| |
| /*--------------------------------------------------------------------*/ |
| /*--- Helgrind: checking for data races in threaded programs. ---*/ |
| /*--- hg_main.c ---*/ |
| /*--------------------------------------------------------------------*/ |
| |
| /* |
| This file is part of Helgrind, a Valgrind tool for detecting |
| data races in threaded programs. |
| |
| Copyright (C) 2002-2004 Nicholas Nethercote |
| njn25@cam.ac.uk |
| |
| This program is free software; you can redistribute it and/or |
| modify it under the terms of the GNU General Public License as |
| published by the Free Software Foundation; either version 2 of the |
| License, or (at your option) any later version. |
| |
| This program is distributed in the hope that it will be useful, but |
| WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with this program; if not, write to the Free Software |
| Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA |
| 02111-1307, USA. |
| |
| The GNU General Public License is contained in the file COPYING. |
| */ |
| |
| #include "vg_skin.h" |
| #include "helgrind.h" |
| |
| static UInt n_eraser_warnings = 0; |
| static UInt n_lockorder_warnings = 0; |
| |
| /*------------------------------------------------------------*/ |
| /*--- Debug guff ---*/ |
| /*------------------------------------------------------------*/ |
| |
| #define DEBUG_LOCK_TABLE 0 /* Print lock table at end */ |
| |
| #define DEBUG_MAKE_ACCESSES 0 /* Print make_access() calls */ |
| #define DEBUG_LOCKS 0 /* Print lock()/unlock() calls and locksets */ |
| #define DEBUG_NEW_LOCKSETS 0 /* Print new locksets when created */ |
| #define DEBUG_ACCESSES 0 /* Print reads, writes */ |
| #define DEBUG_MEM_LOCKSET_CHANGES 0 |
| /* Print when an address's lockset |
| changes; only useful with |
| DEBUG_ACCESSES */ |
| #define SLOW_ASSERTS 0 /* do expensive asserts */ |
| #define DEBUG_VIRGIN_READS 0 /* Dump around address on VIRGIN reads */ |
| |
| #if SLOW_ASSERTS |
| #define SK_ASSERT(x) sk_assert(x) |
| #else |
| #define SK_ASSERT(x) |
| #endif |
| |
| /* heavyweight LockSet sanity checking: |
| 0 == never |
| 1 == after important ops |
| 2 == As 1 and also after pthread_mutex_* ops (excessively slow) |
| */ |
| #define LOCKSET_SANITY 0 |
| |
| /* Rotate an unsigned quantity left */ |
| #define ROTL(x, n) (((x) << (n)) | ((x) >> ((sizeof(x)*8)-(n)))) |
| |
| /* round a up to the next multiple of N. N must be a power of 2 */ |
| #define ROUNDUP(a, N) ((a + N - 1) & ~(N-1)) |
| |
| /* Round a down to the next multiple of N. N must be a power of 2 */ |
| #define ROUNDDN(a, N) ((a) & ~(N-1)) |
| |
| /*------------------------------------------------------------*/ |
| /*--- Command line options ---*/ |
| /*------------------------------------------------------------*/ |
| |
| static enum { |
| EC_None, |
| EC_Some, |
| EC_All |
| } clo_execontext = EC_None; |
| |
| static Bool clo_priv_stacks = False; |
| |
| /*------------------------------------------------------------*/ |
| /*--- Crude profiling machinery. ---*/ |
| /*------------------------------------------------------------*/ |
| |
| // PPP: work out if I want this |
| |
| #define PROF_EVENT(x) |
| #if 0 |
| #ifdef VG_PROFILE_MEMORY |
| |
| #define N_PROF_EVENTS 150 |
| |
| static UInt event_ctr[N_PROF_EVENTS]; |
| |
| void VGE_(done_prof_mem) ( void ) |
| { |
| Int i; |
| for (i = 0; i < N_PROF_EVENTS; i++) { |
| if ((i % 10) == 0) |
| VG_(printf)("\n"); |
| if (event_ctr[i] > 0) |
| VG_(printf)( "prof mem event %2d: %d\n", i, event_ctr[i] ); |
| } |
| VG_(printf)("\n"); |
| } |
| |
| #define PROF_EVENT(ev) \ |
| do { sk_assert((ev) >= 0 && (ev) < N_PROF_EVENTS); \ |
| event_ctr[ev]++; \ |
| } while (False); |
| |
| #else |
| |
| //static void init_prof_mem ( void ) { } |
| // void VG_(done_prof_mem) ( void ) { } |
| |
| #define PROF_EVENT(ev) /* */ |
| |
| #endif /* VG_PROFILE_MEMORY */ |
| |
| /* Event index. If just the name of the fn is given, this means the |
| number of calls to the fn. Otherwise it is the specified event. |
| |
| [PPP: snip event numbers...] |
| */ |
| #endif /* 0 */ |
| |
| |
| /*------------------------------------------------------------*/ |
| /*--- Data defns. ---*/ |
| /*------------------------------------------------------------*/ |
| |
| typedef |
| struct _HG_Chunk { |
| struct _HG_Chunk* next; |
| Addr data; /* ptr to actual block */ |
| Int size; /* size requested */ |
| ExeContext* where; /* where it was allocated */ |
| ThreadId tid; /* allocating thread */ |
| } |
| HG_Chunk; |
| |
| typedef enum |
| { Vge_VirginInit, Vge_NonVirginInit, Vge_SegmentInit, Vge_Error } |
| VgeInitStatus; |
| |
| |
| /* Should add up to 32 to fit in one word */ |
| #define OTHER_BITS 30 |
| #define STATE_BITS 2 |
| |
| #define ESEC_MAP_WORDS 16384 /* Words per secondary map */ |
| |
| /* This is for indicating that a memory block has been initialised but not |
| * really directly by a particular thread... (eg. text/data initialised |
| * automatically at startup). |
| * Must be different to virgin_word.other */ |
| #define TID_INDICATING_NONVIRGIN 1 |
| |
| /* Magic packed TLS used for error suppression; if word state is Excl |
| and tid is this, then it means all access are OK without changing |
| state and without raising any more errors */ |
| #define TLSP_INDICATING_ALL ((1 << OTHER_BITS) - 1) |
| |
| /* Number of entries must fit in STATE_BITS bits */ |
| typedef enum { Vge_Virgin, Vge_Excl, Vge_Shar, Vge_SharMod } pth_state; |
| |
| static inline const Char *pp_state(pth_state st) |
| { |
| const Char *ret; |
| |
| switch(st) { |
| case Vge_Virgin: ret = "virgin"; break; |
| case Vge_Excl: ret = "exclusive"; break; |
| case Vge_Shar: ret = "shared RO"; break; |
| case Vge_SharMod: ret = "shared RW"; break; |
| default: ret = "???"; |
| } |
| return ret; |
| } |
| |
| typedef |
| struct { |
| /* gcc arranges this bitfield with state in the 2LSB and other |
| in the 30MSB, which is what we want */ |
| UInt state:STATE_BITS; |
| UInt other:OTHER_BITS; |
| } shadow_word; |
| |
| #define SW(st, other) ((shadow_word) { st, other }) |
| |
| typedef |
| struct { |
| shadow_word swords[ESEC_MAP_WORDS]; |
| } |
| ESecMap; |
| |
| static ESecMap* primary_map[ 65536 ]; |
| static ESecMap distinguished_secondary_map; |
| |
| static const shadow_word virgin_sword = SW(Vge_Virgin, 0); |
| static const shadow_word error_sword = SW(Vge_Excl, TLSP_INDICATING_ALL); |
| |
| #define VGE_IS_DISTINGUISHED_SM(smap) \ |
| ((smap) == &distinguished_secondary_map) |
| |
| #define ENSURE_MAPPABLE(addr,caller) \ |
| do { \ |
| if (VGE_IS_DISTINGUISHED_SM(primary_map[(addr) >> 16])) { \ |
| primary_map[(addr) >> 16] = alloc_secondary_map(caller); \ |
| /*VG_(printf)("new 2map because of %p\n", addr);*/ \ |
| } \ |
| } while(0) |
| |
| |
| /* Parallel map which contains execution contexts when words last |
| changed state (if required) */ |
| |
| typedef struct EC_EIP { |
| union u_ec_eip { |
| Addr eip; |
| ExeContext *ec; |
| } uu_ec_eip; |
| UInt state:STATE_BITS; |
| UInt tls:OTHER_BITS; /* packed TLS */ |
| } EC_EIP; |
| |
| #define NULL_EC_EIP ((EC_EIP){ { 0 }, 0, 0}) |
| |
| #define EIP(eip, prev, tls) ((EC_EIP) { (union u_ec_eip)(eip), (prev).state, packTLS(tls) }) |
| #define EC(ec, prev, tls) ((EC_EIP) { (union u_ec_eip)(ec), (prev).state, packTLS(tls) }) |
| |
| static inline UInt packEC(ExeContext *ec) |
| { |
| SK_ASSERT(((UInt)ec & ((1 << STATE_BITS)-1)) == 0); |
| return ((UInt)ec) >> STATE_BITS; |
| } |
| |
| static inline ExeContext *unpackEC(UInt i) |
| { |
| return (ExeContext *)(i << STATE_BITS); |
| } |
| |
| /* Lose 2 LSB of eip */ |
| static inline UInt packEIP(Addr eip) |
| { |
| return ((UInt)eip) >> STATE_BITS; |
| } |
| |
| static inline Addr unpackEIP(UInt i) |
| { |
| return (Addr)(i << STATE_BITS); |
| } |
| |
| typedef struct { |
| EC_EIP execontext[ESEC_MAP_WORDS]; |
| } ExeContextMap; |
| |
| static ExeContextMap** execontext_map; |
| |
| static inline void setExeContext(Addr a, EC_EIP ec) |
| { |
| UInt idx = (a >> 16) & 0xffff; |
| UInt off = (a >> 2) & 0x3fff; |
| |
| if (execontext_map[idx] == NULL) { |
| execontext_map[idx] = VG_(malloc)(sizeof(ExeContextMap)); |
| VG_(memset)(execontext_map[idx], 0, sizeof(ExeContextMap)); |
| } |
| |
| execontext_map[idx]->execontext[off] = ec; |
| } |
| |
| static inline EC_EIP getExeContext(Addr a) |
| { |
| UInt idx = (a >> 16) & 0xffff; |
| UInt off = (a >> 2) & 0x3fff; |
| EC_EIP ec = NULL_EC_EIP; |
| |
| if (execontext_map[idx] != NULL) |
| ec = execontext_map[idx]->execontext[off]; |
| |
| return ec; |
| } |
| |
| /*------------------------------------------------------------*/ |
| /*--- Thread lifetime segments ---*/ |
| /*------------------------------------------------------------*/ |
| |
| /* |
| * This mechanism deals with the common case of a parent thread |
| * creating a structure for a child thread, and then passing ownership |
| * of the structure to that thread. It similarly copes with a child |
| * thread passing information back to another thread waiting to join |
| * on it. |
| * |
| * Each thread's lifetime can be partitioned into segments. Those |
| * segments are arranged to form an interference graph which indicates |
| * whether two thread lifetime segments can possibly be concurrent. |
| * If not, then memory with is exclusively accessed by one TLS can be |
| * passed on to another TLS without an error occurring, and without |
| * moving it from Excl state. |
| * |
| * At present this only considers thread creation and join as |
| * synchronisation events for creating new lifetime segments, but |
| * others may be possible (like mutex operations). |
| */ |
| |
| typedef struct _ThreadLifeSeg ThreadLifeSeg; |
| |
| struct _ThreadLifeSeg { |
| ThreadId tid; |
| ThreadLifeSeg *prior[2]; /* Previous lifetime segments */ |
| UInt refcount; /* Number of memory locations pointing here */ |
| UInt mark; /* mark used for graph traversal */ |
| ThreadLifeSeg *next; /* list of all TLS */ |
| }; |
| |
| static ThreadLifeSeg *all_tls; |
| static UInt tls_since_gc; |
| #define TLS_SINCE_GC 10000 |
| |
| /* current mark used for TLS graph traversal */ |
| static UInt tlsmark; |
| |
| static ThreadLifeSeg *thread_seg[VG_N_THREADS]; |
| |
| |
| static void tls_gc(void) |
| { |
| /* XXX later. Walk through all TLSs and look for ones with 0 |
| refcount and remove them from the structure and free them. |
| Could probably get rid of ThreadLifeSeg.refcount and simply use |
| mark-sweep from the shadow table. */ |
| VG_(printf)("WRITEME: TLS GC\n"); |
| } |
| |
| static void newTLS(ThreadId tid) |
| { |
| static const Bool debug = False; |
| ThreadLifeSeg *tls; |
| |
| /* Initial NULL */ |
| if (thread_seg[tid] == NULL) { |
| tls = VG_(malloc)(sizeof(*tls)); |
| tls->tid = tid; |
| tls->prior[0] = tls->prior[1] = NULL; |
| tls->refcount = 0; |
| tls->mark = tlsmark-1; |
| |
| tls->next = all_tls; |
| all_tls = tls; |
| tls_since_gc++; |
| |
| thread_seg[tid] = tls; |
| return; |
| } |
| |
| /* Previous TLS was unused, so just recycle */ |
| if (thread_seg[tid]->refcount == 0) { |
| if (debug) |
| VG_(printf)("newTLS; recycling TLS %p for tid %u\n", |
| thread_seg[tid], tid); |
| return; |
| } |
| |
| /* Use existing TLS for this tid as a prior for new TLS */ |
| tls = VG_(malloc)(sizeof(*tls)); |
| tls->tid = tid; |
| tls->prior[0] = thread_seg[tid]; |
| tls->prior[1] = NULL; |
| tls->refcount = 0; |
| tls->mark = tlsmark-1; |
| |
| tls->next = all_tls; |
| all_tls = tls; |
| if (++tls_since_gc > TLS_SINCE_GC) { |
| tls_gc(); |
| tls_since_gc = 0; |
| } |
| |
| if (debug) |
| VG_(printf)("newTLS: made new TLS %p for tid %u (prior %p(%u))\n", |
| tls, tid, tls->prior[0], tls->prior[0]->tid); |
| |
| thread_seg[tid] = tls; |
| } |
| |
| /* clear out a TLS for a thread that's died */ |
| static void clearTLS(ThreadId tid) |
| { |
| newTLS(tid); |
| |
| thread_seg[tid]->prior[0] = NULL; |
| thread_seg[tid]->prior[1] = NULL; |
| } |
| |
| static void addPriorTLS(ThreadId tid, ThreadId prior) |
| { |
| static const Bool debug = False; |
| ThreadLifeSeg *tls = thread_seg[tid]; |
| |
| if (debug) |
| VG_(printf)("making TLS %p(%u) prior to TLS %p(%u)\n", |
| thread_seg[prior], prior, tls, tid); |
| |
| sk_assert(thread_seg[tid] != NULL); |
| sk_assert(thread_seg[prior] != NULL); |
| |
| if (tls->prior[0] == NULL) |
| tls->prior[0] = thread_seg[prior]; |
| else { |
| sk_assert(tls->prior[1] == NULL); |
| tls->prior[1] = thread_seg[prior]; |
| } |
| } |
| |
| /* Return True if prior is definitely not concurrent with tls */ |
| static Bool tlsIsDisjoint(const ThreadLifeSeg *tls, |
| const ThreadLifeSeg *prior) |
| { |
| Bool isPrior(const ThreadLifeSeg *t) { |
| if (t == NULL || t->mark == tlsmark) |
| return False; |
| |
| if (t == prior) |
| return True; |
| |
| ((ThreadLifeSeg *)t)->mark = tlsmark; |
| |
| return isPrior(t->prior[0]) || isPrior(t->prior[1]); |
| } |
| tlsmark++; /* new traversal mark */ |
| |
| return isPrior(tls); |
| } |
| |
| static inline UInt packTLS(ThreadLifeSeg *tls) |
| { |
| SK_ASSERT(((UInt)tls & ((1 << STATE_BITS)-1)) == 0); |
| return ((UInt)tls) >> STATE_BITS; |
| } |
| |
| static inline ThreadLifeSeg *unpackTLS(UInt i) |
| { |
| return (ThreadLifeSeg *)(i << STATE_BITS); |
| } |
| |
| /*------------------------------------------------------------*/ |
| /*--- Low-level support for memory tracking. ---*/ |
| /*------------------------------------------------------------*/ |
| |
| /* |
| All reads and writes are recorded in the memory map, which |
| records the state of all memory in the process. The memory map is |
| organised like that for normal Valgrind, except each that everything |
| is done at word-level instead of byte-level, and each word has only |
| one word of shadow (instead of 36 bits). |
| |
| As for normal Valgrind there is a distinguished secondary map. But we're |
| working at word-granularity, so it has 16k word entries instead of 64k byte |
| entries. Lookup is done as follows: |
| |
| bits 31..16: primary map lookup |
| bits 15.. 2: secondary map lookup |
| bits 1.. 0: ignored |
| */ |
| |
| |
| /*------------------------------------------------------------*/ |
| /*--- Basic bitmap management, reading and writing. ---*/ |
| /*------------------------------------------------------------*/ |
| |
| /* Allocate and initialise a secondary map, marking all words as virgin. */ |
| |
| /* Just a value that isn't a real pointer */ |
| #define SEC_MAP_ACCESS (shadow_word*)0x99 |
| |
| |
| static |
| ESecMap* alloc_secondary_map ( __attribute__ ((unused)) Char* caller ) |
| { |
| ESecMap* map; |
| UInt i; |
| //PROF_EVENT(10); PPP |
| |
| /* It just happens that a SecMap occupies exactly 18 pages -- |
| although this isn't important, so the following assert is |
| spurious. (SSS: not true for ESecMaps -- they're 16 pages) */ |
| sk_assert(0 == (sizeof(ESecMap) % VKI_BYTES_PER_PAGE)); |
| map = (ESecMap *)VG_(shadow_alloc)(sizeof(ESecMap)); |
| |
| for (i = 0; i < ESEC_MAP_WORDS; i++) |
| map->swords[i] = virgin_sword; |
| |
| return map; |
| } |
| |
| |
| /* Set a word. The byte give by 'a' could be anywhere in the word -- the whole |
| * word gets set. */ |
| static /* __inline__ */ |
| void set_sword ( Addr a, shadow_word sword ) |
| { |
| ESecMap* sm; |
| shadow_word *oldsw; |
| |
| //PROF_EVENT(23); PPP |
| ENSURE_MAPPABLE(a, "VGE_(set_sword)"); |
| |
| /* Use bits 31..16 for primary, 15..2 for secondary lookup */ |
| sm = primary_map[a >> 16]; |
| sk_assert(sm != &distinguished_secondary_map); |
| oldsw = &sm->swords[(a & 0xFFFC) >> 2]; |
| if (oldsw->state == Vge_Excl && oldsw->other != TLSP_INDICATING_ALL) { |
| ThreadLifeSeg *tls = unpackTLS(oldsw->other); |
| tls->refcount--; |
| } |
| |
| if (sword.state == Vge_Excl && sword.other != TLSP_INDICATING_ALL) { |
| ThreadLifeSeg *tls = unpackTLS(sword.other); |
| tls->refcount++; |
| } |
| |
| sm->swords[(a & 0xFFFC) >> 2] = sword; |
| |
| if (VGE_IS_DISTINGUISHED_SM(sm)) { |
| VG_(printf)("wrote to distinguished 2ndary map! 0x%x\n", a); |
| // XXX: may be legit, but I want to know when it happens --njn |
| VG_(skin_panic)("wrote to distinguished 2ndary map!"); |
| } |
| } |
| |
| |
| static __inline__ |
| shadow_word* get_sword_addr ( Addr a ) |
| { |
| /* Use bits 31..16 for primary, 15..2 for secondary lookup */ |
| ESecMap* sm = primary_map[a >> 16]; |
| UInt sm_off = (a & 0xFFFC) >> 2; |
| |
| if (VGE_IS_DISTINGUISHED_SM(sm)) { |
| VG_(printf)("accessed distinguished 2ndary map! 0x%x\n", a); |
| // XXX: may be legit, but I want to know when it happens --njn |
| //VG_(skin_panic)("accessed distinguished 2ndary map!"); |
| return SEC_MAP_ACCESS; |
| } |
| |
| //PROF_EVENT(21); PPP |
| return & (sm->swords[sm_off]); |
| } |
| |
| |
| // SSS: rename these so they're not so similar to memcheck, unless it's |
| // appropriate of course |
| |
| static __inline__ |
| void init_virgin_sword(Addr a) |
| { |
| if (clo_execontext != EC_None) |
| setExeContext(a, NULL_EC_EIP); |
| set_sword(a, virgin_sword); |
| } |
| |
| static __inline__ |
| void init_error_sword(Addr a) |
| { |
| set_sword(a, error_sword); |
| } |
| |
| static __inline__ |
| void init_nonvirgin_sword(Addr a) |
| { |
| shadow_word sword; |
| ThreadId tid = VG_(get_current_or_recent_tid)(); |
| ThreadLifeSeg *tls; |
| |
| sk_assert(tid != VG_INVALID_THREADID); |
| tls = thread_seg[tid]; |
| |
| sword = SW(Vge_Excl, packTLS(tls)); |
| set_sword(a, sword); |
| } |
| |
| |
| /* In this case, we treat it for Eraser's sake like virgin (it hasn't |
| * been inited by a particular thread, it's just done automatically upon |
| * startup), but we mark its .state specially so it doesn't look like an |
| * uninited read. */ |
| static __inline__ |
| void init_magically_inited_sword(Addr a) |
| { |
| shadow_word sword; |
| |
| sk_assert(VG_INVALID_THREADID == VG_(get_current_tid)()); |
| |
| sword = SW(Vge_Virgin, TID_INDICATING_NONVIRGIN); |
| |
| set_sword(a, virgin_sword); |
| } |
| |
| |
| /*------------------------------------------------------------*/ |
| /*--- Implementation of lock sets. ---*/ |
| /*------------------------------------------------------------*/ |
| |
| typedef struct _Mutex Mutex; /* forward decl */ |
| typedef struct _LockSet LockSet; |
| |
| typedef enum MutexState { |
| MxUnknown, /* don't know */ |
| MxUnlocked, /* unlocked */ |
| MxLocked, /* locked */ |
| MxDead /* destroyed */ |
| } MutexState; |
| |
| struct _Mutex { |
| Addr mutexp; |
| Mutex *next; |
| |
| MutexState state; /* mutex state */ |
| ThreadId tid; /* owner */ |
| ExeContext *location; /* where the last change happened */ |
| |
| const LockSet *lockdep; /* set of locks we depend on */ |
| UInt mark; /* mark for graph traversal */ |
| }; |
| |
| static inline Int mutex_cmp(const Mutex *a, const Mutex *b) |
| { |
| return a->mutexp - b->mutexp; |
| } |
| |
| struct _LockSet { |
| Int setsize; /* number of members */ |
| UInt hash; /* hash code */ |
| LockSet *next; /* next in hash chain */ |
| const Mutex *mutex[0]; /* locks */ |
| }; |
| |
| static const LockSet *emptyset; |
| |
| /* Each one is an index into the lockset table. */ |
| static const LockSet *thread_locks[VG_N_THREADS]; |
| |
| #define LOCKSET_HASH_SZ 1021 |
| |
| static LockSet *lockset_hash[LOCKSET_HASH_SZ]; |
| |
| /* Pack and unpack a LockSet pointer into shadow_word.other */ |
| static inline UInt packLockSet(const LockSet *p) |
| { |
| UInt id; |
| |
| SK_ASSERT(((UInt)p & ((1 << STATE_BITS)-1)) == 0); |
| id = ((UInt)p) >> STATE_BITS; |
| |
| return id; |
| } |
| |
| static inline const LockSet *unpackLockSet(UInt id) |
| { |
| return (LockSet *)(id << STATE_BITS); |
| } |
| |
| static |
| void pp_LockSet(const LockSet* p) |
| { |
| Int i; |
| VG_(printf)("{ "); |
| for(i = 0; i < p->setsize; i++) { |
| const Mutex *mx = p->mutex[i]; |
| |
| VG_(printf)("%p%(y ", mx->mutexp, mx->mutexp); |
| } |
| VG_(printf)("}\n"); |
| } |
| |
| |
| static void print_LockSet(const Char *s, const LockSet *ls) |
| { |
| VG_(printf)("%s: ", s); |
| pp_LockSet(ls); |
| } |
| |
| /* Compute the hash of a LockSet */ |
| static UInt hash_LockSet_w_wo(const LockSet *ls, |
| const Mutex *with, |
| const Mutex *without) |
| { |
| Int i; |
| UInt hash = ls->setsize + (with != NULL) - (without != NULL); |
| |
| sk_assert(with == NULL || with != without); |
| |
| for(i = 0; with != NULL || i < ls->setsize; i++) { |
| const Mutex *mx = i >= ls->setsize ? NULL : ls->mutex[i]; |
| |
| if (without && mutex_cmp(without, mx) == 0) |
| continue; |
| |
| if (with && (mx == NULL || mutex_cmp(with, mx) < 0)) { |
| mx = with; |
| with = NULL; |
| i--; |
| } |
| |
| hash = ROTL(hash, 17); |
| hash ^= (UInt)mx->mutexp; |
| } |
| |
| return hash % LOCKSET_HASH_SZ; |
| } |
| |
| static inline UInt hash_LockSet_with(const LockSet *ls, const Mutex *with) |
| { |
| UInt hash = hash_LockSet_w_wo(ls, with, NULL); |
| |
| if (0) |
| VG_(printf)("hash_with %p+%p -> %d\n", ls, with->mutexp, hash); |
| |
| return hash; |
| } |
| |
| static inline UInt hash_LockSet_without(const LockSet *ls, const Mutex *without) |
| { |
| UInt hash = hash_LockSet_w_wo(ls, NULL, without); |
| |
| if (0) |
| VG_(printf)("hash_with %p-%p -> %d\n", ls, without->mutexp, hash); |
| |
| return hash; |
| } |
| |
| static inline UInt hash_LockSet(const LockSet *ls) |
| { |
| UInt hash = hash_LockSet_w_wo(ls, NULL, NULL); |
| |
| if (0) |
| VG_(printf)("hash %p -> %d\n", ls, hash); |
| |
| return hash; |
| } |
| |
| static |
| Bool structural_eq_LockSet(const LockSet* a, const LockSet* b) |
| { |
| Int i; |
| |
| if (a == b) |
| return True; |
| if (a->setsize != b->setsize) |
| return False; |
| |
| for(i = 0; i < a->setsize; i++) { |
| if (mutex_cmp(a->mutex[i], b->mutex[i]) != 0) |
| return False; |
| } |
| |
| return True; |
| } |
| |
| |
| /* Tricky: equivalent to (compare(insert(missing_elem, a), b)), but |
| * doesn't do the insertion. Returns True if they match. |
| */ |
| static Bool |
| weird_LockSet_equals(const LockSet* a, const LockSet* b, |
| const Mutex *missing_mutex) |
| { |
| static const Bool debug = False; |
| Int ia, ib; |
| |
| /* Idea is to try and match each element of b against either an |
| element of a, or missing_mutex. */ |
| |
| if (debug) { |
| print_LockSet("weird_LockSet_equals a", a); |
| print_LockSet(" b", b); |
| VG_(printf)( " missing: %p%(y\n", |
| missing_mutex->mutexp, missing_mutex->mutexp); |
| } |
| |
| if ((a->setsize + 1) != b->setsize) { |
| if (debug) |
| VG_(printf)(" fastpath length mismatch -> 0\n"); |
| return False; |
| } |
| |
| /* There are three phases to this compare: |
| 1 the section from the start of a up to missing_mutex |
| 2 missing mutex itself |
| 3 the section after missing_mutex to the end of a |
| */ |
| |
| ia = 0; |
| ib = 0; |
| |
| /* 1: up to missing_mutex */ |
| for(; ia < a->setsize && mutex_cmp(a->mutex[ia], missing_mutex) < 0; ia++, ib++) { |
| if (debug) { |
| print_LockSet(" 1:a", a); |
| print_LockSet(" 1:b", b); |
| } |
| if (ib == b->setsize || mutex_cmp(a->mutex[ia], b->mutex[ib]) != 0) |
| return False; |
| } |
| |
| /* 2: missing_mutex itself */ |
| if (debug) { |
| VG_(printf)( " 2:missing: %p%(y\n", |
| missing_mutex->mutexp, missing_mutex->mutexp); |
| print_LockSet(" 2: b", b); |
| } |
| |
| sk_assert(ia == a->setsize || mutex_cmp(a->mutex[ia], missing_mutex) >= 0); |
| |
| if (ib == b->setsize || mutex_cmp(missing_mutex, b->mutex[ib]) != 0) |
| return False; |
| |
| ib++; |
| |
| /* 3: after missing_mutex to end */ |
| |
| for(; ia < a->setsize && ib < b->setsize; ia++, ib++) { |
| if (debug) { |
| print_LockSet(" 3:a", a); |
| print_LockSet(" 3:b", b); |
| } |
| if (mutex_cmp(a->mutex[ia], b->mutex[ib]) != 0) |
| return False; |
| } |
| |
| if (debug) |
| VG_(printf)(" ia=%d ib=%d --> %d\n", ia, ib, ia == a->setsize && ib == b->setsize); |
| |
| return ia == a->setsize && ib == b->setsize; |
| } |
| |
| |
| |
| static const LockSet *lookup_LockSet(const LockSet *set) |
| { |
| UInt bucket = set->hash; |
| LockSet *ret; |
| |
| for(ret = lockset_hash[bucket]; ret != NULL; ret = ret->next) |
| if (set == ret || structural_eq_LockSet(set, ret)) |
| return ret; |
| |
| return NULL; |
| } |
| |
| static const LockSet *lookup_LockSet_with(const LockSet *set, Mutex *mutex) |
| { |
| UInt bucket = hash_LockSet_with(set, mutex); |
| const LockSet *ret; |
| |
| for(ret = lockset_hash[bucket]; ret != NULL; ret = ret->next) |
| if (weird_LockSet_equals(set, ret, mutex)) |
| return ret; |
| |
| return NULL; |
| } |
| |
| static const LockSet *lookup_LockSet_without(const LockSet *set, Mutex *mutex) |
| { |
| UInt bucket = hash_LockSet_without(set, mutex); |
| const LockSet *ret; |
| |
| for(ret = lockset_hash[bucket]; ret != NULL; ret = ret->next) |
| if (weird_LockSet_equals(ret, set, mutex)) |
| return ret; |
| |
| return NULL; |
| } |
| |
| static void insert_LockSet(LockSet *set) |
| { |
| UInt hash = hash_LockSet(set); |
| |
| set->hash = hash; |
| |
| sk_assert(lookup_LockSet(set) == NULL); |
| |
| set->next = lockset_hash[hash]; |
| lockset_hash[hash] = set; |
| } |
| |
| static inline |
| LockSet *alloc_LockSet(UInt setsize) |
| { |
| LockSet *ret = VG_(malloc)(sizeof(*ret) + sizeof(Mutex *) * setsize); |
| ret->setsize = setsize; |
| return ret; |
| } |
| |
| static inline |
| void free_LockSet(LockSet *p) |
| { |
| /* assert: not present in hash */ |
| VG_(free)(p); |
| } |
| |
| static |
| void pp_all_LockSets ( void ) |
| { |
| Int i; |
| Int sets, buckets; |
| |
| sets = buckets = 0; |
| for (i = 0; i < LOCKSET_HASH_SZ; i++) { |
| const LockSet *ls = lockset_hash[i]; |
| Bool first = True; |
| |
| for(; ls != NULL; ls = ls->next) { |
| if (first) { |
| buckets++; |
| VG_(printf)("[%4d] = ", i); |
| } else |
| VG_(printf)(" "); |
| |
| sets++; |
| first = False; |
| pp_LockSet(ls); |
| } |
| } |
| |
| VG_(printf)("%d distinct LockSets in %d buckets\n", sets, buckets); |
| } |
| |
| static inline Bool isempty(const LockSet *ls) |
| { |
| return ls == NULL || ls->setsize == 0; |
| } |
| |
| static Bool ismember(const LockSet *ls, const Mutex *mx) |
| { |
| Int i; |
| |
| /* XXX use binary search */ |
| for(i = 0; i < ls->setsize; i++) |
| if (mutex_cmp(mx, ls->mutex[i]) == 0) |
| return True; |
| |
| return False; |
| } |
| |
| /* Check invariants: |
| - all locksets are unique |
| - each set is an array in strictly increasing order of mutex addr |
| */ |
| static |
| void sanity_check_locksets ( const Char* caller ) |
| { |
| Int i; |
| const Char *badness; |
| LockSet *ls; |
| |
| for(i = 0; i < LOCKSET_HASH_SZ; i++) { |
| |
| for(ls = lockset_hash[i]; ls != NULL; ls = ls->next) { |
| const Mutex *prev; |
| Int j; |
| |
| if (hash_LockSet(ls) != ls->hash) { |
| badness = "mismatched hash"; |
| goto bad; |
| } |
| if (ls->hash != (UInt)i) { |
| badness = "wrong bucket"; |
| goto bad; |
| } |
| if (lookup_LockSet(ls) != ls) { |
| badness = "non-unique set"; |
| goto bad; |
| } |
| |
| prev = ls->mutex[0]; |
| for(j = 1; j < ls->setsize; j++) { |
| if (mutex_cmp(prev, ls->mutex[j]) >= 0) { |
| badness = "mutexes out of order"; |
| goto bad; |
| } |
| } |
| } |
| } |
| return; |
| |
| bad: |
| VG_(printf)("sanity_check_locksets: " |
| "i = %d, ls=%p badness = %s, caller = %s\n", |
| i, ls, badness, caller); |
| pp_all_LockSets(); |
| VG_(skin_panic)("sanity_check_locksets"); |
| } |
| |
| static |
| LockSet *add_LockSet(const LockSet *ls, const Mutex *mx) |
| { |
| static const Bool debug = False; |
| LockSet *ret = NULL; |
| Int i, j; |
| |
| if (debug || DEBUG_MEM_LOCKSET_CHANGES) { |
| VG_(printf)("add-IN mutex %p%(y\n", mx->mutexp, mx->mutexp); |
| print_LockSet("add-IN", ls); |
| } |
| |
| if (debug || LOCKSET_SANITY) |
| sanity_check_locksets("add-IN"); |
| |
| sk_assert(!ismember(ls, mx)); |
| |
| ret = alloc_LockSet(ls->setsize+1); |
| |
| for(i = j = 0; i < ls->setsize; i++) { |
| if (debug) |
| VG_(printf)("i=%d j=%d ls->mutex[i]=%p mx=%p\n", |
| i, j, ls->mutex[i]->mutexp, mx ? mx->mutexp : 0); |
| if (mx && mutex_cmp(mx, ls->mutex[i]) < 0) { |
| ret->mutex[j++] = mx; |
| mx = NULL; |
| } |
| ret->mutex[j++] = ls->mutex[i]; |
| } |
| |
| /* not added in loop - must be after */ |
| if (mx) |
| ret->mutex[j++] = mx; |
| |
| sk_assert(j == ret->setsize); |
| |
| if (debug || LOCKSET_SANITY) { |
| print_LockSet("add-OUT", ret); |
| sanity_check_locksets("add-OUT"); |
| } |
| return ret; |
| } |
| |
| /* Builds ls with mx removed. mx should actually be in ls! |
| (a checked assertion). Resulting set should not already |
| exist in the table (unchecked). |
| */ |
| static |
| LockSet *remove_LockSet ( const LockSet *ls, const Mutex *mx ) |
| { |
| static const Bool debug = False; |
| LockSet *ret = NULL; |
| Int i, j; |
| |
| if (debug || DEBUG_MEM_LOCKSET_CHANGES) { |
| print_LockSet("remove-IN", ls); |
| } |
| |
| if (debug || LOCKSET_SANITY) |
| sanity_check_locksets("remove-IN"); |
| |
| sk_assert(ismember(ls, mx)); |
| |
| ret = alloc_LockSet(ls->setsize-1); |
| |
| for(i = j = 0; i < ls->setsize; i++) { |
| if (mutex_cmp(ls->mutex[i], mx) == 0) |
| continue; |
| ret->mutex[j++] = ls->mutex[i]; |
| } |
| |
| sk_assert(j == ret->setsize); |
| |
| if (debug || LOCKSET_SANITY) { |
| print_LockSet("remove-OUT", ret); |
| sanity_check_locksets("remove-OUT"); |
| } |
| return ret; |
| } |
| |
| |
| /* Builds the intersection, and then unbuilds it if it's already in the table. |
| */ |
| static const LockSet *_intersect(const LockSet *a, const LockSet *b) |
| { |
| static const Bool debug = False; |
| Int iret; |
| Int ia, ib; |
| Int size; |
| LockSet *ret; |
| const LockSet *found; |
| |
| if (debug || LOCKSET_SANITY) |
| sanity_check_locksets("intersect-IN"); |
| |
| if (debug || DEBUG_MEM_LOCKSET_CHANGES) { |
| print_LockSet("intersect a", a); |
| print_LockSet("intersect b", b); |
| } |
| |
| /* count the size of the new set */ |
| size = 0; |
| ia = ib = 0; |
| for(size = ia = ib = 0; ia < a->setsize && ib < b->setsize; ) { |
| if (mutex_cmp(a->mutex[ia], b->mutex[ib]) == 0) { |
| size++; |
| ia++; |
| ib++; |
| } else if (mutex_cmp(a->mutex[ia], b->mutex[ib]) < 0) { |
| ia++; |
| } else { |
| sk_assert(mutex_cmp(a->mutex[ia], b->mutex[ib]) > 0); |
| ib++; |
| } |
| } |
| |
| /* Build the intersection of the two sets */ |
| ret = alloc_LockSet(size); |
| for (iret = ia = ib = 0; ia < a->setsize && ib < b->setsize; ) { |
| if (mutex_cmp(a->mutex[ia], b->mutex[ib]) == 0) { |
| sk_assert(iret < ret->setsize); |
| ret->mutex[iret++] = a->mutex[ia]; |
| ia++; |
| ib++; |
| } else if (mutex_cmp(a->mutex[ia], b->mutex[ib]) < 0) { |
| ia++; |
| } else { |
| sk_assert(mutex_cmp(a->mutex[ia], b->mutex[ib]) > 0); |
| ib++; |
| } |
| } |
| |
| ret->hash = hash_LockSet(ret); |
| |
| /* Now search for it in the table, adding it if not seen before */ |
| found = lookup_LockSet(ret); |
| |
| if (found != NULL) { |
| free_LockSet(ret); |
| } else { |
| insert_LockSet(ret); |
| found = ret; |
| } |
| |
| if (debug || LOCKSET_SANITY) { |
| print_LockSet("intersect-OUT", found); |
| sanity_check_locksets("intersect-OUT"); |
| } |
| |
| return found; |
| } |
| |
| /* inline the fastpath */ |
| static inline const LockSet *intersect(const LockSet *a, const LockSet *b) |
| { |
| static const Bool debug = False; |
| |
| /* Fast case -- when the two are the same */ |
| if (a == b) { |
| if (debug || DEBUG_MEM_LOCKSET_CHANGES) { |
| print_LockSet("intersect-same fastpath", a); |
| } |
| return a; |
| } |
| |
| if (isempty(a) || isempty(b)) { |
| if (debug) |
| VG_(printf)("intersect empty fastpath\n"); |
| return emptyset; |
| } |
| |
| return _intersect(a, b); |
| } |
| |
| |
| static const LockSet *ls_union(const LockSet *a, const LockSet *b) |
| { |
| static const Bool debug = False; |
| Int iret; |
| Int ia, ib; |
| Int size; |
| LockSet *ret; |
| const LockSet *found; |
| |
| if (debug || LOCKSET_SANITY) |
| sanity_check_locksets("union-IN"); |
| |
| /* Fast case -- when the two are the same */ |
| if (a == b) { |
| if (debug || DEBUG_MEM_LOCKSET_CHANGES) { |
| print_LockSet("union-same fastpath", a); |
| } |
| return a; |
| } |
| |
| if (isempty(a)) { |
| if (debug) |
| print_LockSet("union a=empty b", b); |
| return b; |
| } |
| if (isempty(b)) { |
| if (debug) |
| print_LockSet("union b=empty a", a); |
| return a; |
| } |
| |
| if (debug || DEBUG_MEM_LOCKSET_CHANGES) { |
| print_LockSet("union a", a); |
| print_LockSet("union b", b); |
| } |
| |
| /* count the size of the new set */ |
| for(size = ia = ib = 0; (ia < a->setsize) || (ib < b->setsize); ) { |
| Int cmp; |
| |
| if ((ia < a->setsize) && (ib < b->setsize)) |
| cmp = mutex_cmp(a->mutex[ia], b->mutex[ib]); |
| else if (ia == a->setsize) |
| cmp = 1; |
| else |
| cmp = -1; |
| |
| if (cmp == 0) { |
| size++; |
| ia++; |
| ib++; |
| } else if (cmp < 0) { |
| size++; |
| ia++; |
| } else { |
| sk_assert(cmp > 0); |
| size++; |
| ib++; |
| } |
| } |
| |
| /* Build the intersection of the two sets */ |
| ret = alloc_LockSet(size); |
| for (iret = ia = ib = 0; (ia < a->setsize) || (ib < b->setsize); ) { |
| Int cmp; |
| sk_assert(iret < ret->setsize); |
| |
| if ((ia < a->setsize) && (ib < b->setsize)) |
| cmp = mutex_cmp(a->mutex[ia], b->mutex[ib]); |
| else if (ia == a->setsize) |
| cmp = 1; |
| else |
| cmp = -1; |
| |
| if (cmp == 0) { |
| ret->mutex[iret++] = a->mutex[ia]; |
| ia++; |
| ib++; |
| } else if (cmp < 0) { |
| ret->mutex[iret++] = a->mutex[ia]; |
| ia++; |
| } else { |
| sk_assert(cmp > 0); |
| ret->mutex[iret++] = b->mutex[ib]; |
| ib++; |
| } |
| } |
| |
| sk_assert(iret == ret->setsize); |
| |
| ret->hash = hash_LockSet(ret); |
| |
| /* Now search for it in the table, adding it if not seen before */ |
| found = lookup_LockSet(ret); |
| |
| if (found != NULL) { |
| if (debug) |
| print_LockSet("union found existing set", found); |
| free_LockSet(ret); |
| } else { |
| if (debug) |
| print_LockSet("union inserting new set", ret); |
| insert_LockSet(ret); |
| found = ret; |
| } |
| |
| if (debug || LOCKSET_SANITY) { |
| print_LockSet("union-OUT", found); |
| sanity_check_locksets("union-OUT"); |
| } |
| |
| return found; |
| } |
| |
| /*------------------------------------------------------------*/ |
| /*--- Implementation of mutex structure. ---*/ |
| /*------------------------------------------------------------*/ |
| |
| static UInt graph_mark; /* current mark we're using for graph traversal */ |
| |
| static void record_mutex_error(ThreadId tid, Mutex *mutex, |
| Char *str, ExeContext *ec); |
| static void record_lockgraph_error(ThreadId tid, Mutex *mutex, |
| const LockSet *lockset_holding, |
| const LockSet *lockset_prev); |
| |
| static void set_mutex_state(Mutex *mutex, MutexState state, ThreadId tid); |
| |
| #define M_MUTEX_HASHSZ 1021 |
| |
| static Mutex *mutex_hash[M_MUTEX_HASHSZ]; |
| static UInt total_mutexes; |
| |
| static const Char *pp_MutexState(MutexState st) |
| { |
| switch(st) { |
| case MxLocked: return "Locked"; |
| case MxUnlocked: return "Unlocked"; |
| case MxDead: return "Dead"; |
| case MxUnknown: return "Unknown"; |
| } |
| return "???"; |
| } |
| |
| static void pp_all_mutexes() |
| { |
| Int i; |
| Int locks, buckets; |
| |
| locks = buckets = 0; |
| for(i = 0; i < M_MUTEX_HASHSZ; i++) { |
| Mutex *mx; |
| Bool first = True; |
| |
| for(mx = mutex_hash[i]; mx != NULL; mx = mx->next) { |
| if (first) { |
| buckets++; |
| VG_(printf)("[%4d] = ", i); |
| } else |
| VG_(printf)(" "); |
| locks++; |
| first = False; |
| VG_(printf)("%p [%8s] -> %p%(y\n", |
| mx, pp_MutexState(mx->state), mx->mutexp, mx->mutexp); |
| } |
| } |
| |
| VG_(printf)("%d locks in %d buckets (%d allocated)\n", |
| locks, buckets, total_mutexes); |
| } |
| |
| /* find or create a Mutex for a program's mutex use */ |
| static Mutex *get_mutex(Addr mutexp) |
| { |
| UInt bucket = ((UInt)mutexp) % M_MUTEX_HASHSZ; |
| Mutex *mp; |
| |
| for(mp = mutex_hash[bucket]; mp != NULL; mp = mp->next) |
| if (mp->mutexp == mutexp) |
| return mp; |
| |
| total_mutexes++; |
| |
| mp = VG_(malloc)(sizeof(*mp)); |
| mp->mutexp = mutexp; |
| mp->next = mutex_hash[bucket]; |
| mutex_hash[bucket] = mp; |
| |
| mp->state = MxUnknown; |
| mp->tid = VG_INVALID_THREADID; |
| mp->location = NULL; |
| |
| mp->lockdep = emptyset; |
| mp->mark = graph_mark - 1; |
| |
| return mp; |
| } |
| |
| /* Find all mutexes in a range of memory, and call the callback. |
| Remove the mutex from the hash if the callback returns True (mutex |
| structure itself is not freed, because it may be pointed to by a |
| LockSet. */ |
| static void find_mutex_range(Addr start, Addr end, Bool (*action)(Mutex *)) |
| { |
| UInt first = start % M_MUTEX_HASHSZ; |
| UInt last = (end+1) % M_MUTEX_HASHSZ; |
| UInt i; |
| |
| /* Single pass over the hash table, looking for likely hashes */ |
| for(i = first; i != last; ) { |
| Mutex *mx; |
| Mutex **prev = &mutex_hash[i]; |
| |
| for(mx = mutex_hash[i]; mx != NULL; prev = &mx->next, mx = mx->next) { |
| if (mx->mutexp >= start && mx->mutexp < end && (*action)(mx)) |
| *prev = mx->next; |
| } |
| |
| if (++i == M_MUTEX_HASHSZ) |
| i = 0; |
| } |
| } |
| |
| #define MARK_LOOP (graph_mark+0) |
| #define MARK_DONE (graph_mark+1) |
| |
| static Bool check_cycle(const Mutex *start, const LockSet* lockset) |
| { |
| Bool check_cycle_inner(const Mutex *mutex, const LockSet *ls) |
| { |
| static const Bool debug = False; |
| Int i; |
| |
| if (mutex->mark == MARK_LOOP) |
| return True; /* found cycle */ |
| if (mutex->mark == MARK_DONE) |
| return False; /* been here before, its OK */ |
| |
| ((Mutex*)mutex)->mark = MARK_LOOP; |
| |
| if (debug) |
| VG_(printf)("mark=%d visiting %p%(y mutex->lockset=%d\n", |
| graph_mark, mutex->mutexp, mutex->mutexp, mutex->lockdep); |
| for(i = 0; i < ls->setsize; i++) { |
| const Mutex *mx = ls->mutex[i]; |
| |
| if (debug) |
| VG_(printf)(" %y ls=%p (ls->mutex=%p%(y)\n", |
| mutex->mutexp, ls, |
| mx->mutexp, mx->mutexp); |
| if (check_cycle_inner(mx, mx->lockdep)) |
| return True; |
| } |
| ((Mutex*)mutex)->mark = MARK_DONE; |
| |
| return False; |
| } |
| |
| graph_mark += 2; /* clear all marks */ |
| |
| return check_cycle_inner(start, lockset); |
| } |
| |
| /* test to see if a mutex state change would be problematic; this |
| makes no changes to the mutex state. This should be called before |
| the locking thread has actually blocked. */ |
| static void test_mutex_state(Mutex *mutex, MutexState state, ThreadId tid) |
| { |
| static const Bool debug = False; |
| |
| if (mutex->state == MxDead) { |
| Char *str; |
| |
| switch(state) { |
| case MxLocked: str = "lock dead mutex"; break; |
| case MxUnlocked: str = "unlock dead mutex"; break; |
| default: str = "operate on dead mutex"; break; |
| } |
| |
| /* can't do anything legal to a destroyed mutex */ |
| record_mutex_error(tid, mutex, str, mutex->location); |
| return; |
| } |
| |
| switch(state) { |
| case MxLocked: |
| sk_assert(!check_cycle(mutex, mutex->lockdep)); |
| |
| if (debug) |
| print_LockSet("thread holding", thread_locks[tid]); |
| |
| if (check_cycle(mutex, thread_locks[tid])) |
| record_lockgraph_error(tid, mutex, thread_locks[tid], mutex->lockdep); |
| else { |
| mutex->lockdep = ls_union(mutex->lockdep, thread_locks[tid]); |
| |
| if (debug) { |
| VG_(printf)("giving mutex %p%(y lockdep = %p ", |
| mutex->mutexp, mutex->mutexp, mutex->lockdep); |
| print_LockSet("lockdep", mutex->lockdep); |
| } |
| } |
| break; |
| |
| case MxUnlocked: |
| if (debug) |
| print_LockSet("thread holding", thread_locks[tid]); |
| |
| if (mutex->state != MxLocked) { |
| record_mutex_error(tid, mutex, |
| "unlock non-locked mutex", mutex->location); |
| } |
| if (mutex->tid != tid) { |
| record_mutex_error(tid, mutex, |
| "unlock someone else's mutex", mutex->location); |
| } |
| break; |
| |
| case MxDead: |
| break; |
| |
| default: |
| break; |
| } |
| } |
| |
| /* Update a mutex state. Expects most error testing and reporting to |
| have happened in test_mutex_state(). The assumption is that no |
| client code is run by thread tid between test and set, either |
| because it is blocked or test and set are called together |
| atomically. |
| |
| Setting state to MxDead is the exception, since that can happen as |
| a result of any thread freeing memory; in this case set_mutex_state |
| does all the error reporting as well. |
| */ |
| static void set_mutex_state(Mutex *mutex, MutexState state, ThreadId tid) |
| { |
| static const Bool debug = False; |
| |
| if (debug) |
| VG_(printf)("\ntid %d changing mutex (%p)->%p%(y state %s -> %s\n", |
| tid, mutex, mutex->mutexp, mutex->mutexp, |
| pp_MutexState(mutex->state), pp_MutexState(state)); |
| |
| if (mutex->state == MxDead) { |
| /* can't do anything legal to a destroyed mutex */ |
| return; |
| } |
| |
| switch(state) { |
| case MxLocked: |
| if (mutex->state == MxLocked) { |
| if (mutex->tid != tid) |
| record_mutex_error(tid, mutex, "take lock held by someone else", |
| mutex->location); |
| else |
| record_mutex_error(tid, mutex, "take lock we already hold", |
| mutex->location); |
| |
| VG_(skin_panic)("core should have checked this\n"); |
| break; |
| } |
| |
| sk_assert(!check_cycle(mutex, mutex->lockdep)); |
| |
| mutex->tid = tid; |
| break; |
| |
| case MxUnlocked: |
| if (debug) |
| print_LockSet("thread holding", thread_locks[tid]); |
| |
| if (mutex->state != MxLocked || mutex->tid != tid) |
| break; |
| |
| mutex->tid = VG_INVALID_THREADID; |
| break; |
| |
| case MxDead: |
| if (mutex->state == MxLocked) { |
| /* forcably remove offending lock from thread's lockset */ |
| sk_assert(ismember(thread_locks[mutex->tid], mutex)); |
| thread_locks[mutex->tid] = remove_LockSet(thread_locks[mutex->tid], mutex); |
| mutex->tid = VG_INVALID_THREADID; |
| |
| record_mutex_error(tid, mutex, |
| "free locked mutex", mutex->location); |
| } |
| break; |
| |
| default: |
| break; |
| } |
| |
| mutex->location = VG_(get_ExeContext)(tid); |
| mutex->state = state; |
| } |
| |
| /*------------------------------------------------------------*/ |
| /*--- Setting and checking permissions. ---*/ |
| /*------------------------------------------------------------*/ |
| |
| static |
| void set_address_range_state ( Addr a, UInt len /* in bytes */, |
| VgeInitStatus status ) |
| { |
| Addr end; |
| |
| /* only clean up dead mutexes */ |
| Bool cleanmx(Mutex *mx) { |
| return mx->state == MxDead; |
| } |
| |
| |
| # if DEBUG_MAKE_ACCESSES |
| VG_(printf)("make_access: 0x%x, %u, status=%u\n", a, len, status); |
| # endif |
| //PROF_EVENT(30); PPP |
| |
| if (len == 0) |
| return; |
| |
| if (len > 100 * 1000 * 1000) |
| VG_(message)(Vg_UserMsg, |
| "Warning: set address range state: large range %d", |
| len); |
| |
| VGP_PUSHCC(VgpSARP); |
| |
| /* Remove mutexes in recycled memory range from hash */ |
| find_mutex_range(a, a+len, cleanmx); |
| |
| /* Memory block may not be aligned or a whole word multiple. In neat cases, |
| * we have to init len/4 words (len is in bytes). In nasty cases, it's |
| * len/4+1 words. This works out which it is by aligning the block and |
| * seeing if the end byte is in the same word as it is for the unaligned |
| * block; if not, it's the awkward case. */ |
| end = ROUNDUP(a + len, 4); |
| a = ROUNDDN(a, 4); |
| |
| /* Do it ... */ |
| switch (status) { |
| case Vge_VirginInit: |
| for ( ; a < end; a += 4) { |
| //PROF_EVENT(31); PPP |
| init_virgin_sword(a); |
| } |
| break; |
| |
| case Vge_NonVirginInit: |
| for ( ; a < end; a += 4) { |
| //PROF_EVENT(31); PPP |
| init_nonvirgin_sword(a); |
| } |
| break; |
| |
| case Vge_SegmentInit: |
| for ( ; a < end; a += 4) { |
| //PROF_EVENT(31); PPP |
| init_magically_inited_sword(a); |
| } |
| break; |
| |
| case Vge_Error: |
| for ( ; a < end; a += 4) { |
| //PROF_EVENT(31); PPP |
| init_error_sword(a); |
| } |
| break; |
| |
| default: |
| VG_(printf)("init_status = %u\n", status); |
| VG_(skin_panic)("Unexpected Vge_InitStatus"); |
| } |
| |
| /* Check that zero page and highest page have not been written to |
| -- this could happen with buggy syscall wrappers. Today |
| (2001-04-26) had precisely such a problem with |
| __NR_setitimer. */ |
| sk_assert(SK_(cheap_sanity_check)()); |
| VGP_POPCC(VgpSARP); |
| } |
| |
| |
| static void make_segment_readable ( Addr a, UInt len ) |
| { |
| //PROF_EVENT(??); PPP |
| set_address_range_state ( a, len, Vge_SegmentInit ); |
| } |
| |
| static void make_writable ( Addr a, UInt len ) |
| { |
| //PROF_EVENT(36); PPP |
| set_address_range_state( a, len, Vge_VirginInit ); |
| } |
| |
| static void make_readable ( Addr a, UInt len ) |
| { |
| //PROF_EVENT(37); PPP |
| set_address_range_state( a, len, Vge_VirginInit ); |
| } |
| |
| |
| /* Block-copy states (needed for implementing realloc()). */ |
| static void copy_address_range_state(Addr src, Addr dst, UInt len) |
| { |
| UInt i; |
| |
| //PROF_EVENT(40); PPP |
| for (i = 0; i < len; i += 4) { |
| shadow_word sword = *(get_sword_addr ( src+i )); |
| //PROF_EVENT(41); PPP |
| set_sword ( dst+i, sword ); |
| } |
| } |
| |
| // SSS: put these somewhere better |
| static void eraser_mem_read (Addr a, UInt data_size, ThreadId tid); |
| static void eraser_mem_write(Addr a, UInt data_size, ThreadId tid); |
| |
| #define REGPARM(x) __attribute__((regparm (x))) |
| |
| static void eraser_mem_help_read_1(Addr a) REGPARM(1); |
| static void eraser_mem_help_read_2(Addr a) REGPARM(1); |
| static void eraser_mem_help_read_4(Addr a) REGPARM(1); |
| static void eraser_mem_help_read_N(Addr a, UInt size) REGPARM(2); |
| |
| static void eraser_mem_help_write_1(Addr a, UInt val) REGPARM(2); |
| static void eraser_mem_help_write_2(Addr a, UInt val) REGPARM(2); |
| static void eraser_mem_help_write_4(Addr a, UInt val) REGPARM(2); |
| static void eraser_mem_help_write_N(Addr a, UInt size) REGPARM(2); |
| |
| static void bus_lock(void); |
| static void bus_unlock(void); |
| |
| static |
| void eraser_pre_mem_read(CorePart part, ThreadId tid, |
| Char* s, UInt base, UInt size ) |
| { |
| if (tid > 50) { VG_(printf)("pid = %d, s = `%s`, part = %d\n", tid, s, part); VG_(skin_panic)("a");} |
| eraser_mem_read(base, size, tid); |
| } |
| |
| static |
| void eraser_pre_mem_read_asciiz(CorePart part, ThreadId tid, |
| Char* s, UInt base ) |
| { |
| eraser_mem_read(base, VG_(strlen)((Char*)base), tid); |
| } |
| |
| static |
| void eraser_pre_mem_write(CorePart part, ThreadId tid, |
| Char* s, UInt base, UInt size ) |
| { |
| eraser_mem_write(base, size, tid); |
| } |
| |
| |
| |
| static |
| void eraser_new_mem_startup( Addr a, UInt len, Bool rr, Bool ww, Bool xx ) |
| { |
| /* Ignore the permissions, just make it readable. Seems to work... */ |
| make_segment_readable(a, len); |
| } |
| |
| |
| static |
| void eraser_new_mem_heap ( Addr a, UInt len, Bool is_inited ) |
| { |
| if (is_inited) { |
| make_readable(a, len); |
| } else { |
| make_writable(a, len); |
| } |
| } |
| |
| static |
| void eraser_set_perms (Addr a, UInt len, |
| Bool rr, Bool ww, Bool xx) |
| { |
| if (rr) make_readable(a, len); |
| else if (ww) make_writable(a, len); |
| /* else do nothing */ |
| } |
| |
| static |
| void eraser_new_mem_stack_private(Addr a, UInt len) |
| { |
| set_address_range_state(a, len, Vge_NonVirginInit); |
| } |
| |
| static |
| void eraser_new_mem_stack(Addr a, UInt len) |
| { |
| set_address_range_state(a, len, Vge_VirginInit); |
| } |
| |
| /*--------------------------------------------------------------*/ |
| /*--- Initialise the memory audit system on program startup. ---*/ |
| /*--------------------------------------------------------------*/ |
| |
| static |
| void init_shadow_memory(void) |
| { |
| Int i; |
| |
| for (i = 0; i < ESEC_MAP_WORDS; i++) |
| distinguished_secondary_map.swords[i] = virgin_sword; |
| |
| /* These entries gradually get overwritten as the used address |
| space expands. */ |
| for (i = 0; i < 65536; i++) |
| primary_map[i] = &distinguished_secondary_map; |
| } |
| |
| |
| /*------------------------------------------------------------*/ |
| /*--- malloc() et al replacements ---*/ |
| /*------------------------------------------------------------*/ |
| |
| static VgHashTable hg_malloc_list = NULL; |
| |
| #define N_FREED_CHUNKS 2 |
| static Int freechunkptr = 0; |
| static HG_Chunk *freechunks[N_FREED_CHUNKS]; |
| |
| /* Use a small redzone (paranoia) */ |
| UInt VG_(vg_malloc_redzone_szB) = 4; |
| |
| |
| /* Allocate a user-chunk of size bytes. Also allocate its shadow |
| block, make the shadow block point at the user block. Put the |
| shadow chunk on the appropriate list, and set all memory |
| protections correctly. */ |
| |
| static void add_HG_Chunk ( ThreadId tid, Addr p, UInt size ) |
| { |
| HG_Chunk* hc; |
| |
| hc = VG_(malloc)(sizeof(HG_Chunk)); |
| hc->data = p; |
| hc->size = size; |
| hc->where = VG_(get_ExeContext)(tid); |
| hc->tid = tid; |
| |
| VG_(HT_add_node)( hg_malloc_list, (VgHashNode*)hc ); |
| } |
| |
| /* Allocate memory and note change in memory available */ |
| static __inline__ |
| void* alloc_and_new_mem ( Int size, UInt alignment, Bool is_zeroed ) |
| { |
| Addr p; |
| |
| if (size < 0) return NULL; |
| |
| p = (Addr)VG_(cli_malloc)(alignment, size); |
| if (is_zeroed) VG_(memset)((void*)p, 0, size); |
| add_HG_Chunk ( VG_(get_current_or_recent_tid)(), p, size ); |
| eraser_new_mem_heap( p, size, is_zeroed ); |
| |
| return (void*)p; |
| } |
| |
| void* SK_(malloc) ( Int n ) |
| { |
| return alloc_and_new_mem ( n, VG_(clo_alignment), /*is_zeroed*/False ); |
| } |
| |
| void* SK_(__builtin_new) ( Int n ) |
| { |
| return alloc_and_new_mem ( n, VG_(clo_alignment), /*is_zeroed*/False ); |
| } |
| |
| void* SK_(__builtin_vec_new) ( Int n ) |
| { |
| return alloc_and_new_mem ( n, VG_(clo_alignment), /*is_zeroed*/False ); |
| } |
| |
| void* SK_(memalign) ( Int align, Int n ) |
| { |
| return alloc_and_new_mem ( n, align, /*is_zeroed*/False ); |
| } |
| |
| void* SK_(calloc) ( Int nmemb, Int size ) |
| { |
| return alloc_and_new_mem ( nmemb*size, VG_(clo_alignment), |
| /*is_zeroed*/True ); |
| } |
| |
| static |
| void die_and_free_mem ( ThreadId tid, HG_Chunk* hc, |
| HG_Chunk** prev_chunks_next_ptr ) |
| { |
| Addr start = hc->data; |
| Addr end = start + hc->size; |
| |
| Bool deadmx(Mutex *mx) { |
| if (mx->state != MxDead) |
| set_mutex_state(mx, MxDead, tid); |
| |
| return False; |
| } |
| |
| /* Remove hc from the malloclist using prev_chunks_next_ptr to |
| avoid repeating the hash table lookup. Can't remove until at least |
| after free and free_mismatch errors are done because they use |
| describe_addr() which looks for it in malloclist. */ |
| *prev_chunks_next_ptr = hc->next; |
| |
| /* Record where freed */ |
| hc->where = VG_(get_ExeContext) ( tid ); |
| |
| /* maintain a small window so that the error reporting machinery |
| knows about this memory */ |
| if (freechunks[freechunkptr] != NULL) { |
| /* free HG_Chunk */ |
| HG_Chunk* sc1 = freechunks[freechunkptr]; |
| VG_(cli_free) ( (void*)(sc1->data) ); |
| VG_(free) ( sc1 ); |
| } |
| |
| freechunks[freechunkptr] = hc; |
| |
| if (++freechunkptr == N_FREED_CHUNKS) |
| freechunkptr = 0; |
| |
| /* mark all mutexes in range dead */ |
| find_mutex_range(start, end, deadmx); |
| } |
| |
| |
| static __inline__ |
| void handle_free ( void* p ) |
| { |
| HG_Chunk* hc; |
| HG_Chunk** prev_chunks_next_ptr; |
| |
| hc = (HG_Chunk*)VG_(HT_get_node) ( hg_malloc_list, (UInt)p, |
| (VgHashNode***)&prev_chunks_next_ptr ); |
| if (hc == NULL) { |
| return; |
| } |
| die_and_free_mem ( VG_(get_current_or_recent_tid)(), |
| hc, prev_chunks_next_ptr ); |
| } |
| |
| void SK_(free) ( void* p ) |
| { |
| handle_free(p); |
| } |
| |
| void SK_(__builtin_delete) ( void* p ) |
| { |
| handle_free(p); |
| } |
| |
| void SK_(__builtin_vec_delete) ( void* p ) |
| { |
| handle_free(p); |
| } |
| |
| void* SK_(realloc) ( void* p, Int new_size ) |
| { |
| HG_Chunk *hc; |
| HG_Chunk **prev_chunks_next_ptr; |
| Int i; |
| ThreadId tid = VG_(get_current_or_recent_tid)(); |
| |
| /* First try and find the block. */ |
| hc = (HG_Chunk*)VG_(HT_get_node) ( hg_malloc_list, (UInt)p, |
| (VgHashNode***)&prev_chunks_next_ptr ); |
| |
| if (hc == NULL) { |
| return NULL; |
| } |
| |
| if (hc->size == new_size) { |
| /* size unchanged */ |
| hc->where = VG_(get_ExeContext)(tid); |
| return p; |
| |
| } else if (hc->size > new_size) { |
| /* new size is smaller */ |
| hc->size = new_size; |
| hc->where = VG_(get_ExeContext)(tid); |
| return p; |
| |
| } else { |
| /* new size is bigger */ |
| Addr p_new; |
| |
| /* Get new memory */ |
| p_new = (Addr)VG_(cli_malloc)(VG_(clo_alignment), new_size); |
| |
| /* First half kept and copied, second half new */ |
| copy_address_range_state( (Addr)p, p_new, hc->size ); |
| eraser_new_mem_heap ( p_new+hc->size, new_size-hc->size, |
| /*inited*/False ); |
| |
| /* Copy from old to new */ |
| for (i = 0; i < hc->size; i++) |
| ((UChar*)p_new)[i] = ((UChar*)p)[i]; |
| |
| /* Free old memory */ |
| die_and_free_mem ( tid, hc, prev_chunks_next_ptr ); |
| |
| /* this has to be after die_and_free_mem, otherwise the |
| former succeeds in shorting out the new block, not the |
| old, in the case when both are on the same list. */ |
| add_HG_Chunk ( tid, p_new, new_size ); |
| |
| return (void*)p_new; |
| } |
| } |
| |
| /*--------------------------------------------------------------*/ |
| /*--- Machinery to support sanity checking ---*/ |
| /*--------------------------------------------------------------*/ |
| |
| Bool SK_(cheap_sanity_check) ( void ) |
| { |
| /* nothing useful we can rapidly check */ |
| return True; |
| } |
| |
| Bool SK_(expensive_sanity_check)(void) |
| { |
| Int i; |
| |
| /* Make sure nobody changed the distinguished secondary. */ |
| for (i = 0; i < ESEC_MAP_WORDS; i++) |
| if (distinguished_secondary_map.swords[i].other != virgin_sword.other || |
| distinguished_secondary_map.swords[i].state != virgin_sword.state) |
| return False; |
| |
| return True; |
| } |
| |
| |
| /*--------------------------------------------------------------*/ |
| /*--- Instrumentation ---*/ |
| /*--------------------------------------------------------------*/ |
| |
| static UInt stk_ld, nonstk_ld, stk_st, nonstk_st; |
| |
| /* Create and return an instrumented version of cb_in. Free cb_in |
| before returning. */ |
| UCodeBlock* SK_(instrument) ( UCodeBlock* cb_in, Addr not_used ) |
| { |
| UCodeBlock* cb; |
| Int i; |
| UInstr* u_in; |
| Int t_size = INVALID_TEMPREG; |
| Int ntemps; |
| Bool *stackref = NULL; |
| Bool locked = False; /* lock prefix */ |
| |
| cb = VG_(setup_UCodeBlock)(cb_in); |
| |
| /* stackref[] is used for super-simple value tracking to keep note |
| of which tempregs currently hold a value which is derived from |
| ESP or EBP, and is therefore likely stack-relative if used as |
| the address for LOAD or STORE. */ |
| ntemps = VG_(get_num_temps)(cb); |
| stackref = VG_(malloc)(sizeof(*stackref) * ntemps); |
| VG_(memset)(stackref, 0, sizeof(*stackref) * ntemps); |
| |
| for (i = 0; i < VG_(get_num_instrs)(cb_in); i++) { |
| u_in = VG_(get_instr)(cb_in, i); |
| |
| switch (u_in->opcode) { |
| |
| case NOP: case CALLM_S: case CALLM_E: |
| break; |
| |
| case LOCK: |
| locked = True; |
| uInstr0(cb, CCALL, 0); |
| uCCall(cb, (Addr)bus_lock, 0, 0, False); |
| break; |
| |
| case JMP: case INCEIP: |
| if (locked) { |
| uInstr0(cb, CCALL, 0); |
| uCCall(cb, (Addr)bus_unlock, 0, 0, False); |
| } |
| locked = False; |
| VG_(copy_UInstr)(cb, u_in); |
| break; |
| |
| case GET: |
| sk_assert(u_in->tag1 == ArchReg); |
| sk_assert(u_in->tag2 == TempReg); |
| sk_assert(u_in->val2 < ntemps); |
| |
| stackref[u_in->val2] = (u_in->size == 4 && |
| (u_in->val1 == R_ESP || u_in->val1 == R_EBP)); |
| VG_(copy_UInstr)(cb, u_in); |
| break; |
| |
| case MOV: |
| if (u_in->size == 4 && u_in->tag1 == TempReg) { |
| sk_assert(u_in->tag2 == TempReg); |
| stackref[u_in->val2] = stackref[u_in->val1]; |
| } |
| VG_(copy_UInstr)(cb, u_in); |
| break; |
| |
| case LEA1: |
| case ADD: case SUB: |
| if (u_in->size == 4 && u_in->tag1 == TempReg) { |
| sk_assert(u_in->tag2 == TempReg); |
| stackref[u_in->val2] |= stackref[u_in->val1]; |
| } |
| VG_(copy_UInstr)(cb, u_in); |
| break; |
| |
| case LOAD: { |
| void (*help)(Addr); |
| sk_assert(1 == u_in->size || 2 == u_in->size || 4 == u_in->size); |
| sk_assert(u_in->tag1 == TempReg); |
| |
| if (!clo_priv_stacks || !stackref[u_in->val1]) { |
| nonstk_ld++; |
| |
| switch(u_in->size) { |
| case 1: help = eraser_mem_help_read_1; break; |
| case 2: help = eraser_mem_help_read_2; break; |
| case 4: help = eraser_mem_help_read_4; break; |
| default: |
| VG_(skin_panic)("bad size"); |
| } |
| |
| /* XXX all registers should be flushed to baseblock |
| here */ |
| uInstr1(cb, CCALL, 0, TempReg, u_in->val1); |
| uCCall(cb, (Addr)help, 1, 1, False); |
| } else |
| stk_ld++; |
| |
| VG_(copy_UInstr)(cb, u_in); |
| t_size = INVALID_TEMPREG; |
| break; |
| } |
| |
| case MMX2_MemRd: |
| case FPU_R: { |
| sk_assert(1 == u_in->size || 2 == u_in->size || 4 == u_in->size || |
| 8 == u_in->size || 10 == u_in->size || 108 == u_in->size); |
| |
| t_size = newTemp(cb); |
| uInstr2(cb, MOV, 4, Literal, 0, TempReg, t_size); |
| uLiteral(cb, (UInt)u_in->size); |
| |
| /* XXX all registers should be flushed to baseblock |
| here */ |
| uInstr2(cb, CCALL, 0, TempReg, u_in->val2, TempReg, t_size); |
| uCCall(cb, (Addr) & eraser_mem_help_read_N, 2, 2, False); |
| |
| VG_(copy_UInstr)(cb, u_in); |
| t_size = INVALID_TEMPREG; |
| break; |
| } |
| |
| case MMX2a1_MemRd: { |
| sk_assert(8 == u_in->size); |
| |
| t_size = newTemp(cb); |
| uInstr2(cb, MOV, 4, Literal, 0, TempReg, t_size); |
| uLiteral(cb, (UInt)u_in->size); |
| |
| /* XXX all registers should be flushed to baseblock |
| here */ |
| uInstr2(cb, CCALL, 0, TempReg, u_in->val3, TempReg, t_size); |
| uCCall(cb, (Addr) & eraser_mem_help_read_N, 2, 2, False); |
| |
| VG_(copy_UInstr)(cb, u_in); |
| t_size = INVALID_TEMPREG; |
| break; |
| } |
| |
| case SSE2a_MemRd: |
| case SSE2a1_MemRd: |
| case SSE3a_MemRd: |
| case SSE3a1_MemRd: |
| case SSE3ag_MemRd_RegWr: { |
| Int addr = (u_in->opcode == SSE3ag_MemRd_RegWr) ? u_in->val1 : u_in->val3; |
| |
| sk_assert(u_in->size == 4 || u_in->size == 8 || u_in->size == 16 || u_in->size == 512); |
| |
| t_size = newTemp(cb); |
| uInstr2(cb, MOV, 4, Literal, 0, TempReg, t_size); |
| uLiteral(cb, (UInt)u_in->size); |
| |
| uInstr2(cb, CCALL, 0, TempReg, addr, TempReg, t_size); |
| uCCall(cb, (Addr) & eraser_mem_help_read_N, 2, 2, False); |
| |
| VG_(copy_UInstr)(cb, u_in); |
| t_size = INVALID_TEMPREG; |
| break; |
| } |
| |
| case STORE: { |
| void (*help)(Addr, UInt); |
| sk_assert(1 == u_in->size || 2 == u_in->size || 4 == u_in->size); |
| sk_assert(u_in->tag2 == TempReg); |
| |
| if (!clo_priv_stacks || !stackref[u_in->val2]) { |
| nonstk_st++; |
| |
| switch(u_in->size) { |
| case 1: help = eraser_mem_help_write_1; break; |
| case 2: help = eraser_mem_help_write_2; break; |
| case 4: help = eraser_mem_help_write_4; break; |
| default: |
| VG_(skin_panic)("bad size"); |
| } |
| |
| /* XXX all registers should be flushed to baseblock |
| here */ |
| uInstr2(cb, CCALL, 0, TempReg, u_in->val2, TempReg, u_in->val1); |
| uCCall(cb, (Addr)help, 2, 2, False); |
| } else |
| stk_st++; |
| |
| VG_(copy_UInstr)(cb, u_in); |
| t_size = INVALID_TEMPREG; |
| break; |
| } |
| |
| case MMX2_MemWr: |
| case FPU_W: { |
| sk_assert(1 == u_in->size || 2 == u_in->size || 4 == u_in->size || |
| 8 == u_in->size || 10 == u_in->size || 108 == u_in->size); |
| |
| t_size = newTemp(cb); |
| uInstr2(cb, MOV, 4, Literal, 0, TempReg, t_size); |
| uLiteral(cb, (UInt)u_in->size); |
| /* XXX all registers should be flushed to baseblock |
| here */ |
| uInstr2(cb, CCALL, 0, TempReg, u_in->val2, TempReg, t_size); |
| uCCall(cb, (Addr) & eraser_mem_help_write_N, 2, 2, False); |
| |
| VG_(copy_UInstr)(cb, u_in); |
| t_size = INVALID_TEMPREG; |
| break; |
| } |
| |
| case SSE2a_MemWr: |
| case SSE3a_MemWr: { |
| sk_assert(4 == u_in->size || 8 == u_in->size || 16 == u_in->size || |
| 512 == u_in->size); |
| |
| t_size = newTemp(cb); |
| uInstr2(cb, MOV, 4, Literal, 0, TempReg, t_size); |
| uLiteral(cb, (UInt)u_in->size); |
| /* XXX all registers should be flushed to baseblock |
| here */ |
| uInstr2(cb, CCALL, 0, TempReg, u_in->val3, TempReg, t_size); |
| uCCall(cb, (Addr) & eraser_mem_help_write_N, 2, 2, False); |
| |
| VG_(copy_UInstr)(cb, u_in); |
| t_size = INVALID_TEMPREG; |
| break; |
| } |
| |
| default: |
| /* conservative tromping */ |
| if (0 && u_in->tag1 == TempReg) /* can val1 ever be dest? */ |
| stackref[u_in->val1] = False; |
| if (u_in->tag2 == TempReg) |
| stackref[u_in->val2] = False; |
| if (u_in->tag3 == TempReg) |
| stackref[u_in->val3] = False; |
| VG_(copy_UInstr)(cb, u_in); |
| break; |
| } |
| } |
| |
| VG_(free)(stackref); |
| VG_(free_UCodeBlock)(cb_in); |
| return cb; |
| } |
| |
| |
| /*--------------------------------------------------------------------*/ |
| /*--- Error and suppression handling ---*/ |
| /*--------------------------------------------------------------------*/ |
| |
| typedef |
| enum { |
| /* Possible data race */ |
| EraserSupp |
| } |
| EraserSuppKind; |
| |
| /* What kind of error it is. */ |
| typedef |
| enum { |
| EraserErr, /* data-race */ |
| MutexErr, /* mutex operations */ |
| LockGraphErr, /* mutex order error */ |
| } |
| EraserErrorKind; |
| |
| /* The classification of a faulting address. */ |
| typedef |
| enum { Undescribed, /* as-yet unclassified */ |
| Stack, |
| Unknown, /* classification yielded nothing useful */ |
| Mallocd, |
| Freed, |
| Segment |
| } |
| AddrKind; |
| /* Records info about a faulting address. */ |
| typedef |
| struct { |
| /* ALL */ |
| AddrKind akind; |
| /* Freed, Mallocd */ |
| Int blksize; |
| /* Freed, Mallocd */ |
| Int rwoffset; |
| /* Freed, Mallocd */ |
| ExeContext* lastchange; |
| ThreadId lasttid; |
| /* Stack */ |
| ThreadId stack_tid; |
| /* Segment */ |
| const Char* filename; |
| const Char* section; |
| /* True if is just-below %esp -- could be a gcc bug. */ |
| Bool maybe_gcc; |
| /* symbolic address description */ |
| Char *expr; |
| } |
| AddrInfo; |
| |
| /* What kind of memory access is involved in the error? */ |
| typedef |
| enum { ReadAxs, WriteAxs, ExecAxs } |
| AxsKind; |
| |
| /* Extra context for memory errors */ |
| typedef |
| struct { |
| AxsKind axskind; |
| Int size; |
| AddrInfo addrinfo; |
| Bool isWrite; |
| shadow_word prevstate; |
| /* MutexErr, LockGraphErr */ |
| Mutex *mutex; |
| EC_EIP lasttouched; |
| ThreadId lasttid; |
| /* LockGraphErr */ |
| const LockSet *held_lockset; |
| const LockSet *prev_lockset; |
| } |
| HelgrindError; |
| |
| static __inline__ |
| void clear_AddrInfo ( AddrInfo* ai ) |
| { |
| ai->akind = Unknown; |
| ai->blksize = 0; |
| ai->rwoffset = 0; |
| ai->lastchange = NULL; |
| ai->lasttid = VG_INVALID_THREADID; |
| ai->filename = NULL; |
| ai->section = "???"; |
| ai->stack_tid = VG_INVALID_THREADID; |
| ai->maybe_gcc = False; |
| ai->expr = NULL; |
| } |
| |
| static __inline__ |
| void clear_HelgrindError ( HelgrindError* err_extra ) |
| { |
| err_extra->axskind = ReadAxs; |
| err_extra->size = 0; |
| err_extra->mutex = NULL; |
| err_extra->lasttouched= NULL_EC_EIP; |
| err_extra->lasttid = VG_INVALID_THREADID; |
| err_extra->prev_lockset = 0; |
| err_extra->held_lockset = 0; |
| err_extra->prevstate = SW(Vge_Virgin, 0); |
| clear_AddrInfo ( &err_extra->addrinfo ); |
| err_extra->isWrite = False; |
| } |
| |
| |
| |
| /* Describe an address as best you can, for error messages, |
| putting the result in ai. */ |
| |
| static void describe_addr ( Addr a, AddrInfo* ai ) |
| { |
| HG_Chunk* hc; |
| Int i; |
| |
| /* Nested functions, yeah. Need the lexical scoping of 'a'. */ |
| |
| /* Closure for searching thread stacks */ |
| Bool addr_is_in_bounds(Addr stack_min, Addr stack_max) |
| { |
| return (stack_min <= a && a <= stack_max); |
| } |
| /* Closure for searching malloc'd and free'd lists */ |
| Bool addr_is_in_block(VgHashNode *node) |
| { |
| HG_Chunk* hc2 = (HG_Chunk*)node; |
| return (hc2->data <= a && a < hc2->data + hc2->size); |
| } |
| |
| /* Search for it in segments */ |
| { |
| const SegInfo *seg; |
| |
| for(seg = VG_(next_seginfo)(NULL); |
| seg != NULL; |
| seg = VG_(next_seginfo)(seg)) { |
| Addr base = VG_(seg_start)(seg); |
| UInt size = VG_(seg_size)(seg); |
| const UChar *filename = VG_(seg_filename)(seg); |
| |
| if (a >= base && a < base+size) { |
| ai->akind = Segment; |
| ai->blksize = size; |
| ai->rwoffset = a - base; |
| ai->filename = filename; |
| |
| switch(VG_(seg_sect_kind)(a)) { |
| case Vg_SectText: ai->section = "text"; break; |
| case Vg_SectData: ai->section = "data"; break; |
| case Vg_SectBSS: ai->section = "BSS"; break; |
| case Vg_SectGOT: ai->section = "GOT"; break; |
| case Vg_SectPLT: ai->section = "PLT"; break; |
| case Vg_SectUnknown: |
| default: |
| ai->section = "???"; break; |
| } |
| |
| return; |
| } |
| } |
| } |
| |
| /* Search for a currently malloc'd block which might bracket it. */ |
| hc = (HG_Chunk*)VG_(HT_first_match)(hg_malloc_list, addr_is_in_block); |
| if (NULL != hc) { |
| ai->akind = Mallocd; |
| ai->blksize = hc->size; |
| ai->rwoffset = (Int)a - (Int)(hc->data); |
| ai->lastchange = hc->where; |
| ai->lasttid = hc->tid; |
| return; |
| } |
| |
| /* Look in recently freed memory */ |
| for(i = 0; i < N_FREED_CHUNKS; i++) { |
| hc = freechunks[i]; |
| if (hc == NULL) |
| continue; |
| |
| if (a >= hc->data && a < hc->data + hc->size) { |
| ai->akind = Freed; |
| ai->blksize = hc->size; |
| ai->rwoffset = a - hc->data; |
| ai->lastchange = hc->where; |
| ai->lasttid = hc->tid; |
| return; |
| } |
| } |
| |
| /* Clueless ... */ |
| ai->akind = Unknown; |
| return; |
| } |
| |
| |
| /* Updates the copy with address info if necessary. */ |
| UInt SK_(update_extra)(Error* err) |
| { |
| HelgrindError* extra; |
| |
| extra = (HelgrindError*)VG_(get_error_extra)(err); |
| if (extra != NULL && Undescribed == extra->addrinfo.akind) { |
| describe_addr ( VG_(get_error_address)(err), &(extra->addrinfo) ); |
| } |
| return sizeof(HelgrindError); |
| } |
| |
| static void record_eraser_error ( ThreadId tid, Addr a, Bool is_write, |
| shadow_word prevstate ) |
| { |
| shadow_word *sw; |
| HelgrindError err_extra; |
| |
| n_eraser_warnings++; |
| |
| clear_HelgrindError(&err_extra); |
| err_extra.isWrite = is_write; |
| err_extra.addrinfo.akind = Undescribed; |
| err_extra.prevstate = prevstate; |
| if (clo_execontext) |
| err_extra.lasttouched = getExeContext(a); |
| err_extra.addrinfo.expr = VG_(describe_addr)(tid, a); |
| |
| VG_(maybe_record_error)( tid, EraserErr, a, |
| (is_write ? "writing" : "reading"), |
| &err_extra); |
| |
| sw = get_sword_addr(a); |
| if (sw->state == Vge_Excl && sw->other != TLSP_INDICATING_ALL) { |
| ThreadLifeSeg *tls = unpackTLS(sw->other); |
| tls->refcount--; |
| } |
| |
| set_sword(a, error_sword); |
| } |
| |
| static void record_mutex_error(ThreadId tid, Mutex *mutex, |
| Char *str, ExeContext *ec) |
| { |
| HelgrindError err_extra; |
| |
| clear_HelgrindError(&err_extra); |
| err_extra.addrinfo.akind = Undescribed; |
| err_extra.mutex = mutex; |
| err_extra.lasttouched = EC(ec, virgin_sword, thread_seg[tid]); |
| err_extra.lasttid = tid; |
| |
| VG_(maybe_record_error)(tid, MutexErr, |
| (Addr)mutex->mutexp, str, &err_extra); |
| } |
| |
| static void record_lockgraph_error(ThreadId tid, Mutex *mutex, |
| const LockSet *lockset_holding, |
| const LockSet *lockset_prev) |
| { |
| HelgrindError err_extra; |
| |
| n_lockorder_warnings++; |
| |
| clear_HelgrindError(&err_extra); |
| err_extra.addrinfo.akind = Undescribed; |
| err_extra.mutex = mutex; |
| |
| err_extra.lasttouched = EC(mutex->location, virgin_sword, 0); |
| err_extra.held_lockset = lockset_holding; |
| err_extra.prev_lockset = lockset_prev; |
| |
| VG_(maybe_record_error)(tid, LockGraphErr, mutex->mutexp, "", &err_extra); |
| } |
| |
| Bool SK_(eq_SkinError) ( VgRes not_used, Error* e1, Error* e2 ) |
| { |
| Char *e1s, *e2s; |
| |
| sk_assert(VG_(get_error_kind)(e1) == VG_(get_error_kind)(e2)); |
| |
| switch (VG_(get_error_kind)(e1)) { |
| case EraserErr: |
| return VG_(get_error_address)(e1) == VG_(get_error_address)(e2); |
| |
| case MutexErr: |
| return VG_(get_error_address)(e1) == VG_(get_error_address)(e2); |
| } |
| |
| e1s = VG_(get_error_string)(e1); |
| e2s = VG_(get_error_string)(e2); |
| if (e1s != e2s) return False; |
| if (0 != VG_(strcmp)(e1s, e2s)) return False; |
| return True; |
| } |
| |
| static void pp_AddrInfo ( Addr a, AddrInfo* ai ) |
| { |
| if (ai->expr != NULL) |
| VG_(message)(Vg_UserMsg, |
| " Address %p == %s", a, ai->expr); |
| |
| switch (ai->akind) { |
| case Stack: |
| VG_(message)(Vg_UserMsg, |
| " Address %p is on thread %d's stack", |
| a, ai->stack_tid); |
| break; |
| case Unknown: |
| if (ai->expr != NULL) |
| break; |
| |
| /* maybe_gcc is never set to True! This is a hangover from code |
| in Memcheck */ |
| if (ai->maybe_gcc) { |
| VG_(message)(Vg_UserMsg, |
| " Address %p is just below %%esp. Possibly a bug in GCC/G++", |
| a); |
| VG_(message)(Vg_UserMsg, |
| " v 2.96 or 3.0.X. To suppress, use: --workaround-gcc296-bugs=yes"); |
| } else { |
| VG_(message)(Vg_UserMsg, |
| " Address %p is not stack'd, malloc'd or free'd", a); |
| } |
| break; |
| case Segment: |
| VG_(message)(Vg_UserMsg, |
| " Address %p is in %s section of %s", |
| a, ai->section, ai->filename); |
| break; |
| case Mallocd: |
| case Freed: { |
| UInt delta; |
| UChar* relative; |
| if (ai->rwoffset < 0) { |
| delta = (UInt)(- ai->rwoffset); |
| relative = "before"; |
| } else if (ai->rwoffset >= ai->blksize) { |
| delta = ai->rwoffset - ai->blksize; |
| relative = "after"; |
| } else { |
| delta = ai->rwoffset; |
| relative = "inside"; |
| } |
| VG_(message)(Vg_UserMsg, |
| " Address %p is %d bytes %s a block of size %d %s by thread %d", |
| a, delta, relative, |
| ai->blksize, |
| ai->akind == Mallocd ? "alloc'd" : "freed", |
| ai->lasttid); |
| |
| VG_(pp_ExeContext)(ai->lastchange); |
| break; |
| } |
| default: |
| VG_(skin_panic)("pp_AddrInfo"); |
| } |
| } |
| |
| static Char *lockset_str(const Char *prefix, const LockSet *lockset) |
| { |
| Char *buf, *cp; |
| Int i; |
| |
| buf = VG_(malloc)((prefix == NULL ? 0 : VG_(strlen)(prefix)) + |
| lockset->setsize * 120 + |
| 1); |
| |
| cp = buf; |
| if (prefix) |
| cp += VG_(sprintf)(cp, "%s", prefix); |
| |
| for(i = 0; i < lockset->setsize; i++) |
| cp += VG_(sprintf)(cp, "%p%(y, ", lockset->mutex[i]->mutexp, |
| lockset->mutex[i]->mutexp); |
| |
| if (lockset->setsize) |
| cp[-2] = '\0'; |
| else |
| *cp = '\0'; |
| |
| return buf; |
| } |
| |
| void SK_(pp_SkinError) ( Error* err ) |
| { |
| HelgrindError *extra = (HelgrindError *)VG_(get_error_extra)(err); |
| Char buf[100]; |
| Char *msg = buf; |
| const LockSet *ls; |
| |
| *msg = '\0'; |
| |
| switch(VG_(get_error_kind)(err)) { |
| case EraserErr: { |
| Addr err_addr = VG_(get_error_address)(err); |
| |
| VG_(message)(Vg_UserMsg, "Possible data race %s variable at %p %(y", |
| VG_(get_error_string)(err), err_addr, err_addr); |
| VG_(pp_ExeContext)( VG_(get_error_where)(err) ); |
| pp_AddrInfo(err_addr, &extra->addrinfo); |
| |
| switch(extra->prevstate.state) { |
| case Vge_Virgin: |
| /* shouldn't be possible to go directly from virgin -> error */ |
| VG_(sprintf)(buf, "virgin!?"); |
| break; |
| |
| case Vge_Excl: { |
| ThreadLifeSeg *tls = unpackTLS(extra->prevstate.other); |
| |
| sk_assert(tls != unpackTLS(TLSP_INDICATING_ALL)); |
| VG_(sprintf)(buf, "exclusively owned by thread %u", tls->tid); |
| break; |
| } |
| |
| case Vge_Shar: |
| case Vge_SharMod: |
| ls = unpackLockSet(extra->prevstate.other); |
| |
| if (isempty(ls)) { |
| VG_(sprintf)(buf, "shared %s, no locks", |
| extra->prevstate.state == Vge_Shar ? "RO" : "RW"); |
| break; |
| } |
| |
| msg = lockset_str(extra->prevstate.state == Vge_Shar ? |
| "shared RO, locked by:" : |
| "shared RW, locked by:", ls); |
| |
| break; |
| } |
| |
| if (*msg) |
| VG_(message)(Vg_UserMsg, " Previous state: %s", msg); |
| |
| if (clo_execontext == EC_Some |
| && extra->lasttouched.uu_ec_eip.eip != 0) { |
| Char file[100]; |
| UInt line; |
| Addr eip = extra->lasttouched.uu_ec_eip.eip; |
| |
| VG_(message)(Vg_UserMsg, " Word at %p last changed state from %s by thread %u", |
| err_addr, |
| pp_state(extra->lasttouched.state), |
| unpackTLS(extra->lasttouched.tls)->tid); |
| |
| if (VG_(get_filename_linenum)(eip, file, sizeof(file), &line)) { |
| VG_(message)(Vg_UserMsg, " at %p: %y (%s:%u)", |
| eip, eip, file, line); |
| } else if (VG_(get_objname)(eip, file, sizeof(file))) { |
| VG_(message)(Vg_UserMsg, " at %p: %y (in %s)", |
| eip, eip, file); |
| } else { |
| VG_(message)(Vg_UserMsg, " at %p: %y", eip, eip); |
| } |
| } else if (clo_execontext == EC_All |
| && extra->lasttouched.uu_ec_eip.ec != NULL) { |
| VG_(message)(Vg_UserMsg, " Word at %p last changed state from %s in tid %u", |
| err_addr, |
| pp_state(extra->lasttouched.state), |
| unpackTLS(extra->lasttouched.tls)->tid); |
| VG_(pp_ExeContext)(extra->lasttouched.uu_ec_eip.ec); |
| } |
| break; |
| } |
| |
| case MutexErr: |
| VG_(message)(Vg_UserMsg, "Mutex problem at %p%(y trying to %s", |
| VG_(get_error_address)(err), |
| VG_(get_error_address)(err), |
| VG_(get_error_string)(err)); |
| VG_(pp_ExeContext)( VG_(get_error_where)(err) ); |
| if (extra->lasttouched.uu_ec_eip.ec != NULL) { |
| VG_(message)(Vg_UserMsg, " last touched by thread %d", extra->lasttid); |
| VG_(pp_ExeContext)(extra->lasttouched.uu_ec_eip.ec); |
| } |
| pp_AddrInfo(VG_(get_error_address)(err), &extra->addrinfo); |
| break; |
| |
| case LockGraphErr: { |
| const LockSet *heldset = extra->held_lockset; |
| Addr err_addr = VG_(get_error_address)(err); |
| Int i; |
| |
| msg = lockset_str(NULL, heldset); |
| |
| VG_(message)(Vg_UserMsg, "Mutex %p%(y locked in inconsistent order", |
| err_addr, err_addr); |
| VG_(pp_ExeContext)( VG_(get_error_where)(err) ); |
| VG_(message)(Vg_UserMsg, " while holding locks %s", msg); |
| |
| for(i = 0; i < heldset->setsize; i++) { |
| const Mutex *lsmx = heldset->mutex[i]; |
| |
| /* needs to be a recursive search+display */ |
| if (0 && !ismember(lsmx->lockdep, extra->mutex)) |
| continue; |
| |
| VG_(message)(Vg_UserMsg, " %p%(y last locked at", |
| lsmx->mutexp, lsmx->mutexp); |
| VG_(pp_ExeContext)(lsmx->location); |
| VG_(free)(msg); |
| msg = lockset_str(NULL, lsmx->lockdep); |
| VG_(message)(Vg_UserMsg, " while depending on locks %s", msg); |
| } |
| |
| break; |
| } |
| } |
| |
| if (msg != buf) |
| VG_(free)(msg); |
| } |
| |
| |
| Bool SK_(recognised_suppression) ( Char* name, Supp *su ) |
| { |
| if (0 == VG_(strcmp)(name, "Eraser")) { |
| VG_(set_supp_kind)(su, EraserSupp); |
| return True; |
| } else { |
| return False; |
| } |
| } |
| |
| |
| Bool SK_(read_extra_suppression_info) ( Int fd, Char* buf, Int nBuf, Supp* su ) |
| { |
| /* do nothing -- no extra suppression info present. Return True to |
| indicate nothing bad happened. */ |
| return True; |
| } |
| |
| |
| Bool SK_(error_matches_suppression)(Error* err, Supp* su) |
| { |
| sk_assert(VG_(get_supp_kind)(su) == EraserSupp); |
| |
| return (VG_(get_error_kind)(err) == EraserErr); |
| } |
| |
| extern Char* SK_(get_error_name) ( Error* err ) |
| { |
| if (EraserErr == VG_(get_error_kind)(err)) { |
| return "Eraser"; |
| } else { |
| return NULL; /* Other errors types can't be suppressed */ |
| } |
| } |
| |
| extern void SK_(print_extra_suppression_info) ( Error* err ) |
| { |
| /* Do nothing */ |
| } |
| |
| static void eraser_pre_mutex_lock(ThreadId tid, void* void_mutex) |
| { |
| Mutex *mutex = get_mutex((Addr)void_mutex); |
| |
| test_mutex_state(mutex, MxLocked, tid); |
| } |
| |
| static void eraser_post_mutex_lock(ThreadId tid, void* void_mutex) |
| { |
| static const Bool debug = False; |
| Mutex *mutex = get_mutex((Addr)void_mutex); |
| const LockSet* ls; |
| |
| set_mutex_state(mutex, MxLocked, tid); |
| |
| # if DEBUG_LOCKS |
| VG_(printf)("lock (%u, %p)\n", tid, mutex->mutexp); |
| # endif |
| |
| /* VG_(printf)("LOCK: held %d, new %p\n", thread_locks[tid], mutex); */ |
| # if LOCKSET_SANITY > 1 |
| sanity_check_locksets("eraser_post_mutex_lock-IN"); |
| # endif |
| |
| ls = lookup_LockSet_with(thread_locks[tid], mutex); |
| |
| if (ls == NULL) { |
| LockSet *newset = add_LockSet(thread_locks[tid], mutex); |
| insert_LockSet(newset); |
| ls = newset; |
| } |
| thread_locks[tid] = ls; |
| |
| if (debug || DEBUG_LOCKS) |
| VG_(printf)("tid %u now has lockset %p\n", tid, ls); |
| |
| if (debug || LOCKSET_SANITY > 1) |
| sanity_check_locksets("eraser_post_mutex_lock-OUT"); |
| } |
| |
| |
| static void eraser_post_mutex_unlock(ThreadId tid, void* void_mutex) |
| { |
| static const Bool debug = False; |
| Int i = 0; |
| Mutex *mutex = get_mutex((Addr)void_mutex); |
| const LockSet *ls; |
| |
| test_mutex_state(mutex, MxUnlocked, tid); |
| set_mutex_state(mutex, MxUnlocked, tid); |
| |
| if (!ismember(thread_locks[tid], mutex)) |
| return; |
| |
| if (debug || DEBUG_LOCKS) |
| VG_(printf)("unlock(%u, %p%(y)\n", tid, mutex->mutexp, mutex->mutexp); |
| |
| if (debug || LOCKSET_SANITY > 1) |
| sanity_check_locksets("eraser_post_mutex_unlock-IN"); |
| |
| ls = lookup_LockSet_without(thread_locks[tid], mutex); |
| |
| if (ls == NULL) { |
| LockSet *newset = remove_LockSet(thread_locks[tid], mutex); |
| insert_LockSet(newset); |
| ls = newset; |
| } |
| |
| /* Update the thread's lock vector */ |
| if (debug || DEBUG_LOCKS) |
| VG_(printf)("tid %u reverts from %p to lockset %p\n", |
| tid, thread_locks[tid], i); |
| |
| thread_locks[tid] = ls; |
| |
| if (debug || LOCKSET_SANITY > 1) |
| sanity_check_locksets("eraser_post_mutex_unlock-OUT"); |
| } |
| |
| |
| /* --------------------------------------------------------------------- |
| Checking memory reads and writes |
| ------------------------------------------------------------------ */ |
| |
| /* Behaviour on reads and writes: |
| * |
| * VIR EXCL SHAR SH_MOD |
| * ---------------------------------------------------------------- |
| * rd/wr, 1st thread | - EXCL - - |
| * rd, new thread | - SHAR - - |
| * wr, new thread | - SH_MOD - - |
| * rd | error! - SHAR SH_MOD |
| * wr | EXCL - SH_MOD SH_MOD |
| * ---------------------------------------------------------------- |
| */ |
| |
| static inline |
| void dump_around_a(Addr a) |
| { |
| UInt i; |
| shadow_word* sword; |
| VG_(printf)("NEARBY:\n"); |
| for (i = a - 12; i <= a + 12; i += 4) { |
| sword = get_sword_addr(i); |
| VG_(printf)(" %x -- tid: %u, state: %u\n", i, sword->other, sword->state); |
| } |
| } |
| |
| #if DEBUG_ACCESSES |
| #define DEBUG_STATE(args...) \ |
| VG_(printf)("(%u) ", size), \ |
| VG_(printf)(args) |
| #else |
| #define DEBUG_STATE(args...) |
| #endif |
| |
| static void eraser_mem_read_word(Addr a, ThreadId tid) |
| { |
| shadow_word* sword /* egcs-2.91.66 complains uninit */ = NULL; |
| shadow_word prevstate; |
| ThreadLifeSeg *tls; |
| const LockSet *ls; |
| Bool statechange = False; |
| |
| static const void *const states[4] = { |
| [Vge_Virgin] &&st_virgin, |
| [Vge_Excl] &&st_excl, |
| [Vge_Shar] &&st_shar, |
| [Vge_SharMod] &&st_sharmod, |
| }; |
| |
| tls = thread_seg[tid]; |
| sk_assert(tls != NULL && tls->tid == tid); |
| |
| sword = get_sword_addr(a); |
| if (sword == SEC_MAP_ACCESS) { |
| VG_(printf)("read distinguished 2ndary map! 0x%x\n", a); |
| return; |
| } |
| |
| prevstate = *sword; |
| |
| goto *states[sword->state]; |
| |
| /* This looks like reading of unitialised memory, may be legit. Eg. |
| * calloc() zeroes its values, so untouched memory may actually be |
| * initialised. Leave that stuff to Valgrind. */ |
| st_virgin: |
| if (TID_INDICATING_NONVIRGIN == sword->other) { |
| DEBUG_STATE("Read VIRGIN --> EXCL: %8x, %u\n", a, tid); |
| if (DEBUG_VIRGIN_READS) |
| dump_around_a(a); |
| } else { |
| DEBUG_STATE("Read SPECIAL --> EXCL: %8x, %u\n", a, tid); |
| } |
| statechange = True; |
| *sword = SW(Vge_Excl, packTLS(tls)); /* remember exclusive owner */ |
| tls->refcount++; |
| goto done; |
| |
| st_excl: { |
| ThreadLifeSeg *sw_tls = unpackTLS(sword->other); |
| |
| if (tls == sw_tls) { |
| DEBUG_STATE("Read EXCL: %8x, %u\n", a, tid); |
| } else if (unpackTLS(TLSP_INDICATING_ALL) == sw_tls) { |
| DEBUG_STATE("Read EXCL/ERR: %8x, %u\n", a, tid); |
| } else if (tlsIsDisjoint(tls, sw_tls)) { |
| DEBUG_STATE("Read EXCL(%u) --> EXCL: %8x, %u\n", sw_tls->tid, a, tid); |
| statechange = True; |
| sword->other = packTLS(tls); |
| sw_tls->refcount--; |
| tls->refcount++; |
| } else { |
| DEBUG_STATE("Read EXCL(%u) --> SHAR: %8x, %u\n", sw_tls->tid, a, tid); |
| sw_tls->refcount--; |
| statechange = True; |
| *sword = SW(Vge_Shar, packLockSet(thread_locks[tid])); |
| |
| if (DEBUG_MEM_LOCKSET_CHANGES) |
| print_LockSet("excl read locks", unpackLockSet(sword->other)); |
| } |
| goto done; |
| } |
| |
| st_shar: |
| DEBUG_STATE("Read SHAR: %8x, %u\n", a, tid); |
| sword->other = packLockSet(intersect(unpackLockSet(sword->other), |
| thread_locks[tid])); |
| statechange = sword->other != prevstate.other; |
| goto done; |
| |
| st_sharmod: |
| DEBUG_STATE("Read SHAR_MOD: %8x, %u\n", a, tid); |
| ls = intersect(unpackLockSet(sword->other), |
| thread_locks[tid]); |
| sword->other = packLockSet(ls); |
| |
| statechange = sword->other != prevstate.other; |
| |
| if (isempty(ls)) { |
| record_eraser_error(tid, a, False /* !is_write */, prevstate); |
| } |
| goto done; |
| |
| done: |
| if (clo_execontext != EC_None && statechange) { |
| EC_EIP eceip; |
| |
| if (clo_execontext == EC_Some) |
| eceip = EIP(VG_(get_EIP)(tid), prevstate, tls); |
| else |
| eceip = EC(VG_(get_ExeContext)(tid), prevstate, tls); |
| setExeContext(a, eceip); |
| } |
| } |
| |
| static void eraser_mem_read(Addr a, UInt size, ThreadId tid) |
| { |
| Addr end; |
| |
| end = ROUNDUP(a+size, 4); |
| a = ROUNDDN(a, 4); |
| |
| for ( ; a < end; a += 4) |
| eraser_mem_read_word(a, tid); |
| } |
| |
| static void eraser_mem_write_word(Addr a, ThreadId tid) |
| { |
| ThreadLifeSeg *tls; |
| shadow_word* sword /* egcs-2.91.66 complains uninit */ = NULL; |
| shadow_word prevstate; |
| Bool statechange = False; |
| static const void *const states[4] = { |
| [Vge_Virgin] &&st_virgin, |
| [Vge_Excl] &&st_excl, |
| [Vge_Shar] &&st_shar, |
| [Vge_SharMod] &&st_sharmod, |
| }; |
| |
| tls = thread_seg[tid]; |
| sk_assert(tls != NULL && tls->tid == tid); |
| |
| sword = get_sword_addr(a); |
| if (sword == SEC_MAP_ACCESS) { |
| VG_(printf)("read distinguished 2ndary map! 0x%x\n", a); |
| return; |
| } |
| |
| prevstate = *sword; |
| |
| goto *states[sword->state]; |
| |
| st_virgin: |
| if (TID_INDICATING_NONVIRGIN == sword->other) |
| DEBUG_STATE("Write VIRGIN --> EXCL: %8x, %u\n", a, tid); |
| else |
| DEBUG_STATE("Write SPECIAL --> EXCL: %8x, %u\n", a, tid); |
| statechange = True; |
| *sword = SW(Vge_Excl, packTLS(tls));/* remember exclusive owner */ |
| tls->refcount++; |
| goto done; |
| |
| st_excl: { |
| ThreadLifeSeg *sw_tls = unpackTLS(sword->other); |
| |
| if (tls == sw_tls) { |
| DEBUG_STATE("Write EXCL: %8x, %u\n", a, tid); |
| goto done; |
| } else if (unpackTLS(TLSP_INDICATING_ALL) == sw_tls) { |
| DEBUG_STATE("Write EXCL/ERR: %8x, %u\n", a, tid); |
| goto done; |
| } else if (tlsIsDisjoint(tls, sw_tls)) { |
| DEBUG_STATE("Write EXCL(%u) --> EXCL: %8x, %u\n", sw_tls->tid, a, tid); |
| sword->other = packTLS(tls); |
| sw_tls->refcount--; |
| tls->refcount++; |
| goto done; |
| } else { |
| DEBUG_STATE("Write EXCL(%u) --> SHAR_MOD: %8x, %u\n", sw_tls->tid, a, tid); |
| statechange = True; |
| sw_tls->refcount--; |
| *sword = SW(Vge_SharMod, packLockSet(thread_locks[tid])); |
| if(DEBUG_MEM_LOCKSET_CHANGES) |
| print_LockSet("excl write locks", unpackLockSet(sword->other)); |
| goto SHARED_MODIFIED; |
| } |
| } |
| |
| st_shar: |
| DEBUG_STATE("Write SHAR --> SHAR_MOD: %8x, %u\n", a, tid); |
| sword->state = Vge_SharMod; |
| sword->other = packLockSet(intersect(unpackLockSet(sword->other), |
| thread_locks[tid])); |
| statechange = True; |
| goto SHARED_MODIFIED; |
| |
| st_sharmod: |
| DEBUG_STATE("Write SHAR_MOD: %8x, %u\n", a, tid); |
| sword->other = packLockSet(intersect(unpackLockSet(sword->other), |
| thread_locks[tid])); |
| statechange = sword->other != prevstate.other; |
| |
| SHARED_MODIFIED: |
| if (isempty(unpackLockSet(sword->other))) { |
| record_eraser_error(tid, a, True /* is_write */, prevstate); |
| } |
| goto done; |
| |
| done: |
| if (clo_execontext != EC_None && statechange) { |
| EC_EIP eceip; |
| |
| if (clo_execontext == EC_Some) |
| eceip = EIP(VG_(get_EIP)(tid), prevstate, tls); |
| else |
| eceip = EC(VG_(get_ExeContext)(tid), prevstate, tls); |
| setExeContext(a, eceip); |
| } |
| } |
| |
| static void eraser_mem_write(Addr a, UInt size, ThreadId tid) |
| { |
| Addr end; |
| |
| end = ROUNDUP(a+size, 4); |
| a = ROUNDDN(a, 4); |
| |
| for ( ; a < end; a += 4) |
| eraser_mem_write_word(a, tid); |
| } |
| |
| #undef DEBUG_STATE |
| |
| REGPARM(1) static void eraser_mem_help_read_1(Addr a) |
| { |
| eraser_mem_read(a, 1, VG_(get_current_tid)()); |
| } |
| |
| REGPARM(1) static void eraser_mem_help_read_2(Addr a) |
| { |
| eraser_mem_read(a, 2, VG_(get_current_tid)()); |
| } |
| |
| REGPARM(1) static void eraser_mem_help_read_4(Addr a) |
| { |
| eraser_mem_read(a, 4, VG_(get_current_tid)()); |
| } |
| |
| REGPARM(2) static void eraser_mem_help_read_N(Addr a, UInt size) |
| { |
| eraser_mem_read(a, size, VG_(get_current_tid)()); |
| } |
| |
| REGPARM(2) static void eraser_mem_help_write_1(Addr a, UInt val) |
| { |
| if (*(UChar *)a != val) |
| eraser_mem_write(a, 1, VG_(get_current_tid)()); |
| } |
| REGPARM(2) static void eraser_mem_help_write_2(Addr a, UInt val) |
| { |
| if (*(UShort *)a != val) |
| eraser_mem_write(a, 2, VG_(get_current_tid)()); |
| } |
| REGPARM(2) static void eraser_mem_help_write_4(Addr a, UInt val) |
| { |
| if (*(UInt *)a != val) |
| eraser_mem_write(a, 4, VG_(get_current_tid)()); |
| } |
| REGPARM(2) static void eraser_mem_help_write_N(Addr a, UInt size) |
| { |
| eraser_mem_write(a, size, VG_(get_current_tid)()); |
| } |
| |
| static void hg_thread_create(ThreadId parent, ThreadId child) |
| { |
| if (0) |
| VG_(printf)("CREATE: %u creating %u\n", parent, child); |
| |
| newTLS(child); |
| addPriorTLS(child, parent); |
| |
| newTLS(parent); |
| } |
| |
| static void hg_thread_join(ThreadId joiner, ThreadId joinee) |
| { |
| if (0) |
| VG_(printf)("JOIN: %u joining on %u\n", joiner, joinee); |
| |
| newTLS(joiner); |
| addPriorTLS(joiner, joinee); |
| |
| clearTLS(joinee); |
| } |
| |
| static Int __BUS_HARDWARE_LOCK__; |
| |
| static void bus_lock(void) |
| { |
| ThreadId tid = VG_(get_current_tid)(); |
| eraser_pre_mutex_lock(tid, &__BUS_HARDWARE_LOCK__); |
| eraser_post_mutex_lock(tid, &__BUS_HARDWARE_LOCK__); |
| } |
| |
| static void bus_unlock(void) |
| { |
| ThreadId tid = VG_(get_current_tid)(); |
| eraser_post_mutex_unlock(tid, &__BUS_HARDWARE_LOCK__); |
| } |
| |
| /*--------------------------------------------------------------------*/ |
| /*--- Client requests ---*/ |
| /*--------------------------------------------------------------------*/ |
| |
| Bool SK_(handle_client_request)(ThreadId tid, UInt *args, UInt *ret) |
| { |
| if (!VG_IS_SKIN_USERREQ('H','G',args[0])) |
| return False; |
| |
| switch(args[0]) { |
| case VG_USERREQ__HG_CLEAN_MEMORY: |
| set_address_range_state(args[1], args[2], Vge_VirginInit); |
| *ret = 0; /* meaningless */ |
| break; |
| |
| case VG_USERREQ__HG_KNOWN_RACE: |
| set_address_range_state(args[1], args[2], Vge_Error); |
| *ret = 0; /* meaningless */ |
| break; |
| |
| default: |
| return False; |
| } |
| |
| return True; |
| } |
| |
| |
| /*--------------------------------------------------------------------*/ |
| /*--- Setup ---*/ |
| /*--------------------------------------------------------------------*/ |
| |
| void SK_(pre_clo_init)(void) |
| { |
| Int i; |
| LockSet *empty; |
| |
| VG_(details_name) ("Helgrind"); |
| VG_(details_version) (NULL); |
| VG_(details_description) ("a data race detector"); |
| VG_(details_copyright_author)( |
| "Copyright (C) 2002-2004, and GNU GPL'd, by Nicholas Nethercote."); |
| VG_(details_bug_reports_to) (VG_BUGS_TO); |
| VG_(details_avg_translation_sizeB) ( 115 ); |
| |
| VG_(needs_core_errors)(); |
| VG_(needs_skin_errors)(); |
| VG_(needs_data_syms)(); |
| VG_(needs_client_requests)(); |
| VG_(needs_command_line_options)(); |
| VG_(needs_shadow_memory)(); |
| |
| VG_(init_new_mem_startup) (& eraser_new_mem_startup); |
| |
| /* stack ones not decided until VG_(post_clo_init)() */ |
| |
| VG_(init_new_mem_brk) (& make_writable); |
| VG_(init_new_mem_mmap) (& eraser_new_mem_startup); |
| |
| VG_(init_change_mem_mprotect) (& eraser_set_perms); |
| |
| VG_(init_ban_mem_stack) (NULL); |
| |
| VG_(init_die_mem_stack) (NULL); |
| VG_(init_die_mem_stack_signal) (NULL); |
| VG_(init_die_mem_brk) (NULL); |
| VG_(init_die_mem_munmap) (NULL); |
| |
| VG_(init_pre_mem_read) (& eraser_pre_mem_read); |
| VG_(init_pre_mem_read_asciiz) (& eraser_pre_mem_read_asciiz); |
| VG_(init_pre_mem_write) (& eraser_pre_mem_write); |
| VG_(init_post_mem_write) (NULL); |
| |
| VG_(init_post_thread_create) (& hg_thread_create); |
| VG_(init_post_thread_join) (& hg_thread_join); |
| |
| VG_(init_pre_mutex_lock) (& eraser_pre_mutex_lock); |
| VG_(init_post_mutex_lock) (& eraser_post_mutex_lock); |
| VG_(init_post_mutex_unlock) (& eraser_post_mutex_unlock); |
| |
| VG_(register_compact_helper)((Addr) & eraser_mem_help_read_1); |
| VG_(register_compact_helper)((Addr) & eraser_mem_help_read_2); |
| VG_(register_compact_helper)((Addr) & eraser_mem_help_read_4); |
| VG_(register_noncompact_helper)((Addr) & eraser_mem_help_read_N); |
| |
| VG_(register_compact_helper)((Addr) & eraser_mem_help_write_1); |
| VG_(register_compact_helper)((Addr) & eraser_mem_help_write_2); |
| VG_(register_compact_helper)((Addr) & eraser_mem_help_write_4); |
| VG_(register_noncompact_helper)((Addr) & eraser_mem_help_write_N); |
| |
| VG_(register_noncompact_helper)((Addr) & bus_lock); |
| VG_(register_noncompact_helper)((Addr) & bus_unlock); |
| |
| for(i = 0; i < LOCKSET_HASH_SZ; i++) |
| lockset_hash[i] = NULL; |
| |
| empty = alloc_LockSet(0); |
| insert_LockSet(empty); |
| emptyset = empty; |
| |
| /* Init lock table and thread segments */ |
| for (i = 0; i < VG_N_THREADS; i++) { |
| thread_locks[i] = empty; |
| |
| newTLS(i); |
| } |
| |
| init_shadow_memory(); |
| hg_malloc_list = VG_(HT_construct)(); |
| } |
| |
| static Bool match_Bool(Char *arg, Char *argstr, Bool *ret) |
| { |
| Int len = VG_(strlen)(argstr); |
| |
| if (VG_(strncmp)(arg, argstr, len) == 0) { |
| if (VG_(strcmp)(arg+len, "yes") == 0) { |
| *ret = True; |
| return True; |
| } else if (VG_(strcmp)(arg+len, "no") == 0) { |
| *ret = False; |
| return True; |
| } else |
| VG_(bad_option)(arg); |
| } |
| return False; |
| } |
| |
| static Bool match_str(Char *arg, Char *argstr, Char **ret) |
| { |
| Int len = VG_(strlen)(argstr); |
| |
| if (VG_(strncmp)(arg, argstr, len) == 0) { |
| *ret = VG_(strdup)(arg+len); |
| return True; |
| } |
| |
| return False; |
| } |
| |
| Bool SK_(process_cmd_line_option)(Char* arg) |
| { |
| Char *str; |
| |
| if (match_str(arg, "--show-last-access=", &str)) { |
| Bool ok = True; |
| if (VG_(strcmp)(str, "no") == 0) |
| clo_execontext = EC_None; |
| else if (VG_(strcmp)(str, "some") == 0) |
| clo_execontext = EC_Some; |
| else if (VG_(strcmp)(str, "all") == 0) |
| clo_execontext = EC_All; |
| else { |
| ok = False; |
| VG_(bad_option)(arg); |
| } |
| |
| VG_(free)(str); |
| if (ok) |
| return True; |
| } |
| |
| if (match_Bool(arg, "--private-stacks=", &clo_priv_stacks)) |
| return True; |
| |
| return VG_(replacement_malloc_process_cmd_line_option)(arg); |
| } |
| |
| void SK_(print_usage)(void) |
| { |
| VG_(printf)( |
| " --private-stacks=yes|no assume thread stacks are used privately [no]\n" |
| " --show-last-access=no|some|all\n" |
| " show location of last word access on error [no]\n" |
| ); |
| VG_(replacement_malloc_print_usage)(); |
| } |
| |
| void SK_(print_debug_usage)(void) |
| { |
| VG_(replacement_malloc_print_debug_usage)(); |
| } |
| |
| void SK_(post_clo_init)(void) |
| { |
| void (*stack_tracker)(Addr a, UInt len); |
| |
| if (clo_execontext) { |
| execontext_map = VG_(malloc)(sizeof(ExeContextMap *) * 65536); |
| VG_(memset)(execontext_map, 0, sizeof(ExeContextMap *) * 65536); |
| } |
| |
| if (clo_priv_stacks) |
| stack_tracker = & eraser_new_mem_stack_private; |
| else |
| stack_tracker = & eraser_new_mem_stack; |
| |
| VG_(init_new_mem_stack) (stack_tracker); |
| VG_(init_new_mem_stack_signal) (stack_tracker); |
| } |
| |
| |
| void SK_(fini)(Int exitcode) |
| { |
| if (DEBUG_LOCK_TABLE) { |
| pp_all_LockSets(); |
| pp_all_mutexes(); |
| } |
| |
| if (LOCKSET_SANITY) |
| sanity_check_locksets("SK_(fini)"); |
| |
| if (VG_(clo_verbosity) > 0) |
| VG_(message)(Vg_UserMsg, "%u possible data races found; %u lock order problems", |
| n_eraser_warnings, n_lockorder_warnings); |
| |
| if (0) |
| VG_(printf)("stk_ld:%u+stk_st:%u = %u nonstk_ld:%u+nonstk_st:%u = %u %u%%\n", |
| stk_ld, stk_st, stk_ld + stk_st, |
| nonstk_ld, nonstk_st, nonstk_ld + nonstk_st, |
| ((stk_ld+stk_st)*100) / (stk_ld + stk_st + nonstk_ld + nonstk_st)); |
| } |
| |
| /* Uses a 1:1 mapping */ |
| VG_DETERMINE_INTERFACE_VERSION(SK_(pre_clo_init), 1.0) |
| |
| /*--------------------------------------------------------------------*/ |
| /*--- end hg_main.c ---*/ |
| /*--------------------------------------------------------------------*/ |