| return delta+alen; |
| } |
| } |
| |
| |
| /* All lanes SSE binary operation, G = G `op` E. */ |
| |
| static |
| ULong dis_SSE_E_to_G_all ( VexAbiInfo* vbi, |
| Prefix pfx, Long delta, |
| HChar* opname, IROp op ) |
| { |
| return dis_SSE_E_to_G_all_wrk( vbi, pfx, delta, opname, op, False ); |
| } |
| |
| /* All lanes SSE binary operation, G = (not G) `op` E. */ |
| |
| static |
| ULong dis_SSE_E_to_G_all_invG ( VexAbiInfo* vbi, |
| Prefix pfx, Long delta, |
| HChar* opname, IROp op ) |
| { |
| return dis_SSE_E_to_G_all_wrk( vbi, pfx, delta, opname, op, True ); |
| } |
| |
| |
| /* Lowest 32-bit lane only SSE binary operation, G = G `op` E. */ |
| |
| static ULong dis_SSE_E_to_G_lo32 ( VexAbiInfo* vbi, |
| Prefix pfx, Long delta, |
| HChar* opname, IROp op ) |
| { |
| HChar dis_buf[50]; |
| Int alen; |
| IRTemp addr; |
| UChar rm = getUChar(delta); |
| IRExpr* gpart = getXMMReg(gregOfRexRM(pfx,rm)); |
| if (epartIsReg(rm)) { |
| putXMMReg( gregOfRexRM(pfx,rm), |
| binop(op, gpart, |
| getXMMReg(eregOfRexRM(pfx,rm))) ); |
| DIP("%s %s,%s\n", opname, |
| nameXMMReg(eregOfRexRM(pfx,rm)), |
| nameXMMReg(gregOfRexRM(pfx,rm)) ); |
| return delta+1; |
| } else { |
| /* We can only do a 32-bit memory read, so the upper 3/4 of the |
| E operand needs to be made simply of zeroes. */ |
| IRTemp epart = newTemp(Ity_V128); |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| assign( epart, unop( Iop_32UtoV128, |
| loadLE(Ity_I32, mkexpr(addr))) ); |
| putXMMReg( gregOfRexRM(pfx,rm), |
| binop(op, gpart, mkexpr(epart)) ); |
| DIP("%s %s,%s\n", opname, |
| dis_buf, |
| nameXMMReg(gregOfRexRM(pfx,rm)) ); |
| return delta+alen; |
| } |
| } |
| |
| |
| /* Lower 64-bit lane only SSE binary operation, G = G `op` E. */ |
| |
| static ULong dis_SSE_E_to_G_lo64 ( VexAbiInfo* vbi, |
| Prefix pfx, Long delta, |
| HChar* opname, IROp op ) |
| { |
| HChar dis_buf[50]; |
| Int alen; |
| IRTemp addr; |
| UChar rm = getUChar(delta); |
| IRExpr* gpart = getXMMReg(gregOfRexRM(pfx,rm)); |
| if (epartIsReg(rm)) { |
| putXMMReg( gregOfRexRM(pfx,rm), |
| binop(op, gpart, |
| getXMMReg(eregOfRexRM(pfx,rm))) ); |
| DIP("%s %s,%s\n", opname, |
| nameXMMReg(eregOfRexRM(pfx,rm)), |
| nameXMMReg(gregOfRexRM(pfx,rm)) ); |
| return delta+1; |
| } else { |
| /* We can only do a 64-bit memory read, so the upper half of the |
| E operand needs to be made simply of zeroes. */ |
| IRTemp epart = newTemp(Ity_V128); |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| assign( epart, unop( Iop_64UtoV128, |
| loadLE(Ity_I64, mkexpr(addr))) ); |
| putXMMReg( gregOfRexRM(pfx,rm), |
| binop(op, gpart, mkexpr(epart)) ); |
| DIP("%s %s,%s\n", opname, |
| dis_buf, |
| nameXMMReg(gregOfRexRM(pfx,rm)) ); |
| return delta+alen; |
| } |
| } |
| |
| |
| /* All lanes unary SSE operation, G = op(E). */ |
| |
| static ULong dis_SSE_E_to_G_unary_all ( |
| VexAbiInfo* vbi, |
| Prefix pfx, Long delta, |
| HChar* opname, IROp op |
| ) |
| { |
| HChar dis_buf[50]; |
| Int alen; |
| IRTemp addr; |
| UChar rm = getUChar(delta); |
| if (epartIsReg(rm)) { |
| putXMMReg( gregOfRexRM(pfx,rm), |
| unop(op, getXMMReg(eregOfRexRM(pfx,rm))) ); |
| DIP("%s %s,%s\n", opname, |
| nameXMMReg(eregOfRexRM(pfx,rm)), |
| nameXMMReg(gregOfRexRM(pfx,rm)) ); |
| return delta+1; |
| } else { |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| putXMMReg( gregOfRexRM(pfx,rm), |
| unop(op, loadLE(Ity_V128, mkexpr(addr))) ); |
| DIP("%s %s,%s\n", opname, |
| dis_buf, |
| nameXMMReg(gregOfRexRM(pfx,rm)) ); |
| return delta+alen; |
| } |
| } |
| |
| |
| /* Lowest 32-bit lane only unary SSE operation, G = op(E). */ |
| |
| static ULong dis_SSE_E_to_G_unary_lo32 ( |
| VexAbiInfo* vbi, |
| Prefix pfx, Long delta, |
| HChar* opname, IROp op |
| ) |
| { |
| /* First we need to get the old G value and patch the low 32 bits |
| of the E operand into it. Then apply op and write back to G. */ |
| HChar dis_buf[50]; |
| Int alen; |
| IRTemp addr; |
| UChar rm = getUChar(delta); |
| IRTemp oldG0 = newTemp(Ity_V128); |
| IRTemp oldG1 = newTemp(Ity_V128); |
| |
| assign( oldG0, getXMMReg(gregOfRexRM(pfx,rm)) ); |
| |
| if (epartIsReg(rm)) { |
| assign( oldG1, |
| binop( Iop_SetV128lo32, |
| mkexpr(oldG0), |
| getXMMRegLane32(eregOfRexRM(pfx,rm), 0)) ); |
| putXMMReg( gregOfRexRM(pfx,rm), unop(op, mkexpr(oldG1)) ); |
| DIP("%s %s,%s\n", opname, |
| nameXMMReg(eregOfRexRM(pfx,rm)), |
| nameXMMReg(gregOfRexRM(pfx,rm)) ); |
| return delta+1; |
| } else { |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| assign( oldG1, |
| binop( Iop_SetV128lo32, |
| mkexpr(oldG0), |
| loadLE(Ity_I32, mkexpr(addr)) )); |
| putXMMReg( gregOfRexRM(pfx,rm), unop(op, mkexpr(oldG1)) ); |
| DIP("%s %s,%s\n", opname, |
| dis_buf, |
| nameXMMReg(gregOfRexRM(pfx,rm)) ); |
| return delta+alen; |
| } |
| } |
| |
| |
| /* Lowest 64-bit lane only unary SSE operation, G = op(E). */ |
| |
| static ULong dis_SSE_E_to_G_unary_lo64 ( |
| VexAbiInfo* vbi, |
| Prefix pfx, Long delta, |
| HChar* opname, IROp op |
| ) |
| { |
| /* First we need to get the old G value and patch the low 64 bits |
| of the E operand into it. Then apply op and write back to G. */ |
| HChar dis_buf[50]; |
| Int alen; |
| IRTemp addr; |
| UChar rm = getUChar(delta); |
| IRTemp oldG0 = newTemp(Ity_V128); |
| IRTemp oldG1 = newTemp(Ity_V128); |
| |
| assign( oldG0, getXMMReg(gregOfRexRM(pfx,rm)) ); |
| |
| if (epartIsReg(rm)) { |
| assign( oldG1, |
| binop( Iop_SetV128lo64, |
| mkexpr(oldG0), |
| getXMMRegLane64(eregOfRexRM(pfx,rm), 0)) ); |
| putXMMReg( gregOfRexRM(pfx,rm), unop(op, mkexpr(oldG1)) ); |
| DIP("%s %s,%s\n", opname, |
| nameXMMReg(eregOfRexRM(pfx,rm)), |
| nameXMMReg(gregOfRexRM(pfx,rm)) ); |
| return delta+1; |
| } else { |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| assign( oldG1, |
| binop( Iop_SetV128lo64, |
| mkexpr(oldG0), |
| loadLE(Ity_I64, mkexpr(addr)) )); |
| putXMMReg( gregOfRexRM(pfx,rm), unop(op, mkexpr(oldG1)) ); |
| DIP("%s %s,%s\n", opname, |
| dis_buf, |
| nameXMMReg(gregOfRexRM(pfx,rm)) ); |
| return delta+alen; |
| } |
| } |
| |
| |
| /* SSE integer binary operation: |
| G = G `op` E (eLeft == False) |
| G = E `op` G (eLeft == True) |
| */ |
| static ULong dis_SSEint_E_to_G( |
| VexAbiInfo* vbi, |
| Prefix pfx, Long delta, |
| HChar* opname, IROp op, |
| Bool eLeft |
| ) |
| { |
| HChar dis_buf[50]; |
| Int alen; |
| IRTemp addr; |
| UChar rm = getUChar(delta); |
| IRExpr* gpart = getXMMReg(gregOfRexRM(pfx,rm)); |
| IRExpr* epart = NULL; |
| if (epartIsReg(rm)) { |
| epart = getXMMReg(eregOfRexRM(pfx,rm)); |
| DIP("%s %s,%s\n", opname, |
| nameXMMReg(eregOfRexRM(pfx,rm)), |
| nameXMMReg(gregOfRexRM(pfx,rm)) ); |
| delta += 1; |
| } else { |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| epart = loadLE(Ity_V128, mkexpr(addr)); |
| DIP("%s %s,%s\n", opname, |
| dis_buf, |
| nameXMMReg(gregOfRexRM(pfx,rm)) ); |
| delta += alen; |
| } |
| putXMMReg( gregOfRexRM(pfx,rm), |
| eLeft ? binop(op, epart, gpart) |
| : binop(op, gpart, epart) ); |
| return delta; |
| } |
| |
| |
| /* Helper for doing SSE FP comparisons. False return ==> unhandled. |
| This is all a bit of a kludge in that it ignores the subtleties of |
| ordered-vs-unordered and signalling-vs-nonsignalling in the Intel |
| spec. */ |
| static Bool findSSECmpOp ( /*OUT*/Bool* preSwapP, |
| /*OUT*/IROp* opP, |
| /*OUT*/Bool* postNotP, |
| UInt imm8, Bool all_lanes, Int sz ) |
| { |
| if (imm8 >= 32) return False; |
| |
| /* First, compute a (preSwap, op, postNot) triple from |
| the supplied imm8. */ |
| Bool pre = False; |
| IROp op = Iop_INVALID; |
| Bool not = False; |
| |
| # define XXX(_pre, _op, _not) { pre = _pre; op = _op; not = _not; } |
| switch (imm8) { |
| case 0x0: XXX(False, Iop_CmpEQ32Fx4, False); break; // EQ |
| case 0x1: XXX(False, Iop_CmpLT32Fx4, False); break; // LT |
| case 0x2: XXX(False, Iop_CmpLE32Fx4, False); break; // LE |
| case 0x3: XXX(False, Iop_CmpUN32Fx4, False); break; // UNORD |
| case 0x4: XXX(False, Iop_CmpEQ32Fx4, True); break; // NE |
| case 0x5: XXX(False, Iop_CmpLT32Fx4, True); break; // NLT |
| case 0x6: XXX(False, Iop_CmpLE32Fx4, True); break; // NLE |
| case 0x7: XXX(False, Iop_CmpUN32Fx4, True); break; // ORD |
| /* "Enhanced Comparison Predicate[s] for VEX-Encoded [insns] */ |
| case 0xA: XXX(True, Iop_CmpLT32Fx4, True); break; // NGT_US |
| case 0xC: XXX(False, Iop_CmpEQ32Fx4, True); break; // NEQ_OQ |
| case 0xD: XXX(True, Iop_CmpLE32Fx4, False); break; // GE_OS |
| case 0xE: XXX(True, Iop_CmpLT32Fx4, False); break; // GT_OS |
| /* Don't forget to add test cases to VCMPSS_128_<imm8> in |
| avx-1.c if new cases turn up. */ |
| default: break; |
| } |
| # undef XXX |
| if (op == Iop_INVALID) return False; |
| |
| /* Now convert the op into one with the same arithmetic but that is |
| correct for the width and laneage requirements. */ |
| |
| /**/ if (sz == 4 && all_lanes) { |
| switch (op) { |
| case Iop_CmpEQ32Fx4: op = Iop_CmpEQ32Fx4; break; |
| case Iop_CmpLT32Fx4: op = Iop_CmpLT32Fx4; break; |
| case Iop_CmpLE32Fx4: op = Iop_CmpLE32Fx4; break; |
| case Iop_CmpUN32Fx4: op = Iop_CmpUN32Fx4; break; |
| default: vassert(0); |
| } |
| } |
| else if (sz == 4 && !all_lanes) { |
| switch (op) { |
| case Iop_CmpEQ32Fx4: op = Iop_CmpEQ32F0x4; break; |
| case Iop_CmpLT32Fx4: op = Iop_CmpLT32F0x4; break; |
| case Iop_CmpLE32Fx4: op = Iop_CmpLE32F0x4; break; |
| case Iop_CmpUN32Fx4: op = Iop_CmpUN32F0x4; break; |
| default: vassert(0); |
| } |
| } |
| else if (sz == 8 && all_lanes) { |
| switch (op) { |
| case Iop_CmpEQ32Fx4: op = Iop_CmpEQ64Fx2; break; |
| case Iop_CmpLT32Fx4: op = Iop_CmpLT64Fx2; break; |
| case Iop_CmpLE32Fx4: op = Iop_CmpLE64Fx2; break; |
| case Iop_CmpUN32Fx4: op = Iop_CmpUN64Fx2; break; |
| default: vassert(0); |
| } |
| } |
| else if (sz == 8 && !all_lanes) { |
| switch (op) { |
| case Iop_CmpEQ32Fx4: op = Iop_CmpEQ64F0x2; break; |
| case Iop_CmpLT32Fx4: op = Iop_CmpLT64F0x2; break; |
| case Iop_CmpLE32Fx4: op = Iop_CmpLE64F0x2; break; |
| case Iop_CmpUN32Fx4: op = Iop_CmpUN64F0x2; break; |
| default: vassert(0); |
| } |
| } |
| else { |
| vpanic("findSSECmpOp(amd64,guest)"); |
| } |
| |
| *preSwapP = pre; *opP = op; *postNotP = not; |
| return True; |
| } |
| |
| |
| /* Handles SSE 32F/64F comparisons. It can fail, in which case it |
| returns the original delta to indicate failure. */ |
| |
| static Long dis_SSE_cmp_E_to_G ( VexAbiInfo* vbi, |
| Prefix pfx, Long delta, |
| HChar* opname, Bool all_lanes, Int sz ) |
| { |
| Long delta0 = delta; |
| HChar dis_buf[50]; |
| Int alen; |
| UInt imm8; |
| IRTemp addr; |
| Bool preSwap = False; |
| IROp op = Iop_INVALID; |
| Bool postNot = False; |
| IRTemp plain = newTemp(Ity_V128); |
| UChar rm = getUChar(delta); |
| UShort mask = 0; |
| vassert(sz == 4 || sz == 8); |
| if (epartIsReg(rm)) { |
| imm8 = getUChar(delta+1); |
| if (imm8 >= 8) return delta0; /* FAIL */ |
| Bool ok = findSSECmpOp(&preSwap, &op, &postNot, imm8, all_lanes, sz); |
| if (!ok) return delta0; /* FAIL */ |
| vassert(!preSwap); /* never needed for imm8 < 8 */ |
| assign( plain, binop(op, getXMMReg(gregOfRexRM(pfx,rm)), |
| getXMMReg(eregOfRexRM(pfx,rm))) ); |
| delta += 2; |
| DIP("%s $%d,%s,%s\n", opname, |
| (Int)imm8, |
| nameXMMReg(eregOfRexRM(pfx,rm)), |
| nameXMMReg(gregOfRexRM(pfx,rm)) ); |
| } else { |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 1 ); |
| imm8 = getUChar(delta+alen); |
| if (imm8 >= 8) return delta0; /* FAIL */ |
| Bool ok = findSSECmpOp(&preSwap, &op, &postNot, imm8, all_lanes, sz); |
| if (!ok) return delta0; /* FAIL */ |
| vassert(!preSwap); /* never needed for imm8 < 8 */ |
| assign( plain, |
| binop( |
| op, |
| getXMMReg(gregOfRexRM(pfx,rm)), |
| all_lanes |
| ? loadLE(Ity_V128, mkexpr(addr)) |
| : sz == 8 |
| ? unop( Iop_64UtoV128, loadLE(Ity_I64, mkexpr(addr))) |
| : /*sz==4*/ |
| unop( Iop_32UtoV128, loadLE(Ity_I32, mkexpr(addr))) |
| ) |
| ); |
| delta += alen+1; |
| DIP("%s $%d,%s,%s\n", opname, |
| (Int)imm8, |
| dis_buf, |
| nameXMMReg(gregOfRexRM(pfx,rm)) ); |
| } |
| |
| if (postNot && all_lanes) { |
| putXMMReg( gregOfRexRM(pfx,rm), |
| unop(Iop_NotV128, mkexpr(plain)) ); |
| } |
| else |
| if (postNot && !all_lanes) { |
| mask = toUShort(sz==4 ? 0x000F : 0x00FF); |
| putXMMReg( gregOfRexRM(pfx,rm), |
| binop(Iop_XorV128, mkexpr(plain), mkV128(mask)) ); |
| } |
| else { |
| putXMMReg( gregOfRexRM(pfx,rm), mkexpr(plain) ); |
| } |
| |
| return delta; |
| } |
| |
| |
| /* Vector by scalar shift of G by the amount specified at the bottom |
| of E. */ |
| |
| static ULong dis_SSE_shiftG_byE ( VexAbiInfo* vbi, |
| Prefix pfx, Long delta, |
| HChar* opname, IROp op ) |
| { |
| HChar dis_buf[50]; |
| Int alen, size; |
| IRTemp addr; |
| Bool shl, shr, sar; |
| UChar rm = getUChar(delta); |
| IRTemp g0 = newTemp(Ity_V128); |
| IRTemp g1 = newTemp(Ity_V128); |
| IRTemp amt = newTemp(Ity_I32); |
| IRTemp amt8 = newTemp(Ity_I8); |
| if (epartIsReg(rm)) { |
| assign( amt, getXMMRegLane32(eregOfRexRM(pfx,rm), 0) ); |
| DIP("%s %s,%s\n", opname, |
| nameXMMReg(eregOfRexRM(pfx,rm)), |
| nameXMMReg(gregOfRexRM(pfx,rm)) ); |
| delta++; |
| } else { |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| assign( amt, loadLE(Ity_I32, mkexpr(addr)) ); |
| DIP("%s %s,%s\n", opname, |
| dis_buf, |
| nameXMMReg(gregOfRexRM(pfx,rm)) ); |
| delta += alen; |
| } |
| assign( g0, getXMMReg(gregOfRexRM(pfx,rm)) ); |
| assign( amt8, unop(Iop_32to8, mkexpr(amt)) ); |
| |
| shl = shr = sar = False; |
| size = 0; |
| switch (op) { |
| case Iop_ShlN16x8: shl = True; size = 32; break; |
| case Iop_ShlN32x4: shl = True; size = 32; break; |
| case Iop_ShlN64x2: shl = True; size = 64; break; |
| case Iop_SarN16x8: sar = True; size = 16; break; |
| case Iop_SarN32x4: sar = True; size = 32; break; |
| case Iop_ShrN16x8: shr = True; size = 16; break; |
| case Iop_ShrN32x4: shr = True; size = 32; break; |
| case Iop_ShrN64x2: shr = True; size = 64; break; |
| default: vassert(0); |
| } |
| |
| if (shl || shr) { |
| assign( |
| g1, |
| IRExpr_Mux0X( |
| unop(Iop_1Uto8, |
| binop(Iop_CmpLT64U, unop(Iop_32Uto64,mkexpr(amt)), mkU64(size))), |
| mkV128(0x0000), |
| binop(op, mkexpr(g0), mkexpr(amt8)) |
| ) |
| ); |
| } else |
| if (sar) { |
| assign( |
| g1, |
| IRExpr_Mux0X( |
| unop(Iop_1Uto8, |
| binop(Iop_CmpLT64U, unop(Iop_32Uto64,mkexpr(amt)), mkU64(size))), |
| binop(op, mkexpr(g0), mkU8(size-1)), |
| binop(op, mkexpr(g0), mkexpr(amt8)) |
| ) |
| ); |
| } else { |
| vassert(0); |
| } |
| |
| putXMMReg( gregOfRexRM(pfx,rm), mkexpr(g1) ); |
| return delta; |
| } |
| |
| |
| /* Vector by scalar shift of E by an immediate byte. */ |
| |
| static |
| ULong dis_SSE_shiftE_imm ( Prefix pfx, |
| Long delta, HChar* opname, IROp op ) |
| { |
| Bool shl, shr, sar; |
| UChar rm = getUChar(delta); |
| IRTemp e0 = newTemp(Ity_V128); |
| IRTemp e1 = newTemp(Ity_V128); |
| UChar amt, size; |
| vassert(epartIsReg(rm)); |
| vassert(gregLO3ofRM(rm) == 2 |
| || gregLO3ofRM(rm) == 4 || gregLO3ofRM(rm) == 6); |
| amt = getUChar(delta+1); |
| delta += 2; |
| DIP("%s $%d,%s\n", opname, |
| (Int)amt, |
| nameXMMReg(eregOfRexRM(pfx,rm)) ); |
| assign( e0, getXMMReg(eregOfRexRM(pfx,rm)) ); |
| |
| shl = shr = sar = False; |
| size = 0; |
| switch (op) { |
| case Iop_ShlN16x8: shl = True; size = 16; break; |
| case Iop_ShlN32x4: shl = True; size = 32; break; |
| case Iop_ShlN64x2: shl = True; size = 64; break; |
| case Iop_SarN16x8: sar = True; size = 16; break; |
| case Iop_SarN32x4: sar = True; size = 32; break; |
| case Iop_ShrN16x8: shr = True; size = 16; break; |
| case Iop_ShrN32x4: shr = True; size = 32; break; |
| case Iop_ShrN64x2: shr = True; size = 64; break; |
| default: vassert(0); |
| } |
| |
| if (shl || shr) { |
| assign( e1, amt >= size |
| ? mkV128(0x0000) |
| : binop(op, mkexpr(e0), mkU8(amt)) |
| ); |
| } else |
| if (sar) { |
| assign( e1, amt >= size |
| ? binop(op, mkexpr(e0), mkU8(size-1)) |
| : binop(op, mkexpr(e0), mkU8(amt)) |
| ); |
| } else { |
| vassert(0); |
| } |
| |
| putXMMReg( eregOfRexRM(pfx,rm), mkexpr(e1) ); |
| return delta; |
| } |
| |
| |
| /* Get the current SSE rounding mode. */ |
| |
| static IRExpr* /* :: Ity_I32 */ get_sse_roundingmode ( void ) |
| { |
| return |
| unop( Iop_64to32, |
| binop( Iop_And64, |
| IRExpr_Get( OFFB_SSEROUND, Ity_I64 ), |
| mkU64(3) )); |
| } |
| |
| static void put_sse_roundingmode ( IRExpr* sseround ) |
| { |
| vassert(typeOfIRExpr(irsb->tyenv, sseround) == Ity_I32); |
| stmt( IRStmt_Put( OFFB_SSEROUND, |
| unop(Iop_32Uto64,sseround) ) ); |
| } |
| |
| /* Break a 128-bit value up into four 32-bit ints. */ |
| |
| static void breakup128to32s ( IRTemp t128, |
| /*OUTs*/ |
| IRTemp* t3, IRTemp* t2, |
| IRTemp* t1, IRTemp* t0 ) |
| { |
| IRTemp hi64 = newTemp(Ity_I64); |
| IRTemp lo64 = newTemp(Ity_I64); |
| assign( hi64, unop(Iop_V128HIto64, mkexpr(t128)) ); |
| assign( lo64, unop(Iop_V128to64, mkexpr(t128)) ); |
| |
| vassert(t0 && *t0 == IRTemp_INVALID); |
| vassert(t1 && *t1 == IRTemp_INVALID); |
| vassert(t2 && *t2 == IRTemp_INVALID); |
| vassert(t3 && *t3 == IRTemp_INVALID); |
| |
| *t0 = newTemp(Ity_I32); |
| *t1 = newTemp(Ity_I32); |
| *t2 = newTemp(Ity_I32); |
| *t3 = newTemp(Ity_I32); |
| assign( *t0, unop(Iop_64to32, mkexpr(lo64)) ); |
| assign( *t1, unop(Iop_64HIto32, mkexpr(lo64)) ); |
| assign( *t2, unop(Iop_64to32, mkexpr(hi64)) ); |
| assign( *t3, unop(Iop_64HIto32, mkexpr(hi64)) ); |
| } |
| |
| /* Construct a 128-bit value from four 32-bit ints. */ |
| |
| static IRExpr* mk128from32s ( IRTemp t3, IRTemp t2, |
| IRTemp t1, IRTemp t0 ) |
| { |
| return |
| binop( Iop_64HLtoV128, |
| binop(Iop_32HLto64, mkexpr(t3), mkexpr(t2)), |
| binop(Iop_32HLto64, mkexpr(t1), mkexpr(t0)) |
| ); |
| } |
| |
| /* Break a 64-bit value up into four 16-bit ints. */ |
| |
| static void breakup64to16s ( IRTemp t64, |
| /*OUTs*/ |
| IRTemp* t3, IRTemp* t2, |
| IRTemp* t1, IRTemp* t0 ) |
| { |
| IRTemp hi32 = newTemp(Ity_I32); |
| IRTemp lo32 = newTemp(Ity_I32); |
| assign( hi32, unop(Iop_64HIto32, mkexpr(t64)) ); |
| assign( lo32, unop(Iop_64to32, mkexpr(t64)) ); |
| |
| vassert(t0 && *t0 == IRTemp_INVALID); |
| vassert(t1 && *t1 == IRTemp_INVALID); |
| vassert(t2 && *t2 == IRTemp_INVALID); |
| vassert(t3 && *t3 == IRTemp_INVALID); |
| |
| *t0 = newTemp(Ity_I16); |
| *t1 = newTemp(Ity_I16); |
| *t2 = newTemp(Ity_I16); |
| *t3 = newTemp(Ity_I16); |
| assign( *t0, unop(Iop_32to16, mkexpr(lo32)) ); |
| assign( *t1, unop(Iop_32HIto16, mkexpr(lo32)) ); |
| assign( *t2, unop(Iop_32to16, mkexpr(hi32)) ); |
| assign( *t3, unop(Iop_32HIto16, mkexpr(hi32)) ); |
| } |
| |
| /* Construct a 64-bit value from four 16-bit ints. */ |
| |
| static IRExpr* mk64from16s ( IRTemp t3, IRTemp t2, |
| IRTemp t1, IRTemp t0 ) |
| { |
| return |
| binop( Iop_32HLto64, |
| binop(Iop_16HLto32, mkexpr(t3), mkexpr(t2)), |
| binop(Iop_16HLto32, mkexpr(t1), mkexpr(t0)) |
| ); |
| } |
| |
| |
| /* Helper for the SSSE3 (not SSE3) PMULHRSW insns. Given two 64-bit |
| values (aa,bb), computes, for each of the 4 16-bit lanes: |
| |
| (((aa_lane *s32 bb_lane) >>u 14) + 1) >>u 1 |
| */ |
| static IRExpr* dis_PMULHRSW_helper ( IRExpr* aax, IRExpr* bbx ) |
| { |
| IRTemp aa = newTemp(Ity_I64); |
| IRTemp bb = newTemp(Ity_I64); |
| IRTemp aahi32s = newTemp(Ity_I64); |
| IRTemp aalo32s = newTemp(Ity_I64); |
| IRTemp bbhi32s = newTemp(Ity_I64); |
| IRTemp bblo32s = newTemp(Ity_I64); |
| IRTemp rHi = newTemp(Ity_I64); |
| IRTemp rLo = newTemp(Ity_I64); |
| IRTemp one32x2 = newTemp(Ity_I64); |
| assign(aa, aax); |
| assign(bb, bbx); |
| assign( aahi32s, |
| binop(Iop_SarN32x2, |
| binop(Iop_InterleaveHI16x4, mkexpr(aa), mkexpr(aa)), |
| mkU8(16) )); |
| assign( aalo32s, |
| binop(Iop_SarN32x2, |
| binop(Iop_InterleaveLO16x4, mkexpr(aa), mkexpr(aa)), |
| mkU8(16) )); |
| assign( bbhi32s, |
| binop(Iop_SarN32x2, |
| binop(Iop_InterleaveHI16x4, mkexpr(bb), mkexpr(bb)), |
| mkU8(16) )); |
| assign( bblo32s, |
| binop(Iop_SarN32x2, |
| binop(Iop_InterleaveLO16x4, mkexpr(bb), mkexpr(bb)), |
| mkU8(16) )); |
| assign(one32x2, mkU64( (1ULL << 32) + 1 )); |
| assign( |
| rHi, |
| binop( |
| Iop_ShrN32x2, |
| binop( |
| Iop_Add32x2, |
| binop( |
| Iop_ShrN32x2, |
| binop(Iop_Mul32x2, mkexpr(aahi32s), mkexpr(bbhi32s)), |
| mkU8(14) |
| ), |
| mkexpr(one32x2) |
| ), |
| mkU8(1) |
| ) |
| ); |
| assign( |
| rLo, |
| binop( |
| Iop_ShrN32x2, |
| binop( |
| Iop_Add32x2, |
| binop( |
| Iop_ShrN32x2, |
| binop(Iop_Mul32x2, mkexpr(aalo32s), mkexpr(bblo32s)), |
| mkU8(14) |
| ), |
| mkexpr(one32x2) |
| ), |
| mkU8(1) |
| ) |
| ); |
| return |
| binop(Iop_CatEvenLanes16x4, mkexpr(rHi), mkexpr(rLo)); |
| } |
| |
| /* Helper for the SSSE3 (not SSE3) PSIGN{B,W,D} insns. Given two 64-bit |
| values (aa,bb), computes, for each lane: |
| |
| if aa_lane < 0 then - bb_lane |
| else if aa_lane > 0 then bb_lane |
| else 0 |
| */ |
| static IRExpr* dis_PSIGN_helper ( IRExpr* aax, IRExpr* bbx, Int laneszB ) |
| { |
| IRTemp aa = newTemp(Ity_I64); |
| IRTemp bb = newTemp(Ity_I64); |
| IRTemp zero = newTemp(Ity_I64); |
| IRTemp bbNeg = newTemp(Ity_I64); |
| IRTemp negMask = newTemp(Ity_I64); |
| IRTemp posMask = newTemp(Ity_I64); |
| IROp opSub = Iop_INVALID; |
| IROp opCmpGTS = Iop_INVALID; |
| |
| switch (laneszB) { |
| case 1: opSub = Iop_Sub8x8; opCmpGTS = Iop_CmpGT8Sx8; break; |
| case 2: opSub = Iop_Sub16x4; opCmpGTS = Iop_CmpGT16Sx4; break; |
| case 4: opSub = Iop_Sub32x2; opCmpGTS = Iop_CmpGT32Sx2; break; |
| default: vassert(0); |
| } |
| |
| assign( aa, aax ); |
| assign( bb, bbx ); |
| assign( zero, mkU64(0) ); |
| assign( bbNeg, binop(opSub, mkexpr(zero), mkexpr(bb)) ); |
| assign( negMask, binop(opCmpGTS, mkexpr(zero), mkexpr(aa)) ); |
| assign( posMask, binop(opCmpGTS, mkexpr(aa), mkexpr(zero)) ); |
| |
| return |
| binop(Iop_Or64, |
| binop(Iop_And64, mkexpr(bb), mkexpr(posMask)), |
| binop(Iop_And64, mkexpr(bbNeg), mkexpr(negMask)) ); |
| |
| } |
| |
| |
| /* Helper for the SSSE3 (not SSE3) PABS{B,W,D} insns. Given a 64-bit |
| value aa, computes, for each lane |
| |
| if aa < 0 then -aa else aa |
| |
| Note that the result is interpreted as unsigned, so that the |
| absolute value of the most negative signed input can be |
| represented. |
| */ |
| static IRTemp math_PABS_MMX ( IRTemp aa, Int laneszB ) |
| { |
| IRTemp res = newTemp(Ity_I64); |
| IRTemp zero = newTemp(Ity_I64); |
| IRTemp aaNeg = newTemp(Ity_I64); |
| IRTemp negMask = newTemp(Ity_I64); |
| IRTemp posMask = newTemp(Ity_I64); |
| IROp opSub = Iop_INVALID; |
| IROp opSarN = Iop_INVALID; |
| |
| switch (laneszB) { |
| case 1: opSub = Iop_Sub8x8; opSarN = Iop_SarN8x8; break; |
| case 2: opSub = Iop_Sub16x4; opSarN = Iop_SarN16x4; break; |
| case 4: opSub = Iop_Sub32x2; opSarN = Iop_SarN32x2; break; |
| default: vassert(0); |
| } |
| |
| assign( negMask, binop(opSarN, mkexpr(aa), mkU8(8*laneszB-1)) ); |
| assign( posMask, unop(Iop_Not64, mkexpr(negMask)) ); |
| assign( zero, mkU64(0) ); |
| assign( aaNeg, binop(opSub, mkexpr(zero), mkexpr(aa)) ); |
| assign( res, |
| binop(Iop_Or64, |
| binop(Iop_And64, mkexpr(aa), mkexpr(posMask)), |
| binop(Iop_And64, mkexpr(aaNeg), mkexpr(negMask)) )); |
| return res; |
| } |
| |
| /* XMM version of math_PABS_MMX. */ |
| static IRTemp math_PABS_XMM ( IRTemp aa, Int laneszB ) |
| { |
| IRTemp res = newTemp(Ity_V128); |
| IRTemp aaHi = newTemp(Ity_I64); |
| IRTemp aaLo = newTemp(Ity_I64); |
| assign(aaHi, unop(Iop_V128HIto64, mkexpr(aa))); |
| assign(aaLo, unop(Iop_V128to64, mkexpr(aa))); |
| assign(res, binop(Iop_64HLtoV128, |
| mkexpr(math_PABS_MMX(aaHi, laneszB)), |
| mkexpr(math_PABS_MMX(aaLo, laneszB)))); |
| return res; |
| } |
| |
| /* Specialisations of math_PABS_XMM, since there's no easy way to do |
| partial applications in C :-( */ |
| static IRTemp math_PABS_XMM_pap4 ( IRTemp aa ) { |
| return math_PABS_XMM(aa, 4); |
| } |
| |
| |
| static IRExpr* dis_PALIGNR_XMM_helper ( IRTemp hi64, |
| IRTemp lo64, Long byteShift ) |
| { |
| vassert(byteShift >= 1 && byteShift <= 7); |
| return |
| binop(Iop_Or64, |
| binop(Iop_Shl64, mkexpr(hi64), mkU8(8*(8-byteShift))), |
| binop(Iop_Shr64, mkexpr(lo64), mkU8(8*byteShift)) |
| ); |
| } |
| |
| /* Generate a SIGSEGV followed by a restart of the current instruction |
| if effective_addr is not 16-aligned. This is required behaviour |
| for some SSE3 instructions and all 128-bit SSSE3 instructions. |
| This assumes that guest_RIP_curr_instr is set correctly! */ |
| static |
| void gen_SEGV_if_not_XX_aligned ( IRTemp effective_addr, ULong mask ) |
| { |
| stmt( |
| IRStmt_Exit( |
| binop(Iop_CmpNE64, |
| binop(Iop_And64,mkexpr(effective_addr),mkU64(mask)), |
| mkU64(0)), |
| Ijk_SigSEGV, |
| IRConst_U64(guest_RIP_curr_instr), |
| OFFB_RIP |
| ) |
| ); |
| } |
| |
| static void gen_SEGV_if_not_16_aligned ( IRTemp effective_addr ) { |
| gen_SEGV_if_not_XX_aligned(effective_addr, 16-1); |
| } |
| |
| static void gen_SEGV_if_not_32_aligned ( IRTemp effective_addr ) { |
| gen_SEGV_if_not_XX_aligned(effective_addr, 32-1); |
| } |
| |
| /* Helper for deciding whether a given insn (starting at the opcode |
| byte) may validly be used with a LOCK prefix. The following insns |
| may be used with LOCK when their destination operand is in memory. |
| AFAICS this is exactly the same for both 32-bit and 64-bit mode. |
| |
| ADD 80 /0, 81 /0, 82 /0, 83 /0, 00, 01 |
| OR 80 /1, 81 /1, 82 /x, 83 /1, 08, 09 |
| ADC 80 /2, 81 /2, 82 /2, 83 /2, 10, 11 |
| SBB 81 /3, 81 /3, 82 /x, 83 /3, 18, 19 |
| AND 80 /4, 81 /4, 82 /x, 83 /4, 20, 21 |
| SUB 80 /5, 81 /5, 82 /x, 83 /5, 28, 29 |
| XOR 80 /6, 81 /6, 82 /x, 83 /6, 30, 31 |
| |
| DEC FE /1, FF /1 |
| INC FE /0, FF /0 |
| |
| NEG F6 /3, F7 /3 |
| NOT F6 /2, F7 /2 |
| |
| XCHG 86, 87 |
| |
| BTC 0F BB, 0F BA /7 |
| BTR 0F B3, 0F BA /6 |
| BTS 0F AB, 0F BA /5 |
| |
| CMPXCHG 0F B0, 0F B1 |
| CMPXCHG8B 0F C7 /1 |
| |
| XADD 0F C0, 0F C1 |
| |
| ------------------------------ |
| |
| 80 /0 = addb $imm8, rm8 |
| 81 /0 = addl $imm32, rm32 and addw $imm16, rm16 |
| 82 /0 = addb $imm8, rm8 |
| 83 /0 = addl $simm8, rm32 and addw $simm8, rm16 |
| |
| 00 = addb r8, rm8 |
| 01 = addl r32, rm32 and addw r16, rm16 |
| |
| Same for ADD OR ADC SBB AND SUB XOR |
| |
| FE /1 = dec rm8 |
| FF /1 = dec rm32 and dec rm16 |
| |
| FE /0 = inc rm8 |
| FF /0 = inc rm32 and inc rm16 |
| |
| F6 /3 = neg rm8 |
| F7 /3 = neg rm32 and neg rm16 |
| |
| F6 /2 = not rm8 |
| F7 /2 = not rm32 and not rm16 |
| |
| 0F BB = btcw r16, rm16 and btcl r32, rm32 |
| OF BA /7 = btcw $imm8, rm16 and btcw $imm8, rm32 |
| |
| Same for BTS, BTR |
| */ |
| static Bool can_be_used_with_LOCK_prefix ( UChar* opc ) |
| { |
| switch (opc[0]) { |
| case 0x00: case 0x01: case 0x08: case 0x09: |
| case 0x10: case 0x11: case 0x18: case 0x19: |
| case 0x20: case 0x21: case 0x28: case 0x29: |
| case 0x30: case 0x31: |
| if (!epartIsReg(opc[1])) |
| return True; |
| break; |
| |
| case 0x80: case 0x81: case 0x82: case 0x83: |
| if (gregLO3ofRM(opc[1]) >= 0 && gregLO3ofRM(opc[1]) <= 6 |
| && !epartIsReg(opc[1])) |
| return True; |
| break; |
| |
| case 0xFE: case 0xFF: |
| if (gregLO3ofRM(opc[1]) >= 0 && gregLO3ofRM(opc[1]) <= 1 |
| && !epartIsReg(opc[1])) |
| return True; |
| break; |
| |
| case 0xF6: case 0xF7: |
| if (gregLO3ofRM(opc[1]) >= 2 && gregLO3ofRM(opc[1]) <= 3 |
| && !epartIsReg(opc[1])) |
| return True; |
| break; |
| |
| case 0x86: case 0x87: |
| if (!epartIsReg(opc[1])) |
| return True; |
| break; |
| |
| case 0x0F: { |
| switch (opc[1]) { |
| case 0xBB: case 0xB3: case 0xAB: |
| if (!epartIsReg(opc[2])) |
| return True; |
| break; |
| case 0xBA: |
| if (gregLO3ofRM(opc[2]) >= 5 && gregLO3ofRM(opc[2]) <= 7 |
| && !epartIsReg(opc[2])) |
| return True; |
| break; |
| case 0xB0: case 0xB1: |
| if (!epartIsReg(opc[2])) |
| return True; |
| break; |
| case 0xC7: |
| if (gregLO3ofRM(opc[2]) == 1 && !epartIsReg(opc[2]) ) |
| return True; |
| break; |
| case 0xC0: case 0xC1: |
| if (!epartIsReg(opc[2])) |
| return True; |
| break; |
| default: |
| break; |
| } /* switch (opc[1]) */ |
| break; |
| } |
| |
| default: |
| break; |
| } /* switch (opc[0]) */ |
| |
| return False; |
| } |
| |
| |
| /*------------------------------------------------------------*/ |
| /*--- ---*/ |
| /*--- Top-level SSE/SSE2: dis_ESC_0F__SSE2 ---*/ |
| /*--- ---*/ |
| /*------------------------------------------------------------*/ |
| |
| static Long dis_COMISD ( VexAbiInfo* vbi, Prefix pfx, |
| Long delta, Bool isAvx, UChar opc ) |
| { |
| vassert(opc == 0x2F/*COMISD*/ || opc == 0x2E/*UCOMISD*/); |
| Int alen = 0; |
| HChar dis_buf[50]; |
| IRTemp argL = newTemp(Ity_F64); |
| IRTemp argR = newTemp(Ity_F64); |
| UChar modrm = getUChar(delta); |
| IRTemp addr = IRTemp_INVALID; |
| if (epartIsReg(modrm)) { |
| assign( argR, getXMMRegLane64F( eregOfRexRM(pfx,modrm), |
| 0/*lowest lane*/ ) ); |
| delta += 1; |
| DIP("%s%scomisd %s,%s\n", isAvx ? "v" : "", |
| opc==0x2E ? "u" : "", |
| nameXMMReg(eregOfRexRM(pfx,modrm)), |
| nameXMMReg(gregOfRexRM(pfx,modrm)) ); |
| } else { |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| assign( argR, loadLE(Ity_F64, mkexpr(addr)) ); |
| delta += alen; |
| DIP("%s%scomisd %s,%s\n", isAvx ? "v" : "", |
| opc==0x2E ? "u" : "", |
| dis_buf, |
| nameXMMReg(gregOfRexRM(pfx,modrm)) ); |
| } |
| assign( argL, getXMMRegLane64F( gregOfRexRM(pfx,modrm), |
| 0/*lowest lane*/ ) ); |
| |
| stmt( IRStmt_Put( OFFB_CC_OP, mkU64(AMD64G_CC_OP_COPY) )); |
| stmt( IRStmt_Put( OFFB_CC_DEP2, mkU64(0) )); |
| stmt( IRStmt_Put( |
| OFFB_CC_DEP1, |
| binop( Iop_And64, |
| unop( Iop_32Uto64, |
| binop(Iop_CmpF64, mkexpr(argL), mkexpr(argR)) ), |
| mkU64(0x45) |
| ))); |
| return delta; |
| } |
| |
| |
| static Long dis_COMISS ( VexAbiInfo* vbi, Prefix pfx, |
| Long delta, Bool isAvx, UChar opc ) |
| { |
| vassert(opc == 0x2F/*COMISS*/ || opc == 0x2E/*UCOMISS*/); |
| Int alen = 0; |
| HChar dis_buf[50]; |
| IRTemp argL = newTemp(Ity_F32); |
| IRTemp argR = newTemp(Ity_F32); |
| UChar modrm = getUChar(delta); |
| IRTemp addr = IRTemp_INVALID; |
| if (epartIsReg(modrm)) { |
| assign( argR, getXMMRegLane32F( eregOfRexRM(pfx,modrm), |
| 0/*lowest lane*/ ) ); |
| delta += 1; |
| DIP("%s%scomiss %s,%s\n", isAvx ? "v" : "", |
| opc==0x2E ? "u" : "", |
| nameXMMReg(eregOfRexRM(pfx,modrm)), |
| nameXMMReg(gregOfRexRM(pfx,modrm)) ); |
| } else { |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| assign( argR, loadLE(Ity_F32, mkexpr(addr)) ); |
| delta += alen; |
| DIP("%s%scomiss %s,%s\n", isAvx ? "v" : "", |
| opc==0x2E ? "u" : "", |
| dis_buf, |
| nameXMMReg(gregOfRexRM(pfx,modrm)) ); |
| } |
| assign( argL, getXMMRegLane32F( gregOfRexRM(pfx,modrm), |
| 0/*lowest lane*/ ) ); |
| |
| stmt( IRStmt_Put( OFFB_CC_OP, mkU64(AMD64G_CC_OP_COPY) )); |
| stmt( IRStmt_Put( OFFB_CC_DEP2, mkU64(0) )); |
| stmt( IRStmt_Put( |
| OFFB_CC_DEP1, |
| binop( Iop_And64, |
| unop( Iop_32Uto64, |
| binop(Iop_CmpF64, |
| unop(Iop_F32toF64,mkexpr(argL)), |
| unop(Iop_F32toF64,mkexpr(argR)))), |
| mkU64(0x45) |
| ))); |
| return delta; |
| } |
| |
| |
| static Long dis_PSHUFD_32x4 ( VexAbiInfo* vbi, Prefix pfx, |
| Long delta, Bool writesYmm ) |
| { |
| Int order; |
| Int alen = 0; |
| HChar dis_buf[50]; |
| IRTemp sV = newTemp(Ity_V128); |
| UChar modrm = getUChar(delta); |
| HChar* strV = writesYmm ? "v" : ""; |
| IRTemp addr = IRTemp_INVALID; |
| if (epartIsReg(modrm)) { |
| assign( sV, getXMMReg(eregOfRexRM(pfx,modrm)) ); |
| order = (Int)getUChar(delta+1); |
| delta += 1+1; |
| DIP("%spshufd $%d,%s,%s\n", strV, order, |
| nameXMMReg(eregOfRexRM(pfx,modrm)), |
| nameXMMReg(gregOfRexRM(pfx,modrm))); |
| } else { |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, |
| 1/*byte after the amode*/ ); |
| assign( sV, loadLE(Ity_V128, mkexpr(addr)) ); |
| order = (Int)getUChar(delta+alen); |
| delta += alen+1; |
| DIP("%spshufd $%d,%s,%s\n", strV, order, |
| dis_buf, |
| nameXMMReg(gregOfRexRM(pfx,modrm))); |
| } |
| |
| IRTemp s3, s2, s1, s0; |
| s3 = s2 = s1 = s0 = IRTemp_INVALID; |
| breakup128to32s( sV, &s3, &s2, &s1, &s0 ); |
| |
| # define SEL(n) ((n)==0 ? s0 : ((n)==1 ? s1 : ((n)==2 ? s2 : s3))) |
| IRTemp dV = newTemp(Ity_V128); |
| assign(dV, |
| mk128from32s( SEL((order>>6)&3), SEL((order>>4)&3), |
| SEL((order>>2)&3), SEL((order>>0)&3) ) |
| ); |
| # undef SEL |
| |
| (writesYmm ? putYMMRegLoAndZU : putXMMReg) |
| (gregOfRexRM(pfx,modrm), mkexpr(dV)); |
| return delta; |
| } |
| |
| |
| static IRTemp math_PSRLDQ ( IRTemp sV, Int imm ) |
| { |
| IRTemp dV = newTemp(Ity_V128); |
| IRTemp hi64 = newTemp(Ity_I64); |
| IRTemp lo64 = newTemp(Ity_I64); |
| IRTemp hi64r = newTemp(Ity_I64); |
| IRTemp lo64r = newTemp(Ity_I64); |
| |
| vassert(imm >= 0 && imm <= 255); |
| if (imm >= 16) { |
| assign(dV, mkV128(0x0000)); |
| return dV; |
| } |
| |
| assign( hi64, unop(Iop_V128HIto64, mkexpr(sV)) ); |
| assign( lo64, unop(Iop_V128to64, mkexpr(sV)) ); |
| |
| if (imm == 0) { |
| assign( lo64r, mkexpr(lo64) ); |
| assign( hi64r, mkexpr(hi64) ); |
| } |
| else |
| if (imm == 8) { |
| assign( hi64r, mkU64(0) ); |
| assign( lo64r, mkexpr(hi64) ); |
| } |
| else |
| if (imm > 8) { |
| assign( hi64r, mkU64(0) ); |
| assign( lo64r, binop( Iop_Shr64, mkexpr(hi64), mkU8( 8*(imm-8) ) )); |
| } else { |
| assign( hi64r, binop( Iop_Shr64, mkexpr(hi64), mkU8(8 * imm) )); |
| assign( lo64r, |
| binop( Iop_Or64, |
| binop(Iop_Shr64, mkexpr(lo64), |
| mkU8(8 * imm)), |
| binop(Iop_Shl64, mkexpr(hi64), |
| mkU8(8 * (8 - imm)) ) |
| ) |
| ); |
| } |
| |
| assign( dV, binop(Iop_64HLtoV128, mkexpr(hi64r), mkexpr(lo64r)) ); |
| return dV; |
| } |
| |
| |
| static IRTemp math_PSLLDQ ( IRTemp sV, Int imm ) |
| { |
| IRTemp dV = newTemp(Ity_V128); |
| IRTemp hi64 = newTemp(Ity_I64); |
| IRTemp lo64 = newTemp(Ity_I64); |
| IRTemp hi64r = newTemp(Ity_I64); |
| IRTemp lo64r = newTemp(Ity_I64); |
| |
| vassert(imm >= 0 && imm <= 255); |
| if (imm >= 16) { |
| assign(dV, mkV128(0x0000)); |
| return dV; |
| } |
| |
| assign( hi64, unop(Iop_V128HIto64, mkexpr(sV)) ); |
| assign( lo64, unop(Iop_V128to64, mkexpr(sV)) ); |
| |
| if (imm == 0) { |
| assign( lo64r, mkexpr(lo64) ); |
| assign( hi64r, mkexpr(hi64) ); |
| } |
| else |
| if (imm == 8) { |
| assign( lo64r, mkU64(0) ); |
| assign( hi64r, mkexpr(lo64) ); |
| } |
| else |
| if (imm > 8) { |
| assign( lo64r, mkU64(0) ); |
| assign( hi64r, binop( Iop_Shl64, mkexpr(lo64), mkU8( 8*(imm-8) ) )); |
| } else { |
| assign( lo64r, binop( Iop_Shl64, mkexpr(lo64), mkU8(8 * imm) )); |
| assign( hi64r, |
| binop( Iop_Or64, |
| binop(Iop_Shl64, mkexpr(hi64), |
| mkU8(8 * imm)), |
| binop(Iop_Shr64, mkexpr(lo64), |
| mkU8(8 * (8 - imm)) ) |
| ) |
| ); |
| } |
| |
| assign( dV, binop(Iop_64HLtoV128, mkexpr(hi64r), mkexpr(lo64r)) ); |
| return dV; |
| } |
| |
| |
| static Long dis_CVTxSD2SI ( VexAbiInfo* vbi, Prefix pfx, |
| Long delta, Bool isAvx, UChar opc, Int sz ) |
| { |
| vassert(opc == 0x2D/*CVTSD2SI*/ || opc == 0x2C/*CVTTSD2SI*/); |
| HChar dis_buf[50]; |
| Int alen = 0; |
| UChar modrm = getUChar(delta); |
| IRTemp addr = IRTemp_INVALID; |
| IRTemp rmode = newTemp(Ity_I32); |
| IRTemp f64lo = newTemp(Ity_F64); |
| Bool r2zero = toBool(opc == 0x2C); |
| |
| if (epartIsReg(modrm)) { |
| delta += 1; |
| assign(f64lo, getXMMRegLane64F(eregOfRexRM(pfx,modrm), 0)); |
| DIP("%scvt%ssd2si %s,%s\n", isAvx ? "v" : "", r2zero ? "t" : "", |
| nameXMMReg(eregOfRexRM(pfx,modrm)), |
| nameIReg(sz, gregOfRexRM(pfx,modrm), |
| False)); |
| } else { |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| assign(f64lo, loadLE(Ity_F64, mkexpr(addr))); |
| delta += alen; |
| DIP("%scvt%ssd2si %s,%s\n", isAvx ? "v" : "", r2zero ? "t" : "", |
| dis_buf, |
| nameIReg(sz, gregOfRexRM(pfx,modrm), |
| False)); |
| } |
| |
| if (r2zero) { |
| assign( rmode, mkU32((UInt)Irrm_ZERO) ); |
| } else { |
| assign( rmode, get_sse_roundingmode() ); |
| } |
| |
| if (sz == 4) { |
| putIReg32( gregOfRexRM(pfx,modrm), |
| binop( Iop_F64toI32S, mkexpr(rmode), mkexpr(f64lo)) ); |
| } else { |
| vassert(sz == 8); |
| putIReg64( gregOfRexRM(pfx,modrm), |
| binop( Iop_F64toI64S, mkexpr(rmode), mkexpr(f64lo)) ); |
| } |
| |
| return delta; |
| } |
| |
| |
| static Long dis_CVTxSS2SI ( VexAbiInfo* vbi, Prefix pfx, |
| Long delta, Bool isAvx, UChar opc, Int sz ) |
| { |
| vassert(opc == 0x2D/*CVTSS2SI*/ || opc == 0x2C/*CVTTSS2SI*/); |
| HChar dis_buf[50]; |
| Int alen = 0; |
| UChar modrm = getUChar(delta); |
| IRTemp addr = IRTemp_INVALID; |
| IRTemp rmode = newTemp(Ity_I32); |
| IRTemp f32lo = newTemp(Ity_F32); |
| Bool r2zero = toBool(opc == 0x2C); |
| |
| if (epartIsReg(modrm)) { |
| delta += 1; |
| assign(f32lo, getXMMRegLane32F(eregOfRexRM(pfx,modrm), 0)); |
| DIP("%scvt%sss2si %s,%s\n", isAvx ? "v" : "", r2zero ? "t" : "", |
| nameXMMReg(eregOfRexRM(pfx,modrm)), |
| nameIReg(sz, gregOfRexRM(pfx,modrm), |
| False)); |
| } else { |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| assign(f32lo, loadLE(Ity_F32, mkexpr(addr))); |
| delta += alen; |
| DIP("%scvt%sss2si %s,%s\n", isAvx ? "v" : "", r2zero ? "t" : "", |
| dis_buf, |
| nameIReg(sz, gregOfRexRM(pfx,modrm), |
| False)); |
| } |
| |
| if (r2zero) { |
| assign( rmode, mkU32((UInt)Irrm_ZERO) ); |
| } else { |
| assign( rmode, get_sse_roundingmode() ); |
| } |
| |
| if (sz == 4) { |
| putIReg32( gregOfRexRM(pfx,modrm), |
| binop( Iop_F64toI32S, |
| mkexpr(rmode), |
| unop(Iop_F32toF64, mkexpr(f32lo))) ); |
| } else { |
| vassert(sz == 8); |
| putIReg64( gregOfRexRM(pfx,modrm), |
| binop( Iop_F64toI64S, |
| mkexpr(rmode), |
| unop(Iop_F32toF64, mkexpr(f32lo))) ); |
| } |
| |
| return delta; |
| } |
| |
| |
| static Long dis_CVTPS2PD ( VexAbiInfo* vbi, Prefix pfx, |
| Long delta, Bool isAvx ) |
| { |
| IRTemp addr = IRTemp_INVALID; |
| Int alen = 0; |
| HChar dis_buf[50]; |
| IRTemp f32lo = newTemp(Ity_F32); |
| IRTemp f32hi = newTemp(Ity_F32); |
| UChar modrm = getUChar(delta); |
| UInt rG = gregOfRexRM(pfx,modrm); |
| if (epartIsReg(modrm)) { |
| UInt rE = eregOfRexRM(pfx,modrm); |
| assign( f32lo, getXMMRegLane32F(rE, 0) ); |
| assign( f32hi, getXMMRegLane32F(rE, 1) ); |
| delta += 1; |
| DIP("%scvtps2pd %s,%s\n", |
| isAvx ? "v" : "", nameXMMReg(rE), nameXMMReg(rG)); |
| } else { |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| assign( f32lo, loadLE(Ity_F32, mkexpr(addr)) ); |
| assign( f32hi, loadLE(Ity_F32, |
| binop(Iop_Add64,mkexpr(addr),mkU64(4))) ); |
| delta += alen; |
| DIP("%scvtps2pd %s,%s\n", |
| isAvx ? "v" : "", dis_buf, nameXMMReg(rG)); |
| } |
| |
| putXMMRegLane64F( rG, 1, unop(Iop_F32toF64, mkexpr(f32hi)) ); |
| putXMMRegLane64F( rG, 0, unop(Iop_F32toF64, mkexpr(f32lo)) ); |
| if (isAvx) |
| putYMMRegLane128( rG, 1, mkV128(0)); |
| return delta; |
| } |
| |
| |
| static Long dis_CVTPD2PS ( VexAbiInfo* vbi, Prefix pfx, |
| Long delta, Bool isAvx ) |
| { |
| IRTemp addr = IRTemp_INVALID; |
| Int alen = 0; |
| HChar dis_buf[50]; |
| UChar modrm = getUChar(delta); |
| UInt rG = gregOfRexRM(pfx,modrm); |
| IRTemp argV = newTemp(Ity_V128); |
| IRTemp rmode = newTemp(Ity_I32); |
| if (epartIsReg(modrm)) { |
| UInt rE = eregOfRexRM(pfx,modrm); |
| assign( argV, getXMMReg(rE) ); |
| delta += 1; |
| DIP("%scvtpd2ps %s,%s\n", isAvx ? "v" : "", |
| nameXMMReg(rE), nameXMMReg(rG)); |
| } else { |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| assign( argV, loadLE(Ity_V128, mkexpr(addr)) ); |
| delta += alen; |
| DIP("%scvtpd2ps %s,%s\n", isAvx ? "v" : "", |
| dis_buf, nameXMMReg(rG) ); |
| } |
| |
| assign( rmode, get_sse_roundingmode() ); |
| IRTemp t0 = newTemp(Ity_F64); |
| IRTemp t1 = newTemp(Ity_F64); |
| assign( t0, unop(Iop_ReinterpI64asF64, |
| unop(Iop_V128to64, mkexpr(argV))) ); |
| assign( t1, unop(Iop_ReinterpI64asF64, |
| unop(Iop_V128HIto64, mkexpr(argV))) ); |
| |
| # define CVT(_t) binop( Iop_F64toF32, mkexpr(rmode), mkexpr(_t) ) |
| putXMMRegLane32( rG, 3, mkU32(0) ); |
| putXMMRegLane32( rG, 2, mkU32(0) ); |
| putXMMRegLane32F( rG, 1, CVT(t1) ); |
| putXMMRegLane32F( rG, 0, CVT(t0) ); |
| # undef CVT |
| if (isAvx) |
| putYMMRegLane128( rG, 1, mkV128(0) ); |
| |
| return delta; |
| } |
| |
| |
| static Long dis_CVTxPS2DQ ( VexAbiInfo* vbi, Prefix pfx, |
| Long delta, Bool isAvx, Bool r2zero ) |
| { |
| IRTemp addr = IRTemp_INVALID; |
| Int alen = 0; |
| HChar dis_buf[50]; |
| UChar modrm = getUChar(delta); |
| IRTemp argV = newTemp(Ity_V128); |
| IRTemp rmode = newTemp(Ity_I32); |
| UInt rG = gregOfRexRM(pfx,modrm); |
| IRTemp t0, t1, t2, t3; |
| |
| if (epartIsReg(modrm)) { |
| UInt rE = eregOfRexRM(pfx,modrm); |
| assign( argV, getXMMReg(rE) ); |
| delta += 1; |
| DIP("%scvtps2dq %s,%s\n", |
| isAvx ? "v" : "", nameXMMReg(rE), nameXMMReg(rG)); |
| } else { |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| assign( argV, loadLE(Ity_V128, mkexpr(addr)) ); |
| delta += alen; |
| DIP("%scvtps2dq %s,%s\n", |
| isAvx ? "v" : "", dis_buf, nameXMMReg(rG) ); |
| } |
| |
| assign( rmode, r2zero ? mkU32((UInt)Irrm_ZERO) |
| : get_sse_roundingmode() ); |
| t0 = t1 = t2 = t3 = IRTemp_INVALID; |
| breakup128to32s( argV, &t3, &t2, &t1, &t0 ); |
| /* This is less than ideal. If it turns out to be a performance |
| bottleneck it can be improved. */ |
| # define CVT(_t) \ |
| binop( Iop_F64toI32S, \ |
| mkexpr(rmode), \ |
| unop( Iop_F32toF64, \ |
| unop( Iop_ReinterpI32asF32, mkexpr(_t))) ) |
| |
| putXMMRegLane32( rG, 3, CVT(t3) ); |
| putXMMRegLane32( rG, 2, CVT(t2) ); |
| putXMMRegLane32( rG, 1, CVT(t1) ); |
| putXMMRegLane32( rG, 0, CVT(t0) ); |
| # undef CVT |
| if (isAvx) |
| putYMMRegLane128( rG, 1, mkV128(0) ); |
| |
| return delta; |
| } |
| |
| |
| static Long dis_PMOVMSKB_128 ( VexAbiInfo* vbi, Prefix pfx, |
| Long delta, Bool isAvx ) |
| { |
| /* UInt x86g_calculate_sse_pmovmskb ( ULong w64hi, ULong w64lo ); */ |
| UChar modrm = getUChar(delta); |
| vassert(epartIsReg(modrm)); /* ensured by caller */ |
| UInt rE = eregOfRexRM(pfx,modrm); |
| UInt rG = gregOfRexRM(pfx,modrm); |
| IRTemp t0 = newTemp(Ity_I64); |
| IRTemp t1 = newTemp(Ity_I64); |
| IRTemp t5 = newTemp(Ity_I64); |
| assign(t0, getXMMRegLane64(rE, 0)); |
| assign(t1, getXMMRegLane64(rE, 1)); |
| assign(t5, mkIRExprCCall( Ity_I64, 0/*regparms*/, |
| "amd64g_calculate_sse_pmovmskb", |
| &amd64g_calculate_sse_pmovmskb, |
| mkIRExprVec_2( mkexpr(t1), mkexpr(t0) ))); |
| putIReg32(rG, unop(Iop_64to32,mkexpr(t5))); |
| DIP("%spmovmskb %s,%s\n", isAvx ? "v" : "", nameXMMReg(rE), |
| nameIReg32(rG)); |
| delta += 1; |
| return delta; |
| } |
| |
| |
| /* FIXME: why not just use InterleaveLO / InterleaveHI ?? */ |
| static IRTemp math_UNPCKxPS_128 ( IRTemp sV, IRTemp dV, UChar opc ) |
| { |
| IRTemp s3, s2, s1, s0, d3, d2, d1, d0; |
| Bool hi = toBool(opc == 0x15); |
| vassert(opc == 0x15/*UNPCKLPS*/ || opc == 0x14/*UNPCKHPS*/); |
| s3 = s2 = s1 = s0 = d3 = d2 = d1 = d0 = IRTemp_INVALID; |
| breakup128to32s( dV, &d3, &d2, &d1, &d0 ); |
| breakup128to32s( sV, &s3, &s2, &s1, &s0 ); |
| IRTemp res = newTemp(Ity_V128); |
| assign(res, hi ? mk128from32s( s3, d3, s2, d2 ) |
| : mk128from32s( s1, d1, s0, d0 )); |
| return res; |
| } |
| |
| |
| static IRTemp math_SHUFPS ( IRTemp sV, IRTemp dV, UInt imm8 ) |
| { |
| IRTemp s3, s2, s1, s0, d3, d2, d1, d0; |
| s3 = s2 = s1 = s0 = d3 = d2 = d1 = d0 = IRTemp_INVALID; |
| vassert(imm8 < 256); |
| |
| breakup128to32s( dV, &d3, &d2, &d1, &d0 ); |
| breakup128to32s( sV, &s3, &s2, &s1, &s0 ); |
| |
| # define SELD(n) ((n)==0 ? d0 : ((n)==1 ? d1 : ((n)==2 ? d2 : d3))) |
| # define SELS(n) ((n)==0 ? s0 : ((n)==1 ? s1 : ((n)==2 ? s2 : s3))) |
| IRTemp res = newTemp(Ity_V128); |
| assign(res, |
| mk128from32s( SELS((imm8>>6)&3), SELS((imm8>>4)&3), |
| SELD((imm8>>2)&3), SELD((imm8>>0)&3) ) ); |
| # undef SELD |
| # undef SELS |
| return res; |
| } |
| |
| |
| /* Handle 128 bit PSHUFLW and PSHUFHW. */ |
| static Long dis_PSHUFxW_128 ( VexAbiInfo* vbi, Prefix pfx, |
| Long delta, Bool isAvx, Bool xIsH ) |
| { |
| IRTemp addr = IRTemp_INVALID; |
| Int alen = 0; |
| HChar dis_buf[50]; |
| UChar modrm = getUChar(delta); |
| UInt rG = gregOfRexRM(pfx,modrm); |
| UInt imm8; |
| IRTemp sVmut, dVmut, sVcon, sV, dV, s3, s2, s1, s0; |
| s3 = s2 = s1 = s0 = IRTemp_INVALID; |
| sV = newTemp(Ity_V128); |
| dV = newTemp(Ity_V128); |
| sVmut = newTemp(Ity_I64); |
| dVmut = newTemp(Ity_I64); |
| sVcon = newTemp(Ity_I64); |
| if (epartIsReg(modrm)) { |
| UInt rE = eregOfRexRM(pfx,modrm); |
| assign( sV, getXMMReg(rE) ); |
| imm8 = (UInt)getUChar(delta+1); |
| delta += 1+1; |
| DIP("%spshuf%cw $%u,%s,%s\n", |
| isAvx ? "v" : "", xIsH ? 'h' : 'l', |
| imm8, nameXMMReg(rE), nameXMMReg(rG)); |
| } else { |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 1 ); |
| assign( sV, loadLE(Ity_V128, mkexpr(addr)) ); |
| imm8 = (UInt)getUChar(delta+alen); |
| delta += alen+1; |
| DIP("%spshuf%cw $%u,%s,%s\n", |
| isAvx ? "v" : "", xIsH ? 'h' : 'l', |
| imm8, dis_buf, nameXMMReg(rG)); |
| } |
| |
| /* Get the to-be-changed (mut) and unchanging (con) bits of the |
| source. */ |
| assign( sVmut, unop(xIsH ? Iop_V128HIto64 : Iop_V128to64, mkexpr(sV)) ); |
| assign( sVcon, unop(xIsH ? Iop_V128to64 : Iop_V128HIto64, mkexpr(sV)) ); |
| |
| breakup64to16s( sVmut, &s3, &s2, &s1, &s0 ); |
| # define SEL(n) \ |
| ((n)==0 ? s0 : ((n)==1 ? s1 : ((n)==2 ? s2 : s3))) |
| assign(dVmut, mk64from16s( SEL((imm8>>6)&3), SEL((imm8>>4)&3), |
| SEL((imm8>>2)&3), SEL((imm8>>0)&3) )); |
| # undef SEL |
| |
| assign(dV, xIsH ? binop(Iop_64HLtoV128, mkexpr(dVmut), mkexpr(sVcon)) |
| : binop(Iop_64HLtoV128, mkexpr(sVcon), mkexpr(dVmut)) ); |
| |
| (isAvx ? putYMMRegLoAndZU : putXMMReg)(rG, mkexpr(dV)); |
| return delta; |
| } |
| |
| |
| /* Note, this also handles SSE(1) insns. */ |
| __attribute__((noinline)) |
| static |
| Long dis_ESC_0F__SSE2 ( Bool* decode_OK, |
| VexAbiInfo* vbi, |
| Prefix pfx, Int sz, Long deltaIN, |
| DisResult* dres ) |
| { |
| IRTemp addr = IRTemp_INVALID; |
| IRTemp t0 = IRTemp_INVALID; |
| IRTemp t1 = IRTemp_INVALID; |
| IRTemp t2 = IRTemp_INVALID; |
| IRTemp t3 = IRTemp_INVALID; |
| IRTemp t4 = IRTemp_INVALID; |
| IRTemp t5 = IRTemp_INVALID; |
| IRTemp t6 = IRTemp_INVALID; |
| UChar modrm = 0; |
| Int alen = 0; |
| HChar dis_buf[50]; |
| |
| *decode_OK = False; |
| |
| Long delta = deltaIN; |
| UChar opc = getUChar(delta); |
| delta++; |
| switch (opc) { |
| |
| case 0x10: |
| if (have66noF2noF3(pfx) |
| && (sz == 2 || /* ignore redundant REX.W */ sz == 8)) { |
| /* 66 0F 10 = MOVUPD -- move from E (mem or xmm) to G (xmm). */ |
| modrm = getUChar(delta); |
| if (epartIsReg(modrm)) { |
| putXMMReg( gregOfRexRM(pfx,modrm), |
| getXMMReg( eregOfRexRM(pfx,modrm) )); |
| DIP("movupd %s,%s\n", nameXMMReg(eregOfRexRM(pfx,modrm)), |
| nameXMMReg(gregOfRexRM(pfx,modrm))); |
| delta += 1; |
| } else { |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| putXMMReg( gregOfRexRM(pfx,modrm), |
| loadLE(Ity_V128, mkexpr(addr)) ); |
| DIP("movupd %s,%s\n", dis_buf, |
| nameXMMReg(gregOfRexRM(pfx,modrm))); |
| delta += alen; |
| } |
| goto decode_success; |
| } |
| /* F2 0F 10 = MOVSD -- move 64 bits from E (mem or lo half xmm) to |
| G (lo half xmm). If E is mem, upper half of G is zeroed out. |
| If E is reg, upper half of G is unchanged. */ |
| if (haveF2no66noF3(pfx) |
| && (sz == 4 || /* ignore redundant REX.W */ sz == 8) ) { |
| modrm = getUChar(delta); |
| if (epartIsReg(modrm)) { |
| putXMMRegLane64( gregOfRexRM(pfx,modrm), 0, |
| getXMMRegLane64( eregOfRexRM(pfx,modrm), 0 )); |
| DIP("movsd %s,%s\n", nameXMMReg(eregOfRexRM(pfx,modrm)), |
| nameXMMReg(gregOfRexRM(pfx,modrm))); |
| delta += 1; |
| } else { |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| putXMMReg( gregOfRexRM(pfx,modrm), mkV128(0) ); |
| putXMMRegLane64( gregOfRexRM(pfx,modrm), 0, |
| loadLE(Ity_I64, mkexpr(addr)) ); |
| DIP("movsd %s,%s\n", dis_buf, |
| nameXMMReg(gregOfRexRM(pfx,modrm))); |
| delta += alen; |
| } |
| goto decode_success; |
| } |
| /* F3 0F 10 = MOVSS -- move 32 bits from E (mem or lo 1/4 xmm) to G |
| (lo 1/4 xmm). If E is mem, upper 3/4 of G is zeroed out. */ |
| if (haveF3no66noF2(pfx) |
| && (sz == 4 || /* ignore redundant REX.W */ sz == 8)) { |
| modrm = getUChar(delta); |
| if (epartIsReg(modrm)) { |
| putXMMRegLane32( gregOfRexRM(pfx,modrm), 0, |
| getXMMRegLane32( eregOfRexRM(pfx,modrm), 0 )); |
| DIP("movss %s,%s\n", nameXMMReg(eregOfRexRM(pfx,modrm)), |
| nameXMMReg(gregOfRexRM(pfx,modrm))); |
| delta += 1; |
| } else { |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| putXMMReg( gregOfRexRM(pfx,modrm), mkV128(0) ); |
| putXMMRegLane32( gregOfRexRM(pfx,modrm), 0, |
| loadLE(Ity_I32, mkexpr(addr)) ); |
| DIP("movss %s,%s\n", dis_buf, |
| nameXMMReg(gregOfRexRM(pfx,modrm))); |
| delta += alen; |
| } |
| goto decode_success; |
| } |
| /* 0F 10 = MOVUPS -- move from E (mem or xmm) to G (xmm). */ |
| if (haveNo66noF2noF3(pfx) |
| && (sz == 4 || /* ignore redundant REX.W */ sz == 8)) { |
| modrm = getUChar(delta); |
| if (epartIsReg(modrm)) { |
| putXMMReg( gregOfRexRM(pfx,modrm), |
| getXMMReg( eregOfRexRM(pfx,modrm) )); |
| DIP("movups %s,%s\n", nameXMMReg(eregOfRexRM(pfx,modrm)), |
| nameXMMReg(gregOfRexRM(pfx,modrm))); |
| delta += 1; |
| } else { |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| putXMMReg( gregOfRexRM(pfx,modrm), |
| loadLE(Ity_V128, mkexpr(addr)) ); |
| DIP("movups %s,%s\n", dis_buf, |
| nameXMMReg(gregOfRexRM(pfx,modrm))); |
| delta += alen; |
| } |
| goto decode_success; |
| } |
| break; |
| |
| case 0x11: |
| /* F2 0F 11 = MOVSD -- move 64 bits from G (lo half xmm) to E (mem |
| or lo half xmm). */ |
| if (haveF2no66noF3(pfx) |
| && (sz == 4 || /* ignore redundant REX.W */ sz == 8)) { |
| modrm = getUChar(delta); |
| if (epartIsReg(modrm)) { |
| putXMMRegLane64( eregOfRexRM(pfx,modrm), 0, |
| getXMMRegLane64( gregOfRexRM(pfx,modrm), 0 )); |
| DIP("movsd %s,%s\n", nameXMMReg(gregOfRexRM(pfx,modrm)), |
| nameXMMReg(eregOfRexRM(pfx,modrm))); |
| delta += 1; |
| } else { |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| storeLE( mkexpr(addr), |
| getXMMRegLane64(gregOfRexRM(pfx,modrm), 0) ); |
| DIP("movsd %s,%s\n", nameXMMReg(gregOfRexRM(pfx,modrm)), |
| dis_buf); |
| delta += alen; |
| } |
| goto decode_success; |
| } |
| /* F3 0F 11 = MOVSS -- move 32 bits from G (lo 1/4 xmm) to E (mem |
| or lo 1/4 xmm). */ |
| if (haveF3no66noF2(pfx) && sz == 4) { |
| modrm = getUChar(delta); |
| if (epartIsReg(modrm)) { |
| /* fall through, we don't yet have a test case */ |
| } else { |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| storeLE( mkexpr(addr), |
| getXMMRegLane32(gregOfRexRM(pfx,modrm), 0) ); |
| DIP("movss %s,%s\n", nameXMMReg(gregOfRexRM(pfx,modrm)), |
| dis_buf); |
| delta += alen; |
| goto decode_success; |
| } |
| } |
| /* 66 0F 11 = MOVUPD -- move from G (xmm) to E (mem or xmm). */ |
| if (have66noF2noF3(pfx) |
| && (sz == 2 || /* ignore redundant REX.W */ sz == 8)) { |
| modrm = getUChar(delta); |
| if (epartIsReg(modrm)) { |
| putXMMReg( eregOfRexRM(pfx,modrm), |
| getXMMReg( gregOfRexRM(pfx,modrm) ) ); |
| DIP("movupd %s,%s\n", nameXMMReg(gregOfRexRM(pfx,modrm)), |
| nameXMMReg(eregOfRexRM(pfx,modrm))); |
| delta += 1; |
| } else { |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| storeLE( mkexpr(addr), getXMMReg(gregOfRexRM(pfx,modrm)) ); |
| DIP("movupd %s,%s\n", nameXMMReg(gregOfRexRM(pfx,modrm)), |
| dis_buf ); |
| delta += alen; |
| } |
| goto decode_success; |
| } |
| /* 0F 11 = MOVUPS -- move from G (xmm) to E (mem or xmm). */ |
| if (haveNo66noF2noF3(pfx) |
| && (sz == 4 || /* ignore redundant REX.W */ sz == 8)) { |
| modrm = getUChar(delta); |
| if (epartIsReg(modrm)) { |
| /* fall through; awaiting test case */ |
| } else { |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| storeLE( mkexpr(addr), getXMMReg(gregOfRexRM(pfx,modrm)) ); |
| DIP("movups %s,%s\n", nameXMMReg(gregOfRexRM(pfx,modrm)), |
| dis_buf ); |
| delta += alen; |
| goto decode_success; |
| } |
| } |
| break; |
| |
| case 0x12: |
| /* 66 0F 12 = MOVLPD -- move from mem to low half of XMM. */ |
| /* Identical to MOVLPS ? */ |
| if (have66noF2noF3(pfx) |
| && (sz == 2 || /* ignore redundant REX.W */ sz == 8)) { |
| modrm = getUChar(delta); |
| if (epartIsReg(modrm)) { |
| /* fall through; apparently reg-reg is not possible */ |
| } else { |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| delta += alen; |
| putXMMRegLane64( gregOfRexRM(pfx,modrm), |
| 0/*lower lane*/, |
| loadLE(Ity_I64, mkexpr(addr)) ); |
| DIP("movlpd %s, %s\n", |
| dis_buf, nameXMMReg( gregOfRexRM(pfx,modrm) )); |
| goto decode_success; |
| } |
| } |
| /* 0F 12 = MOVLPS -- move from mem to low half of XMM. */ |
| /* OF 12 = MOVHLPS -- from from hi half to lo half of XMM. */ |
| if (haveNo66noF2noF3(pfx) |
| && (sz == 4 || /* ignore redundant REX.W */ sz == 8)) { |
| modrm = getUChar(delta); |
| if (epartIsReg(modrm)) { |
| delta += 1; |
| putXMMRegLane64( gregOfRexRM(pfx,modrm), |
| 0/*lower lane*/, |
| getXMMRegLane64( eregOfRexRM(pfx,modrm), 1 )); |
| DIP("movhlps %s, %s\n", nameXMMReg(eregOfRexRM(pfx,modrm)), |
| nameXMMReg(gregOfRexRM(pfx,modrm))); |
| } else { |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| delta += alen; |
| putXMMRegLane64( gregOfRexRM(pfx,modrm), 0/*lower lane*/, |
| loadLE(Ity_I64, mkexpr(addr)) ); |
| DIP("movlps %s, %s\n", |
| dis_buf, nameXMMReg( gregOfRexRM(pfx,modrm) )); |
| } |
| goto decode_success; |
| } |
| break; |
| |
| case 0x13: |
| /* 0F 13 = MOVLPS -- move from low half of XMM to mem. */ |
| if (haveNo66noF2noF3(pfx) |
| && (sz == 4 || /* ignore redundant REX.W */ sz == 8)) { |
| modrm = getUChar(delta); |
| if (!epartIsReg(modrm)) { |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| delta += alen; |
| storeLE( mkexpr(addr), |
| getXMMRegLane64( gregOfRexRM(pfx,modrm), |
| 0/*lower lane*/ ) ); |
| DIP("movlps %s, %s\n", nameXMMReg( gregOfRexRM(pfx,modrm) ), |
| dis_buf); |
| goto decode_success; |
| } |
| /* else fall through */ |
| } |
| /* 66 0F 13 = MOVLPD -- move from low half of XMM to mem. */ |
| /* Identical to MOVLPS ? */ |
| if (have66noF2noF3(pfx) |
| && (sz == 2 || /* ignore redundant REX.W */ sz == 8)) { |
| modrm = getUChar(delta); |
| if (!epartIsReg(modrm)) { |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| delta += alen; |
| storeLE( mkexpr(addr), |
| getXMMRegLane64( gregOfRexRM(pfx,modrm), |
| 0/*lower lane*/ ) ); |
| DIP("movlpd %s, %s\n", nameXMMReg( gregOfRexRM(pfx,modrm) ), |
| dis_buf); |
| goto decode_success; |
| } |
| /* else fall through */ |
| } |
| break; |
| |
| case 0x14: |
| case 0x15: |
| /* 0F 14 = UNPCKLPS -- unpack and interleave low part F32s */ |
| /* 0F 15 = UNPCKHPS -- unpack and interleave high part F32s */ |
| /* These just appear to be special cases of SHUFPS */ |
| if (haveNo66noF2noF3(pfx) && sz == 4) { |
| Bool hi = toBool(opc == 0x15); |
| IRTemp sV = newTemp(Ity_V128); |
| IRTemp dV = newTemp(Ity_V128); |
| modrm = getUChar(delta); |
| UInt rG = gregOfRexRM(pfx,modrm); |
| assign( dV, getXMMReg(rG) ); |
| if (epartIsReg(modrm)) { |
| UInt rE = eregOfRexRM(pfx,modrm); |
| assign( sV, getXMMReg(rE) ); |
| delta += 1; |
| DIP("unpck%sps %s,%s\n", hi ? "h" : "l", |
| nameXMMReg(rE), nameXMMReg(rG)); |
| } else { |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| assign( sV, loadLE(Ity_V128, mkexpr(addr)) ); |
| delta += alen; |
| DIP("unpck%sps %s,%s\n", hi ? "h" : "l", |
| dis_buf, nameXMMReg(rG)); |
| } |
| IRTemp res = math_UNPCKxPS_128( sV, dV, opc ); |
| putXMMReg( rG, mkexpr(res) ); |
| goto decode_success; |
| } |
| /* 66 0F 15 = UNPCKHPD -- unpack and interleave high part F64s */ |
| /* 66 0F 14 = UNPCKLPD -- unpack and interleave low part F64s */ |
| /* These just appear to be special cases of SHUFPS */ |
| if (have66noF2noF3(pfx) |
| && sz == 2 /* could be 8 if rex also present */) { |
| IRTemp s1 = newTemp(Ity_I64); |
| IRTemp s0 = newTemp(Ity_I64); |
| IRTemp d1 = newTemp(Ity_I64); |
| IRTemp d0 = newTemp(Ity_I64); |
| IRTemp sV = newTemp(Ity_V128); |
| IRTemp dV = newTemp(Ity_V128); |
| Bool hi = toBool(opc == 0x15); |
| |
| modrm = getUChar(delta); |
| assign( dV, getXMMReg(gregOfRexRM(pfx,modrm)) ); |
| |
| if (epartIsReg(modrm)) { |
| assign( sV, getXMMReg(eregOfRexRM(pfx,modrm)) ); |
| delta += 1; |
| DIP("unpck%sps %s,%s\n", hi ? "h" : "l", |
| nameXMMReg(eregOfRexRM(pfx,modrm)), |
| nameXMMReg(gregOfRexRM(pfx,modrm))); |
| } else { |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| assign( sV, loadLE(Ity_V128, mkexpr(addr)) ); |
| delta += alen; |
| DIP("unpck%sps %s,%s\n", hi ? "h" : "l", |
| dis_buf, |
| nameXMMReg(gregOfRexRM(pfx,modrm))); |
| } |
| |
| assign( d1, unop(Iop_V128HIto64, mkexpr(dV)) ); |
| assign( d0, unop(Iop_V128to64, mkexpr(dV)) ); |
| assign( s1, unop(Iop_V128HIto64, mkexpr(sV)) ); |
| assign( s0, unop(Iop_V128to64, mkexpr(sV)) ); |
| |
| if (hi) { |
| putXMMReg( gregOfRexRM(pfx,modrm), |
| binop(Iop_64HLtoV128, mkexpr(s1), mkexpr(d1)) ); |
| } else { |
| putXMMReg( gregOfRexRM(pfx,modrm), |
| binop(Iop_64HLtoV128, mkexpr(s0), mkexpr(d0)) ); |
| } |
| |
| goto decode_success; |
| } |
| break; |
| |
| case 0x16: |
| /* 66 0F 16 = MOVHPD -- move from mem to high half of XMM. */ |
| /* These seems identical to MOVHPS. This instruction encoding is |
| completely crazy. */ |
| if (have66noF2noF3(pfx) |
| && (sz == 2 || /* ignore redundant REX.W */ sz == 8)) { |
| modrm = getUChar(delta); |
| if (epartIsReg(modrm)) { |
| /* fall through; apparently reg-reg is not possible */ |
| } else { |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| delta += alen; |
| putXMMRegLane64( gregOfRexRM(pfx,modrm), 1/*upper lane*/, |
| loadLE(Ity_I64, mkexpr(addr)) ); |
| DIP("movhpd %s,%s\n", dis_buf, |
| nameXMMReg( gregOfRexRM(pfx,modrm) )); |
| goto decode_success; |
| } |
| } |
| /* 0F 16 = MOVHPS -- move from mem to high half of XMM. */ |
| /* 0F 16 = MOVLHPS -- move from lo half to hi half of XMM. */ |
| if (haveNo66noF2noF3(pfx) |
| && (sz == 4 || /* ignore redundant REX.W */ sz == 8)) { |
| modrm = getUChar(delta); |
| if (epartIsReg(modrm)) { |
| delta += 1; |
| putXMMRegLane64( gregOfRexRM(pfx,modrm), 1/*upper lane*/, |
| getXMMRegLane64( eregOfRexRM(pfx,modrm), 0 ) ); |
| DIP("movhps %s,%s\n", nameXMMReg(eregOfRexRM(pfx,modrm)), |
| nameXMMReg(gregOfRexRM(pfx,modrm))); |
| } else { |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| delta += alen; |
| putXMMRegLane64( gregOfRexRM(pfx,modrm), 1/*upper lane*/, |
| loadLE(Ity_I64, mkexpr(addr)) ); |
| DIP("movhps %s,%s\n", dis_buf, |
| nameXMMReg( gregOfRexRM(pfx,modrm) )); |
| } |
| goto decode_success; |
| } |
| break; |
| |
| case 0x17: |
| /* 0F 17 = MOVHPS -- move from high half of XMM to mem. */ |
| if (haveNo66noF2noF3(pfx) |
| && (sz == 4 || /* ignore redundant REX.W */ sz == 8)) { |
| modrm = getUChar(delta); |
| if (!epartIsReg(modrm)) { |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| delta += alen; |
| storeLE( mkexpr(addr), |
| getXMMRegLane64( gregOfRexRM(pfx,modrm), |
| 1/*upper lane*/ ) ); |
| DIP("movhps %s,%s\n", nameXMMReg( gregOfRexRM(pfx,modrm) ), |
| dis_buf); |
| goto decode_success; |
| } |
| /* else fall through */ |
| } |
| /* 66 0F 17 = MOVHPD -- move from high half of XMM to mem. */ |
| /* Again, this seems identical to MOVHPS. */ |
| if (have66noF2noF3(pfx) |
| && (sz == 2 || /* ignore redundant REX.W */ sz == 8)) { |
| modrm = getUChar(delta); |
| if (!epartIsReg(modrm)) { |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| delta += alen; |
| storeLE( mkexpr(addr), |
| getXMMRegLane64( gregOfRexRM(pfx,modrm), |
| 1/*upper lane*/ ) ); |
| DIP("movhpd %s,%s\n", nameXMMReg( gregOfRexRM(pfx,modrm) ), |
| dis_buf); |
| goto decode_success; |
| } |
| /* else fall through */ |
| } |
| break; |
| |
| case 0x18: |
| /* 0F 18 /0 = PREFETCHNTA -- prefetch into caches, */ |
| /* 0F 18 /1 = PREFETCH0 -- with various different hints */ |
| /* 0F 18 /2 = PREFETCH1 */ |
| /* 0F 18 /3 = PREFETCH2 */ |
| if (haveNo66noF2noF3(pfx) |
| && !epartIsReg(getUChar(delta)) |
| && gregLO3ofRM(getUChar(delta)) >= 0 |
| && gregLO3ofRM(getUChar(delta)) <= 3) { |
| HChar* hintstr = "??"; |
| |
| modrm = getUChar(delta); |
| vassert(!epartIsReg(modrm)); |
| |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| delta += alen; |
| |
| switch (gregLO3ofRM(modrm)) { |
| case 0: hintstr = "nta"; break; |
| case 1: hintstr = "t0"; break; |
| case 2: hintstr = "t1"; break; |
| case 3: hintstr = "t2"; break; |
| default: vassert(0); |
| } |
| |
| DIP("prefetch%s %s\n", hintstr, dis_buf); |
| goto decode_success; |
| } |
| break; |
| |
| case 0x28: |
| /* 66 0F 28 = MOVAPD -- move from E (mem or xmm) to G (xmm). */ |
| if (have66noF2noF3(pfx) |
| && (sz == 2 || /* ignore redundant REX.W */ sz == 8)) { |
| modrm = getUChar(delta); |
| if (epartIsReg(modrm)) { |
| putXMMReg( gregOfRexRM(pfx,modrm), |
| getXMMReg( eregOfRexRM(pfx,modrm) )); |
| DIP("movapd %s,%s\n", nameXMMReg(eregOfRexRM(pfx,modrm)), |
| nameXMMReg(gregOfRexRM(pfx,modrm))); |
| delta += 1; |
| } else { |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| gen_SEGV_if_not_16_aligned( addr ); |
| putXMMReg( gregOfRexRM(pfx,modrm), |
| loadLE(Ity_V128, mkexpr(addr)) ); |
| DIP("movapd %s,%s\n", dis_buf, |
| nameXMMReg(gregOfRexRM(pfx,modrm))); |
| delta += alen; |
| } |
| goto decode_success; |
| } |
| /* 0F 28 = MOVAPS -- move from E (mem or xmm) to G (xmm). */ |
| if (haveNo66noF2noF3(pfx) |
| && (sz == 4 || /* ignore redundant REX.W */ sz == 8)) { |
| modrm = getUChar(delta); |
| if (epartIsReg(modrm)) { |
| putXMMReg( gregOfRexRM(pfx,modrm), |
| getXMMReg( eregOfRexRM(pfx,modrm) )); |
| DIP("movaps %s,%s\n", nameXMMReg(eregOfRexRM(pfx,modrm)), |
| nameXMMReg(gregOfRexRM(pfx,modrm))); |
| delta += 1; |
| } else { |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| gen_SEGV_if_not_16_aligned( addr ); |
| putXMMReg( gregOfRexRM(pfx,modrm), |
| loadLE(Ity_V128, mkexpr(addr)) ); |
| DIP("movaps %s,%s\n", dis_buf, |
| nameXMMReg(gregOfRexRM(pfx,modrm))); |
| delta += alen; |
| } |
| goto decode_success; |
| } |
| break; |
| |
| case 0x29: |
| /* 0F 29 = MOVAPS -- move from G (xmm) to E (mem or xmm). */ |
| if (haveNo66noF2noF3(pfx) |
| && (sz == 4 || /* ignore redundant REX.W */ sz == 8)) { |
| modrm = getUChar(delta); |
| if (epartIsReg(modrm)) { |
| /* fall through; awaiting test case */ |
| } else { |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| gen_SEGV_if_not_16_aligned( addr ); |
| storeLE( mkexpr(addr), getXMMReg(gregOfRexRM(pfx,modrm)) ); |
| DIP("movaps %s,%s\n", nameXMMReg(gregOfRexRM(pfx,modrm)), |
| dis_buf ); |
| delta += alen; |
| goto decode_success; |
| } |
| } |
| /* 66 0F 29 = MOVAPD -- move from G (xmm) to E (mem or xmm). */ |
| if (have66noF2noF3(pfx) |
| && (sz == 2 || /* ignore redundant REX.W */ sz == 8)) { |
| modrm = getUChar(delta); |
| if (epartIsReg(modrm)) { |
| putXMMReg( eregOfRexRM(pfx,modrm), |
| getXMMReg( gregOfRexRM(pfx,modrm) ) ); |
| DIP("movapd %s,%s\n", nameXMMReg(gregOfRexRM(pfx,modrm)), |
| nameXMMReg(eregOfRexRM(pfx,modrm))); |
| delta += 1; |
| } else { |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| gen_SEGV_if_not_16_aligned( addr ); |
| storeLE( mkexpr(addr), getXMMReg(gregOfRexRM(pfx,modrm)) ); |
| DIP("movapd %s,%s\n", nameXMMReg(gregOfRexRM(pfx,modrm)), |
| dis_buf ); |
| delta += alen; |
| } |
| goto decode_success; |
| } |
| break; |
| |
| case 0x2A: |
| /* 0F 2A = CVTPI2PS -- convert 2 x I32 in mem/mmx to 2 x F32 in low |
| half xmm */ |
| if (haveNo66noF2noF3(pfx) && sz == 4) { |
| IRTemp arg64 = newTemp(Ity_I64); |
| IRTemp rmode = newTemp(Ity_I32); |
| |
| modrm = getUChar(delta); |
| do_MMX_preamble(); |
| if (epartIsReg(modrm)) { |
| assign( arg64, getMMXReg(eregLO3ofRM(modrm)) ); |
| delta += 1; |
| DIP("cvtpi2ps %s,%s\n", nameMMXReg(eregLO3ofRM(modrm)), |
| nameXMMReg(gregOfRexRM(pfx,modrm))); |
| } else { |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| assign( arg64, loadLE(Ity_I64, mkexpr(addr)) ); |
| delta += alen; |
| DIP("cvtpi2ps %s,%s\n", dis_buf, |
| nameXMMReg(gregOfRexRM(pfx,modrm)) ); |
| } |
| |
| assign( rmode, get_sse_roundingmode() ); |
| |
| putXMMRegLane32F( |
| gregOfRexRM(pfx,modrm), 0, |
| binop(Iop_F64toF32, |
| mkexpr(rmode), |
| unop(Iop_I32StoF64, |
| unop(Iop_64to32, mkexpr(arg64)) )) ); |
| |
| putXMMRegLane32F( |
| gregOfRexRM(pfx,modrm), 1, |
| binop(Iop_F64toF32, |
| mkexpr(rmode), |
| unop(Iop_I32StoF64, |
| unop(Iop_64HIto32, mkexpr(arg64)) )) ); |
| |
| goto decode_success; |
| } |
| /* F3 0F 2A = CVTSI2SS |
| -- sz==4: convert I32 in mem/ireg to F32 in low quarter xmm |
| -- sz==8: convert I64 in mem/ireg to F32 in low quarter xmm */ |
| if (haveF3no66noF2(pfx) && (sz == 4 || sz == 8)) { |
| IRTemp rmode = newTemp(Ity_I32); |
| assign( rmode, get_sse_roundingmode() ); |
| modrm = getUChar(delta); |
| if (sz == 4) { |
| IRTemp arg32 = newTemp(Ity_I32); |
| if (epartIsReg(modrm)) { |
| assign( arg32, getIReg32(eregOfRexRM(pfx,modrm)) ); |
| delta += 1; |
| DIP("cvtsi2ss %s,%s\n", nameIReg32(eregOfRexRM(pfx,modrm)), |
| nameXMMReg(gregOfRexRM(pfx,modrm))); |
| } else { |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| assign( arg32, loadLE(Ity_I32, mkexpr(addr)) ); |
| delta += alen; |
| DIP("cvtsi2ss %s,%s\n", dis_buf, |
| nameXMMReg(gregOfRexRM(pfx,modrm)) ); |
| } |
| putXMMRegLane32F( |
| gregOfRexRM(pfx,modrm), 0, |
| binop(Iop_F64toF32, |
| mkexpr(rmode), |
| unop(Iop_I32StoF64, mkexpr(arg32)) ) ); |
| } else { |
| /* sz == 8 */ |
| IRTemp arg64 = newTemp(Ity_I64); |
| if (epartIsReg(modrm)) { |
| assign( arg64, getIReg64(eregOfRexRM(pfx,modrm)) ); |
| delta += 1; |
| DIP("cvtsi2ssq %s,%s\n", nameIReg64(eregOfRexRM(pfx,modrm)), |
| nameXMMReg(gregOfRexRM(pfx,modrm))); |
| } else { |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| assign( arg64, loadLE(Ity_I64, mkexpr(addr)) ); |
| delta += alen; |
| DIP("cvtsi2ssq %s,%s\n", dis_buf, |
| nameXMMReg(gregOfRexRM(pfx,modrm)) ); |
| } |
| putXMMRegLane32F( |
| gregOfRexRM(pfx,modrm), 0, |
| binop(Iop_F64toF32, |
| mkexpr(rmode), |
| binop(Iop_I64StoF64, mkexpr(rmode), mkexpr(arg64)) ) ); |
| } |
| goto decode_success; |
| } |
| /* F2 0F 2A = CVTSI2SD |
| when sz==4 -- convert I32 in mem/ireg to F64 in low half xmm |
| when sz==8 -- convert I64 in mem/ireg to F64 in low half xmm |
| */ |
| if (haveF2no66noF3(pfx) && (sz == 4 || sz == 8)) { |
| modrm = getUChar(delta); |
| if (sz == 4) { |
| IRTemp arg32 = newTemp(Ity_I32); |
| if (epartIsReg(modrm)) { |
| assign( arg32, getIReg32(eregOfRexRM(pfx,modrm)) ); |
| delta += 1; |
| DIP("cvtsi2sdl %s,%s\n", nameIReg32(eregOfRexRM(pfx,modrm)), |
| nameXMMReg(gregOfRexRM(pfx,modrm))); |
| } else { |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| assign( arg32, loadLE(Ity_I32, mkexpr(addr)) ); |
| delta += alen; |
| DIP("cvtsi2sdl %s,%s\n", dis_buf, |
| nameXMMReg(gregOfRexRM(pfx,modrm)) ); |
| } |
| putXMMRegLane64F( gregOfRexRM(pfx,modrm), 0, |
| unop(Iop_I32StoF64, mkexpr(arg32)) |
| ); |
| } else { |
| /* sz == 8 */ |
| IRTemp arg64 = newTemp(Ity_I64); |
| if (epartIsReg(modrm)) { |
| assign( arg64, getIReg64(eregOfRexRM(pfx,modrm)) ); |
| delta += 1; |
| DIP("cvtsi2sdq %s,%s\n", nameIReg64(eregOfRexRM(pfx,modrm)), |
| nameXMMReg(gregOfRexRM(pfx,modrm))); |
| } else { |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| assign( arg64, loadLE(Ity_I64, mkexpr(addr)) ); |
| delta += alen; |
| DIP("cvtsi2sdq %s,%s\n", dis_buf, |
| nameXMMReg(gregOfRexRM(pfx,modrm)) ); |
| } |
| putXMMRegLane64F( |
| gregOfRexRM(pfx,modrm), |
| 0, |
| binop( Iop_I64StoF64, |
| get_sse_roundingmode(), |
| mkexpr(arg64) |
| ) |
| ); |
| } |
| goto decode_success; |
| } |
| /* 66 0F 2A = CVTPI2PD -- convert 2 x I32 in mem/mmx to 2 x F64 in |
| xmm(G) */ |
| if (have66noF2noF3(pfx) && sz == 2) { |
| IRTemp arg64 = newTemp(Ity_I64); |
| |
| modrm = getUChar(delta); |
| if (epartIsReg(modrm)) { |
| /* Only switch to MMX mode if the source is a MMX register. |
| This is inconsistent with all other instructions which |
| convert between XMM and (M64 or MMX), which always switch |
| to MMX mode even if 64-bit operand is M64 and not MMX. At |
| least, that's what the Intel docs seem to me to say. |
| Fixes #210264. */ |
| do_MMX_preamble(); |
| assign( arg64, getMMXReg(eregLO3ofRM(modrm)) ); |
| delta += 1; |
| DIP("cvtpi2pd %s,%s\n", nameMMXReg(eregLO3ofRM(modrm)), |
| nameXMMReg(gregOfRexRM(pfx,modrm))); |
| } else { |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| assign( arg64, loadLE(Ity_I64, mkexpr(addr)) ); |
| delta += alen; |
| DIP("cvtpi2pd %s,%s\n", dis_buf, |
| nameXMMReg(gregOfRexRM(pfx,modrm)) ); |
| } |
| |
| putXMMRegLane64F( |
| gregOfRexRM(pfx,modrm), 0, |
| unop(Iop_I32StoF64, unop(Iop_64to32, mkexpr(arg64)) ) |
| ); |
| |
| putXMMRegLane64F( |
| gregOfRexRM(pfx,modrm), 1, |
| unop(Iop_I32StoF64, unop(Iop_64HIto32, mkexpr(arg64)) ) |
| ); |
| |
| goto decode_success; |
| } |
| break; |
| |
| case 0x2B: |
| /* 66 0F 2B = MOVNTPD -- for us, just a plain SSE store. */ |
| /* 0F 2B = MOVNTPS -- for us, just a plain SSE store. */ |
| if ( (haveNo66noF2noF3(pfx) && sz == 4) |
| || (have66noF2noF3(pfx) && sz == 2) ) { |
| modrm = getUChar(delta); |
| if (!epartIsReg(modrm)) { |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| gen_SEGV_if_not_16_aligned( addr ); |
| storeLE( mkexpr(addr), getXMMReg(gregOfRexRM(pfx,modrm)) ); |
| DIP("movntp%s %s,%s\n", sz==2 ? "d" : "s", |
| dis_buf, |
| nameXMMReg(gregOfRexRM(pfx,modrm))); |
| delta += alen; |
| goto decode_success; |
| } |
| /* else fall through */ |
| } |
| break; |
| |
| case 0x2C: |
| case 0x2D: |
| /* 0F 2D = CVTPS2PI -- convert 2 x F32 in mem/low half xmm to 2 x |
| I32 in mmx, according to prevailing SSE rounding mode */ |
| /* 0F 2C = CVTTPS2PI -- convert 2 x F32 in mem/low half xmm to 2 x |
| I32 in mmx, rounding towards zero */ |
| if (haveNo66noF2noF3(pfx) && sz == 4) { |
| IRTemp dst64 = newTemp(Ity_I64); |
| IRTemp rmode = newTemp(Ity_I32); |
| IRTemp f32lo = newTemp(Ity_F32); |
| IRTemp f32hi = newTemp(Ity_F32); |
| Bool r2zero = toBool(opc == 0x2C); |
| |
| do_MMX_preamble(); |
| modrm = getUChar(delta); |
| |
| if (epartIsReg(modrm)) { |
| delta += 1; |
| assign(f32lo, getXMMRegLane32F(eregOfRexRM(pfx,modrm), 0)); |
| assign(f32hi, getXMMRegLane32F(eregOfRexRM(pfx,modrm), 1)); |
| DIP("cvt%sps2pi %s,%s\n", r2zero ? "t" : "", |
| nameXMMReg(eregOfRexRM(pfx,modrm)), |
| nameMMXReg(gregLO3ofRM(modrm))); |
| } else { |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| assign(f32lo, loadLE(Ity_F32, mkexpr(addr))); |
| assign(f32hi, loadLE(Ity_F32, binop( Iop_Add64, |
| mkexpr(addr), |
| mkU64(4) ))); |
| delta += alen; |
| DIP("cvt%sps2pi %s,%s\n", r2zero ? "t" : "", |
| dis_buf, |
| nameMMXReg(gregLO3ofRM(modrm))); |
| } |
| |
| if (r2zero) { |
| assign(rmode, mkU32((UInt)Irrm_ZERO) ); |
| } else { |
| assign( rmode, get_sse_roundingmode() ); |
| } |
| |
| assign( |
| dst64, |
| binop( Iop_32HLto64, |
| binop( Iop_F64toI32S, |
| mkexpr(rmode), |
| unop( Iop_F32toF64, mkexpr(f32hi) ) ), |
| binop( Iop_F64toI32S, |
| mkexpr(rmode), |
| unop( Iop_F32toF64, mkexpr(f32lo) ) ) |
| ) |
| ); |
| |
| putMMXReg(gregLO3ofRM(modrm), mkexpr(dst64)); |
| goto decode_success; |
| } |
| /* F3 0F 2D = CVTSS2SI |
| when sz==4 -- convert F32 in mem/low quarter xmm to I32 in ireg, |
| according to prevailing SSE rounding mode |
| when sz==8 -- convert F32 in mem/low quarter xmm to I64 in ireg, |
| according to prevailing SSE rounding mode |
| */ |
| /* F3 0F 2C = CVTTSS2SI |
| when sz==4 -- convert F32 in mem/low quarter xmm to I32 in ireg, |
| truncating towards zero |
| when sz==8 -- convert F32 in mem/low quarter xmm to I64 in ireg, |
| truncating towards zero |
| */ |
| if (haveF3no66noF2(pfx) && (sz == 4 || sz == 8)) { |
| delta = dis_CVTxSS2SI( vbi, pfx, delta, False/*!isAvx*/, opc, sz); |
| goto decode_success; |
| } |
| /* F2 0F 2D = CVTSD2SI |
| when sz==4 -- convert F64 in mem/low half xmm to I32 in ireg, |
| according to prevailing SSE rounding mode |
| when sz==8 -- convert F64 in mem/low half xmm to I64 in ireg, |
| according to prevailing SSE rounding mode |
| */ |
| /* F2 0F 2C = CVTTSD2SI |
| when sz==4 -- convert F64 in mem/low half xmm to I32 in ireg, |
| truncating towards zero |
| when sz==8 -- convert F64 in mem/low half xmm to I64 in ireg, |
| truncating towards zero |
| */ |
| if (haveF2no66noF3(pfx) && (sz == 4 || sz == 8)) { |
| delta = dis_CVTxSD2SI( vbi, pfx, delta, False/*!isAvx*/, opc, sz); |
| goto decode_success; |
| } |
| /* 66 0F 2D = CVTPD2PI -- convert 2 x F64 in mem/xmm to 2 x |
| I32 in mmx, according to prevailing SSE rounding mode */ |
| /* 66 0F 2C = CVTTPD2PI -- convert 2 x F64 in mem/xmm to 2 x |
| I32 in mmx, rounding towards zero */ |
| if (have66noF2noF3(pfx) && sz == 2) { |
| IRTemp dst64 = newTemp(Ity_I64); |
| IRTemp rmode = newTemp(Ity_I32); |
| IRTemp f64lo = newTemp(Ity_F64); |
| IRTemp f64hi = newTemp(Ity_F64); |
| Bool r2zero = toBool(opc == 0x2C); |
| |
| do_MMX_preamble(); |
| modrm = getUChar(delta); |
| |
| if (epartIsReg(modrm)) { |
| delta += 1; |
| assign(f64lo, getXMMRegLane64F(eregOfRexRM(pfx,modrm), 0)); |
| assign(f64hi, getXMMRegLane64F(eregOfRexRM(pfx,modrm), 1)); |
| DIP("cvt%spd2pi %s,%s\n", r2zero ? "t" : "", |
| nameXMMReg(eregOfRexRM(pfx,modrm)), |
| nameMMXReg(gregLO3ofRM(modrm))); |
| } else { |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| assign(f64lo, loadLE(Ity_F64, mkexpr(addr))); |
| assign(f64hi, loadLE(Ity_F64, binop( Iop_Add64, |
| mkexpr(addr), |
| mkU64(8) ))); |
| delta += alen; |
| DIP("cvt%spf2pi %s,%s\n", r2zero ? "t" : "", |
| dis_buf, |
| nameMMXReg(gregLO3ofRM(modrm))); |
| } |
| |
| if (r2zero) { |
| assign(rmode, mkU32((UInt)Irrm_ZERO) ); |
| } else { |
| assign( rmode, get_sse_roundingmode() ); |
| } |
| |
| assign( |
| dst64, |
| binop( Iop_32HLto64, |
| binop( Iop_F64toI32S, mkexpr(rmode), mkexpr(f64hi) ), |
| binop( Iop_F64toI32S, mkexpr(rmode), mkexpr(f64lo) ) |
| ) |
| ); |
| |
| putMMXReg(gregLO3ofRM(modrm), mkexpr(dst64)); |
| goto decode_success; |
| } |
| break; |
| |
| case 0x2E: |
| case 0x2F: |
| /* 66 0F 2F = COMISD -- 64F0x2 comparison G,E, and set ZCP */ |
| /* 66 0F 2E = UCOMISD -- 64F0x2 comparison G,E, and set ZCP */ |
| if (have66noF2noF3(pfx) && sz == 2) { |
| delta = dis_COMISD( vbi, pfx, delta, False/*!isAvx*/, opc ); |
| goto decode_success; |
| } |
| /* 0F 2F = COMISS -- 32F0x4 comparison G,E, and set ZCP */ |
| /* 0F 2E = UCOMISS -- 32F0x4 comparison G,E, and set ZCP */ |
| if (haveNo66noF2noF3(pfx) && sz == 4) { |
| delta = dis_COMISS( vbi, pfx, delta, False/*!isAvx*/, opc ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0x50: |
| /* 0F 50 = MOVMSKPS - move 4 sign bits from 4 x F32 in xmm(E) |
| to 4 lowest bits of ireg(G) */ |
| if (haveNo66noF2noF3(pfx) && (sz == 4 || sz == 8)) { |
| /* sz == 8 is a kludge to handle insns with REX.W redundantly |
| set to 1, which has been known to happen: |
| |
| 4c 0f 50 d9 rex64X movmskps %xmm1,%r11d |
| |
| 20071106: Intel docs say that REX.W isn't redundant: when |
| present, a 64-bit register is written; when not present, only |
| the 32-bit half is written. However, testing on a Core2 |
| machine suggests the entire 64 bit register is written |
| irrespective of the status of REX.W. That could be because |
| of the default rule that says "if the lower half of a 32-bit |
| register is written, the upper half is zeroed". By using |
| putIReg32 here we inadvertantly produce the same behaviour as |
| the Core2, for the same reason -- putIReg32 implements said |
| rule. |
| |
| AMD docs give no indication that REX.W is even valid for this |
| insn. */ |
| modrm = getUChar(delta); |
| if (epartIsReg(modrm)) { |
| Int src; |
| t0 = newTemp(Ity_I32); |
| t1 = newTemp(Ity_I32); |
| t2 = newTemp(Ity_I32); |
| t3 = newTemp(Ity_I32); |
| delta += 1; |
| src = eregOfRexRM(pfx,modrm); |
| assign( t0, binop( Iop_And32, |
| binop(Iop_Shr32, getXMMRegLane32(src,0), mkU8(31)), |
| mkU32(1) )); |
| assign( t1, binop( Iop_And32, |
| binop(Iop_Shr32, getXMMRegLane32(src,1), mkU8(30)), |
| mkU32(2) )); |
| assign( t2, binop( Iop_And32, |
| binop(Iop_Shr32, getXMMRegLane32(src,2), mkU8(29)), |
| mkU32(4) )); |
| assign( t3, binop( Iop_And32, |
| binop(Iop_Shr32, getXMMRegLane32(src,3), mkU8(28)), |
| mkU32(8) )); |
| putIReg32( gregOfRexRM(pfx,modrm), |
| binop(Iop_Or32, |
| binop(Iop_Or32, mkexpr(t0), mkexpr(t1)), |
| binop(Iop_Or32, mkexpr(t2), mkexpr(t3)) |
| ) |
| ); |
| DIP("movmskps %s,%s\n", nameXMMReg(src), |
| nameIReg32(gregOfRexRM(pfx,modrm))); |
| goto decode_success; |
| } |
| /* else fall through */ |
| } |
| /* 66 0F 50 = MOVMSKPD - move 2 sign bits from 2 x F64 in xmm(E) to |
| 2 lowest bits of ireg(G) */ |
| if (have66noF2noF3(pfx) && (sz == 2 || sz == 8)) { |
| /* sz == 8 is a kludge to handle insns with REX.W redundantly |
| set to 1, which has been known to happen: |
| 66 4c 0f 50 d9 rex64X movmskpd %xmm1,%r11d |
| 20071106: see further comments on MOVMSKPS implementation above. |
| */ |
| modrm = getUChar(delta); |
| if (epartIsReg(modrm)) { |
| Int src; |
| t0 = newTemp(Ity_I32); |
| t1 = newTemp(Ity_I32); |
| delta += 1; |
| src = eregOfRexRM(pfx,modrm); |
| assign( t0, binop( Iop_And32, |
| binop(Iop_Shr32, getXMMRegLane32(src,1), mkU8(31)), |
| mkU32(1) )); |
| assign( t1, binop( Iop_And32, |
| binop(Iop_Shr32, getXMMRegLane32(src,3), mkU8(30)), |
| mkU32(2) )); |
| putIReg32( gregOfRexRM(pfx,modrm), |
| binop(Iop_Or32, mkexpr(t0), mkexpr(t1)) |
| ); |
| DIP("movmskpd %s,%s\n", nameXMMReg(src), |
| nameIReg32(gregOfRexRM(pfx,modrm))); |
| goto decode_success; |
| } |
| /* else fall through */ |
| } |
| break; |
| |
| case 0x51: |
| /* F3 0F 51 = SQRTSS -- approx sqrt 32F0x4 from R/M to R */ |
| if (haveF3no66noF2(pfx) && sz == 4) { |
| delta = dis_SSE_E_to_G_unary_lo32( vbi, pfx, delta, |
| "sqrtss", Iop_Sqrt32F0x4 ); |
| goto decode_success; |
| } |
| /* 0F 51 = SQRTPS -- approx sqrt 32Fx4 from R/M to R */ |
| if (haveNo66noF2noF3(pfx) && sz == 4) { |
| delta = dis_SSE_E_to_G_unary_all( vbi, pfx, delta, |
| "sqrtps", Iop_Sqrt32Fx4 ); |
| goto decode_success; |
| } |
| /* F2 0F 51 = SQRTSD -- approx sqrt 64F0x2 from R/M to R */ |
| if (haveF2no66noF3(pfx) && sz == 4) { |
| delta = dis_SSE_E_to_G_unary_lo64( vbi, pfx, delta, |
| "sqrtsd", Iop_Sqrt64F0x2 ); |
| goto decode_success; |
| } |
| /* 66 0F 51 = SQRTPD -- approx sqrt 64Fx2 from R/M to R */ |
| if (have66noF2noF3(pfx) && sz == 2) { |
| delta = dis_SSE_E_to_G_unary_all( vbi, pfx, delta, |
| "sqrtpd", Iop_Sqrt64Fx2 ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0x52: |
| /* F3 0F 52 = RSQRTSS -- approx reciprocal sqrt 32F0x4 from R/M to R */ |
| if (haveF3no66noF2(pfx) && sz == 4) { |
| delta = dis_SSE_E_to_G_unary_lo32( vbi, pfx, delta, |
| "rsqrtss", Iop_RSqrt32F0x4 ); |
| goto decode_success; |
| } |
| /* 0F 52 = RSQRTPS -- approx reciprocal sqrt 32Fx4 from R/M to R */ |
| if (haveNo66noF2noF3(pfx) && sz == 4) { |
| delta = dis_SSE_E_to_G_unary_all( vbi, pfx, delta, |
| "rsqrtps", Iop_RSqrt32Fx4 ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0x53: |
| /* F3 0F 53 = RCPSS -- approx reciprocal 32F0x4 from R/M to R */ |
| if (haveF3no66noF2(pfx) && sz == 4) { |
| delta = dis_SSE_E_to_G_unary_lo32( vbi, pfx, delta, |
| "rcpss", Iop_Recip32F0x4 ); |
| goto decode_success; |
| } |
| /* 0F 53 = RCPPS -- approx reciprocal 32Fx4 from R/M to R */ |
| if (haveNo66noF2noF3(pfx) && sz == 4) { |
| delta = dis_SSE_E_to_G_unary_all( vbi, pfx, delta, |
| "rcpps", Iop_Recip32Fx4 ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0x54: |
| /* 0F 54 = ANDPS -- G = G and E */ |
| if (haveNo66noF2noF3(pfx) && sz == 4) { |
| delta = dis_SSE_E_to_G_all( vbi, pfx, delta, "andps", Iop_AndV128 ); |
| goto decode_success; |
| } |
| /* 66 0F 54 = ANDPD -- G = G and E */ |
| if (have66noF2noF3(pfx) && sz == 2) { |
| delta = dis_SSE_E_to_G_all( vbi, pfx, delta, "andpd", Iop_AndV128 ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0x55: |
| /* 0F 55 = ANDNPS -- G = (not G) and E */ |
| if (haveNo66noF2noF3(pfx) && sz == 4) { |
| delta = dis_SSE_E_to_G_all_invG( vbi, pfx, delta, "andnps", |
| Iop_AndV128 ); |
| goto decode_success; |
| } |
| /* 66 0F 55 = ANDNPD -- G = (not G) and E */ |
| if (have66noF2noF3(pfx) && sz == 2) { |
| delta = dis_SSE_E_to_G_all_invG( vbi, pfx, delta, "andnpd", |
| Iop_AndV128 ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0x56: |
| /* 0F 56 = ORPS -- G = G and E */ |
| if (haveNo66noF2noF3(pfx) && sz == 4) { |
| delta = dis_SSE_E_to_G_all( vbi, pfx, delta, "orps", Iop_OrV128 ); |
| goto decode_success; |
| } |
| /* 66 0F 56 = ORPD -- G = G and E */ |
| if (have66noF2noF3(pfx) && sz == 2) { |
| delta = dis_SSE_E_to_G_all( vbi, pfx, delta, "orpd", Iop_OrV128 ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0x57: |
| /* 66 0F 57 = XORPD -- G = G xor E */ |
| if (have66noF2noF3(pfx) && sz == 2) { |
| delta = dis_SSE_E_to_G_all( vbi, pfx, delta, "xorpd", Iop_XorV128 ); |
| goto decode_success; |
| } |
| /* 0F 57 = XORPS -- G = G xor E */ |
| if (haveNo66noF2noF3(pfx) && sz == 4) { |
| delta = dis_SSE_E_to_G_all( vbi, pfx, delta, "xorps", Iop_XorV128 ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0x58: |
| /* 0F 58 = ADDPS -- add 32Fx4 from R/M to R */ |
| if (haveNo66noF2noF3(pfx) && sz == 4) { |
| delta = dis_SSE_E_to_G_all( vbi, pfx, delta, "addps", Iop_Add32Fx4 ); |
| goto decode_success; |
| } |
| /* F3 0F 58 = ADDSS -- add 32F0x4 from R/M to R */ |
| if (haveF3no66noF2(pfx) && sz == 4) { |
| delta = dis_SSE_E_to_G_lo32( vbi, pfx, delta, "addss", Iop_Add32F0x4 ); |
| goto decode_success; |
| } |
| /* F2 0F 58 = ADDSD -- add 64F0x2 from R/M to R */ |
| if (haveF2no66noF3(pfx) |
| && (sz == 4 || /* ignore redundant REX.W */ sz == 8)) { |
| delta = dis_SSE_E_to_G_lo64( vbi, pfx, delta, "addsd", Iop_Add64F0x2 ); |
| goto decode_success; |
| } |
| /* 66 0F 58 = ADDPD -- add 32Fx4 from R/M to R */ |
| if (have66noF2noF3(pfx) |
| && (sz == 2 || /* ignore redundant REX.W */ sz == 8)) { |
| delta = dis_SSE_E_to_G_all( vbi, pfx, delta, "addpd", Iop_Add64Fx2 ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0x59: |
| /* F2 0F 59 = MULSD -- mul 64F0x2 from R/M to R */ |
| if (haveF2no66noF3(pfx) |
| && (sz == 4 || /* ignore redundant REX.W */ sz == 8)) { |
| delta = dis_SSE_E_to_G_lo64( vbi, pfx, delta, "mulsd", Iop_Mul64F0x2 ); |
| goto decode_success; |
| } |
| /* F3 0F 59 = MULSS -- mul 32F0x4 from R/M to R */ |
| if (haveF3no66noF2(pfx) && sz == 4) { |
| delta = dis_SSE_E_to_G_lo32( vbi, pfx, delta, "mulss", Iop_Mul32F0x4 ); |
| goto decode_success; |
| } |
| /* 0F 59 = MULPS -- mul 32Fx4 from R/M to R */ |
| if (haveNo66noF2noF3(pfx) && sz == 4) { |
| delta = dis_SSE_E_to_G_all( vbi, pfx, delta, "mulps", Iop_Mul32Fx4 ); |
| goto decode_success; |
| } |
| /* 66 0F 59 = MULPD -- mul 64Fx2 from R/M to R */ |
| if (have66noF2noF3(pfx) |
| && (sz == 2 || /* ignore redundant REX.W */ sz == 8)) { |
| delta = dis_SSE_E_to_G_all( vbi, pfx, delta, "mulpd", Iop_Mul64Fx2 ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0x5A: |
| /* 0F 5A = CVTPS2PD -- convert 2 x F32 in low half mem/xmm to 2 x |
| F64 in xmm(G). */ |
| if (haveNo66noF2noF3(pfx) && sz == 4) { |
| delta = dis_CVTPS2PD( vbi, pfx, delta, False/*!isAvx*/ ); |
| goto decode_success; |
| } |
| /* F3 0F 5A = CVTSS2SD -- convert F32 in mem/low 1/4 xmm to F64 in |
| low half xmm(G) */ |
| if (haveF3no66noF2(pfx) && sz == 4) { |
| IRTemp f32lo = newTemp(Ity_F32); |
| |
| modrm = getUChar(delta); |
| if (epartIsReg(modrm)) { |
| delta += 1; |
| assign(f32lo, getXMMRegLane32F(eregOfRexRM(pfx,modrm), 0)); |
| DIP("cvtss2sd %s,%s\n", nameXMMReg(eregOfRexRM(pfx,modrm)), |
| nameXMMReg(gregOfRexRM(pfx,modrm))); |
| } else { |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| assign(f32lo, loadLE(Ity_F32, mkexpr(addr))); |
| delta += alen; |
| DIP("cvtss2sd %s,%s\n", dis_buf, |
| nameXMMReg(gregOfRexRM(pfx,modrm))); |
| } |
| |
| putXMMRegLane64F( gregOfRexRM(pfx,modrm), 0, |
| unop( Iop_F32toF64, mkexpr(f32lo) ) ); |
| |
| goto decode_success; |
| } |
| /* F2 0F 5A = CVTSD2SS -- convert F64 in mem/low half xmm to F32 in |
| low 1/4 xmm(G), according to prevailing SSE rounding mode */ |
| if (haveF2no66noF3(pfx) && sz == 4) { |
| IRTemp rmode = newTemp(Ity_I32); |
| IRTemp f64lo = newTemp(Ity_F64); |
| |
| modrm = getUChar(delta); |
| if (epartIsReg(modrm)) { |
| delta += 1; |
| assign(f64lo, getXMMRegLane64F(eregOfRexRM(pfx,modrm), 0)); |
| DIP("cvtsd2ss %s,%s\n", nameXMMReg(eregOfRexRM(pfx,modrm)), |
| nameXMMReg(gregOfRexRM(pfx,modrm))); |
| } else { |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| assign(f64lo, loadLE(Ity_F64, mkexpr(addr))); |
| delta += alen; |
| DIP("cvtsd2ss %s,%s\n", dis_buf, |
| nameXMMReg(gregOfRexRM(pfx,modrm))); |
| } |
| |
| assign( rmode, get_sse_roundingmode() ); |
| putXMMRegLane32F( |
| gregOfRexRM(pfx,modrm), 0, |
| binop( Iop_F64toF32, mkexpr(rmode), mkexpr(f64lo) ) |
| ); |
| |
| goto decode_success; |
| } |
| /* 66 0F 5A = CVTPD2PS -- convert 2 x F64 in mem/xmm to 2 x F32 in |
| lo half xmm(G), rounding according to prevailing SSE rounding |
| mode, and zero upper half */ |
| /* Note, this is practically identical to CVTPD2DQ. It would have |
| be nice to merge them together. */ |
| if (have66noF2noF3(pfx) && sz == 2) { |
| delta = dis_CVTPD2PS( vbi, pfx, delta, False/*!isAvx*/ ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0x5B: |
| /* F3 0F 5B = CVTTPS2DQ -- convert 4 x F32 in mem/xmm to 4 x I32 in |
| xmm(G), rounding towards zero */ |
| /* 66 0F 5B = CVTPS2DQ -- convert 4 x F32 in mem/xmm to 4 x I32 in |
| xmm(G), as per the prevailing rounding mode */ |
| if ( (have66noF2noF3(pfx) && sz == 2) |
| || (haveF3no66noF2(pfx) && sz == 4) ) { |
| Bool r2zero = toBool(sz == 4); // FIXME -- unreliable (???) |
| delta = dis_CVTxPS2DQ( vbi, pfx, delta, False/*!isAvx*/, r2zero ); |
| goto decode_success; |
| } |
| /* 0F 5B = CVTDQ2PS -- convert 4 x I32 in mem/xmm to 4 x F32 in |
| xmm(G) */ |
| if (haveNo66noF2noF3(pfx) && sz == 4) { |
| IRTemp argV = newTemp(Ity_V128); |
| IRTemp rmode = newTemp(Ity_I32); |
| |
| modrm = getUChar(delta); |
| if (epartIsReg(modrm)) { |
| assign( argV, getXMMReg(eregOfRexRM(pfx,modrm)) ); |
| delta += 1; |
| DIP("cvtdq2ps %s,%s\n", nameXMMReg(eregOfRexRM(pfx,modrm)), |
| nameXMMReg(gregOfRexRM(pfx,modrm))); |
| } else { |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| assign( argV, loadLE(Ity_V128, mkexpr(addr)) ); |
| delta += alen; |
| DIP("cvtdq2ps %s,%s\n", dis_buf, |
| nameXMMReg(gregOfRexRM(pfx,modrm)) ); |
| } |
| |
| assign( rmode, get_sse_roundingmode() ); |
| breakup128to32s( argV, &t3, &t2, &t1, &t0 ); |
| |
| # define CVT(_t) binop( Iop_F64toF32, \ |
| mkexpr(rmode), \ |
| unop(Iop_I32StoF64,mkexpr(_t))) |
| |
| putXMMRegLane32F( gregOfRexRM(pfx,modrm), 3, CVT(t3) ); |
| putXMMRegLane32F( gregOfRexRM(pfx,modrm), 2, CVT(t2) ); |
| putXMMRegLane32F( gregOfRexRM(pfx,modrm), 1, CVT(t1) ); |
| putXMMRegLane32F( gregOfRexRM(pfx,modrm), 0, CVT(t0) ); |
| |
| # undef CVT |
| |
| goto decode_success; |
| } |
| break; |
| |
| case 0x5C: |
| /* F3 0F 5C = SUBSS -- sub 32F0x4 from R/M to R */ |
| if (haveF3no66noF2(pfx) && sz == 4) { |
| delta = dis_SSE_E_to_G_lo32( vbi, pfx, delta, "subss", Iop_Sub32F0x4 ); |
| goto decode_success; |
| } |
| /* F2 0F 5C = SUBSD -- sub 64F0x2 from R/M to R */ |
| if (haveF2no66noF3(pfx) |
| && (sz == 4 || /* ignore redundant REX.W */ sz == 8)) { |
| delta = dis_SSE_E_to_G_lo64( vbi, pfx, delta, "subsd", Iop_Sub64F0x2 ); |
| goto decode_success; |
| } |
| /* 0F 5C = SUBPS -- sub 32Fx4 from R/M to R */ |
| if (haveNo66noF2noF3(pfx) && sz == 4) { |
| delta = dis_SSE_E_to_G_all( vbi, pfx, delta, "subps", Iop_Sub32Fx4 ); |
| goto decode_success; |
| } |
| /* 66 0F 5C = SUBPD -- sub 64Fx2 from R/M to R */ |
| if (have66noF2noF3(pfx) && sz == 2) { |
| delta = dis_SSE_E_to_G_all( vbi, pfx, delta, "subpd", Iop_Sub64Fx2 ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0x5D: |
| /* 0F 5D = MINPS -- min 32Fx4 from R/M to R */ |
| if (haveNo66noF2noF3(pfx) && sz == 4) { |
| delta = dis_SSE_E_to_G_all( vbi, pfx, delta, "minps", Iop_Min32Fx4 ); |
| goto decode_success; |
| } |
| /* F3 0F 5D = MINSS -- min 32F0x4 from R/M to R */ |
| if (haveF3no66noF2(pfx) && sz == 4) { |
| delta = dis_SSE_E_to_G_lo32( vbi, pfx, delta, "minss", Iop_Min32F0x4 ); |
| goto decode_success; |
| } |
| /* F2 0F 5D = MINSD -- min 64F0x2 from R/M to R */ |
| if (haveF2no66noF3(pfx) && sz == 4) { |
| delta = dis_SSE_E_to_G_lo64( vbi, pfx, delta, "minsd", Iop_Min64F0x2 ); |
| goto decode_success; |
| } |
| /* 66 0F 5D = MINPD -- min 64Fx2 from R/M to R */ |
| if (have66noF2noF3(pfx) && sz == 2) { |
| delta = dis_SSE_E_to_G_all( vbi, pfx, delta, "minpd", Iop_Min64Fx2 ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0x5E: |
| /* F2 0F 5E = DIVSD -- div 64F0x2 from R/M to R */ |
| if (haveF2no66noF3(pfx) && sz == 4) { |
| delta = dis_SSE_E_to_G_lo64( vbi, pfx, delta, "divsd", Iop_Div64F0x2 ); |
| goto decode_success; |
| } |
| /* 0F 5E = DIVPS -- div 32Fx4 from R/M to R */ |
| if (haveNo66noF2noF3(pfx) && sz == 4) { |
| delta = dis_SSE_E_to_G_all( vbi, pfx, delta, "divps", Iop_Div32Fx4 ); |
| goto decode_success; |
| } |
| /* F3 0F 5E = DIVSS -- div 32F0x4 from R/M to R */ |
| if (haveF3no66noF2(pfx) && sz == 4) { |
| delta = dis_SSE_E_to_G_lo32( vbi, pfx, delta, "divss", Iop_Div32F0x4 ); |
| goto decode_success; |
| } |
| /* 66 0F 5E = DIVPD -- div 64Fx2 from R/M to R */ |
| if (have66noF2noF3(pfx) && sz == 2) { |
| delta = dis_SSE_E_to_G_all( vbi, pfx, delta, "divpd", Iop_Div64Fx2 ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0x5F: |
| /* 0F 5F = MAXPS -- max 32Fx4 from R/M to R */ |
| if (haveNo66noF2noF3(pfx) && sz == 4) { |
| delta = dis_SSE_E_to_G_all( vbi, pfx, delta, "maxps", Iop_Max32Fx4 ); |
| goto decode_success; |
| } |
| /* F3 0F 5F = MAXSS -- max 32F0x4 from R/M to R */ |
| if (haveF3no66noF2(pfx) && sz == 4) { |
| delta = dis_SSE_E_to_G_lo32( vbi, pfx, delta, "maxss", Iop_Max32F0x4 ); |
| goto decode_success; |
| } |
| /* F2 0F 5F = MAXSD -- max 64F0x2 from R/M to R */ |
| if (haveF2no66noF3(pfx) && sz == 4) { |
| delta = dis_SSE_E_to_G_lo64( vbi, pfx, delta, "maxsd", Iop_Max64F0x2 ); |
| goto decode_success; |
| } |
| /* 66 0F 5F = MAXPD -- max 64Fx2 from R/M to R */ |
| if (have66noF2noF3(pfx) && sz == 2) { |
| delta = dis_SSE_E_to_G_all( vbi, pfx, delta, "maxpd", Iop_Max64Fx2 ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0x60: |
| /* 66 0F 60 = PUNPCKLBW */ |
| if (have66noF2noF3(pfx) && sz == 2) { |
| delta = dis_SSEint_E_to_G( vbi, pfx, delta, |
| "punpcklbw", |
| Iop_InterleaveLO8x16, True ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0x61: |
| /* 66 0F 61 = PUNPCKLWD */ |
| if (have66noF2noF3(pfx) && sz == 2) { |
| delta = dis_SSEint_E_to_G( vbi, pfx, delta, |
| "punpcklwd", |
| Iop_InterleaveLO16x8, True ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0x62: |
| /* 66 0F 62 = PUNPCKLDQ */ |
| if (have66noF2noF3(pfx) && sz == 2) { |
| delta = dis_SSEint_E_to_G( vbi, pfx, delta, |
| "punpckldq", |
| Iop_InterleaveLO32x4, True ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0x63: |
| /* 66 0F 63 = PACKSSWB */ |
| if (have66noF2noF3(pfx) && sz == 2) { |
| delta = dis_SSEint_E_to_G( vbi, pfx, delta, |
| "packsswb", |
| Iop_QNarrowBin16Sto8Sx16, True ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0x64: |
| /* 66 0F 64 = PCMPGTB */ |
| if (have66noF2noF3(pfx) && sz == 2) { |
| delta = dis_SSEint_E_to_G( vbi, pfx, delta, |
| "pcmpgtb", Iop_CmpGT8Sx16, False ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0x65: |
| /* 66 0F 65 = PCMPGTW */ |
| if (have66noF2noF3(pfx) && sz == 2) { |
| delta = dis_SSEint_E_to_G( vbi, pfx, delta, |
| "pcmpgtw", Iop_CmpGT16Sx8, False ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0x66: |
| /* 66 0F 66 = PCMPGTD */ |
| if (have66noF2noF3(pfx) && sz == 2) { |
| delta = dis_SSEint_E_to_G( vbi, pfx, delta, |
| "pcmpgtd", Iop_CmpGT32Sx4, False ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0x67: |
| /* 66 0F 67 = PACKUSWB */ |
| if (have66noF2noF3(pfx) && sz == 2) { |
| delta = dis_SSEint_E_to_G( vbi, pfx, delta, |
| "packuswb", |
| Iop_QNarrowBin16Sto8Ux16, True ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0x68: |
| /* 66 0F 68 = PUNPCKHBW */ |
| if (have66noF2noF3(pfx) && sz == 2) { |
| delta = dis_SSEint_E_to_G( vbi, pfx, delta, |
| "punpckhbw", |
| Iop_InterleaveHI8x16, True ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0x69: |
| /* 66 0F 69 = PUNPCKHWD */ |
| if (have66noF2noF3(pfx) && sz == 2) { |
| delta = dis_SSEint_E_to_G( vbi, pfx, delta, |
| "punpckhwd", |
| Iop_InterleaveHI16x8, True ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0x6A: |
| /* 66 0F 6A = PUNPCKHDQ */ |
| if (have66noF2noF3(pfx) && sz == 2) { |
| delta = dis_SSEint_E_to_G( vbi, pfx, delta, |
| "punpckhdq", |
| Iop_InterleaveHI32x4, True ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0x6B: |
| /* 66 0F 6B = PACKSSDW */ |
| if (have66noF2noF3(pfx) && sz == 2) { |
| delta = dis_SSEint_E_to_G( vbi, pfx, delta, |
| "packssdw", |
| Iop_QNarrowBin32Sto16Sx8, True ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0x6C: |
| /* 66 0F 6C = PUNPCKLQDQ */ |
| if (have66noF2noF3(pfx) && sz == 2) { |
| delta = dis_SSEint_E_to_G( vbi, pfx, delta, |
| "punpcklqdq", |
| Iop_InterleaveLO64x2, True ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0x6D: |
| /* 66 0F 6D = PUNPCKHQDQ */ |
| if (have66noF2noF3(pfx) && sz == 2) { |
| delta = dis_SSEint_E_to_G( vbi, pfx, delta, |
| "punpckhqdq", |
| Iop_InterleaveHI64x2, True ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0x6E: |
| /* 66 0F 6E = MOVD from ireg32/m32 to xmm lo 1/4, |
| zeroing high 3/4 of xmm. */ |
| /* or from ireg64/m64 to xmm lo 1/2, |
| zeroing high 1/2 of xmm. */ |
| if (have66noF2noF3(pfx)) { |
| vassert(sz == 2 || sz == 8); |
| if (sz == 2) sz = 4; |
| modrm = getUChar(delta); |
| if (epartIsReg(modrm)) { |
| delta += 1; |
| if (sz == 4) { |
| putXMMReg( |
| gregOfRexRM(pfx,modrm), |
| unop( Iop_32UtoV128, getIReg32(eregOfRexRM(pfx,modrm)) ) |
| ); |
| DIP("movd %s, %s\n", nameIReg32(eregOfRexRM(pfx,modrm)), |
| nameXMMReg(gregOfRexRM(pfx,modrm))); |
| } else { |
| putXMMReg( |
| gregOfRexRM(pfx,modrm), |
| unop( Iop_64UtoV128, getIReg64(eregOfRexRM(pfx,modrm)) ) |
| ); |
| DIP("movq %s, %s\n", nameIReg64(eregOfRexRM(pfx,modrm)), |
| nameXMMReg(gregOfRexRM(pfx,modrm))); |
| } |
| } else { |
| addr = disAMode( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| delta += alen; |
| putXMMReg( |
| gregOfRexRM(pfx,modrm), |
| sz == 4 |
| ? unop( Iop_32UtoV128,loadLE(Ity_I32, mkexpr(addr)) ) |
| : unop( Iop_64UtoV128,loadLE(Ity_I64, mkexpr(addr)) ) |
| ); |
| DIP("mov%c %s, %s\n", sz == 4 ? 'd' : 'q', dis_buf, |
| nameXMMReg(gregOfRexRM(pfx,modrm))); |
| } |
| goto decode_success; |
| } |
| break; |
| |
| case 0x6F: |
| if (have66noF2noF3(pfx) |
| && (sz == 2 || /* ignore redundant REX.W */ sz == 8)) { |
| /* 66 0F 6F = MOVDQA -- move from E (mem or xmm) to G (xmm). */ |
| modrm = getUChar(delta); |
| if (epartIsReg(modrm)) { |
| putXMMReg( gregOfRexRM(pfx,modrm), |
| getXMMReg( eregOfRexRM(pfx,modrm) )); |
| DIP("movdqa %s,%s\n", nameXMMReg(eregOfRexRM(pfx,modrm)), |
| nameXMMReg(gregOfRexRM(pfx,modrm))); |
| delta += 1; |
| } else { |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| gen_SEGV_if_not_16_aligned( addr ); |
| putXMMReg( gregOfRexRM(pfx,modrm), |
| loadLE(Ity_V128, mkexpr(addr)) ); |
| DIP("movdqa %s,%s\n", dis_buf, |
| nameXMMReg(gregOfRexRM(pfx,modrm))); |
| delta += alen; |
| } |
| goto decode_success; |
| } |
| if (haveF3no66noF2(pfx) && sz == 4) { |
| /* F3 0F 6F = MOVDQU -- move from E (mem or xmm) to G (xmm). */ |
| modrm = getUChar(delta); |
| if (epartIsReg(modrm)) { |
| putXMMReg( gregOfRexRM(pfx,modrm), |
| getXMMReg( eregOfRexRM(pfx,modrm) )); |
| DIP("movdqu %s,%s\n", nameXMMReg(eregOfRexRM(pfx,modrm)), |
| nameXMMReg(gregOfRexRM(pfx,modrm))); |
| delta += 1; |
| } else { |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| putXMMReg( gregOfRexRM(pfx,modrm), |
| loadLE(Ity_V128, mkexpr(addr)) ); |
| DIP("movdqu %s,%s\n", dis_buf, |
| nameXMMReg(gregOfRexRM(pfx,modrm))); |
| delta += alen; |
| } |
| goto decode_success; |
| } |
| break; |
| |
| case 0x70: |
| /* 66 0F 70 = PSHUFD -- rearrange 4x32 from E(xmm or mem) to G(xmm) */ |
| if (have66noF2noF3(pfx) && sz == 2) { |
| delta = dis_PSHUFD_32x4( vbi, pfx, delta, False/*!writesYmm*/); |
| goto decode_success; |
| } |
| /* ***--- this is an MMX class insn introduced in SSE1 ---*** */ |
| /* 0F 70 = PSHUFW -- rearrange 4x16 from E(mmx or mem) to G(mmx) */ |
| if (haveNo66noF2noF3(pfx) && sz == 4) { |
| Int order; |
| IRTemp sV, dV, s3, s2, s1, s0; |
| s3 = s2 = s1 = s0 = IRTemp_INVALID; |
| sV = newTemp(Ity_I64); |
| dV = newTemp(Ity_I64); |
| do_MMX_preamble(); |
| modrm = getUChar(delta); |
| if (epartIsReg(modrm)) { |
| assign( sV, getMMXReg(eregLO3ofRM(modrm)) ); |
| order = (Int)getUChar(delta+1); |
| delta += 1+1; |
| DIP("pshufw $%d,%s,%s\n", order, |
| nameMMXReg(eregLO3ofRM(modrm)), |
| nameMMXReg(gregLO3ofRM(modrm))); |
| } else { |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, |
| 1/*extra byte after amode*/ ); |
| assign( sV, loadLE(Ity_I64, mkexpr(addr)) ); |
| order = (Int)getUChar(delta+alen); |
| delta += 1+alen; |
| DIP("pshufw $%d,%s,%s\n", order, |
| dis_buf, |
| nameMMXReg(gregLO3ofRM(modrm))); |
| } |
| breakup64to16s( sV, &s3, &s2, &s1, &s0 ); |
| # define SEL(n) \ |
| ((n)==0 ? s0 : ((n)==1 ? s1 : ((n)==2 ? s2 : s3))) |
| assign(dV, |
| mk64from16s( SEL((order>>6)&3), SEL((order>>4)&3), |
| SEL((order>>2)&3), SEL((order>>0)&3) ) |
| ); |
| putMMXReg(gregLO3ofRM(modrm), mkexpr(dV)); |
| # undef SEL |
| goto decode_success; |
| } |
| /* F2 0F 70 = PSHUFLW -- rearrange lower half 4x16 from E(xmm or |
| mem) to G(xmm), and copy upper half */ |
| if (haveF2no66noF3(pfx) && sz == 4) { |
| delta = dis_PSHUFxW_128( vbi, pfx, delta, |
| False/*!isAvx*/, False/*!xIsH*/ ); |
| goto decode_success; |
| } |
| /* F3 0F 70 = PSHUFHW -- rearrange upper half 4x16 from E(xmm or |
| mem) to G(xmm), and copy lower half */ |
| if (haveF3no66noF2(pfx) && sz == 4) { |
| delta = dis_PSHUFxW_128( vbi, pfx, delta, |
| False/*!isAvx*/, True/*xIsH*/ ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0x71: |
| /* 66 0F 71 /2 ib = PSRLW by immediate */ |
| if (have66noF2noF3(pfx) && sz == 2 |
| && epartIsReg(getUChar(delta)) |
| && gregLO3ofRM(getUChar(delta)) == 2) { |
| delta = dis_SSE_shiftE_imm( pfx, delta, "psrlw", Iop_ShrN16x8 ); |
| goto decode_success; |
| } |
| /* 66 0F 71 /4 ib = PSRAW by immediate */ |
| if (have66noF2noF3(pfx) && sz == 2 |
| && epartIsReg(getUChar(delta)) |
| && gregLO3ofRM(getUChar(delta)) == 4) { |
| delta = dis_SSE_shiftE_imm( pfx, delta, "psraw", Iop_SarN16x8 ); |
| goto decode_success; |
| } |
| /* 66 0F 71 /6 ib = PSLLW by immediate */ |
| if (have66noF2noF3(pfx) && sz == 2 |
| && epartIsReg(getUChar(delta)) |
| && gregLO3ofRM(getUChar(delta)) == 6) { |
| delta = dis_SSE_shiftE_imm( pfx, delta, "psllw", Iop_ShlN16x8 ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0x72: |
| /* 66 0F 72 /2 ib = PSRLD by immediate */ |
| if (have66noF2noF3(pfx) && sz == 2 |
| && epartIsReg(getUChar(delta)) |
| && gregLO3ofRM(getUChar(delta)) == 2) { |
| delta = dis_SSE_shiftE_imm( pfx, delta, "psrld", Iop_ShrN32x4 ); |
| goto decode_success; |
| } |
| /* 66 0F 72 /4 ib = PSRAD by immediate */ |
| if (have66noF2noF3(pfx) && sz == 2 |
| && epartIsReg(getUChar(delta)) |
| && gregLO3ofRM(getUChar(delta)) == 4) { |
| delta = dis_SSE_shiftE_imm( pfx, delta, "psrad", Iop_SarN32x4 ); |
| goto decode_success; |
| } |
| /* 66 0F 72 /6 ib = PSLLD by immediate */ |
| if (have66noF2noF3(pfx) && sz == 2 |
| && epartIsReg(getUChar(delta)) |
| && gregLO3ofRM(getUChar(delta)) == 6) { |
| delta = dis_SSE_shiftE_imm( pfx, delta, "pslld", Iop_ShlN32x4 ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0x73: |
| /* 66 0F 73 /3 ib = PSRLDQ by immediate */ |
| /* note, if mem case ever filled in, 1 byte after amode */ |
| if (have66noF2noF3(pfx) && sz == 2 |
| && epartIsReg(getUChar(delta)) |
| && gregLO3ofRM(getUChar(delta)) == 3) { |
| Int imm = (Int)getUChar(delta+1); |
| Int reg = eregOfRexRM(pfx,getUChar(delta)); |
| DIP("psrldq $%d,%s\n", imm, nameXMMReg(reg)); |
| delta += 2; |
| IRTemp sV = newTemp(Ity_V128); |
| assign( sV, getXMMReg(reg) ); |
| putXMMReg(reg, mkexpr(math_PSRLDQ( sV, imm ))); |
| goto decode_success; |
| } |
| /* 66 0F 73 /7 ib = PSLLDQ by immediate */ |
| /* note, if mem case ever filled in, 1 byte after amode */ |
| if (have66noF2noF3(pfx) && sz == 2 |
| && epartIsReg(getUChar(delta)) |
| && gregLO3ofRM(getUChar(delta)) == 7) { |
| Int imm = (Int)getUChar(delta+1); |
| Int reg = eregOfRexRM(pfx,getUChar(delta)); |
| DIP("pslldq $%d,%s\n", imm, nameXMMReg(reg)); |
| vassert(imm >= 0 && imm <= 255); |
| delta += 2; |
| IRTemp sV = newTemp(Ity_V128); |
| assign( sV, getXMMReg(reg) ); |
| putXMMReg(reg, mkexpr(math_PSLLDQ( sV, imm ))); |
| goto decode_success; |
| } |
| /* 66 0F 73 /2 ib = PSRLQ by immediate */ |
| if (have66noF2noF3(pfx) && sz == 2 |
| && epartIsReg(getUChar(delta)) |
| && gregLO3ofRM(getUChar(delta)) == 2) { |
| delta = dis_SSE_shiftE_imm( pfx, delta, "psrlq", Iop_ShrN64x2 ); |
| goto decode_success; |
| } |
| /* 66 0F 73 /6 ib = PSLLQ by immediate */ |
| if (have66noF2noF3(pfx) && sz == 2 |
| && epartIsReg(getUChar(delta)) |
| && gregLO3ofRM(getUChar(delta)) == 6) { |
| delta = dis_SSE_shiftE_imm( pfx, delta, "psllq", Iop_ShlN64x2 ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0x74: |
| /* 66 0F 74 = PCMPEQB */ |
| if (have66noF2noF3(pfx) && sz == 2) { |
| delta = dis_SSEint_E_to_G( vbi, pfx, delta, |
| "pcmpeqb", Iop_CmpEQ8x16, False ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0x75: |
| /* 66 0F 75 = PCMPEQW */ |
| if (have66noF2noF3(pfx) && sz == 2) { |
| delta = dis_SSEint_E_to_G( vbi, pfx, delta, |
| "pcmpeqw", Iop_CmpEQ16x8, False ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0x76: |
| /* 66 0F 76 = PCMPEQD */ |
| if (have66noF2noF3(pfx) && sz == 2) { |
| delta = dis_SSEint_E_to_G( vbi, pfx, delta, |
| "pcmpeqd", Iop_CmpEQ32x4, False ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0x7E: |
| /* F3 0F 7E = MOVQ -- move 64 bits from E (mem or lo half xmm) to |
| G (lo half xmm). Upper half of G is zeroed out. */ |
| if (haveF3no66noF2(pfx) |
| && (sz == 4 || /* ignore redundant REX.W */ sz == 8)) { |
| modrm = getUChar(delta); |
| if (epartIsReg(modrm)) { |
| putXMMRegLane64( gregOfRexRM(pfx,modrm), 0, |
| getXMMRegLane64( eregOfRexRM(pfx,modrm), 0 )); |
| /* zero bits 127:64 */ |
| putXMMRegLane64( gregOfRexRM(pfx,modrm), 1, mkU64(0) ); |
| DIP("movsd %s,%s\n", nameXMMReg(eregOfRexRM(pfx,modrm)), |
| nameXMMReg(gregOfRexRM(pfx,modrm))); |
| delta += 1; |
| } else { |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| putXMMReg( gregOfRexRM(pfx,modrm), mkV128(0) ); |
| putXMMRegLane64( gregOfRexRM(pfx,modrm), 0, |
| loadLE(Ity_I64, mkexpr(addr)) ); |
| DIP("movsd %s,%s\n", dis_buf, |
| nameXMMReg(gregOfRexRM(pfx,modrm))); |
| delta += alen; |
| } |
| goto decode_success; |
| } |
| /* 66 0F 7E = MOVD from xmm low 1/4 to ireg32 or m32. */ |
| /* or from xmm low 1/2 to ireg64 or m64. */ |
| if (have66noF2noF3(pfx) && (sz == 2 || sz == 8)) { |
| if (sz == 2) sz = 4; |
| modrm = getUChar(delta); |
| if (epartIsReg(modrm)) { |
| delta += 1; |
| if (sz == 4) { |
| putIReg32( eregOfRexRM(pfx,modrm), |
| getXMMRegLane32(gregOfRexRM(pfx,modrm), 0) ); |
| DIP("movd %s, %s\n", nameXMMReg(gregOfRexRM(pfx,modrm)), |
| nameIReg32(eregOfRexRM(pfx,modrm))); |
| } else { |
| putIReg64( eregOfRexRM(pfx,modrm), |
| getXMMRegLane64(gregOfRexRM(pfx,modrm), 0) ); |
| DIP("movq %s, %s\n", nameXMMReg(gregOfRexRM(pfx,modrm)), |
| nameIReg64(eregOfRexRM(pfx,modrm))); |
| } |
| } else { |
| addr = disAMode( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| delta += alen; |
| storeLE( mkexpr(addr), |
| sz == 4 |
| ? getXMMRegLane32(gregOfRexRM(pfx,modrm),0) |
| : getXMMRegLane64(gregOfRexRM(pfx,modrm),0) ); |
| DIP("mov%c %s, %s\n", sz == 4 ? 'd' : 'q', |
| nameXMMReg(gregOfRexRM(pfx,modrm)), dis_buf); |
| } |
| goto decode_success; |
| } |
| break; |
| |
| case 0x7F: |
| /* F3 0F 7F = MOVDQU -- move from G (xmm) to E (mem or xmm). */ |
| if (haveF3no66noF2(pfx) && sz == 4) { |
| modrm = getUChar(delta); |
| if (epartIsReg(modrm)) { |
| goto decode_failure; /* awaiting test case */ |
| delta += 1; |
| putXMMReg( eregOfRexRM(pfx,modrm), |
| getXMMReg(gregOfRexRM(pfx,modrm)) ); |
| DIP("movdqu %s, %s\n", nameXMMReg(gregOfRexRM(pfx,modrm)), |
| nameXMMReg(eregOfRexRM(pfx,modrm))); |
| } else { |
| addr = disAMode( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| delta += alen; |
| storeLE( mkexpr(addr), getXMMReg(gregOfRexRM(pfx,modrm)) ); |
| DIP("movdqu %s, %s\n", nameXMMReg(gregOfRexRM(pfx,modrm)), dis_buf); |
| } |
| goto decode_success; |
| } |
| /* 66 0F 7F = MOVDQA -- move from G (xmm) to E (mem or xmm). */ |
| if (have66noF2noF3(pfx) && sz == 2) { |
| modrm = getUChar(delta); |
| if (epartIsReg(modrm)) { |
| delta += 1; |
| putXMMReg( eregOfRexRM(pfx,modrm), |
| getXMMReg(gregOfRexRM(pfx,modrm)) ); |
| DIP("movdqa %s, %s\n", nameXMMReg(gregOfRexRM(pfx,modrm)), |
| nameXMMReg(eregOfRexRM(pfx,modrm))); |
| } else { |
| addr = disAMode( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| gen_SEGV_if_not_16_aligned( addr ); |
| delta += alen; |
| storeLE( mkexpr(addr), getXMMReg(gregOfRexRM(pfx,modrm)) ); |
| DIP("movdqa %s, %s\n", nameXMMReg(gregOfRexRM(pfx,modrm)), dis_buf); |
| } |
| goto decode_success; |
| } |
| break; |
| |
| case 0xAE: |
| /* 0F AE /7 = SFENCE -- flush pending operations to memory */ |
| if (haveNo66noF2noF3(pfx) |
| && epartIsReg(getUChar(delta)) && gregLO3ofRM(getUChar(delta)) == 7 |
| && sz == 4) { |
| delta += 1; |
| /* Insert a memory fence. It's sometimes important that these |
| are carried through to the generated code. */ |
| stmt( IRStmt_MBE(Imbe_Fence) ); |
| DIP("sfence\n"); |
| goto decode_success; |
| } |
| /* mindless duplication follows .. */ |
| /* 0F AE /5 = LFENCE -- flush pending operations to memory */ |
| /* 0F AE /6 = MFENCE -- flush pending operations to memory */ |
| if (haveNo66noF2noF3(pfx) |
| && epartIsReg(getUChar(delta)) |
| && (gregLO3ofRM(getUChar(delta)) == 5 |
| || gregLO3ofRM(getUChar(delta)) == 6) |
| && sz == 4) { |
| delta += 1; |
| /* Insert a memory fence. It's sometimes important that these |
| are carried through to the generated code. */ |
| stmt( IRStmt_MBE(Imbe_Fence) ); |
| DIP("%sfence\n", gregLO3ofRM(getUChar(delta-1))==5 ? "l" : "m"); |
| goto decode_success; |
| } |
| |
| /* 0F AE /7 = CLFLUSH -- flush cache line */ |
| if (haveNo66noF2noF3(pfx) |
| && !epartIsReg(getUChar(delta)) && gregLO3ofRM(getUChar(delta)) == 7 |
| && sz == 4) { |
| |
| /* This is something of a hack. We need to know the size of |
| the cache line containing addr. Since we don't (easily), |
| assume 256 on the basis that no real cache would have a |
| line that big. It's safe to invalidate more stuff than we |
| need, just inefficient. */ |
| ULong lineszB = 256ULL; |
| |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| delta += alen; |
| |
| /* Round addr down to the start of the containing block. */ |
| stmt( IRStmt_Put( |
| OFFB_TISTART, |
| binop( Iop_And64, |
| mkexpr(addr), |
| mkU64( ~(lineszB-1) ))) ); |
| |
| stmt( IRStmt_Put(OFFB_TILEN, mkU64(lineszB) ) ); |
| |
| jmp_lit(dres, Ijk_TInval, (Addr64)(guest_RIP_bbstart+delta)); |
| |
| DIP("clflush %s\n", dis_buf); |
| goto decode_success; |
| } |
| |
| /* 0F AE /3 = STMXCSR m32 -- store %mxcsr */ |
| if (haveNo66noF2noF3(pfx) |
| && !epartIsReg(getUChar(delta)) && gregLO3ofRM(getUChar(delta)) == 3 |
| && sz == 4) { |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| delta += alen; |
| |
| /* Fake up a native SSE mxcsr word. The only thing it depends |
| on is SSEROUND[1:0], so call a clean helper to cook it up. |
| */ |
| /* ULong amd64h_create_mxcsr ( ULong sseround ) */ |
| DIP("stmxcsr %s\n", dis_buf); |
| storeLE( |
| mkexpr(addr), |
| unop(Iop_64to32, |
| mkIRExprCCall( |
| Ity_I64, 0/*regp*/, |
| "amd64g_create_mxcsr", &amd64g_create_mxcsr, |
| mkIRExprVec_1( unop(Iop_32Uto64,get_sse_roundingmode()) ) |
| ) |
| ) |
| ); |
| goto decode_success; |
| } |
| /* 0F AE /2 = LDMXCSR m32 -- load %mxcsr */ |
| if (haveNo66noF2noF3(pfx) |
| && !epartIsReg(getUChar(delta)) && gregLO3ofRM(getUChar(delta)) == 2 |
| && sz == 4) { |
| |
| IRTemp t64 = newTemp(Ity_I64); |
| IRTemp ew = newTemp(Ity_I32); |
| |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| delta += alen; |
| DIP("ldmxcsr %s\n", dis_buf); |
| |
| /* The only thing we observe in %mxcsr is the rounding mode. |
| Therefore, pass the 32-bit value (SSE native-format control |
| word) to a clean helper, getting back a 64-bit value, the |
| lower half of which is the SSEROUND value to store, and the |
| upper half of which is the emulation-warning token which may |
| be generated. |
| */ |
| /* ULong amd64h_check_ldmxcsr ( ULong ); */ |
| assign( t64, mkIRExprCCall( |
| Ity_I64, 0/*regparms*/, |
| "amd64g_check_ldmxcsr", |
| &amd64g_check_ldmxcsr, |
| mkIRExprVec_1( |
| unop(Iop_32Uto64, |
| loadLE(Ity_I32, mkexpr(addr)) |
| ) |
| ) |
| ) |
| ); |
| |
| put_sse_roundingmode( unop(Iop_64to32, mkexpr(t64)) ); |
| assign( ew, unop(Iop_64HIto32, mkexpr(t64) ) ); |
| put_emwarn( mkexpr(ew) ); |
| /* Finally, if an emulation warning was reported, side-exit to |
| the next insn, reporting the warning, so that Valgrind's |
| dispatcher sees the warning. */ |
| stmt( |
| IRStmt_Exit( |
| binop(Iop_CmpNE64, unop(Iop_32Uto64,mkexpr(ew)), mkU64(0)), |
| Ijk_EmWarn, |
| IRConst_U64(guest_RIP_bbstart+delta), |
| OFFB_RIP |
| ) |
| ); |
| goto decode_success; |
| } |
| /* 0F AE /0 = FXSAVE m512 -- write x87 and SSE state to memory. |
| Note that the presence or absence of REX.W slightly affects the |
| written format: whether the saved FPU IP and DP pointers are 64 |
| or 32 bits. But the helper function we call simply writes zero |
| bits in the relevant fields (which are 64 bits regardless of |
| what REX.W is) and so it's good enough (iow, equally broken) in |
| both cases. */ |
| if (haveNo66noF2noF3(pfx) && (sz == 4 || sz == 8) |
| && !epartIsReg(getUChar(delta)) |
| && gregOfRexRM(pfx,getUChar(delta)) == 0) { |
| IRDirty* d; |
| modrm = getUChar(delta); |
| vassert(!epartIsReg(modrm)); |
| |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| delta += alen; |
| gen_SEGV_if_not_16_aligned(addr); |
| |
| DIP("%sfxsave %s\n", sz==8 ? "rex64/" : "", dis_buf); |
| |
| /* Uses dirty helper: |
| void amd64g_do_FXSAVE ( VexGuestAMD64State*, ULong ) */ |
| d = unsafeIRDirty_0_N ( |
| 0/*regparms*/, |
| "amd64g_dirtyhelper_FXSAVE", |
| &amd64g_dirtyhelper_FXSAVE, |
| mkIRExprVec_1( mkexpr(addr) ) |
| ); |
| d->needsBBP = True; |
| |
| /* declare we're writing memory */ |
| d->mFx = Ifx_Write; |
| d->mAddr = mkexpr(addr); |
| d->mSize = 464; /* according to recent Intel docs */ |
| |
| /* declare we're reading guest state */ |
| d->nFxState = 7; |
| vex_bzero(&d->fxState, sizeof(d->fxState)); |
| |
| d->fxState[0].fx = Ifx_Read; |
| d->fxState[0].offset = OFFB_FTOP; |
| d->fxState[0].size = sizeof(UInt); |
| |
| d->fxState[1].fx = Ifx_Read; |
| d->fxState[1].offset = OFFB_FPREGS; |
| d->fxState[1].size = 8 * sizeof(ULong); |
| |
| d->fxState[2].fx = Ifx_Read; |
| d->fxState[2].offset = OFFB_FPTAGS; |
| d->fxState[2].size = 8 * sizeof(UChar); |
| |
| d->fxState[3].fx = Ifx_Read; |
| d->fxState[3].offset = OFFB_FPROUND; |
| d->fxState[3].size = sizeof(ULong); |
| |
| d->fxState[4].fx = Ifx_Read; |
| d->fxState[4].offset = OFFB_FC3210; |
| d->fxState[4].size = sizeof(ULong); |
| |
| d->fxState[5].fx = Ifx_Read; |
| d->fxState[5].offset = OFFB_YMM0; |
| d->fxState[5].size = sizeof(U128); |
| /* plus 15 more of the above, spaced out in YMM sized steps */ |
| d->fxState[5].nRepeats = 15; |
| d->fxState[5].repeatLen = sizeof(U256); |
| |
| d->fxState[6].fx = Ifx_Read; |
| d->fxState[6].offset = OFFB_SSEROUND; |
| d->fxState[6].size = sizeof(ULong); |
| |
| /* Be paranoid ... this assertion tries to ensure the 16 %ymm |
| images are packed back-to-back. If not, the settings for |
| d->fxState[5] are wrong. */ |
| vassert(32 == sizeof(U256)); |
| vassert(OFFB_YMM15 == (OFFB_YMM0 + 15 * 32)); |
| |
| stmt( IRStmt_Dirty(d) ); |
| |
| goto decode_success; |
| } |
| /* 0F AE /1 = FXRSTOR m512 -- read x87 and SSE state from memory. |
| As with FXSAVE above we ignore the value of REX.W since we're |
| not bothering with the FPU DP and IP fields. */ |
| if (haveNo66noF2noF3(pfx) && (sz == 4 || sz == 8) |
| && !epartIsReg(getUChar(delta)) |
| && gregOfRexRM(pfx,getUChar(delta)) == 1) { |
| IRDirty* d; |
| modrm = getUChar(delta); |
| vassert(!epartIsReg(modrm)); |
| |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| delta += alen; |
| gen_SEGV_if_not_16_aligned(addr); |
| |
| DIP("%sfxrstor %s\n", sz==8 ? "rex64/" : "", dis_buf); |
| |
| /* Uses dirty helper: |
| VexEmWarn amd64g_do_FXRSTOR ( VexGuestAMD64State*, ULong ) |
| NOTE: |
| the VexEmWarn value is simply ignored |
| */ |
| d = unsafeIRDirty_0_N ( |
| 0/*regparms*/, |
| "amd64g_dirtyhelper_FXRSTOR", |
| &amd64g_dirtyhelper_FXRSTOR, |
| mkIRExprVec_1( mkexpr(addr) ) |
| ); |
| d->needsBBP = True; |
| |
| /* declare we're reading memory */ |
| d->mFx = Ifx_Read; |
| d->mAddr = mkexpr(addr); |
| d->mSize = 464; /* according to recent Intel docs */ |
| |
| /* declare we're writing guest state */ |
| d->nFxState = 7; |
| vex_bzero(&d->fxState, sizeof(d->fxState)); |
| |
| d->fxState[0].fx = Ifx_Write; |
| d->fxState[0].offset = OFFB_FTOP; |
| d->fxState[0].size = sizeof(UInt); |
| |
| d->fxState[1].fx = Ifx_Write; |
| d->fxState[1].offset = OFFB_FPREGS; |
| d->fxState[1].size = 8 * sizeof(ULong); |
| |
| d->fxState[2].fx = Ifx_Write; |
| d->fxState[2].offset = OFFB_FPTAGS; |
| d->fxState[2].size = 8 * sizeof(UChar); |
| |
| d->fxState[3].fx = Ifx_Write; |
| d->fxState[3].offset = OFFB_FPROUND; |
| d->fxState[3].size = sizeof(ULong); |
| |
| d->fxState[4].fx = Ifx_Write; |
| d->fxState[4].offset = OFFB_FC3210; |
| d->fxState[4].size = sizeof(ULong); |
| |
| d->fxState[5].fx = Ifx_Write; |
| d->fxState[5].offset = OFFB_YMM0; |
| d->fxState[5].size = sizeof(U128); |
| /* plus 15 more of the above, spaced out in YMM sized steps */ |
| d->fxState[5].nRepeats = 15; |
| d->fxState[5].repeatLen = sizeof(U256); |
| |
| d->fxState[6].fx = Ifx_Write; |
| d->fxState[6].offset = OFFB_SSEROUND; |
| d->fxState[6].size = sizeof(ULong); |
| |
| /* Be paranoid ... this assertion tries to ensure the 16 %ymm |
| images are packed back-to-back. If not, the settings for |
| d->fxState[5] are wrong. */ |
| vassert(32 == sizeof(U256)); |
| vassert(OFFB_YMM15 == (OFFB_YMM0 + 15 * 32)); |
| |
| stmt( IRStmt_Dirty(d) ); |
| |
| goto decode_success; |
| } |
| break; |
| |
| case 0xC2: |
| /* 0F C2 = CMPPS -- 32Fx4 comparison from R/M to R */ |
| if (haveNo66noF2noF3(pfx) && sz == 4) { |
| Long delta0 = delta; |
| delta = dis_SSE_cmp_E_to_G( vbi, pfx, delta, "cmpps", True, 4 ); |
| if (delta > delta0) goto decode_success; |
| } |
| /* F3 0F C2 = CMPSS -- 32F0x4 comparison from R/M to R */ |
| if (haveF3no66noF2(pfx) && sz == 4) { |
| Long delta0 = delta; |
| delta = dis_SSE_cmp_E_to_G( vbi, pfx, delta, "cmpss", False, 4 ); |
| if (delta > delta0) goto decode_success; |
| } |
| /* F2 0F C2 = CMPSD -- 64F0x2 comparison from R/M to R */ |
| if (haveF2no66noF3(pfx) && sz == 4) { |
| Long delta0 = delta; |
| delta = dis_SSE_cmp_E_to_G( vbi, pfx, delta, "cmpsd", False, 8 ); |
| if (delta > delta0) goto decode_success; |
| } |
| /* 66 0F C2 = CMPPD -- 64Fx2 comparison from R/M to R */ |
| if (have66noF2noF3(pfx) && sz == 2) { |
| Long delta0 = delta; |
| delta = dis_SSE_cmp_E_to_G( vbi, pfx, delta, "cmppd", True, 8 ); |
| if (delta > delta0) goto decode_success; |
| } |
| break; |
| |
| case 0xC3: |
| /* 0F C3 = MOVNTI -- for us, just a plain ireg store. */ |
| if (haveNo66noF2noF3(pfx) && (sz == 4 || sz == 8)) { |
| modrm = getUChar(delta); |
| if (!epartIsReg(modrm)) { |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| storeLE( mkexpr(addr), getIRegG(sz, pfx, modrm) ); |
| DIP("movnti %s,%s\n", dis_buf, |
| nameIRegG(sz, pfx, modrm)); |
| delta += alen; |
| goto decode_success; |
| } |
| /* else fall through */ |
| } |
| break; |
| |
| case 0xC4: |
| /* ***--- this is an MMX class insn introduced in SSE1 ---*** */ |
| /* 0F C4 = PINSRW -- get 16 bits from E(mem or low half ireg) and |
| put it into the specified lane of mmx(G). */ |
| if (haveNo66noF2noF3(pfx) |
| && (sz == 4 || /* ignore redundant REX.W */ sz == 8)) { |
| /* Use t0 .. t3 to hold the 4 original 16-bit lanes of the |
| mmx reg. t4 is the new lane value. t5 is the original |
| mmx value. t6 is the new mmx value. */ |
| Int lane; |
| t4 = newTemp(Ity_I16); |
| t5 = newTemp(Ity_I64); |
| t6 = newTemp(Ity_I64); |
| modrm = getUChar(delta); |
| do_MMX_preamble(); |
| |
| assign(t5, getMMXReg(gregLO3ofRM(modrm))); |
| breakup64to16s( t5, &t3, &t2, &t1, &t0 ); |
| |
| if (epartIsReg(modrm)) { |
| assign(t4, getIReg16(eregOfRexRM(pfx,modrm))); |
| delta += 1+1; |
| lane = getUChar(delta-1); |
| DIP("pinsrw $%d,%s,%s\n", (Int)lane, |
| nameIReg16(eregOfRexRM(pfx,modrm)), |
| nameMMXReg(gregLO3ofRM(modrm))); |
| } else { |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 1 ); |
| delta += 1+alen; |
| lane = getUChar(delta-1); |
| assign(t4, loadLE(Ity_I16, mkexpr(addr))); |
| DIP("pinsrw $%d,%s,%s\n", (Int)lane, |
| dis_buf, |
| nameMMXReg(gregLO3ofRM(modrm))); |
| } |
| |
| switch (lane & 3) { |
| case 0: assign(t6, mk64from16s(t3,t2,t1,t4)); break; |
| case 1: assign(t6, mk64from16s(t3,t2,t4,t0)); break; |
| case 2: assign(t6, mk64from16s(t3,t4,t1,t0)); break; |
| case 3: assign(t6, mk64from16s(t4,t2,t1,t0)); break; |
| default: vassert(0); |
| } |
| putMMXReg(gregLO3ofRM(modrm), mkexpr(t6)); |
| goto decode_success; |
| } |
| /* 66 0F C4 = PINSRW -- get 16 bits from E(mem or low half ireg) and |
| put it into the specified lane of xmm(G). */ |
| if (have66noF2noF3(pfx) |
| && (sz == 2 || /* ignore redundant REX.W */ sz == 8)) { |
| Int lane; |
| t4 = newTemp(Ity_I16); |
| modrm = getUChar(delta); |
| |
| if (epartIsReg(modrm)) { |
| assign(t4, getIReg16(eregOfRexRM(pfx,modrm))); |
| delta += 1+1; |
| lane = getUChar(delta-1); |
| DIP("pinsrw $%d,%s,%s\n", (Int)lane, |
| nameIReg16(eregOfRexRM(pfx,modrm)), |
| nameXMMReg(gregOfRexRM(pfx,modrm))); |
| } else { |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, |
| 1/*byte after the amode*/ ); |
| delta += 1+alen; |
| lane = getUChar(delta-1); |
| assign(t4, loadLE(Ity_I16, mkexpr(addr))); |
| DIP("pinsrw $%d,%s,%s\n", (Int)lane, |
| dis_buf, |
| nameXMMReg(gregOfRexRM(pfx,modrm))); |
| } |
| |
| putXMMRegLane16( gregOfRexRM(pfx,modrm), lane & 7, mkexpr(t4) ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0xC5: |
| /* ***--- this is an MMX class insn introduced in SSE1 ---*** */ |
| /* 0F C5 = PEXTRW -- extract 16-bit field from mmx(E) and put |
| zero-extend of it in ireg(G). */ |
| if (haveNo66noF2noF3(pfx) && (sz == 4 || sz == 8)) { |
| modrm = getUChar(delta); |
| if (epartIsReg(modrm)) { |
| IRTemp sV = newTemp(Ity_I64); |
| t5 = newTemp(Ity_I16); |
| do_MMX_preamble(); |
| assign(sV, getMMXReg(eregLO3ofRM(modrm))); |
| breakup64to16s( sV, &t3, &t2, &t1, &t0 ); |
| switch (getUChar(delta+1) & 3) { |
| case 0: assign(t5, mkexpr(t0)); break; |
| case 1: assign(t5, mkexpr(t1)); break; |
| case 2: assign(t5, mkexpr(t2)); break; |
| case 3: assign(t5, mkexpr(t3)); break; |
| default: vassert(0); |
| } |
| if (sz == 8) |
| putIReg64(gregOfRexRM(pfx,modrm), unop(Iop_16Uto64, mkexpr(t5))); |
| else |
| putIReg32(gregOfRexRM(pfx,modrm), unop(Iop_16Uto32, mkexpr(t5))); |
| DIP("pextrw $%d,%s,%s\n", |
| (Int)getUChar(delta+1), |
| nameMMXReg(eregLO3ofRM(modrm)), |
| sz==8 ? nameIReg64(gregOfRexRM(pfx,modrm)) |
| : nameIReg32(gregOfRexRM(pfx,modrm)) |
| ); |
| delta += 2; |
| goto decode_success; |
| } |
| /* else fall through */ |
| /* note, for anyone filling in the mem case: this insn has one |
| byte after the amode and therefore you must pass 1 as the |
| last arg to disAMode */ |
| } |
| /* 66 0F C5 = PEXTRW -- extract 16-bit field from xmm(E) and put |
| zero-extend of it in ireg(G). */ |
| if (have66noF2noF3(pfx) |
| && (sz == 2 || /* ignore redundant REX.W */ sz == 8)) { |
| modrm = getUChar(delta); |
| if (epartIsReg(modrm)) { |
| t5 = newTemp(Ity_V128); |
| t4 = newTemp(Ity_I16); |
| assign(t5, getXMMReg(eregOfRexRM(pfx,modrm))); |
| breakup128to32s( t5, &t3, &t2, &t1, &t0 ); |
| switch (getUChar(delta+1) & 7) { |
| case 0: assign(t4, unop(Iop_32to16, mkexpr(t0))); break; |
| case 1: assign(t4, unop(Iop_32HIto16, mkexpr(t0))); break; |
| case 2: assign(t4, unop(Iop_32to16, mkexpr(t1))); break; |
| case 3: assign(t4, unop(Iop_32HIto16, mkexpr(t1))); break; |
| case 4: assign(t4, unop(Iop_32to16, mkexpr(t2))); break; |
| case 5: assign(t4, unop(Iop_32HIto16, mkexpr(t2))); break; |
| case 6: assign(t4, unop(Iop_32to16, mkexpr(t3))); break; |
| case 7: assign(t4, unop(Iop_32HIto16, mkexpr(t3))); break; |
| default: vassert(0); |
| } |
| putIReg32(gregOfRexRM(pfx,modrm), unop(Iop_16Uto32, mkexpr(t4))); |
| DIP("pextrw $%d,%s,%s\n", |
| (Int)getUChar(delta+1), nameXMMReg(eregOfRexRM(pfx,modrm)), |
| nameIReg32(gregOfRexRM(pfx,modrm))); |
| delta += 1+1; |
| goto decode_success; |
| } |
| /* else fall through */ |
| /* note, if memory case is ever filled in, there is 1 byte after |
| amode */ |
| } |
| break; |
| |
| case 0xC6: |
| /* 0F C6 /r ib = SHUFPS -- shuffle packed F32s */ |
| if (haveNo66noF2noF3(pfx) && sz == 4) { |
| Int imm8 = 0; |
| IRTemp sV = newTemp(Ity_V128); |
| IRTemp dV = newTemp(Ity_V128); |
| modrm = getUChar(delta); |
| UInt rG = gregOfRexRM(pfx,modrm); |
| assign( dV, getXMMReg(rG) ); |
| if (epartIsReg(modrm)) { |
| UInt rE = eregOfRexRM(pfx,modrm); |
| assign( sV, getXMMReg(rE) ); |
| imm8 = (Int)getUChar(delta+1); |
| delta += 1+1; |
| DIP("shufps $%d,%s,%s\n", imm8, nameXMMReg(rE), nameXMMReg(rG)); |
| } else { |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 1 ); |
| assign( sV, loadLE(Ity_V128, mkexpr(addr)) ); |
| imm8 = (Int)getUChar(delta+alen); |
| delta += 1+alen; |
| DIP("shufps $%d,%s,%s\n", imm8, dis_buf, nameXMMReg(rG)); |
| } |
| IRTemp res = math_SHUFPS( sV, dV, imm8 ); |
| putXMMReg( gregOfRexRM(pfx,modrm), mkexpr(res) ); |
| goto decode_success; |
| } |
| /* 66 0F C6 /r ib = SHUFPD -- shuffle packed F64s */ |
| if (have66noF2noF3(pfx) && sz == 2) { |
| Int select; |
| IRTemp sV = newTemp(Ity_V128); |
| IRTemp dV = newTemp(Ity_V128); |
| IRTemp s1 = newTemp(Ity_I64); |
| IRTemp s0 = newTemp(Ity_I64); |
| IRTemp d1 = newTemp(Ity_I64); |
| IRTemp d0 = newTemp(Ity_I64); |
| |
| modrm = getUChar(delta); |
| assign( dV, getXMMReg(gregOfRexRM(pfx,modrm)) ); |
| |
| if (epartIsReg(modrm)) { |
| assign( sV, getXMMReg(eregOfRexRM(pfx,modrm)) ); |
| select = (Int)getUChar(delta+1); |
| delta += 1+1; |
| DIP("shufpd $%d,%s,%s\n", select, |
| nameXMMReg(eregOfRexRM(pfx,modrm)), |
| nameXMMReg(gregOfRexRM(pfx,modrm))); |
| } else { |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 1 ); |
| assign( sV, loadLE(Ity_V128, mkexpr(addr)) ); |
| select = getUChar(delta+alen); |
| delta += 1+alen; |
| DIP("shufpd $%d,%s,%s\n", select, |
| dis_buf, |
| nameXMMReg(gregOfRexRM(pfx,modrm))); |
| } |
| |
| assign( d1, unop(Iop_V128HIto64, mkexpr(dV)) ); |
| assign( d0, unop(Iop_V128to64, mkexpr(dV)) ); |
| assign( s1, unop(Iop_V128HIto64, mkexpr(sV)) ); |
| assign( s0, unop(Iop_V128to64, mkexpr(sV)) ); |
| |
| # define SELD(n) mkexpr((n)==0 ? d0 : d1) |
| # define SELS(n) mkexpr((n)==0 ? s0 : s1) |
| |
| putXMMReg( |
| gregOfRexRM(pfx,modrm), |
| binop(Iop_64HLtoV128, SELS((select>>1)&1), SELD((select>>0)&1) ) |
| ); |
| |
| # undef SELD |
| # undef SELS |
| |
| goto decode_success; |
| } |
| break; |
| |
| case 0xD1: |
| /* 66 0F D1 = PSRLW by E */ |
| if (have66noF2noF3(pfx) && sz == 2) { |
| delta = dis_SSE_shiftG_byE( vbi, pfx, delta, "psrlw", Iop_ShrN16x8 ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0xD2: |
| /* 66 0F D2 = PSRLD by E */ |
| if (have66noF2noF3(pfx) && sz == 2) { |
| delta = dis_SSE_shiftG_byE( vbi, pfx, delta, "psrld", Iop_ShrN32x4 ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0xD3: |
| /* 66 0F D3 = PSRLQ by E */ |
| if (have66noF2noF3(pfx) && sz == 2) { |
| delta = dis_SSE_shiftG_byE( vbi, pfx, delta, "psrlq", Iop_ShrN64x2 ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0xD4: |
| /* 66 0F D4 = PADDQ */ |
| if (have66noF2noF3(pfx) && sz == 2) { |
| delta = dis_SSEint_E_to_G( vbi, pfx, delta, |
| "paddq", Iop_Add64x2, False ); |
| goto decode_success; |
| } |
| /* ***--- this is an MMX class insn introduced in SSE2 ---*** */ |
| /* 0F D4 = PADDQ -- add 64x1 */ |
| if (haveNo66noF2noF3(pfx) && sz == 4) { |
| do_MMX_preamble(); |
| delta = dis_MMXop_regmem_to_reg ( |
| vbi, pfx, delta, opc, "paddq", False ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0xD5: |
| /* 66 0F D5 = PMULLW -- 16x8 multiply */ |
| if (have66noF2noF3(pfx) && sz == 2) { |
| delta = dis_SSEint_E_to_G( vbi, pfx, delta, |
| "pmullw", Iop_Mul16x8, False ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0xD6: |
| /* F3 0F D6 = MOVQ2DQ -- move from E (mmx) to G (lo half xmm, zero |
| hi half). */ |
| if (haveF3no66noF2(pfx) && sz == 4) { |
| modrm = getUChar(delta); |
| if (epartIsReg(modrm)) { |
| do_MMX_preamble(); |
| putXMMReg( gregOfRexRM(pfx,modrm), |
| unop(Iop_64UtoV128, getMMXReg( eregLO3ofRM(modrm) )) ); |
| DIP("movq2dq %s,%s\n", nameMMXReg(eregLO3ofRM(modrm)), |
| nameXMMReg(gregOfRexRM(pfx,modrm))); |
| delta += 1; |
| goto decode_success; |
| } |
| /* apparently no mem case for this insn */ |
| } |
| /* 66 0F D6 = MOVQ -- move 64 bits from G (lo half xmm) to E (mem |
| or lo half xmm). */ |
| if (have66noF2noF3(pfx) |
| && (sz == 2 || /* ignore redundant REX.W */ sz == 8)) { |
| modrm = getUChar(delta); |
| if (epartIsReg(modrm)) { |
| /* fall through, awaiting test case */ |
| /* dst: lo half copied, hi half zeroed */ |
| } else { |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| storeLE( mkexpr(addr), |
| getXMMRegLane64( gregOfRexRM(pfx,modrm), 0 )); |
| DIP("movq %s,%s\n", nameXMMReg(gregOfRexRM(pfx,modrm)), dis_buf ); |
| delta += alen; |
| goto decode_success; |
| } |
| } |
| /* F2 0F D6 = MOVDQ2Q -- move from E (lo half xmm, not mem) to G (mmx). */ |
| if (haveF2no66noF3(pfx) && sz == 4) { |
| modrm = getUChar(delta); |
| if (epartIsReg(modrm)) { |
| do_MMX_preamble(); |
| putMMXReg( gregLO3ofRM(modrm), |
| getXMMRegLane64( eregOfRexRM(pfx,modrm), 0 )); |
| DIP("movdq2q %s,%s\n", nameXMMReg(eregOfRexRM(pfx,modrm)), |
| nameMMXReg(gregLO3ofRM(modrm))); |
| delta += 1; |
| goto decode_success; |
| } |
| /* apparently no mem case for this insn */ |
| } |
| break; |
| |
| case 0xD7: |
| /* 66 0F D7 = PMOVMSKB -- extract sign bits from each of 16 |
| lanes in xmm(E), turn them into a byte, and put |
| zero-extend of it in ireg(G). Doing this directly is just |
| too cumbersome; give up therefore and call a helper. */ |
| if (have66noF2noF3(pfx) |
| && (sz == 2 || /* ignore redundant REX.W */ sz == 8) |
| && epartIsReg(getUChar(delta))) { /* no memory case, it seems */ |
| delta = dis_PMOVMSKB_128( vbi, pfx, delta, False/*!isAvx*/ ); |
| goto decode_success; |
| } |
| /* ***--- this is an MMX class insn introduced in SSE1 ---*** */ |
| /* 0F D7 = PMOVMSKB -- extract sign bits from each of 8 lanes in |
| mmx(G), turn them into a byte, and put zero-extend of it in |
| ireg(G). */ |
| if (haveNo66noF2noF3(pfx) |
| && (sz == 4 || /* ignore redundant REX.W */ sz == 8)) { |
| modrm = getUChar(delta); |
| if (epartIsReg(modrm)) { |
| do_MMX_preamble(); |
| t0 = newTemp(Ity_I64); |
| t1 = newTemp(Ity_I64); |
| assign(t0, getMMXReg(eregLO3ofRM(modrm))); |
| assign(t1, mkIRExprCCall( |
| Ity_I64, 0/*regparms*/, |
| "amd64g_calculate_mmx_pmovmskb", |
| &amd64g_calculate_mmx_pmovmskb, |
| mkIRExprVec_1(mkexpr(t0)))); |
| putIReg32(gregOfRexRM(pfx,modrm), unop(Iop_64to32,mkexpr(t1))); |
| DIP("pmovmskb %s,%s\n", nameMMXReg(eregLO3ofRM(modrm)), |
| nameIReg32(gregOfRexRM(pfx,modrm))); |
| delta += 1; |
| goto decode_success; |
| } |
| /* else fall through */ |
| } |
| break; |
| |
| case 0xD8: |
| /* 66 0F D8 = PSUBUSB */ |
| if (have66noF2noF3(pfx) && sz == 2) { |
| delta = dis_SSEint_E_to_G( vbi, pfx, delta, |
| "psubusb", Iop_QSub8Ux16, False ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0xD9: |
| /* 66 0F D9 = PSUBSW */ |
| if (have66noF2noF3(pfx) && sz == 2) { |
| delta = dis_SSEint_E_to_G( vbi, pfx, delta, |
| "psubusw", Iop_QSub16Ux8, False ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0xDA: |
| /* ***--- this is an MMX class insn introduced in SSE1 ---*** */ |
| /* 0F DA = PMINUB -- 8x8 unsigned min */ |
| if (haveNo66noF2noF3(pfx) && sz == 4) { |
| do_MMX_preamble(); |
| delta = dis_MMXop_regmem_to_reg ( |
| vbi, pfx, delta, opc, "pminub", False ); |
| goto decode_success; |
| } |
| /* 66 0F DA = PMINUB -- 8x16 unsigned min */ |
| if (have66noF2noF3(pfx) && sz == 2) { |
| delta = dis_SSEint_E_to_G( vbi, pfx, delta, |
| "pminub", Iop_Min8Ux16, False ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0xDB: |
| /* 66 0F DB = PAND */ |
| if (have66noF2noF3(pfx) && sz == 2) { |
| delta = dis_SSE_E_to_G_all( vbi, pfx, delta, "pand", Iop_AndV128 ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0xDC: |
| /* 66 0F DC = PADDUSB */ |
| if (have66noF2noF3(pfx) && sz == 2) { |
| delta = dis_SSEint_E_to_G( vbi, pfx, delta, |
| "paddusb", Iop_QAdd8Ux16, False ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0xDD: |
| /* 66 0F DD = PADDUSW */ |
| if (have66noF2noF3(pfx) && sz == 2) { |
| delta = dis_SSEint_E_to_G( vbi, pfx, delta, |
| "paddusw", Iop_QAdd16Ux8, False ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0xDE: |
| /* ***--- this is an MMX class insn introduced in SSE1 ---*** */ |
| /* 0F DE = PMAXUB -- 8x8 unsigned max */ |
| if (haveNo66noF2noF3(pfx) && sz == 4) { |
| do_MMX_preamble(); |
| delta = dis_MMXop_regmem_to_reg ( |
| vbi, pfx, delta, opc, "pmaxub", False ); |
| goto decode_success; |
| } |
| /* 66 0F DE = PMAXUB -- 8x16 unsigned max */ |
| if (have66noF2noF3(pfx) && sz == 2) { |
| delta = dis_SSEint_E_to_G( vbi, pfx, delta, |
| "pmaxub", Iop_Max8Ux16, False ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0xDF: |
| /* 66 0F DF = PANDN */ |
| if (have66noF2noF3(pfx) && sz == 2) { |
| delta = dis_SSE_E_to_G_all_invG( vbi, pfx, delta, "pandn", Iop_AndV128 ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0xE0: |
| /* ***--- this is an MMX class insn introduced in SSE1 ---*** */ |
| /* 0F E0 = PAVGB -- 8x8 unsigned Packed Average, with rounding */ |
| if (haveNo66noF2noF3(pfx) && sz == 4) { |
| do_MMX_preamble(); |
| delta = dis_MMXop_regmem_to_reg ( |
| vbi, pfx, delta, opc, "pavgb", False ); |
| goto decode_success; |
| } |
| /* 66 0F E0 = PAVGB */ |
| if (have66noF2noF3(pfx) && sz == 2) { |
| delta = dis_SSEint_E_to_G( vbi, pfx, delta, |
| "pavgb", Iop_Avg8Ux16, False ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0xE1: |
| /* 66 0F E1 = PSRAW by E */ |
| if (have66noF2noF3(pfx) && sz == 2) { |
| delta = dis_SSE_shiftG_byE( vbi, pfx, delta, "psraw", Iop_SarN16x8 ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0xE2: |
| /* 66 0F E2 = PSRAD by E */ |
| if (have66noF2noF3(pfx) && sz == 2) { |
| delta = dis_SSE_shiftG_byE( vbi, pfx, delta, "psrad", Iop_SarN32x4 ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0xE3: |
| /* ***--- this is an MMX class insn introduced in SSE1 ---*** */ |
| /* 0F E3 = PAVGW -- 16x4 unsigned Packed Average, with rounding */ |
| if (haveNo66noF2noF3(pfx) && sz == 4) { |
| do_MMX_preamble(); |
| delta = dis_MMXop_regmem_to_reg ( |
| vbi, pfx, delta, opc, "pavgw", False ); |
| goto decode_success; |
| } |
| /* 66 0F E3 = PAVGW */ |
| if (have66noF2noF3(pfx) && sz == 2) { |
| delta = dis_SSEint_E_to_G( vbi, pfx, delta, |
| "pavgw", Iop_Avg16Ux8, False ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0xE4: |
| /* ***--- this is an MMX class insn introduced in SSE1 ---*** */ |
| /* 0F E4 = PMULUH -- 16x4 hi-half of unsigned widening multiply */ |
| if (haveNo66noF2noF3(pfx) && sz == 4) { |
| do_MMX_preamble(); |
| delta = dis_MMXop_regmem_to_reg ( |
| vbi, pfx, delta, opc, "pmuluh", False ); |
| goto decode_success; |
| } |
| /* 66 0F E4 = PMULHUW -- 16x8 hi-half of unsigned widening multiply */ |
| if (have66noF2noF3(pfx) && sz == 2) { |
| delta = dis_SSEint_E_to_G( vbi, pfx, delta, |
| "pmulhuw", Iop_MulHi16Ux8, False ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0xE5: |
| /* 66 0F E5 = PMULHW -- 16x8 hi-half of signed widening multiply */ |
| if (have66noF2noF3(pfx) && sz == 2) { |
| delta = dis_SSEint_E_to_G( vbi, pfx, delta, |
| "pmulhw", Iop_MulHi16Sx8, False ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0xE6: |
| /* 66 0F E6 = CVTTPD2DQ -- convert 2 x F64 in mem/xmm to 2 x I32 in |
| lo half xmm(G), and zero upper half, rounding towards zero */ |
| /* F2 0F E6 = CVTPD2DQ -- convert 2 x F64 in mem/xmm to 2 x I32 in |
| lo half xmm(G), according to prevailing rounding mode, and zero |
| upper half */ |
| if ( (haveF2no66noF3(pfx) && sz == 4) |
| || (have66noF2noF3(pfx) && sz == 2) ) { |
| IRTemp argV = newTemp(Ity_V128); |
| IRTemp rmode = newTemp(Ity_I32); |
| Bool r2zero = toBool(sz == 2); // FIXME -- unreliable |
| |
| modrm = getUChar(delta); |
| if (epartIsReg(modrm)) { |
| assign( argV, getXMMReg(eregOfRexRM(pfx,modrm)) ); |
| delta += 1; |
| DIP("cvt%spd2dq %s,%s\n", r2zero ? "t" : "", |
| nameXMMReg(eregOfRexRM(pfx,modrm)), |
| nameXMMReg(gregOfRexRM(pfx,modrm))); |
| } else { |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| assign( argV, loadLE(Ity_V128, mkexpr(addr)) ); |
| delta += alen; |
| DIP("cvt%spd2dq %s,%s\n", r2zero ? "t" : "", |
| dis_buf, |
| nameXMMReg(gregOfRexRM(pfx,modrm)) ); |
| } |
| |
| if (r2zero) { |
| assign(rmode, mkU32((UInt)Irrm_ZERO) ); |
| } else { |
| assign( rmode, get_sse_roundingmode() ); |
| } |
| |
| t0 = newTemp(Ity_F64); |
| t1 = newTemp(Ity_F64); |
| assign( t0, unop(Iop_ReinterpI64asF64, |
| unop(Iop_V128to64, mkexpr(argV))) ); |
| assign( t1, unop(Iop_ReinterpI64asF64, |
| unop(Iop_V128HIto64, mkexpr(argV))) ); |
| |
| # define CVT(_t) binop( Iop_F64toI32S, \ |
| mkexpr(rmode), \ |
| mkexpr(_t) ) |
| |
| putXMMRegLane32( gregOfRexRM(pfx,modrm), 3, mkU32(0) ); |
| putXMMRegLane32( gregOfRexRM(pfx,modrm), 2, mkU32(0) ); |
| putXMMRegLane32( gregOfRexRM(pfx,modrm), 1, CVT(t1) ); |
| putXMMRegLane32( gregOfRexRM(pfx,modrm), 0, CVT(t0) ); |
| |
| # undef CVT |
| |
| goto decode_success; |
| } |
| /* F3 0F E6 = CVTDQ2PD -- convert 2 x I32 in mem/lo half xmm to 2 x |
| F64 in xmm(G) */ |
| if (haveF3no66noF2(pfx) && sz == 4) { |
| IRTemp arg64 = newTemp(Ity_I64); |
| |
| modrm = getUChar(delta); |
| if (epartIsReg(modrm)) { |
| assign( arg64, getXMMRegLane64(eregOfRexRM(pfx,modrm), 0) ); |
| delta += 1; |
| DIP("cvtdq2pd %s,%s\n", nameXMMReg(eregOfRexRM(pfx,modrm)), |
| nameXMMReg(gregOfRexRM(pfx,modrm))); |
| } else { |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| assign( arg64, loadLE(Ity_I64, mkexpr(addr)) ); |
| delta += alen; |
| DIP("cvtdq2pd %s,%s\n", dis_buf, |
| nameXMMReg(gregOfRexRM(pfx,modrm)) ); |
| } |
| |
| putXMMRegLane64F( |
| gregOfRexRM(pfx,modrm), 0, |
| unop(Iop_I32StoF64, unop(Iop_64to32, mkexpr(arg64))) |
| ); |
| |
| putXMMRegLane64F( |
| gregOfRexRM(pfx,modrm), 1, |
| unop(Iop_I32StoF64, unop(Iop_64HIto32, mkexpr(arg64))) |
| ); |
| |
| goto decode_success; |
| } |
| break; |
| |
| case 0xE7: |
| /* ***--- this is an MMX class insn introduced in SSE1 ---*** */ |
| /* 0F E7 = MOVNTQ -- for us, just a plain MMX store. Note, the |
| Intel manual does not say anything about the usual business of |
| the FP reg tags getting trashed whenever an MMX insn happens. |
| So we just leave them alone. |
| */ |
| if (haveNo66noF2noF3(pfx) && sz == 4) { |
| modrm = getUChar(delta); |
| if (!epartIsReg(modrm)) { |
| /* do_MMX_preamble(); Intel docs don't specify this */ |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| storeLE( mkexpr(addr), getMMXReg(gregLO3ofRM(modrm)) ); |
| DIP("movntq %s,%s\n", dis_buf, |
| nameMMXReg(gregLO3ofRM(modrm))); |
| delta += alen; |
| goto decode_success; |
| } |
| /* else fall through */ |
| } |
| /* 66 0F E7 = MOVNTDQ -- for us, just a plain SSE store. */ |
| if (have66noF2noF3(pfx) && sz == 2) { |
| modrm = getUChar(delta); |
| if (!epartIsReg(modrm)) { |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| gen_SEGV_if_not_16_aligned( addr ); |
| storeLE( mkexpr(addr), getXMMReg(gregOfRexRM(pfx,modrm)) ); |
| DIP("movntdq %s,%s\n", dis_buf, |
| nameXMMReg(gregOfRexRM(pfx,modrm))); |
| delta += alen; |
| goto decode_success; |
| } |
| /* else fall through */ |
| } |
| break; |
| |
| case 0xE8: |
| /* 66 0F E8 = PSUBSB */ |
| if (have66noF2noF3(pfx) && sz == 2) { |
| delta = dis_SSEint_E_to_G( vbi, pfx, delta, |
| "psubsb", Iop_QSub8Sx16, False ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0xE9: |
| /* 66 0F E9 = PSUBSW */ |
| if (have66noF2noF3(pfx) && sz == 2) { |
| delta = dis_SSEint_E_to_G( vbi, pfx, delta, |
| "psubsw", Iop_QSub16Sx8, False ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0xEA: |
| /* ***--- this is an MMX class insn introduced in SSE1 ---*** */ |
| /* 0F EA = PMINSW -- 16x4 signed min */ |
| if (haveNo66noF2noF3(pfx) && sz == 4) { |
| do_MMX_preamble(); |
| delta = dis_MMXop_regmem_to_reg ( |
| vbi, pfx, delta, opc, "pminsw", False ); |
| goto decode_success; |
| } |
| /* 66 0F EA = PMINSW -- 16x8 signed min */ |
| if (have66noF2noF3(pfx) && sz == 2) { |
| delta = dis_SSEint_E_to_G( vbi, pfx, delta, |
| "pminsw", Iop_Min16Sx8, False ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0xEB: |
| /* 66 0F EB = POR */ |
| if (have66noF2noF3(pfx) && sz == 2) { |
| delta = dis_SSE_E_to_G_all( vbi, pfx, delta, "por", Iop_OrV128 ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0xEC: |
| /* 66 0F EC = PADDSB */ |
| if (have66noF2noF3(pfx) && sz == 2) { |
| delta = dis_SSEint_E_to_G( vbi, pfx, delta, |
| "paddsb", Iop_QAdd8Sx16, False ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0xED: |
| /* 66 0F ED = PADDSW */ |
| if (have66noF2noF3(pfx) && sz == 2) { |
| delta = dis_SSEint_E_to_G( vbi, pfx, delta, |
| "paddsw", Iop_QAdd16Sx8, False ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0xEE: |
| /* ***--- this is an MMX class insn introduced in SSE1 ---*** */ |
| /* 0F EE = PMAXSW -- 16x4 signed max */ |
| if (haveNo66noF2noF3(pfx) && sz == 4) { |
| do_MMX_preamble(); |
| delta = dis_MMXop_regmem_to_reg ( |
| vbi, pfx, delta, opc, "pmaxsw", False ); |
| goto decode_success; |
| } |
| /* 66 0F EE = PMAXSW -- 16x8 signed max */ |
| if (have66noF2noF3(pfx) && sz == 2) { |
| delta = dis_SSEint_E_to_G( vbi, pfx, delta, |
| "pmaxsw", Iop_Max16Sx8, False ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0xEF: |
| /* 66 0F EF = PXOR */ |
| if (have66noF2noF3(pfx) && sz == 2) { |
| delta = dis_SSE_E_to_G_all( vbi, pfx, delta, "pxor", Iop_XorV128 ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0xF1: |
| /* 66 0F F1 = PSLLW by E */ |
| if (have66noF2noF3(pfx) && sz == 2) { |
| delta = dis_SSE_shiftG_byE( vbi, pfx, delta, "psllw", Iop_ShlN16x8 ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0xF2: |
| /* 66 0F F2 = PSLLD by E */ |
| if (have66noF2noF3(pfx) && sz == 2) { |
| delta = dis_SSE_shiftG_byE( vbi, pfx, delta, "pslld", Iop_ShlN32x4 ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0xF3: |
| /* 66 0F F3 = PSLLQ by E */ |
| if (have66noF2noF3(pfx) && sz == 2) { |
| delta = dis_SSE_shiftG_byE( vbi, pfx, delta, "psllq", Iop_ShlN64x2 ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0xF4: |
| /* 66 0F F4 = PMULUDQ -- unsigned widening multiply of 32-lanes 0 x |
| 0 to form lower 64-bit half and lanes 2 x 2 to form upper 64-bit |
| half */ |
| /* This is a really poor translation -- could be improved if |
| performance critical */ |
| if (have66noF2noF3(pfx) && sz == 2) { |
| IRTemp sV, dV; |
| IRTemp s3, s2, s1, s0, d3, d2, d1, d0; |
| sV = newTemp(Ity_V128); |
| dV = newTemp(Ity_V128); |
| s3 = s2 = s1 = s0 = d3 = d2 = d1 = d0 = IRTemp_INVALID; |
| t1 = newTemp(Ity_I64); |
| t0 = newTemp(Ity_I64); |
| modrm = getUChar(delta); |
| assign( dV, getXMMReg(gregOfRexRM(pfx,modrm)) ); |
| |
| if (epartIsReg(modrm)) { |
| assign( sV, getXMMReg(eregOfRexRM(pfx,modrm)) ); |
| delta += 1; |
| DIP("pmuludq %s,%s\n", nameXMMReg(eregOfRexRM(pfx,modrm)), |
| nameXMMReg(gregOfRexRM(pfx,modrm))); |
| } else { |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| assign( sV, loadLE(Ity_V128, mkexpr(addr)) ); |
| delta += alen; |
| DIP("pmuludq %s,%s\n", dis_buf, |
| nameXMMReg(gregOfRexRM(pfx,modrm))); |
| } |
| |
| breakup128to32s( dV, &d3, &d2, &d1, &d0 ); |
| breakup128to32s( sV, &s3, &s2, &s1, &s0 ); |
| |
| assign( t0, binop( Iop_MullU32, mkexpr(d0), mkexpr(s0)) ); |
| putXMMRegLane64( gregOfRexRM(pfx,modrm), 0, mkexpr(t0) ); |
| assign( t1, binop( Iop_MullU32, mkexpr(d2), mkexpr(s2)) ); |
| putXMMRegLane64( gregOfRexRM(pfx,modrm), 1, mkexpr(t1) ); |
| goto decode_success; |
| } |
| /* ***--- this is an MMX class insn introduced in SSE2 ---*** */ |
| /* 0F F4 = PMULUDQ -- unsigned widening multiply of 32-lanes 0 x |
| 0 to form 64-bit result */ |
| if (haveNo66noF2noF3(pfx) && sz == 4) { |
| IRTemp sV = newTemp(Ity_I64); |
| IRTemp dV = newTemp(Ity_I64); |
| t1 = newTemp(Ity_I32); |
| t0 = newTemp(Ity_I32); |
| modrm = getUChar(delta); |
| |
| do_MMX_preamble(); |
| assign( dV, getMMXReg(gregLO3ofRM(modrm)) ); |
| |
| if (epartIsReg(modrm)) { |
| assign( sV, getMMXReg(eregLO3ofRM(modrm)) ); |
| delta += 1; |
| DIP("pmuludq %s,%s\n", nameMMXReg(eregLO3ofRM(modrm)), |
| nameMMXReg(gregLO3ofRM(modrm))); |
| } else { |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| assign( sV, loadLE(Ity_I64, mkexpr(addr)) ); |
| delta += alen; |
| DIP("pmuludq %s,%s\n", dis_buf, |
| nameMMXReg(gregLO3ofRM(modrm))); |
| } |
| |
| assign( t0, unop(Iop_64to32, mkexpr(dV)) ); |
| assign( t1, unop(Iop_64to32, mkexpr(sV)) ); |
| putMMXReg( gregLO3ofRM(modrm), |
| binop( Iop_MullU32, mkexpr(t0), mkexpr(t1) ) ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0xF5: |
| /* 66 0F F5 = PMADDWD -- Multiply and add packed integers from |
| E(xmm or mem) to G(xmm) */ |
| if (have66noF2noF3(pfx) && sz == 2) { |
| IRTemp s1V = newTemp(Ity_V128); |
| IRTemp s2V = newTemp(Ity_V128); |
| IRTemp dV = newTemp(Ity_V128); |
| IRTemp s1Hi = newTemp(Ity_I64); |
| IRTemp s1Lo = newTemp(Ity_I64); |
| IRTemp s2Hi = newTemp(Ity_I64); |
| IRTemp s2Lo = newTemp(Ity_I64); |
| IRTemp dHi = newTemp(Ity_I64); |
| IRTemp dLo = newTemp(Ity_I64); |
| modrm = getUChar(delta); |
| if (epartIsReg(modrm)) { |
| assign( s1V, getXMMReg(eregOfRexRM(pfx,modrm)) ); |
| delta += 1; |
| DIP("pmaddwd %s,%s\n", nameXMMReg(eregOfRexRM(pfx,modrm)), |
| nameXMMReg(gregOfRexRM(pfx,modrm))); |
| } else { |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| assign( s1V, loadLE(Ity_V128, mkexpr(addr)) ); |
| delta += alen; |
| DIP("pmaddwd %s,%s\n", dis_buf, |
| nameXMMReg(gregOfRexRM(pfx,modrm))); |
| } |
| assign( s2V, getXMMReg(gregOfRexRM(pfx,modrm)) ); |
| assign( s1Hi, unop(Iop_V128HIto64, mkexpr(s1V)) ); |
| assign( s1Lo, unop(Iop_V128to64, mkexpr(s1V)) ); |
| assign( s2Hi, unop(Iop_V128HIto64, mkexpr(s2V)) ); |
| assign( s2Lo, unop(Iop_V128to64, mkexpr(s2V)) ); |
| assign( dHi, mkIRExprCCall( |
| Ity_I64, 0/*regparms*/, |
| "amd64g_calculate_mmx_pmaddwd", |
| &amd64g_calculate_mmx_pmaddwd, |
| mkIRExprVec_2( mkexpr(s1Hi), mkexpr(s2Hi)) |
| )); |
| assign( dLo, mkIRExprCCall( |
| Ity_I64, 0/*regparms*/, |
| "amd64g_calculate_mmx_pmaddwd", |
| &amd64g_calculate_mmx_pmaddwd, |
| mkIRExprVec_2( mkexpr(s1Lo), mkexpr(s2Lo)) |
| )); |
| assign( dV, binop(Iop_64HLtoV128, mkexpr(dHi), mkexpr(dLo))) ; |
| putXMMReg(gregOfRexRM(pfx,modrm), mkexpr(dV)); |
| goto decode_success; |
| } |
| break; |
| |
| case 0xF6: |
| /* ***--- this is an MMX class insn introduced in SSE1 ---*** */ |
| /* 0F F6 = PSADBW -- sum of 8Ux8 absolute differences */ |
| if (haveNo66noF2noF3(pfx) && sz == 4) { |
| do_MMX_preamble(); |
| delta = dis_MMXop_regmem_to_reg ( |
| vbi, pfx, delta, opc, "psadbw", False ); |
| goto decode_success; |
| } |
| /* 66 0F F6 = PSADBW -- 2 x (8x8 -> 48 zeroes ++ u16) Sum Abs Diffs |
| from E(xmm or mem) to G(xmm) */ |
| if (have66noF2noF3(pfx) && sz == 2) { |
| IRTemp s1V = newTemp(Ity_V128); |
| IRTemp s2V = newTemp(Ity_V128); |
| IRTemp dV = newTemp(Ity_V128); |
| IRTemp s1Hi = newTemp(Ity_I64); |
| IRTemp s1Lo = newTemp(Ity_I64); |
| IRTemp s2Hi = newTemp(Ity_I64); |
| IRTemp s2Lo = newTemp(Ity_I64); |
| IRTemp dHi = newTemp(Ity_I64); |
| IRTemp dLo = newTemp(Ity_I64); |
| modrm = getUChar(delta); |
| if (epartIsReg(modrm)) { |
| assign( s1V, getXMMReg(eregOfRexRM(pfx,modrm)) ); |
| delta += 1; |
| DIP("psadbw %s,%s\n", nameXMMReg(eregOfRexRM(pfx,modrm)), |
| nameXMMReg(gregOfRexRM(pfx,modrm))); |
| } else { |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| assign( s1V, loadLE(Ity_V128, mkexpr(addr)) ); |
| delta += alen; |
| DIP("psadbw %s,%s\n", dis_buf, |
| nameXMMReg(gregOfRexRM(pfx,modrm))); |
| } |
| assign( s2V, getXMMReg(gregOfRexRM(pfx,modrm)) ); |
| assign( s1Hi, unop(Iop_V128HIto64, mkexpr(s1V)) ); |
| assign( s1Lo, unop(Iop_V128to64, mkexpr(s1V)) ); |
| assign( s2Hi, unop(Iop_V128HIto64, mkexpr(s2V)) ); |
| assign( s2Lo, unop(Iop_V128to64, mkexpr(s2V)) ); |
| assign( dHi, mkIRExprCCall( |
| Ity_I64, 0/*regparms*/, |
| "amd64g_calculate_mmx_psadbw", |
| &amd64g_calculate_mmx_psadbw, |
| mkIRExprVec_2( mkexpr(s1Hi), mkexpr(s2Hi)) |
| )); |
| assign( dLo, mkIRExprCCall( |
| Ity_I64, 0/*regparms*/, |
| "amd64g_calculate_mmx_psadbw", |
| &amd64g_calculate_mmx_psadbw, |
| mkIRExprVec_2( mkexpr(s1Lo), mkexpr(s2Lo)) |
| )); |
| assign( dV, binop(Iop_64HLtoV128, mkexpr(dHi), mkexpr(dLo))) ; |
| putXMMReg(gregOfRexRM(pfx,modrm), mkexpr(dV)); |
| goto decode_success; |
| } |
| break; |
| |
| case 0xF7: |
| /* ***--- this is an MMX class insn introduced in SSE1 ---*** */ |
| /* 0F F7 = MASKMOVQ -- 8x8 masked store */ |
| if (haveNo66noF2noF3(pfx) && sz == 4) { |
| Bool ok = False; |
| delta = dis_MMX( &ok, vbi, pfx, sz, delta-1 ); |
| if (ok) goto decode_success; |
| } |
| /* 66 0F F7 = MASKMOVDQU -- store selected bytes of double quadword */ |
| if (have66noF2noF3(pfx) && sz == 2) { |
| modrm = getUChar(delta); |
| if (epartIsReg(modrm)) { |
| IRTemp regD = newTemp(Ity_V128); |
| IRTemp mask = newTemp(Ity_V128); |
| IRTemp olddata = newTemp(Ity_V128); |
| IRTemp newdata = newTemp(Ity_V128); |
| addr = newTemp(Ity_I64); |
| |
| assign( addr, handleAddrOverrides( vbi, pfx, getIReg64(R_RDI) )); |
| assign( regD, getXMMReg( gregOfRexRM(pfx,modrm) )); |
| |
| /* Unfortunately can't do the obvious thing with SarN8x16 |
| here since that can't be re-emitted as SSE2 code - no such |
| insn. */ |
| assign( |
| mask, |
| binop(Iop_64HLtoV128, |
| binop(Iop_SarN8x8, |
| getXMMRegLane64( eregOfRexRM(pfx,modrm), 1 ), |
| mkU8(7) ), |
| binop(Iop_SarN8x8, |
| getXMMRegLane64( eregOfRexRM(pfx,modrm), 0 ), |
| mkU8(7) ) )); |
| assign( olddata, loadLE( Ity_V128, mkexpr(addr) )); |
| assign( newdata, |
| binop(Iop_OrV128, |
| binop(Iop_AndV128, |
| mkexpr(regD), |
| mkexpr(mask) ), |
| binop(Iop_AndV128, |
| mkexpr(olddata), |
| unop(Iop_NotV128, mkexpr(mask)))) ); |
| storeLE( mkexpr(addr), mkexpr(newdata) ); |
| |
| delta += 1; |
| DIP("maskmovdqu %s,%s\n", nameXMMReg( eregOfRexRM(pfx,modrm) ), |
| nameXMMReg( gregOfRexRM(pfx,modrm) ) ); |
| goto decode_success; |
| } |
| /* else fall through */ |
| } |
| break; |
| |
| case 0xF8: |
| /* 66 0F F8 = PSUBB */ |
| if (have66noF2noF3(pfx) && sz == 2) { |
| delta = dis_SSEint_E_to_G( vbi, pfx, delta, |
| "psubb", Iop_Sub8x16, False ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0xF9: |
| /* 66 0F F9 = PSUBW */ |
| if (have66noF2noF3(pfx) && sz == 2) { |
| delta = dis_SSEint_E_to_G( vbi, pfx, delta, |
| "psubw", Iop_Sub16x8, False ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0xFA: |
| /* 66 0F FA = PSUBD */ |
| if (have66noF2noF3(pfx) && sz == 2) { |
| delta = dis_SSEint_E_to_G( vbi, pfx, delta, |
| "psubd", Iop_Sub32x4, False ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0xFB: |
| /* 66 0F FB = PSUBQ */ |
| if (have66noF2noF3(pfx) && sz == 2) { |
| delta = dis_SSEint_E_to_G( vbi, pfx, delta, |
| "psubq", Iop_Sub64x2, False ); |
| goto decode_success; |
| } |
| /* ***--- this is an MMX class insn introduced in SSE2 ---*** */ |
| /* 0F FB = PSUBQ -- sub 64x1 */ |
| if (haveNo66noF2noF3(pfx) && sz == 4) { |
| do_MMX_preamble(); |
| delta = dis_MMXop_regmem_to_reg ( |
| vbi, pfx, delta, opc, "psubq", False ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0xFC: |
| /* 66 0F FC = PADDB */ |
| if (have66noF2noF3(pfx) && sz == 2) { |
| delta = dis_SSEint_E_to_G( vbi, pfx, delta, |
| "paddb", Iop_Add8x16, False ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0xFD: |
| /* 66 0F FD = PADDW */ |
| if (have66noF2noF3(pfx) && sz == 2) { |
| delta = dis_SSEint_E_to_G( vbi, pfx, delta, |
| "paddw", Iop_Add16x8, False ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0xFE: |
| /* 66 0F FE = PADDD */ |
| if (have66noF2noF3(pfx) && sz == 2) { |
| delta = dis_SSEint_E_to_G( vbi, pfx, delta, |
| "paddd", Iop_Add32x4, False ); |
| goto decode_success; |
| } |
| break; |
| |
| default: |
| goto decode_failure; |
| |
| } |
| |
| decode_failure: |
| *decode_OK = False; |
| return deltaIN; |
| |
| decode_success: |
| *decode_OK = True; |
| return delta; |
| } |
| |
| |
| /*------------------------------------------------------------*/ |
| /*--- ---*/ |
| /*--- Top-level SSE3 (not SupSSE3): dis_ESC_0F__SSE3 ---*/ |
| /*--- ---*/ |
| /*------------------------------------------------------------*/ |
| |
| static Long dis_MOVDDUP_128 ( VexAbiInfo* vbi, Prefix pfx, |
| Long delta, Bool isAvx ) |
| { |
| IRTemp addr = IRTemp_INVALID; |
| Int alen = 0; |
| HChar dis_buf[50]; |
| IRTemp sV = newTemp(Ity_V128); |
| IRTemp d0 = newTemp(Ity_I64); |
| UChar modrm = getUChar(delta); |
| UInt rG = gregOfRexRM(pfx,modrm); |
| if (epartIsReg(modrm)) { |
| UInt rE = eregOfRexRM(pfx,modrm); |
| assign( sV, getXMMReg(rE) ); |
| DIP("%smovddup %s,%s\n", |
| isAvx ? "v" : "", nameXMMReg(rE), nameXMMReg(rG)); |
| delta += 1; |
| assign ( d0, unop(Iop_V128to64, mkexpr(sV)) ); |
| } else { |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| assign( d0, loadLE(Ity_I64, mkexpr(addr)) ); |
| DIP("%smovddup %s,%s\n", |
| isAvx ? "v" : "", dis_buf, nameXMMReg(rG)); |
| delta += alen; |
| } |
| (isAvx ? putYMMRegLoAndZU : putXMMReg) |
| ( rG, binop(Iop_64HLtoV128,mkexpr(d0),mkexpr(d0)) ); |
| return delta; |
| } |
| |
| |
| __attribute__((noinline)) |
| static |
| Long dis_ESC_0F__SSE3 ( Bool* decode_OK, |
| VexAbiInfo* vbi, |
| Prefix pfx, Int sz, Long deltaIN ) |
| { |
| IRTemp addr = IRTemp_INVALID; |
| UChar modrm = 0; |
| Int alen = 0; |
| HChar dis_buf[50]; |
| |
| *decode_OK = False; |
| |
| Long delta = deltaIN; |
| UChar opc = getUChar(delta); |
| delta++; |
| switch (opc) { |
| |
| case 0x12: |
| /* F3 0F 12 = MOVSLDUP -- move from E (mem or xmm) to G (xmm), |
| duplicating some lanes (2:2:0:0). */ |
| if (haveF3no66noF2(pfx) && sz == 4) { |
| IRTemp s3, s2, s1, s0; |
| IRTemp sV = newTemp(Ity_V128); |
| s3 = s2 = s1 = s0 = IRTemp_INVALID; |
| |
| modrm = getUChar(delta); |
| if (epartIsReg(modrm)) { |
| assign( sV, getXMMReg( eregOfRexRM(pfx,modrm)) ); |
| DIP("movsldup %s,%s\n", nameXMMReg(eregOfRexRM(pfx,modrm)), |
| nameXMMReg(gregOfRexRM(pfx,modrm))); |
| delta += 1; |
| } else { |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| gen_SEGV_if_not_16_aligned( addr ); |
| assign( sV, loadLE(Ity_V128, mkexpr(addr)) ); |
| DIP("movsldup %s,%s\n", dis_buf, |
| nameXMMReg(gregOfRexRM(pfx,modrm))); |
| delta += alen; |
| } |
| |
| breakup128to32s( sV, &s3, &s2, &s1, &s0 ); |
| putXMMReg( gregOfRexRM(pfx,modrm), |
| mk128from32s( s2, s2, s0, s0 ) ); |
| goto decode_success; |
| } |
| /* F2 0F 12 = MOVDDUP -- move from E (mem or xmm) to G (xmm), |
| duplicating some lanes (0:1:0:1). */ |
| if (haveF2no66noF3(pfx) |
| && (sz == 4 || /* ignore redundant REX.W */ sz == 8)) { |
| delta = dis_MOVDDUP_128( vbi, pfx, delta, False/*!isAvx*/ ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0x16: |
| /* F3 0F 16 = MOVSHDUP -- move from E (mem or xmm) to G (xmm), |
| duplicating some lanes (3:3:1:1). */ |
| if (haveF3no66noF2(pfx) && sz == 4) { |
| IRTemp s3, s2, s1, s0; |
| IRTemp sV = newTemp(Ity_V128); |
| s3 = s2 = s1 = s0 = IRTemp_INVALID; |
| |
| modrm = getUChar(delta); |
| if (epartIsReg(modrm)) { |
| assign( sV, getXMMReg( eregOfRexRM(pfx,modrm)) ); |
| DIP("movshdup %s,%s\n", nameXMMReg(eregOfRexRM(pfx,modrm)), |
| nameXMMReg(gregOfRexRM(pfx,modrm))); |
| delta += 1; |
| } else { |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| gen_SEGV_if_not_16_aligned( addr ); |
| assign( sV, loadLE(Ity_V128, mkexpr(addr)) ); |
| DIP("movshdup %s,%s\n", dis_buf, |
| nameXMMReg(gregOfRexRM(pfx,modrm))); |
| delta += alen; |
| } |
| |
| breakup128to32s( sV, &s3, &s2, &s1, &s0 ); |
| putXMMReg( gregOfRexRM(pfx,modrm), |
| mk128from32s( s3, s3, s1, s1 ) ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0x7C: |
| case 0x7D: |
| /* F2 0F 7C = HADDPS -- 32x4 add across from E (mem or xmm) to G (xmm). */ |
| /* F2 0F 7D = HSUBPS -- 32x4 sub across from E (mem or xmm) to G (xmm). */ |
| if (haveF2no66noF3(pfx) && sz == 4) { |
| IRTemp e3, e2, e1, e0, g3, g2, g1, g0; |
| IRTemp eV = newTemp(Ity_V128); |
| IRTemp gV = newTemp(Ity_V128); |
| IRTemp leftV = newTemp(Ity_V128); |
| IRTemp rightV = newTemp(Ity_V128); |
| Bool isAdd = opc == 0x7C; |
| HChar* str = isAdd ? "add" : "sub"; |
| e3 = e2 = e1 = e0 = g3 = g2 = g1 = g0 = IRTemp_INVALID; |
| |
| modrm = getUChar(delta); |
| if (epartIsReg(modrm)) { |
| assign( eV, getXMMReg( eregOfRexRM(pfx,modrm)) ); |
| DIP("h%sps %s,%s\n", str, nameXMMReg(eregOfRexRM(pfx,modrm)), |
| nameXMMReg(gregOfRexRM(pfx,modrm))); |
| delta += 1; |
| } else { |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| assign( eV, loadLE(Ity_V128, mkexpr(addr)) ); |
| DIP("h%sps %s,%s\n", str, dis_buf, |
| nameXMMReg(gregOfRexRM(pfx,modrm))); |
| delta += alen; |
| } |
| |
| assign( gV, getXMMReg(gregOfRexRM(pfx,modrm)) ); |
| |
| breakup128to32s( eV, &e3, &e2, &e1, &e0 ); |
| breakup128to32s( gV, &g3, &g2, &g1, &g0 ); |
| |
| assign( leftV, mk128from32s( e2, e0, g2, g0 ) ); |
| assign( rightV, mk128from32s( e3, e1, g3, g1 ) ); |
| |
| putXMMReg( gregOfRexRM(pfx,modrm), |
| binop(isAdd ? Iop_Add32Fx4 : Iop_Sub32Fx4, |
| mkexpr(leftV), mkexpr(rightV) ) ); |
| goto decode_success; |
| } |
| /* 66 0F 7C = HADDPD -- 64x2 add across from E (mem or xmm) to G (xmm). */ |
| /* 66 0F 7D = HSUBPD -- 64x2 sub across from E (mem or xmm) to G (xmm). */ |
| if (have66noF2noF3(pfx) && sz == 2) { |
| IRTemp e1 = newTemp(Ity_I64); |
| IRTemp e0 = newTemp(Ity_I64); |
| IRTemp g1 = newTemp(Ity_I64); |
| IRTemp g0 = newTemp(Ity_I64); |
| IRTemp eV = newTemp(Ity_V128); |
| IRTemp gV = newTemp(Ity_V128); |
| IRTemp leftV = newTemp(Ity_V128); |
| IRTemp rightV = newTemp(Ity_V128); |
| Bool isAdd = opc == 0x7C; |
| HChar* str = isAdd ? "add" : "sub"; |
| |
| modrm = getUChar(delta); |
| if (epartIsReg(modrm)) { |
| assign( eV, getXMMReg( eregOfRexRM(pfx,modrm)) ); |
| DIP("h%spd %s,%s\n", str, nameXMMReg(eregOfRexRM(pfx,modrm)), |
| nameXMMReg(gregOfRexRM(pfx,modrm))); |
| delta += 1; |
| } else { |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| assign( eV, loadLE(Ity_V128, mkexpr(addr)) ); |
| DIP("h%spd %s,%s\n", str, dis_buf, |
| nameXMMReg(gregOfRexRM(pfx,modrm))); |
| delta += alen; |
| } |
| |
| assign( gV, getXMMReg(gregOfRexRM(pfx,modrm)) ); |
| |
| assign( e1, unop(Iop_V128HIto64, mkexpr(eV) )); |
| assign( e0, unop(Iop_V128to64, mkexpr(eV) )); |
| assign( g1, unop(Iop_V128HIto64, mkexpr(gV) )); |
| assign( g0, unop(Iop_V128to64, mkexpr(gV) )); |
| |
| assign( leftV, binop(Iop_64HLtoV128, mkexpr(e0),mkexpr(g0)) ); |
| assign( rightV, binop(Iop_64HLtoV128, mkexpr(e1),mkexpr(g1)) ); |
| |
| putXMMReg( gregOfRexRM(pfx,modrm), |
| binop(isAdd ? Iop_Add64Fx2 : Iop_Sub64Fx2, |
| mkexpr(leftV), mkexpr(rightV) ) ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0xD0: |
| /* 66 0F D0 = ADDSUBPD -- 64x4 +/- from E (mem or xmm) to G (xmm). */ |
| if (have66noF2noF3(pfx) && sz == 2) { |
| IRTemp eV = newTemp(Ity_V128); |
| IRTemp gV = newTemp(Ity_V128); |
| IRTemp addV = newTemp(Ity_V128); |
| IRTemp subV = newTemp(Ity_V128); |
| IRTemp a1 = newTemp(Ity_I64); |
| IRTemp s0 = newTemp(Ity_I64); |
| |
| modrm = getUChar(delta); |
| if (epartIsReg(modrm)) { |
| assign( eV, getXMMReg( eregOfRexRM(pfx,modrm)) ); |
| DIP("addsubpd %s,%s\n", nameXMMReg(eregOfRexRM(pfx,modrm)), |
| nameXMMReg(gregOfRexRM(pfx,modrm))); |
| delta += 1; |
| } else { |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| assign( eV, loadLE(Ity_V128, mkexpr(addr)) ); |
| DIP("addsubpd %s,%s\n", dis_buf, |
| nameXMMReg(gregOfRexRM(pfx,modrm))); |
| delta += alen; |
| } |
| |
| assign( gV, getXMMReg(gregOfRexRM(pfx,modrm)) ); |
| |
| assign( addV, binop(Iop_Add64Fx2, mkexpr(gV), mkexpr(eV)) ); |
| assign( subV, binop(Iop_Sub64Fx2, mkexpr(gV), mkexpr(eV)) ); |
| |
| assign( a1, unop(Iop_V128HIto64, mkexpr(addV) )); |
| assign( s0, unop(Iop_V128to64, mkexpr(subV) )); |
| |
| putXMMReg( gregOfRexRM(pfx,modrm), |
| binop(Iop_64HLtoV128, mkexpr(a1), mkexpr(s0)) ); |
| goto decode_success; |
| } |
| /* F2 0F D0 = ADDSUBPS -- 32x4 +/-/+/- from E (mem or xmm) to G (xmm). */ |
| if (haveF2no66noF3(pfx) && sz == 4) { |
| IRTemp a3, a2, a1, a0, s3, s2, s1, s0; |
| IRTemp eV = newTemp(Ity_V128); |
| IRTemp gV = newTemp(Ity_V128); |
| IRTemp addV = newTemp(Ity_V128); |
| IRTemp subV = newTemp(Ity_V128); |
| a3 = a2 = a1 = a0 = s3 = s2 = s1 = s0 = IRTemp_INVALID; |
| |
| modrm = getUChar(delta); |
| if (epartIsReg(modrm)) { |
| assign( eV, getXMMReg( eregOfRexRM(pfx,modrm)) ); |
| DIP("addsubps %s,%s\n", nameXMMReg(eregOfRexRM(pfx,modrm)), |
| nameXMMReg(gregOfRexRM(pfx,modrm))); |
| delta += 1; |
| } else { |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| assign( eV, loadLE(Ity_V128, mkexpr(addr)) ); |
| DIP("addsubps %s,%s\n", dis_buf, |
| nameXMMReg(gregOfRexRM(pfx,modrm))); |
| delta += alen; |
| } |
| |
| assign( gV, getXMMReg(gregOfRexRM(pfx,modrm)) ); |
| |
| assign( addV, binop(Iop_Add32Fx4, mkexpr(gV), mkexpr(eV)) ); |
| assign( subV, binop(Iop_Sub32Fx4, mkexpr(gV), mkexpr(eV)) ); |
| |
| breakup128to32s( addV, &a3, &a2, &a1, &a0 ); |
| breakup128to32s( subV, &s3, &s2, &s1, &s0 ); |
| |
| putXMMReg( gregOfRexRM(pfx,modrm), mk128from32s( a3, s2, a1, s0 )); |
| goto decode_success; |
| } |
| break; |
| |
| case 0xF0: |
| /* F2 0F F0 = LDDQU -- move from E (mem or xmm) to G (xmm). */ |
| if (haveF2no66noF3(pfx) && sz == 4) { |
| modrm = getUChar(delta); |
| if (epartIsReg(modrm)) { |
| goto decode_failure; |
| } else { |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| putXMMReg( gregOfRexRM(pfx,modrm), |
| loadLE(Ity_V128, mkexpr(addr)) ); |
| DIP("lddqu %s,%s\n", dis_buf, |
| nameXMMReg(gregOfRexRM(pfx,modrm))); |
| delta += alen; |
| } |
| goto decode_success; |
| } |
| break; |
| |
| default: |
| goto decode_failure; |
| |
| } |
| |
| decode_failure: |
| *decode_OK = False; |
| return deltaIN; |
| |
| decode_success: |
| *decode_OK = True; |
| return delta; |
| } |
| |
| |
| /*------------------------------------------------------------*/ |
| /*--- ---*/ |
| /*--- Top-level SSSE3: dis_ESC_0F38__SupSSE3 ---*/ |
| /*--- ---*/ |
| /*------------------------------------------------------------*/ |
| |
| static |
| IRTemp math_PSHUFB_XMM ( IRTemp dV/*data to perm*/, IRTemp sV/*perm*/ ) |
| { |
| IRTemp sHi = newTemp(Ity_I64); |
| IRTemp sLo = newTemp(Ity_I64); |
| IRTemp dHi = newTemp(Ity_I64); |
| IRTemp dLo = newTemp(Ity_I64); |
| IRTemp rHi = newTemp(Ity_I64); |
| IRTemp rLo = newTemp(Ity_I64); |
| IRTemp sevens = newTemp(Ity_I64); |
| IRTemp mask0x80hi = newTemp(Ity_I64); |
| IRTemp mask0x80lo = newTemp(Ity_I64); |
| IRTemp maskBit3hi = newTemp(Ity_I64); |
| IRTemp maskBit3lo = newTemp(Ity_I64); |
| IRTemp sAnd7hi = newTemp(Ity_I64); |
| IRTemp sAnd7lo = newTemp(Ity_I64); |
| IRTemp permdHi = newTemp(Ity_I64); |
| IRTemp permdLo = newTemp(Ity_I64); |
| IRTemp res = newTemp(Ity_V128); |
| |
| assign( dHi, unop(Iop_V128HIto64, mkexpr(dV)) ); |
| assign( dLo, unop(Iop_V128to64, mkexpr(dV)) ); |
| assign( sHi, unop(Iop_V128HIto64, mkexpr(sV)) ); |
| assign( sLo, unop(Iop_V128to64, mkexpr(sV)) ); |
| |
| assign( sevens, mkU64(0x0707070707070707ULL) ); |
| |
| /* mask0x80hi = Not(SarN8x8(sHi,7)) |
| maskBit3hi = SarN8x8(ShlN8x8(sHi,4),7) |
| sAnd7hi = And(sHi,sevens) |
| permdHi = Or( And(Perm8x8(dHi,sAnd7hi),maskBit3hi), |
| And(Perm8x8(dLo,sAnd7hi),Not(maskBit3hi)) ) |
| rHi = And(permdHi,mask0x80hi) |
| */ |
| assign( |
| mask0x80hi, |
| unop(Iop_Not64, binop(Iop_SarN8x8,mkexpr(sHi),mkU8(7)))); |
| |
| assign( |
| maskBit3hi, |
| binop(Iop_SarN8x8, |
| binop(Iop_ShlN8x8,mkexpr(sHi),mkU8(4)), |
| mkU8(7))); |
| |
| assign(sAnd7hi, binop(Iop_And64,mkexpr(sHi),mkexpr(sevens))); |
| |
| assign( |
| permdHi, |
| binop( |
| Iop_Or64, |
| binop(Iop_And64, |
| binop(Iop_Perm8x8,mkexpr(dHi),mkexpr(sAnd7hi)), |
| mkexpr(maskBit3hi)), |
| binop(Iop_And64, |
| binop(Iop_Perm8x8,mkexpr(dLo),mkexpr(sAnd7hi)), |
| unop(Iop_Not64,mkexpr(maskBit3hi))) )); |
| |
| assign(rHi, binop(Iop_And64,mkexpr(permdHi),mkexpr(mask0x80hi)) ); |
| |
| /* And the same for the lower half of the result. What fun. */ |
| |
| assign( |
| mask0x80lo, |
| unop(Iop_Not64, binop(Iop_SarN8x8,mkexpr(sLo),mkU8(7)))); |
| |
| assign( |
| maskBit3lo, |
| binop(Iop_SarN8x8, |
| binop(Iop_ShlN8x8,mkexpr(sLo),mkU8(4)), |
| mkU8(7))); |
| |
| assign(sAnd7lo, binop(Iop_And64,mkexpr(sLo),mkexpr(sevens))); |
| |
| assign( |
| permdLo, |
| binop( |
| Iop_Or64, |
| binop(Iop_And64, |
| binop(Iop_Perm8x8,mkexpr(dHi),mkexpr(sAnd7lo)), |
| mkexpr(maskBit3lo)), |
| binop(Iop_And64, |
| binop(Iop_Perm8x8,mkexpr(dLo),mkexpr(sAnd7lo)), |
| unop(Iop_Not64,mkexpr(maskBit3lo))) )); |
| |
| assign(rLo, binop(Iop_And64,mkexpr(permdLo),mkexpr(mask0x80lo)) ); |
| |
| assign(res, binop(Iop_64HLtoV128, mkexpr(rHi), mkexpr(rLo))); |
| return res; |
| } |
| |
| |
| __attribute__((noinline)) |
| static |
| Long dis_ESC_0F38__SupSSE3 ( Bool* decode_OK, |
| VexAbiInfo* vbi, |
| Prefix pfx, Int sz, Long deltaIN ) |
| { |
| IRTemp addr = IRTemp_INVALID; |
| UChar modrm = 0; |
| Int alen = 0; |
| HChar dis_buf[50]; |
| |
| *decode_OK = False; |
| |
| Long delta = deltaIN; |
| UChar opc = getUChar(delta); |
| delta++; |
| switch (opc) { |
| |
| case 0x00: |
| /* 66 0F 38 00 = PSHUFB -- Packed Shuffle Bytes 8x16 (XMM) */ |
| if (have66noF2noF3(pfx) |
| && (sz == 2 || /*redundant REX.W*/ sz == 8)) { |
| IRTemp sV = newTemp(Ity_V128); |
| IRTemp dV = newTemp(Ity_V128); |
| |
| modrm = getUChar(delta); |
| assign( dV, getXMMReg(gregOfRexRM(pfx,modrm)) ); |
| |
| if (epartIsReg(modrm)) { |
| assign( sV, getXMMReg(eregOfRexRM(pfx,modrm)) ); |
| delta += 1; |
| DIP("pshufb %s,%s\n", nameXMMReg(eregOfRexRM(pfx,modrm)), |
| nameXMMReg(gregOfRexRM(pfx,modrm))); |
| } else { |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| gen_SEGV_if_not_16_aligned( addr ); |
| assign( sV, loadLE(Ity_V128, mkexpr(addr)) ); |
| delta += alen; |
| DIP("pshufb %s,%s\n", dis_buf, |
| nameXMMReg(gregOfRexRM(pfx,modrm))); |
| } |
| |
| IRTemp res = math_PSHUFB_XMM( dV, sV ); |
| putXMMReg(gregOfRexRM(pfx,modrm), mkexpr(res)); |
| goto decode_success; |
| } |
| /* 0F 38 00 = PSHUFB -- Packed Shuffle Bytes 8x8 (MMX) */ |
| if (haveNo66noF2noF3(pfx) && sz == 4) { |
| IRTemp sV = newTemp(Ity_I64); |
| IRTemp dV = newTemp(Ity_I64); |
| |
| modrm = getUChar(delta); |
| do_MMX_preamble(); |
| assign( dV, getMMXReg(gregLO3ofRM(modrm)) ); |
| |
| if (epartIsReg(modrm)) { |
| assign( sV, getMMXReg(eregLO3ofRM(modrm)) ); |
| delta += 1; |
| DIP("pshufb %s,%s\n", nameMMXReg(eregLO3ofRM(modrm)), |
| nameMMXReg(gregLO3ofRM(modrm))); |
| } else { |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| assign( sV, loadLE(Ity_I64, mkexpr(addr)) ); |
| delta += alen; |
| DIP("pshufb %s,%s\n", dis_buf, |
| nameMMXReg(gregLO3ofRM(modrm))); |
| } |
| |
| putMMXReg( |
| gregLO3ofRM(modrm), |
| binop( |
| Iop_And64, |
| /* permute the lanes */ |
| binop( |
| Iop_Perm8x8, |
| mkexpr(dV), |
| binop(Iop_And64, mkexpr(sV), mkU64(0x0707070707070707ULL)) |
| ), |
| /* mask off lanes which have (index & 0x80) == 0x80 */ |
| unop(Iop_Not64, binop(Iop_SarN8x8, mkexpr(sV), mkU8(7))) |
| ) |
| ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0x01: |
| case 0x02: |
| case 0x03: |
| case 0x05: |
| case 0x06: |
| case 0x07: |
| /* 66 0F 38 01 = PHADDW -- 16x8 add across from E (mem or xmm) and |
| G to G (xmm). */ |
| /* 66 0F 38 02 = PHADDD -- 32x4 add across from E (mem or xmm) and |
| G to G (xmm). */ |
| /* 66 0F 38 03 = PHADDSW -- 16x8 signed qadd across from E (mem or |
| xmm) and G to G (xmm). */ |
| /* 66 0F 38 05 = PHSUBW -- 16x8 sub across from E (mem or xmm) and |
| G to G (xmm). */ |
| /* 66 0F 38 06 = PHSUBD -- 32x4 sub across from E (mem or xmm) and |
| G to G (xmm). */ |
| /* 66 0F 38 07 = PHSUBSW -- 16x8 signed qsub across from E (mem or |
| xmm) and G to G (xmm). */ |
| if (have66noF2noF3(pfx) |
| && (sz == 2 || /*redundant REX.W*/ sz == 8)) { |
| HChar* str = "???"; |
| IROp opV64 = Iop_INVALID; |
| IROp opCatO = Iop_CatOddLanes16x4; |
| IROp opCatE = Iop_CatEvenLanes16x4; |
| IRTemp sV = newTemp(Ity_V128); |
| IRTemp dV = newTemp(Ity_V128); |
| IRTemp sHi = newTemp(Ity_I64); |
| IRTemp sLo = newTemp(Ity_I64); |
| IRTemp dHi = newTemp(Ity_I64); |
| IRTemp dLo = newTemp(Ity_I64); |
| |
| modrm = getUChar(delta); |
| |
| switch (opc) { |
| case 0x01: opV64 = Iop_Add16x4; str = "addw"; break; |
| case 0x02: opV64 = Iop_Add32x2; str = "addd"; break; |
| case 0x03: opV64 = Iop_QAdd16Sx4; str = "addsw"; break; |
| case 0x05: opV64 = Iop_Sub16x4; str = "subw"; break; |
| case 0x06: opV64 = Iop_Sub32x2; str = "subd"; break; |
| case 0x07: opV64 = Iop_QSub16Sx4; str = "subsw"; break; |
| default: vassert(0); |
| } |
| if (opc == 0x02 || opc == 0x06) { |
| opCatO = Iop_InterleaveHI32x2; |
| opCatE = Iop_InterleaveLO32x2; |
| } |
| |
| assign( dV, getXMMReg(gregOfRexRM(pfx,modrm)) ); |
| |
| if (epartIsReg(modrm)) { |
| assign( sV, getXMMReg( eregOfRexRM(pfx,modrm)) ); |
| DIP("ph%s %s,%s\n", str, nameXMMReg(eregOfRexRM(pfx,modrm)), |
| nameXMMReg(gregOfRexRM(pfx,modrm))); |
| delta += 1; |
| } else { |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| gen_SEGV_if_not_16_aligned( addr ); |
| assign( sV, loadLE(Ity_V128, mkexpr(addr)) ); |
| DIP("ph%s %s,%s\n", str, dis_buf, |
| nameXMMReg(gregOfRexRM(pfx,modrm))); |
| delta += alen; |
| } |
| |
| assign( dHi, unop(Iop_V128HIto64, mkexpr(dV)) ); |
| assign( dLo, unop(Iop_V128to64, mkexpr(dV)) ); |
| assign( sHi, unop(Iop_V128HIto64, mkexpr(sV)) ); |
| assign( sLo, unop(Iop_V128to64, mkexpr(sV)) ); |
| |
| /* This isn't a particularly efficient way to compute the |
| result, but at least it avoids a proliferation of IROps, |
| hence avoids complication all the backends. */ |
| putXMMReg( |
| gregOfRexRM(pfx,modrm), |
| binop(Iop_64HLtoV128, |
| binop(opV64, |
| binop(opCatE,mkexpr(sHi),mkexpr(sLo)), |
| binop(opCatO,mkexpr(sHi),mkexpr(sLo)) |
| ), |
| binop(opV64, |
| binop(opCatE,mkexpr(dHi),mkexpr(dLo)), |
| binop(opCatO,mkexpr(dHi),mkexpr(dLo)) |
| ) |
| ) |
| ); |
| goto decode_success; |
| } |
| /* ***--- these are MMX class insns introduced in SSSE3 ---*** */ |
| /* 0F 38 01 = PHADDW -- 16x4 add across from E (mem or mmx) and G |
| to G (mmx). */ |
| /* 0F 38 02 = PHADDD -- 32x2 add across from E (mem or mmx) and G |
| to G (mmx). */ |
| /* 0F 38 03 = PHADDSW -- 16x4 signed qadd across from E (mem or |
| mmx) and G to G (mmx). */ |
| /* 0F 38 05 = PHSUBW -- 16x4 sub across from E (mem or mmx) and G |
| to G (mmx). */ |
| /* 0F 38 06 = PHSUBD -- 32x2 sub across from E (mem or mmx) and G |
| to G (mmx). */ |
| /* 0F 38 07 = PHSUBSW -- 16x4 signed qsub across from E (mem or |
| mmx) and G to G (mmx). */ |
| if (haveNo66noF2noF3(pfx) && sz == 4) { |
| HChar* str = "???"; |
| IROp opV64 = Iop_INVALID; |
| IROp opCatO = Iop_CatOddLanes16x4; |
| IROp opCatE = Iop_CatEvenLanes16x4; |
| IRTemp sV = newTemp(Ity_I64); |
| IRTemp dV = newTemp(Ity_I64); |
| |
| modrm = getUChar(delta); |
| |
| switch (opc) { |
| case 0x01: opV64 = Iop_Add16x4; str = "addw"; break; |
| case 0x02: opV64 = Iop_Add32x2; str = "addd"; break; |
| case 0x03: opV64 = Iop_QAdd16Sx4; str = "addsw"; break; |
| case 0x05: opV64 = Iop_Sub16x4; str = "subw"; break; |
| case 0x06: opV64 = Iop_Sub32x2; str = "subd"; break; |
| case 0x07: opV64 = Iop_QSub16Sx4; str = "subsw"; break; |
| default: vassert(0); |
| } |
| if (opc == 0x02 || opc == 0x06) { |
| opCatO = Iop_InterleaveHI32x2; |
| opCatE = Iop_InterleaveLO32x2; |
| } |
| |
| do_MMX_preamble(); |
| assign( dV, getMMXReg(gregLO3ofRM(modrm)) ); |
| |
| if (epartIsReg(modrm)) { |
| assign( sV, getMMXReg(eregLO3ofRM(modrm)) ); |
| delta += 1; |
| DIP("ph%s %s,%s\n", str, nameMMXReg(eregLO3ofRM(modrm)), |
| nameMMXReg(gregLO3ofRM(modrm))); |
| } else { |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| assign( sV, loadLE(Ity_I64, mkexpr(addr)) ); |
| delta += alen; |
| DIP("ph%s %s,%s\n", str, dis_buf, |
| nameMMXReg(gregLO3ofRM(modrm))); |
| } |
| |
| putMMXReg( |
| gregLO3ofRM(modrm), |
| binop(opV64, |
| binop(opCatE,mkexpr(sV),mkexpr(dV)), |
| binop(opCatO,mkexpr(sV),mkexpr(dV)) |
| ) |
| ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0x04: |
| /* 66 0F 38 04 = PMADDUBSW -- Multiply and Add Packed Signed and |
| Unsigned Bytes (XMM) */ |
| if (have66noF2noF3(pfx) |
| && (sz == 2 || /*redundant REX.W*/ sz == 8)) { |
| IRTemp sV = newTemp(Ity_V128); |
| IRTemp dV = newTemp(Ity_V128); |
| IRTemp sVoddsSX = newTemp(Ity_V128); |
| IRTemp sVevensSX = newTemp(Ity_V128); |
| IRTemp dVoddsZX = newTemp(Ity_V128); |
| IRTemp dVevensZX = newTemp(Ity_V128); |
| |
| modrm = getUChar(delta); |
| assign( dV, getXMMReg(gregOfRexRM(pfx,modrm)) ); |
| |
| if (epartIsReg(modrm)) { |
| assign( sV, getXMMReg(eregOfRexRM(pfx,modrm)) ); |
| delta += 1; |
| DIP("pmaddubsw %s,%s\n", nameXMMReg(eregOfRexRM(pfx,modrm)), |
| nameXMMReg(gregOfRexRM(pfx,modrm))); |
| } else { |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| gen_SEGV_if_not_16_aligned( addr ); |
| assign( sV, loadLE(Ity_V128, mkexpr(addr)) ); |
| delta += alen; |
| DIP("pmaddubsw %s,%s\n", dis_buf, |
| nameXMMReg(gregOfRexRM(pfx,modrm))); |
| } |
| |
| /* compute dV unsigned x sV signed */ |
| assign( sVoddsSX, |
| binop(Iop_SarN16x8, mkexpr(sV), mkU8(8)) ); |
| assign( sVevensSX, |
| binop(Iop_SarN16x8, |
| binop(Iop_ShlN16x8, mkexpr(sV), mkU8(8)), |
| mkU8(8)) ); |
| assign( dVoddsZX, |
| binop(Iop_ShrN16x8, mkexpr(dV), mkU8(8)) ); |
| assign( dVevensZX, |
| binop(Iop_ShrN16x8, |
| binop(Iop_ShlN16x8, mkexpr(dV), mkU8(8)), |
| mkU8(8)) ); |
| |
| putXMMReg( |
| gregOfRexRM(pfx,modrm), |
| binop(Iop_QAdd16Sx8, |
| binop(Iop_Mul16x8, mkexpr(sVoddsSX), mkexpr(dVoddsZX)), |
| binop(Iop_Mul16x8, mkexpr(sVevensSX), mkexpr(dVevensZX)) |
| ) |
| ); |
| goto decode_success; |
| } |
| /* 0F 38 04 = PMADDUBSW -- Multiply and Add Packed Signed and |
| Unsigned Bytes (MMX) */ |
| if (haveNo66noF2noF3(pfx) && sz == 4) { |
| IRTemp sV = newTemp(Ity_I64); |
| IRTemp dV = newTemp(Ity_I64); |
| IRTemp sVoddsSX = newTemp(Ity_I64); |
| IRTemp sVevensSX = newTemp(Ity_I64); |
| IRTemp dVoddsZX = newTemp(Ity_I64); |
| IRTemp dVevensZX = newTemp(Ity_I64); |
| |
| modrm = getUChar(delta); |
| do_MMX_preamble(); |
| assign( dV, getMMXReg(gregLO3ofRM(modrm)) ); |
| |
| if (epartIsReg(modrm)) { |
| assign( sV, getMMXReg(eregLO3ofRM(modrm)) ); |
| delta += 1; |
| DIP("pmaddubsw %s,%s\n", nameMMXReg(eregLO3ofRM(modrm)), |
| nameMMXReg(gregLO3ofRM(modrm))); |
| } else { |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| assign( sV, loadLE(Ity_I64, mkexpr(addr)) ); |
| delta += alen; |
| DIP("pmaddubsw %s,%s\n", dis_buf, |
| nameMMXReg(gregLO3ofRM(modrm))); |
| } |
| |
| /* compute dV unsigned x sV signed */ |
| assign( sVoddsSX, |
| binop(Iop_SarN16x4, mkexpr(sV), mkU8(8)) ); |
| assign( sVevensSX, |
| binop(Iop_SarN16x4, |
| binop(Iop_ShlN16x4, mkexpr(sV), mkU8(8)), |
| mkU8(8)) ); |
| assign( dVoddsZX, |
| binop(Iop_ShrN16x4, mkexpr(dV), mkU8(8)) ); |
| assign( dVevensZX, |
| binop(Iop_ShrN16x4, |
| binop(Iop_ShlN16x4, mkexpr(dV), mkU8(8)), |
| mkU8(8)) ); |
| |
| putMMXReg( |
| gregLO3ofRM(modrm), |
| binop(Iop_QAdd16Sx4, |
| binop(Iop_Mul16x4, mkexpr(sVoddsSX), mkexpr(dVoddsZX)), |
| binop(Iop_Mul16x4, mkexpr(sVevensSX), mkexpr(dVevensZX)) |
| ) |
| ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0x08: |
| case 0x09: |
| case 0x0A: |
| /* 66 0F 38 08 = PSIGNB -- Packed Sign 8x16 (XMM) */ |
| /* 66 0F 38 09 = PSIGNW -- Packed Sign 16x8 (XMM) */ |
| /* 66 0F 38 0A = PSIGND -- Packed Sign 32x4 (XMM) */ |
| if (have66noF2noF3(pfx) |
| && (sz == 2 || /*redundant REX.W*/ sz == 8)) { |
| IRTemp sV = newTemp(Ity_V128); |
| IRTemp dV = newTemp(Ity_V128); |
| IRTemp sHi = newTemp(Ity_I64); |
| IRTemp sLo = newTemp(Ity_I64); |
| IRTemp dHi = newTemp(Ity_I64); |
| IRTemp dLo = newTemp(Ity_I64); |
| HChar* str = "???"; |
| Int laneszB = 0; |
| |
| switch (opc) { |
| case 0x08: laneszB = 1; str = "b"; break; |
| case 0x09: laneszB = 2; str = "w"; break; |
| case 0x0A: laneszB = 4; str = "d"; break; |
| default: vassert(0); |
| } |
| |
| modrm = getUChar(delta); |
| assign( dV, getXMMReg(gregOfRexRM(pfx,modrm)) ); |
| |
| if (epartIsReg(modrm)) { |
| assign( sV, getXMMReg(eregOfRexRM(pfx,modrm)) ); |
| delta += 1; |
| DIP("psign%s %s,%s\n", str, nameXMMReg(eregOfRexRM(pfx,modrm)), |
| nameXMMReg(gregOfRexRM(pfx,modrm))); |
| } else { |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| gen_SEGV_if_not_16_aligned( addr ); |
| assign( sV, loadLE(Ity_V128, mkexpr(addr)) ); |
| delta += alen; |
| DIP("psign%s %s,%s\n", str, dis_buf, |
| nameXMMReg(gregOfRexRM(pfx,modrm))); |
| } |
| |
| assign( dHi, unop(Iop_V128HIto64, mkexpr(dV)) ); |
| assign( dLo, unop(Iop_V128to64, mkexpr(dV)) ); |
| assign( sHi, unop(Iop_V128HIto64, mkexpr(sV)) ); |
| assign( sLo, unop(Iop_V128to64, mkexpr(sV)) ); |
| |
| putXMMReg( |
| gregOfRexRM(pfx,modrm), |
| binop(Iop_64HLtoV128, |
| dis_PSIGN_helper( mkexpr(sHi), mkexpr(dHi), laneszB ), |
| dis_PSIGN_helper( mkexpr(sLo), mkexpr(dLo), laneszB ) |
| ) |
| ); |
| goto decode_success; |
| } |
| /* 0F 38 08 = PSIGNB -- Packed Sign 8x8 (MMX) */ |
| /* 0F 38 09 = PSIGNW -- Packed Sign 16x4 (MMX) */ |
| /* 0F 38 0A = PSIGND -- Packed Sign 32x2 (MMX) */ |
| if (haveNo66noF2noF3(pfx) && sz == 4) { |
| IRTemp sV = newTemp(Ity_I64); |
| IRTemp dV = newTemp(Ity_I64); |
| HChar* str = "???"; |
| Int laneszB = 0; |
| |
| switch (opc) { |
| case 0x08: laneszB = 1; str = "b"; break; |
| case 0x09: laneszB = 2; str = "w"; break; |
| case 0x0A: laneszB = 4; str = "d"; break; |
| default: vassert(0); |
| } |
| |
| modrm = getUChar(delta); |
| do_MMX_preamble(); |
| assign( dV, getMMXReg(gregLO3ofRM(modrm)) ); |
| |
| if (epartIsReg(modrm)) { |
| assign( sV, getMMXReg(eregLO3ofRM(modrm)) ); |
| delta += 1; |
| DIP("psign%s %s,%s\n", str, nameMMXReg(eregLO3ofRM(modrm)), |
| nameMMXReg(gregLO3ofRM(modrm))); |
| } else { |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| assign( sV, loadLE(Ity_I64, mkexpr(addr)) ); |
| delta += alen; |
| DIP("psign%s %s,%s\n", str, dis_buf, |
| nameMMXReg(gregLO3ofRM(modrm))); |
| } |
| |
| putMMXReg( |
| gregLO3ofRM(modrm), |
| dis_PSIGN_helper( mkexpr(sV), mkexpr(dV), laneszB ) |
| ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0x0B: |
| /* 66 0F 38 0B = PMULHRSW -- Packed Multiply High with Round and |
| Scale (XMM) */ |
| if (have66noF2noF3(pfx) |
| && (sz == 2 || /*redundant REX.W*/ sz == 8)) { |
| IRTemp sV = newTemp(Ity_V128); |
| IRTemp dV = newTemp(Ity_V128); |
| IRTemp sHi = newTemp(Ity_I64); |
| IRTemp sLo = newTemp(Ity_I64); |
| IRTemp dHi = newTemp(Ity_I64); |
| IRTemp dLo = newTemp(Ity_I64); |
| |
| modrm = getUChar(delta); |
| assign( dV, getXMMReg(gregOfRexRM(pfx,modrm)) ); |
| |
| if (epartIsReg(modrm)) { |
| assign( sV, getXMMReg(eregOfRexRM(pfx,modrm)) ); |
| delta += 1; |
| DIP("pmulhrsw %s,%s\n", nameXMMReg(eregOfRexRM(pfx,modrm)), |
| nameXMMReg(gregOfRexRM(pfx,modrm))); |
| } else { |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| gen_SEGV_if_not_16_aligned( addr ); |
| assign( sV, loadLE(Ity_V128, mkexpr(addr)) ); |
| delta += alen; |
| DIP("pmulhrsw %s,%s\n", dis_buf, |
| nameXMMReg(gregOfRexRM(pfx,modrm))); |
| } |
| |
| assign( dHi, unop(Iop_V128HIto64, mkexpr(dV)) ); |
| assign( dLo, unop(Iop_V128to64, mkexpr(dV)) ); |
| assign( sHi, unop(Iop_V128HIto64, mkexpr(sV)) ); |
| assign( sLo, unop(Iop_V128to64, mkexpr(sV)) ); |
| |
| putXMMReg( |
| gregOfRexRM(pfx,modrm), |
| binop(Iop_64HLtoV128, |
| dis_PMULHRSW_helper( mkexpr(sHi), mkexpr(dHi) ), |
| dis_PMULHRSW_helper( mkexpr(sLo), mkexpr(dLo) ) |
| ) |
| ); |
| goto decode_success; |
| } |
| /* 0F 38 0B = PMULHRSW -- Packed Multiply High with Round and Scale |
| (MMX) */ |
| if (haveNo66noF2noF3(pfx) && sz == 4) { |
| IRTemp sV = newTemp(Ity_I64); |
| IRTemp dV = newTemp(Ity_I64); |
| |
| modrm = getUChar(delta); |
| do_MMX_preamble(); |
| assign( dV, getMMXReg(gregLO3ofRM(modrm)) ); |
| |
| if (epartIsReg(modrm)) { |
| assign( sV, getMMXReg(eregLO3ofRM(modrm)) ); |
| delta += 1; |
| DIP("pmulhrsw %s,%s\n", nameMMXReg(eregLO3ofRM(modrm)), |
| nameMMXReg(gregLO3ofRM(modrm))); |
| } else { |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| assign( sV, loadLE(Ity_I64, mkexpr(addr)) ); |
| delta += alen; |
| DIP("pmulhrsw %s,%s\n", dis_buf, |
| nameMMXReg(gregLO3ofRM(modrm))); |
| } |
| |
| putMMXReg( |
| gregLO3ofRM(modrm), |
| dis_PMULHRSW_helper( mkexpr(sV), mkexpr(dV) ) |
| ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0x1C: |
| case 0x1D: |
| case 0x1E: |
| /* 66 0F 38 1C = PABSB -- Packed Absolute Value 8x16 (XMM) */ |
| /* 66 0F 38 1D = PABSW -- Packed Absolute Value 16x8 (XMM) */ |
| /* 66 0F 38 1E = PABSD -- Packed Absolute Value 32x4 (XMM) */ |
| if (have66noF2noF3(pfx) |
| && (sz == 2 || /*redundant REX.W*/ sz == 8)) { |
| IRTemp sV = newTemp(Ity_V128); |
| HChar* str = "???"; |
| Int laneszB = 0; |
| |
| switch (opc) { |
| case 0x1C: laneszB = 1; str = "b"; break; |
| case 0x1D: laneszB = 2; str = "w"; break; |
| case 0x1E: laneszB = 4; str = "d"; break; |
| default: vassert(0); |
| } |
| |
| modrm = getUChar(delta); |
| if (epartIsReg(modrm)) { |
| assign( sV, getXMMReg(eregOfRexRM(pfx,modrm)) ); |
| delta += 1; |
| DIP("pabs%s %s,%s\n", str, nameXMMReg(eregOfRexRM(pfx,modrm)), |
| nameXMMReg(gregOfRexRM(pfx,modrm))); |
| } else { |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| gen_SEGV_if_not_16_aligned( addr ); |
| assign( sV, loadLE(Ity_V128, mkexpr(addr)) ); |
| delta += alen; |
| DIP("pabs%s %s,%s\n", str, dis_buf, |
| nameXMMReg(gregOfRexRM(pfx,modrm))); |
| } |
| |
| putXMMReg( gregOfRexRM(pfx,modrm), |
| mkexpr(math_PABS_XMM(sV, laneszB)) ); |
| goto decode_success; |
| } |
| /* 0F 38 1C = PABSB -- Packed Absolute Value 8x8 (MMX) */ |
| /* 0F 38 1D = PABSW -- Packed Absolute Value 16x4 (MMX) */ |
| /* 0F 38 1E = PABSD -- Packed Absolute Value 32x2 (MMX) */ |
| if (haveNo66noF2noF3(pfx) && sz == 4) { |
| IRTemp sV = newTemp(Ity_I64); |
| HChar* str = "???"; |
| Int laneszB = 0; |
| |
| switch (opc) { |
| case 0x1C: laneszB = 1; str = "b"; break; |
| case 0x1D: laneszB = 2; str = "w"; break; |
| case 0x1E: laneszB = 4; str = "d"; break; |
| default: vassert(0); |
| } |
| |
| modrm = getUChar(delta); |
| do_MMX_preamble(); |
| |
| if (epartIsReg(modrm)) { |
| assign( sV, getMMXReg(eregLO3ofRM(modrm)) ); |
| delta += 1; |
| DIP("pabs%s %s,%s\n", str, nameMMXReg(eregLO3ofRM(modrm)), |
| nameMMXReg(gregLO3ofRM(modrm))); |
| } else { |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| assign( sV, loadLE(Ity_I64, mkexpr(addr)) ); |
| delta += alen; |
| DIP("pabs%s %s,%s\n", str, dis_buf, |
| nameMMXReg(gregLO3ofRM(modrm))); |
| } |
| |
| putMMXReg( gregLO3ofRM(modrm), |
| mkexpr(math_PABS_MMX( sV, laneszB )) ); |
| goto decode_success; |
| } |
| break; |
| |
| default: |
| break; |
| |
| } |
| |
| //decode_failure: |
| *decode_OK = False; |
| return deltaIN; |
| |
| decode_success: |
| *decode_OK = True; |
| return delta; |
| } |
| |
| |
| /*------------------------------------------------------------*/ |
| /*--- ---*/ |
| /*--- Top-level SSSE3: dis_ESC_0F3A__SupSSE3 ---*/ |
| /*--- ---*/ |
| /*------------------------------------------------------------*/ |
| |
| __attribute__((noinline)) |
| static |
| Long dis_ESC_0F3A__SupSSE3 ( Bool* decode_OK, |
| VexAbiInfo* vbi, |
| Prefix pfx, Int sz, Long deltaIN ) |
| { |
| Long d64 = 0; |
| IRTemp addr = IRTemp_INVALID; |
| UChar modrm = 0; |
| Int alen = 0; |
| HChar dis_buf[50]; |
| |
| *decode_OK = False; |
| |
| Long delta = deltaIN; |
| UChar opc = getUChar(delta); |
| delta++; |
| switch (opc) { |
| |
| case 0x0F: |
| /* 66 0F 3A 0F = PALIGNR -- Packed Align Right (XMM) */ |
| if (have66noF2noF3(pfx) |
| && (sz == 2 || /*redundant REX.W*/ sz == 8)) { |
| IRTemp sV = newTemp(Ity_V128); |
| IRTemp dV = newTemp(Ity_V128); |
| IRTemp sHi = newTemp(Ity_I64); |
| IRTemp sLo = newTemp(Ity_I64); |
| IRTemp dHi = newTemp(Ity_I64); |
| IRTemp dLo = newTemp(Ity_I64); |
| IRTemp rHi = newTemp(Ity_I64); |
| IRTemp rLo = newTemp(Ity_I64); |
| |
| modrm = getUChar(delta); |
| assign( dV, getXMMReg(gregOfRexRM(pfx,modrm)) ); |
| |
| if (epartIsReg(modrm)) { |
| assign( sV, getXMMReg(eregOfRexRM(pfx,modrm)) ); |
| d64 = (Long)getUChar(delta+1); |
| delta += 1+1; |
| DIP("palignr $%d,%s,%s\n", (Int)d64, |
| nameXMMReg(eregOfRexRM(pfx,modrm)), |
| nameXMMReg(gregOfRexRM(pfx,modrm))); |
| } else { |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 1 ); |
| gen_SEGV_if_not_16_aligned( addr ); |
| assign( sV, loadLE(Ity_V128, mkexpr(addr)) ); |
| d64 = (Long)getUChar(delta+alen); |
| delta += alen+1; |
| DIP("palignr $%d,%s,%s\n", (Int)d64, |
| dis_buf, |
| nameXMMReg(gregOfRexRM(pfx,modrm))); |
| } |
| |
| assign( dHi, unop(Iop_V128HIto64, mkexpr(dV)) ); |
| assign( dLo, unop(Iop_V128to64, mkexpr(dV)) ); |
| assign( sHi, unop(Iop_V128HIto64, mkexpr(sV)) ); |
| assign( sLo, unop(Iop_V128to64, mkexpr(sV)) ); |
| |
| if (d64 == 0) { |
| assign( rHi, mkexpr(sHi) ); |
| assign( rLo, mkexpr(sLo) ); |
| } |
| else if (d64 >= 1 && d64 <= 7) { |
| assign( rHi, dis_PALIGNR_XMM_helper(dLo, sHi, d64) ); |
| assign( rLo, dis_PALIGNR_XMM_helper(sHi, sLo, d64) ); |
| } |
| else if (d64 == 8) { |
| assign( rHi, mkexpr(dLo) ); |
| assign( rLo, mkexpr(sHi) ); |
| } |
| else if (d64 >= 9 && d64 <= 15) { |
| assign( rHi, dis_PALIGNR_XMM_helper(dHi, dLo, d64-8) ); |
| assign( rLo, dis_PALIGNR_XMM_helper(dLo, sHi, d64-8) ); |
| } |
| else if (d64 == 16) { |
| assign( rHi, mkexpr(dHi) ); |
| assign( rLo, mkexpr(dLo) ); |
| } |
| else if (d64 >= 17 && d64 <= 23) { |
| assign( rHi, binop(Iop_Shr64, mkexpr(dHi), mkU8(8*(d64-16))) ); |
| assign( rLo, dis_PALIGNR_XMM_helper(dHi, dLo, d64-16) ); |
| } |
| else if (d64 == 24) { |
| assign( rHi, mkU64(0) ); |
| assign( rLo, mkexpr(dHi) ); |
| } |
| else if (d64 >= 25 && d64 <= 31) { |
| assign( rHi, mkU64(0) ); |
| assign( rLo, binop(Iop_Shr64, mkexpr(dHi), mkU8(8*(d64-24))) ); |
| } |
| else if (d64 >= 32 && d64 <= 255) { |
| assign( rHi, mkU64(0) ); |
| assign( rLo, mkU64(0) ); |
| } |
| else |
| vassert(0); |
| |
| putXMMReg( |
| gregOfRexRM(pfx,modrm), |
| binop(Iop_64HLtoV128, mkexpr(rHi), mkexpr(rLo)) |
| ); |
| goto decode_success; |
| } |
| /* 0F 3A 0F = PALIGNR -- Packed Align Right (MMX) */ |
| if (haveNo66noF2noF3(pfx) && sz == 4) { |
| IRTemp sV = newTemp(Ity_I64); |
| IRTemp dV = newTemp(Ity_I64); |
| IRTemp res = newTemp(Ity_I64); |
| |
| modrm = getUChar(delta); |
| do_MMX_preamble(); |
| assign( dV, getMMXReg(gregLO3ofRM(modrm)) ); |
| |
| if (epartIsReg(modrm)) { |
| assign( sV, getMMXReg(eregLO3ofRM(modrm)) ); |
| d64 = (Long)getUChar(delta+1); |
| delta += 1+1; |
| DIP("palignr $%d,%s,%s\n", (Int)d64, |
| nameMMXReg(eregLO3ofRM(modrm)), |
| nameMMXReg(gregLO3ofRM(modrm))); |
| } else { |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 1 ); |
| assign( sV, loadLE(Ity_I64, mkexpr(addr)) ); |
| d64 = (Long)getUChar(delta+alen); |
| delta += alen+1; |
| DIP("palignr $%d%s,%s\n", (Int)d64, |
| dis_buf, |
| nameMMXReg(gregLO3ofRM(modrm))); |
| } |
| |
| if (d64 == 0) { |
| assign( res, mkexpr(sV) ); |
| } |
| else if (d64 >= 1 && d64 <= 7) { |
| assign(res, |
| binop(Iop_Or64, |
| binop(Iop_Shr64, mkexpr(sV), mkU8(8*d64)), |
| binop(Iop_Shl64, mkexpr(dV), mkU8(8*(8-d64)) |
| ))); |
| } |
| else if (d64 == 8) { |
| assign( res, mkexpr(dV) ); |
| } |
| else if (d64 >= 9 && d64 <= 15) { |
| assign( res, binop(Iop_Shr64, mkexpr(dV), mkU8(8*(d64-8))) ); |
| } |
| else if (d64 >= 16 && d64 <= 255) { |
| assign( res, mkU64(0) ); |
| } |
| else |
| vassert(0); |
| |
| putMMXReg( gregLO3ofRM(modrm), mkexpr(res) ); |
| goto decode_success; |
| } |
| break; |
| |
| default: |
| break; |
| |
| } |
| |
| //decode_failure: |
| *decode_OK = False; |
| return deltaIN; |
| |
| decode_success: |
| *decode_OK = True; |
| return delta; |
| } |
| |
| |
| /*------------------------------------------------------------*/ |
| /*--- ---*/ |
| /*--- Top-level SSE4: dis_ESC_0F__SSE4 ---*/ |
| /*--- ---*/ |
| /*------------------------------------------------------------*/ |
| |
| __attribute__((noinline)) |
| static |
| Long dis_ESC_0F__SSE4 ( Bool* decode_OK, |
| VexArchInfo* archinfo, |
| VexAbiInfo* vbi, |
| Prefix pfx, Int sz, Long deltaIN ) |
| { |
| IRTemp addr = IRTemp_INVALID; |
| IRType ty = Ity_INVALID; |
| UChar modrm = 0; |
| Int alen = 0; |
| HChar dis_buf[50]; |
| |
| *decode_OK = False; |
| |
| Long delta = deltaIN; |
| UChar opc = getUChar(delta); |
| delta++; |
| switch (opc) { |
| |
| case 0xB8: |
| /* F3 0F B8 = POPCNT{W,L,Q} |
| Count the number of 1 bits in a register |
| */ |
| if (haveF3noF2(pfx) /* so both 66 and REX.W are possibilities */ |
| && (sz == 2 || sz == 4 || sz == 8)) { |
| /*IRType*/ ty = szToITy(sz); |
| IRTemp src = newTemp(ty); |
| modrm = getUChar(delta); |
| if (epartIsReg(modrm)) { |
| assign(src, getIRegE(sz, pfx, modrm)); |
| delta += 1; |
| DIP("popcnt%c %s, %s\n", nameISize(sz), nameIRegE(sz, pfx, modrm), |
| nameIRegG(sz, pfx, modrm)); |
| } else { |
| addr = disAMode( &alen, vbi, pfx, delta, dis_buf, 0); |
| assign(src, loadLE(ty, mkexpr(addr))); |
| delta += alen; |
| DIP("popcnt%c %s, %s\n", nameISize(sz), dis_buf, |
| nameIRegG(sz, pfx, modrm)); |
| } |
| |
| IRTemp result = gen_POPCOUNT(ty, src); |
| putIRegG(sz, pfx, modrm, mkexpr(result)); |
| |
| // Update flags. This is pretty lame .. perhaps can do better |
| // if this turns out to be performance critical. |
| // O S A C P are cleared. Z is set if SRC == 0. |
| stmt( IRStmt_Put( OFFB_CC_OP, mkU64(AMD64G_CC_OP_COPY) )); |
| stmt( IRStmt_Put( OFFB_CC_DEP2, mkU64(0) )); |
| stmt( IRStmt_Put( OFFB_CC_NDEP, mkU64(0) )); |
| stmt( IRStmt_Put( OFFB_CC_DEP1, |
| binop(Iop_Shl64, |
| unop(Iop_1Uto64, |
| binop(Iop_CmpEQ64, |
| widenUto64(mkexpr(src)), |
| mkU64(0))), |
| mkU8(AMD64G_CC_SHIFT_Z)))); |
| |
| goto decode_success; |
| } |
| break; |
| |
| case 0xBD: |
| /* F3 0F BD -- LZCNT (count leading zeroes. An AMD extension, |
| which we can only decode if we're sure this is an AMD cpu |
| that supports LZCNT, since otherwise it's BSR, which behaves |
| differently. Bizarrely, my Sandy Bridge also accepts these |
| instructions but produces different results. */ |
| if (haveF3noF2(pfx) /* so both 66 and 48 are possibilities */ |
| && (sz == 2 || sz == 4 || sz == 8) |
| && 0 != (archinfo->hwcaps & VEX_HWCAPS_AMD64_LZCNT)) { |
| /*IRType*/ ty = szToITy(sz); |
| IRTemp src = newTemp(ty); |
| modrm = getUChar(delta); |
| if (epartIsReg(modrm)) { |
| assign(src, getIRegE(sz, pfx, modrm)); |
| delta += 1; |
| DIP("lzcnt%c %s, %s\n", nameISize(sz), nameIRegE(sz, pfx, modrm), |
| nameIRegG(sz, pfx, modrm)); |
| } else { |
| addr = disAMode( &alen, vbi, pfx, delta, dis_buf, 0); |
| assign(src, loadLE(ty, mkexpr(addr))); |
| delta += alen; |
| DIP("lzcnt%c %s, %s\n", nameISize(sz), dis_buf, |
| nameIRegG(sz, pfx, modrm)); |
| } |
| |
| IRTemp res = gen_LZCNT(ty, src); |
| putIRegG(sz, pfx, modrm, mkexpr(res)); |
| |
| // Update flags. This is pretty lame .. perhaps can do better |
| // if this turns out to be performance critical. |
| // O S A P are cleared. Z is set if RESULT == 0. |
| // C is set if SRC is zero. |
| IRTemp src64 = newTemp(Ity_I64); |
| IRTemp res64 = newTemp(Ity_I64); |
| assign(src64, widenUto64(mkexpr(src))); |
| assign(res64, widenUto64(mkexpr(res))); |
| |
| IRTemp oszacp = newTemp(Ity_I64); |
| assign( |
| oszacp, |
| binop(Iop_Or64, |
| binop(Iop_Shl64, |
| unop(Iop_1Uto64, |
| binop(Iop_CmpEQ64, mkexpr(res64), mkU64(0))), |
| mkU8(AMD64G_CC_SHIFT_Z)), |
| binop(Iop_Shl64, |
| unop(Iop_1Uto64, |
| binop(Iop_CmpEQ64, mkexpr(src64), mkU64(0))), |
| mkU8(AMD64G_CC_SHIFT_C)) |
| ) |
| ); |
| |
| stmt( IRStmt_Put( OFFB_CC_OP, mkU64(AMD64G_CC_OP_COPY) )); |
| stmt( IRStmt_Put( OFFB_CC_DEP2, mkU64(0) )); |
| stmt( IRStmt_Put( OFFB_CC_NDEP, mkU64(0) )); |
| stmt( IRStmt_Put( OFFB_CC_DEP1, mkexpr(oszacp) )); |
| |
| goto decode_success; |
| } |
| break; |
| |
| default: |
| break; |
| |
| } |
| |
| //decode_failure: |
| *decode_OK = False; |
| return deltaIN; |
| |
| decode_success: |
| *decode_OK = True; |
| return delta; |
| } |
| |
| |
| /*------------------------------------------------------------*/ |
| /*--- ---*/ |
| /*--- Top-level SSE4: dis_ESC_0F38__SSE4 ---*/ |
| /*--- ---*/ |
| /*------------------------------------------------------------*/ |
| |
| static IRTemp math_PBLENDVB ( IRTemp vecE, IRTemp vecG, |
| IRTemp vec0/*controlling mask*/, |
| UInt gran, IROp opSAR ) |
| { |
| /* The tricky bit is to convert vec0 into a suitable mask, by |
| copying the most significant bit of each lane into all positions |
| in the lane. */ |
| IRTemp sh = newTemp(Ity_I8); |
| assign(sh, mkU8(8 * gran - 1)); |
| |
| IRTemp mask = newTemp(Ity_V128); |
| assign(mask, binop(opSAR, mkexpr(vec0), mkexpr(sh))); |
| |
| IRTemp notmask = newTemp(Ity_V128); |
| assign(notmask, unop(Iop_NotV128, mkexpr(mask))); |
| |
| IRTemp res = newTemp(Ity_V128); |
| assign(res, binop(Iop_OrV128, |
| binop(Iop_AndV128, mkexpr(vecE), mkexpr(mask)), |
| binop(Iop_AndV128, mkexpr(vecG), mkexpr(notmask)))); |
| return res; |
| } |
| |
| |
| static Long dis_PMOVZXBW ( VexAbiInfo* vbi, Prefix pfx, |
| Long delta, Bool writesYmm ) |
| { |
| IRTemp addr = IRTemp_INVALID; |
| Int alen = 0; |
| HChar dis_buf[50]; |
| IRTemp srcVec = newTemp(Ity_V128); |
| UChar modrm = getUChar(delta); |
| |
| if ( epartIsReg(modrm) ) { |
| assign( srcVec, getXMMReg( eregOfRexRM(pfx, modrm) ) ); |
| delta += 1; |
| DIP( "pmovzxbw %s,%s\n", |
| nameXMMReg( eregOfRexRM(pfx, modrm) ), |
| nameXMMReg( gregOfRexRM(pfx, modrm) ) ); |
| } else { |
| addr = disAMode( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| assign( srcVec, |
| unop( Iop_64UtoV128, loadLE( Ity_I64, mkexpr(addr) ) ) ); |
| delta += alen; |
| DIP( "pmovzxbw %s,%s\n", |
| dis_buf, nameXMMReg( gregOfRexRM(pfx, modrm) ) ); |
| } |
| |
| IRExpr* res |
| = binop( Iop_InterleaveLO8x16, |
| IRExpr_Const( IRConst_V128(0) ), mkexpr(srcVec) ); |
| |
| (writesYmm ? putYMMRegLoAndZU : putXMMReg) |
| ( gregOfRexRM(pfx, modrm), res ); |
| |
| return delta; |
| } |
| |
| |
| static Long dis_PMOVZXWD ( VexAbiInfo* vbi, Prefix pfx, |
| Long delta, Bool writesYmm ) |
| { |
| IRTemp addr = IRTemp_INVALID; |
| Int alen = 0; |
| HChar dis_buf[50]; |
| IRTemp srcVec = newTemp(Ity_V128); |
| UChar modrm = getUChar(delta); |
| |
| if ( epartIsReg(modrm) ) { |
| assign( srcVec, getXMMReg( eregOfRexRM(pfx, modrm) ) ); |
| delta += 1; |
| DIP( "pmovzxwd %s,%s\n", |
| nameXMMReg( eregOfRexRM(pfx, modrm) ), |
| nameXMMReg( gregOfRexRM(pfx, modrm) ) ); |
| } else { |
| addr = disAMode( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| assign( srcVec, |
| unop( Iop_64UtoV128, loadLE( Ity_I64, mkexpr(addr) ) ) ); |
| delta += alen; |
| DIP( "pmovzxwd %s,%s\n", |
| dis_buf, nameXMMReg( gregOfRexRM(pfx, modrm) ) ); |
| } |
| |
| IRExpr* res |
| = binop( Iop_InterleaveLO16x8, |
| IRExpr_Const( IRConst_V128(0) ), mkexpr(srcVec) ); |
| |
| (writesYmm ? putYMMRegLoAndZU : putXMMReg) |
| ( gregOfRexRM(pfx, modrm), res ); |
| |
| return delta; |
| } |
| |
| |
| __attribute__((noinline)) |
| static |
| Long dis_ESC_0F38__SSE4 ( Bool* decode_OK, |
| VexAbiInfo* vbi, |
| Prefix pfx, Int sz, Long deltaIN ) |
| { |
| IRTemp addr = IRTemp_INVALID; |
| UChar modrm = 0; |
| Int alen = 0; |
| HChar dis_buf[50]; |
| |
| *decode_OK = False; |
| |
| Long delta = deltaIN; |
| UChar opc = getUChar(delta); |
| delta++; |
| switch (opc) { |
| |
| case 0x10: |
| case 0x14: |
| case 0x15: |
| /* 66 0F 38 10 /r = PBLENDVB xmm1, xmm2/m128 (byte gran) |
| 66 0F 38 14 /r = BLENDVPS xmm1, xmm2/m128 (float gran) |
| 66 0F 38 15 /r = BLENDVPD xmm1, xmm2/m128 (double gran) |
| Blend at various granularities, with XMM0 (implicit operand) |
| providing the controlling mask. |
| */ |
| if (have66noF2noF3(pfx) && sz == 2) { |
| modrm = getUChar(delta); |
| |
| HChar* nm = NULL; |
| UInt gran = 0; |
| IROp opSAR = Iop_INVALID; |
| switch (opc) { |
| case 0x10: |
| nm = "pblendvb"; gran = 1; opSAR = Iop_SarN8x16; |
| break; |
| case 0x14: |
| nm = "blendvps"; gran = 4; opSAR = Iop_SarN32x4; |
| break; |
| case 0x15: |
| nm = "blendvpd"; gran = 8; opSAR = Iop_SarN64x2; |
| break; |
| } |
| vassert(nm); |
| |
| IRTemp vecE = newTemp(Ity_V128); |
| IRTemp vecG = newTemp(Ity_V128); |
| IRTemp vec0 = newTemp(Ity_V128); |
| |
| if ( epartIsReg(modrm) ) { |
| assign(vecE, getXMMReg(eregOfRexRM(pfx, modrm))); |
| delta += 1; |
| DIP( "%s %s,%s\n", nm, |
| nameXMMReg( eregOfRexRM(pfx, modrm) ), |
| nameXMMReg( gregOfRexRM(pfx, modrm) ) ); |
| } else { |
| addr = disAMode( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| gen_SEGV_if_not_16_aligned( addr ); |
| assign(vecE, loadLE( Ity_V128, mkexpr(addr) )); |
| delta += alen; |
| DIP( "%s %s,%s\n", nm, |
| dis_buf, nameXMMReg( gregOfRexRM(pfx, modrm) ) ); |
| } |
| |
| assign(vecG, getXMMReg(gregOfRexRM(pfx, modrm))); |
| assign(vec0, getXMMReg(0)); |
| |
| IRTemp res = math_PBLENDVB( vecE, vecG, vec0, gran, opSAR ); |
| putXMMReg(gregOfRexRM(pfx, modrm), mkexpr(res)); |
| |
| goto decode_success; |
| } |
| break; |
| |
| case 0x17: |
| /* 66 0F 38 17 /r = PTEST xmm1, xmm2/m128 |
| Logical compare (set ZF and CF from AND/ANDN of the operands) */ |
| if (have66noF2noF3(pfx) |
| && (sz == 2 || /* ignore redundant REX.W */ sz == 8)) { |
| modrm = getUChar(delta); |
| IRTemp vecE = newTemp(Ity_V128); |
| IRTemp vecG = newTemp(Ity_V128); |
| |
| if ( epartIsReg(modrm) ) { |
| assign(vecE, getXMMReg(eregOfRexRM(pfx, modrm))); |
| delta += 1; |
| DIP( "ptest %s,%s\n", |
| nameXMMReg( eregOfRexRM(pfx, modrm) ), |
| nameXMMReg( gregOfRexRM(pfx, modrm) ) ); |
| } else { |
| addr = disAMode( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| gen_SEGV_if_not_16_aligned( addr ); |
| assign(vecE, loadLE( Ity_V128, mkexpr(addr) )); |
| delta += alen; |
| DIP( "ptest %s,%s\n", |
| dis_buf, nameXMMReg( gregOfRexRM(pfx, modrm) ) ); |
| } |
| |
| assign(vecG, getXMMReg(gregOfRexRM(pfx, modrm))); |
| |
| /* Set Z=1 iff (vecE & vecG) == 0 |
| Set C=1 iff (vecE & not vecG) == 0 |
| */ |
| |
| /* andV, andnV: vecE & vecG, vecE and not(vecG) */ |
| IRTemp andV = newTemp(Ity_V128); |
| IRTemp andnV = newTemp(Ity_V128); |
| assign(andV, binop(Iop_AndV128, mkexpr(vecE), mkexpr(vecG))); |
| assign(andnV, binop(Iop_AndV128, |
| mkexpr(vecE), |
| binop(Iop_XorV128, mkexpr(vecG), |
| mkV128(0xFFFF)))); |
| |
| /* The same, but reduced to 64-bit values, by or-ing the top |
| and bottom 64-bits together. It relies on this trick: |
| |
| InterleaveLO64x2([a,b],[c,d]) == [b,d] hence |
| |
| InterleaveLO64x2([a,b],[a,b]) == [b,b] and similarly |
| InterleaveHI64x2([a,b],[a,b]) == [a,a] |
| |
| and so the OR of the above 2 exprs produces |
| [a OR b, a OR b], from which we simply take the lower half. |
| */ |
| IRTemp and64 = newTemp(Ity_I64); |
| IRTemp andn64 = newTemp(Ity_I64); |
| |
| assign( |
| and64, |
| unop(Iop_V128to64, |
| binop(Iop_OrV128, |
| binop(Iop_InterleaveLO64x2, mkexpr(andV), mkexpr(andV)), |
| binop(Iop_InterleaveHI64x2, mkexpr(andV), mkexpr(andV)) |
| ) |
| ) |
| ); |
| |
| assign( |
| andn64, |
| unop(Iop_V128to64, |
| binop(Iop_OrV128, |
| binop(Iop_InterleaveLO64x2, mkexpr(andnV), mkexpr(andnV)), |
| binop(Iop_InterleaveHI64x2, mkexpr(andnV), mkexpr(andnV)) |
| ) |
| ) |
| ); |
| |
| /* Now convert and64, andn64 to all-zeroes or all-1s, so we can |
| slice out the Z and C bits conveniently. We use the standard |
| trick all-zeroes -> all-zeroes, anything-else -> all-ones |
| done by "(x | -x) >>s (word-size - 1)". |
| */ |
| IRTemp z64 = newTemp(Ity_I64); |
| IRTemp c64 = newTemp(Ity_I64); |
| assign(z64, |
| unop(Iop_Not64, |
| binop(Iop_Sar64, |
| binop(Iop_Or64, |
| binop(Iop_Sub64, mkU64(0), mkexpr(and64)), |
| mkexpr(and64) |
| ), |
| mkU8(63))) |
| ); |
| |
| assign(c64, |
| unop(Iop_Not64, |
| binop(Iop_Sar64, |
| binop(Iop_Or64, |
| binop(Iop_Sub64, mkU64(0), mkexpr(andn64)), |
| mkexpr(andn64) |
| ), |
| mkU8(63))) |
| ); |
| |
| /* And finally, slice out the Z and C flags and set the flags |
| thunk to COPY for them. OSAP are set to zero. */ |
| IRTemp newOSZACP = newTemp(Ity_I64); |
| assign(newOSZACP, |
| binop(Iop_Or64, |
| binop(Iop_And64, mkexpr(z64), mkU64(AMD64G_CC_MASK_Z)), |
| binop(Iop_And64, mkexpr(c64), mkU64(AMD64G_CC_MASK_C)) |
| ) |
| ); |
| |
| stmt( IRStmt_Put( OFFB_CC_DEP1, mkexpr(newOSZACP))); |
| stmt( IRStmt_Put( OFFB_CC_OP, mkU64(AMD64G_CC_OP_COPY) )); |
| stmt( IRStmt_Put( OFFB_CC_DEP2, mkU64(0) )); |
| stmt( IRStmt_Put( OFFB_CC_NDEP, mkU64(0) )); |
| |
| goto decode_success; |
| } |
| break; |
| |
| case 0x20: |
| /* 66 0F 38 20 /r = PMOVSXBW xmm1, xmm2/m64 |
| Packed Move with Sign Extend from Byte to Word (XMM) */ |
| if (have66noF2noF3( pfx ) && sz == 2) { |
| |
| modrm = getUChar(delta); |
| |
| IRTemp srcVec = newTemp(Ity_V128); |
| |
| if ( epartIsReg( modrm ) ) { |
| assign( srcVec, getXMMReg( eregOfRexRM(pfx, modrm) ) ); |
| delta += 1; |
| DIP( "pmovsxbw %s,%s\n", |
| nameXMMReg( eregOfRexRM(pfx, modrm) ), |
| nameXMMReg( gregOfRexRM(pfx, modrm) ) ); |
| } else { |
| addr = disAMode( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| assign( srcVec, |
| unop( Iop_64UtoV128, loadLE( Ity_I64, mkexpr(addr) ) ) ); |
| delta += alen; |
| DIP( "pmovsxbw %s,%s\n", |
| dis_buf, nameXMMReg( gregOfRexRM(pfx, modrm) ) ); |
| } |
| |
| putXMMReg( gregOfRexRM(pfx, modrm), |
| binop( Iop_SarN16x8, |
| binop( Iop_ShlN16x8, |
| binop( Iop_InterleaveLO8x16, |
| IRExpr_Const( IRConst_V128(0) ), |
| mkexpr(srcVec) ), |
| mkU8(8) ), |
| mkU8(8) ) ); |
| |
| goto decode_success; |
| } |
| break; |
| |
| case 0x21: |
| /* 66 0F 38 21 /r = PMOVSXBD xmm1, xmm2/m32 |
| Packed Move with Sign Extend from Byte to DWord (XMM) */ |
| if (have66noF2noF3(pfx) && sz == 2) { |
| |
| modrm = getUChar(delta); |
| |
| IRTemp srcVec = newTemp(Ity_V128); |
| |
| if ( epartIsReg( modrm ) ) { |
| assign( srcVec, getXMMReg( eregOfRexRM(pfx, modrm) ) ); |
| delta += 1; |
| DIP( "pmovsxbd %s,%s\n", |
| nameXMMReg( eregOfRexRM(pfx, modrm) ), |
| nameXMMReg( gregOfRexRM(pfx, modrm) ) ); |
| } else { |
| addr = disAMode( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| assign( srcVec, |
| unop( Iop_32UtoV128, loadLE( Ity_I32, mkexpr(addr) ) ) ); |
| delta += alen; |
| DIP( "pmovsxbd %s,%s\n", |
| dis_buf, nameXMMReg( gregOfRexRM(pfx, modrm) ) ); |
| } |
| |
| IRTemp zeroVec = newTemp(Ity_V128); |
| assign( zeroVec, IRExpr_Const( IRConst_V128(0) ) ); |
| |
| putXMMReg( gregOfRexRM(pfx, modrm), |
| binop( Iop_SarN32x4, |
| binop( Iop_ShlN32x4, |
| binop( Iop_InterleaveLO8x16, |
| mkexpr(zeroVec), |
| binop( Iop_InterleaveLO8x16, |
| mkexpr(zeroVec), |
| mkexpr(srcVec) ) ), |
| mkU8(24) ), mkU8(24) ) ); |
| |
| goto decode_success; |
| } |
| break; |
| |
| case 0x22: |
| /* 66 0F 38 22 /r = PMOVSXBQ xmm1, xmm2/m16 |
| Packed Move with Sign Extend from Byte to QWord (XMM) */ |
| if (have66noF2noF3(pfx) && sz == 2) { |
| |
| modrm = getUChar(delta); |
| |
| IRTemp srcBytes = newTemp(Ity_I16); |
| |
| if ( epartIsReg(modrm) ) { |
| assign( srcBytes, getXMMRegLane16( eregOfRexRM(pfx, modrm), 0 ) ); |
| delta += 1; |
| DIP( "pmovsxbq %s,%s\n", |
| nameXMMReg( eregOfRexRM(pfx, modrm) ), |
| nameXMMReg( gregOfRexRM(pfx, modrm) ) ); |
| } else { |
| addr = disAMode( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| assign( srcBytes, loadLE( Ity_I16, mkexpr(addr) ) ); |
| delta += alen; |
| DIP( "pmovsxbq %s,%s\n", |
| dis_buf, nameXMMReg( gregOfRexRM(pfx, modrm) ) ); |
| } |
| |
| putXMMReg( gregOfRexRM( pfx, modrm ), |
| binop( Iop_64HLtoV128, |
| unop( Iop_8Sto64, |
| unop( Iop_16HIto8, |
| mkexpr(srcBytes) ) ), |
| unop( Iop_8Sto64, |
| unop( Iop_16to8, mkexpr(srcBytes) ) ) ) ); |
| |
| goto decode_success; |
| } |
| break; |
| |
| case 0x23: |
| /* 66 0F 38 23 /r = PMOVSXWD xmm1, xmm2/m64 |
| Packed Move with Sign Extend from Word to DWord (XMM) */ |
| if (have66noF2noF3(pfx) && sz == 2) { |
| |
| modrm = getUChar(delta); |
| |
| IRTemp srcVec = newTemp(Ity_V128); |
| |
| if ( epartIsReg(modrm) ) { |
| assign( srcVec, getXMMReg( eregOfRexRM(pfx, modrm) ) ); |
| delta += 1; |
| DIP( "pmovsxwd %s,%s\n", |
| nameXMMReg( eregOfRexRM(pfx, modrm) ), |
| nameXMMReg( gregOfRexRM(pfx, modrm) ) ); |
| } else { |
| addr = disAMode( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| assign( srcVec, |
| unop( Iop_64UtoV128, loadLE( Ity_I64, mkexpr(addr) ) ) ); |
| delta += alen; |
| DIP( "pmovsxwd %s,%s\n", |
| dis_buf, nameXMMReg( gregOfRexRM(pfx, modrm) ) ); |
| } |
| |
| putXMMReg( gregOfRexRM(pfx, modrm), |
| binop( Iop_SarN32x4, |
| binop( Iop_ShlN32x4, |
| binop( Iop_InterleaveLO16x8, |
| IRExpr_Const( IRConst_V128(0) ), |
| mkexpr(srcVec) ), |
| mkU8(16) ), |
| mkU8(16) ) ); |
| |
| goto decode_success; |
| } |
| break; |
| |
| case 0x24: |
| /* 66 0F 38 24 /r = PMOVSXWQ xmm1, xmm2/m32 |
| Packed Move with Sign Extend from Word to QWord (XMM) */ |
| if (have66noF2noF3(pfx) && sz == 2) { |
| |
| modrm = getUChar(delta); |
| |
| IRTemp srcBytes = newTemp(Ity_I32); |
| |
| if ( epartIsReg( modrm ) ) { |
| assign( srcBytes, getXMMRegLane32( eregOfRexRM(pfx, modrm), 0 ) ); |
| delta += 1; |
| DIP( "pmovsxwq %s,%s\n", |
| nameXMMReg( eregOfRexRM(pfx, modrm) ), |
| nameXMMReg( gregOfRexRM(pfx, modrm) ) ); |
| } else { |
| addr = disAMode( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| assign( srcBytes, loadLE( Ity_I32, mkexpr(addr) ) ); |
| delta += alen; |
| DIP( "pmovsxwq %s,%s\n", |
| dis_buf, nameXMMReg( gregOfRexRM(pfx, modrm) ) ); |
| } |
| |
| putXMMReg( gregOfRexRM( pfx, modrm ), |
| binop( Iop_64HLtoV128, |
| unop( Iop_16Sto64, |
| unop( Iop_32HIto16, mkexpr(srcBytes) ) ), |
| unop( Iop_16Sto64, |
| unop( Iop_32to16, mkexpr(srcBytes) ) ) ) ); |
| |
| goto decode_success; |
| } |
| break; |
| |
| case 0x25: |
| /* 66 0F 38 25 /r = PMOVSXDQ xmm1, xmm2/m64 |
| Packed Move with Sign Extend from Double Word to Quad Word (XMM) */ |
| if (have66noF2noF3(pfx) && sz == 2) { |
| |
| modrm = getUChar(delta); |
| |
| IRTemp srcBytes = newTemp(Ity_I64); |
| |
| if ( epartIsReg(modrm) ) { |
| assign( srcBytes, getXMMRegLane64( eregOfRexRM(pfx, modrm), 0 ) ); |
| delta += 1; |
| DIP( "pmovsxdq %s,%s\n", |
| nameXMMReg( eregOfRexRM(pfx, modrm) ), |
| nameXMMReg( gregOfRexRM(pfx, modrm) ) ); |
| } else { |
| addr = disAMode( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| assign( srcBytes, loadLE( Ity_I64, mkexpr(addr) ) ); |
| delta += alen; |
| DIP( "pmovsxdq %s,%s\n", |
| dis_buf, nameXMMReg( gregOfRexRM(pfx, modrm) ) ); |
| } |
| |
| putXMMReg( gregOfRexRM(pfx, modrm), |
| binop( Iop_64HLtoV128, |
| unop( Iop_32Sto64, |
| unop( Iop_64HIto32, mkexpr(srcBytes) ) ), |
| unop( Iop_32Sto64, |
| unop( Iop_64to32, mkexpr(srcBytes) ) ) ) ); |
| |
| goto decode_success; |
| } |
| break; |
| |
| case 0x28: |
| /* 66 0F 38 28 = PMULUDQ -- signed widening multiply of 32-lanes |
| 0 x 0 to form lower 64-bit half and lanes 2 x 2 to form upper |
| 64-bit half */ |
| /* This is a really poor translation -- could be improved if |
| performance critical. It's a copy-paste of PMULDQ, too. */ |
| if (have66noF2noF3(pfx) && sz == 2) { |
| IRTemp sV, dV, t0, t1; |
| IRTemp s3, s2, s1, s0, d3, d2, d1, d0; |
| sV = newTemp(Ity_V128); |
| dV = newTemp(Ity_V128); |
| s3 = s2 = s1 = s0 = d3 = d2 = d1 = d0 = IRTemp_INVALID; |
| t1 = newTemp(Ity_I64); |
| t0 = newTemp(Ity_I64); |
| modrm = getUChar(delta); |
| assign( dV, getXMMReg(gregOfRexRM(pfx,modrm)) ); |
| |
| if (epartIsReg(modrm)) { |
| assign( sV, getXMMReg(eregOfRexRM(pfx,modrm)) ); |
| delta += 1; |
| DIP("pmuldq %s,%s\n", nameXMMReg(eregOfRexRM(pfx,modrm)), |
| nameXMMReg(gregOfRexRM(pfx,modrm))); |
| } else { |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| assign( sV, loadLE(Ity_V128, mkexpr(addr)) ); |
| delta += alen; |
| DIP("pmuldq %s,%s\n", dis_buf, |
| nameXMMReg(gregOfRexRM(pfx,modrm))); |
| } |
| |
| breakup128to32s( dV, &d3, &d2, &d1, &d0 ); |
| breakup128to32s( sV, &s3, &s2, &s1, &s0 ); |
| |
| assign( t0, binop( Iop_MullS32, mkexpr(d0), mkexpr(s0)) ); |
| putXMMRegLane64( gregOfRexRM(pfx,modrm), 0, mkexpr(t0) ); |
| assign( t1, binop( Iop_MullS32, mkexpr(d2), mkexpr(s2)) ); |
| putXMMRegLane64( gregOfRexRM(pfx,modrm), 1, mkexpr(t1) ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0x29: |
| /* 66 0F 38 29 = PCMPEQQ |
| 64x2 equality comparison */ |
| if (have66noF2noF3(pfx) && sz == 2) { |
| /* FIXME: this needs an alignment check */ |
| delta = dis_SSEint_E_to_G( vbi, pfx, delta, |
| "pcmpeqq", Iop_CmpEQ64x2, False ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0x2B: |
| /* 66 0f 38 2B /r = PACKUSDW xmm1, xmm2/m128 |
| 2x 32x4 S->U saturating narrow from xmm2/m128 to xmm1 */ |
| if (have66noF2noF3(pfx) && sz == 2) { |
| |
| modrm = getUChar(delta); |
| |
| IRTemp argL = newTemp(Ity_V128); |
| IRTemp argR = newTemp(Ity_V128); |
| |
| if ( epartIsReg(modrm) ) { |
| assign( argL, getXMMReg( eregOfRexRM(pfx, modrm) ) ); |
| delta += 1; |
| DIP( "packusdw %s,%s\n", |
| nameXMMReg( eregOfRexRM(pfx, modrm) ), |
| nameXMMReg( gregOfRexRM(pfx, modrm) ) ); |
| } else { |
| addr = disAMode( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| gen_SEGV_if_not_16_aligned( addr ); |
| assign( argL, loadLE( Ity_V128, mkexpr(addr) )); |
| delta += alen; |
| DIP( "packusdw %s,%s\n", |
| dis_buf, nameXMMReg( gregOfRexRM(pfx, modrm) ) ); |
| } |
| |
| assign(argR, getXMMReg( gregOfRexRM(pfx, modrm) )); |
| |
| putXMMReg( gregOfRexRM(pfx, modrm), |
| binop( Iop_QNarrowBin32Sto16Ux8, |
| mkexpr(argL), mkexpr(argR)) ); |
| |
| goto decode_success; |
| } |
| break; |
| |
| case 0x30: |
| /* 66 0F 38 30 /r = PMOVZXBW xmm1, xmm2/m64 |
| Packed Move with Zero Extend from Byte to Word (XMM) */ |
| if (have66noF2noF3(pfx) && sz == 2) { |
| delta = dis_PMOVZXBW( vbi, pfx, delta, False/*!writesYmm*/); |
| goto decode_success; |
| } |
| break; |
| |
| case 0x31: |
| /* 66 0F 38 31 /r = PMOVZXBD xmm1, xmm2/m32 |
| Packed Move with Zero Extend from Byte to DWord (XMM) */ |
| if (have66noF2noF3(pfx) && sz == 2) { |
| |
| modrm = getUChar(delta); |
| |
| IRTemp srcVec = newTemp(Ity_V128); |
| |
| if ( epartIsReg(modrm) ) { |
| assign( srcVec, getXMMReg( eregOfRexRM(pfx, modrm) ) ); |
| delta += 1; |
| DIP( "pmovzxbd %s,%s\n", |
| nameXMMReg( eregOfRexRM(pfx, modrm) ), |
| nameXMMReg( gregOfRexRM(pfx, modrm) ) ); |
| } else { |
| addr = disAMode( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| assign( srcVec, |
| unop( Iop_32UtoV128, loadLE( Ity_I32, mkexpr(addr) ) ) ); |
| delta += alen; |
| DIP( "pmovzxbd %s,%s\n", |
| dis_buf, nameXMMReg( gregOfRexRM(pfx, modrm) ) ); |
| } |
| |
| IRTemp zeroVec = newTemp(Ity_V128); |
| assign( zeroVec, IRExpr_Const( IRConst_V128(0) ) ); |
| |
| putXMMReg( gregOfRexRM( pfx, modrm ), |
| binop( Iop_InterleaveLO8x16, |
| mkexpr(zeroVec), |
| binop( Iop_InterleaveLO8x16, |
| mkexpr(zeroVec), mkexpr(srcVec) ) ) ); |
| |
| goto decode_success; |
| } |
| break; |
| |
| case 0x32: |
| /* 66 0F 38 32 /r = PMOVZXBQ xmm1, xmm2/m16 |
| Packed Move with Zero Extend from Byte to QWord (XMM) */ |
| if (have66noF2noF3(pfx) && sz == 2) { |
| |
| modrm = getUChar(delta); |
| |
| IRTemp srcVec = newTemp(Ity_V128); |
| |
| if ( epartIsReg(modrm) ) { |
| assign( srcVec, getXMMReg( eregOfRexRM(pfx, modrm) ) ); |
| delta += 1; |
| DIP( "pmovzxbq %s,%s\n", |
| nameXMMReg( eregOfRexRM(pfx, modrm) ), |
| nameXMMReg( gregOfRexRM(pfx, modrm) ) ); |
| } else { |
| addr = disAMode( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| assign( srcVec, |
| unop( Iop_32UtoV128, |
| unop( Iop_16Uto32, loadLE( Ity_I16, mkexpr(addr) )))); |
| delta += alen; |
| DIP( "pmovzxbq %s,%s\n", |
| dis_buf, nameXMMReg( gregOfRexRM(pfx, modrm) ) ); |
| } |
| |
| IRTemp zeroVec = newTemp(Ity_V128); |
| assign( zeroVec, IRExpr_Const( IRConst_V128(0) ) ); |
| |
| putXMMReg( gregOfRexRM( pfx, modrm ), |
| binop( Iop_InterleaveLO8x16, |
| mkexpr(zeroVec), |
| binop( Iop_InterleaveLO8x16, |
| mkexpr(zeroVec), |
| binop( Iop_InterleaveLO8x16, |
| mkexpr(zeroVec), mkexpr(srcVec) ) ) ) ); |
| |
| goto decode_success; |
| } |
| break; |
| |
| case 0x33: |
| /* 66 0F 38 33 /r = PMOVZXWD xmm1, xmm2/m64 |
| Packed Move with Zero Extend from Word to DWord (XMM) */ |
| if (have66noF2noF3(pfx) && sz == 2) { |
| delta = dis_PMOVZXWD( vbi, pfx, delta, False/*!writesYmm*/); |
| goto decode_success; |
| } |
| break; |
| |
| case 0x34: |
| /* 66 0F 38 34 /r = PMOVZXWQ xmm1, xmm2/m32 |
| Packed Move with Zero Extend from Word to QWord (XMM) */ |
| if (have66noF2noF3(pfx) && sz == 2) { |
| |
| modrm = getUChar(delta); |
| |
| IRTemp srcVec = newTemp(Ity_V128); |
| |
| if ( epartIsReg( modrm ) ) { |
| assign( srcVec, getXMMReg( eregOfRexRM(pfx, modrm) ) ); |
| delta += 1; |
| DIP( "pmovzxwq %s,%s\n", |
| nameXMMReg( eregOfRexRM(pfx, modrm) ), |
| nameXMMReg( gregOfRexRM(pfx, modrm) ) ); |
| } else { |
| addr = disAMode( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| assign( srcVec, |
| unop( Iop_32UtoV128, loadLE( Ity_I32, mkexpr(addr) ) ) ); |
| delta += alen; |
| DIP( "pmovzxwq %s,%s\n", |
| dis_buf, nameXMMReg( gregOfRexRM(pfx, modrm) ) ); |
| } |
| |
| IRTemp zeroVec = newTemp( Ity_V128 ); |
| assign( zeroVec, IRExpr_Const( IRConst_V128(0) ) ); |
| |
| putXMMReg( gregOfRexRM( pfx, modrm ), |
| binop( Iop_InterleaveLO16x8, |
| mkexpr(zeroVec), |
| binop( Iop_InterleaveLO16x8, |
| mkexpr(zeroVec), mkexpr(srcVec) ) ) ); |
| |
| goto decode_success; |
| } |
| break; |
| |
| case 0x35: |
| /* 66 0F 38 35 /r = PMOVZXDQ xmm1, xmm2/m64 |
| Packed Move with Zero Extend from DWord to QWord (XMM) */ |
| if (have66noF2noF3(pfx) && sz == 2) { |
| |
| modrm = getUChar(delta); |
| |
| IRTemp srcVec = newTemp(Ity_V128); |
| |
| if ( epartIsReg(modrm) ) { |
| assign( srcVec, getXMMReg( eregOfRexRM(pfx, modrm) ) ); |
| delta += 1; |
| DIP( "pmovzxdq %s,%s\n", |
| nameXMMReg( eregOfRexRM(pfx, modrm) ), |
| nameXMMReg( gregOfRexRM(pfx, modrm) ) ); |
| } else { |
| addr = disAMode( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| assign( srcVec, |
| unop( Iop_64UtoV128, loadLE( Ity_I64, mkexpr(addr) ) ) ); |
| delta += alen; |
| DIP( "pmovzxdq %s,%s\n", |
| dis_buf, nameXMMReg( gregOfRexRM(pfx, modrm) ) ); |
| } |
| |
| putXMMReg( gregOfRexRM(pfx, modrm), |
| binop( Iop_InterleaveLO32x4, |
| IRExpr_Const( IRConst_V128(0) ), |
| mkexpr(srcVec) ) ); |
| |
| goto decode_success; |
| } |
| break; |
| |
| case 0x37: |
| /* 66 0F 38 37 = PCMPGTQ |
| 64x2 comparison (signed, presumably; the Intel docs don't say :-) |
| */ |
| if (have66noF2noF3(pfx) && sz == 2) { |
| /* FIXME: this needs an alignment check */ |
| delta = dis_SSEint_E_to_G( vbi, pfx, delta, |
| "pcmpgtq", Iop_CmpGT64Sx2, False ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0x38: |
| case 0x3C: |
| /* 66 0F 38 38 /r = PMINSB xmm1, xmm2/m128 8Sx16 (signed) min |
| 66 0F 38 3C /r = PMAXSB xmm1, xmm2/m128 8Sx16 (signed) max |
| */ |
| if (have66noF2noF3(pfx) && sz == 2) { |
| /* FIXME: this needs an alignment check */ |
| Bool isMAX = opc == 0x3C; |
| delta = dis_SSEint_E_to_G( |
| vbi, pfx, delta, |
| isMAX ? "pmaxsb" : "pminsb", |
| isMAX ? Iop_Max8Sx16 : Iop_Min8Sx16, |
| False |
| ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0x39: |
| case 0x3D: |
| /* 66 0F 38 39 /r = PMINSD xmm1, xmm2/m128 |
| Minimum of Packed Signed Double Word Integers (XMM) |
| 66 0F 38 3D /r = PMAXSD xmm1, xmm2/m128 |
| Maximum of Packed Signed Double Word Integers (XMM) |
| */ |
| if (have66noF2noF3(pfx) && sz == 2) { |
| /* FIXME: this needs an alignment check */ |
| Bool isMAX = opc == 0x3D; |
| delta = dis_SSEint_E_to_G( |
| vbi, pfx, delta, |
| isMAX ? "pmaxsd" : "pminsd", |
| isMAX ? Iop_Max32Sx4 : Iop_Min32Sx4, |
| False |
| ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0x3A: |
| case 0x3E: |
| /* 66 0F 38 3A /r = PMINUW xmm1, xmm2/m128 |
| Minimum of Packed Unsigned Word Integers (XMM) |
| 66 0F 38 3E /r = PMAXUW xmm1, xmm2/m128 |
| Maximum of Packed Unsigned Word Integers (XMM) |
| */ |
| if (have66noF2noF3(pfx) && sz == 2) { |
| /* FIXME: this needs an alignment check */ |
| Bool isMAX = opc == 0x3E; |
| delta = dis_SSEint_E_to_G( |
| vbi, pfx, delta, |
| isMAX ? "pmaxuw" : "pminuw", |
| isMAX ? Iop_Max16Ux8 : Iop_Min16Ux8, |
| False |
| ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0x3B: |
| case 0x3F: |
| /* 66 0F 38 3B /r = PMINUD xmm1, xmm2/m128 |
| Minimum of Packed Unsigned Doubleword Integers (XMM) |
| 66 0F 38 3F /r = PMAXUD xmm1, xmm2/m128 |
| Maximum of Packed Unsigned Doubleword Integers (XMM) |
| */ |
| if (have66noF2noF3(pfx) && sz == 2) { |
| /* FIXME: this needs an alignment check */ |
| Bool isMAX = opc == 0x3F; |
| delta = dis_SSEint_E_to_G( |
| vbi, pfx, delta, |
| isMAX ? "pmaxud" : "pminud", |
| isMAX ? Iop_Max32Ux4 : Iop_Min32Ux4, |
| False |
| ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0x40: |
| /* 66 0F 38 40 /r = PMULLD xmm1, xmm2/m128 |
| 32x4 integer multiply from xmm2/m128 to xmm1 */ |
| if (have66noF2noF3(pfx) && sz == 2) { |
| |
| modrm = getUChar(delta); |
| |
| IRTemp argL = newTemp(Ity_V128); |
| IRTemp argR = newTemp(Ity_V128); |
| |
| if ( epartIsReg(modrm) ) { |
| assign( argL, getXMMReg( eregOfRexRM(pfx, modrm) ) ); |
| delta += 1; |
| DIP( "pmulld %s,%s\n", |
| nameXMMReg( eregOfRexRM(pfx, modrm) ), |
| nameXMMReg( gregOfRexRM(pfx, modrm) ) ); |
| } else { |
| addr = disAMode( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| gen_SEGV_if_not_16_aligned( addr ); |
| assign( argL, loadLE( Ity_V128, mkexpr(addr) )); |
| delta += alen; |
| DIP( "pmulld %s,%s\n", |
| dis_buf, nameXMMReg( gregOfRexRM(pfx, modrm) ) ); |
| } |
| |
| assign(argR, getXMMReg( gregOfRexRM(pfx, modrm) )); |
| |
| putXMMReg( gregOfRexRM(pfx, modrm), |
| binop( Iop_Mul32x4, mkexpr(argL), mkexpr(argR)) ); |
| |
| goto decode_success; |
| } |
| break; |
| |
| case 0x41: |
| /* 66 0F 38 41 /r = PHMINPOSUW xmm1, xmm2/m128 |
| Packed Horizontal Word Minimum from xmm2/m128 to xmm1 */ |
| if (have66noF2noF3(pfx) && sz == 2) { |
| IRTemp sV = newTemp(Ity_V128); |
| IRTemp sHi = newTemp(Ity_I64); |
| IRTemp sLo = newTemp(Ity_I64); |
| IRTemp dLo = newTemp(Ity_I64); |
| modrm = getUChar(delta); |
| if (epartIsReg(modrm)) { |
| assign( sV, getXMMReg(eregOfRexRM(pfx,modrm)) ); |
| delta += 1; |
| DIP("phminposuw %s,%s\n", nameXMMReg(eregOfRexRM(pfx,modrm)), |
| nameXMMReg(gregOfRexRM(pfx,modrm))); |
| } else { |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| gen_SEGV_if_not_16_aligned(addr); |
| assign( sV, loadLE(Ity_V128, mkexpr(addr)) ); |
| delta += alen; |
| DIP("phminposuw %s,%s\n", dis_buf, |
| nameXMMReg(gregOfRexRM(pfx,modrm))); |
| } |
| assign( sHi, unop(Iop_V128HIto64, mkexpr(sV)) ); |
| assign( sLo, unop(Iop_V128to64, mkexpr(sV)) ); |
| assign( dLo, mkIRExprCCall( |
| Ity_I64, 0/*regparms*/, |
| "amd64g_calculate_sse_phminposuw", |
| &amd64g_calculate_sse_phminposuw, |
| mkIRExprVec_2( mkexpr(sLo), mkexpr(sHi) ) |
| )); |
| putXMMReg(gregOfRexRM(pfx,modrm), unop(Iop_64UtoV128, mkexpr(dLo))); |
| |
| goto decode_success; |
| } |
| break; |
| |
| case 0xDC: |
| case 0xDD: |
| case 0xDE: |
| case 0xDF: |
| case 0xDB: |
| /* 66 0F 38 DC /r = AESENC xmm1, xmm2/m128 |
| DD /r = AESENCLAST xmm1, xmm2/m128 |
| DE /r = AESDEC xmm1, xmm2/m128 |
| DF /r = AESDECLAST xmm1, xmm2/m128 |
| |
| DB /r = AESIMC xmm1, xmm2/m128 */ |
| if (have66noF2noF3(pfx) && sz == 2) { |
| UInt regNoL = 0; |
| UInt regNoR = 0; |
| |
| /* This is a nasty kludge. We need to pass 2 x V128 to the |
| helper. Since we can't do that, use a dirty |
| helper to compute the results directly from the XMM regs in |
| the guest state. That means for the memory case, we need to |
| move the left operand into a pseudo-register (XMM16, let's |
| call it). */ |
| modrm = getUChar(delta); |
| if (epartIsReg(modrm)) { |
| regNoL = eregOfRexRM(pfx, modrm); |
| regNoR = gregOfRexRM(pfx, modrm); |
| delta += 1; |
| } else { |
| regNoL = 16; /* use XMM16 as an intermediary */ |
| regNoR = gregOfRexRM(pfx, modrm); |
| addr = disAMode( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| /* alignment check needed ???? */ |
| stmt( IRStmt_Put( OFFB_YMM16, loadLE(Ity_V128, mkexpr(addr)) )); |
| delta += alen; |
| } |
| |
| void* fn = &amd64g_dirtyhelper_AES; |
| HChar* nm = "amd64g_dirtyhelper_AES"; |
| |
| /* Round up the arguments. Note that this is a kludge -- the |
| use of mkU64 rather than mkIRExpr_HWord implies the |
| assumption that the host's word size is 64-bit. */ |
| UInt gstOffL = regNoL == 16 ? OFFB_YMM16 : ymmGuestRegOffset(regNoL); |
| UInt gstOffR = ymmGuestRegOffset(regNoR); |
| IRExpr* opc4 = mkU64(opc); |
| IRExpr* gstOffLe = mkU64(gstOffL); |
| IRExpr* gstOffRe = mkU64(gstOffR); |
| IRExpr** args |
| = mkIRExprVec_3( opc4, gstOffLe, gstOffRe ); |
| |
| IRDirty* d = unsafeIRDirty_0_N( 0/*regparms*/, nm, fn, args ); |
| /* It's not really a dirty call, but we can't use the clean |
| helper mechanism here for the very lame reason that we can't |
| pass 2 x V128s by value to a helper, nor get one back. Hence |
| this roundabout scheme. */ |
| d->needsBBP = True; |
| d->nFxState = 2; |
| vex_bzero(&d->fxState, sizeof(d->fxState)); |
| /* AES{ENC,ENCLAST,DEC,DECLAST} read both registers, and writes |
| the second. |
| AESIMC (0xDB) reads the first register, and writes the second. */ |
| d->fxState[0].fx = Ifx_Read; |
| d->fxState[0].offset = gstOffL; |
| d->fxState[0].size = sizeof(U128); |
| d->fxState[1].fx = (opc == 0xDB ? Ifx_Write : Ifx_Modify); |
| d->fxState[1].offset = gstOffR; |
| d->fxState[1].size = sizeof(U128); |
| |
| stmt( IRStmt_Dirty(d) ); |
| { |
| HChar* opsuf; |
| switch (opc) { |
| case 0xDC: opsuf = "enc"; break; |
| case 0XDD: opsuf = "enclast"; break; |
| case 0xDE: opsuf = "dec"; break; |
| case 0xDF: opsuf = "declast"; break; |
| case 0xDB: opsuf = "imc"; break; |
| default: vassert(0); |
| } |
| DIP("aes%s %s,%s\n", opsuf, |
| (regNoL == 16 ? dis_buf : nameXMMReg(regNoL)), |
| nameXMMReg(regNoR)); |
| } |
| goto decode_success; |
| } |
| break; |
| |
| case 0xF0: |
| case 0xF1: |
| /* F2 0F 38 F0 /r = CRC32 r/m8, r32 (REX.W ok, 66 not ok) |
| F2 0F 38 F1 /r = CRC32 r/m{16,32,64}, r32 |
| The decoding on this is a bit unusual. |
| */ |
| if (haveF2noF3(pfx) |
| && (opc == 0xF1 || (opc == 0xF0 && !have66(pfx)))) { |
| modrm = getUChar(delta); |
| |
| if (opc == 0xF0) |
| sz = 1; |
| else |
| vassert(sz == 2 || sz == 4 || sz == 8); |
| |
| IRType tyE = szToITy(sz); |
| IRTemp valE = newTemp(tyE); |
| |
| if (epartIsReg(modrm)) { |
| assign(valE, getIRegE(sz, pfx, modrm)); |
| delta += 1; |
| DIP("crc32b %s,%s\n", nameIRegE(sz, pfx, modrm), |
| nameIRegG(1==getRexW(pfx) ? 8 : 4, pfx, modrm)); |
| } else { |
| addr = disAMode( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| assign(valE, loadLE(tyE, mkexpr(addr))); |
| delta += alen; |
| DIP("crc32b %s,%s\n", dis_buf, |
| nameIRegG(1==getRexW(pfx) ? 8 : 4, pfx, modrm)); |
| } |
| |
| /* Somewhat funny getting/putting of the crc32 value, in order |
| to ensure that it turns into 64-bit gets and puts. However, |
| mask off the upper 32 bits so as to not get memcheck false |
| +ves around the helper call. */ |
| IRTemp valG0 = newTemp(Ity_I64); |
| assign(valG0, binop(Iop_And64, getIRegG(8, pfx, modrm), |
| mkU64(0xFFFFFFFF))); |
| |
| HChar* nm = NULL; |
| void* fn = NULL; |
| switch (sz) { |
| case 1: nm = "amd64g_calc_crc32b"; |
| fn = &amd64g_calc_crc32b; break; |
| case 2: nm = "amd64g_calc_crc32w"; |
| fn = &amd64g_calc_crc32w; break; |
| case 4: nm = "amd64g_calc_crc32l"; |
| fn = &amd64g_calc_crc32l; break; |
| case 8: nm = "amd64g_calc_crc32q"; |
| fn = &amd64g_calc_crc32q; break; |
| } |
| vassert(nm && fn); |
| IRTemp valG1 = newTemp(Ity_I64); |
| assign(valG1, |
| mkIRExprCCall(Ity_I64, 0/*regparm*/, nm, fn, |
| mkIRExprVec_2(mkexpr(valG0), |
| widenUto64(mkexpr(valE))))); |
| |
| putIRegG(4, pfx, modrm, unop(Iop_64to32, mkexpr(valG1))); |
| goto decode_success; |
| } |
| break; |
| |
| default: |
| break; |
| |
| } |
| |
| //decode_failure: |
| *decode_OK = False; |
| return deltaIN; |
| |
| decode_success: |
| *decode_OK = True; |
| return delta; |
| } |
| |
| |
| /*------------------------------------------------------------*/ |
| /*--- ---*/ |
| /*--- Top-level SSE4: dis_ESC_0F3A__SSE4 ---*/ |
| /*--- ---*/ |
| /*------------------------------------------------------------*/ |
| |
| static Long dis_PEXTRD ( VexAbiInfo* vbi, Prefix pfx, |
| Long delta, Bool isAvx ) |
| { |
| IRTemp addr = IRTemp_INVALID; |
| IRTemp t0 = IRTemp_INVALID; |
| IRTemp t1 = IRTemp_INVALID; |
| IRTemp t2 = IRTemp_INVALID; |
| IRTemp t3 = IRTemp_INVALID; |
| UChar modrm = 0; |
| Int alen = 0; |
| HChar dis_buf[50]; |
| |
| Int imm8_10; |
| IRTemp xmm_vec = newTemp(Ity_V128); |
| IRTemp src_dword = newTemp(Ity_I32); |
| HChar* mbV = isAvx ? "v" : ""; |
| |
| vassert(0==getRexW(pfx)); /* ensured by caller */ |
| modrm = getUChar(delta); |
| assign( xmm_vec, getXMMReg( gregOfRexRM(pfx,modrm) ) ); |
| breakup128to32s( xmm_vec, &t3, &t2, &t1, &t0 ); |
| |
| if ( epartIsReg( modrm ) ) { |
| imm8_10 = (Int)(getUChar(delta+1) & 3); |
| } else { |
| addr = disAMode( &alen, vbi, pfx, delta, dis_buf, 1 ); |
| imm8_10 = (Int)(getUChar(delta+alen) & 3); |
| } |
| |
| switch ( imm8_10 ) { |
| case 0: assign( src_dword, mkexpr(t0) ); break; |
| case 1: assign( src_dword, mkexpr(t1) ); break; |
| case 2: assign( src_dword, mkexpr(t2) ); break; |
| case 3: assign( src_dword, mkexpr(t3) ); break; |
| default: vassert(0); |
| } |
| |
| if ( epartIsReg( modrm ) ) { |
| putIReg32( eregOfRexRM(pfx,modrm), mkexpr(src_dword) ); |
| delta += 1+1; |
| DIP( "%spextrd $%d, %s,%s\n", mbV, imm8_10, |
| nameXMMReg( gregOfRexRM(pfx, modrm) ), |
| nameIReg32( eregOfRexRM(pfx, modrm) ) ); |
| } else { |
| storeLE( mkexpr(addr), mkexpr(src_dword) ); |
| delta += alen+1; |
| DIP( "%spextrd $%d, %s,%s\n", mbV, |
| imm8_10, nameXMMReg( gregOfRexRM(pfx, modrm) ), dis_buf ); |
| } |
| return delta; |
| } |
| |
| |
| /* This can fail, in which case it returns the original (unchanged) |
| delta. */ |
| static Long dis_PCMPxSTRx ( VexAbiInfo* vbi, Prefix pfx, |
| Long delta, Bool isAvx, UChar opc ) |
| { |
| Long delta0 = delta; |
| UInt isISTRx = opc & 2; |
| UInt isxSTRM = (opc & 1) ^ 1; |
| UInt regNoL = 0; |
| UInt regNoR = 0; |
| UChar imm = 0; |
| IRTemp addr = IRTemp_INVALID; |
| Int alen = 0; |
| HChar dis_buf[50]; |
| |
| /* This is a nasty kludge. We need to pass 2 x V128 to the helper |
| (which is clean). Since we can't do that, use a dirty helper to |
| compute the results directly from the XMM regs in the guest |
| state. That means for the memory case, we need to move the left |
| operand into a pseudo-register (XMM16, let's call it). */ |
| UChar modrm = getUChar(delta); |
| if (epartIsReg(modrm)) { |
| regNoL = eregOfRexRM(pfx, modrm); |
| regNoR = gregOfRexRM(pfx, modrm); |
| imm = getUChar(delta+1); |
| delta += 1+1; |
| } else { |
| regNoL = 16; /* use XMM16 as an intermediary */ |
| regNoR = gregOfRexRM(pfx, modrm); |
| addr = disAMode( &alen, vbi, pfx, delta, dis_buf, 1 ); |
| /* No alignment check; I guess that makes sense, given that |
| these insns are for dealing with C style strings. */ |
| stmt( IRStmt_Put( OFFB_YMM16, loadLE(Ity_V128, mkexpr(addr)) )); |
| imm = getUChar(delta+alen); |
| delta += alen+1; |
| } |
| |
| /* Now we know the XMM reg numbers for the operands, and the |
| immediate byte. Is it one we can actually handle? Throw out any |
| cases for which the helper function has not been verified. */ |
| switch (imm) { |
| case 0x00: |
| case 0x02: case 0x08: case 0x0A: case 0x0C: case 0x12: |
| case 0x1A: case 0x38: case 0x3A: case 0x44: case 0x4A: |
| break; |
| case 0x01: // the 16-bit character versions of the above |
| case 0x03: case 0x09: case 0x0B: case 0x0D: case 0x13: |
| case 0x1B: case 0x39: case 0x3B: case 0x45: case 0x4B: |
| break; |
| default: |
| return delta0; /*FAIL*/ |
| } |
| |
| /* Who ya gonna call? Presumably not Ghostbusters. */ |
| void* fn = &amd64g_dirtyhelper_PCMPxSTRx; |
| HChar* nm = "amd64g_dirtyhelper_PCMPxSTRx"; |
| |
| /* Round up the arguments. Note that this is a kludge -- the use |
| of mkU64 rather than mkIRExpr_HWord implies the assumption that |
| the host's word size is 64-bit. */ |
| UInt gstOffL = regNoL == 16 ? OFFB_YMM16 : ymmGuestRegOffset(regNoL); |
| UInt gstOffR = ymmGuestRegOffset(regNoR); |
| |
| IRExpr* opc4_and_imm = mkU64((opc << 8) | (imm & 0xFF)); |
| IRExpr* gstOffLe = mkU64(gstOffL); |
| IRExpr* gstOffRe = mkU64(gstOffR); |
| IRExpr* edxIN = isISTRx ? mkU64(0) : getIRegRDX(8); |
| IRExpr* eaxIN = isISTRx ? mkU64(0) : getIRegRAX(8); |
| IRExpr** args |
| = mkIRExprVec_5( opc4_and_imm, gstOffLe, gstOffRe, edxIN, eaxIN ); |
| |
| IRTemp resT = newTemp(Ity_I64); |
| IRDirty* d = unsafeIRDirty_1_N( resT, 0/*regparms*/, nm, fn, args ); |
| /* It's not really a dirty call, but we can't use the clean helper |
| mechanism here for the very lame reason that we can't pass 2 x |
| V128s by value to a helper, nor get one back. Hence this |
| roundabout scheme. */ |
| d->needsBBP = True; |
| d->nFxState = 2; |
| vex_bzero(&d->fxState, sizeof(d->fxState)); |
| d->fxState[0].fx = Ifx_Read; |
| d->fxState[0].offset = gstOffL; |
| d->fxState[0].size = sizeof(U128); |
| d->fxState[1].fx = Ifx_Read; |
| d->fxState[1].offset = gstOffR; |
| d->fxState[1].size = sizeof(U128); |
| if (isxSTRM) { |
| /* Declare that the helper writes XMM0. */ |
| d->nFxState = 3; |
| d->fxState[2].fx = Ifx_Write; |
| d->fxState[2].offset = ymmGuestRegOffset(0); |
| d->fxState[2].size = sizeof(U128); |
| } |
| |
| stmt( IRStmt_Dirty(d) ); |
| |
| /* Now resT[15:0] holds the new OSZACP values, so the condition |
| codes must be updated. And for a xSTRI case, resT[31:16] holds |
| the new ECX value, so stash that too. */ |
| if (!isxSTRM) { |
| putIReg64(R_RCX, binop(Iop_And64, |
| binop(Iop_Shr64, mkexpr(resT), mkU8(16)), |
| mkU64(0xFFFF))); |
| } |
| |
| /* Zap the upper half of the dest reg as per AVX conventions. */ |
| if (isxSTRM && isAvx) |
| putYMMRegLane128(/*YMM*/0, 1, mkV128(0)); |
| |
| stmt( IRStmt_Put( |
| OFFB_CC_DEP1, |
| binop(Iop_And64, mkexpr(resT), mkU64(0xFFFF)) |
| )); |
| stmt( IRStmt_Put( OFFB_CC_OP, mkU64(AMD64G_CC_OP_COPY) )); |
| stmt( IRStmt_Put( OFFB_CC_DEP2, mkU64(0) )); |
| stmt( IRStmt_Put( OFFB_CC_NDEP, mkU64(0) )); |
| |
| if (regNoL == 16) { |
| DIP("%spcmp%cstr%c $%x,%s,%s\n", |
| isAvx ? "v" : "", isISTRx ? 'i' : 'e', isxSTRM ? 'm' : 'i', |
| (UInt)imm, dis_buf, nameXMMReg(regNoR)); |
| } else { |
| DIP("%spcmp%cstr%c $%x,%s,%s\n", |
| isAvx ? "v" : "", isISTRx ? 'i' : 'e', isxSTRM ? 'm' : 'i', |
| (UInt)imm, nameXMMReg(regNoL), nameXMMReg(regNoR)); |
| } |
| |
| return delta; |
| } |
| |
| |
| static IRTemp math_PINSRD_128 ( IRTemp v128, IRTemp u32, UInt imm8 ) |
| { |
| IRTemp z32 = newTemp(Ity_I32); |
| assign(z32, mkU32(0)); |
| |
| /* Surround u32 with zeroes as per imm, giving us something we can |
| OR into a suitably masked-out v128.*/ |
| IRTemp withZs = newTemp(Ity_V128); |
| UShort mask = 0; |
| switch (imm8) { |
| case 3: mask = 0x0FFF; |
| assign(withZs, mk128from32s(u32, z32, z32, z32)); |
| break; |
| case 2: mask = 0xF0FF; |
| assign(withZs, mk128from32s(z32, u32, z32, z32)); |
| break; |
| case 1: mask = 0xFF0F; |
| assign(withZs, mk128from32s(z32, z32, u32, z32)); |
| break; |
| case 0: mask = 0xFFF0; |
| assign(withZs, mk128from32s(z32, z32, z32, u32)); |
| break; |
| default: vassert(0); |
| } |
| |
| IRTemp res = newTemp(Ity_V128); |
| assign(res, binop( Iop_OrV128, |
| mkexpr(withZs), |
| binop( Iop_AndV128, mkexpr(v128), mkV128(mask) ) ) ); |
| return res; |
| } |
| |
| |
| static IRTemp math_PINSRQ_128 ( IRTemp v128, IRTemp u64, UInt imm8 ) |
| { |
| /* Surround u64 with zeroes as per imm, giving us something we can |
| OR into a suitably masked-out v128.*/ |
| IRTemp withZs = newTemp(Ity_V128); |
| UShort mask = 0; |
| if (imm8 == 0) { |
| mask = 0xFF00; |
| assign(withZs, binop(Iop_64HLtoV128, mkU64(0), mkexpr(u64))); |
| } else { |
| vassert(imm8 == 1); |
| mask = 0x00FF; |
| assign( withZs, binop(Iop_64HLtoV128, mkexpr(u64), mkU64(0))); |
| } |
| |
| IRTemp res = newTemp(Ity_V128); |
| assign( res, binop( Iop_OrV128, |
| mkexpr(withZs), |
| binop( Iop_AndV128, mkexpr(v128), mkV128(mask) ) ) ); |
| return res; |
| } |
| |
| |
| static IRTemp math_INSERTPS ( IRTemp dstV, IRTemp toInsertD, UInt imm8 ) |
| { |
| const IRTemp inval = IRTemp_INVALID; |
| IRTemp dstDs[4] = { inval, inval, inval, inval }; |
| breakup128to32s( dstV, &dstDs[3], &dstDs[2], &dstDs[1], &dstDs[0] ); |
| |
| vassert(imm8 <= 255); |
| dstDs[(imm8 >> 4) & 3] = toInsertD; /* "imm8_count_d" */ |
| |
| UInt imm8_zmask = (imm8 & 15); |
| IRTemp zero_32 = newTemp(Ity_I32); |
| assign( zero_32, mkU32(0) ); |
| IRTemp resV = newTemp(Ity_V128); |
| assign( resV, mk128from32s( |
| ((imm8_zmask & 8) == 8) ? zero_32 : dstDs[3], |
| ((imm8_zmask & 4) == 4) ? zero_32 : dstDs[2], |
| ((imm8_zmask & 2) == 2) ? zero_32 : dstDs[1], |
| ((imm8_zmask & 1) == 1) ? zero_32 : dstDs[0]) ); |
| return resV; |
| } |
| |
| |
| __attribute__((noinline)) |
| static |
| Long dis_ESC_0F3A__SSE4 ( Bool* decode_OK, |
| VexAbiInfo* vbi, |
| Prefix pfx, Int sz, Long deltaIN ) |
| { |
| IRTemp addr = IRTemp_INVALID; |
| IRTemp t0 = IRTemp_INVALID; |
| IRTemp t1 = IRTemp_INVALID; |
| IRTemp t2 = IRTemp_INVALID; |
| IRTemp t3 = IRTemp_INVALID; |
| UChar modrm = 0; |
| Int alen = 0; |
| HChar dis_buf[50]; |
| |
| *decode_OK = False; |
| |
| Long delta = deltaIN; |
| UChar opc = getUChar(delta); |
| delta++; |
| switch (opc) { |
| |
| case 0x08: |
| /* 66 0F 3A 08 /r ib = ROUNDPS imm8, xmm2/m128, xmm1 */ |
| if (have66noF2noF3(pfx) && sz == 2) { |
| |
| IRTemp src0 = newTemp(Ity_F32); |
| IRTemp src1 = newTemp(Ity_F32); |
| IRTemp src2 = newTemp(Ity_F32); |
| IRTemp src3 = newTemp(Ity_F32); |
| IRTemp res0 = newTemp(Ity_F32); |
| IRTemp res1 = newTemp(Ity_F32); |
| IRTemp res2 = newTemp(Ity_F32); |
| IRTemp res3 = newTemp(Ity_F32); |
| IRTemp rm = newTemp(Ity_I32); |
| Int imm = 0; |
| |
| modrm = getUChar(delta); |
| |
| if (epartIsReg(modrm)) { |
| assign( src0, |
| getXMMRegLane32F( eregOfRexRM(pfx, modrm), 0 ) ); |
| assign( src1, |
| getXMMRegLane32F( eregOfRexRM(pfx, modrm), 1 ) ); |
| assign( src2, |
| getXMMRegLane32F( eregOfRexRM(pfx, modrm), 2 ) ); |
| assign( src3, |
| getXMMRegLane32F( eregOfRexRM(pfx, modrm), 3 ) ); |
| imm = getUChar(delta+1); |
| if (imm & ~15) goto decode_failure; |
| delta += 1+1; |
| DIP( "roundps $%d,%s,%s\n", |
| imm, nameXMMReg( eregOfRexRM(pfx, modrm) ), |
| nameXMMReg( gregOfRexRM(pfx, modrm) ) ); |
| } else { |
| addr = disAMode( &alen, vbi, pfx, delta, dis_buf, 1 ); |
| gen_SEGV_if_not_16_aligned(addr); |
| assign( src0, loadLE(Ity_F32, |
| binop(Iop_Add64, mkexpr(addr), mkU64(0) ))); |
| assign( src1, loadLE(Ity_F32, |
| binop(Iop_Add64, mkexpr(addr), mkU64(4) ))); |
| assign( src2, loadLE(Ity_F32, |
| binop(Iop_Add64, mkexpr(addr), mkU64(8) ))); |
| assign( src3, loadLE(Ity_F32, |
| binop(Iop_Add64, mkexpr(addr), mkU64(12) ))); |
| imm = getUChar(delta+alen); |
| if (imm & ~15) goto decode_failure; |
| delta += alen+1; |
| DIP( "roundps $%d,%s,%s\n", |
| imm, dis_buf, nameXMMReg( gregOfRexRM(pfx, modrm) ) ); |
| } |
| |
| /* (imm & 3) contains an Intel-encoded rounding mode. Because |
| that encoding is the same as the encoding for IRRoundingMode, |
| we can use that value directly in the IR as a rounding |
| mode. */ |
| assign(rm, (imm & 4) ? get_sse_roundingmode() : mkU32(imm & 3)); |
| |
| assign(res0, binop(Iop_RoundF32toInt, mkexpr(rm), mkexpr(src0)) ); |
| assign(res1, binop(Iop_RoundF32toInt, mkexpr(rm), mkexpr(src1)) ); |
| assign(res2, binop(Iop_RoundF32toInt, mkexpr(rm), mkexpr(src2)) ); |
| assign(res3, binop(Iop_RoundF32toInt, mkexpr(rm), mkexpr(src3)) ); |
| |
| putXMMRegLane32F( gregOfRexRM(pfx, modrm), 0, mkexpr(res0) ); |
| putXMMRegLane32F( gregOfRexRM(pfx, modrm), 1, mkexpr(res1) ); |
| putXMMRegLane32F( gregOfRexRM(pfx, modrm), 2, mkexpr(res2) ); |
| putXMMRegLane32F( gregOfRexRM(pfx, modrm), 3, mkexpr(res3) ); |
| |
| goto decode_success; |
| } |
| break; |
| |
| case 0x09: |
| /* 66 0F 3A 09 /r ib = ROUNDPD imm8, xmm2/m128, xmm1 */ |
| if (have66noF2noF3(pfx) && sz == 2) { |
| |
| IRTemp src0 = newTemp(Ity_F64); |
| IRTemp src1 = newTemp(Ity_F64); |
| IRTemp res0 = newTemp(Ity_F64); |
| IRTemp res1 = newTemp(Ity_F64); |
| IRTemp rm = newTemp(Ity_I32); |
| Int imm = 0; |
| |
| modrm = getUChar(delta); |
| |
| if (epartIsReg(modrm)) { |
| assign( src0, |
| getXMMRegLane64F( eregOfRexRM(pfx, modrm), 0 ) ); |
| assign( src1, |
| getXMMRegLane64F( eregOfRexRM(pfx, modrm), 1 ) ); |
| imm = getUChar(delta+1); |
| if (imm & ~15) goto decode_failure; |
| delta += 1+1; |
| DIP( "roundpd $%d,%s,%s\n", |
| imm, nameXMMReg( eregOfRexRM(pfx, modrm) ), |
| nameXMMReg( gregOfRexRM(pfx, modrm) ) ); |
| } else { |
| addr = disAMode( &alen, vbi, pfx, delta, dis_buf, 1 ); |
| gen_SEGV_if_not_16_aligned(addr); |
| assign( src0, loadLE(Ity_F64, |
| binop(Iop_Add64, mkexpr(addr), mkU64(0) ))); |
| assign( src1, loadLE(Ity_F64, |
| binop(Iop_Add64, mkexpr(addr), mkU64(8) ))); |
| imm = getUChar(delta+alen); |
| if (imm & ~15) goto decode_failure; |
| delta += alen+1; |
| DIP( "roundpd $%d,%s,%s\n", |
| imm, dis_buf, nameXMMReg( gregOfRexRM(pfx, modrm) ) ); |
| } |
| |
| /* (imm & 3) contains an Intel-encoded rounding mode. Because |
| that encoding is the same as the encoding for IRRoundingMode, |
| we can use that value directly in the IR as a rounding |
| mode. */ |
| assign(rm, (imm & 4) ? get_sse_roundingmode() : mkU32(imm & 3)); |
| |
| assign(res0, binop(Iop_RoundF64toInt, mkexpr(rm), mkexpr(src0)) ); |
| assign(res1, binop(Iop_RoundF64toInt, mkexpr(rm), mkexpr(src1)) ); |
| |
| putXMMRegLane64F( gregOfRexRM(pfx, modrm), 0, mkexpr(res0) ); |
| putXMMRegLane64F( gregOfRexRM(pfx, modrm), 1, mkexpr(res1) ); |
| |
| goto decode_success; |
| } |
| break; |
| |
| case 0x0A: |
| case 0x0B: |
| /* 66 0F 3A 0A /r ib = ROUNDSS imm8, xmm2/m32, xmm1 |
| 66 0F 3A 0B /r ib = ROUNDSD imm8, xmm2/m64, xmm1 |
| */ |
| if (have66noF2noF3(pfx) && sz == 2) { |
| |
| Bool isD = opc == 0x0B; |
| IRTemp src = newTemp(isD ? Ity_F64 : Ity_F32); |
| IRTemp res = newTemp(isD ? Ity_F64 : Ity_F32); |
| Int imm = 0; |
| |
| modrm = getUChar(delta); |
| |
| if (epartIsReg(modrm)) { |
| assign( src, |
| isD ? getXMMRegLane64F( eregOfRexRM(pfx, modrm), 0 ) |
| : getXMMRegLane32F( eregOfRexRM(pfx, modrm), 0 ) ); |
| imm = getUChar(delta+1); |
| if (imm & ~15) goto decode_failure; |
| delta += 1+1; |
| DIP( "rounds%c $%d,%s,%s\n", |
| isD ? 'd' : 's', |
| imm, nameXMMReg( eregOfRexRM(pfx, modrm) ), |
| nameXMMReg( gregOfRexRM(pfx, modrm) ) ); |
| } else { |
| addr = disAMode( &alen, vbi, pfx, delta, dis_buf, 1 ); |
| assign( src, loadLE( isD ? Ity_F64 : Ity_F32, mkexpr(addr) )); |
| imm = getUChar(delta+alen); |
| if (imm & ~15) goto decode_failure; |
| delta += alen+1; |
| DIP( "rounds%c $%d,%s,%s\n", |
| isD ? 'd' : 's', |
| imm, dis_buf, nameXMMReg( gregOfRexRM(pfx, modrm) ) ); |
| } |
| |
| /* (imm & 3) contains an Intel-encoded rounding mode. Because |
| that encoding is the same as the encoding for IRRoundingMode, |
| we can use that value directly in the IR as a rounding |
| mode. */ |
| assign(res, binop(isD ? Iop_RoundF64toInt : Iop_RoundF32toInt, |
| (imm & 4) ? get_sse_roundingmode() |
| : mkU32(imm & 3), |
| mkexpr(src)) ); |
| |
| if (isD) |
| putXMMRegLane64F( gregOfRexRM(pfx, modrm), 0, mkexpr(res) ); |
| else |
| putXMMRegLane32F( gregOfRexRM(pfx, modrm), 0, mkexpr(res) ); |
| |
| goto decode_success; |
| } |
| break; |
| |
| case 0x0C: |
| /* 66 0F 3A 0C /r ib = BLENDPS xmm1, xmm2/m128, imm8 |
| Blend Packed Single Precision Floating-Point Values (XMM) */ |
| if (have66noF2noF3(pfx) && sz == 2) { |
| |
| Int imm8; |
| IRTemp dst_vec = newTemp(Ity_V128); |
| IRTemp src_vec = newTemp(Ity_V128); |
| |
| modrm = getUChar(delta); |
| |
| assign( dst_vec, getXMMReg( gregOfRexRM(pfx, modrm) ) ); |
| |
| if ( epartIsReg( modrm ) ) { |
| imm8 = (Int)getUChar(delta+1); |
| assign( src_vec, getXMMReg( eregOfRexRM(pfx, modrm) ) ); |
| delta += 1+1; |
| DIP( "blendps $%d, %s,%s\n", imm8, |
| nameXMMReg( eregOfRexRM(pfx, modrm) ), |
| nameXMMReg( gregOfRexRM(pfx, modrm) ) ); |
| } else { |
| addr = disAMode( &alen, vbi, pfx, delta, dis_buf, |
| 1/* imm8 is 1 byte after the amode */ ); |
| gen_SEGV_if_not_16_aligned( addr ); |
| assign( src_vec, loadLE( Ity_V128, mkexpr(addr) ) ); |
| imm8 = (Int)getUChar(delta+alen); |
| delta += alen+1; |
| DIP( "blendpd $%d, %s,%s\n", |
| imm8, dis_buf, nameXMMReg( gregOfRexRM(pfx, modrm) ) ); |
| } |
| |
| UShort imm8_perms[16] = { 0x0000, 0x000F, 0x00F0, 0x00FF, 0x0F00, |
| 0x0F0F, 0x0FF0, 0x0FFF, 0xF000, 0xF00F, |
| 0xF0F0, 0xF0FF, 0xFF00, 0xFF0F, 0xFFF0, |
| 0xFFFF }; |
| IRTemp imm8_mask = newTemp(Ity_V128); |
| assign( imm8_mask, mkV128( imm8_perms[ (imm8 & 15) ] ) ); |
| |
| putXMMReg( gregOfRexRM(pfx, modrm), |
| binop( Iop_OrV128, |
| binop( Iop_AndV128, mkexpr(src_vec), |
| mkexpr(imm8_mask) ), |
| binop( Iop_AndV128, mkexpr(dst_vec), |
| unop( Iop_NotV128, mkexpr(imm8_mask) ) ) ) ); |
| |
| goto decode_success; |
| } |
| break; |
| |
| case 0x0D: |
| /* 66 0F 3A 0D /r ib = BLENDPD xmm1, xmm2/m128, imm8 |
| Blend Packed Double Precision Floating-Point Values (XMM) */ |
| if (have66noF2noF3(pfx) && sz == 2) { |
| |
| Int imm8; |
| UShort imm8_mask_16; |
| |
| IRTemp dst_vec = newTemp(Ity_V128); |
| IRTemp src_vec = newTemp(Ity_V128); |
| IRTemp imm8_mask = newTemp(Ity_V128); |
| |
| modrm = getUChar(delta); |
| assign( dst_vec, getXMMReg( gregOfRexRM(pfx, modrm) ) ); |
| |
| if ( epartIsReg( modrm ) ) { |
| imm8 = (Int)getUChar(delta+1); |
| assign( src_vec, getXMMReg( eregOfRexRM(pfx, modrm) ) ); |
| delta += 1+1; |
| DIP( "blendpd $%d, %s,%s\n", imm8, |
| nameXMMReg( eregOfRexRM(pfx, modrm) ), |
| nameXMMReg( gregOfRexRM(pfx, modrm) ) ); |
| } else { |
| addr = disAMode( &alen, vbi, pfx, delta, dis_buf, |
| 1/* imm8 is 1 byte after the amode */ ); |
| gen_SEGV_if_not_16_aligned( addr ); |
| assign( src_vec, loadLE( Ity_V128, mkexpr(addr) ) ); |
| imm8 = (Int)getUChar(delta+alen); |
| delta += alen+1; |
| DIP( "blendpd $%d, %s,%s\n", |
| imm8, dis_buf, nameXMMReg( gregOfRexRM(pfx, modrm) ) ); |
| } |
| |
| switch( imm8 & 3 ) { |
| case 0: imm8_mask_16 = 0x0000; break; |
| case 1: imm8_mask_16 = 0x00FF; break; |
| case 2: imm8_mask_16 = 0xFF00; break; |
| case 3: imm8_mask_16 = 0xFFFF; break; |
| default: vassert(0); break; |
| } |
| assign( imm8_mask, mkV128( imm8_mask_16 ) ); |
| |
| putXMMReg( gregOfRexRM(pfx, modrm), |
| binop( Iop_OrV128, |
| binop( Iop_AndV128, mkexpr(src_vec), |
| mkexpr(imm8_mask) ), |
| binop( Iop_AndV128, mkexpr(dst_vec), |
| unop( Iop_NotV128, mkexpr(imm8_mask) ) ) ) ); |
| |
| goto decode_success; |
| } |
| break; |
| |
| case 0x0E: |
| /* 66 0F 3A 0E /r ib = PBLENDW xmm1, xmm2/m128, imm8 |
| Blend Packed Words (XMM) */ |
| if (have66noF2noF3(pfx) && sz == 2) { |
| |
| Int imm8; |
| IRTemp dst_vec = newTemp(Ity_V128); |
| IRTemp src_vec = newTemp(Ity_V128); |
| |
| modrm = getUChar(delta); |
| |
| assign( dst_vec, getXMMReg( gregOfRexRM(pfx, modrm) ) ); |
| |
| if ( epartIsReg( modrm ) ) { |
| imm8 = (Int)getUChar(delta+1); |
| assign( src_vec, getXMMReg( eregOfRexRM(pfx, modrm) ) ); |
| delta += 1+1; |
| DIP( "pblendw $%d, %s,%s\n", imm8, |
| nameXMMReg( eregOfRexRM(pfx, modrm) ), |
| nameXMMReg( gregOfRexRM(pfx, modrm) ) ); |
| } else { |
| addr = disAMode( &alen, vbi, pfx, delta, dis_buf, |
| 1/* imm8 is 1 byte after the amode */ ); |
| gen_SEGV_if_not_16_aligned( addr ); |
| assign( src_vec, loadLE( Ity_V128, mkexpr(addr) ) ); |
| imm8 = (Int)getUChar(delta+alen); |
| delta += alen+1; |
| DIP( "pblendw $%d, %s,%s\n", |
| imm8, dis_buf, nameXMMReg( gregOfRexRM(pfx, modrm) ) ); |
| } |
| |
| /* Make w be a 16-bit version of imm8, formed by duplicating each |
| bit in imm8. */ |
| Int i; |
| UShort imm16 = 0; |
| for (i = 0; i < 8; i++) { |
| if (imm8 & (1 << i)) |
| imm16 |= (3 << (2*i)); |
| } |
| IRTemp imm16_mask = newTemp(Ity_V128); |
| assign( imm16_mask, mkV128( imm16 )); |
| |
| putXMMReg( gregOfRexRM(pfx, modrm), |
| binop( Iop_OrV128, |
| binop( Iop_AndV128, mkexpr(src_vec), |
| mkexpr(imm16_mask) ), |
| binop( Iop_AndV128, mkexpr(dst_vec), |
| unop( Iop_NotV128, mkexpr(imm16_mask) ) ) ) ); |
| |
| goto decode_success; |
| } |
| break; |
| |
| case 0x14: |
| /* 66 0F 3A 14 /r ib = PEXTRB r/m16, xmm, imm8 |
| Extract Byte from xmm, store in mem or zero-extend + store in gen.reg. |
| (XMM) */ |
| if (have66noF2noF3(pfx) && sz == 2) { |
| |
| Int imm8; |
| IRTemp xmm_vec = newTemp(Ity_V128); |
| IRTemp sel_lane = newTemp(Ity_I32); |
| IRTemp shr_lane = newTemp(Ity_I32); |
| |
| modrm = getUChar(delta); |
| assign( xmm_vec, getXMMReg( gregOfRexRM(pfx,modrm) ) ); |
| breakup128to32s( xmm_vec, &t3, &t2, &t1, &t0 ); |
| |
| if ( epartIsReg( modrm ) ) { |
| imm8 = (Int)getUChar(delta+1); |
| } else { |
| addr = disAMode( &alen, vbi, pfx, delta, dis_buf, 1 ); |
| imm8 = (Int)getUChar(delta+alen); |
| } |
| switch( (imm8 >> 2) & 3 ) { |
| case 0: assign( sel_lane, mkexpr(t0) ); break; |
| case 1: assign( sel_lane, mkexpr(t1) ); break; |
| case 2: assign( sel_lane, mkexpr(t2) ); break; |
| case 3: assign( sel_lane, mkexpr(t3) ); break; |
| default: vassert(0); |
| } |
| assign( shr_lane, |
| binop( Iop_Shr32, mkexpr(sel_lane), mkU8(((imm8 & 3)*8)) ) ); |
| |
| if ( epartIsReg( modrm ) ) { |
| putIReg64( eregOfRexRM(pfx,modrm), |
| unop( Iop_32Uto64, |
| binop(Iop_And32, mkexpr(shr_lane), mkU32(255)) ) ); |
| |
| delta += 1+1; |
| DIP( "pextrb $%d, %s,%s\n", imm8, |
| nameXMMReg( gregOfRexRM(pfx, modrm) ), |
| nameIReg64( eregOfRexRM(pfx, modrm) ) ); |
| } else { |
| storeLE( mkexpr(addr), unop(Iop_32to8, mkexpr(shr_lane) ) ); |
| delta += alen+1; |
| DIP( "$%d, pextrb %s,%s\n", |
| imm8, nameXMMReg( gregOfRexRM(pfx, modrm) ), dis_buf ); |
| } |
| |
| goto decode_success; |
| } |
| break; |
| |
| case 0x15: |
| /* 66 0F 3A 15 /r ib = PEXTRW r/m16, xmm, imm8 |
| Extract Word from xmm, store in mem or zero-extend + store in gen.reg. |
| (XMM) */ |
| if (have66noF2noF3(pfx) && sz == 2) { |
| |
| Int imm8_20; |
| IRTemp xmm_vec = newTemp(Ity_V128); |
| IRTemp src_word = newTemp(Ity_I16); |
| |
| modrm = getUChar(delta); |
| assign( xmm_vec, getXMMReg( gregOfRexRM(pfx,modrm) ) ); |
| breakup128to32s( xmm_vec, &t3, &t2, &t1, &t0 ); |
| |
| if ( epartIsReg( modrm ) ) { |
| imm8_20 = (Int)(getUChar(delta+1) & 7); |
| } else { |
| addr = disAMode( &alen, vbi, pfx, delta, dis_buf, 1 ); |
| imm8_20 = (Int)(getUChar(delta+alen) & 7); |
| } |
| |
| switch ( imm8_20 ) { |
| case 0: assign( src_word, unop(Iop_32to16, mkexpr(t0)) ); break; |
| case 1: assign( src_word, unop(Iop_32HIto16, mkexpr(t0)) ); break; |
| case 2: assign( src_word, unop(Iop_32to16, mkexpr(t1)) ); break; |
| case 3: assign( src_word, unop(Iop_32HIto16, mkexpr(t1)) ); break; |
| case 4: assign( src_word, unop(Iop_32to16, mkexpr(t2)) ); break; |
| case 5: assign( src_word, unop(Iop_32HIto16, mkexpr(t2)) ); break; |
| case 6: assign( src_word, unop(Iop_32to16, mkexpr(t3)) ); break; |
| case 7: assign( src_word, unop(Iop_32HIto16, mkexpr(t3)) ); break; |
| default: vassert(0); |
| } |
| |
| if ( epartIsReg( modrm ) ) { |
| putIReg64( eregOfRexRM(pfx,modrm), |
| unop(Iop_16Uto64, mkexpr(src_word)) ); |
| delta += 1+1; |
| DIP( "pextrw $%d, %s,%s\n", imm8_20, |
| nameXMMReg( gregOfRexRM(pfx, modrm) ), |
| nameIReg64( eregOfRexRM(pfx, modrm) ) ); |
| } else { |
| storeLE( mkexpr(addr), mkexpr(src_word) ); |
| delta += alen+1; |
| DIP( "pextrw $%d, %s,%s\n", |
| imm8_20, nameXMMReg( gregOfRexRM(pfx, modrm) ), dis_buf ); |
| } |
| |
| goto decode_success; |
| } |
| break; |
| |
| case 0x16: |
| /* 66 no-REX.W 0F 3A 16 /r ib = PEXTRD reg/mem32, xmm2, imm8 |
| Extract Doubleword int from xmm reg and store in gen.reg or mem. (XMM) |
| Note that this insn has the same opcodes as PEXTRQ, but |
| here the REX.W bit is _not_ present */ |
| if (have66noF2noF3(pfx) |
| && sz == 2 /* REX.W is _not_ present */) { |
| delta = dis_PEXTRD( vbi, pfx, delta, False/*!isAvx*/ ); |
| goto decode_success; |
| } |
| /* 66 REX.W 0F 3A 16 /r ib = PEXTRQ reg/mem64, xmm2, imm8 |
| Extract Quadword int from xmm reg and store in gen.reg or mem. (XMM) |
| Note that this insn has the same opcodes as PEXTRD, but |
| here the REX.W bit is present */ |
| if (have66noF2noF3(pfx) |
| && sz == 8 /* REX.W is present */) { |
| |
| Int imm8_0; |
| IRTemp xmm_vec = newTemp(Ity_V128); |
| IRTemp src_qword = newTemp(Ity_I64); |
| |
| modrm = getUChar(delta); |
| assign( xmm_vec, getXMMReg( gregOfRexRM(pfx,modrm) ) ); |
| |
| if ( epartIsReg( modrm ) ) { |
| imm8_0 = (Int)(getUChar(delta+1) & 1); |
| } else { |
| addr = disAMode( &alen, vbi, pfx, delta, dis_buf, 1 ); |
| imm8_0 = (Int)(getUChar(delta+alen) & 1); |
| } |
| switch ( imm8_0 ) { |
| case 0: assign( src_qword, unop(Iop_V128to64, mkexpr(xmm_vec)) ); |
| break; |
| case 1: assign( src_qword, unop(Iop_V128HIto64, mkexpr(xmm_vec)) ); |
| break; |
| default: vassert(0); |
| } |
| |
| if ( epartIsReg( modrm ) ) { |
| putIReg64( eregOfRexRM(pfx,modrm), mkexpr(src_qword) ); |
| delta += 1+1; |
| DIP( "pextrq $%d, %s,%s\n", imm8_0, |
| nameXMMReg( gregOfRexRM(pfx, modrm) ), |
| nameIReg64( eregOfRexRM(pfx, modrm) ) ); |
| } else { |
| storeLE( mkexpr(addr), mkexpr(src_qword) ); |
| delta += alen+1; |
| DIP( "pextrq $%d, %s,%s\n", |
| imm8_0, nameXMMReg( gregOfRexRM(pfx, modrm) ), dis_buf ); |
| } |
| |
| goto decode_success; |
| } |
| break; |
| |
| case 0x17: |
| /* 66 0F 3A 17 /r ib = EXTRACTPS reg/mem32, xmm2, imm8 Extract |
| float from xmm reg and store in gen.reg or mem. This is |
| identical to PEXTRD, except that REX.W appears to be ignored. |
| */ |
| if (have66noF2noF3(pfx) |
| && (sz == 2 || /* ignore redundant REX.W */ sz == 8)) { |
| |
| Int imm8_10; |
| IRTemp xmm_vec = newTemp(Ity_V128); |
| IRTemp src_dword = newTemp(Ity_I32); |
| |
| modrm = getUChar(delta); |
| assign( xmm_vec, getXMMReg( gregOfRexRM(pfx,modrm) ) ); |
| breakup128to32s( xmm_vec, &t3, &t2, &t1, &t0 ); |
| |
| if ( epartIsReg( modrm ) ) { |
| imm8_10 = (Int)(getUChar(delta+1) & 3); |
| } else { |
| addr = disAMode( &alen, vbi, pfx, delta, dis_buf, 1 ); |
| imm8_10 = (Int)(getUChar(delta+alen) & 3); |
| } |
| |
| switch ( imm8_10 ) { |
| case 0: assign( src_dword, mkexpr(t0) ); break; |
| case 1: assign( src_dword, mkexpr(t1) ); break; |
| case 2: assign( src_dword, mkexpr(t2) ); break; |
| case 3: assign( src_dword, mkexpr(t3) ); break; |
| default: vassert(0); |
| } |
| |
| if ( epartIsReg( modrm ) ) { |
| putIReg32( eregOfRexRM(pfx,modrm), mkexpr(src_dword) ); |
| delta += 1+1; |
| DIP( "extractps $%d, %s,%s\n", imm8_10, |
| nameXMMReg( gregOfRexRM(pfx, modrm) ), |
| nameIReg32( eregOfRexRM(pfx, modrm) ) ); |
| } else { |
| storeLE( mkexpr(addr), mkexpr(src_dword) ); |
| delta += alen+1; |
| DIP( "extractps $%d, %s,%s\n", |
| imm8_10, nameXMMReg( gregOfRexRM(pfx, modrm) ), dis_buf ); |
| } |
| |
| goto decode_success; |
| } |
| break; |
| |
| case 0x20: |
| /* 66 0F 3A 20 /r ib = PINSRB xmm1, r32/m8, imm8 |
| Extract byte from r32/m8 and insert into xmm1 */ |
| if (have66noF2noF3(pfx) && sz == 2) { |
| |
| Int imm8; |
| IRTemp new8 = newTemp(Ity_I64); |
| |
| modrm = getUChar(delta); |
| |
| if ( epartIsReg( modrm ) ) { |
| imm8 = (Int)(getUChar(delta+1) & 0xF); |
| assign( new8, binop(Iop_And64, |
| unop(Iop_32Uto64, |
| getIReg32(eregOfRexRM(pfx,modrm))), |
| mkU64(0xFF))); |
| delta += 1+1; |
| DIP( "pinsrb $%d,%s,%s\n", imm8, |
| nameIReg32( eregOfRexRM(pfx, modrm) ), |
| nameXMMReg( gregOfRexRM(pfx, modrm) ) ); |
| } else { |
| addr = disAMode( &alen, vbi, pfx, delta, dis_buf, 1 ); |
| imm8 = (Int)(getUChar(delta+alen) & 0xF); |
| assign( new8, unop(Iop_8Uto64, loadLE( Ity_I8, mkexpr(addr) ))); |
| delta += alen+1; |
| DIP( "pinsrb $%d,%s,%s\n", |
| imm8, dis_buf, nameXMMReg( gregOfRexRM(pfx, modrm) ) ); |
| } |
| |
| // Create a V128 value which has the selected byte in the |
| // specified lane, and zeroes everywhere else. |
| IRTemp tmp128 = newTemp(Ity_V128); |
| IRTemp halfshift = newTemp(Ity_I64); |
| assign(halfshift, binop(Iop_Shl64, |
| mkexpr(new8), mkU8(8 * (imm8 & 7)))); |
| vassert(imm8 >= 0 && imm8 <= 15); |
| if (imm8 < 8) { |
| assign(tmp128, binop(Iop_64HLtoV128, mkU64(0), mkexpr(halfshift))); |
| } else { |
| assign(tmp128, binop(Iop_64HLtoV128, mkexpr(halfshift), mkU64(0))); |
| } |
| |
| UShort mask = ~(1 << imm8); |
| |
| putXMMReg( gregOfRexRM(pfx, modrm), |
| binop( Iop_OrV128, |
| mkexpr(tmp128), |
| binop( Iop_AndV128, |
| getXMMReg( gregOfRexRM(pfx, modrm) ), |
| mkV128(mask) ) ) ); |
| |
| goto decode_success; |
| } |
| break; |
| |
| case 0x21: |
| /* 66 0F 3A 21 /r ib = INSERTPS imm8, xmm2/m32, xmm1 |
| Insert Packed Single Precision Floating-Point Value (XMM) */ |
| if (have66noF2noF3(pfx) && sz == 2) { |
| UInt imm8; |
| IRTemp d2ins = newTemp(Ity_I32); /* comes from the E part */ |
| const IRTemp inval = IRTemp_INVALID; |
| |
| modrm = getUChar(delta); |
| UInt rG = gregOfRexRM(pfx, modrm); |
| |
| if ( epartIsReg( modrm ) ) { |
| UInt rE = eregOfRexRM(pfx, modrm); |
| IRTemp vE = newTemp(Ity_V128); |
| assign( vE, getXMMReg(rE) ); |
| IRTemp dsE[4] = { inval, inval, inval, inval }; |
| breakup128to32s( vE, &dsE[3], &dsE[2], &dsE[1], &dsE[0] ); |
| imm8 = getUChar(delta+1); |
| d2ins = dsE[(imm8 >> 6) & 3]; /* "imm8_count_s" */ |
| delta += 1+1; |
| DIP( "insertps $%u, %s,%s\n", |
| imm8, nameXMMReg(rE), nameXMMReg(rG) ); |
| } else { |
| addr = disAMode( &alen, vbi, pfx, delta, dis_buf, 1 ); |
| assign( d2ins, loadLE( Ity_I32, mkexpr(addr) ) ); |
| imm8 = getUChar(delta+alen); |
| delta += alen+1; |
| DIP( "insertps $%u, %s,%s\n", |
| imm8, dis_buf, nameXMMReg(rG) ); |
| } |
| |
| IRTemp vG = newTemp(Ity_V128); |
| assign( vG, getXMMReg(rG) ); |
| |
| putXMMReg( rG, mkexpr(math_INSERTPS( vG, d2ins, imm8 )) ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0x22: |
| /* 66 no-REX.W 0F 3A 22 /r ib = PINSRD xmm1, r/m32, imm8 |
| Extract Doubleword int from gen.reg/mem32 and insert into xmm1 */ |
| if (have66noF2noF3(pfx) |
| && sz == 2 /* REX.W is NOT present */) { |
| Int imm8_10; |
| IRTemp src_u32 = newTemp(Ity_I32); |
| modrm = getUChar(delta); |
| UInt rG = gregOfRexRM(pfx, modrm); |
| |
| if ( epartIsReg( modrm ) ) { |
| UInt rE = eregOfRexRM(pfx,modrm); |
| imm8_10 = (Int)(getUChar(delta+1) & 3); |
| assign( src_u32, getIReg32( rE ) ); |
| delta += 1+1; |
| DIP( "pinsrd $%d, %s,%s\n", |
| imm8_10, nameIReg32(rE), nameXMMReg(rG) ); |
| } else { |
| addr = disAMode( &alen, vbi, pfx, delta, dis_buf, 1 ); |
| imm8_10 = (Int)(getUChar(delta+alen) & 3); |
| assign( src_u32, loadLE( Ity_I32, mkexpr(addr) ) ); |
| delta += alen+1; |
| DIP( "pinsrd $%d, %s,%s\n", |
| imm8_10, dis_buf, nameXMMReg(rG) ); |
| } |
| |
| IRTemp src_vec = newTemp(Ity_V128); |
| assign(src_vec, getXMMReg( rG )); |
| IRTemp res_vec = math_PINSRD_128( src_vec, src_u32, imm8_10 ); |
| putXMMReg( rG, mkexpr(res_vec) ); |
| goto decode_success; |
| } |
| /* 66 REX.W 0F 3A 22 /r ib = PINSRQ xmm1, r/m64, imm8 |
| Extract Quadword int from gen.reg/mem64 and insert into xmm1 */ |
| if (have66noF2noF3(pfx) |
| && sz == 8 /* REX.W is present */) { |
| Int imm8_0; |
| IRTemp src_u64 = newTemp(Ity_I64); |
| modrm = getUChar(delta); |
| UInt rG = gregOfRexRM(pfx, modrm); |
| |
| if ( epartIsReg( modrm ) ) { |
| UInt rE = eregOfRexRM(pfx,modrm); |
| imm8_0 = (Int)(getUChar(delta+1) & 1); |
| assign( src_u64, getIReg64( rE ) ); |
| delta += 1+1; |
| DIP( "pinsrq $%d, %s,%s\n", |
| imm8_0, nameIReg64(rE), nameXMMReg(rG) ); |
| } else { |
| addr = disAMode( &alen, vbi, pfx, delta, dis_buf, 1 ); |
| imm8_0 = (Int)(getUChar(delta+alen) & 1); |
| assign( src_u64, loadLE( Ity_I64, mkexpr(addr) ) ); |
| delta += alen+1; |
| DIP( "pinsrq $%d, %s,%s\n", |
| imm8_0, dis_buf, nameXMMReg(rG) ); |
| } |
| |
| IRTemp src_vec = newTemp(Ity_V128); |
| assign(src_vec, getXMMReg( rG )); |
| IRTemp res_vec = math_PINSRQ_128( src_vec, src_u64, imm8_0 ); |
| putXMMReg( rG, mkexpr(res_vec) ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0x40: |
| /* 66 0F 3A 40 /r ib = DPPS xmm1, xmm2/m128, imm8 |
| Dot Product of Packed Single Precision Floating-Point Values (XMM) */ |
| if (have66noF2noF3(pfx) && sz == 2) { |
| |
| Int imm8; |
| IRTemp xmm1_vec = newTemp(Ity_V128); |
| IRTemp xmm2_vec = newTemp(Ity_V128); |
| IRTemp tmp_prod_vec = newTemp(Ity_V128); |
| IRTemp prod_vec = newTemp(Ity_V128); |
| IRTemp sum_vec = newTemp(Ity_V128); |
| IRTemp v3, v2, v1, v0; |
| v3 = v2 = v1 = v0 = IRTemp_INVALID; |
| |
| modrm = getUChar(delta); |
| |
| assign( xmm1_vec, getXMMReg( gregOfRexRM(pfx, modrm) ) ); |
| |
| if ( epartIsReg( modrm ) ) { |
| imm8 = (Int)getUChar(delta+1); |
| assign( xmm2_vec, getXMMReg( eregOfRexRM(pfx, modrm) ) ); |
| delta += 1+1; |
| DIP( "dpps $%d, %s,%s\n", imm8, |
| nameXMMReg( eregOfRexRM(pfx, modrm) ), |
| nameXMMReg( gregOfRexRM(pfx, modrm) ) ); |
| } else { |
| addr = disAMode( &alen, vbi, pfx, delta, dis_buf, |
| 1/* imm8 is 1 byte after the amode */ ); |
| gen_SEGV_if_not_16_aligned( addr ); |
| assign( xmm2_vec, loadLE( Ity_V128, mkexpr(addr) ) ); |
| imm8 = (Int)getUChar(delta+alen); |
| delta += alen+1; |
| DIP( "dpps $%d, %s,%s\n", |
| imm8, dis_buf, nameXMMReg( gregOfRexRM(pfx, modrm) ) ); |
| } |
| |
| UShort imm8_perms[16] = { 0x0000, 0x000F, 0x00F0, 0x00FF, 0x0F00, |
| 0x0F0F, 0x0FF0, 0x0FFF, 0xF000, 0xF00F, |
| 0xF0F0, 0xF0FF, 0xFF00, 0xFF0F, 0xFFF0, |
| 0xFFFF }; |
| |
| assign( tmp_prod_vec, |
| binop( Iop_AndV128, |
| binop( Iop_Mul32Fx4, mkexpr(xmm1_vec), |
| mkexpr(xmm2_vec) ), |
| mkV128( imm8_perms[((imm8 >> 4)& 15)] ) ) ); |
| breakup128to32s( tmp_prod_vec, &v3, &v2, &v1, &v0 ); |
| assign( prod_vec, mk128from32s( v3, v1, v2, v0 ) ); |
| |
| assign( sum_vec, binop( Iop_Add32Fx4, |
| binop( Iop_InterleaveHI32x4, |
| mkexpr(prod_vec), mkexpr(prod_vec) ), |
| binop( Iop_InterleaveLO32x4, |
| mkexpr(prod_vec), mkexpr(prod_vec) ) ) ); |
| |
| putXMMReg( gregOfRexRM(pfx, modrm), |
| binop( Iop_AndV128, |
| binop( Iop_Add32Fx4, |
| binop( Iop_InterleaveHI32x4, |
| mkexpr(sum_vec), mkexpr(sum_vec) ), |
| binop( Iop_InterleaveLO32x4, |
| mkexpr(sum_vec), mkexpr(sum_vec) ) ), |
| mkV128( imm8_perms[ (imm8 & 15) ] ) ) ); |
| |
| goto decode_success; |
| } |
| break; |
| |
| case 0x41: |
| /* 66 0F 3A 41 /r ib = DPPD xmm1, xmm2/m128, imm8 |
| Dot Product of Packed Double Precision Floating-Point Values (XMM) */ |
| if (have66noF2noF3(pfx) && sz == 2) { |
| |
| Int imm8; |
| IRTemp src_vec = newTemp(Ity_V128); |
| IRTemp dst_vec = newTemp(Ity_V128); |
| IRTemp and_vec = newTemp(Ity_V128); |
| IRTemp sum_vec = newTemp(Ity_V128); |
| |
| modrm = getUChar(delta); |
| |
| assign( dst_vec, getXMMReg( gregOfRexRM(pfx, modrm) ) ); |
| |
| if ( epartIsReg( modrm ) ) { |
| imm8 = (Int)getUChar(delta+1); |
| assign( src_vec, getXMMReg( eregOfRexRM(pfx, modrm) ) ); |
| delta += 1+1; |
| DIP( "dppd $%d, %s,%s\n", imm8, |
| nameXMMReg( eregOfRexRM(pfx, modrm) ), |
| nameXMMReg( gregOfRexRM(pfx, modrm) ) ); |
| } else { |
| addr = disAMode( &alen, vbi, pfx, delta, dis_buf, |
| 1/* imm8 is 1 byte after the amode */ ); |
| gen_SEGV_if_not_16_aligned( addr ); |
| assign( src_vec, loadLE( Ity_V128, mkexpr(addr) ) ); |
| imm8 = (Int)getUChar(delta+alen); |
| delta += alen+1; |
| DIP( "dppd $%d, %s,%s\n", |
| imm8, dis_buf, nameXMMReg( gregOfRexRM(pfx, modrm) ) ); |
| } |
| |
| UShort imm8_perms[4] = { 0x0000, 0x00FF, 0xFF00, 0xFFFF }; |
| |
| assign( and_vec, binop( Iop_AndV128, |
| binop( Iop_Mul64Fx2, |
| mkexpr(dst_vec), mkexpr(src_vec) ), |
| mkV128( imm8_perms[ ((imm8 >> 4) & 3) ] ) ) ); |
| |
| assign( sum_vec, binop( Iop_Add64F0x2, |
| binop( Iop_InterleaveHI64x2, |
| mkexpr(and_vec), mkexpr(and_vec) ), |
| binop( Iop_InterleaveLO64x2, |
| mkexpr(and_vec), mkexpr(and_vec) ) ) ); |
| |
| putXMMReg( gregOfRexRM( pfx, modrm ), |
| binop( Iop_AndV128, |
| binop( Iop_InterleaveLO64x2, |
| mkexpr(sum_vec), mkexpr(sum_vec) ), |
| mkV128( imm8_perms[ (imm8 & 3) ] ) ) ); |
| |
| goto decode_success; |
| } |
| break; |
| |
| case 0x42: |
| /* 66 0F 3A 42 /r ib = MPSADBW xmm1, xmm2/m128, imm8 |
| Multiple Packed Sums of Absolule Difference (XMM) */ |
| if (have66noF2noF3(pfx) && sz == 2) { |
| |
| Int imm8; |
| IRTemp src_vec = newTemp(Ity_V128); |
| IRTemp dst_vec = newTemp(Ity_V128); |
| |
| modrm = getUChar(delta); |
| |
| assign( dst_vec, getXMMReg( gregOfRexRM(pfx, modrm) ) ); |
| |
| if ( epartIsReg( modrm ) ) { |
| imm8 = (Int)getUChar(delta+1); |
| assign( src_vec, getXMMReg( eregOfRexRM(pfx, modrm) ) ); |
| delta += 1+1; |
| DIP( "mpsadbw $%d, %s,%s\n", imm8, |
| nameXMMReg( eregOfRexRM(pfx, modrm) ), |
| nameXMMReg( gregOfRexRM(pfx, modrm) ) ); |
| } else { |
| addr = disAMode( &alen, vbi, pfx, delta, dis_buf, |
| 1/* imm8 is 1 byte after the amode */ ); |
| gen_SEGV_if_not_16_aligned( addr ); |
| assign( src_vec, loadLE( Ity_V128, mkexpr(addr) ) ); |
| imm8 = (Int)getUChar(delta+alen); |
| delta += alen+1; |
| DIP( "mpsadbw $%d, %s,%s\n", |
| imm8, dis_buf, nameXMMReg( gregOfRexRM(pfx, modrm) ) ); |
| } |
| |
| /* Mask out bits of the operands we don't need. This isn't |
| strictly necessary, but it does ensure Memcheck doesn't |
| give us any false uninitialised value errors as a |
| result. */ |
| UShort src_mask[4] = { 0x000F, 0x00F0, 0x0F00, 0xF000 }; |
| UShort dst_mask[2] = { 0x07FF, 0x7FF0 }; |
| |
| IRTemp src_maskV = newTemp(Ity_V128); |
| IRTemp dst_maskV = newTemp(Ity_V128); |
| assign(src_maskV, mkV128( src_mask[ imm8 & 3 ] )); |
| assign(dst_maskV, mkV128( dst_mask[ (imm8 >> 2) & 1 ] )); |
| |
| IRTemp src_masked = newTemp(Ity_V128); |
| IRTemp dst_masked = newTemp(Ity_V128); |
| assign(src_masked, |
| binop(Iop_AndV128, mkexpr(src_vec), mkexpr(src_maskV))); |
| assign(dst_masked, |
| binop(Iop_AndV128, mkexpr(dst_vec), mkexpr(dst_maskV))); |
| |
| /* Generate 4 64 bit values that we can hand to a clean helper */ |
| IRTemp sHi = newTemp(Ity_I64); |
| IRTemp sLo = newTemp(Ity_I64); |
| assign( sHi, unop(Iop_V128HIto64, mkexpr(src_masked)) ); |
| assign( sLo, unop(Iop_V128to64, mkexpr(src_masked)) ); |
| |
| IRTemp dHi = newTemp(Ity_I64); |
| IRTemp dLo = newTemp(Ity_I64); |
| assign( dHi, unop(Iop_V128HIto64, mkexpr(dst_masked)) ); |
| assign( dLo, unop(Iop_V128to64, mkexpr(dst_masked)) ); |
| |
| /* Compute halves of the result separately */ |
| IRTemp resHi = newTemp(Ity_I64); |
| IRTemp resLo = newTemp(Ity_I64); |
| |
| IRExpr** argsHi |
| = mkIRExprVec_5( mkexpr(sHi), mkexpr(sLo), mkexpr(dHi), mkexpr(dLo), |
| mkU64( 0x80 | (imm8 & 7) )); |
| IRExpr** argsLo |
| = mkIRExprVec_5( mkexpr(sHi), mkexpr(sLo), mkexpr(dHi), mkexpr(dLo), |
| mkU64( 0x00 | (imm8 & 7) )); |
| |
| assign(resHi, mkIRExprCCall( Ity_I64, 0/*regparm*/, |
| "amd64g_calc_mpsadbw", |
| &amd64g_calc_mpsadbw, |
| argsHi )); |
| assign(resLo, mkIRExprCCall( Ity_I64, 0/*regparm*/, |
| "amd64g_calc_mpsadbw", |
| &amd64g_calc_mpsadbw, |
| argsLo )); |
| |
| IRTemp res = newTemp(Ity_V128); |
| assign(res, binop(Iop_64HLtoV128, mkexpr(resHi), mkexpr(resLo))); |
| |
| putXMMReg( gregOfRexRM( pfx, modrm ), mkexpr(res) ); |
| |
| goto decode_success; |
| } |
| break; |
| |
| case 0x44: |
| /* 66 0F 3A 44 /r ib = PCLMULQDQ xmm1, xmm2/m128, imm8 |
| * Carry-less multiplication of selected XMM quadwords into XMM |
| * registers (a.k.a multiplication of polynomials over GF(2)) |
| */ |
| if (have66noF2noF3(pfx) && sz == 2) { |
| |
| Int imm8; |
| IRTemp svec = newTemp(Ity_V128); |
| IRTemp dvec = newTemp(Ity_V128); |
| |
| modrm = getUChar(delta); |
| |
| assign( dvec, getXMMReg( gregOfRexRM(pfx, modrm) ) ); |
| |
| if ( epartIsReg( modrm ) ) { |
| imm8 = (Int)getUChar(delta+1); |
| assign( svec, getXMMReg( eregOfRexRM(pfx, modrm) ) ); |
| delta += 1+1; |
| DIP( "pclmulqdq $%d, %s,%s\n", imm8, |
| nameXMMReg( eregOfRexRM(pfx, modrm) ), |
| nameXMMReg( gregOfRexRM(pfx, modrm) ) ); |
| } else { |
| addr = disAMode( &alen, vbi, pfx, delta, dis_buf, |
| 1/* imm8 is 1 byte after the amode */ ); |
| gen_SEGV_if_not_16_aligned( addr ); |
| assign( svec, loadLE( Ity_V128, mkexpr(addr) ) ); |
| imm8 = (Int)getUChar(delta+alen); |
| delta += alen+1; |
| DIP( "pclmulqdq $%d, %s,%s\n", |
| imm8, dis_buf, nameXMMReg( gregOfRexRM(pfx, modrm) ) ); |
| } |
| |
| t0 = newTemp(Ity_I64); |
| t1 = newTemp(Ity_I64); |
| assign(t0, unop((imm8&1)? Iop_V128HIto64 : Iop_V128to64, |
| mkexpr(dvec))); |
| assign(t1, unop((imm8&16) ? Iop_V128HIto64 : Iop_V128to64, |
| mkexpr(svec))); |
| |
| t2 = newTemp(Ity_I64); |
| t3 = newTemp(Ity_I64); |
| |
| IRExpr** args; |
| |
| args = mkIRExprVec_3(mkexpr(t0), mkexpr(t1), mkU64(0)); |
| assign(t2, |
| mkIRExprCCall(Ity_I64,0, "amd64g_calculate_pclmul", |
| &amd64g_calculate_pclmul, args)); |
| args = mkIRExprVec_3(mkexpr(t0), mkexpr(t1), mkU64(1)); |
| assign(t3, |
| mkIRExprCCall(Ity_I64,0, "amd64g_calculate_pclmul", |
| &amd64g_calculate_pclmul, args)); |
| |
| IRTemp res = newTemp(Ity_V128); |
| assign(res, binop(Iop_64HLtoV128, mkexpr(t3), mkexpr(t2))); |
| putXMMReg( gregOfRexRM(pfx,modrm), mkexpr(res) ); |
| |
| goto decode_success; |
| } |
| break; |
| |
| case 0x60: |
| case 0x61: |
| case 0x62: |
| case 0x63: |
| /* 66 0F 3A 63 /r ib = PCMPISTRI imm8, xmm2/m128, xmm1 |
| 66 0F 3A 62 /r ib = PCMPISTRM imm8, xmm2/m128, xmm1 |
| 66 0F 3A 61 /r ib = PCMPESTRI imm8, xmm2/m128, xmm1 |
| 66 0F 3A 60 /r ib = PCMPESTRM imm8, xmm2/m128, xmm1 |
| (selected special cases that actually occur in glibc, |
| not by any means a complete implementation.) |
| */ |
| if (have66noF2noF3(pfx) && sz == 2) { |
| Long delta0 = delta; |
| delta = dis_PCMPxSTRx( vbi, pfx, delta, False/*!isAvx*/, opc ); |
| if (delta > delta0) goto decode_success; |
| /* else fall though; dis_PCMPxSTRx failed to decode it */ |
| } |
| break; |
| |
| case 0xDF: |
| /* 66 0F 3A DF /r ib = AESKEYGENASSIST imm8, xmm2/m128, xmm1 */ |
| if (have66noF2noF3(pfx) && sz == 2) { |
| UInt regNoL = 0; |
| UInt regNoR = 0; |
| UChar imm = 0; |
| |
| /* This is a nasty kludge. See AESENC et al. instructions. */ |
| modrm = getUChar(delta); |
| if (epartIsReg(modrm)) { |
| regNoL = eregOfRexRM(pfx, modrm); |
| regNoR = gregOfRexRM(pfx, modrm); |
| imm = getUChar(delta+1); |
| delta += 1+1; |
| } else { |
| regNoL = 16; /* use XMM16 as an intermediary */ |
| regNoR = gregOfRexRM(pfx, modrm); |
| addr = disAMode( &alen, vbi, pfx, delta, dis_buf, 1 ); |
| /* alignment check ???? . */ |
| stmt( IRStmt_Put( OFFB_YMM16, loadLE(Ity_V128, mkexpr(addr)) )); |
| imm = getUChar(delta+alen); |
| delta += alen+1; |
| } |
| |
| /* Who ya gonna call? Presumably not Ghostbusters. */ |
| void* fn = &amd64g_dirtyhelper_AESKEYGENASSIST; |
| HChar* nm = "amd64g_dirtyhelper_AESKEYGENASSIST"; |
| |
| /* Round up the arguments. Note that this is a kludge -- the |
| use of mkU64 rather than mkIRExpr_HWord implies the |
| assumption that the host's word size is 64-bit. */ |
| UInt gstOffL = regNoL == 16 ? OFFB_YMM16 : ymmGuestRegOffset(regNoL); |
| UInt gstOffR = ymmGuestRegOffset(regNoR); |
| |
| IRExpr* imme = mkU64(imm & 0xFF); |
| IRExpr* gstOffLe = mkU64(gstOffL); |
| IRExpr* gstOffRe = mkU64(gstOffR); |
| IRExpr** args |
| = mkIRExprVec_3( imme, gstOffLe, gstOffRe ); |
| |
| IRDirty* d = unsafeIRDirty_0_N( 0/*regparms*/, nm, fn, args ); |
| /* It's not really a dirty call, but we can't use the clean |
| helper mechanism here for the very lame reason that we can't |
| pass 2 x V128s by value to a helper, nor get one back. Hence |
| this roundabout scheme. */ |
| d->needsBBP = True; |
| d->nFxState = 2; |
| vex_bzero(&d->fxState, sizeof(d->fxState)); |
| d->fxState[0].fx = Ifx_Read; |
| d->fxState[0].offset = gstOffL; |
| d->fxState[0].size = sizeof(U128); |
| d->fxState[1].fx = Ifx_Write; |
| d->fxState[1].offset = gstOffR; |
| d->fxState[1].size = sizeof(U128); |
| stmt( IRStmt_Dirty(d) ); |
| |
| DIP("aeskeygenassist $%x,%s,%s\n", (UInt)imm, |
| (regNoL == 16 ? dis_buf : nameXMMReg(regNoL)), |
| nameXMMReg(regNoR)); |
| |
| goto decode_success; |
| } |
| break; |
| |
| default: |
| break; |
| |
| } |
| |
| decode_failure: |
| *decode_OK = False; |
| return deltaIN; |
| |
| decode_success: |
| *decode_OK = True; |
| return delta; |
| } |
| |
| |
| /*------------------------------------------------------------*/ |
| /*--- ---*/ |
| /*--- Top-level post-escape decoders: dis_ESC_NONE ---*/ |
| /*--- ---*/ |
| /*------------------------------------------------------------*/ |
| |
| __attribute__((noinline)) |
| static |
| Long dis_ESC_NONE ( |
| /*MB_OUT*/DisResult* dres, |
| /*MB_OUT*/Bool* expect_CAS, |
| Bool (*resteerOkFn) ( /*opaque*/void*, Addr64 ), |
| Bool resteerCisOk, |
| void* callback_opaque, |
| VexArchInfo* archinfo, |
| VexAbiInfo* vbi, |
| Prefix pfx, Int sz, Long deltaIN |
| ) |
| { |
| Long d64 = 0; |
| UChar abyte = 0; |
| IRTemp addr = IRTemp_INVALID; |
| IRTemp t1 = IRTemp_INVALID; |
| IRTemp t2 = IRTemp_INVALID; |
| IRTemp t3 = IRTemp_INVALID; |
| IRTemp t4 = IRTemp_INVALID; |
| IRTemp t5 = IRTemp_INVALID; |
| IRType ty = Ity_INVALID; |
| UChar modrm = 0; |
| Int am_sz = 0; |
| Int d_sz = 0; |
| Int alen = 0; |
| HChar dis_buf[50]; |
| |
| Long delta = deltaIN; |
| UChar opc = getUChar(delta); |
| delta++; |
| switch (opc) { |
| |
| case 0x00: /* ADD Gb,Eb */ |
| if (haveF2orF3(pfx)) goto decode_failure; |
| delta = dis_op2_G_E ( vbi, pfx, False, Iop_Add8, True, 1, delta, "add" ); |
| return delta; |
| case 0x01: /* ADD Gv,Ev */ |
| if (haveF2orF3(pfx)) goto decode_failure; |
| delta = dis_op2_G_E ( vbi, pfx, False, Iop_Add8, True, sz, delta, "add" ); |
| return delta; |
| |
| case 0x02: /* ADD Eb,Gb */ |
| if (haveF2orF3(pfx)) goto decode_failure; |
| delta = dis_op2_E_G ( vbi, pfx, False, Iop_Add8, True, 1, delta, "add" ); |
| return delta; |
| case 0x03: /* ADD Ev,Gv */ |
| if (haveF2orF3(pfx)) goto decode_failure; |
| delta = dis_op2_E_G ( vbi, pfx, False, Iop_Add8, True, sz, delta, "add" ); |
| return delta; |
| |
| case 0x04: /* ADD Ib, AL */ |
| if (haveF2orF3(pfx)) goto decode_failure; |
| delta = dis_op_imm_A( 1, False, Iop_Add8, True, delta, "add" ); |
| return delta; |
| case 0x05: /* ADD Iv, eAX */ |
| if (haveF2orF3(pfx)) goto decode_failure; |
| delta = dis_op_imm_A(sz, False, Iop_Add8, True, delta, "add" ); |
| return delta; |
| |
| case 0x08: /* OR Gb,Eb */ |
| if (haveF2orF3(pfx)) goto decode_failure; |
| delta = dis_op2_G_E ( vbi, pfx, False, Iop_Or8, True, 1, delta, "or" ); |
| return delta; |
| case 0x09: /* OR Gv,Ev */ |
| if (haveF2orF3(pfx)) goto decode_failure; |
| delta = dis_op2_G_E ( vbi, pfx, False, Iop_Or8, True, sz, delta, "or" ); |
| return delta; |
| |
| case 0x0A: /* OR Eb,Gb */ |
| if (haveF2orF3(pfx)) goto decode_failure; |
| delta = dis_op2_E_G ( vbi, pfx, False, Iop_Or8, True, 1, delta, "or" ); |
| return delta; |
| case 0x0B: /* OR Ev,Gv */ |
| if (haveF2orF3(pfx)) goto decode_failure; |
| delta = dis_op2_E_G ( vbi, pfx, False, Iop_Or8, True, sz, delta, "or" ); |
| return delta; |
| |
| case 0x0C: /* OR Ib, AL */ |
| if (haveF2orF3(pfx)) goto decode_failure; |
| delta = dis_op_imm_A( 1, False, Iop_Or8, True, delta, "or" ); |
| return delta; |
| case 0x0D: /* OR Iv, eAX */ |
| if (haveF2orF3(pfx)) goto decode_failure; |
| delta = dis_op_imm_A( sz, False, Iop_Or8, True, delta, "or" ); |
| return delta; |
| |
| case 0x10: /* ADC Gb,Eb */ |
| if (haveF2orF3(pfx)) goto decode_failure; |
| delta = dis_op2_G_E ( vbi, pfx, True, Iop_Add8, True, 1, delta, "adc" ); |
| return delta; |
| case 0x11: /* ADC Gv,Ev */ |
| if (haveF2orF3(pfx)) goto decode_failure; |
| delta = dis_op2_G_E ( vbi, pfx, True, Iop_Add8, True, sz, delta, "adc" ); |
| return delta; |
| |
| case 0x12: /* ADC Eb,Gb */ |
| if (haveF2orF3(pfx)) goto decode_failure; |
| delta = dis_op2_E_G ( vbi, pfx, True, Iop_Add8, True, 1, delta, "adc" ); |
| return delta; |
| case 0x13: /* ADC Ev,Gv */ |
| if (haveF2orF3(pfx)) goto decode_failure; |
| delta = dis_op2_E_G ( vbi, pfx, True, Iop_Add8, True, sz, delta, "adc" ); |
| return delta; |
| |
| case 0x14: /* ADC Ib, AL */ |
| if (haveF2orF3(pfx)) goto decode_failure; |
| delta = dis_op_imm_A( 1, True, Iop_Add8, True, delta, "adc" ); |
| return delta; |
| case 0x15: /* ADC Iv, eAX */ |
| if (haveF2orF3(pfx)) goto decode_failure; |
| delta = dis_op_imm_A( sz, True, Iop_Add8, True, delta, "adc" ); |
| return delta; |
| |
| case 0x18: /* SBB Gb,Eb */ |
| if (haveF2orF3(pfx)) goto decode_failure; |
| delta = dis_op2_G_E ( vbi, pfx, True, Iop_Sub8, True, 1, delta, "sbb" ); |
| return delta; |
| case 0x19: /* SBB Gv,Ev */ |
| if (haveF2orF3(pfx)) goto decode_failure; |
| delta = dis_op2_G_E ( vbi, pfx, True, Iop_Sub8, True, sz, delta, "sbb" ); |
| return delta; |
| |
| case 0x1A: /* SBB Eb,Gb */ |
| if (haveF2orF3(pfx)) goto decode_failure; |
| delta = dis_op2_E_G ( vbi, pfx, True, Iop_Sub8, True, 1, delta, "sbb" ); |
| return delta; |
| case 0x1B: /* SBB Ev,Gv */ |
| if (haveF2orF3(pfx)) goto decode_failure; |
| delta = dis_op2_E_G ( vbi, pfx, True, Iop_Sub8, True, sz, delta, "sbb" ); |
| return delta; |
| |
| case 0x1C: /* SBB Ib, AL */ |
| if (haveF2orF3(pfx)) goto decode_failure; |
| delta = dis_op_imm_A( 1, True, Iop_Sub8, True, delta, "sbb" ); |
| return delta; |
| case 0x1D: /* SBB Iv, eAX */ |
| if (haveF2orF3(pfx)) goto decode_failure; |
| delta = dis_op_imm_A( sz, True, Iop_Sub8, True, delta, "sbb" ); |
| return delta; |
| |
| case 0x20: /* AND Gb,Eb */ |
| if (haveF2orF3(pfx)) goto decode_failure; |
| delta = dis_op2_G_E ( vbi, pfx, False, Iop_And8, True, 1, delta, "and" ); |
| return delta; |
| case 0x21: /* AND Gv,Ev */ |
| if (haveF2orF3(pfx)) goto decode_failure; |
| delta = dis_op2_G_E ( vbi, pfx, False, Iop_And8, True, sz, delta, "and" ); |
| return delta; |
| |
| case 0x22: /* AND Eb,Gb */ |
| if (haveF2orF3(pfx)) goto decode_failure; |
| delta = dis_op2_E_G ( vbi, pfx, False, Iop_And8, True, 1, delta, "and" ); |
| return delta; |
| case 0x23: /* AND Ev,Gv */ |
| if (haveF2orF3(pfx)) goto decode_failure; |
| delta = dis_op2_E_G ( vbi, pfx, False, Iop_And8, True, sz, delta, "and" ); |
| return delta; |
| |
| case 0x24: /* AND Ib, AL */ |
| if (haveF2orF3(pfx)) goto decode_failure; |
| delta = dis_op_imm_A( 1, False, Iop_And8, True, delta, "and" ); |
| return delta; |
| case 0x25: /* AND Iv, eAX */ |
| if (haveF2orF3(pfx)) goto decode_failure; |
| delta = dis_op_imm_A( sz, False, Iop_And8, True, delta, "and" ); |
| return delta; |
| |
| case 0x28: /* SUB Gb,Eb */ |
| if (haveF2orF3(pfx)) goto decode_failure; |
| delta = dis_op2_G_E ( vbi, pfx, False, Iop_Sub8, True, 1, delta, "sub" ); |
| return delta; |
| case 0x29: /* SUB Gv,Ev */ |
| if (haveF2orF3(pfx)) goto decode_failure; |
| delta = dis_op2_G_E ( vbi, pfx, False, Iop_Sub8, True, sz, delta, "sub" ); |
| return delta; |
| |
| case 0x2A: /* SUB Eb,Gb */ |
| if (haveF2orF3(pfx)) goto decode_failure; |
| delta = dis_op2_E_G ( vbi, pfx, False, Iop_Sub8, True, 1, delta, "sub" ); |
| return delta; |
| case 0x2B: /* SUB Ev,Gv */ |
| if (haveF2orF3(pfx)) goto decode_failure; |
| delta = dis_op2_E_G ( vbi, pfx, False, Iop_Sub8, True, sz, delta, "sub" ); |
| return delta; |
| |
| case 0x2C: /* SUB Ib, AL */ |
| if (haveF2orF3(pfx)) goto decode_failure; |
| delta = dis_op_imm_A(1, False, Iop_Sub8, True, delta, "sub" ); |
| return delta; |
| |
| case 0x2D: /* SUB Iv, eAX */ |
| if (haveF2orF3(pfx)) goto decode_failure; |
| delta = dis_op_imm_A( sz, False, Iop_Sub8, True, delta, "sub" ); |
| return delta; |
| |
| case 0x30: /* XOR Gb,Eb */ |
| if (haveF2orF3(pfx)) goto decode_failure; |
| delta = dis_op2_G_E ( vbi, pfx, False, Iop_Xor8, True, 1, delta, "xor" ); |
| return delta; |
| case 0x31: /* XOR Gv,Ev */ |
| if (haveF2orF3(pfx)) goto decode_failure; |
| delta = dis_op2_G_E ( vbi, pfx, False, Iop_Xor8, True, sz, delta, "xor" ); |
| return delta; |
| |
| case 0x32: /* XOR Eb,Gb */ |
| if (haveF2orF3(pfx)) goto decode_failure; |
| delta = dis_op2_E_G ( vbi, pfx, False, Iop_Xor8, True, 1, delta, "xor" ); |
| return delta; |
| case 0x33: /* XOR Ev,Gv */ |
| if (haveF2orF3(pfx)) goto decode_failure; |
| delta = dis_op2_E_G ( vbi, pfx, False, Iop_Xor8, True, sz, delta, "xor" ); |
| return delta; |
| |
| case 0x34: /* XOR Ib, AL */ |
| if (haveF2orF3(pfx)) goto decode_failure; |
| delta = dis_op_imm_A( 1, False, Iop_Xor8, True, delta, "xor" ); |
| return delta; |
| case 0x35: /* XOR Iv, eAX */ |
| if (haveF2orF3(pfx)) goto decode_failure; |
| delta = dis_op_imm_A( sz, False, Iop_Xor8, True, delta, "xor" ); |
| return delta; |
| |
| case 0x38: /* CMP Gb,Eb */ |
| if (haveF2orF3(pfx)) goto decode_failure; |
| delta = dis_op2_G_E ( vbi, pfx, False, Iop_Sub8, False, 1, delta, "cmp" ); |
| return delta; |
| case 0x39: /* CMP Gv,Ev */ |
| if (haveF2orF3(pfx)) goto decode_failure; |
| delta = dis_op2_G_E ( vbi, pfx, False, Iop_Sub8, False, sz, delta, "cmp" ); |
| return delta; |
| |
| case 0x3A: /* CMP Eb,Gb */ |
| if (haveF2orF3(pfx)) goto decode_failure; |
| delta = dis_op2_E_G ( vbi, pfx, False, Iop_Sub8, False, 1, delta, "cmp" ); |
| return delta; |
| case 0x3B: /* CMP Ev,Gv */ |
| if (haveF2orF3(pfx)) goto decode_failure; |
| delta = dis_op2_E_G ( vbi, pfx, False, Iop_Sub8, False, sz, delta, "cmp" ); |
| return delta; |
| |
| case 0x3C: /* CMP Ib, AL */ |
| if (haveF2orF3(pfx)) goto decode_failure; |
| delta = dis_op_imm_A( 1, False, Iop_Sub8, False, delta, "cmp" ); |
| return delta; |
| case 0x3D: /* CMP Iv, eAX */ |
| if (haveF2orF3(pfx)) goto decode_failure; |
| delta = dis_op_imm_A( sz, False, Iop_Sub8, False, delta, "cmp" ); |
| return delta; |
| |
| case 0x50: /* PUSH eAX */ |
| case 0x51: /* PUSH eCX */ |
| case 0x52: /* PUSH eDX */ |
| case 0x53: /* PUSH eBX */ |
| case 0x55: /* PUSH eBP */ |
| case 0x56: /* PUSH eSI */ |
| case 0x57: /* PUSH eDI */ |
| case 0x54: /* PUSH eSP */ |
| /* This is the Right Way, in that the value to be pushed is |
| established before %rsp is changed, so that pushq %rsp |
| correctly pushes the old value. */ |
| if (haveF2orF3(pfx)) goto decode_failure; |
| vassert(sz == 2 || sz == 4 || sz == 8); |
| if (sz == 4) |
| sz = 8; /* there is no encoding for 32-bit push in 64-bit mode */ |
| ty = sz==2 ? Ity_I16 : Ity_I64; |
| t1 = newTemp(ty); |
| t2 = newTemp(Ity_I64); |
| assign(t1, getIRegRexB(sz, pfx, opc-0x50)); |
| assign(t2, binop(Iop_Sub64, getIReg64(R_RSP), mkU64(sz))); |
| putIReg64(R_RSP, mkexpr(t2) ); |
| storeLE(mkexpr(t2),mkexpr(t1)); |
| DIP("push%c %s\n", nameISize(sz), nameIRegRexB(sz,pfx,opc-0x50)); |
| return delta; |
| |
| case 0x58: /* POP eAX */ |
| case 0x59: /* POP eCX */ |
| case 0x5A: /* POP eDX */ |
| case 0x5B: /* POP eBX */ |
| case 0x5D: /* POP eBP */ |
| case 0x5E: /* POP eSI */ |
| case 0x5F: /* POP eDI */ |
| case 0x5C: /* POP eSP */ |
| if (haveF2orF3(pfx)) goto decode_failure; |
| vassert(sz == 2 || sz == 4 || sz == 8); |
| if (sz == 4) |
| sz = 8; /* there is no encoding for 32-bit pop in 64-bit mode */ |
| t1 = newTemp(szToITy(sz)); |
| t2 = newTemp(Ity_I64); |
| assign(t2, getIReg64(R_RSP)); |
| assign(t1, loadLE(szToITy(sz),mkexpr(t2))); |
| putIReg64(R_RSP, binop(Iop_Add64, mkexpr(t2), mkU64(sz))); |
| putIRegRexB(sz, pfx, opc-0x58, mkexpr(t1)); |
| DIP("pop%c %s\n", nameISize(sz), nameIRegRexB(sz,pfx,opc-0x58)); |
| return delta; |
| |
| case 0x63: /* MOVSX */ |
| if (haveF2orF3(pfx)) goto decode_failure; |
| if (haveREX(pfx) && 1==getRexW(pfx)) { |
| vassert(sz == 8); |
| /* movsx r/m32 to r64 */ |
| modrm = getUChar(delta); |
| if (epartIsReg(modrm)) { |
| delta++; |
| putIRegG(8, pfx, modrm, |
| unop(Iop_32Sto64, |
| getIRegE(4, pfx, modrm))); |
| DIP("movslq %s,%s\n", |
| nameIRegE(4, pfx, modrm), |
| nameIRegG(8, pfx, modrm)); |
| return delta; |
| } else { |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| delta += alen; |
| putIRegG(8, pfx, modrm, |
| unop(Iop_32Sto64, |
| loadLE(Ity_I32, mkexpr(addr)))); |
| DIP("movslq %s,%s\n", dis_buf, |
| nameIRegG(8, pfx, modrm)); |
| return delta; |
| } |
| } else { |
| goto decode_failure; |
| } |
| |
| case 0x68: /* PUSH Iv */ |
| if (haveF2orF3(pfx)) goto decode_failure; |
| /* Note, sz==4 is not possible in 64-bit mode. Hence ... */ |
| if (sz == 4) sz = 8; |
| d64 = getSDisp(imin(4,sz),delta); |
| delta += imin(4,sz); |
| goto do_push_I; |
| |
| case 0x69: /* IMUL Iv, Ev, Gv */ |
| if (haveF2orF3(pfx)) goto decode_failure; |
| delta = dis_imul_I_E_G ( vbi, pfx, sz, delta, sz ); |
| return delta; |
| |
| case 0x6A: /* PUSH Ib, sign-extended to sz */ |
| if (haveF2orF3(pfx)) goto decode_failure; |
| /* Note, sz==4 is not possible in 64-bit mode. Hence ... */ |
| if (sz == 4) sz = 8; |
| d64 = getSDisp8(delta); delta += 1; |
| goto do_push_I; |
| do_push_I: |
| ty = szToITy(sz); |
| t1 = newTemp(Ity_I64); |
| t2 = newTemp(ty); |
| assign( t1, binop(Iop_Sub64,getIReg64(R_RSP),mkU64(sz)) ); |
| putIReg64(R_RSP, mkexpr(t1) ); |
| /* stop mkU16 asserting if d32 is a negative 16-bit number |
| (bug #132813) */ |
| if (ty == Ity_I16) |
| d64 &= 0xFFFF; |
| storeLE( mkexpr(t1), mkU(ty,d64) ); |
| DIP("push%c $%lld\n", nameISize(sz), (Long)d64); |
| return delta; |
| |
| case 0x6B: /* IMUL Ib, Ev, Gv */ |
| delta = dis_imul_I_E_G ( vbi, pfx, sz, delta, 1 ); |
| return delta; |
| |
| case 0x70: |
| case 0x71: |
| case 0x72: /* JBb/JNAEb (jump below) */ |
| case 0x73: /* JNBb/JAEb (jump not below) */ |
| case 0x74: /* JZb/JEb (jump zero) */ |
| case 0x75: /* JNZb/JNEb (jump not zero) */ |
| case 0x76: /* JBEb/JNAb (jump below or equal) */ |
| case 0x77: /* JNBEb/JAb (jump not below or equal) */ |
| case 0x78: /* JSb (jump negative) */ |
| case 0x79: /* JSb (jump not negative) */ |
| case 0x7A: /* JP (jump parity even) */ |
| case 0x7B: /* JNP/JPO (jump parity odd) */ |
| case 0x7C: /* JLb/JNGEb (jump less) */ |
| case 0x7D: /* JGEb/JNLb (jump greater or equal) */ |
| case 0x7E: /* JLEb/JNGb (jump less or equal) */ |
| case 0x7F: { /* JGb/JNLEb (jump greater) */ |
| Long jmpDelta; |
| HChar* comment = ""; |
| if (haveF2orF3(pfx)) goto decode_failure; |
| jmpDelta = getSDisp8(delta); |
| vassert(-128 <= jmpDelta && jmpDelta < 128); |
| d64 = (guest_RIP_bbstart+delta+1) + jmpDelta; |
| delta++; |
| if (resteerCisOk |
| && vex_control.guest_chase_cond |
| && (Addr64)d64 != (Addr64)guest_RIP_bbstart |
| && jmpDelta < 0 |
| && resteerOkFn( callback_opaque, d64) ) { |
| /* Speculation: assume this backward branch is taken. So we |
| need to emit a side-exit to the insn following this one, |
| on the negation of the condition, and continue at the |
| branch target address (d64). If we wind up back at the |
| first instruction of the trace, just stop; it's better to |
| let the IR loop unroller handle that case. */ |
| stmt( IRStmt_Exit( |
| mk_amd64g_calculate_condition( |
| (AMD64Condcode)(1 ^ (opc - 0x70))), |
| Ijk_Boring, |
| IRConst_U64(guest_RIP_bbstart+delta), |
| OFFB_RIP ) ); |
| dres->whatNext = Dis_ResteerC; |
| dres->continueAt = d64; |
| comment = "(assumed taken)"; |
| } |
| else |
| if (resteerCisOk |
| && vex_control.guest_chase_cond |
| && (Addr64)d64 != (Addr64)guest_RIP_bbstart |
| && jmpDelta >= 0 |
| && resteerOkFn( callback_opaque, guest_RIP_bbstart+delta ) ) { |
| /* Speculation: assume this forward branch is not taken. So |
| we need to emit a side-exit to d64 (the dest) and continue |
| disassembling at the insn immediately following this |
| one. */ |
| stmt( IRStmt_Exit( |
| mk_amd64g_calculate_condition((AMD64Condcode)(opc - 0x70)), |
| Ijk_Boring, |
| IRConst_U64(d64), |
| OFFB_RIP ) ); |
| dres->whatNext = Dis_ResteerC; |
| dres->continueAt = guest_RIP_bbstart+delta; |
| comment = "(assumed not taken)"; |
| } |
| else { |
| /* Conservative default translation - end the block at this |
| point. */ |
| jcc_01( dres, (AMD64Condcode)(opc - 0x70), |
| guest_RIP_bbstart+delta, d64 ); |
| vassert(dres->whatNext == Dis_StopHere); |
| } |
| DIP("j%s-8 0x%llx %s\n", name_AMD64Condcode(opc - 0x70), d64, comment); |
| return delta; |
| } |
| |
| case 0x80: /* Grp1 Ib,Eb */ |
| if (haveF2orF3(pfx)) goto decode_failure; |
| modrm = getUChar(delta); |
| am_sz = lengthAMode(pfx,delta); |
| sz = 1; |
| d_sz = 1; |
| d64 = getSDisp8(delta + am_sz); |
| delta = dis_Grp1 ( vbi, pfx, delta, modrm, am_sz, d_sz, sz, d64 ); |
| return delta; |
| |
| case 0x81: /* Grp1 Iv,Ev */ |
| if (haveF2orF3(pfx)) goto decode_failure; |
| modrm = getUChar(delta); |
| am_sz = lengthAMode(pfx,delta); |
| d_sz = imin(sz,4); |
| d64 = getSDisp(d_sz, delta + am_sz); |
| delta = dis_Grp1 ( vbi, pfx, delta, modrm, am_sz, d_sz, sz, d64 ); |
| return delta; |
| |
| case 0x83: /* Grp1 Ib,Ev */ |
| if (haveF2orF3(pfx)) goto decode_failure; |
| modrm = getUChar(delta); |
| am_sz = lengthAMode(pfx,delta); |
| d_sz = 1; |
| d64 = getSDisp8(delta + am_sz); |
| delta = dis_Grp1 ( vbi, pfx, delta, modrm, am_sz, d_sz, sz, d64 ); |
| return delta; |
| |
| case 0x84: /* TEST Eb,Gb */ |
| if (haveF2orF3(pfx)) goto decode_failure; |
| delta = dis_op2_E_G ( vbi, pfx, False, Iop_And8, False, 1, delta, "test" ); |
| return delta; |
| |
| case 0x85: /* TEST Ev,Gv */ |
| if (haveF2orF3(pfx)) goto decode_failure; |
| delta = dis_op2_E_G ( vbi, pfx, False, Iop_And8, False, sz, delta, "test" ); |
| return delta; |
| |
| /* XCHG reg,mem automatically asserts LOCK# even without a LOCK |
| prefix. Therefore, surround it with a IRStmt_MBE(Imbe_BusLock) |
| and IRStmt_MBE(Imbe_BusUnlock) pair. But be careful; if it is |
| used with an explicit LOCK prefix, we don't want to end up with |
| two IRStmt_MBE(Imbe_BusLock)s -- one made here and one made by |
| the generic LOCK logic at the top of disInstr. */ |
| case 0x86: /* XCHG Gb,Eb */ |
| sz = 1; |
| /* Fall through ... */ |
| case 0x87: /* XCHG Gv,Ev */ |
| if (haveF2orF3(pfx)) goto decode_failure; |
| modrm = getUChar(delta); |
| ty = szToITy(sz); |
| t1 = newTemp(ty); t2 = newTemp(ty); |
| if (epartIsReg(modrm)) { |
| assign(t1, getIRegE(sz, pfx, modrm)); |
| assign(t2, getIRegG(sz, pfx, modrm)); |
| putIRegG(sz, pfx, modrm, mkexpr(t1)); |
| putIRegE(sz, pfx, modrm, mkexpr(t2)); |
| delta++; |
| DIP("xchg%c %s, %s\n", |
| nameISize(sz), nameIRegG(sz, pfx, modrm), |
| nameIRegE(sz, pfx, modrm)); |
| } else { |
| *expect_CAS = True; |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| assign( t1, loadLE(ty, mkexpr(addr)) ); |
| assign( t2, getIRegG(sz, pfx, modrm) ); |
| casLE( mkexpr(addr), |
| mkexpr(t1), mkexpr(t2), guest_RIP_curr_instr ); |
| putIRegG( sz, pfx, modrm, mkexpr(t1) ); |
| delta += alen; |
| DIP("xchg%c %s, %s\n", nameISize(sz), |
| nameIRegG(sz, pfx, modrm), dis_buf); |
| } |
| return delta; |
| |
| case 0x88: /* MOV Gb,Eb */ |
| if (haveF2orF3(pfx)) goto decode_failure; |
| delta = dis_mov_G_E(vbi, pfx, 1, delta); |
| return delta; |
| |
| case 0x89: /* MOV Gv,Ev */ |
| if (haveF2orF3(pfx)) goto decode_failure; |
| delta = dis_mov_G_E(vbi, pfx, sz, delta); |
| return delta; |
| |
| case 0x8A: /* MOV Eb,Gb */ |
| if (haveF2orF3(pfx)) goto decode_failure; |
| delta = dis_mov_E_G(vbi, pfx, 1, delta); |
| return delta; |
| |
| case 0x8B: /* MOV Ev,Gv */ |
| if (haveF2orF3(pfx)) goto decode_failure; |
| delta = dis_mov_E_G(vbi, pfx, sz, delta); |
| return delta; |
| |
| case 0x8D: /* LEA M,Gv */ |
| if (haveF2orF3(pfx)) goto decode_failure; |
| if (sz != 4 && sz != 8) |
| goto decode_failure; |
| modrm = getUChar(delta); |
| if (epartIsReg(modrm)) |
| goto decode_failure; |
| /* NOTE! this is the one place where a segment override prefix |
| has no effect on the address calculation. Therefore we clear |
| any segment override bits in pfx. */ |
| addr = disAMode ( &alen, vbi, clearSegBits(pfx), delta, dis_buf, 0 ); |
| delta += alen; |
| /* This is a hack. But it isn't clear that really doing the |
| calculation at 32 bits is really worth it. Hence for leal, |
| do the full 64-bit calculation and then truncate it. */ |
| putIRegG( sz, pfx, modrm, |
| sz == 4 |
| ? unop(Iop_64to32, mkexpr(addr)) |
| : mkexpr(addr) |
| ); |
| DIP("lea%c %s, %s\n", nameISize(sz), dis_buf, |
| nameIRegG(sz,pfx,modrm)); |
| return delta; |
| |
| case 0x8F: { /* POPQ m64 / POPW m16 */ |
| Int len; |
| UChar rm; |
| /* There is no encoding for 32-bit pop in 64-bit mode. |
| So sz==4 actually means sz==8. */ |
| if (haveF2orF3(pfx)) goto decode_failure; |
| vassert(sz == 2 || sz == 4 |
| || /* tolerate redundant REX.W, see #210481 */ sz == 8); |
| if (sz == 4) sz = 8; |
| if (sz != 8) goto decode_failure; // until we know a sz==2 test case exists |
| |
| rm = getUChar(delta); |
| |
| /* make sure this instruction is correct POP */ |
| if (epartIsReg(rm) || gregLO3ofRM(rm) != 0) |
| goto decode_failure; |
| /* and has correct size */ |
| vassert(sz == 8); |
| |
| t1 = newTemp(Ity_I64); |
| t3 = newTemp(Ity_I64); |
| assign( t1, getIReg64(R_RSP) ); |
| assign( t3, loadLE(Ity_I64, mkexpr(t1)) ); |
| |
| /* Increase RSP; must be done before the STORE. Intel manual |
| says: If the RSP register is used as a base register for |
| addressing a destination operand in memory, the POP |
| instruction computes the effective address of the operand |
| after it increments the RSP register. */ |
| putIReg64(R_RSP, binop(Iop_Add64, mkexpr(t1), mkU64(sz)) ); |
| |
| addr = disAMode ( &len, vbi, pfx, delta, dis_buf, 0 ); |
| storeLE( mkexpr(addr), mkexpr(t3) ); |
| |
| DIP("popl %s\n", dis_buf); |
| |
| delta += len; |
| return delta; |
| } |
| |
| case 0x90: /* XCHG eAX,eAX */ |
| /* detect and handle F3 90 (rep nop) specially */ |
| if (!have66(pfx) && !haveF2(pfx) && haveF3(pfx)) { |
| DIP("rep nop (P4 pause)\n"); |
| /* "observe" the hint. The Vex client needs to be careful not |
| to cause very long delays as a result, though. */ |
| jmp_lit(dres, Ijk_Yield, guest_RIP_bbstart+delta); |
| vassert(dres->whatNext == Dis_StopHere); |
| return delta; |
| } |
| /* detect and handle NOPs specially */ |
| if (/* F2/F3 probably change meaning completely */ |
| !haveF2orF3(pfx) |
| /* If REX.B is 1, we're not exchanging rAX with itself */ |
| && getRexB(pfx)==0 ) { |
| DIP("nop\n"); |
| return delta; |
| } |
| /* else fall through to normal case. */ |
| case 0x91: /* XCHG rAX,rCX */ |
| case 0x92: /* XCHG rAX,rDX */ |
| case 0x93: /* XCHG rAX,rBX */ |
| case 0x94: /* XCHG rAX,rSP */ |
| case 0x95: /* XCHG rAX,rBP */ |
| case 0x96: /* XCHG rAX,rSI */ |
| case 0x97: /* XCHG rAX,rDI */ |
| /* guard against mutancy */ |
| if (haveF2orF3(pfx)) goto decode_failure; |
| codegen_xchg_rAX_Reg ( pfx, sz, opc - 0x90 ); |
| return delta; |
| |
| case 0x98: /* CBW */ |
| if (haveF2orF3(pfx)) goto decode_failure; |
| if (sz == 8) { |
| putIRegRAX( 8, unop(Iop_32Sto64, getIRegRAX(4)) ); |
| DIP(/*"cdqe\n"*/"cltq"); |
| return delta; |
| } |
| if (sz == 4) { |
| putIRegRAX( 4, unop(Iop_16Sto32, getIRegRAX(2)) ); |
| DIP("cwtl\n"); |
| return delta; |
| } |
| if (sz == 2) { |
| putIRegRAX( 2, unop(Iop_8Sto16, getIRegRAX(1)) ); |
| DIP("cbw\n"); |
| return delta; |
| } |
| goto decode_failure; |
| |
| case 0x99: /* CWD/CDQ/CQO */ |
| if (haveF2orF3(pfx)) goto decode_failure; |
| vassert(sz == 2 || sz == 4 || sz == 8); |
| ty = szToITy(sz); |
| putIRegRDX( sz, |
| binop(mkSizedOp(ty,Iop_Sar8), |
| getIRegRAX(sz), |
| mkU8(sz == 2 ? 15 : (sz == 4 ? 31 : 63))) ); |
| DIP(sz == 2 ? "cwd\n" |
| : (sz == 4 ? /*"cdq\n"*/ "cltd\n" |
| : "cqo\n")); |
| return delta; |
| |
| case 0x9B: /* FWAIT (X87 insn) */ |
| /* ignore? */ |
| DIP("fwait\n"); |
| return delta; |
| |
| case 0x9C: /* PUSHF */ { |
| /* Note. There is no encoding for a 32-bit pushf in 64-bit |
| mode. So sz==4 actually means sz==8. */ |
| /* 24 July 06: has also been seen with a redundant REX prefix, |
| so must also allow sz==8. */ |
| if (haveF2orF3(pfx)) goto decode_failure; |
| vassert(sz == 2 || sz == 4 || sz == 8); |
| if (sz == 4) sz = 8; |
| if (sz != 8) goto decode_failure; // until we know a sz==2 test case exists |
| |
| t1 = newTemp(Ity_I64); |
| assign( t1, binop(Iop_Sub64,getIReg64(R_RSP),mkU64(sz)) ); |
| putIReg64(R_RSP, mkexpr(t1) ); |
| |
| t2 = newTemp(Ity_I64); |
| assign( t2, mk_amd64g_calculate_rflags_all() ); |
| |
| /* Patch in the D flag. This can simply be a copy of bit 10 of |
| baseBlock[OFFB_DFLAG]. */ |
| t3 = newTemp(Ity_I64); |
| assign( t3, binop(Iop_Or64, |
| mkexpr(t2), |
| binop(Iop_And64, |
| IRExpr_Get(OFFB_DFLAG,Ity_I64), |
| mkU64(1<<10))) |
| ); |
| |
| /* And patch in the ID flag. */ |
| t4 = newTemp(Ity_I64); |
| assign( t4, binop(Iop_Or64, |
| mkexpr(t3), |
| binop(Iop_And64, |
| binop(Iop_Shl64, IRExpr_Get(OFFB_IDFLAG,Ity_I64), |
| mkU8(21)), |
| mkU64(1<<21))) |
| ); |
| |
| /* And patch in the AC flag too. */ |
| t5 = newTemp(Ity_I64); |
| assign( t5, binop(Iop_Or64, |
| mkexpr(t4), |
| binop(Iop_And64, |
| binop(Iop_Shl64, IRExpr_Get(OFFB_ACFLAG,Ity_I64), |
| mkU8(18)), |
| mkU64(1<<18))) |
| ); |
| |
| /* if sz==2, the stored value needs to be narrowed. */ |
| if (sz == 2) |
| storeLE( mkexpr(t1), unop(Iop_32to16, |
| unop(Iop_64to32,mkexpr(t5))) ); |
| else |
| storeLE( mkexpr(t1), mkexpr(t5) ); |
| |
| DIP("pushf%c\n", nameISize(sz)); |
| return delta; |
| } |
| |
| case 0x9D: /* POPF */ |
| /* Note. There is no encoding for a 32-bit popf in 64-bit mode. |
| So sz==4 actually means sz==8. */ |
| if (haveF2orF3(pfx)) goto decode_failure; |
| vassert(sz == 2 || sz == 4); |
| if (sz == 4) sz = 8; |
| if (sz != 8) goto decode_failure; // until we know a sz==2 test case exists |
| t1 = newTemp(Ity_I64); t2 = newTemp(Ity_I64); |
| assign(t2, getIReg64(R_RSP)); |
| assign(t1, widenUto64(loadLE(szToITy(sz),mkexpr(t2)))); |
| putIReg64(R_RSP, binop(Iop_Add64, mkexpr(t2), mkU64(sz))); |
| /* t1 is the flag word. Mask out everything except OSZACP and |
| set the flags thunk to AMD64G_CC_OP_COPY. */ |
| stmt( IRStmt_Put( OFFB_CC_OP, mkU64(AMD64G_CC_OP_COPY) )); |
| stmt( IRStmt_Put( OFFB_CC_DEP2, mkU64(0) )); |
| stmt( IRStmt_Put( OFFB_CC_DEP1, |
| binop(Iop_And64, |
| mkexpr(t1), |
| mkU64( AMD64G_CC_MASK_C | AMD64G_CC_MASK_P |
| | AMD64G_CC_MASK_A | AMD64G_CC_MASK_Z |
| | AMD64G_CC_MASK_S| AMD64G_CC_MASK_O ) |
| ) |
| ) |
| ); |
| |
| /* Also need to set the D flag, which is held in bit 10 of t1. |
| If zero, put 1 in OFFB_DFLAG, else -1 in OFFB_DFLAG. */ |
| stmt( IRStmt_Put( |
| OFFB_DFLAG, |
| IRExpr_Mux0X( |
| unop(Iop_32to8, |
| unop(Iop_64to32, |
| binop(Iop_And64, |
| binop(Iop_Shr64, mkexpr(t1), mkU8(10)), |
| mkU64(1)))), |
| mkU64(1), |
| mkU64(0xFFFFFFFFFFFFFFFFULL))) |
| ); |
| |
| /* And set the ID flag */ |
| stmt( IRStmt_Put( |
| OFFB_IDFLAG, |
| IRExpr_Mux0X( |
| unop(Iop_32to8, |
| unop(Iop_64to32, |
| binop(Iop_And64, |
| binop(Iop_Shr64, mkexpr(t1), mkU8(21)), |
| mkU64(1)))), |
| mkU64(0), |
| mkU64(1))) |
| ); |
| |
| /* And set the AC flag too */ |
| stmt( IRStmt_Put( |
| OFFB_ACFLAG, |
| IRExpr_Mux0X( |
| unop(Iop_32to8, |
| unop(Iop_64to32, |
| binop(Iop_And64, |
| binop(Iop_Shr64, mkexpr(t1), mkU8(18)), |
| mkU64(1)))), |
| mkU64(0), |
| mkU64(1))) |
| ); |
| |
| DIP("popf%c\n", nameISize(sz)); |
| return delta; |
| |
| case 0x9E: /* SAHF */ |
| codegen_SAHF(); |
| DIP("sahf\n"); |
| return delta; |
| |
| case 0x9F: /* LAHF */ |
| codegen_LAHF(); |
| DIP("lahf\n"); |
| return delta; |
| |
| case 0xA0: /* MOV Ob,AL */ |
| if (have66orF2orF3(pfx)) goto decode_failure; |
| sz = 1; |
| /* Fall through ... */ |
| case 0xA1: /* MOV Ov,eAX */ |
| if (sz != 8 && sz != 4 && sz != 2 && sz != 1) |
| goto decode_failure; |
| d64 = getDisp64(delta); |
| delta += 8; |
| ty = szToITy(sz); |
| addr = newTemp(Ity_I64); |
| assign( addr, handleAddrOverrides(vbi, pfx, mkU64(d64)) ); |
| putIRegRAX(sz, loadLE( ty, mkexpr(addr) )); |
| DIP("mov%c %s0x%llx, %s\n", nameISize(sz), |
| segRegTxt(pfx), d64, |
| nameIRegRAX(sz)); |
| return delta; |
| |
| case 0xA2: /* MOV AL,Ob */ |
| if (have66orF2orF3(pfx)) goto decode_failure; |
| sz = 1; |
| /* Fall through ... */ |
| case 0xA3: /* MOV eAX,Ov */ |
| if (sz != 8 && sz != 4 && sz != 2 && sz != 1) |
| goto decode_failure; |
| d64 = getDisp64(delta); |
| delta += 8; |
| ty = szToITy(sz); |
| addr = newTemp(Ity_I64); |
| assign( addr, handleAddrOverrides(vbi, pfx, mkU64(d64)) ); |
| storeLE( mkexpr(addr), getIRegRAX(sz) ); |
| DIP("mov%c %s, %s0x%llx\n", nameISize(sz), nameIRegRAX(sz), |
| segRegTxt(pfx), d64); |
| return delta; |
| |
| case 0xA4: |
| case 0xA5: |
| /* F3 A4: rep movsb */ |
| if (haveF3(pfx) && !haveF2(pfx)) { |
| if (opc == 0xA4) |
| sz = 1; |
| dis_REP_op ( dres, AMD64CondAlways, dis_MOVS, sz, |
| guest_RIP_curr_instr, |
| guest_RIP_bbstart+delta, "rep movs", pfx ); |
| dres->whatNext = Dis_StopHere; |
| return delta; |
| } |
| /* A4: movsb */ |
| if (!haveF3(pfx) && !haveF2(pfx)) { |
| if (opc == 0xA4) |
| sz = 1; |
| dis_string_op( dis_MOVS, sz, "movs", pfx ); |
| return delta; |
| } |
| goto decode_failure; |
| |
| case 0xA6: |
| case 0xA7: |
| /* F3 A6/A7: repe cmps/rep cmps{w,l,q} */ |
| if (haveF3(pfx) && !haveF2(pfx)) { |
| if (opc == 0xA6) |
| sz = 1; |
| dis_REP_op ( dres, AMD64CondZ, dis_CMPS, sz, |
| guest_RIP_curr_instr, |
| guest_RIP_bbstart+delta, "repe cmps", pfx ); |
| dres->whatNext = Dis_StopHere; |
| return delta; |
| } |
| goto decode_failure; |
| |
| case 0xAA: |
| case 0xAB: |
| /* F3 AA/AB: rep stosb/rep stos{w,l,q} */ |
| if (haveF3(pfx) && !haveF2(pfx)) { |
| if (opc == 0xAA) |
| sz = 1; |
| dis_REP_op ( dres, AMD64CondAlways, dis_STOS, sz, |
| guest_RIP_curr_instr, |
| guest_RIP_bbstart+delta, "rep stos", pfx ); |
| vassert(dres->whatNext == Dis_StopHere); |
| return delta; |
| } |
| /* AA/AB: stosb/stos{w,l,q} */ |
| if (!haveF3(pfx) && !haveF2(pfx)) { |
| if (opc == 0xAA) |
| sz = 1; |
| dis_string_op( dis_STOS, sz, "stos", pfx ); |
| return delta; |
| } |
| goto decode_failure; |
| |
| case 0xA8: /* TEST Ib, AL */ |
| if (haveF2orF3(pfx)) goto decode_failure; |
| delta = dis_op_imm_A( 1, False, Iop_And8, False, delta, "test" ); |
| return delta; |
| case 0xA9: /* TEST Iv, eAX */ |
| if (haveF2orF3(pfx)) goto decode_failure; |
| delta = dis_op_imm_A( sz, False, Iop_And8, False, delta, "test" ); |
| return delta; |
| |
| case 0xAC: /* LODS, no REP prefix */ |
| case 0xAD: |
| dis_string_op( dis_LODS, ( opc == 0xAC ? 1 : sz ), "lods", pfx ); |
| return delta; |
| |
| case 0xAE: |
| case 0xAF: |
| /* F2 AE/AF: repne scasb/repne scas{w,l,q} */ |
| if (haveF2(pfx) && !haveF3(pfx)) { |
| if (opc == 0xAE) |
| sz = 1; |
| dis_REP_op ( dres, AMD64CondNZ, dis_SCAS, sz, |
| guest_RIP_curr_instr, |
| guest_RIP_bbstart+delta, "repne scas", pfx ); |
| vassert(dres->whatNext == Dis_StopHere); |
| return delta; |
| } |
| /* F3 AE/AF: repe scasb/repe scas{w,l,q} */ |
| if (!haveF2(pfx) && haveF3(pfx)) { |
| if (opc == 0xAE) |
| sz = 1; |
| dis_REP_op ( dres, AMD64CondZ, dis_SCAS, sz, |
| guest_RIP_curr_instr, |
| guest_RIP_bbstart+delta, "repe scas", pfx ); |
| vassert(dres->whatNext == Dis_StopHere); |
| return delta; |
| } |
| /* AE/AF: scasb/scas{w,l,q} */ |
| if (!haveF2(pfx) && !haveF3(pfx)) { |
| if (opc == 0xAE) |
| sz = 1; |
| dis_string_op( dis_SCAS, sz, "scas", pfx ); |
| return delta; |
| } |
| goto decode_failure; |
| |
| /* XXXX be careful here with moves to AH/BH/CH/DH */ |
| case 0xB0: /* MOV imm,AL */ |
| case 0xB1: /* MOV imm,CL */ |
| case 0xB2: /* MOV imm,DL */ |
| case 0xB3: /* MOV imm,BL */ |
| case 0xB4: /* MOV imm,AH */ |
| case 0xB5: /* MOV imm,CH */ |
| case 0xB6: /* MOV imm,DH */ |
| case 0xB7: /* MOV imm,BH */ |
| if (haveF2orF3(pfx)) goto decode_failure; |
| d64 = getUChar(delta); |
| delta += 1; |
| putIRegRexB(1, pfx, opc-0xB0, mkU8(d64)); |
| DIP("movb $%lld,%s\n", d64, nameIRegRexB(1,pfx,opc-0xB0)); |
| return delta; |
| |
| case 0xB8: /* MOV imm,eAX */ |
| case 0xB9: /* MOV imm,eCX */ |
| case 0xBA: /* MOV imm,eDX */ |
| case 0xBB: /* MOV imm,eBX */ |
| case 0xBC: /* MOV imm,eSP */ |
| case 0xBD: /* MOV imm,eBP */ |
| case 0xBE: /* MOV imm,eSI */ |
| case 0xBF: /* MOV imm,eDI */ |
| /* This is the one-and-only place where 64-bit literals are |
| allowed in the instruction stream. */ |
| if (haveF2orF3(pfx)) goto decode_failure; |
| if (sz == 8) { |
| d64 = getDisp64(delta); |
| delta += 8; |
| putIRegRexB(8, pfx, opc-0xB8, mkU64(d64)); |
| DIP("movabsq $%lld,%s\n", (Long)d64, |
| nameIRegRexB(8,pfx,opc-0xB8)); |
| } else { |
| d64 = getSDisp(imin(4,sz),delta); |
| delta += imin(4,sz); |
| putIRegRexB(sz, pfx, opc-0xB8, |
| mkU(szToITy(sz), d64 & mkSizeMask(sz))); |
| DIP("mov%c $%lld,%s\n", nameISize(sz), |
| (Long)d64, |
| nameIRegRexB(sz,pfx,opc-0xB8)); |
| } |
| return delta; |
| |
| case 0xC0: { /* Grp2 Ib,Eb */ |
| Bool decode_OK = True; |
| if (haveF2orF3(pfx)) goto decode_failure; |
| modrm = getUChar(delta); |
| am_sz = lengthAMode(pfx,delta); |
| d_sz = 1; |
| d64 = getUChar(delta + am_sz); |
| sz = 1; |
| delta = dis_Grp2 ( vbi, pfx, delta, modrm, am_sz, d_sz, sz, |
| mkU8(d64 & 0xFF), NULL, &decode_OK ); |
| if (!decode_OK) goto decode_failure; |
| return delta; |
| } |
| |
| case 0xC1: { /* Grp2 Ib,Ev */ |
| Bool decode_OK = True; |
| if (haveF2orF3(pfx)) goto decode_failure; |
| modrm = getUChar(delta); |
| am_sz = lengthAMode(pfx,delta); |
| d_sz = 1; |
| d64 = getUChar(delta + am_sz); |
| delta = dis_Grp2 ( vbi, pfx, delta, modrm, am_sz, d_sz, sz, |
| mkU8(d64 & 0xFF), NULL, &decode_OK ); |
| if (!decode_OK) goto decode_failure; |
| return delta; |
| } |
| |
| case 0xC2: /* RET imm16 */ |
| if (have66orF2orF3(pfx)) goto decode_failure; |
| d64 = getUDisp16(delta); |
| delta += 2; |
| dis_ret(dres, vbi, d64); |
| DIP("ret $%lld\n", d64); |
| return delta; |
| |
| case 0xC3: /* RET */ |
| if (have66orF2(pfx)) goto decode_failure; |
| /* F3 is acceptable on AMD. */ |
| dis_ret(dres, vbi, 0); |
| DIP(haveF3(pfx) ? "rep ; ret\n" : "ret\n"); |
| return delta; |
| |
| case 0xC6: /* MOV Ib,Eb */ |
| sz = 1; |
| goto do_Mov_I_E; |
| case 0xC7: /* MOV Iv,Ev */ |
| goto do_Mov_I_E; |
| do_Mov_I_E: |
| if (haveF2orF3(pfx)) goto decode_failure; |
| modrm = getUChar(delta); |
| if (epartIsReg(modrm)) { |
| delta++; /* mod/rm byte */ |
| d64 = getSDisp(imin(4,sz),delta); |
| delta += imin(4,sz); |
| putIRegE(sz, pfx, modrm, |
| mkU(szToITy(sz), d64 & mkSizeMask(sz))); |
| DIP("mov%c $%lld, %s\n", nameISize(sz), |
| (Long)d64, |
| nameIRegE(sz,pfx,modrm)); |
| } else { |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, |
| /*xtra*/imin(4,sz) ); |
| delta += alen; |
| d64 = getSDisp(imin(4,sz),delta); |
| delta += imin(4,sz); |
| storeLE(mkexpr(addr), |
| mkU(szToITy(sz), d64 & mkSizeMask(sz))); |
| DIP("mov%c $%lld, %s\n", nameISize(sz), (Long)d64, dis_buf); |
| } |
| return delta; |
| |
| case 0xC8: /* ENTER */ |
| /* Same comments re operand size as for LEAVE below apply. |
| Also, only handles the case "enter $imm16, $0"; other cases |
| for the second operand (nesting depth) are not handled. */ |
| if (sz != 4) |
| goto decode_failure; |
| d64 = getUDisp16(delta); |
| delta += 2; |
| vassert(d64 >= 0 && d64 <= 0xFFFF); |
| if (getUChar(delta) != 0) |
| goto decode_failure; |
| delta++; |
| /* Intel docs seem to suggest: |
| push rbp |
| temp = rsp |
| rbp = temp |
| rsp = rsp - imm16 |
| */ |
| t1 = newTemp(Ity_I64); |
| assign(t1, getIReg64(R_RBP)); |
| t2 = newTemp(Ity_I64); |
| assign(t2, binop(Iop_Sub64, getIReg64(R_RSP), mkU64(8))); |
| putIReg64(R_RSP, mkexpr(t2)); |
| storeLE(mkexpr(t2), mkexpr(t1)); |
| putIReg64(R_RBP, mkexpr(t2)); |
| if (d64 > 0) { |
| putIReg64(R_RSP, binop(Iop_Sub64, mkexpr(t2), mkU64(d64))); |
| } |
| DIP("enter $%u, $0\n", (UInt)d64); |
| return delta; |
| |
| case 0xC9: /* LEAVE */ |
| /* In 64-bit mode this defaults to a 64-bit operand size. There |
| is no way to encode a 32-bit variant. Hence sz==4 but we do |
| it as if sz=8. */ |
| if (sz != 4) |
| goto decode_failure; |
| t1 = newTemp(Ity_I64); |
| t2 = newTemp(Ity_I64); |
| assign(t1, getIReg64(R_RBP)); |
| /* First PUT RSP looks redundant, but need it because RSP must |
| always be up-to-date for Memcheck to work... */ |
| putIReg64(R_RSP, mkexpr(t1)); |
| assign(t2, loadLE(Ity_I64,mkexpr(t1))); |
| putIReg64(R_RBP, mkexpr(t2)); |
| putIReg64(R_RSP, binop(Iop_Add64, mkexpr(t1), mkU64(8)) ); |
| DIP("leave\n"); |
| return delta; |
| |
| case 0xCC: /* INT 3 */ |
| jmp_lit(dres, Ijk_SigTRAP, guest_RIP_bbstart + delta); |
| vassert(dres->whatNext == Dis_StopHere); |
| DIP("int $0x3\n"); |
| return delta; |
| |
| case 0xD0: { /* Grp2 1,Eb */ |
| Bool decode_OK = True; |
| if (haveF2orF3(pfx)) goto decode_failure; |
| modrm = getUChar(delta); |
| am_sz = lengthAMode(pfx,delta); |
| d_sz = 0; |
| d64 = 1; |
| sz = 1; |
| delta = dis_Grp2 ( vbi, pfx, delta, modrm, am_sz, d_sz, sz, |
| mkU8(d64), NULL, &decode_OK ); |
| if (!decode_OK) goto decode_failure; |
| return delta; |
| } |
| |
| case 0xD1: { /* Grp2 1,Ev */ |
| Bool decode_OK = True; |
| if (haveF2orF3(pfx)) goto decode_failure; |
| modrm = getUChar(delta); |
| am_sz = lengthAMode(pfx,delta); |
| d_sz = 0; |
| d64 = 1; |
| delta = dis_Grp2 ( vbi, pfx, delta, modrm, am_sz, d_sz, sz, |
| mkU8(d64), NULL, &decode_OK ); |
| if (!decode_OK) goto decode_failure; |
| return delta; |
| } |
| |
| case 0xD2: { /* Grp2 CL,Eb */ |
| Bool decode_OK = True; |
| if (haveF2orF3(pfx)) goto decode_failure; |
| modrm = getUChar(delta); |
| am_sz = lengthAMode(pfx,delta); |
| d_sz = 0; |
| sz = 1; |
| delta = dis_Grp2 ( vbi, pfx, delta, modrm, am_sz, d_sz, sz, |
| getIRegCL(), "%cl", &decode_OK ); |
| if (!decode_OK) goto decode_failure; |
| return delta; |
| } |
| |
| case 0xD3: { /* Grp2 CL,Ev */ |
| Bool decode_OK = True; |
| if (haveF2orF3(pfx)) goto decode_failure; |
| modrm = getUChar(delta); |
| am_sz = lengthAMode(pfx,delta); |
| d_sz = 0; |
| delta = dis_Grp2 ( vbi, pfx, delta, modrm, am_sz, d_sz, sz, |
| getIRegCL(), "%cl", &decode_OK ); |
| if (!decode_OK) goto decode_failure; |
| return delta; |
| } |
| |
| case 0xD8: /* X87 instructions */ |
| case 0xD9: |
| case 0xDA: |
| case 0xDB: |
| case 0xDC: |
| case 0xDD: |
| case 0xDE: |
| case 0xDF: { |
| Bool redundantREXWok = False; |
| |
| if (haveF2orF3(pfx)) |
| goto decode_failure; |
| |
| /* kludge to tolerate redundant rex.w prefixes (should do this |
| properly one day) */ |
| /* mono 1.1.18.1 produces 48 D9 FA, which is rex.w fsqrt */ |
| if ( (opc == 0xD9 && getUChar(delta+0) == 0xFA)/*fsqrt*/ ) |
| redundantREXWok = True; |
| |
| Bool size_OK = False; |
| if ( sz == 4 ) |
| size_OK = True; |
| else if ( sz == 8 ) |
| size_OK = redundantREXWok; |
| else if ( sz == 2 ) { |
| int mod_rm = getUChar(delta+0); |
| int reg = gregLO3ofRM(mod_rm); |
| /* The HotSpot JVM uses these */ |
| if ( (opc == 0xDD) && (reg == 0 /* FLDL */ || |
| reg == 4 /* FNSAVE */ || |
| reg == 6 /* FRSTOR */ ) ) |
| size_OK = True; |
| } |
| /* AMD manual says 0x66 size override is ignored, except where |
| it is meaningful */ |
| if (!size_OK) |
| goto decode_failure; |
| |
| Bool decode_OK = False; |
| delta = dis_FPU ( &decode_OK, vbi, pfx, delta ); |
| if (!decode_OK) |
| goto decode_failure; |
| |
| return delta; |
| } |
| |
| case 0xE0: /* LOOPNE disp8: decrement count, jump if count != 0 && ZF==0 */ |
| case 0xE1: /* LOOPE disp8: decrement count, jump if count != 0 && ZF==1 */ |
| case 0xE2: /* LOOP disp8: decrement count, jump if count != 0 */ |
| { /* The docs say this uses rCX as a count depending on the |
| address size override, not the operand one. */ |
| IRExpr* zbit = NULL; |
| IRExpr* count = NULL; |
| IRExpr* cond = NULL; |
| HChar* xtra = NULL; |
| |
| if (have66orF2orF3(pfx) || 1==getRexW(pfx)) goto decode_failure; |
| /* So at this point we've rejected any variants which appear to |
| be governed by the usual operand-size modifiers. Hence only |
| the address size prefix can have an effect. It changes the |
| size from 64 (default) to 32. */ |
| d64 = guest_RIP_bbstart+delta+1 + getSDisp8(delta); |
| delta++; |
| if (haveASO(pfx)) { |
| /* 64to32 of 64-bit get is merely a get-put improvement |
| trick. */ |
| putIReg32(R_RCX, binop(Iop_Sub32, |
| unop(Iop_64to32, getIReg64(R_RCX)), |
| mkU32(1))); |
| } else { |
| putIReg64(R_RCX, binop(Iop_Sub64, getIReg64(R_RCX), mkU64(1))); |
| } |
| |
| /* This is correct, both for 32- and 64-bit versions. If we're |
| doing a 32-bit dec and the result is zero then the default |
| zero extension rule will cause the upper 32 bits to be zero |
| too. Hence a 64-bit check against zero is OK. */ |
| count = getIReg64(R_RCX); |
| cond = binop(Iop_CmpNE64, count, mkU64(0)); |
| switch (opc) { |
| case 0xE2: |
| xtra = ""; |
| break; |
| case 0xE1: |
| xtra = "e"; |
| zbit = mk_amd64g_calculate_condition( AMD64CondZ ); |
| cond = mkAnd1(cond, zbit); |
| break; |
| case 0xE0: |
| xtra = "ne"; |
| zbit = mk_amd64g_calculate_condition( AMD64CondNZ ); |
| cond = mkAnd1(cond, zbit); |
| break; |
| default: |
| vassert(0); |
| } |
| stmt( IRStmt_Exit(cond, Ijk_Boring, IRConst_U64(d64), OFFB_RIP) ); |
| |
| DIP("loop%s%s 0x%llx\n", xtra, haveASO(pfx) ? "l" : "", d64); |
| return delta; |
| } |
| |
| case 0xE3: |
| /* JRCXZ or JECXZ, depending address size override. */ |
| if (have66orF2orF3(pfx)) goto decode_failure; |
| d64 = (guest_RIP_bbstart+delta+1) + getSDisp8(delta); |
| delta++; |
| if (haveASO(pfx)) { |
| /* 32-bit */ |
| stmt( IRStmt_Exit( binop(Iop_CmpEQ64, |
| unop(Iop_32Uto64, getIReg32(R_RCX)), |
| mkU64(0)), |
| Ijk_Boring, |
| IRConst_U64(d64), |
| OFFB_RIP |
| )); |
| DIP("jecxz 0x%llx\n", d64); |
| } else { |
| /* 64-bit */ |
| stmt( IRStmt_Exit( binop(Iop_CmpEQ64, |
| getIReg64(R_RCX), |
| mkU64(0)), |
| Ijk_Boring, |
| IRConst_U64(d64), |
| OFFB_RIP |
| )); |
| DIP("jrcxz 0x%llx\n", d64); |
| } |
| return delta; |
| |
| case 0xE4: /* IN imm8, AL */ |
| sz = 1; |
| t1 = newTemp(Ity_I64); |
| abyte = getUChar(delta); delta++; |
| assign(t1, mkU64( abyte & 0xFF )); |
| DIP("in%c $%d,%s\n", nameISize(sz), (Int)abyte, nameIRegRAX(sz)); |
| goto do_IN; |
| case 0xE5: /* IN imm8, eAX */ |
| if (!(sz == 2 || sz == 4)) goto decode_failure; |
| t1 = newTemp(Ity_I64); |
| abyte = getUChar(delta); delta++; |
| assign(t1, mkU64( abyte & 0xFF )); |
| DIP("in%c $%d,%s\n", nameISize(sz), (Int)abyte, nameIRegRAX(sz)); |
| goto do_IN; |
| case 0xEC: /* IN %DX, AL */ |
| sz = 1; |
| t1 = newTemp(Ity_I64); |
| assign(t1, unop(Iop_16Uto64, getIRegRDX(2))); |
| DIP("in%c %s,%s\n", nameISize(sz), nameIRegRDX(2), |
| nameIRegRAX(sz)); |
| goto do_IN; |
| case 0xED: /* IN %DX, eAX */ |
| if (!(sz == 2 || sz == 4)) goto decode_failure; |
| t1 = newTemp(Ity_I64); |
| assign(t1, unop(Iop_16Uto64, getIRegRDX(2))); |
| DIP("in%c %s,%s\n", nameISize(sz), nameIRegRDX(2), |
| nameIRegRAX(sz)); |
| goto do_IN; |
| do_IN: { |
| /* At this point, sz indicates the width, and t1 is a 64-bit |
| value giving port number. */ |
| IRDirty* d; |
| if (haveF2orF3(pfx)) goto decode_failure; |
| vassert(sz == 1 || sz == 2 || sz == 4); |
| ty = szToITy(sz); |
| t2 = newTemp(Ity_I64); |
| d = unsafeIRDirty_1_N( |
| t2, |
| 0/*regparms*/, |
| "amd64g_dirtyhelper_IN", |
| &amd64g_dirtyhelper_IN, |
| mkIRExprVec_2( mkexpr(t1), mkU64(sz) ) |
| ); |
| /* do the call, dumping the result in t2. */ |
| stmt( IRStmt_Dirty(d) ); |
| putIRegRAX(sz, narrowTo( ty, mkexpr(t2) ) ); |
| return delta; |
| } |
| |
| case 0xE6: /* OUT AL, imm8 */ |
| sz = 1; |
| t1 = newTemp(Ity_I64); |
| abyte = getUChar(delta); delta++; |
| assign( t1, mkU64( abyte & 0xFF ) ); |
| DIP("out%c %s,$%d\n", nameISize(sz), nameIRegRAX(sz), (Int)abyte); |
| goto do_OUT; |
| case 0xE7: /* OUT eAX, imm8 */ |
| if (!(sz == 2 || sz == 4)) goto decode_failure; |
| t1 = newTemp(Ity_I64); |
| abyte = getUChar(delta); delta++; |
| assign( t1, mkU64( abyte & 0xFF ) ); |
| DIP("out%c %s,$%d\n", nameISize(sz), nameIRegRAX(sz), (Int)abyte); |
| goto do_OUT; |
| case 0xEE: /* OUT AL, %DX */ |
| sz = 1; |
| t1 = newTemp(Ity_I64); |
| assign( t1, unop(Iop_16Uto64, getIRegRDX(2)) ); |
| DIP("out%c %s,%s\n", nameISize(sz), nameIRegRAX(sz), |
| nameIRegRDX(2)); |
| goto do_OUT; |
| case 0xEF: /* OUT eAX, %DX */ |
| if (!(sz == 2 || sz == 4)) goto decode_failure; |
| t1 = newTemp(Ity_I64); |
| assign( t1, unop(Iop_16Uto64, getIRegRDX(2)) ); |
| DIP("out%c %s,%s\n", nameISize(sz), nameIRegRAX(sz), |
| nameIRegRDX(2)); |
| goto do_OUT; |
| do_OUT: { |
| /* At this point, sz indicates the width, and t1 is a 64-bit |
| value giving port number. */ |
| IRDirty* d; |
| if (haveF2orF3(pfx)) goto decode_failure; |
| vassert(sz == 1 || sz == 2 || sz == 4); |
| ty = szToITy(sz); |
| d = unsafeIRDirty_0_N( |
| 0/*regparms*/, |
| "amd64g_dirtyhelper_OUT", |
| &amd64g_dirtyhelper_OUT, |
| mkIRExprVec_3( mkexpr(t1), |
| widenUto64( getIRegRAX(sz) ), |
| mkU64(sz) ) |
| ); |
| stmt( IRStmt_Dirty(d) ); |
| return delta; |
| } |
| |
| case 0xE8: /* CALL J4 */ |
| if (haveF2orF3(pfx)) goto decode_failure; |
| d64 = getSDisp32(delta); delta += 4; |
| d64 += (guest_RIP_bbstart+delta); |
| /* (guest_RIP_bbstart+delta) == return-to addr, d64 == call-to addr */ |
| t1 = newTemp(Ity_I64); |
| assign(t1, binop(Iop_Sub64, getIReg64(R_RSP), mkU64(8))); |
| putIReg64(R_RSP, mkexpr(t1)); |
| storeLE( mkexpr(t1), mkU64(guest_RIP_bbstart+delta)); |
| t2 = newTemp(Ity_I64); |
| assign(t2, mkU64((Addr64)d64)); |
| make_redzone_AbiHint(vbi, t1, t2/*nia*/, "call-d32"); |
| if (resteerOkFn( callback_opaque, (Addr64)d64) ) { |
| /* follow into the call target. */ |
| dres->whatNext = Dis_ResteerU; |
| dres->continueAt = d64; |
| } else { |
| jmp_lit(dres, Ijk_Call, d64); |
| vassert(dres->whatNext == Dis_StopHere); |
| } |
| DIP("call 0x%llx\n",d64); |
| return delta; |
| |
| case 0xE9: /* Jv (jump, 16/32 offset) */ |
| if (haveF2orF3(pfx)) goto decode_failure; |
| if (sz != 4) |
| goto decode_failure; /* JRS added 2004 July 11 */ |
| d64 = (guest_RIP_bbstart+delta+sz) + getSDisp(sz,delta); |
| delta += sz; |
| if (resteerOkFn(callback_opaque,d64)) { |
| dres->whatNext = Dis_ResteerU; |
| dres->continueAt = d64; |
| } else { |
| jmp_lit(dres, Ijk_Boring, d64); |
| vassert(dres->whatNext == Dis_StopHere); |
| } |
| DIP("jmp 0x%llx\n", d64); |
| return delta; |
| |
| case 0xEB: /* Jb (jump, byte offset) */ |
| if (haveF2orF3(pfx)) goto decode_failure; |
| if (sz != 4) |
| goto decode_failure; /* JRS added 2004 July 11 */ |
| d64 = (guest_RIP_bbstart+delta+1) + getSDisp8(delta); |
| delta++; |
| if (resteerOkFn(callback_opaque,d64)) { |
| dres->whatNext = Dis_ResteerU; |
| dres->continueAt = d64; |
| } else { |
| jmp_lit(dres, Ijk_Boring, d64); |
| vassert(dres->whatNext == Dis_StopHere); |
| } |
| DIP("jmp-8 0x%llx\n", d64); |
| return delta; |
| |
| case 0xF5: /* CMC */ |
| case 0xF8: /* CLC */ |
| case 0xF9: /* STC */ |
| t1 = newTemp(Ity_I64); |
| t2 = newTemp(Ity_I64); |
| assign( t1, mk_amd64g_calculate_rflags_all() ); |
| switch (opc) { |
| case 0xF5: |
| assign( t2, binop(Iop_Xor64, mkexpr(t1), |
| mkU64(AMD64G_CC_MASK_C))); |
| DIP("cmc\n"); |
| break; |
| case 0xF8: |
| assign( t2, binop(Iop_And64, mkexpr(t1), |
| mkU64(~AMD64G_CC_MASK_C))); |
| DIP("clc\n"); |
| break; |
| case 0xF9: |
| assign( t2, binop(Iop_Or64, mkexpr(t1), |
| mkU64(AMD64G_CC_MASK_C))); |
| DIP("stc\n"); |
| break; |
| default: |
| vpanic("disInstr(x64)(cmc/clc/stc)"); |
| } |
| stmt( IRStmt_Put( OFFB_CC_OP, mkU64(AMD64G_CC_OP_COPY) )); |
| stmt( IRStmt_Put( OFFB_CC_DEP2, mkU64(0) )); |
| stmt( IRStmt_Put( OFFB_CC_DEP1, mkexpr(t2) )); |
| /* Set NDEP even though it isn't used. This makes redundant-PUT |
| elimination of previous stores to this field work better. */ |
| stmt( IRStmt_Put( OFFB_CC_NDEP, mkU64(0) )); |
| return delta; |
| |
| case 0xF6: { /* Grp3 Eb */ |
| Bool decode_OK = True; |
| if (haveF2orF3(pfx)) goto decode_failure; |
| delta = dis_Grp3 ( vbi, pfx, 1, delta, &decode_OK ); |
| if (!decode_OK) goto decode_failure; |
| return delta; |
| } |
| |
| case 0xF7: { /* Grp3 Ev */ |
| Bool decode_OK = True; |
| if (haveF2orF3(pfx)) goto decode_failure; |
| delta = dis_Grp3 ( vbi, pfx, sz, delta, &decode_OK ); |
| if (!decode_OK) goto decode_failure; |
| return delta; |
| } |
| |
| case 0xFC: /* CLD */ |
| if (haveF2orF3(pfx)) goto decode_failure; |
| stmt( IRStmt_Put( OFFB_DFLAG, mkU64(1)) ); |
| DIP("cld\n"); |
| return delta; |
| |
| case 0xFD: /* STD */ |
| if (haveF2orF3(pfx)) goto decode_failure; |
| stmt( IRStmt_Put( OFFB_DFLAG, mkU64(-1ULL)) ); |
| DIP("std\n"); |
| return delta; |
| |
| case 0xFE: { /* Grp4 Eb */ |
| Bool decode_OK = True; |
| if (haveF2orF3(pfx)) goto decode_failure; |
| delta = dis_Grp4 ( vbi, pfx, delta, &decode_OK ); |
| if (!decode_OK) goto decode_failure; |
| return delta; |
| } |
| |
| case 0xFF: { /* Grp5 Ev */ |
| Bool decode_OK = True; |
| if (haveF2orF3(pfx)) goto decode_failure; |
| delta = dis_Grp5 ( vbi, pfx, sz, delta, dres, &decode_OK ); |
| if (!decode_OK) goto decode_failure; |
| return delta; |
| } |
| |
| default: |
| break; |
| |
| } |
| |
| decode_failure: |
| return deltaIN; /* fail */ |
| } |
| |
| |
| /*------------------------------------------------------------*/ |
| /*--- ---*/ |
| /*--- Top-level post-escape decoders: dis_ESC_0F ---*/ |
| /*--- ---*/ |
| /*------------------------------------------------------------*/ |
| |
| __attribute__((noinline)) |
| static |
| Long dis_ESC_0F ( |
| /*MB_OUT*/DisResult* dres, |
| /*MB_OUT*/Bool* expect_CAS, |
| Bool (*resteerOkFn) ( /*opaque*/void*, Addr64 ), |
| Bool resteerCisOk, |
| void* callback_opaque, |
| VexArchInfo* archinfo, |
| VexAbiInfo* vbi, |
| Prefix pfx, Int sz, Long deltaIN |
| ) |
| { |
| Long d64 = 0; |
| IRTemp addr = IRTemp_INVALID; |
| IRTemp t1 = IRTemp_INVALID; |
| IRTemp t2 = IRTemp_INVALID; |
| UChar modrm = 0; |
| Int am_sz = 0; |
| Int alen = 0; |
| HChar dis_buf[50]; |
| |
| /* In the first switch, look for ordinary integer insns. */ |
| Long delta = deltaIN; |
| UChar opc = getUChar(delta); |
| delta++; |
| switch (opc) { /* first switch */ |
| |
| case 0x01: /* 0F 01 /0 -- SGDT */ |
| /* 0F 01 /1 -- SIDT */ |
| { |
| /* This is really revolting, but ... since each processor |
| (core) only has one IDT and one GDT, just let the guest |
| see it (pass-through semantics). I can't see any way to |
| construct a faked-up value, so don't bother to try. */ |
| modrm = getUChar(delta); |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| delta += alen; |
| if (epartIsReg(modrm)) goto decode_failure; |
| if (gregLO3ofRM(modrm) != 0 && gregLO3ofRM(modrm) != 1) |
| goto decode_failure; |
| switch (gregLO3ofRM(modrm)) { |
| case 0: DIP("sgdt %s\n", dis_buf); break; |
| case 1: DIP("sidt %s\n", dis_buf); break; |
| default: vassert(0); /*NOTREACHED*/ |
| } |
| |
| IRDirty* d = unsafeIRDirty_0_N ( |
| 0/*regparms*/, |
| "amd64g_dirtyhelper_SxDT", |
| &amd64g_dirtyhelper_SxDT, |
| mkIRExprVec_2( mkexpr(addr), |
| mkU64(gregLO3ofRM(modrm)) ) |
| ); |
| /* declare we're writing memory */ |
| d->mFx = Ifx_Write; |
| d->mAddr = mkexpr(addr); |
| d->mSize = 6; |
| stmt( IRStmt_Dirty(d) ); |
| return delta; |
| } |
| |
| case 0x05: /* SYSCALL */ |
| guest_RIP_next_mustcheck = True; |
| guest_RIP_next_assumed = guest_RIP_bbstart + delta; |
| putIReg64( R_RCX, mkU64(guest_RIP_next_assumed) ); |
| /* It's important that all guest state is up-to-date |
| at this point. So we declare an end-of-block here, which |
| forces any cached guest state to be flushed. */ |
| jmp_lit(dres, Ijk_Sys_syscall, guest_RIP_next_assumed); |
| vassert(dres->whatNext == Dis_StopHere); |
| DIP("syscall\n"); |
| return delta; |
| |
| case 0x1F: |
| if (haveF2orF3(pfx)) goto decode_failure; |
| modrm = getUChar(delta); |
| if (epartIsReg(modrm)) goto decode_failure; |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| delta += alen; |
| DIP("nop%c %s\n", nameISize(sz), dis_buf); |
| return delta; |
| |
| case 0x31: { /* RDTSC */ |
| IRTemp val = newTemp(Ity_I64); |
| IRExpr** args = mkIRExprVec_0(); |
| IRDirty* d = unsafeIRDirty_1_N ( |
| val, |
| 0/*regparms*/, |
| "amd64g_dirtyhelper_RDTSC", |
| &amd64g_dirtyhelper_RDTSC, |
| args |
| ); |
| if (have66orF2orF3(pfx)) goto decode_failure; |
| /* execute the dirty call, dumping the result in val. */ |
| stmt( IRStmt_Dirty(d) ); |
| putIRegRDX(4, unop(Iop_64HIto32, mkexpr(val))); |
| putIRegRAX(4, unop(Iop_64to32, mkexpr(val))); |
| DIP("rdtsc\n"); |
| return delta; |
| } |
| |
| case 0x40: |
| case 0x41: |
| case 0x42: /* CMOVBb/CMOVNAEb (cmov below) */ |
| case 0x43: /* CMOVNBb/CMOVAEb (cmov not below) */ |
| case 0x44: /* CMOVZb/CMOVEb (cmov zero) */ |
| case 0x45: /* CMOVNZb/CMOVNEb (cmov not zero) */ |
| case 0x46: /* CMOVBEb/CMOVNAb (cmov below or equal) */ |
| case 0x47: /* CMOVNBEb/CMOVAb (cmov not below or equal) */ |
| case 0x48: /* CMOVSb (cmov negative) */ |
| case 0x49: /* CMOVSb (cmov not negative) */ |
| case 0x4A: /* CMOVP (cmov parity even) */ |
| case 0x4B: /* CMOVNP (cmov parity odd) */ |
| case 0x4C: /* CMOVLb/CMOVNGEb (cmov less) */ |
| case 0x4D: /* CMOVGEb/CMOVNLb (cmov greater or equal) */ |
| case 0x4E: /* CMOVLEb/CMOVNGb (cmov less or equal) */ |
| case 0x4F: /* CMOVGb/CMOVNLEb (cmov greater) */ |
| if (haveF2orF3(pfx)) goto decode_failure; |
| delta = dis_cmov_E_G(vbi, pfx, sz, (AMD64Condcode)(opc - 0x40), delta); |
| return delta; |
| |
| case 0x80: |
| case 0x81: |
| case 0x82: /* JBb/JNAEb (jump below) */ |
| case 0x83: /* JNBb/JAEb (jump not below) */ |
| case 0x84: /* JZb/JEb (jump zero) */ |
| case 0x85: /* JNZb/JNEb (jump not zero) */ |
| case 0x86: /* JBEb/JNAb (jump below or equal) */ |
| case 0x87: /* JNBEb/JAb (jump not below or equal) */ |
| case 0x88: /* JSb (jump negative) */ |
| case 0x89: /* JSb (jump not negative) */ |
| case 0x8A: /* JP (jump parity even) */ |
| case 0x8B: /* JNP/JPO (jump parity odd) */ |
| case 0x8C: /* JLb/JNGEb (jump less) */ |
| case 0x8D: /* JGEb/JNLb (jump greater or equal) */ |
| case 0x8E: /* JLEb/JNGb (jump less or equal) */ |
| case 0x8F: { /* JGb/JNLEb (jump greater) */ |
| Long jmpDelta; |
| HChar* comment = ""; |
| if (haveF2orF3(pfx)) goto decode_failure; |
| jmpDelta = getSDisp32(delta); |
| d64 = (guest_RIP_bbstart+delta+4) + jmpDelta; |
| delta += 4; |
| if (resteerCisOk |
| && vex_control.guest_chase_cond |
| && (Addr64)d64 != (Addr64)guest_RIP_bbstart |
| && jmpDelta < 0 |
| && resteerOkFn( callback_opaque, d64) ) { |
| /* Speculation: assume this backward branch is taken. So |
| we need to emit a side-exit to the insn following this |
| one, on the negation of the condition, and continue at |
| the branch target address (d64). If we wind up back at |
| the first instruction of the trace, just stop; it's |
| better to let the IR loop unroller handle that case. */ |
| stmt( IRStmt_Exit( |
| mk_amd64g_calculate_condition( |
| (AMD64Condcode)(1 ^ (opc - 0x80))), |
| Ijk_Boring, |
| IRConst_U64(guest_RIP_bbstart+delta), |
| OFFB_RIP |
| )); |
| dres->whatNext = Dis_ResteerC; |
| dres->continueAt = d64; |
| comment = "(assumed taken)"; |
| } |
| else |
| if (resteerCisOk |
| && vex_control.guest_chase_cond |
| && (Addr64)d64 != (Addr64)guest_RIP_bbstart |
| && jmpDelta >= 0 |
| && resteerOkFn( callback_opaque, guest_RIP_bbstart+delta ) ) { |
| /* Speculation: assume this forward branch is not taken. |
| So we need to emit a side-exit to d64 (the dest) and |
| continue disassembling at the insn immediately |
| following this one. */ |
| stmt( IRStmt_Exit( |
| mk_amd64g_calculate_condition((AMD64Condcode) |
| (opc - 0x80)), |
| Ijk_Boring, |
| IRConst_U64(d64), |
| OFFB_RIP |
| )); |
| dres->whatNext = Dis_ResteerC; |
| dres->continueAt = guest_RIP_bbstart+delta; |
| comment = "(assumed not taken)"; |
| } |
| else { |
| /* Conservative default translation - end the block at |
| this point. */ |
| jcc_01( dres, (AMD64Condcode)(opc - 0x80), |
| guest_RIP_bbstart+delta, d64 ); |
| vassert(dres->whatNext == Dis_StopHere); |
| } |
| DIP("j%s-32 0x%llx %s\n", name_AMD64Condcode(opc - 0x80), d64, comment); |
| return delta; |
| } |
| |
| case 0x90: |
| case 0x91: |
| case 0x92: /* set-Bb/set-NAEb (set if below) */ |
| case 0x93: /* set-NBb/set-AEb (set if not below) */ |
| case 0x94: /* set-Zb/set-Eb (set if zero) */ |
| case 0x95: /* set-NZb/set-NEb (set if not zero) */ |
| case 0x96: /* set-BEb/set-NAb (set if below or equal) */ |
| case 0x97: /* set-NBEb/set-Ab (set if not below or equal) */ |
| case 0x98: /* set-Sb (set if negative) */ |
| case 0x99: /* set-Sb (set if not negative) */ |
| case 0x9A: /* set-P (set if parity even) */ |
| case 0x9B: /* set-NP (set if parity odd) */ |
| case 0x9C: /* set-Lb/set-NGEb (set if less) */ |
| case 0x9D: /* set-GEb/set-NLb (set if greater or equal) */ |
| case 0x9E: /* set-LEb/set-NGb (set if less or equal) */ |
| case 0x9F: /* set-Gb/set-NLEb (set if greater) */ |
| if (haveF2orF3(pfx)) goto decode_failure; |
| t1 = newTemp(Ity_I8); |
| assign( t1, unop(Iop_1Uto8,mk_amd64g_calculate_condition(opc-0x90)) ); |
| modrm = getUChar(delta); |
| if (epartIsReg(modrm)) { |
| delta++; |
| putIRegE(1, pfx, modrm, mkexpr(t1)); |
| DIP("set%s %s\n", name_AMD64Condcode(opc-0x90), |
| nameIRegE(1,pfx,modrm)); |
| } else { |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| delta += alen; |
| storeLE( mkexpr(addr), mkexpr(t1) ); |
| DIP("set%s %s\n", name_AMD64Condcode(opc-0x90), dis_buf); |
| } |
| return delta; |
| |
| case 0xA2: { /* CPUID */ |
| /* Uses dirty helper: |
| void amd64g_dirtyhelper_CPUID ( VexGuestAMD64State* ) |
| declared to mod rax, wr rbx, rcx, rdx |
| */ |
| IRDirty* d = NULL; |
| HChar* fName = NULL; |
| void* fAddr = NULL; |
| if (haveF2orF3(pfx)) goto decode_failure; |
| if (archinfo->hwcaps == (VEX_HWCAPS_AMD64_SSE3 |
| |VEX_HWCAPS_AMD64_CX16)) { |
| //fName = "amd64g_dirtyhelper_CPUID_sse3_and_cx16"; |
| //fAddr = &amd64g_dirtyhelper_CPUID_sse3_and_cx16; |
| ///* This is a Core-2-like machine */ |
| fName = "amd64g_dirtyhelper_CPUID_sse42_and_cx16"; |
| fAddr = &amd64g_dirtyhelper_CPUID_sse42_and_cx16; |
| /* This is a Core-i5-like machine */ |
| } |
| else { |
| /* Give a CPUID for at least a baseline machine, SSE2 |
| only, and no CX16 */ |
| fName = "amd64g_dirtyhelper_CPUID_baseline"; |
| fAddr = &amd64g_dirtyhelper_CPUID_baseline; |
| } |
| |
| vassert(fName); vassert(fAddr); |
| d = unsafeIRDirty_0_N ( 0/*regparms*/, |
| fName, fAddr, mkIRExprVec_0() ); |
| /* declare guest state effects */ |
| d->needsBBP = True; |
| d->nFxState = 4; |
| vex_bzero(&d->fxState, sizeof(d->fxState)); |
| d->fxState[0].fx = Ifx_Modify; |
| d->fxState[0].offset = OFFB_RAX; |
| d->fxState[0].size = 8; |
| d->fxState[1].fx = Ifx_Write; |
| d->fxState[1].offset = OFFB_RBX; |
| d->fxState[1].size = 8; |
| d->fxState[2].fx = Ifx_Modify; |
| d->fxState[2].offset = OFFB_RCX; |
| d->fxState[2].size = 8; |
| d->fxState[3].fx = Ifx_Write; |
| d->fxState[3].offset = OFFB_RDX; |
| d->fxState[3].size = 8; |
| /* execute the dirty call, side-effecting guest state */ |
| stmt( IRStmt_Dirty(d) ); |
| /* CPUID is a serialising insn. So, just in case someone is |
| using it as a memory fence ... */ |
| stmt( IRStmt_MBE(Imbe_Fence) ); |
| DIP("cpuid\n"); |
| return delta; |
| } |
| |
| case 0xA3: /* BT Gv,Ev */ |
| if (haveF2orF3(pfx)) goto decode_failure; |
| if (sz != 8 && sz != 4 && sz != 2) goto decode_failure; |
| delta = dis_bt_G_E ( vbi, pfx, sz, delta, BtOpNone ); |
| return delta; |
| |
| case 0xA4: /* SHLDv imm8,Gv,Ev */ |
| modrm = getUChar(delta); |
| d64 = delta + lengthAMode(pfx, delta); |
| vex_sprintf(dis_buf, "$%d", (Int)getUChar(d64)); |
| delta = dis_SHLRD_Gv_Ev ( |
| vbi, pfx, delta, modrm, sz, |
| mkU8(getUChar(d64)), True, /* literal */ |
| dis_buf, True /* left */ ); |
| return delta; |
| |
| case 0xA5: /* SHLDv %cl,Gv,Ev */ |
| modrm = getUChar(delta); |
| delta = dis_SHLRD_Gv_Ev ( |
| vbi, pfx, delta, modrm, sz, |
| getIRegCL(), False, /* not literal */ |
| "%cl", True /* left */ ); |
| return delta; |
| |
| case 0xAB: /* BTS Gv,Ev */ |
| if (haveF2orF3(pfx)) goto decode_failure; |
| if (sz != 8 && sz != 4 && sz != 2) goto decode_failure; |
| delta = dis_bt_G_E ( vbi, pfx, sz, delta, BtOpSet ); |
| return delta; |
| |
| case 0xAC: /* SHRDv imm8,Gv,Ev */ |
| modrm = getUChar(delta); |
| d64 = delta + lengthAMode(pfx, delta); |
| vex_sprintf(dis_buf, "$%d", (Int)getUChar(d64)); |
| delta = dis_SHLRD_Gv_Ev ( |
| vbi, pfx, delta, modrm, sz, |
| mkU8(getUChar(d64)), True, /* literal */ |
| dis_buf, False /* right */ ); |
| return delta; |
| |
| case 0xAD: /* SHRDv %cl,Gv,Ev */ |
| modrm = getUChar(delta); |
| delta = dis_SHLRD_Gv_Ev ( |
| vbi, pfx, delta, modrm, sz, |
| getIRegCL(), False, /* not literal */ |
| "%cl", False /* right */); |
| return delta; |
| |
| case 0xAF: /* IMUL Ev, Gv */ |
| if (haveF2orF3(pfx)) goto decode_failure; |
| delta = dis_mul_E_G ( vbi, pfx, sz, delta ); |
| return delta; |
| |
| case 0xB1: { /* CMPXCHG Gv,Ev (allowed in 16,32,64 bit) */ |
| Bool ok = True; |
| if (haveF2orF3(pfx)) goto decode_failure; |
| if (sz != 2 && sz != 4 && sz != 8) goto decode_failure; |
| delta = dis_cmpxchg_G_E ( &ok, vbi, pfx, sz, delta ); |
| if (!ok) goto decode_failure; |
| return delta; |
| } |
| |
| case 0xB0: { /* CMPXCHG Gb,Eb */ |
| Bool ok = True; |
| if (haveF2orF3(pfx)) goto decode_failure; |
| delta = dis_cmpxchg_G_E ( &ok, vbi, pfx, 1, delta ); |
| if (!ok) goto decode_failure; |
| return delta; |
| } |
| |
| case 0xB3: /* BTR Gv,Ev */ |
| if (haveF2orF3(pfx)) goto decode_failure; |
| if (sz != 8 && sz != 4 && sz != 2) goto decode_failure; |
| delta = dis_bt_G_E ( vbi, pfx, sz, delta, BtOpReset ); |
| return delta; |
| |
| case 0xB6: /* MOVZXb Eb,Gv */ |
| if (haveF2orF3(pfx)) goto decode_failure; |
| if (sz != 2 && sz != 4 && sz != 8) |
| goto decode_failure; |
| delta = dis_movx_E_G ( vbi, pfx, delta, 1, sz, False ); |
| return delta; |
| |
| case 0xB7: /* MOVZXw Ew,Gv */ |
| if (haveF2orF3(pfx)) goto decode_failure; |
| if (sz != 4 && sz != 8) |
| goto decode_failure; |
| delta = dis_movx_E_G ( vbi, pfx, delta, 2, sz, False ); |
| return delta; |
| |
| case 0xBA: { /* Grp8 Ib,Ev */ |
| Bool decode_OK = False; |
| if (haveF2orF3(pfx)) goto decode_failure; |
| modrm = getUChar(delta); |
| am_sz = lengthAMode(pfx,delta); |
| d64 = getSDisp8(delta + am_sz); |
| delta = dis_Grp8_Imm ( vbi, pfx, delta, modrm, am_sz, sz, d64, |
| &decode_OK ); |
| if (!decode_OK) |
| goto decode_failure; |
| return delta; |
| } |
| |
| case 0xBB: /* BTC Gv,Ev */ |
| if (haveF2orF3(pfx)) goto decode_failure; |
| if (sz != 8 && sz != 4 && sz != 2) goto decode_failure; |
| delta = dis_bt_G_E ( vbi, pfx, sz, delta, BtOpComp ); |
| return delta; |
| |
| case 0xBC: /* BSF Gv,Ev */ |
| if (haveF2orF3(pfx)) goto decode_failure; |
| delta = dis_bs_E_G ( vbi, pfx, sz, delta, True ); |
| return delta; |
| |
| case 0xBD: /* BSR Gv,Ev */ |
| if (!haveF2orF3(pfx)) { |
| /* no-F2 no-F3 0F BD = BSR */ |
| delta = dis_bs_E_G ( vbi, pfx, sz, delta, False ); |
| return delta; |
| } |
| /* Fall through, since F3 0F BD is LZCNT, and needs to |
| be handled by dis_ESC_0F__SSE4. */ |
| break; |
| |
| case 0xBE: /* MOVSXb Eb,Gv */ |
| if (haveF2orF3(pfx)) goto decode_failure; |
| if (sz != 2 && sz != 4 && sz != 8) |
| goto decode_failure; |
| delta = dis_movx_E_G ( vbi, pfx, delta, 1, sz, True ); |
| return delta; |
| |
| case 0xBF: /* MOVSXw Ew,Gv */ |
| if (haveF2orF3(pfx)) goto decode_failure; |
| if (sz != 4 && sz != 8) |
| goto decode_failure; |
| delta = dis_movx_E_G ( vbi, pfx, delta, 2, sz, True ); |
| return delta; |
| |
| case 0xC1: { /* XADD Gv,Ev */ |
| Bool decode_OK = False; |
| delta = dis_xadd_G_E ( &decode_OK, vbi, pfx, sz, delta ); |
| if (!decode_OK) |
| goto decode_failure; |
| return delta; |
| } |
| |
| case 0xC7: { /* CMPXCHG8B Ev, CMPXCHG16B Ev */ |
| IRType elemTy = sz==4 ? Ity_I32 : Ity_I64; |
| IRTemp expdHi = newTemp(elemTy); |
| IRTemp expdLo = newTemp(elemTy); |
| IRTemp dataHi = newTemp(elemTy); |
| IRTemp dataLo = newTemp(elemTy); |
| IRTemp oldHi = newTemp(elemTy); |
| IRTemp oldLo = newTemp(elemTy); |
| IRTemp flags_old = newTemp(Ity_I64); |
| IRTemp flags_new = newTemp(Ity_I64); |
| IRTemp success = newTemp(Ity_I1); |
| IROp opOR = sz==4 ? Iop_Or32 : Iop_Or64; |
| IROp opXOR = sz==4 ? Iop_Xor32 : Iop_Xor64; |
| IROp opCasCmpEQ = sz==4 ? Iop_CasCmpEQ32 : Iop_CasCmpEQ64; |
| IRExpr* zero = sz==4 ? mkU32(0) : mkU64(0); |
| IRTemp expdHi64 = newTemp(Ity_I64); |
| IRTemp expdLo64 = newTemp(Ity_I64); |
| |
| /* Translate this using a DCAS, even if there is no LOCK |
| prefix. Life is too short to bother with generating two |
| different translations for the with/without-LOCK-prefix |
| cases. */ |
| *expect_CAS = True; |
| |
| /* Decode, and generate address. */ |
| if (have66orF2orF3(pfx)) goto decode_failure; |
| if (sz != 4 && sz != 8) goto decode_failure; |
| if (sz == 8 && !(archinfo->hwcaps & VEX_HWCAPS_AMD64_CX16)) |
| goto decode_failure; |
| modrm = getUChar(delta); |
| if (epartIsReg(modrm)) goto decode_failure; |
| if (gregLO3ofRM(modrm) != 1) goto decode_failure; |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| delta += alen; |
| |
| /* cmpxchg16b requires an alignment check. */ |
| if (sz == 8) |
| gen_SEGV_if_not_16_aligned( addr ); |
| |
| /* Get the expected and new values. */ |
| assign( expdHi64, getIReg64(R_RDX) ); |
| assign( expdLo64, getIReg64(R_RAX) ); |
| |
| /* These are the correctly-sized expected and new values. |
| However, we also get expdHi64/expdLo64 above as 64-bits |
| regardless, because we will need them later in the 32-bit |
| case (paradoxically). */ |
| assign( expdHi, sz==4 ? unop(Iop_64to32, mkexpr(expdHi64)) |
| : mkexpr(expdHi64) ); |
| assign( expdLo, sz==4 ? unop(Iop_64to32, mkexpr(expdLo64)) |
| : mkexpr(expdLo64) ); |
| assign( dataHi, sz==4 ? getIReg32(R_RCX) : getIReg64(R_RCX) ); |
| assign( dataLo, sz==4 ? getIReg32(R_RBX) : getIReg64(R_RBX) ); |
| |
| /* Do the DCAS */ |
| stmt( IRStmt_CAS( |
| mkIRCAS( oldHi, oldLo, |
| Iend_LE, mkexpr(addr), |
| mkexpr(expdHi), mkexpr(expdLo), |
| mkexpr(dataHi), mkexpr(dataLo) |
| ))); |
| |
| /* success when oldHi:oldLo == expdHi:expdLo */ |
| assign( success, |
| binop(opCasCmpEQ, |
| binop(opOR, |
| binop(opXOR, mkexpr(oldHi), mkexpr(expdHi)), |
| binop(opXOR, mkexpr(oldLo), mkexpr(expdLo)) |
| ), |
| zero |
| )); |
| |
| /* If the DCAS is successful, that is to say oldHi:oldLo == |
| expdHi:expdLo, then put expdHi:expdLo back in RDX:RAX, |
| which is where they came from originally. Both the actual |
| contents of these two regs, and any shadow values, are |
| unchanged. If the DCAS fails then we're putting into |
| RDX:RAX the value seen in memory. */ |
| /* Now of course there's a complication in the 32-bit case |
| (bah!): if the DCAS succeeds, we need to leave RDX:RAX |
| unchanged; but if we use the same scheme as in the 64-bit |
| case, we get hit by the standard rule that a write to the |
| bottom 32 bits of an integer register zeros the upper 32 |
| bits. And so the upper halves of RDX and RAX mysteriously |
| become zero. So we have to stuff back in the original |
| 64-bit values which we previously stashed in |
| expdHi64:expdLo64, even if we're doing a cmpxchg8b. */ |
| /* It's just _so_ much fun ... */ |
| putIRegRDX( 8, |
| IRExpr_Mux0X( unop(Iop_1Uto8, mkexpr(success)), |
| sz == 4 ? unop(Iop_32Uto64, mkexpr(oldHi)) |
| : mkexpr(oldHi), |
| mkexpr(expdHi64) |
| )); |
| putIRegRAX( 8, |
| IRExpr_Mux0X( unop(Iop_1Uto8, mkexpr(success)), |
| sz == 4 ? unop(Iop_32Uto64, mkexpr(oldLo)) |
| : mkexpr(oldLo), |
| mkexpr(expdLo64) |
| )); |
| |
| /* Copy the success bit into the Z flag and leave the others |
| unchanged */ |
| assign( flags_old, widenUto64(mk_amd64g_calculate_rflags_all())); |
| assign( |
| flags_new, |
| binop(Iop_Or64, |
| binop(Iop_And64, mkexpr(flags_old), |
| mkU64(~AMD64G_CC_MASK_Z)), |
| binop(Iop_Shl64, |
| binop(Iop_And64, |
| unop(Iop_1Uto64, mkexpr(success)), mkU64(1)), |
| mkU8(AMD64G_CC_SHIFT_Z)) )); |
| |
| stmt( IRStmt_Put( OFFB_CC_OP, mkU64(AMD64G_CC_OP_COPY) )); |
| stmt( IRStmt_Put( OFFB_CC_DEP1, mkexpr(flags_new) )); |
| stmt( IRStmt_Put( OFFB_CC_DEP2, mkU64(0) )); |
| /* Set NDEP even though it isn't used. This makes |
| redundant-PUT elimination of previous stores to this field |
| work better. */ |
| stmt( IRStmt_Put( OFFB_CC_NDEP, mkU64(0) )); |
| |
| /* Sheesh. Aren't you glad it was me and not you that had to |
| write and validate all this grunge? */ |
| |
| DIP("cmpxchg8b %s\n", dis_buf); |
| return delta; |
| } |
| |
| case 0xC8: /* BSWAP %eax */ |
| case 0xC9: |
| case 0xCA: |
| case 0xCB: |
| case 0xCC: |
| case 0xCD: |
| case 0xCE: |
| case 0xCF: /* BSWAP %edi */ |
| if (haveF2orF3(pfx)) goto decode_failure; |
| /* According to the AMD64 docs, this insn can have size 4 or |
| 8. */ |
| if (sz == 4) { |
| t1 = newTemp(Ity_I32); |
| t2 = newTemp(Ity_I32); |
| assign( t1, getIRegRexB(4, pfx, opc-0xC8) ); |
| assign( t2, |
| binop(Iop_Or32, |
| binop(Iop_Shl32, mkexpr(t1), mkU8(24)), |
| binop(Iop_Or32, |
| binop(Iop_And32, binop(Iop_Shl32, mkexpr(t1), mkU8(8)), |
| mkU32(0x00FF0000)), |
| binop(Iop_Or32, |
| binop(Iop_And32, binop(Iop_Shr32, mkexpr(t1), mkU8(8)), |
| mkU32(0x0000FF00)), |
| binop(Iop_And32, binop(Iop_Shr32, mkexpr(t1), mkU8(24)), |
| mkU32(0x000000FF) ) |
| ))) |
| ); |
| putIRegRexB(4, pfx, opc-0xC8, mkexpr(t2)); |
| DIP("bswapl %s\n", nameIRegRexB(4, pfx, opc-0xC8)); |
| return delta; |
| } |
| if (sz == 8) { |
| IRTemp m8 = newTemp(Ity_I64); |
| IRTemp s8 = newTemp(Ity_I64); |
| IRTemp m16 = newTemp(Ity_I64); |
| IRTemp s16 = newTemp(Ity_I64); |
| IRTemp m32 = newTemp(Ity_I64); |
| t1 = newTemp(Ity_I64); |
| t2 = newTemp(Ity_I64); |
| assign( t1, getIRegRexB(8, pfx, opc-0xC8) ); |
| |
| assign( m8, mkU64(0xFF00FF00FF00FF00ULL) ); |
| assign( s8, |
| binop(Iop_Or64, |
| binop(Iop_Shr64, |
| binop(Iop_And64,mkexpr(t1),mkexpr(m8)), |
| mkU8(8)), |
| binop(Iop_And64, |
| binop(Iop_Shl64,mkexpr(t1),mkU8(8)), |
| mkexpr(m8)) |
| ) |
| ); |
| |
| assign( m16, mkU64(0xFFFF0000FFFF0000ULL) ); |
| assign( s16, |
| binop(Iop_Or64, |
| binop(Iop_Shr64, |
| binop(Iop_And64,mkexpr(s8),mkexpr(m16)), |
| mkU8(16)), |
| binop(Iop_And64, |
| binop(Iop_Shl64,mkexpr(s8),mkU8(16)), |
| mkexpr(m16)) |
| ) |
| ); |
| |
| assign( m32, mkU64(0xFFFFFFFF00000000ULL) ); |
| assign( t2, |
| binop(Iop_Or64, |
| binop(Iop_Shr64, |
| binop(Iop_And64,mkexpr(s16),mkexpr(m32)), |
| mkU8(32)), |
| binop(Iop_And64, |
| binop(Iop_Shl64,mkexpr(s16),mkU8(32)), |
| mkexpr(m32)) |
| ) |
| ); |
| |
| putIRegRexB(8, pfx, opc-0xC8, mkexpr(t2)); |
| DIP("bswapq %s\n", nameIRegRexB(8, pfx, opc-0xC8)); |
| return delta; |
| } |
| goto decode_failure; |
| |
| default: |
| break; |
| |
| } /* first switch */ |
| |
| |
| /* =-=-=-=-=-=-=-=-= MMXery =-=-=-=-=-=-=-=-= */ |
| /* In the second switch, pick off MMX insns. */ |
| |
| if (!have66orF2orF3(pfx)) { |
| /* So there's no SIMD prefix. */ |
| |
| vassert(sz == 4 || sz == 8); |
| |
| switch (opc) { /* second switch */ |
| |
| case 0x71: |
| case 0x72: |
| case 0x73: /* PSLLgg/PSRAgg/PSRLgg mmxreg by imm8 */ |
| |
| case 0x6E: /* MOVD (src)ireg-or-mem, (dst)mmxreg */ |
| case 0x7E: /* MOVD (src)mmxreg, (dst)ireg-or-mem */ |
| case 0x7F: /* MOVQ (src)mmxreg, (dst)mmxreg-or-mem */ |
| case 0x6F: /* MOVQ (src)mmxreg-or-mem, (dst)mmxreg */ |
| |
| case 0xFC: |
| case 0xFD: |
| case 0xFE: /* PADDgg (src)mmxreg-or-mem, (dst)mmxreg */ |
| |
| case 0xEC: |
| case 0xED: /* PADDSgg (src)mmxreg-or-mem, (dst)mmxreg */ |
| |
| case 0xDC: |
| case 0xDD: /* PADDUSgg (src)mmxreg-or-mem, (dst)mmxreg */ |
| |
| case 0xF8: |
| case 0xF9: |
| case 0xFA: /* PSUBgg (src)mmxreg-or-mem, (dst)mmxreg */ |
| |
| case 0xE8: |
| case 0xE9: /* PSUBSgg (src)mmxreg-or-mem, (dst)mmxreg */ |
| |
| case 0xD8: |
| case 0xD9: /* PSUBUSgg (src)mmxreg-or-mem, (dst)mmxreg */ |
| |
| case 0xE5: /* PMULHW (src)mmxreg-or-mem, (dst)mmxreg */ |
| case 0xD5: /* PMULLW (src)mmxreg-or-mem, (dst)mmxreg */ |
| |
| case 0xF5: /* PMADDWD (src)mmxreg-or-mem, (dst)mmxreg */ |
| |
| case 0x74: |
| case 0x75: |
| case 0x76: /* PCMPEQgg (src)mmxreg-or-mem, (dst)mmxreg */ |
| |
| case 0x64: |
| case 0x65: |
| case 0x66: /* PCMPGTgg (src)mmxreg-or-mem, (dst)mmxreg */ |
| |
| case 0x6B: /* PACKSSDW (src)mmxreg-or-mem, (dst)mmxreg */ |
| case 0x63: /* PACKSSWB (src)mmxreg-or-mem, (dst)mmxreg */ |
| case 0x67: /* PACKUSWB (src)mmxreg-or-mem, (dst)mmxreg */ |
| |
| case 0x68: |
| case 0x69: |
| case 0x6A: /* PUNPCKHgg (src)mmxreg-or-mem, (dst)mmxreg */ |
| |
| case 0x60: |
| case 0x61: |
| case 0x62: /* PUNPCKLgg (src)mmxreg-or-mem, (dst)mmxreg */ |
| |
| case 0xDB: /* PAND (src)mmxreg-or-mem, (dst)mmxreg */ |
| case 0xDF: /* PANDN (src)mmxreg-or-mem, (dst)mmxreg */ |
| case 0xEB: /* POR (src)mmxreg-or-mem, (dst)mmxreg */ |
| case 0xEF: /* PXOR (src)mmxreg-or-mem, (dst)mmxreg */ |
| |
| case 0xF1: /* PSLLgg (src)mmxreg-or-mem, (dst)mmxreg */ |
| case 0xF2: |
| case 0xF3: |
| |
| case 0xD1: /* PSRLgg (src)mmxreg-or-mem, (dst)mmxreg */ |
| case 0xD2: |
| case 0xD3: |
| |
| case 0xE1: /* PSRAgg (src)mmxreg-or-mem, (dst)mmxreg */ |
| case 0xE2: { |
| Bool decode_OK = False; |
| delta = dis_MMX ( &decode_OK, vbi, pfx, sz, deltaIN ); |
| if (decode_OK) |
| return delta; |
| goto decode_failure; |
| } |
| |
| default: |
| break; |
| } /* second switch */ |
| |
| } |
| |
| /* A couple of MMX corner cases */ |
| if (opc == 0x0E/* FEMMS */ || opc == 0x77/* EMMS */) { |
| if (sz != 4) |
| goto decode_failure; |
| do_EMMS_preamble(); |
| DIP("{f}emms\n"); |
| return delta; |
| } |
| |
| /* =-=-=-=-=-=-=-=-= SSE2ery =-=-=-=-=-=-=-=-= */ |
| /* Perhaps it's an SSE or SSE2 instruction. We can try this |
| without checking the guest hwcaps because SSE2 is a baseline |
| facility in 64 bit mode. */ |
| { |
| Bool decode_OK = False; |
| delta = dis_ESC_0F__SSE2 ( &decode_OK, vbi, pfx, sz, deltaIN, dres ); |
| if (decode_OK) |
| return delta; |
| } |
| |
| /* =-=-=-=-=-=-=-=-= SSE3ery =-=-=-=-=-=-=-=-= */ |
| /* Perhaps it's a SSE3 instruction. FIXME: check guest hwcaps |
| first. */ |
| { |
| Bool decode_OK = False; |
| delta = dis_ESC_0F__SSE3 ( &decode_OK, vbi, pfx, sz, deltaIN ); |
| if (decode_OK) |
| return delta; |
| } |
| |
| /* =-=-=-=-=-=-=-=-= SSE4ery =-=-=-=-=-=-=-=-= */ |
| /* Perhaps it's a SSE4 instruction. FIXME: check guest hwcaps |
| first. */ |
| { |
| Bool decode_OK = False; |
| delta = dis_ESC_0F__SSE4 ( &decode_OK, |
| archinfo, vbi, pfx, sz, deltaIN ); |
| if (decode_OK) |
| return delta; |
| } |
| |
| decode_failure: |
| return deltaIN; /* fail */ |
| } |
| |
| |
| /*------------------------------------------------------------*/ |
| /*--- ---*/ |
| /*--- Top-level post-escape decoders: dis_ESC_0F38 ---*/ |
| /*--- ---*/ |
| /*------------------------------------------------------------*/ |
| |
| __attribute__((noinline)) |
| static |
| Long dis_ESC_0F38 ( |
| /*MB_OUT*/DisResult* dres, |
| Bool (*resteerOkFn) ( /*opaque*/void*, Addr64 ), |
| Bool resteerCisOk, |
| void* callback_opaque, |
| VexArchInfo* archinfo, |
| VexAbiInfo* vbi, |
| Prefix pfx, Int sz, Long deltaIN |
| ) |
| { |
| Long delta = deltaIN; |
| UChar opc = getUChar(delta); |
| delta++; |
| switch (opc) { |
| |
| default: |
| break; |
| |
| } |
| |
| /* =-=-=-=-=-=-=-=-= SSSE3ery =-=-=-=-=-=-=-=-= */ |
| /* Perhaps it's an SSSE3 instruction. FIXME: consult guest hwcaps |
| rather than proceeding indiscriminately. */ |
| { |
| Bool decode_OK = False; |
| delta = dis_ESC_0F38__SupSSE3 ( &decode_OK, vbi, pfx, sz, deltaIN ); |
| if (decode_OK) |
| return delta; |
| } |
| |
| /* =-=-=-=-=-=-=-=-= SSE4ery =-=-=-=-=-=-=-=-= */ |
| /* Perhaps it's an SSE4 instruction. FIXME: consult guest hwcaps |
| rather than proceeding indiscriminately. */ |
| { |
| Bool decode_OK = False; |
| delta = dis_ESC_0F38__SSE4 ( &decode_OK, vbi, pfx, sz, deltaIN ); |
| if (decode_OK) |
| return delta; |
| } |
| |
| //decode_failure: |
| return deltaIN; /* fail */ |
| } |
| |
| |
| /*------------------------------------------------------------*/ |
| /*--- ---*/ |
| /*--- Top-level post-escape decoders: dis_ESC_0F3A ---*/ |
| /*--- ---*/ |
| /*------------------------------------------------------------*/ |
| |
| __attribute__((noinline)) |
| static |
| Long dis_ESC_0F3A ( |
| /*MB_OUT*/DisResult* dres, |
| Bool (*resteerOkFn) ( /*opaque*/void*, Addr64 ), |
| Bool resteerCisOk, |
| void* callback_opaque, |
| VexArchInfo* archinfo, |
| VexAbiInfo* vbi, |
| Prefix pfx, Int sz, Long deltaIN |
| ) |
| { |
| Long delta = deltaIN; |
| UChar opc = getUChar(delta); |
| delta++; |
| switch (opc) { |
| |
| default: |
| break; |
| |
| } |
| |
| /* =-=-=-=-=-=-=-=-= SSSE3ery =-=-=-=-=-=-=-=-= */ |
| /* Perhaps it's an SSSE3 instruction. FIXME: consult guest hwcaps |
| rather than proceeding indiscriminately. */ |
| { |
| Bool decode_OK = False; |
| delta = dis_ESC_0F3A__SupSSE3 ( &decode_OK, vbi, pfx, sz, deltaIN ); |
| if (decode_OK) |
| return delta; |
| } |
| |
| /* =-=-=-=-=-=-=-=-= SSE4ery =-=-=-=-=-=-=-=-= */ |
| /* Perhaps it's an SSE4 instruction. FIXME: consult guest hwcaps |
| rather than proceeding indiscriminately. */ |
| { |
| Bool decode_OK = False; |
| delta = dis_ESC_0F3A__SSE4 ( &decode_OK, vbi, pfx, sz, deltaIN ); |
| if (decode_OK) |
| return delta; |
| } |
| |
| return deltaIN; /* fail */ |
| } |
| |
| |
| /*------------------------------------------------------------*/ |
| /*--- ---*/ |
| /*--- Top-level post-escape decoders: dis_ESC_0F__VEX ---*/ |
| /*--- ---*/ |
| /*------------------------------------------------------------*/ |
| |
| static |
| Long dis_VEX_NDS_128_AnySimdPfx_0F_WIG ( |
| /*OUT*/Bool* uses_vvvv, VexAbiInfo* vbi, |
| Prefix pfx, Long delta, HChar* name, |
| /* The actual operation. Use either 'op' or 'opfn', |
| but not both. */ |
| IROp op, IRTemp(*opFn)(IRTemp,IRTemp), |
| Bool invertLeftArg, |
| Bool swapArgs |
| ) |
| { |
| UChar modrm = getUChar(delta); |
| UInt rD = gregOfRexRM(pfx, modrm); |
| UInt rSL = getVexNvvvv(pfx); |
| IRTemp tSL = newTemp(Ity_V128); |
| IRTemp tSR = newTemp(Ity_V128); |
| IRTemp addr = IRTemp_INVALID; |
| HChar dis_buf[50]; |
| Int alen = 0; |
| vassert(0==getVexL(pfx)/*128*/ && 0==getRexW(pfx)/*WIG?*/); |
| |
| assign(tSL, invertLeftArg ? unop(Iop_NotV128, getXMMReg(rSL)) |
| : getXMMReg(rSL)); |
| |
| if (epartIsReg(modrm)) { |
| UInt rSR = eregOfRexRM(pfx, modrm); |
| delta += 1; |
| assign(tSR, getXMMReg(rSR)); |
| DIP("%s %s,%s,%s\n", |
| name, nameXMMReg(rSR), nameXMMReg(rSL), nameXMMReg(rD)); |
| } else { |
| addr = disAMode( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| delta += alen; |
| assign(tSR, loadLE(Ity_V128, mkexpr(addr))); |
| DIP("%s %s,%s,%s\n", |
| name, dis_buf, nameXMMReg(rSL), nameXMMReg(rD)); |
| } |
| |
| IRTemp res = IRTemp_INVALID; |
| if (op != Iop_INVALID) { |
| vassert(opFn == NULL); |
| res = newTemp(Ity_V128); |
| assign(res, swapArgs ? binop(op, mkexpr(tSR), mkexpr(tSL)) |
| : binop(op, mkexpr(tSL), mkexpr(tSR))); |
| } else { |
| vassert(opFn != NULL); |
| res = swapArgs ? opFn(tSR, tSL) : opFn(tSL, tSR); |
| } |
| |
| putYMMRegLoAndZU(rD, mkexpr(res)); |
| |
| *uses_vvvv = True; |
| return delta; |
| } |
| |
| |
| /* Handle a VEX_NDS_128_66_0F_WIG (3-addr) insn, with a simple IROp |
| for the operation, no inversion of the left arg, and no swapping of |
| args. */ |
| static |
| Long dis_VEX_NDS_128_AnySimdPfx_0F_WIG_simple ( |
| /*OUT*/Bool* uses_vvvv, VexAbiInfo* vbi, |
| Prefix pfx, Long delta, HChar* name, |
| IROp op |
| ) |
| { |
| return dis_VEX_NDS_128_AnySimdPfx_0F_WIG( |
| uses_vvvv, vbi, pfx, delta, name, op, NULL, False, False); |
| } |
| |
| |
| /* Handle a VEX_NDS_128_66_0F_WIG (3-addr) insn, using the given IR |
| generator to compute the result, no inversion of the left |
| arg, and no swapping of args. */ |
| static |
| Long dis_VEX_NDS_128_AnySimdPfx_0F_WIG_complex ( |
| /*OUT*/Bool* uses_vvvv, VexAbiInfo* vbi, |
| Prefix pfx, Long delta, HChar* name, |
| IRTemp(*opFn)(IRTemp,IRTemp) |
| ) |
| { |
| return dis_VEX_NDS_128_AnySimdPfx_0F_WIG( |
| uses_vvvv, vbi, pfx, delta, name, |
| Iop_INVALID, opFn, False, False ); |
| } |
| |
| |
| /* Vector by scalar shift of E into V, by an immediate byte. Modified |
| version of dis_SSE_shiftE_imm. */ |
| static |
| Long dis_AVX128_shiftE_to_V_imm( Prefix pfx, |
| Long delta, HChar* opname, IROp op ) |
| { |
| Bool shl, shr, sar; |
| UChar rm = getUChar(delta); |
| IRTemp e0 = newTemp(Ity_V128); |
| IRTemp e1 = newTemp(Ity_V128); |
| UInt rD = getVexNvvvv(pfx); |
| UChar amt, size; |
| vassert(epartIsReg(rm)); |
| vassert(gregLO3ofRM(rm) == 2 |
| || gregLO3ofRM(rm) == 4 || gregLO3ofRM(rm) == 6); |
| amt = getUChar(delta+1); |
| delta += 2; |
| DIP("%s $%d,%s,%s\n", opname, |
| (Int)amt, |
| nameXMMReg(eregOfRexRM(pfx,rm)), |
| nameXMMReg(rD)); |
| assign( e0, getXMMReg(eregOfRexRM(pfx,rm)) ); |
| |
| shl = shr = sar = False; |
| size = 0; |
| switch (op) { |
| //case Iop_ShlN16x8: shl = True; size = 16; break; |
| case Iop_ShlN32x4: shl = True; size = 32; break; |
| //case Iop_ShlN64x2: shl = True; size = 64; break; |
| //case Iop_SarN16x8: sar = True; size = 16; break; |
| //case Iop_SarN32x4: sar = True; size = 32; break; |
| case Iop_ShrN16x8: shr = True; size = 16; break; |
| case Iop_ShrN32x4: shr = True; size = 32; break; |
| //case Iop_ShrN64x2: shr = True; size = 64; break; |
| default: vassert(0); |
| } |
| |
| if (shl || shr) { |
| assign( e1, amt >= size |
| ? mkV128(0x0000) |
| : binop(op, mkexpr(e0), mkU8(amt)) |
| ); |
| } else |
| if (sar) { |
| assign( e1, amt >= size |
| ? binop(op, mkexpr(e0), mkU8(size-1)) |
| : binop(op, mkexpr(e0), mkU8(amt)) |
| ); |
| } else { |
| vassert(0); |
| } |
| |
| putYMMRegLoAndZU( rD, mkexpr(e1) ); |
| return delta; |
| } |
| |
| |
| /* Lower 64-bit lane only AVX128 binary operation: |
| G[63:0] = V[63:0] `op` E[63:0] |
| G[127:64] = V[127:64] |
| G[255:128] = 0. |
| The specified op must be of the 64F0x2 kind, so that it |
| copies the upper half of the left operand to the result. |
| */ |
| static Long dis_AVX128_E_V_to_G_lo64 ( /*OUT*/Bool* uses_vvvv, |
| VexAbiInfo* vbi, |
| Prefix pfx, Long delta, |
| HChar* opname, IROp op ) |
| { |
| HChar dis_buf[50]; |
| Int alen; |
| IRTemp addr; |
| UChar rm = getUChar(delta); |
| UInt rG = gregOfRexRM(pfx,rm); |
| UInt rV = getVexNvvvv(pfx); |
| IRExpr* vpart = getXMMReg(rV); |
| if (epartIsReg(rm)) { |
| UInt rE = eregOfRexRM(pfx,rm); |
| putXMMReg( rG, binop(op, vpart, getXMMReg(rE)) ); |
| DIP("%s %s,%s,%s\n", opname, |
| nameXMMReg(rE), nameXMMReg(rV), nameXMMReg(rG)); |
| delta = delta+1; |
| } else { |
| /* We can only do a 64-bit memory read, so the upper half of the |
| E operand needs to be made simply of zeroes. */ |
| IRTemp epart = newTemp(Ity_V128); |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| assign( epart, unop( Iop_64UtoV128, |
| loadLE(Ity_I64, mkexpr(addr))) ); |
| putXMMReg( rG, binop(op, vpart, mkexpr(epart)) ); |
| DIP("%s %s,%s,%s\n", opname, |
| dis_buf, nameXMMReg(rV), nameXMMReg(rG)); |
| delta = delta+alen; |
| } |
| putYMMRegLane128( rG, 1, mkV128(0) ); |
| *uses_vvvv = True; |
| return delta; |
| } |
| |
| |
| /* Lower 64-bit lane only AVX128 unary operation: |
| G[63:0] = op(E[63:0]) |
| G[127:64] = V[127:64] |
| G[255:128] = 0 |
| The specified op must be of the 64F0x2 kind, so that it |
| copies the upper half of the operand to the result. |
| */ |
| static Long dis_AVX128_E_V_to_G_lo64_unary ( /*OUT*/Bool* uses_vvvv, |
| VexAbiInfo* vbi, |
| Prefix pfx, Long delta, |
| HChar* opname, IROp op ) |
| { |
| HChar dis_buf[50]; |
| Int alen; |
| IRTemp addr; |
| UChar rm = getUChar(delta); |
| UInt rG = gregOfRexRM(pfx,rm); |
| UInt rV = getVexNvvvv(pfx); |
| IRTemp e64 = newTemp(Ity_I64); |
| |
| /* Fetch E[63:0] */ |
| if (epartIsReg(rm)) { |
| UInt rE = eregOfRexRM(pfx,rm); |
| assign(e64, getXMMRegLane64(rE, 0)); |
| DIP("%s %s,%s,%s\n", opname, |
| nameXMMReg(rE), nameXMMReg(rV), nameXMMReg(rG)); |
| delta += 1; |
| } else { |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| assign(e64, loadLE(Ity_I64, mkexpr(addr))); |
| DIP("%s %s,%s,%s\n", opname, |
| dis_buf, nameXMMReg(rV), nameXMMReg(rG)); |
| delta += alen; |
| } |
| |
| /* Create a value 'arg' as V[127:64]++E[63:0] */ |
| IRTemp arg = newTemp(Ity_V128); |
| assign(arg, |
| binop(Iop_SetV128lo64, |
| getXMMReg(rV), mkexpr(e64))); |
| /* and apply op to it */ |
| putYMMRegLoAndZU( rG, unop(op, mkexpr(arg)) ); |
| *uses_vvvv = True; |
| return delta; |
| } |
| |
| |
| /* Lower 32-bit lane only AVX128 binary operation: |
| G[31:0] = V[31:0] `op` E[31:0] |
| G[127:32] = V[127:32] |
| G[255:128] = 0. |
| The specified op must be of the 32F0x4 kind, so that it |
| copies the upper 3/4 of the left operand to the result. |
| */ |
| static Long dis_AVX128_E_V_to_G_lo32 ( /*OUT*/Bool* uses_vvvv, |
| VexAbiInfo* vbi, |
| Prefix pfx, Long delta, |
| HChar* opname, IROp op ) |
| { |
| HChar dis_buf[50]; |
| Int alen; |
| IRTemp addr; |
| UChar rm = getUChar(delta); |
| UInt rG = gregOfRexRM(pfx,rm); |
| UInt rV = getVexNvvvv(pfx); |
| IRExpr* vpart = getXMMReg(rV); |
| if (epartIsReg(rm)) { |
| UInt rE = eregOfRexRM(pfx,rm); |
| putXMMReg( rG, binop(op, vpart, getXMMReg(rE)) ); |
| DIP("%s %s,%s,%s\n", opname, |
| nameXMMReg(rE), nameXMMReg(rV), nameXMMReg(rG)); |
| delta = delta+1; |
| } else { |
| /* We can only do a 32-bit memory read, so the upper 3/4 of the |
| E operand needs to be made simply of zeroes. */ |
| IRTemp epart = newTemp(Ity_V128); |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| assign( epart, unop( Iop_32UtoV128, |
| loadLE(Ity_I32, mkexpr(addr))) ); |
| putXMMReg( rG, binop(op, vpart, mkexpr(epart)) ); |
| DIP("%s %s,%s,%s\n", opname, |
| dis_buf, nameXMMReg(rV), nameXMMReg(rG)); |
| delta = delta+alen; |
| } |
| putYMMRegLane128( rG, 1, mkV128(0) ); |
| *uses_vvvv = True; |
| return delta; |
| } |
| |
| |
| /* All-lanes AVX128 binary operation: |
| G[127:0] = V127:0] `op` E[127:0] |
| G[255:128] = 0. |
| */ |
| static Long dis_AVX128_E_V_to_G ( /*OUT*/Bool* uses_vvvv, |
| VexAbiInfo* vbi, |
| Prefix pfx, Long delta, |
| HChar* opname, IROp op ) |
| { |
| HChar dis_buf[50]; |
| Int alen; |
| IRTemp addr; |
| UChar rm = getUChar(delta); |
| UInt rG = gregOfRexRM(pfx,rm); |
| UInt rV = getVexNvvvv(pfx); |
| IRExpr* vpart = getXMMReg(rV); |
| IRExpr* epart = NULL; |
| if (epartIsReg(rm)) { |
| UInt rE = eregOfRexRM(pfx,rm); |
| epart = getXMMReg(rE); |
| DIP("%s %s,%s,%s\n", opname, |
| nameXMMReg(rE), nameXMMReg(rV), nameXMMReg(rG)); |
| delta = delta+1; |
| } else { |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| epart = loadLE(Ity_V128, mkexpr(addr)); |
| DIP("%s %s,%s,%s\n", opname, |
| dis_buf, nameXMMReg(rV), nameXMMReg(rG)); |
| delta = delta+alen; |
| } |
| |
| putYMMRegLoAndZU( rG, binop(op, vpart, epart) ); |
| *uses_vvvv = True; |
| return delta; |
| } |
| |
| |
| /* Handles AVX128 32F/64F comparisons. A derivative of |
| dis_SSEcmp_E_to_G. It can fail, in which case it returns the |
| original delta to indicate failure. */ |
| static |
| Long dis_AVX128_cmp_V_E_to_G ( /*OUT*/Bool* uses_vvvv, |
| VexAbiInfo* vbi, |
| Prefix pfx, Long delta, |
| HChar* opname, Bool all_lanes, Int sz ) |
| { |
| vassert(sz == 4 || sz == 8); |
| Long deltaIN = delta; |
| HChar dis_buf[50]; |
| Int alen; |
| UInt imm8; |
| IRTemp addr; |
| Bool preSwap = False; |
| IROp op = Iop_INVALID; |
| Bool postNot = False; |
| IRTemp plain = newTemp(Ity_V128); |
| UChar rm = getUChar(delta); |
| UInt rG = gregOfRexRM(pfx, rm); |
| UInt rV = getVexNvvvv(pfx); |
| IRTemp argL = newTemp(Ity_V128); |
| IRTemp argR = newTemp(Ity_V128); |
| |
| assign(argL, getXMMReg(rV)); |
| if (epartIsReg(rm)) { |
| imm8 = getUChar(delta+1); |
| Bool ok = findSSECmpOp(&preSwap, &op, &postNot, imm8, all_lanes, sz); |
| if (!ok) return deltaIN; /* FAIL */ |
| UInt rE = eregOfRexRM(pfx,rm); |
| assign(argR, getXMMReg(rE)); |
| delta += 1+1; |
| DIP("%s $%d,%s,%s,%s\n", |
| opname, (Int)imm8, |
| nameXMMReg(rE), nameXMMReg(rV), nameXMMReg(rG)); |
| } else { |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 1 ); |
| imm8 = getUChar(delta+alen); |
| Bool ok = findSSECmpOp(&preSwap, &op, &postNot, imm8, all_lanes, sz); |
| if (!ok) return deltaIN; /* FAIL */ |
| assign(argR, |
| all_lanes ? loadLE(Ity_V128, mkexpr(addr)) |
| : sz == 8 ? unop( Iop_64UtoV128, loadLE(Ity_I64, mkexpr(addr))) |
| : /*sz==4*/ unop( Iop_32UtoV128, loadLE(Ity_I32, mkexpr(addr)))); |
| delta += alen+1; |
| DIP("%s $%d,%s,%s,%s\n", |
| opname, (Int)imm8, dis_buf, nameXMMReg(rV), nameXMMReg(rG)); |
| } |
| |
| assign(plain, preSwap ? binop(op, mkexpr(argR), mkexpr(argL)) |
| : binop(op, mkexpr(argL), mkexpr(argR))); |
| |
| if (all_lanes) { |
| /* This is simple: just invert the result, if necessary, and |
| have done. */ |
| if (postNot) { |
| putYMMRegLoAndZU( rG, unop(Iop_NotV128, mkexpr(plain)) ); |
| } else { |
| putYMMRegLoAndZU( rG, mkexpr(plain) ); |
| } |
| } |
| else |
| if (!preSwap) { |
| /* More complex. It's a one-lane-only, hence need to possibly |
| invert only that one lane. But at least the other lanes are |
| correctly "in" the result, having been copied from the left |
| operand (argL). */ |
| if (postNot) { |
| IRExpr* mask = mkV128(sz==4 ? 0x000F : 0x00FF); |
| putYMMRegLoAndZU( rG, binop(Iop_XorV128, mkexpr(plain), |
| mask) ); |
| } else { |
| putYMMRegLoAndZU( rG, mkexpr(plain) ); |
| } |
| } |
| else { |
| /* This is the most complex case. One-lane-only, but the args |
| were swapped. So we have to possibly invert the bottom lane, |
| and (definitely) we have to copy the upper lane(s) from argL |
| since, due to the swapping, what's currently there is from |
| argR, which is not correct. */ |
| IRTemp res = newTemp(Ity_V128); |
| IRTemp mask = newTemp(Ity_V128); |
| IRTemp notMask = newTemp(Ity_V128); |
| assign(mask, mkV128(sz==4 ? 0x000F : 0x00FF)); |
| assign(notMask, mkV128(sz==4 ? 0xFFF0 : 0xFF00)); |
| if (postNot) { |
| assign(res, |
| binop(Iop_OrV128, |
| binop(Iop_AndV128, |
| unop(Iop_NotV128, mkexpr(plain)), |
| mkexpr(mask)), |
| binop(Iop_AndV128, mkexpr(argL), mkexpr(notMask)))); |
| } else { |
| assign(res, |
| binop(Iop_OrV128, |
| binop(Iop_AndV128, |
| mkexpr(plain), |
| mkexpr(mask)), |
| binop(Iop_AndV128, mkexpr(argL), mkexpr(notMask)))); |
| } |
| putYMMRegLoAndZU( rG, mkexpr(res) ); |
| } |
| |
| *uses_vvvv = True; |
| return delta; |
| } |
| |
| |
| /* Handles AVX128 unary E-to-G all-lanes operations. */ |
| static |
| Long dis_AVX128_E_to_G_unary ( /*OUT*/Bool* uses_vvvv, |
| VexAbiInfo* vbi, |
| Prefix pfx, Long delta, |
| HChar* opname, |
| IRTemp (*opFn)(IRTemp) ) |
| { |
| HChar dis_buf[50]; |
| Int alen; |
| IRTemp addr; |
| IRTemp res = newTemp(Ity_V128); |
| IRTemp arg = newTemp(Ity_V128); |
| UChar rm = getUChar(delta); |
| UInt rG = gregOfRexRM(pfx, rm); |
| if (epartIsReg(rm)) { |
| UInt rE = eregOfRexRM(pfx,rm); |
| assign(arg, getXMMReg(rE)); |
| delta += 1; |
| DIP("%s %s,%s\n", opname, nameXMMReg(rE), nameXMMReg(rG)); |
| } else { |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| assign(arg, loadLE(Ity_V128, mkexpr(addr))); |
| delta += alen; |
| DIP("%s %s,%s\n", opname, dis_buf, nameXMMReg(rG)); |
| } |
| res = opFn(arg); |
| putYMMRegLoAndZU( rG, mkexpr(res) ); |
| *uses_vvvv = False; |
| return delta; |
| } |
| |
| |
| __attribute__((noinline)) |
| static |
| Long dis_ESC_0F__VEX ( |
| /*MB_OUT*/DisResult* dres, |
| /*OUT*/ Bool* uses_vvvv, |
| Bool (*resteerOkFn) ( /*opaque*/void*, Addr64 ), |
| Bool resteerCisOk, |
| void* callback_opaque, |
| VexArchInfo* archinfo, |
| VexAbiInfo* vbi, |
| Prefix pfx, Int sz, Long deltaIN |
| ) |
| { |
| IRTemp addr = IRTemp_INVALID; |
| Int alen = 0; |
| HChar dis_buf[50]; |
| Long delta = deltaIN; |
| UChar opc = getUChar(delta); |
| delta++; |
| *uses_vvvv = False; |
| |
| switch (opc) { |
| |
| case 0x10: |
| /* VMOVSD m64, xmm1 = VEX.LIG.F2.0F.WIG 10 /r */ |
| /* Move 64 bits from E (mem only) to G (lo half xmm). |
| Bits 255-64 of the dest are zeroed out. */ |
| if (haveF2no66noF3(pfx) && !epartIsReg(getUChar(delta))) { |
| UChar modrm = getUChar(delta); |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| UInt rG = gregOfRexRM(pfx,modrm); |
| IRTemp z128 = newTemp(Ity_V128); |
| assign(z128, mkV128(0)); |
| putXMMReg( rG, mkexpr(z128) ); |
| /* FIXME: ALIGNMENT CHECK? */ |
| putXMMRegLane64( rG, 0, loadLE(Ity_I64, mkexpr(addr)) ); |
| putYMMRegLane128( rG, 1, mkexpr(z128) ); |
| DIP("vmovsd %s,%s\n", dis_buf, nameXMMReg(rG)); |
| delta += alen; |
| goto decode_success; |
| } |
| /* VMOVSS m32, xmm1 = VEX.LIG.F3.0F.WIG 10 /r */ |
| /* Move 32 bits from E (mem only) to G (lo half xmm). |
| Bits 255-32 of the dest are zeroed out. */ |
| if (haveF3no66noF2(pfx) && !epartIsReg(getUChar(delta))) { |
| UChar modrm = getUChar(delta); |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| UInt rG = gregOfRexRM(pfx,modrm); |
| IRTemp z128 = newTemp(Ity_V128); |
| assign(z128, mkV128(0)); |
| putXMMReg( rG, mkexpr(z128) ); |
| /* FIXME: ALIGNMENT CHECK? */ |
| putXMMRegLane32( rG, 0, loadLE(Ity_I32, mkexpr(addr)) ); |
| putYMMRegLane128( rG, 1, mkexpr(z128) ); |
| DIP("vmovss %s,%s\n", dis_buf, nameXMMReg(rG)); |
| delta += alen; |
| goto decode_success; |
| } |
| break; |
| |
| case 0x11: |
| /* VMOVSD xmm1, m64 = VEX.LIG.F2.0F.WIG 11 /r */ |
| /* Move 64 bits from G (low half xmm) to mem only. */ |
| if (haveF2no66noF3(pfx) && !epartIsReg(getUChar(delta))) { |
| UChar modrm = getUChar(delta); |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| UInt rG = gregOfRexRM(pfx,modrm); |
| /* FIXME: ALIGNMENT CHECK? */ |
| storeLE( mkexpr(addr), getXMMRegLane64(rG, 0)); |
| DIP("vmovsd %s,%s\n", nameXMMReg(rG), dis_buf); |
| delta += alen; |
| goto decode_success; |
| } |
| /* VMOVSS xmm1, m64 = VEX.LIG.F3.0F.WIG 11 /r */ |
| /* Move 32 bits from G (low 1/4 xmm) to mem only. */ |
| if (haveF3no66noF2(pfx) && !epartIsReg(getUChar(delta))) { |
| UChar modrm = getUChar(delta); |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| UInt rG = gregOfRexRM(pfx,modrm); |
| /* FIXME: ALIGNMENT CHECK? */ |
| storeLE( mkexpr(addr), getXMMRegLane32(rG, 0)); |
| DIP("vmovss %s,%s\n", nameXMMReg(rG), dis_buf); |
| delta += alen; |
| goto decode_success; |
| } |
| /* VMOVUPD xmm1, xmm2/m128 = VEX.128.66.0F.WIG 11 /r */ |
| if (have66noF2noF3(pfx) && 0==getVexL(pfx)/*128*/) { |
| UChar modrm = getUChar(delta); |
| UInt rG = gregOfRexRM(pfx,modrm); |
| if (epartIsReg(modrm)) { |
| UInt rE = eregOfRexRM(pfx,modrm); |
| putYMMRegLoAndZU( rE, getXMMReg(rG) ); |
| DIP("vmovupd %s,%s\n", nameXMMReg(rG), nameXMMReg(rE)); |
| delta += 1; |
| } else { |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| storeLE( mkexpr(addr), getXMMReg(rG) ); |
| DIP("vmovupd %s,%s\n", nameXMMReg(rG), dis_buf); |
| delta += alen; |
| } |
| goto decode_success; |
| } |
| /* VMOVUPS xmm1, xmm2/m128 = VEX.128.0F.WIG 11 /r */ |
| if (haveNo66noF2noF3(pfx) && 0==getVexL(pfx)/*128*/) { |
| UChar modrm = getUChar(delta); |
| UInt rG = gregOfRexRM(pfx,modrm); |
| if (epartIsReg(modrm)) { |
| UInt rE = eregOfRexRM(pfx,modrm); |
| putYMMRegLoAndZU( rE, getXMMReg(rG) ); |
| DIP("vmovups %s,%s\n", nameXMMReg(rG), nameXMMReg(rE)); |
| delta += 1; |
| } else { |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| storeLE( mkexpr(addr), getXMMReg(rG) ); |
| DIP("vmovups %s,%s\n", nameXMMReg(rG), dis_buf); |
| delta += alen; |
| } |
| goto decode_success; |
| } |
| break; |
| |
| case 0x12: |
| /* VMOVDDUP xmm2/m64, xmm1 = VEX.128.F2.0F.WIG /12 r */ |
| if (haveF2no66noF3(pfx) && 0==getVexL(pfx)/*128*/) { |
| delta = dis_MOVDDUP_128( vbi, pfx, delta, True/*isAvx*/ ); |
| goto decode_success; |
| } |
| /* VMOVHLPS xmm3, xmm2, xmm1 = VEX.NDS.128.0F.WIG 12 /r */ |
| /* Insn only exists in reg form */ |
| if (haveNo66noF2noF3(pfx) && 0==getVexL(pfx)/*128*/ |
| && epartIsReg(getUChar(delta))) { |
| UChar modrm = getUChar(delta); |
| UInt rG = gregOfRexRM(pfx, modrm); |
| UInt rE = eregOfRexRM(pfx, modrm); |
| UInt rV = getVexNvvvv(pfx); |
| delta++; |
| DIP("vmovhlps %s,%s,%s\n", |
| nameXMMReg(rE), nameXMMReg(rV), nameXMMReg(rG)); |
| IRTemp res = newTemp(Ity_V128); |
| assign(res, binop(Iop_64HLtoV128, |
| getXMMRegLane64(rV, 1), |
| getXMMRegLane64(rE, 1))); |
| putYMMRegLoAndZU(rG, mkexpr(res)); |
| *uses_vvvv = True; |
| goto decode_success; |
| } |
| break; |
| |
| case 0x14: |
| /* VUNPCKLPS xmm3/m128, xmm2, xmm1 = VEX.NDS.128.0F.WIG 14 /r */ |
| if (haveNo66noF2noF3(pfx) && 0==getVexL(pfx)/*128*/) { |
| Bool hi = opc == 0x15; |
| UChar modrm = getUChar(delta); |
| UInt rG = gregOfRexRM(pfx,modrm); |
| UInt rV = getVexNvvvv(pfx); |
| IRTemp eV = newTemp(Ity_V128); |
| IRTemp vV = newTemp(Ity_V128); |
| assign( vV, getXMMReg(rV) ); |
| if (epartIsReg(modrm)) { |
| UInt rE = eregOfRexRM(pfx,modrm); |
| assign( eV, getXMMReg(rE) ); |
| delta += 1; |
| DIP("vunpck%sps %s,%s\n", hi ? "h" : "l", |
| nameXMMReg(rE), nameXMMReg(rG)); |
| } else { |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| assign( eV, loadLE(Ity_V128, mkexpr(addr)) ); |
| delta += alen; |
| DIP("vunpck%sps %s,%s\n", hi ? "h" : "l", |
| dis_buf, nameXMMReg(rG)); |
| } |
| IRTemp res = math_UNPCKxPS_128( eV, vV, opc ); |
| putYMMRegLoAndZU( rG, mkexpr(res) ); |
| *uses_vvvv = True; |
| goto decode_success; |
| } |
| break; |
| |
| case 0x16: |
| /* VMOVLHPS xmm3, xmm2, xmm1 = VEX.NDS.128.0F.WIG 16 /r */ |
| /* Insn only exists in reg form */ |
| if (haveNo66noF2noF3(pfx) && 0==getVexL(pfx)/*128*/ |
| && epartIsReg(getUChar(delta))) { |
| UChar modrm = getUChar(delta); |
| UInt rG = gregOfRexRM(pfx, modrm); |
| UInt rE = eregOfRexRM(pfx, modrm); |
| UInt rV = getVexNvvvv(pfx); |
| delta++; |
| DIP("vmovlhps %s,%s,%s\n", |
| nameXMMReg(rE), nameXMMReg(rV), nameXMMReg(rG)); |
| IRTemp res = newTemp(Ity_V128); |
| assign(res, binop(Iop_64HLtoV128, |
| getXMMRegLane64(rE, 0), |
| getXMMRegLane64(rV, 0))); |
| putYMMRegLoAndZU(rG, mkexpr(res)); |
| *uses_vvvv = True; |
| goto decode_success; |
| } |
| break; |
| |
| case 0x17: |
| /* VMOVHPD xmm1, m64 = VEX.128.66.0F.WIG 17 /r */ |
| /* Insn exists only in mem form (not sure about this) */ |
| if (have66noF2noF3(pfx) && 0==getVexL(pfx)/*128*/ |
| && !epartIsReg(getUChar(delta))) { |
| UChar modrm = getUChar(delta); |
| UInt rG = gregOfRexRM(pfx, modrm); |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| delta += alen; |
| storeLE( mkexpr(addr), getXMMRegLane64( rG, 1)); |
| DIP("vmovhpd %s,%s\n", nameXMMReg(rG), dis_buf); |
| goto decode_success; |
| } |
| break; |
| |
| case 0x28: |
| /* VMOVAPD xmm2/m128, xmm1 = VEX.128.66.0F.WIG 28 /r */ |
| if (have66noF2noF3(pfx) && 0==getVexL(pfx)/*128*/) { |
| UChar modrm = getUChar(delta); |
| UInt rG = gregOfRexRM(pfx, modrm); |
| if (epartIsReg(modrm)) { |
| UInt rE = eregOfRexRM(pfx,modrm); |
| putYMMRegLoAndZU( rG, getXMMReg( rE )); |
| DIP("vmovapd %s,%s\n", nameXMMReg(rE), nameXMMReg(rG)); |
| delta += 1; |
| } else { |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| gen_SEGV_if_not_16_aligned( addr ); |
| putYMMRegLoAndZU( rG, loadLE(Ity_V128, mkexpr(addr)) ); |
| DIP("vmovapd %s,%s\n", dis_buf, nameXMMReg(rG)); |
| delta += alen; |
| } |
| goto decode_success; |
| } |
| /* VMOVAPD ymm2/m256, ymm1 = VEX.256.66.0F.WIG 28 /r */ |
| if (have66noF2noF3(pfx) && 1==getVexL(pfx)/*256*/) { |
| UChar modrm = getUChar(delta); |
| UInt rG = gregOfRexRM(pfx, modrm); |
| if (epartIsReg(modrm)) { |
| UInt rE = eregOfRexRM(pfx,modrm); |
| putYMMReg( rG, getYMMReg( rE )); |
| DIP("vmovapd %s,%s\n", nameYMMReg(rE), nameYMMReg(rG)); |
| delta += 1; |
| } else { |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| gen_SEGV_if_not_32_aligned( addr ); |
| putYMMReg( rG, loadLE(Ity_V256, mkexpr(addr)) ); |
| DIP("vmovapd %s,%s\n", dis_buf, nameYMMReg(rG)); |
| delta += alen; |
| } |
| goto decode_success; |
| } |
| /* VMOVAPS xmm2/m128, xmm1 = VEX.128.0F.WIG 28 /r */ |
| if (haveNo66noF2noF3(pfx) && 0==getVexL(pfx)/*128*/) { |
| UChar modrm = getUChar(delta); |
| UInt rG = gregOfRexRM(pfx, modrm); |
| if (epartIsReg(modrm)) { |
| UInt rE = eregOfRexRM(pfx,modrm); |
| putYMMRegLoAndZU( rG, getXMMReg( rE )); |
| DIP("vmovaps %s,%s\n", nameXMMReg(rE), nameXMMReg(rG)); |
| delta += 1; |
| } else { |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| gen_SEGV_if_not_16_aligned( addr ); |
| putYMMRegLoAndZU( rG, loadLE(Ity_V128, mkexpr(addr)) ); |
| DIP("vmovaps %s,%s\n", dis_buf, nameXMMReg(rG)); |
| delta += alen; |
| } |
| goto decode_success; |
| } |
| break; |
| |
| case 0x29: |
| /* VMOVAPD xmm1, xmm2/m128 = VEX.128.66.0F.WIG 29 /r */ |
| if (have66noF2noF3(pfx) && 0==getVexL(pfx)/*128*/) { |
| UChar modrm = getUChar(delta); |
| UInt rG = gregOfRexRM(pfx,modrm); |
| if (epartIsReg(modrm)) { |
| UInt rE = eregOfRexRM(pfx,modrm); |
| putYMMRegLoAndZU( rE, getXMMReg(rG) ); |
| DIP("vmovapd %s,%s\n", nameXMMReg(rG), nameXMMReg(rE)); |
| delta += 1; |
| } else { |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| gen_SEGV_if_not_16_aligned( addr ); |
| storeLE( mkexpr(addr), getXMMReg(rG) ); |
| DIP("vmovapd %s,%s\n", nameXMMReg(rG), dis_buf ); |
| delta += alen; |
| } |
| goto decode_success; |
| } |
| /* VMOVAPD ymm1, ymm2/m256 = VEX.256.66.0F.WIG 29 /r */ |
| if (have66noF2noF3(pfx) && 1==getVexL(pfx)/*256*/) { |
| UChar modrm = getUChar(delta); |
| UInt rG = gregOfRexRM(pfx,modrm); |
| if (epartIsReg(modrm)) { |
| UInt rE = eregOfRexRM(pfx,modrm); |
| putYMMReg( rE, getYMMReg(rG) ); |
| DIP("vmovapd %s,%s\n", nameYMMReg(rG), nameYMMReg(rE)); |
| delta += 1; |
| } else { |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| gen_SEGV_if_not_32_aligned( addr ); |
| storeLE( mkexpr(addr), getYMMReg(rG) ); |
| DIP("vmovapd %s,%s\n", nameYMMReg(rG), dis_buf ); |
| delta += alen; |
| } |
| goto decode_success; |
| } |
| /* VMOVAPS xmm1, xmm2/m128 = VEX.128.0F.WIG 29 /r */ |
| if (haveNo66noF2noF3(pfx) && 0==getVexL(pfx)/*128*/) { |
| UChar modrm = getUChar(delta); |
| UInt rG = gregOfRexRM(pfx,modrm); |
| if (epartIsReg(modrm)) { |
| UInt rE = eregOfRexRM(pfx,modrm); |
| putYMMRegLoAndZU( rE, getXMMReg(rG) ); |
| DIP("vmovaps %s,%s\n", nameXMMReg(rG), nameXMMReg(rE)); |
| delta += 1; |
| goto decode_success; |
| } else { |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| gen_SEGV_if_not_16_aligned( addr ); |
| storeLE( mkexpr(addr), getXMMReg(rG) ); |
| DIP("vmovaps %s,%s\n", nameXMMReg(rG), dis_buf ); |
| delta += alen; |
| goto decode_success; |
| } |
| } |
| /* VMOVAPS ymm1, ymm2/m256 = VEX.256.0F.WIG 29 /r */ |
| if (haveNo66noF2noF3(pfx) && 1==getVexL(pfx)/*256*/) { |
| UChar modrm = getUChar(delta); |
| UInt rG = gregOfRexRM(pfx,modrm); |
| if (epartIsReg(modrm)) { |
| UInt rE = eregOfRexRM(pfx,modrm); |
| putYMMReg( rE, getYMMReg(rG) ); |
| DIP("vmovaps %s,%s\n", nameYMMReg(rG), nameYMMReg(rE)); |
| delta += 1; |
| goto decode_success; |
| } else { |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| gen_SEGV_if_not_32_aligned( addr ); |
| storeLE( mkexpr(addr), getYMMReg(rG) ); |
| DIP("vmovaps %s,%s\n", nameYMMReg(rG), dis_buf ); |
| delta += alen; |
| goto decode_success; |
| } |
| } |
| break; |
| |
| case 0x2A: { |
| IRTemp rmode = newTemp(Ity_I32); |
| assign( rmode, get_sse_roundingmode() ); |
| /* VCVTSI2SD r/m32, xmm2, xmm1 = VEX.NDS.LIG.F2.0F.W0 2A /r */ |
| if (haveF2no66noF3(pfx) && 0==getRexW(pfx)/*W0*/) { |
| UChar modrm = getUChar(delta); |
| UInt rV = getVexNvvvv(pfx); |
| UInt rD = gregOfRexRM(pfx, modrm); |
| IRTemp arg32 = newTemp(Ity_I32); |
| if (epartIsReg(modrm)) { |
| UInt rS = eregOfRexRM(pfx,modrm); |
| assign( arg32, getIReg32(rS) ); |
| delta += 1; |
| DIP("vcvtsi2sdl %s,%s,%s\n", |
| nameIReg32(rS), nameXMMReg(rV), nameXMMReg(rD)); |
| } else { |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| assign( arg32, loadLE(Ity_I32, mkexpr(addr)) ); |
| delta += alen; |
| DIP("vcvtsi2sdl %s,%s,%s\n", |
| dis_buf, nameXMMReg(rV), nameXMMReg(rD)); |
| } |
| putXMMRegLane64F( rD, 0, |
| unop(Iop_I32StoF64, mkexpr(arg32))); |
| putXMMRegLane64( rD, 1, getXMMRegLane64( rV, 1 )); |
| putYMMRegLane128( rD, 1, mkV128(0) ); |
| *uses_vvvv = True; |
| goto decode_success; |
| } |
| /* VCVTSI2SD r/m64, xmm2, xmm1 = VEX.NDS.LIG.F2.0F.W1 2A /r */ |
| if (haveF2no66noF3(pfx) && 1==getRexW(pfx)/*W1*/) { |
| UChar modrm = getUChar(delta); |
| UInt rV = getVexNvvvv(pfx); |
| UInt rD = gregOfRexRM(pfx, modrm); |
| IRTemp arg64 = newTemp(Ity_I64); |
| if (epartIsReg(modrm)) { |
| UInt rS = eregOfRexRM(pfx,modrm); |
| assign( arg64, getIReg64(rS) ); |
| delta += 1; |
| DIP("vcvtsi2sdq %s,%s,%s\n", |
| nameIReg64(rS), nameXMMReg(rV), nameXMMReg(rD)); |
| } else { |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| assign( arg64, loadLE(Ity_I64, mkexpr(addr)) ); |
| delta += alen; |
| DIP("vcvtsi2sdq %s,%s,%s\n", |
| dis_buf, nameXMMReg(rV), nameXMMReg(rD)); |
| } |
| putXMMRegLane64F( rD, 0, |
| binop( Iop_I64StoF64, |
| get_sse_roundingmode(), |
| mkexpr(arg64)) ); |
| putXMMRegLane64( rD, 1, getXMMRegLane64( rV, 1 )); |
| putYMMRegLane128( rD, 1, mkV128(0) ); |
| *uses_vvvv = True; |
| goto decode_success; |
| } |
| /* VCVTSI2SS r/m64, xmm2, xmm1 = VEX.NDS.LIG.F3.0F.W1 2A /r */ |
| if (haveF3no66noF2(pfx) && 1==getRexW(pfx)/*W1*/) { |
| UChar modrm = getUChar(delta); |
| UInt rV = getVexNvvvv(pfx); |
| UInt rD = gregOfRexRM(pfx, modrm); |
| IRTemp arg64 = newTemp(Ity_I64); |
| if (epartIsReg(modrm)) { |
| UInt rS = eregOfRexRM(pfx,modrm); |
| assign( arg64, getIReg64(rS) ); |
| delta += 1; |
| DIP("vcvtsi2ssq %s,%s,%s\n", |
| nameIReg64(rS), nameXMMReg(rV), nameXMMReg(rD)); |
| } else { |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| assign( arg64, loadLE(Ity_I64, mkexpr(addr)) ); |
| delta += alen; |
| DIP("vcvtsi2ssq %s,%s,%s\n", |
| dis_buf, nameXMMReg(rV), nameXMMReg(rD)); |
| } |
| putXMMRegLane32F( rD, 0, |
| binop(Iop_F64toF32, |
| mkexpr(rmode), |
| binop(Iop_I64StoF64, mkexpr(rmode), |
| mkexpr(arg64)) ) ); |
| putXMMRegLane32( rD, 1, getXMMRegLane32( rV, 1 )); |
| putXMMRegLane64( rD, 1, getXMMRegLane64( rV, 1 )); |
| putYMMRegLane128( rD, 1, mkV128(0) ); |
| *uses_vvvv = True; |
| goto decode_success; |
| } |
| /* VCVTSI2SS r/m32, xmm2, xmm1 = VEX.NDS.LIG.F3.0F.W0 2A /r */ |
| if (haveF3no66noF2(pfx) && 0==getRexW(pfx)/*W0*/) { |
| UChar modrm = getUChar(delta); |
| UInt rV = getVexNvvvv(pfx); |
| UInt rD = gregOfRexRM(pfx, modrm); |
| IRTemp arg32 = newTemp(Ity_I32); |
| if (epartIsReg(modrm)) { |
| UInt rS = eregOfRexRM(pfx,modrm); |
| assign( arg32, getIReg32(rS) ); |
| delta += 1; |
| DIP("vcvtsi2ssl %s,%s,%s\n", |
| nameIReg32(rS), nameXMMReg(rV), nameXMMReg(rD)); |
| } else { |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| assign( arg32, loadLE(Ity_I32, mkexpr(addr)) ); |
| delta += alen; |
| DIP("vcvtsi2ssl %s,%s,%s\n", |
| dis_buf, nameXMMReg(rV), nameXMMReg(rD)); |
| } |
| putXMMRegLane32F( rD, 0, |
| binop(Iop_F64toF32, |
| mkexpr(rmode), |
| unop(Iop_I32StoF64, mkexpr(arg32)) ) ); |
| putXMMRegLane32( rD, 1, getXMMRegLane32( rV, 1 )); |
| putXMMRegLane64( rD, 1, getXMMRegLane64( rV, 1 )); |
| putYMMRegLane128( rD, 1, mkV128(0) ); |
| *uses_vvvv = True; |
| goto decode_success; |
| } |
| break; |
| } |
| |
| case 0x2C: |
| /* VCVTTSD2SI xmm1/m32, r32 = VEX.LIG.F2.0F.W0 2C /r */ |
| if (haveF2no66noF3(pfx) && 0==getRexW(pfx)/*W0*/) { |
| delta = dis_CVTxSD2SI( vbi, pfx, delta, True/*isAvx*/, opc, 4); |
| goto decode_success; |
| } |
| /* VCVTTSD2SI xmm1/m64, r64 = VEX.LIG.F2.0F.W1 2C /r */ |
| if (haveF2no66noF3(pfx) && 1==getRexW(pfx)/*W1*/) { |
| delta = dis_CVTxSD2SI( vbi, pfx, delta, True/*isAvx*/, opc, 8); |
| goto decode_success; |
| } |
| /* VCVTTSS2SI xmm1/m32, r32 = VEX.LIG.F3.0F.W0 2C /r */ |
| if (haveF3no66noF2(pfx) && 0==getRexW(pfx)/*W0*/) { |
| delta = dis_CVTxSS2SI( vbi, pfx, delta, True/*isAvx*/, opc, 4); |
| goto decode_success; |
| } |
| /* VCVTTSS2SI xmm1/m64, r64 = VEX.LIG.F3.0F.W1 2C /r */ |
| if (haveF3no66noF2(pfx) && 1==getRexW(pfx)/*W1*/) { |
| delta = dis_CVTxSS2SI( vbi, pfx, delta, True/*isAvx*/, opc, 8); |
| goto decode_success; |
| } |
| break; |
| |
| case 0x2E: |
| /* VUCOMISD xmm2/m64, xmm1 = VEX.LIG.66.0F.WIG 2E /r */ |
| if (have66noF2noF3(pfx)) { |
| delta = dis_COMISD( vbi, pfx, delta, True/*isAvx*/, opc ); |
| goto decode_success; |
| } |
| /* VUCOMISS xmm2/m32, xmm1 = VEX.LIG.0F.WIG 2E /r */ |
| if (haveNo66noF2noF3(pfx)) { |
| delta = dis_COMISS( vbi, pfx, delta, True/*isAvx*/, opc ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0x51: |
| /* VSQRTSD xmm3/m64(E), xmm2(V), xmm1(G) = VEX.NDS.LIG.F2.0F.WIG 51 /r */ |
| if (haveF2no66noF3(pfx)) { |
| delta = dis_AVX128_E_V_to_G_lo64_unary( |
| uses_vvvv, vbi, pfx, delta, "vsqrtsd", Iop_Sqrt64F0x2 ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0x54: |
| /* VANDPD r/m, rV, r ::: r = rV & r/m */ |
| /* VANDPD = VEX.NDS.128.66.0F.WIG 54 /r */ |
| if (have66noF2noF3(pfx) && 0==getVexL(pfx)/*128*/) { |
| delta = dis_VEX_NDS_128_AnySimdPfx_0F_WIG_simple( |
| uses_vvvv, vbi, pfx, delta, "vandpd", Iop_AndV128 ); |
| goto decode_success; |
| } |
| /* VANDPS = VEX.NDS.128.0F.WIG 54 /r */ |
| if (haveNo66noF2noF3(pfx) && 0==getVexL(pfx)/*128*/) { |
| delta = dis_VEX_NDS_128_AnySimdPfx_0F_WIG_simple( |
| uses_vvvv, vbi, pfx, delta, "vandps", Iop_AndV128 ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0x55: |
| /* VANDNPD r/m, rV, r ::: r = (not rV) & r/m */ |
| /* VANDNPD = VEX.NDS.128.66.0F.WIG 55 /r */ |
| if (have66noF2noF3(pfx) && 0==getVexL(pfx)/*128*/) { |
| delta = dis_VEX_NDS_128_AnySimdPfx_0F_WIG( |
| uses_vvvv, vbi, pfx, delta, "vandpd", Iop_AndV128, |
| NULL, True/*invertLeftArg*/, False/*swapArgs*/ ); |
| goto decode_success; |
| } |
| /* VANDNPS = VEX.NDS.128.0F.WIG 55 /r */ |
| if (haveNo66noF2noF3(pfx) && 0==getVexL(pfx)/*128*/) { |
| delta = dis_VEX_NDS_128_AnySimdPfx_0F_WIG( |
| uses_vvvv, vbi, pfx, delta, "vandps", Iop_AndV128, |
| NULL, True/*invertLeftArg*/, False/*swapArgs*/ ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0x56: |
| /* VORPD r/m, rV, r ::: r = rV | r/m */ |
| /* VORPD = VEX.NDS.128.66.0F.WIG 56 /r */ |
| if (have66noF2noF3(pfx) && 0==getVexL(pfx)/*128*/) { |
| delta = dis_VEX_NDS_128_AnySimdPfx_0F_WIG_simple( |
| uses_vvvv, vbi, pfx, delta, "vorpd", Iop_OrV128 ); |
| goto decode_success; |
| } |
| /* VORPS r/m, rV, r ::: r = rV | r/m */ |
| /* VORPS = VEX.NDS.128.0F.WIG 56 /r */ |
| if (haveNo66noF2noF3(pfx) && 0==getVexL(pfx)/*128*/) { |
| delta = dis_VEX_NDS_128_AnySimdPfx_0F_WIG_simple( |
| uses_vvvv, vbi, pfx, delta, "vorps", Iop_OrV128 ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0x57: |
| /* VXORPD r/m, rV, r ::: r = rV ^ r/m */ |
| /* VXORPD = VEX.NDS.128.66.0F.WIG 57 /r */ |
| if (have66noF2noF3(pfx) && 0==getVexL(pfx)/*128*/) { |
| delta = dis_VEX_NDS_128_AnySimdPfx_0F_WIG_simple( |
| uses_vvvv, vbi, pfx, delta, "vxorpd", Iop_XorV128 ); |
| goto decode_success; |
| } |
| /* VXORPS r/m, rV, r ::: r = rV ^ r/m */ |
| /* VXORPS = VEX.NDS.128.0F.WIG 57 /r */ |
| if (haveNo66noF2noF3(pfx) && 0==getVexL(pfx)/*128*/) { |
| delta = dis_VEX_NDS_128_AnySimdPfx_0F_WIG_simple( |
| uses_vvvv, vbi, pfx, delta, "vxorps", Iop_XorV128 ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0x58: |
| /* VADDSD xmm3/m64, xmm2, xmm1 = VEX.NDS.LIG.F2.0F.WIG 58 /r */ |
| if (haveF2no66noF3(pfx)) { |
| delta = dis_AVX128_E_V_to_G_lo64( |
| uses_vvvv, vbi, pfx, delta, "vaddsd", Iop_Add64F0x2 ); |
| goto decode_success; |
| } |
| /* VADDSS xmm3/m32, xmm2, xmm1 = VEX.NDS.LIG.F3.0F.WIG 58 /r */ |
| if (haveF3no66noF2(pfx)) { |
| delta = dis_AVX128_E_V_to_G_lo32( |
| uses_vvvv, vbi, pfx, delta, "vaddss", Iop_Add32F0x4 ); |
| goto decode_success; |
| } |
| /* VADDPS xmm3/m128, xmm2, xmm1 = VEX.NDS.128.0F.WIG 58 /r */ |
| if (haveNo66noF2noF3(pfx) && 0==getVexL(pfx)/*128*/) { |
| delta = dis_AVX128_E_V_to_G( |
| uses_vvvv, vbi, pfx, delta, "vaddps", Iop_Add32Fx4 ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0x59: |
| /* VMULSD xmm3/m64, xmm2, xmm1 = VEX.NDS.LIG.F2.0F.WIG 59 /r */ |
| if (haveF2no66noF3(pfx)) { |
| delta = dis_AVX128_E_V_to_G_lo64( |
| uses_vvvv, vbi, pfx, delta, "vmulsd", Iop_Mul64F0x2 ); |
| goto decode_success; |
| } |
| /* VMULSS xmm3/m32, xmm2, xmm1 = VEX.NDS.LIG.F3.0F.WIG 59 /r */ |
| if (haveF3no66noF2(pfx)) { |
| delta = dis_AVX128_E_V_to_G_lo32( |
| uses_vvvv, vbi, pfx, delta, "vmulss", Iop_Mul32F0x4 ); |
| goto decode_success; |
| } |
| /* VMULPS xmm3/m128, xmm2, xmm1 = VEX.NDS.128.0F.WIG 59 /r */ |
| if (haveNo66noF2noF3(pfx) && 0==getVexL(pfx)/*128*/) { |
| delta = dis_AVX128_E_V_to_G( |
| uses_vvvv, vbi, pfx, delta, "vmulps", Iop_Mul32Fx4 ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0x5A: |
| /* VCVTPS2PD xmm2/m64, xmm1 = VEX.128.0F.WIG 5A /r */ |
| if (haveNo66noF2noF3(pfx) && 0==getVexL(pfx)/*128*/) { |
| delta = dis_CVTPS2PD( vbi, pfx, delta, True/*isAvx*/ ); |
| goto decode_success; |
| } |
| /* VCVTPD2PS xmm2/m128, xmm1 = VEX.128.66.0F.WIG 5A /r */ |
| if (have66noF2noF3(pfx) && 0==getVexL(pfx)/*128*/) { |
| delta = dis_CVTPD2PS( vbi, pfx, delta, True/*isAvx*/ ); |
| goto decode_success; |
| } |
| /* VCVTSD2SS xmm3/m64, xmm2, xmm1 = VEX.NDS.LIG.F2.0F.WIG 5A /r */ |
| if (haveF2no66noF3(pfx)) { |
| UChar modrm = getUChar(delta); |
| UInt rV = getVexNvvvv(pfx); |
| UInt rD = gregOfRexRM(pfx, modrm); |
| IRTemp f64lo = newTemp(Ity_F64); |
| IRTemp rmode = newTemp(Ity_I32); |
| assign( rmode, get_sse_roundingmode() ); |
| if (epartIsReg(modrm)) { |
| UInt rS = eregOfRexRM(pfx,modrm); |
| assign(f64lo, getXMMRegLane64F(rS, 0)); |
| delta += 1; |
| DIP("vcvtsd2ss %s,%s,%s\n", |
| nameXMMReg(rS), nameXMMReg(rV), nameXMMReg(rD)); |
| } else { |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| assign(f64lo, loadLE(Ity_F64, mkexpr(addr)) ); |
| delta += alen; |
| DIP("vcvtsd2ss %s,%s,%s\n", |
| dis_buf, nameXMMReg(rV), nameXMMReg(rD)); |
| } |
| putXMMRegLane32F( rD, 0, |
| binop( Iop_F64toF32, mkexpr(rmode), |
| mkexpr(f64lo)) ); |
| putXMMRegLane32( rD, 1, getXMMRegLane32( rV, 1 )); |
| putXMMRegLane64( rD, 1, getXMMRegLane64( rV, 1 )); |
| putYMMRegLane128( rD, 1, mkV128(0) ); |
| *uses_vvvv = True; |
| goto decode_success; |
| } |
| /* VCVTSS2SD xmm3/m32, xmm2, xmm1 = VEX.NDS.LIG.F3.0F.WIG 5A /r */ |
| if (haveF3no66noF2(pfx)) { |
| UChar modrm = getUChar(delta); |
| UInt rV = getVexNvvvv(pfx); |
| UInt rD = gregOfRexRM(pfx, modrm); |
| IRTemp f32lo = newTemp(Ity_F32); |
| if (epartIsReg(modrm)) { |
| UInt rS = eregOfRexRM(pfx,modrm); |
| assign(f32lo, getXMMRegLane32F(rS, 0)); |
| delta += 1; |
| DIP("vcvtss2sd %s,%s,%s\n", |
| nameXMMReg(rS), nameXMMReg(rV), nameXMMReg(rD)); |
| } else { |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| assign(f32lo, loadLE(Ity_F32, mkexpr(addr)) ); |
| delta += alen; |
| DIP("vcvtss2sd %s,%s,%s\n", |
| dis_buf, nameXMMReg(rV), nameXMMReg(rD)); |
| } |
| putXMMRegLane64F( rD, 0, |
| unop( Iop_F32toF64, mkexpr(f32lo)) ); |
| putXMMRegLane64( rD, 1, getXMMRegLane64( rV, 1 )); |
| putYMMRegLane128( rD, 1, mkV128(0) ); |
| *uses_vvvv = True; |
| goto decode_success; |
| } |
| break; |
| |
| case 0x5B: |
| /* VCVTPS2DQ xmm2/m128, xmm1 = VEX.128.66.0F.WIG 5B /r */ |
| if (have66noF2noF3(pfx) && 0==getVexL(pfx)/*128*/) { |
| delta = dis_CVTxPS2DQ( vbi, pfx, delta, |
| True/*isAvx*/, False/*!r2zero*/ ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0x5C: |
| /* VSUBSD xmm3/m64, xmm2, xmm1 = VEX.NDS.LIG.F2.0F.WIG 5C /r */ |
| if (haveF2no66noF3(pfx)) { |
| delta = dis_AVX128_E_V_to_G_lo64( |
| uses_vvvv, vbi, pfx, delta, "vsubsd", Iop_Sub64F0x2 ); |
| goto decode_success; |
| } |
| /* VSUBSS xmm3/m32, xmm2, xmm1 = VEX.NDS.LIG.F3.0F.WIG 5C /r */ |
| if (haveF3no66noF2(pfx)) { |
| delta = dis_AVX128_E_V_to_G_lo32( |
| uses_vvvv, vbi, pfx, delta, "vsubss", Iop_Sub32F0x4 ); |
| goto decode_success; |
| } |
| /* VSUBPS xmm3/m128, xmm2, xmm1 = VEX.NDS.128.0F.WIG 5C /r */ |
| if (haveNo66noF2noF3(pfx) && 0==getVexL(pfx)/*128*/) { |
| delta = dis_AVX128_E_V_to_G( |
| uses_vvvv, vbi, pfx, delta, "vsubps", Iop_Sub32Fx4 ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0x5D: |
| /* VMINSD xmm3/m64, xmm2, xmm1 = VEX.NDS.LIG.F2.0F.WIG 5D /r */ |
| if (haveF2no66noF3(pfx)) { |
| delta = dis_AVX128_E_V_to_G_lo64( |
| uses_vvvv, vbi, pfx, delta, "vminsd", Iop_Min64F0x2 ); |
| goto decode_success; |
| } |
| /* VMINSS xmm3/m32, xmm2, xmm1 = VEX.NDS.LIG.F3.0F.WIG 5D /r */ |
| if (haveF3no66noF2(pfx)) { |
| delta = dis_AVX128_E_V_to_G_lo32( |
| uses_vvvv, vbi, pfx, delta, "vminss", Iop_Min32F0x4 ); |
| goto decode_success; |
| } |
| /* VMINPS xmm3/m128, xmm2, xmm1 = VEX.NDS.128.0F.WIG 5D /r */ |
| if (haveNo66noF2noF3(pfx) && 0==getVexL(pfx)/*128*/) { |
| delta = dis_AVX128_E_V_to_G( |
| uses_vvvv, vbi, pfx, delta, "vminps", Iop_Min32Fx4 ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0x5E: |
| /* VDIVSD xmm3/m64, xmm2, xmm1 = VEX.NDS.LIG.F2.0F.WIG 5E /r */ |
| if (haveF2no66noF3(pfx)) { |
| delta = dis_AVX128_E_V_to_G_lo64( |
| uses_vvvv, vbi, pfx, delta, "vdivsd", Iop_Div64F0x2 ); |
| goto decode_success; |
| } |
| /* VDIVSS xmm3/m32, xmm2, xmm1 = VEX.NDS.LIG.F3.0F.WIG 5E /r */ |
| if (haveF3no66noF2(pfx)) { |
| delta = dis_AVX128_E_V_to_G_lo32( |
| uses_vvvv, vbi, pfx, delta, "vdivss", Iop_Div32F0x4 ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0x5F: |
| /* VMAXSD xmm3/m64, xmm2, xmm1 = VEX.NDS.LIG.F2.0F.WIG 5F /r */ |
| if (haveF2no66noF3(pfx)) { |
| delta = dis_AVX128_E_V_to_G_lo64( |
| uses_vvvv, vbi, pfx, delta, "vmaxsd", Iop_Max64F0x2 ); |
| goto decode_success; |
| } |
| /* VMAXSS xmm3/m32, xmm2, xmm1 = VEX.NDS.LIG.F3.0F.WIG 5F /r */ |
| if (haveF3no66noF2(pfx)) { |
| delta = dis_AVX128_E_V_to_G_lo32( |
| uses_vvvv, vbi, pfx, delta, "vmaxss", Iop_Max32F0x4 ); |
| goto decode_success; |
| } |
| /* VMAXPS xmm3/m128, xmm2, xmm1 = VEX.NDS.128.0F.WIG 5F /r */ |
| if (haveNo66noF2noF3(pfx) && 0==getVexL(pfx)/*128*/) { |
| delta = dis_AVX128_E_V_to_G( |
| uses_vvvv, vbi, pfx, delta, "vmaxps", Iop_Max32Fx4 ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0x60: |
| /* VPUNPCKLBW r/m, rV, r ::: r = interleave-lo-bytes(rV, r/m) */ |
| /* VPUNPCKLBW = VEX.NDS.128.66.0F.WIG 60 /r */ |
| if (have66noF2noF3(pfx) && 0==getVexL(pfx)/*128*/) { |
| delta = dis_VEX_NDS_128_AnySimdPfx_0F_WIG( |
| uses_vvvv, vbi, pfx, delta, "vpunpcklbw", |
| Iop_InterleaveLO8x16, NULL, |
| False/*!invertLeftArg*/, True/*swapArgs*/ ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0x61: |
| /* VPUNPCKLWD r/m, rV, r ::: r = interleave-lo-words(rV, r/m) */ |
| /* VPUNPCKLWD = VEX.NDS.128.66.0F.WIG 61 /r */ |
| if (have66noF2noF3(pfx) && 0==getVexL(pfx)/*128*/) { |
| delta = dis_VEX_NDS_128_AnySimdPfx_0F_WIG( |
| uses_vvvv, vbi, pfx, delta, "vpunpcklwd", |
| Iop_InterleaveLO16x8, NULL, |
| False/*!invertLeftArg*/, True/*swapArgs*/ ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0x62: |
| /* VPUNPCKLDQ r/m, rV, r ::: r = interleave-lo-dwords(rV, r/m) */ |
| /* VPUNPCKLDQ = VEX.NDS.128.66.0F.WIG 62 /r */ |
| if (have66noF2noF3(pfx) && 0==getVexL(pfx)/*128*/) { |
| delta = dis_VEX_NDS_128_AnySimdPfx_0F_WIG( |
| uses_vvvv, vbi, pfx, delta, "vpunpckldq", |
| Iop_InterleaveLO32x4, NULL, |
| False/*!invertLeftArg*/, True/*swapArgs*/ ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0x67: |
| /* VPACKUSWB r/m, rV, r ::: r = QNarrowBin16Sto8Ux16(rV, r/m) */ |
| /* VPACKUSWB = VEX.NDS.128.66.0F.WIG 67 /r */ |
| if (have66noF2noF3(pfx) && 0==getVexL(pfx)/*128*/) { |
| delta = dis_VEX_NDS_128_AnySimdPfx_0F_WIG( |
| uses_vvvv, vbi, pfx, delta, "vpackuswb", |
| Iop_QNarrowBin16Sto8Ux16, NULL, |
| False/*!invertLeftArg*/, True/*swapArgs*/ ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0x68: |
| /* VPUNPCKHBW r/m, rV, r ::: r = interleave-hi-bytes(rV, r/m) */ |
| /* VPUNPCKHBW = VEX.NDS.128.0F.WIG 68 /r */ |
| if (have66noF2noF3(pfx) && 0==getVexL(pfx)/*128*/) { |
| delta = dis_VEX_NDS_128_AnySimdPfx_0F_WIG( |
| uses_vvvv, vbi, pfx, delta, "vpunpckhbw", |
| Iop_InterleaveHI8x16, NULL, |
| False/*!invertLeftArg*/, True/*swapArgs*/ ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0x69: |
| /* VPUNPCKHWD r/m, rV, r ::: r = interleave-hi-words(rV, r/m) */ |
| /* VPUNPCKHWD = VEX.NDS.128.0F.WIG 69 /r */ |
| if (have66noF2noF3(pfx) && 0==getVexL(pfx)/*128*/) { |
| delta = dis_VEX_NDS_128_AnySimdPfx_0F_WIG( |
| uses_vvvv, vbi, pfx, delta, "vpunpckhwd", |
| Iop_InterleaveHI16x8, NULL, |
| False/*!invertLeftArg*/, True/*swapArgs*/ ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0x6B: |
| /* VPACKSSDW r/m, rV, r ::: r = QNarrowBin32Sto16Sx8(rV, r/m) */ |
| /* VPACKSSDW = VEX.NDS.128.66.0F.WIG 6B /r */ |
| if (have66noF2noF3(pfx) && 0==getVexL(pfx)/*128*/) { |
| delta = dis_VEX_NDS_128_AnySimdPfx_0F_WIG( |
| uses_vvvv, vbi, pfx, delta, "vpackssdw", |
| Iop_QNarrowBin32Sto16Sx8, NULL, |
| False/*!invertLeftArg*/, True/*swapArgs*/ ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0x6C: |
| /* VPUNPCKLQDQ r/m, rV, r ::: r = interleave-lo-64bitses(rV, r/m) */ |
| /* VPUNPCKLQDQ = VEX.NDS.128.0F.WIG 6C /r */ |
| if (have66noF2noF3(pfx) && 0==getVexL(pfx)/*128*/) { |
| delta = dis_VEX_NDS_128_AnySimdPfx_0F_WIG( |
| uses_vvvv, vbi, pfx, delta, "vpunpcklqdq", |
| Iop_InterleaveLO64x2, NULL, |
| False/*!invertLeftArg*/, True/*swapArgs*/ ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0x6E: |
| /* VMOVD r32/m32, xmm1 = VEX.128.66.0F.W0 6E */ |
| if (have66noF2noF3(pfx) |
| && 0==getVexL(pfx)/*128*/ && 0==getRexW(pfx)/*W0*/) { |
| vassert(sz == 2); /* even tho we are transferring 4, not 2. */ |
| UChar modrm = getUChar(delta); |
| if (epartIsReg(modrm)) { |
| delta += 1; |
| putYMMRegLoAndZU( |
| gregOfRexRM(pfx,modrm), |
| unop( Iop_32UtoV128, getIReg32(eregOfRexRM(pfx,modrm)) ) |
| ); |
| DIP("vmovd %s, %s\n", nameIReg32(eregOfRexRM(pfx,modrm)), |
| nameXMMReg(gregOfRexRM(pfx,modrm))); |
| } else { |
| addr = disAMode( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| delta += alen; |
| putYMMRegLoAndZU( |
| gregOfRexRM(pfx,modrm), |
| unop( Iop_32UtoV128,loadLE(Ity_I32, mkexpr(addr))) |
| ); |
| DIP("vmovd %s, %s\n", dis_buf, |
| nameXMMReg(gregOfRexRM(pfx,modrm))); |
| } |
| goto decode_success; |
| } |
| /* VMOVQ r64/m64, xmm1 = VEX.128.66.0F.W1 6E */ |
| if (have66noF2noF3(pfx) |
| && 0==getVexL(pfx)/*128*/ && 1==getRexW(pfx)/*W1*/) { |
| vassert(sz == 2); /* even tho we are transferring 8, not 2. */ |
| UChar modrm = getUChar(delta); |
| if (epartIsReg(modrm)) { |
| delta += 1; |
| putYMMRegLoAndZU( |
| gregOfRexRM(pfx,modrm), |
| unop( Iop_64UtoV128, getIReg64(eregOfRexRM(pfx,modrm)) ) |
| ); |
| DIP("vmovq %s, %s\n", nameIReg64(eregOfRexRM(pfx,modrm)), |
| nameXMMReg(gregOfRexRM(pfx,modrm))); |
| } else { |
| addr = disAMode( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| delta += alen; |
| putYMMRegLoAndZU( |
| gregOfRexRM(pfx,modrm), |
| unop( Iop_64UtoV128,loadLE(Ity_I64, mkexpr(addr))) |
| ); |
| DIP("vmovq %s, %s\n", dis_buf, |
| nameXMMReg(gregOfRexRM(pfx,modrm))); |
| } |
| goto decode_success; |
| } |
| break; |
| |
| case 0x6F: |
| /* VMOVDQA ymm2/m256, ymm1 = VEX.256.66.0F.WIG 6F */ |
| /* VMOVDQU ymm2/m256, ymm1 = VEX.256.F3.0F.WIG 6F */ |
| if ((have66noF2noF3(pfx) /* ATC || haveF3no66noF2(pfx)*/) |
| && 1==getVexL(pfx)/*256*/) { |
| UChar modrm = getUChar(delta); |
| UInt rD = gregOfRexRM(pfx, modrm); |
| IRTemp tD = newTemp(Ity_V256); |
| Bool isA = have66noF2noF3(pfx); |
| UChar ch = isA ? 'a' : 'u'; |
| if (epartIsReg(modrm)) { |
| UInt rS = eregOfRexRM(pfx, modrm); |
| delta += 1; |
| assign(tD, getYMMReg(rS)); |
| DIP("vmovdq%c %s,%s\n", ch, nameYMMReg(rS), nameYMMReg(rD)); |
| } else { |
| addr = disAMode( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| delta += alen; |
| if (isA) |
| gen_SEGV_if_not_32_aligned(addr); |
| assign(tD, loadLE(Ity_V256, mkexpr(addr))); |
| DIP("vmovdq%c %s,%s\n", ch, dis_buf, nameYMMReg(rD)); |
| } |
| putYMMReg(rD, mkexpr(tD)); |
| goto decode_success; |
| } |
| /* VMOVDQA xmm2/m128, xmm1 = VEX.128.66.0F.WIG 6F */ |
| /* VMOVDQU xmm2/m128, xmm1 = VEX.128.F3.0F.WIG 6F */ |
| if ((have66noF2noF3(pfx) || haveF3no66noF2(pfx)) |
| && 0==getVexL(pfx)/*128*/) { |
| UChar modrm = getUChar(delta); |
| UInt rD = gregOfRexRM(pfx, modrm); |
| IRTemp tD = newTemp(Ity_V128); |
| Bool isA = have66noF2noF3(pfx); |
| UChar ch = isA ? 'a' : 'u'; |
| if (epartIsReg(modrm)) { |
| UInt rS = eregOfRexRM(pfx, modrm); |
| delta += 1; |
| assign(tD, getXMMReg(rS)); |
| DIP("vmovdq%c %s,%s\n", ch, nameXMMReg(rS), nameXMMReg(rD)); |
| } else { |
| addr = disAMode( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| delta += alen; |
| if (isA) |
| gen_SEGV_if_not_16_aligned(addr); |
| assign(tD, loadLE(Ity_V128, mkexpr(addr))); |
| DIP("vmovdq%c %s,%s\n", ch, dis_buf, nameXMMReg(rD)); |
| } |
| putYMMRegLoAndZU(rD, mkexpr(tD)); |
| goto decode_success; |
| } |
| break; |
| |
| case 0x70: |
| /* VPSHUFD imm8, xmm2/m128, xmm1 = VEX.128.66.0F.WIG 70 /r ib */ |
| if (have66noF2noF3(pfx) && 0==getVexL(pfx)/*128*/) { |
| delta = dis_PSHUFD_32x4( vbi, pfx, delta, True/*writesYmm*/); |
| goto decode_success; |
| } |
| /* VPSHUFLW imm8, xmm2/m128, xmm1 = VEX.128.F2.0F.WIG 70 /r ib */ |
| if (haveF2no66noF3(pfx) && 0==getVexL(pfx)/*128*/) { |
| delta = dis_PSHUFxW_128( vbi, pfx, delta, |
| True/*isAvx*/, False/*!xIsH*/ ); |
| goto decode_success; |
| } |
| /* VPSHUFHW imm8, xmm2/m128, xmm1 = VEX.128.F3.0F.WIG 70 /r ib */ |
| if (haveF3no66noF2(pfx) && 0==getVexL(pfx)/*128*/) { |
| delta = dis_PSHUFxW_128( vbi, pfx, delta, |
| True/*isAvx*/, True/*xIsH*/ ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0x71: |
| /* VPSRLW imm8, xmm2, xmm1 = VEX.NDD.128.66.0F.WIG 71 /2 ib */ |
| if (have66noF2noF3(pfx) |
| && 0==getVexL(pfx)/*128*/ |
| && epartIsReg(getUChar(delta))) { |
| if (gregLO3ofRM(getUChar(delta)) == 2/*SRL*/) { |
| delta = dis_AVX128_shiftE_to_V_imm( pfx, delta, |
| "vpsrlw", Iop_ShrN16x8 ); |
| *uses_vvvv = True; |
| goto decode_success; |
| } |
| /* else fall through */ |
| } |
| break; |
| |
| case 0x72: |
| /* VPSLLD imm8, xmm2, xmm1 = VEX.NDD.128.66.0F.WIG 72 /6 ib */ |
| /* VPSRLD imm8, xmm2, xmm1 = VEX.NDD.128.66.0F.WIG 72 /2 ib */ |
| if (have66noF2noF3(pfx) |
| && 0==getVexL(pfx)/*128*/ |
| && epartIsReg(getUChar(delta))) { |
| if (gregLO3ofRM(getUChar(delta)) == 6/*SLL*/) { |
| delta = dis_AVX128_shiftE_to_V_imm( pfx, delta, |
| "vpslld", Iop_ShlN32x4 ); |
| *uses_vvvv = True; |
| goto decode_success; |
| } |
| if (gregLO3ofRM(getUChar(delta)) == 2/*SRL*/) { |
| delta = dis_AVX128_shiftE_to_V_imm( pfx, delta, |
| "vpsrld", Iop_ShrN32x4 ); |
| *uses_vvvv = True; |
| goto decode_success; |
| } |
| /* else fall through */ |
| } |
| break; |
| |
| case 0x73: |
| /* VPSRLDQ imm8, xmm2, xmm1 = VEX.NDD.128.66.0F.WIG 73 /3 ib */ |
| /* VPSLLDQ imm8, xmm2, xmm1 = VEX.NDD.128.66.0F.WIG 73 /7 ib */ |
| if (have66noF2noF3(pfx) && 0==getVexL(pfx)/*128*/ |
| && epartIsReg(getUChar(delta))) { |
| Int rS = eregOfRexRM(pfx,getUChar(delta)); |
| Int rD = getVexNvvvv(pfx); |
| IRTemp vecS = newTemp(Ity_V128); |
| if (gregLO3ofRM(getUChar(delta)) == 3) { |
| Int imm = (Int)getUChar(delta+1); |
| DIP("vpsrldq $%d,%s,%s\n", imm, nameXMMReg(rS), nameXMMReg(rD)); |
| delta += 2; |
| assign( vecS, getXMMReg(rS) ); |
| putYMMRegLoAndZU(rD, mkexpr(math_PSRLDQ( vecS, imm ))); |
| *uses_vvvv = True; |
| goto decode_success; |
| } |
| if (gregLO3ofRM(getUChar(delta)) == 7) { |
| Int imm = (Int)getUChar(delta+1); |
| DIP("vpslldq $%d,%s,%s\n", imm, nameXMMReg(rS), nameXMMReg(rD)); |
| delta += 2; |
| assign( vecS, getXMMReg(rS) ); |
| putYMMRegLoAndZU(rD, mkexpr(math_PSLLDQ( vecS, imm ))); |
| *uses_vvvv = True; |
| goto decode_success; |
| } |
| /* else fall through */ |
| } |
| break; |
| |
| case 0x74: |
| /* VPCMPEQB r/m, rV, r ::: r = rV `eq-by-8s` r/m */ |
| /* VPCMPEQB = VEX.NDS.128.66.0F.WIG 74 /r */ |
| if (have66noF2noF3(pfx) && 0==getVexL(pfx)/*128*/) { |
| delta = dis_VEX_NDS_128_AnySimdPfx_0F_WIG_simple( |
| uses_vvvv, vbi, pfx, delta, "vpcmpeqb", Iop_CmpEQ8x16 ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0x76: |
| /* VPCMPEQD r/m, rV, r ::: r = rV `eq-by-32s` r/m */ |
| /* VPCMPEQD = VEX.NDS.128.66.0F.WIG 76 /r */ |
| if (have66noF2noF3(pfx) && 0==getVexL(pfx)/*128*/) { |
| delta = dis_VEX_NDS_128_AnySimdPfx_0F_WIG_simple( |
| uses_vvvv, vbi, pfx, delta, "vpcmpeqd", Iop_CmpEQ32x4 ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0x77: |
| /* VZEROUPPER = VEX.128.0F.WIG 77 */ |
| if (haveNo66noF2noF3(pfx) && 0==getVexL(pfx)/*128*/) { |
| Int i; |
| IRTemp zero128 = newTemp(Ity_V128); |
| assign(zero128, mkV128(0)); |
| for (i = 0; i < 16; i++) { |
| putYMMRegLane128(i, 1, mkexpr(zero128)); |
| } |
| DIP("vzeroupper\n"); |
| goto decode_success; |
| } |
| break; |
| |
| case 0x7E: |
| /* Note the Intel docs don't make sense for this. I think they |
| are wrong. They seem to imply it is a store when in fact I |
| think it is a load. Also it's unclear whether this is W0, W1 |
| or WIG. */ |
| /* VMOVQ xmm2/m64, xmm1 = VEX.128.F3.0F.W0 7E /r */ |
| if (haveF3no66noF2(pfx) |
| && 0==getVexL(pfx)/*128*/ && 0==getRexW(pfx)/*W0*/) { |
| vassert(sz == 4); /* even tho we are transferring 8, not 4. */ |
| UChar modrm = getUChar(delta); |
| UInt rG = gregOfRexRM(pfx,modrm); |
| if (epartIsReg(modrm)) { |
| UInt rE = eregOfRexRM(pfx,modrm); |
| putXMMRegLane64( rG, 0, getXMMRegLane64( rE, 0 )); |
| DIP("vmovq %s,%s\n", nameXMMReg(rE), nameXMMReg(rG)); |
| delta += 1; |
| } else { |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| putXMMRegLane64( rG, 0, loadLE(Ity_I64, mkexpr(addr)) ); |
| DIP("vmovq %s,%s\n", dis_buf, nameXMMReg(rG)); |
| delta += alen; |
| } |
| /* zero bits 255:64 */ |
| putXMMRegLane64( rG, 1, mkU64(0) ); |
| putYMMRegLane128( rG, 1, mkV128(0) ); |
| goto decode_success; |
| } |
| /* VMOVQ xmm1, r64 = VEX.128.66.0F.W1 7E /r (reg case only) */ |
| /* Moves from G to E, so is a store-form insn */ |
| /* Intel docs list this in the VMOVD entry for some reason. */ |
| if (have66noF2noF3(pfx) |
| && 0==getVexL(pfx)/*128*/ && 1==getRexW(pfx)/*W1*/ |
| && epartIsReg(getUChar(delta))) { |
| UChar modrm = getUChar(delta); |
| UInt rG = gregOfRexRM(pfx,modrm); |
| UInt rE = eregOfRexRM(pfx,modrm); |
| DIP("vmovq %s,%s\n", nameXMMReg(rG), nameIReg64(rE)); |
| putIReg64(rE, getXMMRegLane64(rG, 0)); |
| delta += 1; |
| goto decode_success; |
| } |
| /* VMOVD xmm1, m32/r32 = VEX.128.66.0F.W0 7E /r (reg case only) */ |
| /* Moves from G to E, so is a store-form insn */ |
| if (have66noF2noF3(pfx) |
| && 0==getVexL(pfx)/*128*/ && 0==getRexW(pfx)/*W0*/) { |
| UChar modrm = getUChar(delta); |
| UInt rG = gregOfRexRM(pfx,modrm); |
| if (epartIsReg(modrm)) { |
| UInt rE = eregOfRexRM(pfx,modrm); |
| DIP("vmovd %s,%s\n", nameXMMReg(rG), nameIReg32(rE)); |
| putIReg32(rE, getXMMRegLane32(rG, 0)); |
| delta += 1; |
| } else { |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| storeLE( mkexpr(addr), getXMMRegLane32(rG, 0) ); |
| DIP("vmovd %s,%s\n", dis_buf, nameXMMReg(rG)); |
| delta += alen; |
| } |
| goto decode_success; |
| } |
| break; |
| |
| case 0x7F: |
| /* VMOVDQA ymm1, ymm2/m256 = VEX.256.66.0F.WIG 7F */ |
| if (have66noF2noF3(pfx) && 1==getVexL(pfx)/*256*/) { |
| UChar modrm = getUChar(delta); |
| UInt rS = gregOfRexRM(pfx, modrm); |
| IRTemp tS = newTemp(Ity_V256); |
| assign(tS, getYMMReg(rS)); |
| if (epartIsReg(modrm)) { |
| UInt rD = eregOfRexRM(pfx, modrm); |
| delta += 1; |
| putYMMReg(rD, mkexpr(tS)); |
| DIP("vmovdqa %s,%s\n", nameYMMReg(rS), nameYMMReg(rD)); |
| } else { |
| addr = disAMode( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| delta += alen; |
| gen_SEGV_if_not_32_aligned(addr); |
| storeLE(mkexpr(addr), mkexpr(tS)); |
| DIP("vmovdqa %s,%s\n", nameYMMReg(rS), dis_buf); |
| } |
| goto decode_success; |
| } |
| /* VMOVDQA xmm1, xmm2/m128 = VEX.128.66.0F.WIG 7F */ |
| /* VMOVDQU xmm1, xmm2/m128 = VEX.128.F3.0F.WIG 7F */ |
| if ((have66noF2noF3(pfx) || haveF3no66noF2(pfx)) |
| && 0==getVexL(pfx)/*128*/) { |
| UChar modrm = getUChar(delta); |
| UInt rS = gregOfRexRM(pfx, modrm); |
| IRTemp tS = newTemp(Ity_V128); |
| Bool isA = have66noF2noF3(pfx); |
| UChar ch = isA ? 'a' : 'u'; |
| assign(tS, getXMMReg(rS)); |
| if (epartIsReg(modrm)) { |
| UInt rD = eregOfRexRM(pfx, modrm); |
| delta += 1; |
| putYMMRegLoAndZU(rD, mkexpr(tS)); |
| DIP("vmovdq%c %s,%s\n", ch, nameXMMReg(rS), nameXMMReg(rD)); |
| } else { |
| addr = disAMode( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| delta += alen; |
| if (isA) |
| gen_SEGV_if_not_16_aligned(addr); |
| storeLE(mkexpr(addr), mkexpr(tS)); |
| DIP("vmovdq%c %s,%s\n", ch, nameXMMReg(rS), dis_buf); |
| } |
| goto decode_success; |
| } |
| break; |
| |
| case 0xC2: |
| /* VCMPSD xmm3/m64(E=argL), xmm2(V=argR), xmm1(G) */ |
| /* = VEX.NDS.LIG.F2.0F.WIG C2 /r ib */ |
| if (haveF2no66noF3(pfx)) { |
| Long delta0 = delta; |
| delta = dis_AVX128_cmp_V_E_to_G( uses_vvvv, vbi, pfx, delta, |
| "vcmpsd", False/*!all_lanes*/, |
| 8/*sz*/); |
| if (delta > delta0) goto decode_success; |
| /* else fall through -- decoding has failed */ |
| } |
| /* VCMPSS xmm3/m32(E=argL), xmm2(V=argR), xmm1(G) */ |
| /* = VEX.NDS.LIG.F3.0F.WIG C2 /r ib */ |
| if (haveF3no66noF2(pfx)) { |
| Long delta0 = delta; |
| delta = dis_AVX128_cmp_V_E_to_G( uses_vvvv, vbi, pfx, delta, |
| "vcmpss", False/*!all_lanes*/, |
| 4/*sz*/); |
| if (delta > delta0) goto decode_success; |
| /* else fall through -- decoding has failed */ |
| } |
| break; |
| |
| case 0xC6: |
| /* VSHUFPS imm8, xmm3/m128, xmm2, xmm1, xmm2 */ |
| /* = VEX.NDS.128.0F.WIG C6 /r ib */ |
| if (haveNo66noF2noF3(pfx) && 0==getVexL(pfx)/*128*/) { |
| Int imm8 = 0; |
| IRTemp eV = newTemp(Ity_V128); |
| IRTemp vV = newTemp(Ity_V128); |
| UInt modrm = getUChar(delta); |
| UInt rG = gregOfRexRM(pfx,modrm); |
| UInt rV = getVexNvvvv(pfx); |
| assign( vV, getXMMReg(rV) ); |
| if (epartIsReg(modrm)) { |
| UInt rE = eregOfRexRM(pfx,modrm); |
| assign( eV, getXMMReg(rE) ); |
| imm8 = (Int)getUChar(delta+1); |
| delta += 1+1; |
| DIP("vshufps $%d,%s,%s,%s\n", |
| imm8, nameXMMReg(rE), nameXMMReg(rV), nameXMMReg(rG)); |
| } else { |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 1 ); |
| assign( eV, loadLE(Ity_V128, mkexpr(addr)) ); |
| imm8 = (Int)getUChar(delta+alen); |
| delta += 1+alen; |
| DIP("vshufps $%d,%s,%s,%s\n", |
| imm8, dis_buf, nameXMMReg(rV), nameXMMReg(rG)); |
| } |
| IRTemp res = math_SHUFPS( eV, vV, imm8 ); |
| putYMMRegLoAndZU( gregOfRexRM(pfx,modrm), mkexpr(res) ); |
| *uses_vvvv = True; |
| goto decode_success; |
| } |
| break; |
| |
| case 0xD4: |
| /* VPADDQ r/m, rV, r ::: r = rV + r/m */ |
| /* VPADDQ = VEX.NDS.128.66.0F.WIG D4 /r */ |
| if (have66noF2noF3(pfx) && 0==getVexL(pfx)/*128*/) { |
| delta = dis_VEX_NDS_128_AnySimdPfx_0F_WIG_simple( |
| uses_vvvv, vbi, pfx, delta, "vpaddq", Iop_Add64x2 ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0xD5: |
| /* VPMULLW xmm3/m128, xmm2, xmm1 = VEX.NDS.128.66.0F.WIG D5 /r */ |
| if (have66noF2noF3(pfx) && 0==getVexL(pfx)/*128*/) { |
| delta = dis_AVX128_E_V_to_G( |
| uses_vvvv, vbi, pfx, delta, "vpmullw", Iop_Mul16x8 ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0xD6: |
| /* I can't even find any Intel docs for this one. */ |
| /* Basically: 66 0F D6 = MOVQ -- move 64 bits from G (lo half |
| xmm) to E (mem or lo half xmm). Looks like L==0(128), W==0 |
| (WIG, maybe?) */ |
| if (have66noF2noF3(pfx) && 0==getVexL(pfx)/*128*/ |
| && 0==getRexW(pfx)/*this might be redundant, dunno*/) { |
| UChar modrm = getUChar(delta); |
| UInt rG = gregOfRexRM(pfx,modrm); |
| if (epartIsReg(modrm)) { |
| /* fall through, awaiting test case */ |
| /* dst: lo half copied, hi half zeroed */ |
| } else { |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| storeLE( mkexpr(addr), getXMMRegLane64( rG, 0 )); |
| DIP("vmovq %s,%s\n", nameXMMReg(rG), dis_buf ); |
| delta += alen; |
| goto decode_success; |
| } |
| } |
| break; |
| |
| case 0xD7: |
| /* VEX.128.66.0F.WIG D7 /r = VPMOVMSKB xmm1, r32 */ |
| if (have66noF2noF3(pfx) && 0==getVexL(pfx)/*128*/) { |
| delta = dis_PMOVMSKB_128( vbi, pfx, delta, True/*isAvx*/ ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0xD8: |
| /* VPSUBUSB xmm3/m128, xmm2, xmm1 = VEX.NDS.128.66.0F.WIG D8 /r */ |
| if (have66noF2noF3(pfx) && 0==getVexL(pfx)/*128*/) { |
| delta = dis_AVX128_E_V_to_G( |
| uses_vvvv, vbi, pfx, delta, "vpsubusb", Iop_QSub8Ux16 ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0xDB: |
| /* VPAND r/m, rV, r ::: r = rV & r/m */ |
| /* VEX.NDS.128.66.0F.WIG DB /r = VPAND xmm3/m128, xmm2, xmm1 */ |
| if (have66noF2noF3(pfx) && 0==getVexL(pfx)/*128*/) { |
| delta = dis_VEX_NDS_128_AnySimdPfx_0F_WIG_simple( |
| uses_vvvv, vbi, pfx, delta, "vpand", Iop_AndV128 ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0xDF: |
| /* VPANDN r/m, rV, r ::: r = rV & ~r/m (is that correct, re the ~ ?) */ |
| /* VEX.NDS.128.66.0F.WIG DF /r = VPANDN xmm3/m128, xmm2, xmm1 */ |
| if (have66noF2noF3(pfx) && 0==getVexL(pfx)/*128*/) { |
| delta = dis_VEX_NDS_128_AnySimdPfx_0F_WIG( |
| uses_vvvv, vbi, pfx, delta, "vpandn", Iop_AndV128, |
| NULL, True/*invertLeftArg*/, False/*swapArgs*/ ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0xDC: |
| /* VPADDUSB xmm3/m128, xmm2, xmm1 = VEX.NDS.128.66.0F.WIG DC /r */ |
| if (have66noF2noF3(pfx) && 0==getVexL(pfx)/*128*/) { |
| delta = dis_AVX128_E_V_to_G( |
| uses_vvvv, vbi, pfx, delta, "vpaddusb", Iop_QAdd8Ux16 ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0xDD: |
| /* VPADDUSW xmm3/m128, xmm2, xmm1 = VEX.NDS.128.66.0F.WIG DD /r */ |
| if (have66noF2noF3(pfx) && 0==getVexL(pfx)/*128*/) { |
| delta = dis_AVX128_E_V_to_G( |
| uses_vvvv, vbi, pfx, delta, "vpaddusw", Iop_QAdd16Ux8 ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0xE4: |
| /* VPMULHUW xmm3/m128, xmm2, xmm1 = VEX.NDS.128.66.0F.WIG E4 /r */ |
| if (have66noF2noF3(pfx) && 0==getVexL(pfx)/*128*/) { |
| delta = dis_AVX128_E_V_to_G( |
| uses_vvvv, vbi, pfx, delta, "vpmulhuw", Iop_MulHi16Ux8 ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0xE7: |
| /* MOVNTDQ xmm1, m128 = VEX.128.66.0F.WIG E7 /r */ |
| if (have66noF2noF3(pfx) && 0==getVexL(pfx)/*128*/) { |
| UChar modrm = getUChar(delta); |
| UInt rG = gregOfRexRM(pfx,modrm); |
| if (!epartIsReg(modrm)) { |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| gen_SEGV_if_not_16_aligned( addr ); |
| storeLE( mkexpr(addr), getXMMReg(rG) ); |
| DIP("vmovntdq %s,%s\n", dis_buf, nameXMMReg(rG)); |
| delta += alen; |
| goto decode_success; |
| } |
| /* else fall through */ |
| } |
| break; |
| |
| case 0xEB: |
| /* VPOR r/m, rV, r ::: r = rV | r/m */ |
| /* VPOR = VEX.NDS.128.66.0F.WIG EB /r */ |
| if (have66noF2noF3(pfx) && 0==getVexL(pfx)/*128*/) { |
| delta = dis_VEX_NDS_128_AnySimdPfx_0F_WIG_simple( |
| uses_vvvv, vbi, pfx, delta, "vpor", Iop_OrV128 ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0xEF: |
| /* VPXOR r/m, rV, r ::: r = rV ^ r/m */ |
| /* VPXOR = VEX.NDS.128.66.0F.WIG EF /r */ |
| if (have66noF2noF3(pfx) && 0==getVexL(pfx)/*128*/) { |
| delta = dis_VEX_NDS_128_AnySimdPfx_0F_WIG_simple( |
| uses_vvvv, vbi, pfx, delta, "vpxor", Iop_XorV128 ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0xF8: |
| /* VPSUBB r/m, rV, r ::: r = rV - r/m */ |
| /* VPSUBB = VEX.NDS.128.66.0F.WIG F8 /r */ |
| if (have66noF2noF3(pfx) && 0==getVexL(pfx)/*128*/) { |
| delta = dis_VEX_NDS_128_AnySimdPfx_0F_WIG_simple( |
| uses_vvvv, vbi, pfx, delta, "vpsubb", Iop_Sub8x16 ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0xF9: |
| /* VPSUBW r/m, rV, r ::: r = rV - r/m */ |
| /* VPSUBW = VEX.NDS.128.66.0F.WIG F9 /r */ |
| if (have66noF2noF3(pfx) && 0==getVexL(pfx)/*128*/) { |
| delta = dis_VEX_NDS_128_AnySimdPfx_0F_WIG_simple( |
| uses_vvvv, vbi, pfx, delta, "vpsubw", Iop_Sub16x8 ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0xFA: |
| /* VPSUBD r/m, rV, r ::: r = rV - r/m */ |
| /* VPSUBD = VEX.NDS.128.66.0F.WIG FA /r */ |
| if (have66noF2noF3(pfx) && 0==getVexL(pfx)/*128*/) { |
| delta = dis_VEX_NDS_128_AnySimdPfx_0F_WIG_simple( |
| uses_vvvv, vbi, pfx, delta, "vpsubd", Iop_Sub32x4 ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0xFB: |
| /* VPSUBQ r/m, rV, r ::: r = rV - r/m */ |
| /* VPSUBQ = VEX.NDS.128.66.0F.WIG FB /r */ |
| if (have66noF2noF3(pfx) && 0==getVexL(pfx)/*128*/) { |
| delta = dis_VEX_NDS_128_AnySimdPfx_0F_WIG_simple( |
| uses_vvvv, vbi, pfx, delta, "vpsubq", Iop_Sub64x2 ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0xFD: |
| /* VPADDW r/m, rV, r ::: r = rV + r/m */ |
| /* VPADDW = VEX.NDS.128.66.0F.WIG FD /r */ |
| if (have66noF2noF3(pfx) && 0==getVexL(pfx)/*128*/) { |
| delta = dis_VEX_NDS_128_AnySimdPfx_0F_WIG_simple( |
| uses_vvvv, vbi, pfx, delta, "vpaddw", Iop_Add16x8 ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0xFE: |
| /* VPADDD r/m, rV, r ::: r = rV + r/m */ |
| /* VPADDD = VEX.NDS.128.66.0F.WIG FE /r */ |
| if (have66noF2noF3(pfx) && 0==getVexL(pfx)/*128*/) { |
| delta = dis_VEX_NDS_128_AnySimdPfx_0F_WIG_simple( |
| uses_vvvv, vbi, pfx, delta, "vpaddd", Iop_Add32x4 ); |
| goto decode_success; |
| } |
| break; |
| |
| default: |
| break; |
| |
| } |
| |
| //decode_failure: |
| return deltaIN; |
| |
| decode_success: |
| return delta; |
| } |
| |
| |
| /*------------------------------------------------------------*/ |
| /*--- ---*/ |
| /*--- Top-level post-escape decoders: dis_ESC_0F38__VEX ---*/ |
| /*--- ---*/ |
| /*------------------------------------------------------------*/ |
| |
| __attribute__((noinline)) |
| static |
| Long dis_ESC_0F38__VEX ( |
| /*MB_OUT*/DisResult* dres, |
| /*OUT*/ Bool* uses_vvvv, |
| Bool (*resteerOkFn) ( /*opaque*/void*, Addr64 ), |
| Bool resteerCisOk, |
| void* callback_opaque, |
| VexArchInfo* archinfo, |
| VexAbiInfo* vbi, |
| Prefix pfx, Int sz, Long deltaIN |
| ) |
| { |
| //IRTemp addr = IRTemp_INVALID; |
| //Int alen = 0; |
| //HChar dis_buf[50]; |
| Long delta = deltaIN; |
| UChar opc = getUChar(delta); |
| delta++; |
| *uses_vvvv = False; |
| |
| switch (opc) { |
| |
| case 0x00: |
| /* VPSHUFB r/m, rV, r ::: r = shuf(rV, r/m) */ |
| /* VPSHUFB = VEX.NDS.128.66.0F38.WIG 00 /r */ |
| if (have66noF2noF3(pfx) && 0==getVexL(pfx)/*128*/) { |
| delta = dis_VEX_NDS_128_AnySimdPfx_0F_WIG_complex( |
| uses_vvvv, vbi, pfx, delta, "vpshufb", math_PSHUFB_XMM ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0x1E: |
| /* VPABSD xmm2/m128, xmm1 = VEX.128.66.0F38.WIG 1E /r */ |
| if (have66noF2noF3(pfx) && 0==getVexL(pfx)/*128*/) { |
| delta = dis_AVX128_E_to_G_unary( |
| uses_vvvv, vbi, pfx, delta, |
| "vpabsd", math_PABS_XMM_pap4 ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0x30: |
| /* VPMOVZXBW xmm2/m64, xmm1 */ |
| /* VPMOVZXBW = VEX.128.66.0F38.WIG 30 /r */ |
| if (have66noF2noF3(pfx) && 0==getVexL(pfx)/*128*/) { |
| delta = dis_PMOVZXBW( vbi, pfx, delta, True/*writesYmm*/ ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0x33: |
| /* VPMOVZXWD xmm2/m64, xmm1 */ |
| /* VPMOVZXWD = VEX.128.66.0F38.WIG 33 /r */ |
| if (have66noF2noF3(pfx) && 0==getVexL(pfx)/*128*/) { |
| delta = dis_PMOVZXWD( vbi, pfx, delta, True/*writesYmm*/ ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0x39: |
| /* VPMINSD r/m, rV, r ::: r = min-signed-32s(rV, r/m) */ |
| /* VPMINSD = VEX.NDS.128.66.0F38.WIG 39 /r */ |
| if (have66noF2noF3(pfx) && 0==getVexL(pfx)/*128*/) { |
| delta = dis_VEX_NDS_128_AnySimdPfx_0F_WIG_simple( |
| uses_vvvv, vbi, pfx, delta, "vpminsd", Iop_Min32Sx4 ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0x3D: |
| /* VPMAXSD r/m, rV, r ::: r = max-signed-32s(rV, r/m) */ |
| /* VPMAXSD = VEX.NDS.128.66.0F38.WIG 3D /r */ |
| if (have66noF2noF3(pfx) && 0==getVexL(pfx)/*128*/) { |
| delta = dis_VEX_NDS_128_AnySimdPfx_0F_WIG_simple( |
| uses_vvvv, vbi, pfx, delta, "vpmaxsd", Iop_Max32Sx4 ); |
| goto decode_success; |
| } |
| break; |
| |
| default: |
| break; |
| |
| } |
| |
| //decode_failure: |
| return deltaIN; |
| |
| decode_success: |
| return delta; |
| } |
| |
| |
| /*------------------------------------------------------------*/ |
| /*--- ---*/ |
| /*--- Top-level post-escape decoders: dis_ESC_0F3A__VEX ---*/ |
| /*--- ---*/ |
| /*------------------------------------------------------------*/ |
| |
| __attribute__((noinline)) |
| static |
| Long dis_ESC_0F3A__VEX ( |
| /*MB_OUT*/DisResult* dres, |
| /*OUT*/ Bool* uses_vvvv, |
| Bool (*resteerOkFn) ( /*opaque*/void*, Addr64 ), |
| Bool resteerCisOk, |
| void* callback_opaque, |
| VexArchInfo* archinfo, |
| VexAbiInfo* vbi, |
| Prefix pfx, Int sz, Long deltaIN |
| ) |
| { |
| IRTemp addr = IRTemp_INVALID; |
| Int alen = 0; |
| HChar dis_buf[50]; |
| Long delta = deltaIN; |
| UChar opc = getUChar(delta); |
| delta++; |
| *uses_vvvv = False; |
| |
| switch (opc) { |
| |
| case 0x16: |
| /* VPEXTRD imm8, r32/m32, xmm2 */ |
| /* VPEXTRD = VEX.128.66.0F3A.W0 16 /r ib */ |
| if (have66noF2noF3(pfx) |
| && 0==getVexL(pfx)/*128*/ && 0==getRexW(pfx)/*W0*/) { |
| delta = dis_PEXTRD( vbi, pfx, delta, True/*isAvx*/ ); |
| goto decode_success; |
| } |
| break; |
| |
| case 0x18: |
| /* VINSERTF128 r/m, rV, rD |
| ::: rD = insertinto(a lane in rV, 128 bits from r/m) */ |
| /* VINSERTF128 = VEX.NDS.256.66.0F3A.W0 18 /r ib */ |
| if (have66noF2noF3(pfx) |
| && 1==getVexL(pfx)/*256*/ && 0==getRexW(pfx)/*W0*/) { |
| UChar modrm = getUChar(delta); |
| UInt ib = 0; |
| UInt rD = gregOfRexRM(pfx, modrm); |
| UInt rV = getVexNvvvv(pfx); |
| IRTemp t128 = newTemp(Ity_V128); |
| if (epartIsReg(modrm)) { |
| UInt rmR = eregOfRexRM(pfx, modrm); |
| delta += 1; |
| assign(t128, getXMMReg(rmR)); |
| ib = getUChar(delta); |
| DIP("vinsertf128 $%u,%s,%s,%s\n", |
| ib, nameXMMReg(rmR), nameYMMReg(rV), nameYMMReg(rD)); |
| } else { |
| addr = disAMode( &alen, vbi, pfx, delta, dis_buf, 1 ); |
| assign(t128, loadLE(Ity_V128, mkexpr(addr))); |
| delta += alen; |
| ib = getUChar(delta); |
| DIP("vinsertf128 $%u,%s,%s,%s\n", |
| ib, dis_buf, nameYMMReg(rV), nameYMMReg(rD)); |
| } |
| delta++; |
| putYMMRegLane128(rD, 0, getYMMRegLane128(rV, 0)); |
| putYMMRegLane128(rD, 1, getYMMRegLane128(rV, 1)); |
| putYMMRegLane128(rD, ib & 1, mkexpr(t128)); |
| *uses_vvvv = True; |
| goto decode_success; |
| } |
| break; |
| |
| case 0x19: |
| /* VEXTRACTF128 $lane_no, rS, r/m |
| ::: r/m:V128 = a lane of rS:V256 (RM format) */ |
| /* VEXTRACTF128 = VEX.256.66.0F3A.W0 19 /r ib */ |
| if (have66noF2noF3(pfx) |
| && 1==getVexL(pfx)/*256*/ && 0==getRexW(pfx)/*W0*/) { |
| UChar modrm = getUChar(delta); |
| UInt ib = 0; |
| UInt rS = gregOfRexRM(pfx, modrm); |
| IRTemp t128 = newTemp(Ity_V128); |
| if (epartIsReg(modrm)) { |
| UInt rD = eregOfRexRM(pfx, modrm); |
| delta += 1; |
| ib = getUChar(delta); |
| assign(t128, getYMMRegLane128(rS, ib & 1)); |
| putYMMRegLoAndZU(rD, mkexpr(t128)); |
| DIP("vextractf128 $%u,%s,%s\n", |
| ib, nameXMMReg(rS), nameYMMReg(rD)); |
| } else { |
| addr = disAMode( &alen, vbi, pfx, delta, dis_buf, 1 ); |
| delta += alen; |
| ib = getUChar(delta); |
| assign(t128, getYMMRegLane128(rS, ib & 1)); |
| storeLE(mkexpr(addr), mkexpr(t128)); |
| DIP("vextractf128 $%u,%s,%s\n", |
| ib, nameYMMReg(rS), dis_buf); |
| } |
| delta++; |
| /* doesn't use vvvv */ |
| goto decode_success; |
| } |
| break; |
| |
| case 0x21: |
| /* VINSERTPS imm8, xmm3/m32, xmm2, xmm1 |
| = VEX.NDS.128.66.0F3A.WIG 21 /r ib */ |
| if (have66noF2noF3(pfx) && 0==getVexL(pfx)/*128*/) { |
| UChar modrm = getUChar(delta); |
| UInt rG = gregOfRexRM(pfx, modrm); |
| UInt rV = getVexNvvvv(pfx); |
| UInt imm8; |
| IRTemp d2ins = newTemp(Ity_I32); /* comes from the E part */ |
| const IRTemp inval = IRTemp_INVALID; |
| |
| if ( epartIsReg( modrm ) ) { |
| UInt rE = eregOfRexRM(pfx, modrm); |
| IRTemp vE = newTemp(Ity_V128); |
| assign( vE, getXMMReg(rE) ); |
| IRTemp dsE[4] = { inval, inval, inval, inval }; |
| breakup128to32s( vE, &dsE[3], &dsE[2], &dsE[1], &dsE[0] ); |
| imm8 = getUChar(delta+1); |
| d2ins = dsE[(imm8 >> 6) & 3]; /* "imm8_count_s" */ |
| delta += 1+1; |
| DIP( "insertps $%u, %s,%s\n", |
| imm8, nameXMMReg(rE), nameXMMReg(rG) ); |
| } else { |
| addr = disAMode( &alen, vbi, pfx, delta, dis_buf, 1 ); |
| assign( d2ins, loadLE( Ity_I32, mkexpr(addr) ) ); |
| imm8 = getUChar(delta+alen); |
| delta += alen+1; |
| DIP( "insertps $%u, %s,%s\n", |
| imm8, dis_buf, nameXMMReg(rG) ); |
| } |
| |
| IRTemp vV = newTemp(Ity_V128); |
| assign( vV, getXMMReg(rV) ); |
| |
| putYMMRegLoAndZU( rG, mkexpr(math_INSERTPS( vV, d2ins, imm8 )) ); |
| *uses_vvvv = True; |
| goto decode_success; |
| } |
| break; |
| |
| case 0x22: |
| /* VPINSRD r32/m32, xmm2, xmm1 = VEX.NDS.128.66.0F3A.W0 22 /r ib */ |
| if (have66noF2noF3(pfx) |
| && 0==getVexL(pfx)/*128*/ && 0==getRexW(pfx)/*W0*/) { |
| UChar modrm = getUChar(delta); |
| UInt rG = gregOfRexRM(pfx, modrm); |
| UInt rV = getVexNvvvv(pfx); |
| Int imm8_10; |
| IRTemp src_u32 = newTemp(Ity_I32); |
| |
| if ( epartIsReg( modrm ) ) { |
| UInt rE = eregOfRexRM(pfx,modrm); |
| imm8_10 = (Int)(getUChar(delta+1) & 3); |
| assign( src_u32, getIReg32( rE ) ); |
| delta += 1+1; |
| DIP( "vpinsrd $%d,%s,%s,%s\n", |
| imm8_10, nameIReg32(rE), nameXMMReg(rV), nameXMMReg(rG) ); |
| } else { |
| addr = disAMode( &alen, vbi, pfx, delta, dis_buf, 1 ); |
| imm8_10 = (Int)(getUChar(delta+alen) & 3); |
| assign( src_u32, loadLE( Ity_I32, mkexpr(addr) ) ); |
| delta += alen+1; |
| DIP( "vpinsrd $%d,%s,%s,%s\n", |
| imm8_10, dis_buf, nameXMMReg(rV), nameXMMReg(rG) ); |
| } |
| |
| IRTemp src_vec = newTemp(Ity_V128); |
| assign(src_vec, getXMMReg( rV )); |
| IRTemp res_vec = math_PINSRD_128( src_vec, src_u32, imm8_10 ); |
| putYMMRegLoAndZU( rG, mkexpr(res_vec) ); |
| *uses_vvvv = True; |
| goto decode_success; |
| } |
| /* VPINSRQ r64/m64, xmm2, xmm1 = VEX.NDS.128.66.0F3A.W1 22 /r ib */ |
| if (have66noF2noF3(pfx) |
| && 0==getVexL(pfx)/*128*/ && 1==getRexW(pfx)/*W1*/) { |
| UChar modrm = getUChar(delta); |
| UInt rG = gregOfRexRM(pfx, modrm); |
| UInt rV = getVexNvvvv(pfx); |
| Int imm8_0; |
| IRTemp src_u64 = newTemp(Ity_I64); |
| |
| if ( epartIsReg( modrm ) ) { |
| UInt rE = eregOfRexRM(pfx,modrm); |
| imm8_0 = (Int)(getUChar(delta+1) & 1); |
| assign( src_u64, getIReg64( rE ) ); |
| delta += 1+1; |
| DIP( "vpinsrq $%d,%s,%s,%s\n", |
| imm8_0, nameIReg64(rE), nameXMMReg(rV), nameXMMReg(rG) ); |
| } else { |
| addr = disAMode( &alen, vbi, pfx, delta, dis_buf, 1 ); |
| imm8_0 = (Int)(getUChar(delta+alen) & 1); |
| assign( src_u64, loadLE( Ity_I64, mkexpr(addr) ) ); |
| delta += alen+1; |
| DIP( "vpinsrd $%d,%s,%s,%s\n", |
| imm8_0, dis_buf, nameXMMReg(rV), nameXMMReg(rG) ); |
| } |
| |
| IRTemp src_vec = newTemp(Ity_V128); |
| assign(src_vec, getXMMReg( rV )); |
| IRTemp res_vec = math_PINSRQ_128( src_vec, src_u64, imm8_0 ); |
| putYMMRegLoAndZU( rG, mkexpr(res_vec) ); |
| *uses_vvvv = True; |
| goto decode_success; |
| } |
| break; |
| |
| case 0x4C: |
| /* VPBLENDVB xmmG, xmmE/memE, xmmV, xmmIS4 |
| ::: xmmG:V128 = PBLEND(xmmE, xmmV, xmmIS4) (RMVR) */ |
| /* VPBLENDVB = VEX.NDS.128.66.0F3A.W0 4C /r /is4 */ |
| if (have66noF2noF3(pfx) |
| && 0==getVexL(pfx)/*128*/ && 0==getRexW(pfx)/*W0*/) { |
| UChar modrm = getUChar(delta); |
| UInt rG = gregOfRexRM(pfx, modrm); |
| UInt rV = getVexNvvvv(pfx); |
| UInt rIS4 = 0xFF; /* invalid */ |
| IRTemp vecE = newTemp(Ity_V128); |
| IRTemp vecG = newTemp(Ity_V128); |
| IRTemp vecV = newTemp(Ity_V128); |
| IRTemp vecIS4 = newTemp(Ity_V128); |
| if (epartIsReg(modrm)) { |
| delta++; |
| UInt rE = eregOfRexRM(pfx, modrm); |
| assign(vecE, getXMMReg(rE)); |
| UChar ib = getUChar(delta); |
| rIS4 = (ib >> 4) & 0xF; |
| DIP("vpblendvb %s,%s,%s,%s\n", |
| nameXMMReg(rIS4), nameXMMReg(rE), |
| nameXMMReg(rV), nameXMMReg(rG)); |
| } else { |
| addr = disAMode( &alen, vbi, pfx, delta, dis_buf, 1 ); |
| delta += alen; |
| assign(vecE, loadLE(Ity_V128, mkexpr(addr))); |
| UChar ib = getUChar(delta); |
| rIS4 = (ib >> 4) & 0xF; |
| DIP("vpblendvb %s,%s,%s,%s\n", |
| nameXMMReg(rIS4), dis_buf, nameXMMReg(rV), nameXMMReg(rG)); |
| } |
| delta++; |
| assign(vecG, getXMMReg(rG)); |
| assign(vecV, getXMMReg(rV)); |
| assign(vecIS4, getXMMReg(rIS4)); |
| IRTemp res = math_PBLENDVB( vecE, vecV, vecIS4, 1, Iop_SarN8x16 ); |
| putYMMRegLoAndZU( rG, mkexpr(res) ); |
| *uses_vvvv = True; |
| goto decode_success; |
| } |
| break; |
| |
| case 0x60: |
| case 0x61: |
| case 0x62: |
| case 0x63: |
| /* VEX.128.66.0F3A.WIG 63 /r ib = VPCMPISTRI imm8, xmm2/m128, xmm1 |
| VEX.128.66.0F3A.WIG 62 /r ib = VPCMPISTRM imm8, xmm2/m128, xmm1 |
| VEX.128.66.0F3A.WIG 61 /r ib = VPCMPESTRI imm8, xmm2/m128, xmm1 |
| VEX.128.66.0F3A.WIG 60 /r ib = VPCMPESTRM imm8, xmm2/m128, xmm1 |
| (selected special cases that actually occur in glibc, |
| not by any means a complete implementation.) |
| */ |
| if (have66noF2noF3(pfx) && 0==getVexL(pfx)/*128*/) { |
| Long delta0 = delta; |
| delta = dis_PCMPxSTRx( vbi, pfx, delta, True/*isAvx*/, opc ); |
| if (delta > delta0) goto decode_success; |
| /* else fall though; dis_PCMPxSTRx failed to decode it */ |
| } |
| break; |
| |
| default: |
| break; |
| |
| } |
| |
| //decode_failure: |
| return deltaIN; |
| |
| decode_success: |
| return delta; |
| } |
| |
| |
| /*------------------------------------------------------------*/ |
| /*--- ---*/ |
| /*--- Disassemble a single instruction ---*/ |
| /*--- ---*/ |
| /*------------------------------------------------------------*/ |
| |
| /* Disassemble a single instruction into IR. The instruction is |
| located in host memory at &guest_code[delta]. */ |
| |
| static |
| DisResult disInstr_AMD64_WRK ( |
| /*OUT*/Bool* expect_CAS, |
| Bool (*resteerOkFn) ( /*opaque*/void*, Addr64 ), |
| Bool resteerCisOk, |
| void* callback_opaque, |
| Long delta64, |
| VexArchInfo* archinfo, |
| VexAbiInfo* vbi |
| ) |
| { |
| IRTemp t1, t2, t3, t4, t5, t6; |
| UChar pre; |
| Int n, n_prefixes; |
| DisResult dres; |
| |
| /* The running delta */ |
| Long delta = delta64; |
| |
| /* Holds eip at the start of the insn, so that we can print |
| consistent error messages for unimplemented insns. */ |
| Long delta_start = delta; |
| |
| /* sz denotes the nominal data-op size of the insn; we change it to |
| 2 if an 0x66 prefix is seen and 8 if REX.W is 1. In case of |
| conflict REX.W takes precedence. */ |
| Int sz = 4; |
| |
| /* pfx holds the summary of prefixes. */ |
| Prefix pfx = PFX_EMPTY; |
| |
| /* Holds the computed opcode-escape indication. */ |
| Escape esc = ESC_NONE; |
| |
| /* Set result defaults. */ |
| dres.whatNext = Dis_Continue; |
| dres.len = 0; |
| dres.continueAt = 0; |
| dres.jk_StopHere = Ijk_INVALID; |
| *expect_CAS = False; |
| |
| vassert(guest_RIP_next_assumed == 0); |
| vassert(guest_RIP_next_mustcheck == False); |
| |
| t1 = t2 = t3 = t4 = t5 = t6 = IRTemp_INVALID; |
| |
| DIP("\t0x%llx: ", guest_RIP_bbstart+delta); |
| |
| /* Spot "Special" instructions (see comment at top of file). */ |
| { |
| UChar* code = (UChar*)(guest_code + delta); |
| /* Spot the 16-byte preamble: |
| 48C1C703 rolq $3, %rdi |
| 48C1C70D rolq $13, %rdi |
| 48C1C73D rolq $61, %rdi |
| 48C1C733 rolq $51, %rdi |
| */ |
| if (code[ 0] == 0x48 && code[ 1] == 0xC1 && code[ 2] == 0xC7 |
| && code[ 3] == 0x03 && |
| code[ 4] == 0x48 && code[ 5] == 0xC1 && code[ 6] == 0xC7 |
| && code[ 7] == 0x0D && |
| code[ 8] == 0x48 && code[ 9] == 0xC1 && code[10] == 0xC7 |
| && code[11] == 0x3D && |
| code[12] == 0x48 && code[13] == 0xC1 && code[14] == 0xC7 |
| && code[15] == 0x33) { |
| /* Got a "Special" instruction preamble. Which one is it? */ |
| if (code[16] == 0x48 && code[17] == 0x87 |
| && code[18] == 0xDB /* xchgq %rbx,%rbx */) { |
| /* %RDX = client_request ( %RAX ) */ |
| DIP("%%rdx = client_request ( %%rax )\n"); |
| delta += 19; |
| jmp_lit(&dres, Ijk_ClientReq, guest_RIP_bbstart+delta); |
| vassert(dres.whatNext == Dis_StopHere); |
| goto decode_success; |
| } |
| else |
| if (code[16] == 0x48 && code[17] == 0x87 |
| && code[18] == 0xC9 /* xchgq %rcx,%rcx */) { |
| /* %RAX = guest_NRADDR */ |
| DIP("%%rax = guest_NRADDR\n"); |
| delta += 19; |
| putIRegRAX(8, IRExpr_Get( OFFB_NRADDR, Ity_I64 )); |
| goto decode_success; |
| } |
| else |
| if (code[16] == 0x48 && code[17] == 0x87 |
| && code[18] == 0xD2 /* xchgq %rdx,%rdx */) { |
| /* call-noredir *%RAX */ |
| DIP("call-noredir *%%rax\n"); |
| delta += 19; |
| t1 = newTemp(Ity_I64); |
| assign(t1, getIRegRAX(8)); |
| t2 = newTemp(Ity_I64); |
| assign(t2, binop(Iop_Sub64, getIReg64(R_RSP), mkU64(8))); |
| putIReg64(R_RSP, mkexpr(t2)); |
| storeLE( mkexpr(t2), mkU64(guest_RIP_bbstart+delta)); |
| jmp_treg(&dres, Ijk_NoRedir, t1); |
| vassert(dres.whatNext == Dis_StopHere); |
| goto decode_success; |
| } |
| /* We don't know what it is. */ |
| goto decode_failure; |
| /*NOTREACHED*/ |
| } |
| } |
| |
| /* Eat prefixes, summarising the result in pfx and sz, and rejecting |
| as many invalid combinations as possible. */ |
| n_prefixes = 0; |
| while (True) { |
| if (n_prefixes > 7) goto decode_failure; |
| pre = getUChar(delta); |
| switch (pre) { |
| case 0x66: pfx |= PFX_66; break; |
| case 0x67: pfx |= PFX_ASO; break; |
| case 0xF2: pfx |= PFX_F2; break; |
| case 0xF3: pfx |= PFX_F3; break; |
| case 0xF0: pfx |= PFX_LOCK; *expect_CAS = True; break; |
| case 0x2E: pfx |= PFX_CS; break; |
| case 0x3E: pfx |= PFX_DS; break; |
| case 0x26: pfx |= PFX_ES; break; |
| case 0x64: pfx |= PFX_FS; break; |
| case 0x65: pfx |= PFX_GS; break; |
| case 0x36: pfx |= PFX_SS; break; |
| case 0x40 ... 0x4F: |
| pfx |= PFX_REX; |
| if (pre & (1<<3)) pfx |= PFX_REXW; |
| if (pre & (1<<2)) pfx |= PFX_REXR; |
| if (pre & (1<<1)) pfx |= PFX_REXX; |
| if (pre & (1<<0)) pfx |= PFX_REXB; |
| break; |
| default: |
| goto not_a_legacy_prefix; |
| } |
| n_prefixes++; |
| delta++; |
| } |
| |
| not_a_legacy_prefix: |
| /* We've used up all the non-VEX prefixes. Parse and validate a |
| VEX prefix if that's appropriate. */ |
| if (archinfo->hwcaps & VEX_HWCAPS_AMD64_AVX) { |
| /* Used temporarily for holding VEX prefixes. */ |
| UChar vex0 = getUChar(delta); |
| if (vex0 == 0xC4) { |
| /* 3-byte VEX */ |
| UChar vex1 = getUChar(delta+1); |
| UChar vex2 = getUChar(delta+2); |
| delta += 3; |
| pfx |= PFX_VEX; |
| /* Snarf contents of byte 1 */ |
| /* R */ pfx |= (vex1 & (1<<7)) ? 0 : PFX_REXR; |
| /* X */ pfx |= (vex1 & (1<<6)) ? 0 : PFX_REXX; |
| /* B */ pfx |= (vex1 & (1<<5)) ? 0 : PFX_REXB; |
| /* m-mmmm */ |
| switch (vex1 & 0x1F) { |
| case 1: esc = ESC_0F; break; |
| case 2: esc = ESC_0F38; break; |
| case 3: esc = ESC_0F3A; break; |
| /* Any other m-mmmm field will #UD */ |
| default: goto decode_failure; |
| } |
| /* Snarf contents of byte 2 */ |
| /* W */ pfx |= (vex2 & (1<<7)) ? PFX_REXW : 0; |
| /* ~v3 */ pfx |= (vex2 & (1<<6)) ? 0 : PFX_VEXnV3; |
| /* ~v2 */ pfx |= (vex2 & (1<<5)) ? 0 : PFX_VEXnV2; |
| /* ~v1 */ pfx |= (vex2 & (1<<4)) ? 0 : PFX_VEXnV1; |
| /* ~v0 */ pfx |= (vex2 & (1<<3)) ? 0 : PFX_VEXnV0; |
| /* L */ pfx |= (vex2 & (1<<2)) ? PFX_VEXL : 0; |
| /* pp */ |
| switch (vex2 & 3) { |
| case 0: break; |
| case 1: pfx |= PFX_66; break; |
| case 2: pfx |= PFX_F3; break; |
| case 3: pfx |= PFX_F2; break; |
| default: vassert(0); |
| } |
| } |
| else if (vex0 == 0xC5) { |
| /* 2-byte VEX */ |
| UChar vex1 = getUChar(delta+1); |
| delta += 2; |
| pfx |= PFX_VEX; |
| /* Snarf contents of byte 1 */ |
| /* R */ pfx |= (vex1 & (1<<7)) ? 0 : PFX_REXR; |
| /* ~v3 */ pfx |= (vex1 & (1<<6)) ? 0 : PFX_VEXnV3; |
| /* ~v2 */ pfx |= (vex1 & (1<<5)) ? 0 : PFX_VEXnV2; |
| /* ~v1 */ pfx |= (vex1 & (1<<4)) ? 0 : PFX_VEXnV1; |
| /* ~v0 */ pfx |= (vex1 & (1<<3)) ? 0 : PFX_VEXnV0; |
| /* L */ pfx |= (vex1 & (1<<2)) ? PFX_VEXL : 0; |
| /* pp */ |
| switch (vex1 & 3) { |
| case 0: break; |
| case 1: pfx |= PFX_66; break; |
| case 2: pfx |= PFX_F3; break; |
| case 3: pfx |= PFX_F2; break; |
| default: vassert(0); |
| } |
| /* implied: */ |
| esc = ESC_0F; |
| } |
| /* Can't have both VEX and REX */ |
| if ((pfx & PFX_VEX) && (pfx & PFX_REX)) |
| goto decode_failure; /* can't have both */ |
| } |
| |
| /* Dump invalid combinations */ |
| n = 0; |
| if (pfx & PFX_F2) n++; |
| if (pfx & PFX_F3) n++; |
| if (n > 1) |
| goto decode_failure; /* can't have both */ |
| |
| n = 0; |
| if (pfx & PFX_CS) n++; |
| if (pfx & PFX_DS) n++; |
| if (pfx & PFX_ES) n++; |
| if (pfx & PFX_FS) n++; |
| if (pfx & PFX_GS) n++; |
| if (pfx & PFX_SS) n++; |
| if (n > 1) |
| goto decode_failure; /* multiple seg overrides == illegal */ |
| |
| /* We have a %fs prefix. Reject it if there's no evidence in 'vbi' |
| that we should accept it. */ |
| if ((pfx & PFX_FS) && !vbi->guest_amd64_assume_fs_is_zero) |
| goto decode_failure; |
| |
| /* Ditto for %gs prefixes. */ |
| if ((pfx & PFX_GS) && !vbi->guest_amd64_assume_gs_is_0x60) |
| goto decode_failure; |
| |
| /* Set up sz. */ |
| sz = 4; |
| if (pfx & PFX_66) sz = 2; |
| if ((pfx & PFX_REX) && (pfx & PFX_REXW)) sz = 8; |
| |
| /* Now we should be looking at the primary opcode byte or the |
| leading escapes. Check that any LOCK prefix is actually |
| allowed. */ |
| if (pfx & PFX_LOCK) { |
| if (can_be_used_with_LOCK_prefix( (UChar*)&guest_code[delta] )) { |
| DIP("lock "); |
| } else { |
| *expect_CAS = False; |
| goto decode_failure; |
| } |
| } |
| |
| /* Eat up opcode escape bytes, until we're really looking at the |
| primary opcode byte. But only if there's no VEX present. */ |
| if (!(pfx & PFX_VEX)) { |
| vassert(esc == ESC_NONE); |
| pre = getUChar(delta); |
| if (pre == 0x0F) { |
| delta++; |
| pre = getUChar(delta); |
| switch (pre) { |
| case 0x38: esc = ESC_0F38; delta++; break; |
| case 0x3A: esc = ESC_0F3A; delta++; break; |
| default: esc = ESC_0F; break; |
| } |
| } |
| } |
| |
| /* So now we're really really looking at the primary opcode |
| byte. */ |
| Long delta_at_primary_opcode = delta; |
| |
| if (!(pfx & PFX_VEX)) { |
| /* Handle non-VEX prefixed instructions. "Legacy" (non-VEX) SSE |
| instructions preserve the upper 128 bits of YMM registers; |
| iow we can simply ignore the presence of the upper halves of |
| these registers. */ |
| switch (esc) { |
| case ESC_NONE: |
| delta = dis_ESC_NONE( &dres, expect_CAS, |
| resteerOkFn, resteerCisOk, callback_opaque, |
| archinfo, vbi, pfx, sz, delta ); |
| break; |
| case ESC_0F: |
| delta = dis_ESC_0F ( &dres, expect_CAS, |
| resteerOkFn, resteerCisOk, callback_opaque, |
| archinfo, vbi, pfx, sz, delta ); |
| break; |
| case ESC_0F38: |
| delta = dis_ESC_0F38( &dres, |
| resteerOkFn, resteerCisOk, callback_opaque, |
| archinfo, vbi, pfx, sz, delta ); |
| break; |
| case ESC_0F3A: |
| delta = dis_ESC_0F3A( &dres, |
| resteerOkFn, resteerCisOk, callback_opaque, |
| archinfo, vbi, pfx, sz, delta ); |
| break; |
| default: |
| vassert(0); |
| } |
| } else { |
| /* VEX prefixed instruction */ |
| /* Sloppy Intel wording: "An instruction encoded with a VEX.128 |
| prefix that loads a YMM register operand ..." zeroes out bits |
| 128 and above of the register. */ |
| Bool uses_vvvv = False; |
| switch (esc) { |
| case ESC_0F: |
| delta = dis_ESC_0F__VEX ( &dres, &uses_vvvv, |
| resteerOkFn, resteerCisOk, |
| callback_opaque, |
| archinfo, vbi, pfx, sz, delta ); |
| break; |
| case ESC_0F38: |
| delta = dis_ESC_0F38__VEX ( &dres, &uses_vvvv, |
| resteerOkFn, resteerCisOk, |
| callback_opaque, |
| archinfo, vbi, pfx, sz, delta ); |
| break; |
| case ESC_0F3A: |
| delta = dis_ESC_0F3A__VEX ( &dres, &uses_vvvv, |
| resteerOkFn, resteerCisOk, |
| callback_opaque, |
| archinfo, vbi, pfx, sz, delta ); |
| break; |
| case ESC_NONE: |
| /* The presence of a VEX prefix, by Intel definition, |
| always implies at least an 0F escape. */ |
| goto decode_failure; |
| default: |
| vassert(0); |
| } |
| /* If the insn doesn't use VEX.vvvv then it must be all ones. |
| Check this. */ |
| if (!uses_vvvv) { |
| if (getVexNvvvv(pfx) != 0) |
| goto decode_failure; |
| } |
| } |
| |
| vassert(delta - delta_at_primary_opcode >= 0); |
| vassert(delta - delta_at_primary_opcode < 16/*let's say*/); |
| |
| /* Use delta == delta_at_primary_opcode to denote decode failure. |
| This implies that any successful decode must use at least one |
| byte up. */ |
| if (delta == delta_at_primary_opcode) |
| goto decode_failure; |
| else |
| goto decode_success; /* \o/ */ |
| |
| #if 0 /* XYZZY */ |
| |
| /* ---------------------------------------------------- */ |
| /* --- The SSE/SSE2 decoder. --- */ |
| /* ---------------------------------------------------- */ |
| |
| /* What did I do to deserve SSE ? Perhaps I was really bad in a |
| previous life? */ |
| |
| /* Note, this doesn't handle SSE3 right now. All amd64s support |
| SSE2 as a minimum so there is no point distinguishing SSE1 vs |
| SSE2. */ |
| |
| insn = (UChar*)&guest_code[delta]; |
| |
| /* FXSAVE is spuriously at the start here only because it is |
| thusly placed in guest-x86/toIR.c. */ |
| |
| /* ------ SSE decoder main ------ */ |
| |
| /* ---------------------------------------------------- */ |
| /* --- end of the SSE decoder. --- */ |
| /* ---------------------------------------------------- */ |
| |
| /* ---------------------------------------------------- */ |
| /* --- start of the SSE2 decoder. --- */ |
| /* ---------------------------------------------------- */ |
| |
| /* ---------------------------------------------------- */ |
| /* --- end of the SSE/SSE2 decoder. --- */ |
| /* ---------------------------------------------------- */ |
| |
| /* ---------------------------------------------------- */ |
| /* --- start of the SSE3 decoder. --- */ |
| /* ---------------------------------------------------- */ |
| |
| /* ---------------------------------------------------- */ |
| /* --- end of the SSE3 decoder. --- */ |
| /* ---------------------------------------------------- */ |
| |
| /* ---------------------------------------------------- */ |
| /* --- start of the SSSE3 decoder. --- */ |
| /* ---------------------------------------------------- */ |
| |
| /* ---------------------------------------------------- */ |
| /* --- end of the SSSE3 decoder. --- */ |
| /* ---------------------------------------------------- */ |
| |
| /* ---------------------------------------------------- */ |
| /* --- start of the SSE4 decoder --- */ |
| /* ---------------------------------------------------- */ |
| |
| /* ---------------------------------------------------- */ |
| /* --- end of the SSE4 decoder --- */ |
| /* ---------------------------------------------------- */ |
| |
| /*after_sse_decoders:*/ |
| |
| /* Get the primary opcode. */ |
| opc = getUChar(delta); delta++; |
| |
| /* We get here if the current insn isn't SSE, or this CPU doesn't |
| support SSE. */ |
| |
| switch (opc) { |
| |
| /* ------------------------ Control flow --------------- */ |
| |
| /* ------------------------ CWD/CDQ -------------------- */ |
| |
| /* ------------------------ FPU ops -------------------- */ |
| |
| /* ------------------------ INT ------------------------ */ |
| |
| case 0xCD: { /* INT imm8 */ |
| IRJumpKind jk = Ijk_Boring; |
| if (have66orF2orF3(pfx)) goto decode_failure; |
| d64 = getUChar(delta); delta++; |
| switch (d64) { |
| case 32: jk = Ijk_Sys_int32; break; |
| default: goto decode_failure; |
| } |
| guest_RIP_next_mustcheck = True; |
| guest_RIP_next_assumed = guest_RIP_bbstart + delta; |
| jmp_lit(jk, guest_RIP_next_assumed); |
| /* It's important that all ArchRegs carry their up-to-date value |
| at this point. So we declare an end-of-block here, which |
| forces any TempRegs caching ArchRegs to be flushed. */ |
| vassert(dres.whatNext == Dis_StopHere); |
| DIP("int $0x%02x\n", (UInt)d64); |
| break; |
| } |
| |
| /* ------------------------ Jcond, byte offset --------- */ |
| |
| /* ------------------------ IMUL ----------------------- */ |
| |
| /* ------------------------ MOV ------------------------ */ |
| |
| /* ------------------------ MOVx ------------------------ */ |
| |
| /* ------------------------ opl imm, A ----------------- */ |
| |
| /* ------------------------ opl Ev, Gv ----------------- */ |
| |
| /* ------------------------ opl Gv, Ev ----------------- */ |
| |
| /* ------------------------ POP ------------------------ */ |
| |
| /* ------------------------ PUSH ----------------------- */ |
| |
| /* ------ AE: SCAS variants ------ */ |
| |
| /* ------ A6, A7: CMPS variants ------ */ |
| |
| /* ------ AA, AB: STOS variants ------ */ |
| |
| /* ------ A4, A5: MOVS variants ------ */ |
| |
| /* ------------------------ XCHG ----------------------- */ |
| |
| /* ------------------------ IN / OUT ----------------------- */ |
| |
| /* ------------------------ (Grp1 extensions) ---------- */ |
| |
| /* ------------------------ (Grp2 extensions) ---------- */ |
| |
| /* ------------------------ (Grp3 extensions) ---------- */ |
| |
| /* ------------------------ (Grp4 extensions) ---------- */ |
| |
| /* ------------------------ (Grp5 extensions) ---------- */ |
| |
| /* ------------------------ Escapes to 2-byte opcodes -- */ |
| |
| case 0x0F: { |
| opc = getUChar(delta); delta++; |
| switch (opc) { |
| |
| /* =-=-=-=-=-=-=-=-=- Grp8 =-=-=-=-=-=-=-=-=-=-=-= */ |
| |
| /* =-=-=-=-=-=-=-=-=- BSF/BSR -=-=-=-=-=-=-=-=-=-= */ |
| |
| /* =-=-=-=-=-=-=-=-=- BSWAP -=-=-=-=-=-=-=-=-=-=-= */ |
| |
| /* =-=-=-=-=-=-=-=-=- BT/BTS/BTR/BTC =-=-=-=-=-=-= */ |
| |
| /* =-=-=-=-=-=-=-=-=- CMOV =-=-=-=-=-=-=-=-=-=-=-= */ |
| |
| /* =-=-=-=-=-=-=-=-=- CMPXCHG -=-=-=-=-=-=-=-=-=-= */ |
| |
| /* =-=-=-=-=-=-=-=-=- CPUID -=-=-=-=-=-=-=-=-=-=-= */ |
| |
| /* =-=-=-=-=-=-=-=-=- MOVZX, MOVSX =-=-=-=-=-=-=-= */ |
| |
| /* =-=-=-=-=-=-=-=-=- MUL/IMUL =-=-=-=-=-=-=-=-=-= */ |
| |
| /* =-=-=-=-=-=-=-=-=- NOPs =-=-=-=-=-=-=-=-=-=-=-= */ |
| |
| /* =-=-=-=-=-=-=-=-=- Jcond d32 -=-=-=-=-=-=-=-=-= */ |
| |
| /* =-=-=-=-=-=-=-=-=- PREFETCH =-=-=-=-=-=-=-=-=-= */ |
| case 0x0D: /* 0F 0D /0 -- prefetch mem8 */ |
| /* 0F 0D /1 -- prefetchw mem8 */ |
| if (have66orF2orF3(pfx)) goto decode_failure; |
| modrm = getUChar(delta); |
| if (epartIsReg(modrm)) goto decode_failure; |
| if (gregLO3ofRM(modrm) != 0 && gregLO3ofRM(modrm) != 1) |
| goto decode_failure; |
| |
| addr = disAMode ( &alen, vbi, pfx, delta, dis_buf, 0 ); |
| delta += alen; |
| |
| switch (gregLO3ofRM(modrm)) { |
| case 0: DIP("prefetch %s\n", dis_buf); break; |
| case 1: DIP("prefetchw %s\n", dis_buf); break; |
| default: vassert(0); /*NOTREACHED*/ |
| } |
| break; |
| |
| /* =-=-=-=-=-=-=-=-=- RDTSC -=-=-=-=-=-=-=-=-=-=-= */ |
| |
| /* =-=-=-=-=-=-=-=-=- SETcc Eb =-=-=-=-=-=-=-=-=-= */ |
| |
| /* =-=-=-=-=-=-=-=-=- SHLD/SHRD -=-=-=-=-=-=-=-=-= */ |
| |
| /* =-=-=-=-=-=-=-=-=- SYSCALL -=-=-=-=-=-=-=-=-=-= */ |
| |
| /* =-=-=-=-=-=-=-=-=- XADD -=-=-=-=-=-=-=-=-=-= */ |
| |
| case 0xC0: { /* XADD Gb,Eb */ |
| Bool decode_OK = False; |
| delta = dis_xadd_G_E ( &decode_OK, vbi, pfx, 1, delta ); |
| if (!decode_OK) |
| goto decode_failure; |
| break; |
| } |
| |
| /* =-=-=-=-=-=-=-=-=- SGDT and SIDT =-=-=-=-=-=-=-=-=-=-= */ |
| |
| /* =-=-=-=-=-=-=-=-=- unimp2 =-=-=-=-=-=-=-=-=-=-= */ |
| |
| default: |
| goto decode_failure; |
| } /* switch (opc) for the 2-byte opcodes */ |
| goto decode_success; |
| } /* case 0x0F: of primary opcode */ |
| |
| /* ------------------------ ??? ------------------------ */ |
| #endif /* XYZZY */ |
| |
| //default: |
| decode_failure: |
| /* All decode failures end up here. */ |
| vex_printf("vex amd64->IR: unhandled instruction bytes: " |
| "0x%x 0x%x 0x%x 0x%x 0x%x 0x%x 0x%x 0x%x\n", |
| (Int)getUChar(delta_start+0), |
| (Int)getUChar(delta_start+1), |
| (Int)getUChar(delta_start+2), |
| (Int)getUChar(delta_start+3), |
| (Int)getUChar(delta_start+4), |
| (Int)getUChar(delta_start+5), |
| (Int)getUChar(delta_start+6), |
| (Int)getUChar(delta_start+7) ); |
| vex_printf("vex amd64->IR: REX=%d REX.W=%d REX.R=%d REX.X=%d REX.B=%d\n", |
| haveREX(pfx) ? 1 : 0, getRexW(pfx), getRexR(pfx), |
| getRexX(pfx), getRexB(pfx)); |
| vex_printf("vex amd64->IR: VEX=%d VEX.L=%d VEX.nVVVV=0x%x ESC=%s\n", |
| haveVEX(pfx) ? 1 : 0, getVexL(pfx), |
| getVexNvvvv(pfx), |
| esc==ESC_NONE ? "NONE" : |
| esc==ESC_0F ? "0F" : |
| esc==ESC_0F38 ? "0F38" : |
| esc==ESC_0F3A ? "0F3A" : "???"); |
| vex_printf("vex amd64->IR: PFX.66=%d PFX.F2=%d PFX.F3=%d\n", |
| have66(pfx) ? 1 : 0, haveF2(pfx) ? 1 : 0, |
| haveF3(pfx) ? 1 : 0); |
| |
| /* Tell the dispatcher that this insn cannot be decoded, and so has |
| not been executed, and (is currently) the next to be executed. |
| RIP should be up-to-date since it made so at the start of each |
| insn, but nevertheless be paranoid and update it again right |
| now. */ |
| stmt( IRStmt_Put( OFFB_RIP, mkU64(guest_RIP_curr_instr) ) ); |
| jmp_lit(&dres, Ijk_NoDecode, guest_RIP_curr_instr); |
| vassert(dres.whatNext == Dis_StopHere); |
| dres.len = 0; |
| /* We also need to say that a CAS is not expected now, regardless |
| of what it might have been set to at the start of the function, |
| since the IR that we've emitted just above (to synthesis a |
| SIGILL) does not involve any CAS, and presumably no other IR has |
| been emitted for this (non-decoded) insn. */ |
| *expect_CAS = False; |
| return dres; |
| |
| // } /* switch (opc) for the main (primary) opcode switch. */ |
| |
| decode_success: |
| /* All decode successes end up here. */ |
| switch (dres.whatNext) { |
| case Dis_Continue: |
| stmt( IRStmt_Put( OFFB_RIP, mkU64(guest_RIP_bbstart + delta) ) ); |
| break; |
| case Dis_ResteerU: |
| case Dis_ResteerC: |
| stmt( IRStmt_Put( OFFB_RIP, mkU64(dres.continueAt) ) ); |
| break; |
| case Dis_StopHere: |
| break; |
| default: |
| vassert(0); |
| } |
| |
| DIP("\n"); |
| dres.len = (Int)toUInt(delta - delta_start); |
| return dres; |
| } |
| |
| #undef DIP |
| #undef DIS |
| |
| |
| /*------------------------------------------------------------*/ |
| /*--- Top-level fn ---*/ |
| /*------------------------------------------------------------*/ |
| |
| /* Disassemble a single instruction into IR. The instruction |
| is located in host memory at &guest_code[delta]. */ |
| |
| DisResult disInstr_AMD64 ( IRSB* irsb_IN, |
| Bool (*resteerOkFn) ( void*, Addr64 ), |
| Bool resteerCisOk, |
| void* callback_opaque, |
| UChar* guest_code_IN, |
| Long delta, |
| Addr64 guest_IP, |
| VexArch guest_arch, |
| VexArchInfo* archinfo, |
| VexAbiInfo* abiinfo, |
| Bool host_bigendian_IN ) |
| { |
| Int i, x1, x2; |
| Bool expect_CAS, has_CAS; |
| DisResult dres; |
| |
| /* Set globals (see top of this file) */ |
| vassert(guest_arch == VexArchAMD64); |
| guest_code = guest_code_IN; |
| irsb = irsb_IN; |
| host_is_bigendian = host_bigendian_IN; |
| guest_RIP_curr_instr = guest_IP; |
| guest_RIP_bbstart = guest_IP - delta; |
| |
| /* We'll consult these after doing disInstr_AMD64_WRK. */ |
| guest_RIP_next_assumed = 0; |
| guest_RIP_next_mustcheck = False; |
| |
| x1 = irsb_IN->stmts_used; |
| expect_CAS = False; |
| dres = disInstr_AMD64_WRK ( &expect_CAS, resteerOkFn, |
| resteerCisOk, |
| callback_opaque, |
| delta, archinfo, abiinfo ); |
| x2 = irsb_IN->stmts_used; |
| vassert(x2 >= x1); |
| |
| /* If disInstr_AMD64_WRK tried to figure out the next rip, check it |
| got it right. Failure of this assertion is serious and denotes |
| a bug in disInstr. */ |
| if (guest_RIP_next_mustcheck |
| && guest_RIP_next_assumed != guest_RIP_curr_instr + dres.len) { |
| vex_printf("\n"); |
| vex_printf("assumed next %%rip = 0x%llx\n", |
| guest_RIP_next_assumed ); |
| vex_printf(" actual next %%rip = 0x%llx\n", |
| guest_RIP_curr_instr + dres.len ); |
| vpanic("disInstr_AMD64: disInstr miscalculated next %rip"); |
| } |
| |
| /* See comment at the top of disInstr_AMD64_WRK for meaning of |
| expect_CAS. Here, we (sanity-)check for the presence/absence of |
| IRCAS as directed by the returned expect_CAS value. */ |
| has_CAS = False; |
| for (i = x1; i < x2; i++) { |
| if (irsb_IN->stmts[i]->tag == Ist_CAS) |
| has_CAS = True; |
| } |
| |
| if (expect_CAS != has_CAS) { |
| /* inconsistency detected. re-disassemble the instruction so as |
| to generate a useful error message; then assert. */ |
| vex_traceflags |= VEX_TRACE_FE; |
| dres = disInstr_AMD64_WRK ( &expect_CAS, resteerOkFn, |
| resteerCisOk, |
| callback_opaque, |
| delta, archinfo, abiinfo ); |
| for (i = x1; i < x2; i++) { |
| vex_printf("\t\t"); |
| ppIRStmt(irsb_IN->stmts[i]); |
| vex_printf("\n"); |
| } |
| /* Failure of this assertion is serious and denotes a bug in |
| disInstr. */ |
| vpanic("disInstr_AMD64: inconsistency in LOCK prefix handling"); |
| } |
| |
| return dres; |
| } |
| |
| |
| /*------------------------------------------------------------*/ |
| /*--- Unused stuff ---*/ |
| /*------------------------------------------------------------*/ |
| |
| // A potentially more Memcheck-friendly version of gen_LZCNT, if |
| // this should ever be needed. |
| // |
| //static IRTemp gen_LZCNT ( IRType ty, IRTemp src ) |
| //{ |
| // /* Scheme is simple: propagate the most significant 1-bit into all |
| // lower positions in the word. This gives a word of the form |
| // 0---01---1. Now invert it, giving a word of the form |
| // 1---10---0, then do a population-count idiom (to count the 1s, |
| // which is the number of leading zeroes, or the word size if the |
| // original word was 0. |
| // */ |
| // Int i; |
| // IRTemp t[7]; |
| // for (i = 0; i < 7; i++) { |
| // t[i] = newTemp(ty); |
| // } |
| // if (ty == Ity_I64) { |
| // assign(t[0], binop(Iop_Or64, mkexpr(src), |
| // binop(Iop_Shr64, mkexpr(src), mkU8(1)))); |
| // assign(t[1], binop(Iop_Or64, mkexpr(t[0]), |
| // binop(Iop_Shr64, mkexpr(t[0]), mkU8(2)))); |
| // assign(t[2], binop(Iop_Or64, mkexpr(t[1]), |
| // binop(Iop_Shr64, mkexpr(t[1]), mkU8(4)))); |
| // assign(t[3], binop(Iop_Or64, mkexpr(t[2]), |
| // binop(Iop_Shr64, mkexpr(t[2]), mkU8(8)))); |
| // assign(t[4], binop(Iop_Or64, mkexpr(t[3]), |
| // binop(Iop_Shr64, mkexpr(t[3]), mkU8(16)))); |
| // assign(t[5], binop(Iop_Or64, mkexpr(t[4]), |
| // binop(Iop_Shr64, mkexpr(t[4]), mkU8(32)))); |
| // assign(t[6], unop(Iop_Not64, mkexpr(t[5]))); |
| // return gen_POPCOUNT(ty, t[6]); |
| // } |
| // if (ty == Ity_I32) { |
| // assign(t[0], binop(Iop_Or32, mkexpr(src), |
| // binop(Iop_Shr32, mkexpr(src), mkU8(1)))); |
| // assign(t[1], binop(Iop_Or32, mkexpr(t[0]), |
| // binop(Iop_Shr32, mkexpr(t[0]), mkU8(2)))); |
| // assign(t[2], binop(Iop_Or32, mkexpr(t[1]), |
| // binop(Iop_Shr32, mkexpr(t[1]), mkU8(4)))); |
| // assign(t[3], binop(Iop_Or32, mkexpr(t[2]), |
| // binop(Iop_Shr32, mkexpr(t[2]), mkU8(8)))); |
| // assign(t[4], binop(Iop_Or32, mkexpr(t[3]), |
| // binop(Iop_Shr32, mkexpr(t[3]), mkU8(16)))); |
| // assign(t[5], unop(Iop_Not32, mkexpr(t[4]))); |
| // return gen_POPCOUNT(ty, t[5]); |
| // } |
| // if (ty == Ity_I16) { |
| // assign(t[0], binop(Iop_Or16, mkexpr(src), |
| // binop(Iop_Shr16, mkexpr(src), mkU8(1)))); |
| // assign(t[1], binop(Iop_Or16, mkexpr(t[0]), |
| // binop(Iop_Shr16, mkexpr(t[0]), mkU8(2)))); |
| // assign(t[2], binop(Iop_Or16, mkexpr(t[1]), |
| // binop(Iop_Shr16, mkexpr(t[1]), mkU8(4)))); |
| // assign(t[3], binop(Iop_Or16, mkexpr(t[2]), |
| // binop(Iop_Shr16, mkexpr(t[2]), mkU8(8)))); |
| // assign(t[4], unop(Iop_Not16, mkexpr(t[3]))); |
| // return gen_POPCOUNT(ty, t[4]); |
| // } |
| // vassert(0); |
| //} |
| |
| |
| /*--------------------------------------------------------------------*/ |
| /*--- end guest_amd64_toIR.c ---*/ |
| /*--------------------------------------------------------------------*/ |