| |
| /*--------------------------------------------------------------------*/ |
| /*--- begin guest_x86_toIR.c ---*/ |
| /*--------------------------------------------------------------------*/ |
| |
| /* |
| This file is part of Valgrind, a dynamic binary instrumentation |
| framework. |
| |
| Copyright (C) 2004-2012 OpenWorks LLP |
| info@open-works.net |
| |
| This program is free software; you can redistribute it and/or |
| modify it under the terms of the GNU General Public License as |
| published by the Free Software Foundation; either version 2 of the |
| License, or (at your option) any later version. |
| |
| This program is distributed in the hope that it will be useful, but |
| WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with this program; if not, write to the Free Software |
| Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA |
| 02110-1301, USA. |
| |
| The GNU General Public License is contained in the file COPYING. |
| |
| Neither the names of the U.S. Department of Energy nor the |
| University of California nor the names of its contributors may be |
| used to endorse or promote products derived from this software |
| without prior written permission. |
| */ |
| |
| /* Translates x86 code to IR. */ |
| |
| /* TODO: |
| |
| All Puts to CC_OP/CC_DEP1/CC_DEP2/CC_NDEP should really be checked |
| to ensure a 32-bit value is being written. |
| |
| FUCOMI(P): what happens to A and S flags? Currently are forced |
| to zero. |
| |
| x87 FP Limitations: |
| |
| * all arithmetic done at 64 bits |
| |
| * no FP exceptions, except for handling stack over/underflow |
| |
| * FP rounding mode observed only for float->int conversions |
| and int->float conversions which could lose accuracy, and |
| for float-to-float rounding. For all other operations, |
| round-to-nearest is used, regardless. |
| |
| * FP sin/cos/tan/sincos: C2 flag is always cleared. IOW the |
| simulation claims the argument is in-range (-2^63 <= arg <= 2^63) |
| even when it isn't. |
| |
| * some of the FCOM cases could do with testing -- not convinced |
| that the args are the right way round. |
| |
| * FSAVE does not re-initialise the FPU; it should do |
| |
| * FINIT not only initialises the FPU environment, it also |
| zeroes all the FP registers. It should leave the registers |
| unchanged. |
| |
| SAHF should cause eflags[1] == 1, and in fact it produces 0. As |
| per Intel docs this bit has no meaning anyway. Since PUSHF is the |
| only way to observe eflags[1], a proper fix would be to make that |
| bit be set by PUSHF. |
| |
| The state of %eflags.AC (alignment check, bit 18) is recorded by |
| the simulation (viz, if you set it with popf then a pushf produces |
| the value you set it to), but it is otherwise ignored. In |
| particular, setting it to 1 does NOT cause alignment checking to |
| happen. Programs that set it to 1 and then rely on the resulting |
| SIGBUSs to inform them of misaligned accesses will not work. |
| |
| Implementation of sysenter is necessarily partial. sysenter is a |
| kind of system call entry. When doing a sysenter, the return |
| address is not known -- that is something that is beyond Vex's |
| knowledge. So the generated IR forces a return to the scheduler, |
| which can do what it likes to simulate the systenter, but it MUST |
| set this thread's guest_EIP field with the continuation address |
| before resuming execution. If that doesn't happen, the thread will |
| jump to address zero, which is probably fatal. |
| |
| This module uses global variables and so is not MT-safe (if that |
| should ever become relevant). |
| |
| The delta values are 32-bit ints, not 64-bit ints. That means |
| this module may not work right if run on a 64-bit host. That should |
| be fixed properly, really -- if anyone ever wants to use Vex to |
| translate x86 code for execution on a 64-bit host. |
| |
| casLE (implementation of lock-prefixed insns) and rep-prefixed |
| insns: the side-exit back to the start of the insn is done with |
| Ijk_Boring. This is quite wrong, it should be done with |
| Ijk_NoRedir, since otherwise the side exit, which is intended to |
| restart the instruction for whatever reason, could go somewhere |
| entirely else. Doing it right (with Ijk_NoRedir jumps) would make |
| no-redir jumps performance critical, at least for rep-prefixed |
| instructions, since all iterations thereof would involve such a |
| jump. It's not such a big deal with casLE since the side exit is |
| only taken if the CAS fails, that is, the location is contended, |
| which is relatively unlikely. |
| |
| XXXX: Nov 2009: handling of SWP on ARM suffers from the same |
| problem. |
| |
| Note also, the test for CAS success vs failure is done using |
| Iop_CasCmp{EQ,NE}{8,16,32,64} rather than the ordinary |
| Iop_Cmp{EQ,NE} equivalents. This is so as to tell Memcheck that it |
| shouldn't definedness-check these comparisons. See |
| COMMENT_ON_CasCmpEQ in memcheck/mc_translate.c for |
| background/rationale. |
| */ |
| |
| /* Performance holes: |
| |
| - fcom ; fstsw %ax ; sahf |
| sahf does not update the O flag (sigh) and so O needs to |
| be computed. This is done expensively; it would be better |
| to have a calculate_eflags_o helper. |
| |
| - emwarns; some FP codes can generate huge numbers of these |
| if the fpucw is changed in an inner loop. It would be |
| better for the guest state to have an emwarn-enable reg |
| which can be set zero or nonzero. If it is zero, emwarns |
| are not flagged, and instead control just flows all the |
| way through bbs as usual. |
| */ |
| |
| /* "Special" instructions. |
| |
| This instruction decoder can decode three special instructions |
| which mean nothing natively (are no-ops as far as regs/mem are |
| concerned) but have meaning for supporting Valgrind. A special |
| instruction is flagged by the 12-byte preamble C1C703 C1C70D C1C71D |
| C1C713 (in the standard interpretation, that means: roll $3, %edi; |
| roll $13, %edi; roll $29, %edi; roll $19, %edi). Following that, |
| one of the following 3 are allowed (standard interpretation in |
| parentheses): |
| |
| 87DB (xchgl %ebx,%ebx) %EDX = client_request ( %EAX ) |
| 87C9 (xchgl %ecx,%ecx) %EAX = guest_NRADDR |
| 87D2 (xchgl %edx,%edx) call-noredir *%EAX |
| 87FF (xchgl %edi,%edi) IR injection |
| |
| Any other bytes following the 12-byte preamble are illegal and |
| constitute a failure in instruction decoding. This all assumes |
| that the preamble will never occur except in specific code |
| fragments designed for Valgrind to catch. |
| |
| No prefixes may precede a "Special" instruction. |
| */ |
| |
| /* LOCK prefixed instructions. These are translated using IR-level |
| CAS statements (IRCAS) and are believed to preserve atomicity, even |
| from the point of view of some other process racing against a |
| simulated one (presumably they communicate via a shared memory |
| segment). |
| |
| Handlers which are aware of LOCK prefixes are: |
| dis_op2_G_E (add, or, adc, sbb, and, sub, xor) |
| dis_cmpxchg_G_E (cmpxchg) |
| dis_Grp1 (add, or, adc, sbb, and, sub, xor) |
| dis_Grp3 (not, neg) |
| dis_Grp4 (inc, dec) |
| dis_Grp5 (inc, dec) |
| dis_Grp8_Imm (bts, btc, btr) |
| dis_bt_G_E (bts, btc, btr) |
| dis_xadd_G_E (xadd) |
| */ |
| |
| |
| #include "libvex_basictypes.h" |
| #include "libvex_ir.h" |
| #include "libvex.h" |
| #include "libvex_guest_x86.h" |
| |
| #include "main_util.h" |
| #include "main_globals.h" |
| #include "guest_generic_bb_to_IR.h" |
| #include "guest_generic_x87.h" |
| #include "guest_x86_defs.h" |
| |
| |
| /*------------------------------------------------------------*/ |
| /*--- Globals ---*/ |
| /*------------------------------------------------------------*/ |
| |
| /* These are set at the start of the translation of an insn, right |
| down in disInstr_X86, so that we don't have to pass them around |
| endlessly. They are all constant during the translation of any |
| given insn. */ |
| |
| /* We need to know this to do sub-register accesses correctly. */ |
| static Bool host_is_bigendian; |
| |
| /* Pointer to the guest code area (points to start of BB, not to the |
| insn being processed). */ |
| static UChar* guest_code; |
| |
| /* The guest address corresponding to guest_code[0]. */ |
| static Addr32 guest_EIP_bbstart; |
| |
| /* The guest address for the instruction currently being |
| translated. */ |
| static Addr32 guest_EIP_curr_instr; |
| |
| /* The IRSB* into which we're generating code. */ |
| static IRSB* irsb; |
| |
| |
| /*------------------------------------------------------------*/ |
| /*--- Debugging output ---*/ |
| /*------------------------------------------------------------*/ |
| |
| #define DIP(format, args...) \ |
| if (vex_traceflags & VEX_TRACE_FE) \ |
| vex_printf(format, ## args) |
| |
| #define DIS(buf, format, args...) \ |
| if (vex_traceflags & VEX_TRACE_FE) \ |
| vex_sprintf(buf, format, ## args) |
| |
| |
| /*------------------------------------------------------------*/ |
| /*--- Offsets of various parts of the x86 guest state. ---*/ |
| /*------------------------------------------------------------*/ |
| |
| #define OFFB_EAX offsetof(VexGuestX86State,guest_EAX) |
| #define OFFB_EBX offsetof(VexGuestX86State,guest_EBX) |
| #define OFFB_ECX offsetof(VexGuestX86State,guest_ECX) |
| #define OFFB_EDX offsetof(VexGuestX86State,guest_EDX) |
| #define OFFB_ESP offsetof(VexGuestX86State,guest_ESP) |
| #define OFFB_EBP offsetof(VexGuestX86State,guest_EBP) |
| #define OFFB_ESI offsetof(VexGuestX86State,guest_ESI) |
| #define OFFB_EDI offsetof(VexGuestX86State,guest_EDI) |
| |
| #define OFFB_EIP offsetof(VexGuestX86State,guest_EIP) |
| |
| #define OFFB_CC_OP offsetof(VexGuestX86State,guest_CC_OP) |
| #define OFFB_CC_DEP1 offsetof(VexGuestX86State,guest_CC_DEP1) |
| #define OFFB_CC_DEP2 offsetof(VexGuestX86State,guest_CC_DEP2) |
| #define OFFB_CC_NDEP offsetof(VexGuestX86State,guest_CC_NDEP) |
| |
| #define OFFB_FPREGS offsetof(VexGuestX86State,guest_FPREG[0]) |
| #define OFFB_FPTAGS offsetof(VexGuestX86State,guest_FPTAG[0]) |
| #define OFFB_DFLAG offsetof(VexGuestX86State,guest_DFLAG) |
| #define OFFB_IDFLAG offsetof(VexGuestX86State,guest_IDFLAG) |
| #define OFFB_ACFLAG offsetof(VexGuestX86State,guest_ACFLAG) |
| #define OFFB_FTOP offsetof(VexGuestX86State,guest_FTOP) |
| #define OFFB_FC3210 offsetof(VexGuestX86State,guest_FC3210) |
| #define OFFB_FPROUND offsetof(VexGuestX86State,guest_FPROUND) |
| |
| #define OFFB_CS offsetof(VexGuestX86State,guest_CS) |
| #define OFFB_DS offsetof(VexGuestX86State,guest_DS) |
| #define OFFB_ES offsetof(VexGuestX86State,guest_ES) |
| #define OFFB_FS offsetof(VexGuestX86State,guest_FS) |
| #define OFFB_GS offsetof(VexGuestX86State,guest_GS) |
| #define OFFB_SS offsetof(VexGuestX86State,guest_SS) |
| #define OFFB_LDT offsetof(VexGuestX86State,guest_LDT) |
| #define OFFB_GDT offsetof(VexGuestX86State,guest_GDT) |
| |
| #define OFFB_SSEROUND offsetof(VexGuestX86State,guest_SSEROUND) |
| #define OFFB_XMM0 offsetof(VexGuestX86State,guest_XMM0) |
| #define OFFB_XMM1 offsetof(VexGuestX86State,guest_XMM1) |
| #define OFFB_XMM2 offsetof(VexGuestX86State,guest_XMM2) |
| #define OFFB_XMM3 offsetof(VexGuestX86State,guest_XMM3) |
| #define OFFB_XMM4 offsetof(VexGuestX86State,guest_XMM4) |
| #define OFFB_XMM5 offsetof(VexGuestX86State,guest_XMM5) |
| #define OFFB_XMM6 offsetof(VexGuestX86State,guest_XMM6) |
| #define OFFB_XMM7 offsetof(VexGuestX86State,guest_XMM7) |
| |
| #define OFFB_EMNOTE offsetof(VexGuestX86State,guest_EMNOTE) |
| |
| #define OFFB_TISTART offsetof(VexGuestX86State,guest_TISTART) |
| #define OFFB_TILEN offsetof(VexGuestX86State,guest_TILEN) |
| #define OFFB_NRADDR offsetof(VexGuestX86State,guest_NRADDR) |
| |
| #define OFFB_IP_AT_SYSCALL offsetof(VexGuestX86State,guest_IP_AT_SYSCALL) |
| |
| |
| /*------------------------------------------------------------*/ |
| /*--- Helper bits and pieces for deconstructing the ---*/ |
| /*--- x86 insn stream. ---*/ |
| /*------------------------------------------------------------*/ |
| |
| /* This is the Intel register encoding -- integer regs. */ |
| #define R_EAX 0 |
| #define R_ECX 1 |
| #define R_EDX 2 |
| #define R_EBX 3 |
| #define R_ESP 4 |
| #define R_EBP 5 |
| #define R_ESI 6 |
| #define R_EDI 7 |
| |
| #define R_AL (0+R_EAX) |
| #define R_AH (4+R_EAX) |
| |
| /* This is the Intel register encoding -- segment regs. */ |
| #define R_ES 0 |
| #define R_CS 1 |
| #define R_SS 2 |
| #define R_DS 3 |
| #define R_FS 4 |
| #define R_GS 5 |
| |
| |
| /* Add a statement to the list held by "irbb". */ |
| static void stmt ( IRStmt* st ) |
| { |
| addStmtToIRSB( irsb, st ); |
| } |
| |
| /* Generate a new temporary of the given type. */ |
| static IRTemp newTemp ( IRType ty ) |
| { |
| vassert(isPlausibleIRType(ty)); |
| return newIRTemp( irsb->tyenv, ty ); |
| } |
| |
| /* Various simple conversions */ |
| |
| static UInt extend_s_8to32( UInt x ) |
| { |
| return (UInt)((((Int)x) << 24) >> 24); |
| } |
| |
| static UInt extend_s_16to32 ( UInt x ) |
| { |
| return (UInt)((((Int)x) << 16) >> 16); |
| } |
| |
| /* Fetch a byte from the guest insn stream. */ |
| static UChar getIByte ( Int delta ) |
| { |
| return guest_code[delta]; |
| } |
| |
| /* Extract the reg field from a modRM byte. */ |
| static Int gregOfRM ( UChar mod_reg_rm ) |
| { |
| return (Int)( (mod_reg_rm >> 3) & 7 ); |
| } |
| |
| /* Figure out whether the mod and rm parts of a modRM byte refer to a |
| register or memory. If so, the byte will have the form 11XXXYYY, |
| where YYY is the register number. */ |
| static Bool epartIsReg ( UChar mod_reg_rm ) |
| { |
| return toBool(0xC0 == (mod_reg_rm & 0xC0)); |
| } |
| |
| /* ... and extract the register number ... */ |
| static Int eregOfRM ( UChar mod_reg_rm ) |
| { |
| return (Int)(mod_reg_rm & 0x7); |
| } |
| |
| /* Get a 8/16/32-bit unsigned value out of the insn stream. */ |
| |
| static UChar getUChar ( Int delta ) |
| { |
| UChar v = guest_code[delta+0]; |
| return toUChar(v); |
| } |
| |
| static UInt getUDisp16 ( Int delta ) |
| { |
| UInt v = guest_code[delta+1]; v <<= 8; |
| v |= guest_code[delta+0]; |
| return v & 0xFFFF; |
| } |
| |
| static UInt getUDisp32 ( Int delta ) |
| { |
| UInt v = guest_code[delta+3]; v <<= 8; |
| v |= guest_code[delta+2]; v <<= 8; |
| v |= guest_code[delta+1]; v <<= 8; |
| v |= guest_code[delta+0]; |
| return v; |
| } |
| |
| static UInt getUDisp ( Int size, Int delta ) |
| { |
| switch (size) { |
| case 4: return getUDisp32(delta); |
| case 2: return getUDisp16(delta); |
| case 1: return (UInt)getUChar(delta); |
| default: vpanic("getUDisp(x86)"); |
| } |
| return 0; /*notreached*/ |
| } |
| |
| |
| /* Get a byte value out of the insn stream and sign-extend to 32 |
| bits. */ |
| static UInt getSDisp8 ( Int delta ) |
| { |
| return extend_s_8to32( (UInt) (guest_code[delta]) ); |
| } |
| |
| static UInt getSDisp16 ( Int delta0 ) |
| { |
| UChar* eip = (UChar*)(&guest_code[delta0]); |
| UInt d = *eip++; |
| d |= ((*eip++) << 8); |
| return extend_s_16to32(d); |
| } |
| |
| static UInt getSDisp ( Int size, Int delta ) |
| { |
| switch (size) { |
| case 4: return getUDisp32(delta); |
| case 2: return getSDisp16(delta); |
| case 1: return getSDisp8(delta); |
| default: vpanic("getSDisp(x86)"); |
| } |
| return 0; /*notreached*/ |
| } |
| |
| |
| /*------------------------------------------------------------*/ |
| /*--- Helpers for constructing IR. ---*/ |
| /*------------------------------------------------------------*/ |
| |
| /* Create a 1/2/4 byte read of an x86 integer registers. For 16/8 bit |
| register references, we need to take the host endianness into |
| account. Supplied value is 0 .. 7 and in the Intel instruction |
| encoding. */ |
| |
| static IRType szToITy ( Int n ) |
| { |
| switch (n) { |
| case 1: return Ity_I8; |
| case 2: return Ity_I16; |
| case 4: return Ity_I32; |
| default: vpanic("szToITy(x86)"); |
| } |
| } |
| |
| /* On a little-endian host, less significant bits of the guest |
| registers are at lower addresses. Therefore, if a reference to a |
| register low half has the safe guest state offset as a reference to |
| the full register. |
| */ |
| static Int integerGuestRegOffset ( Int sz, UInt archreg ) |
| { |
| vassert(archreg < 8); |
| |
| /* Correct for little-endian host only. */ |
| vassert(!host_is_bigendian); |
| |
| if (sz == 4 || sz == 2 || (sz == 1 && archreg < 4)) { |
| switch (archreg) { |
| case R_EAX: return OFFB_EAX; |
| case R_EBX: return OFFB_EBX; |
| case R_ECX: return OFFB_ECX; |
| case R_EDX: return OFFB_EDX; |
| case R_ESI: return OFFB_ESI; |
| case R_EDI: return OFFB_EDI; |
| case R_ESP: return OFFB_ESP; |
| case R_EBP: return OFFB_EBP; |
| default: vpanic("integerGuestRegOffset(x86,le)(4,2)"); |
| } |
| } |
| |
| vassert(archreg >= 4 && archreg < 8 && sz == 1); |
| switch (archreg-4) { |
| case R_EAX: return 1+ OFFB_EAX; |
| case R_EBX: return 1+ OFFB_EBX; |
| case R_ECX: return 1+ OFFB_ECX; |
| case R_EDX: return 1+ OFFB_EDX; |
| default: vpanic("integerGuestRegOffset(x86,le)(1h)"); |
| } |
| |
| /* NOTREACHED */ |
| vpanic("integerGuestRegOffset(x86,le)"); |
| } |
| |
| static Int segmentGuestRegOffset ( UInt sreg ) |
| { |
| switch (sreg) { |
| case R_ES: return OFFB_ES; |
| case R_CS: return OFFB_CS; |
| case R_SS: return OFFB_SS; |
| case R_DS: return OFFB_DS; |
| case R_FS: return OFFB_FS; |
| case R_GS: return OFFB_GS; |
| default: vpanic("segmentGuestRegOffset(x86)"); |
| } |
| } |
| |
| static Int xmmGuestRegOffset ( UInt xmmreg ) |
| { |
| switch (xmmreg) { |
| case 0: return OFFB_XMM0; |
| case 1: return OFFB_XMM1; |
| case 2: return OFFB_XMM2; |
| case 3: return OFFB_XMM3; |
| case 4: return OFFB_XMM4; |
| case 5: return OFFB_XMM5; |
| case 6: return OFFB_XMM6; |
| case 7: return OFFB_XMM7; |
| default: vpanic("xmmGuestRegOffset"); |
| } |
| } |
| |
| /* Lanes of vector registers are always numbered from zero being the |
| least significant lane (rightmost in the register). */ |
| |
| static Int xmmGuestRegLane16offset ( UInt xmmreg, Int laneno ) |
| { |
| /* Correct for little-endian host only. */ |
| vassert(!host_is_bigendian); |
| vassert(laneno >= 0 && laneno < 8); |
| return xmmGuestRegOffset( xmmreg ) + 2 * laneno; |
| } |
| |
| static Int xmmGuestRegLane32offset ( UInt xmmreg, Int laneno ) |
| { |
| /* Correct for little-endian host only. */ |
| vassert(!host_is_bigendian); |
| vassert(laneno >= 0 && laneno < 4); |
| return xmmGuestRegOffset( xmmreg ) + 4 * laneno; |
| } |
| |
| static Int xmmGuestRegLane64offset ( UInt xmmreg, Int laneno ) |
| { |
| /* Correct for little-endian host only. */ |
| vassert(!host_is_bigendian); |
| vassert(laneno >= 0 && laneno < 2); |
| return xmmGuestRegOffset( xmmreg ) + 8 * laneno; |
| } |
| |
| static IRExpr* getIReg ( Int sz, UInt archreg ) |
| { |
| vassert(sz == 1 || sz == 2 || sz == 4); |
| vassert(archreg < 8); |
| return IRExpr_Get( integerGuestRegOffset(sz,archreg), |
| szToITy(sz) ); |
| } |
| |
| /* Ditto, but write to a reg instead. */ |
| static void putIReg ( Int sz, UInt archreg, IRExpr* e ) |
| { |
| IRType ty = typeOfIRExpr(irsb->tyenv, e); |
| switch (sz) { |
| case 1: vassert(ty == Ity_I8); break; |
| case 2: vassert(ty == Ity_I16); break; |
| case 4: vassert(ty == Ity_I32); break; |
| default: vpanic("putIReg(x86)"); |
| } |
| vassert(archreg < 8); |
| stmt( IRStmt_Put(integerGuestRegOffset(sz,archreg), e) ); |
| } |
| |
| static IRExpr* getSReg ( UInt sreg ) |
| { |
| return IRExpr_Get( segmentGuestRegOffset(sreg), Ity_I16 ); |
| } |
| |
| static void putSReg ( UInt sreg, IRExpr* e ) |
| { |
| vassert(typeOfIRExpr(irsb->tyenv,e) == Ity_I16); |
| stmt( IRStmt_Put( segmentGuestRegOffset(sreg), e ) ); |
| } |
| |
| static IRExpr* getXMMReg ( UInt xmmreg ) |
| { |
| return IRExpr_Get( xmmGuestRegOffset(xmmreg), Ity_V128 ); |
| } |
| |
| static IRExpr* getXMMRegLane64 ( UInt xmmreg, Int laneno ) |
| { |
| return IRExpr_Get( xmmGuestRegLane64offset(xmmreg,laneno), Ity_I64 ); |
| } |
| |
| static IRExpr* getXMMRegLane64F ( UInt xmmreg, Int laneno ) |
| { |
| return IRExpr_Get( xmmGuestRegLane64offset(xmmreg,laneno), Ity_F64 ); |
| } |
| |
| static IRExpr* getXMMRegLane32 ( UInt xmmreg, Int laneno ) |
| { |
| return IRExpr_Get( xmmGuestRegLane32offset(xmmreg,laneno), Ity_I32 ); |
| } |
| |
| static IRExpr* getXMMRegLane32F ( UInt xmmreg, Int laneno ) |
| { |
| return IRExpr_Get( xmmGuestRegLane32offset(xmmreg,laneno), Ity_F32 ); |
| } |
| |
| static void putXMMReg ( UInt xmmreg, IRExpr* e ) |
| { |
| vassert(typeOfIRExpr(irsb->tyenv,e) == Ity_V128); |
| stmt( IRStmt_Put( xmmGuestRegOffset(xmmreg), e ) ); |
| } |
| |
| static void putXMMRegLane64 ( UInt xmmreg, Int laneno, IRExpr* e ) |
| { |
| vassert(typeOfIRExpr(irsb->tyenv,e) == Ity_I64); |
| stmt( IRStmt_Put( xmmGuestRegLane64offset(xmmreg,laneno), e ) ); |
| } |
| |
| static void putXMMRegLane64F ( UInt xmmreg, Int laneno, IRExpr* e ) |
| { |
| vassert(typeOfIRExpr(irsb->tyenv,e) == Ity_F64); |
| stmt( IRStmt_Put( xmmGuestRegLane64offset(xmmreg,laneno), e ) ); |
| } |
| |
| static void putXMMRegLane32F ( UInt xmmreg, Int laneno, IRExpr* e ) |
| { |
| vassert(typeOfIRExpr(irsb->tyenv,e) == Ity_F32); |
| stmt( IRStmt_Put( xmmGuestRegLane32offset(xmmreg,laneno), e ) ); |
| } |
| |
| static void putXMMRegLane32 ( UInt xmmreg, Int laneno, IRExpr* e ) |
| { |
| vassert(typeOfIRExpr(irsb->tyenv,e) == Ity_I32); |
| stmt( IRStmt_Put( xmmGuestRegLane32offset(xmmreg,laneno), e ) ); |
| } |
| |
| static void putXMMRegLane16 ( UInt xmmreg, Int laneno, IRExpr* e ) |
| { |
| vassert(typeOfIRExpr(irsb->tyenv,e) == Ity_I16); |
| stmt( IRStmt_Put( xmmGuestRegLane16offset(xmmreg,laneno), e ) ); |
| } |
| |
| static void assign ( IRTemp dst, IRExpr* e ) |
| { |
| stmt( IRStmt_WrTmp(dst, e) ); |
| } |
| |
| static void storeLE ( IRExpr* addr, IRExpr* data ) |
| { |
| stmt( IRStmt_Store(Iend_LE, addr, data) ); |
| } |
| |
| static IRExpr* unop ( IROp op, IRExpr* a ) |
| { |
| return IRExpr_Unop(op, a); |
| } |
| |
| static IRExpr* binop ( IROp op, IRExpr* a1, IRExpr* a2 ) |
| { |
| return IRExpr_Binop(op, a1, a2); |
| } |
| |
| static IRExpr* triop ( IROp op, IRExpr* a1, IRExpr* a2, IRExpr* a3 ) |
| { |
| return IRExpr_Triop(op, a1, a2, a3); |
| } |
| |
| static IRExpr* mkexpr ( IRTemp tmp ) |
| { |
| return IRExpr_RdTmp(tmp); |
| } |
| |
| static IRExpr* mkU8 ( UInt i ) |
| { |
| vassert(i < 256); |
| return IRExpr_Const(IRConst_U8( (UChar)i )); |
| } |
| |
| static IRExpr* mkU16 ( UInt i ) |
| { |
| vassert(i < 65536); |
| return IRExpr_Const(IRConst_U16( (UShort)i )); |
| } |
| |
| static IRExpr* mkU32 ( UInt i ) |
| { |
| return IRExpr_Const(IRConst_U32(i)); |
| } |
| |
| static IRExpr* mkU64 ( ULong i ) |
| { |
| return IRExpr_Const(IRConst_U64(i)); |
| } |
| |
| static IRExpr* mkU ( IRType ty, UInt i ) |
| { |
| if (ty == Ity_I8) return mkU8(i); |
| if (ty == Ity_I16) return mkU16(i); |
| if (ty == Ity_I32) return mkU32(i); |
| /* If this panics, it usually means you passed a size (1,2,4) |
| value as the IRType, rather than a real IRType. */ |
| vpanic("mkU(x86)"); |
| } |
| |
| static IRExpr* mkV128 ( UShort mask ) |
| { |
| return IRExpr_Const(IRConst_V128(mask)); |
| } |
| |
| static IRExpr* loadLE ( IRType ty, IRExpr* addr ) |
| { |
| return IRExpr_Load(Iend_LE, ty, addr); |
| } |
| |
| static IROp mkSizedOp ( IRType ty, IROp op8 ) |
| { |
| Int adj; |
| vassert(ty == Ity_I8 || ty == Ity_I16 || ty == Ity_I32); |
| vassert(op8 == Iop_Add8 || op8 == Iop_Sub8 |
| || op8 == Iop_Mul8 |
| || op8 == Iop_Or8 || op8 == Iop_And8 || op8 == Iop_Xor8 |
| || op8 == Iop_Shl8 || op8 == Iop_Shr8 || op8 == Iop_Sar8 |
| || op8 == Iop_CmpEQ8 || op8 == Iop_CmpNE8 |
| || op8 == Iop_CasCmpNE8 |
| || op8 == Iop_ExpCmpNE8 |
| || op8 == Iop_Not8); |
| adj = ty==Ity_I8 ? 0 : (ty==Ity_I16 ? 1 : 2); |
| return adj + op8; |
| } |
| |
| static IROp mkWidenOp ( Int szSmall, Int szBig, Bool signd ) |
| { |
| if (szSmall == 1 && szBig == 4) { |
| return signd ? Iop_8Sto32 : Iop_8Uto32; |
| } |
| if (szSmall == 1 && szBig == 2) { |
| return signd ? Iop_8Sto16 : Iop_8Uto16; |
| } |
| if (szSmall == 2 && szBig == 4) { |
| return signd ? Iop_16Sto32 : Iop_16Uto32; |
| } |
| vpanic("mkWidenOp(x86,guest)"); |
| } |
| |
| static IRExpr* mkAnd1 ( IRExpr* x, IRExpr* y ) |
| { |
| vassert(typeOfIRExpr(irsb->tyenv,x) == Ity_I1); |
| vassert(typeOfIRExpr(irsb->tyenv,y) == Ity_I1); |
| return unop(Iop_32to1, |
| binop(Iop_And32, |
| unop(Iop_1Uto32,x), |
| unop(Iop_1Uto32,y))); |
| } |
| |
| /* Generate a compare-and-swap operation, operating on memory at |
| 'addr'. The expected value is 'expVal' and the new value is |
| 'newVal'. If the operation fails, then transfer control (with a |
| no-redir jump (XXX no -- see comment at top of this file)) to |
| 'restart_point', which is presumably the address of the guest |
| instruction again -- retrying, essentially. */ |
| static void casLE ( IRExpr* addr, IRExpr* expVal, IRExpr* newVal, |
| Addr32 restart_point ) |
| { |
| IRCAS* cas; |
| IRType tyE = typeOfIRExpr(irsb->tyenv, expVal); |
| IRType tyN = typeOfIRExpr(irsb->tyenv, newVal); |
| IRTemp oldTmp = newTemp(tyE); |
| IRTemp expTmp = newTemp(tyE); |
| vassert(tyE == tyN); |
| vassert(tyE == Ity_I32 || tyE == Ity_I16 || tyE == Ity_I8); |
| assign(expTmp, expVal); |
| cas = mkIRCAS( IRTemp_INVALID, oldTmp, Iend_LE, addr, |
| NULL, mkexpr(expTmp), NULL, newVal ); |
| stmt( IRStmt_CAS(cas) ); |
| stmt( IRStmt_Exit( |
| binop( mkSizedOp(tyE,Iop_CasCmpNE8), |
| mkexpr(oldTmp), mkexpr(expTmp) ), |
| Ijk_Boring, /*Ijk_NoRedir*/ |
| IRConst_U32( restart_point ), |
| OFFB_EIP |
| )); |
| } |
| |
| |
| /*------------------------------------------------------------*/ |
| /*--- Helpers for %eflags. ---*/ |
| /*------------------------------------------------------------*/ |
| |
| /* -------------- Evaluating the flags-thunk. -------------- */ |
| |
| /* Build IR to calculate all the eflags from stored |
| CC_OP/CC_DEP1/CC_DEP2/CC_NDEP. Returns an expression :: |
| Ity_I32. */ |
| static IRExpr* mk_x86g_calculate_eflags_all ( void ) |
| { |
| IRExpr** args |
| = mkIRExprVec_4( IRExpr_Get(OFFB_CC_OP, Ity_I32), |
| IRExpr_Get(OFFB_CC_DEP1, Ity_I32), |
| IRExpr_Get(OFFB_CC_DEP2, Ity_I32), |
| IRExpr_Get(OFFB_CC_NDEP, Ity_I32) ); |
| IRExpr* call |
| = mkIRExprCCall( |
| Ity_I32, |
| 0/*regparm*/, |
| "x86g_calculate_eflags_all", &x86g_calculate_eflags_all, |
| args |
| ); |
| /* Exclude OP and NDEP from definedness checking. We're only |
| interested in DEP1 and DEP2. */ |
| call->Iex.CCall.cee->mcx_mask = (1<<0) | (1<<3); |
| return call; |
| } |
| |
| /* Build IR to calculate some particular condition from stored |
| CC_OP/CC_DEP1/CC_DEP2/CC_NDEP. Returns an expression :: |
| Ity_Bit. */ |
| static IRExpr* mk_x86g_calculate_condition ( X86Condcode cond ) |
| { |
| IRExpr** args |
| = mkIRExprVec_5( mkU32(cond), |
| IRExpr_Get(OFFB_CC_OP, Ity_I32), |
| IRExpr_Get(OFFB_CC_DEP1, Ity_I32), |
| IRExpr_Get(OFFB_CC_DEP2, Ity_I32), |
| IRExpr_Get(OFFB_CC_NDEP, Ity_I32) ); |
| IRExpr* call |
| = mkIRExprCCall( |
| Ity_I32, |
| 0/*regparm*/, |
| "x86g_calculate_condition", &x86g_calculate_condition, |
| args |
| ); |
| /* Exclude the requested condition, OP and NDEP from definedness |
| checking. We're only interested in DEP1 and DEP2. */ |
| call->Iex.CCall.cee->mcx_mask = (1<<0) | (1<<1) | (1<<4); |
| return unop(Iop_32to1, call); |
| } |
| |
| /* Build IR to calculate just the carry flag from stored |
| CC_OP/CC_DEP1/CC_DEP2/CC_NDEP. Returns an expression :: Ity_I32. */ |
| static IRExpr* mk_x86g_calculate_eflags_c ( void ) |
| { |
| IRExpr** args |
| = mkIRExprVec_4( IRExpr_Get(OFFB_CC_OP, Ity_I32), |
| IRExpr_Get(OFFB_CC_DEP1, Ity_I32), |
| IRExpr_Get(OFFB_CC_DEP2, Ity_I32), |
| IRExpr_Get(OFFB_CC_NDEP, Ity_I32) ); |
| IRExpr* call |
| = mkIRExprCCall( |
| Ity_I32, |
| 3/*regparm*/, |
| "x86g_calculate_eflags_c", &x86g_calculate_eflags_c, |
| args |
| ); |
| /* Exclude OP and NDEP from definedness checking. We're only |
| interested in DEP1 and DEP2. */ |
| call->Iex.CCall.cee->mcx_mask = (1<<0) | (1<<3); |
| return call; |
| } |
| |
| |
| /* -------------- Building the flags-thunk. -------------- */ |
| |
| /* The machinery in this section builds the flag-thunk following a |
| flag-setting operation. Hence the various setFlags_* functions. |
| */ |
| |
| static Bool isAddSub ( IROp op8 ) |
| { |
| return toBool(op8 == Iop_Add8 || op8 == Iop_Sub8); |
| } |
| |
| static Bool isLogic ( IROp op8 ) |
| { |
| return toBool(op8 == Iop_And8 || op8 == Iop_Or8 || op8 == Iop_Xor8); |
| } |
| |
| /* U-widen 8/16/32 bit int expr to 32. */ |
| static IRExpr* widenUto32 ( IRExpr* e ) |
| { |
| switch (typeOfIRExpr(irsb->tyenv,e)) { |
| case Ity_I32: return e; |
| case Ity_I16: return unop(Iop_16Uto32,e); |
| case Ity_I8: return unop(Iop_8Uto32,e); |
| default: vpanic("widenUto32"); |
| } |
| } |
| |
| /* S-widen 8/16/32 bit int expr to 32. */ |
| static IRExpr* widenSto32 ( IRExpr* e ) |
| { |
| switch (typeOfIRExpr(irsb->tyenv,e)) { |
| case Ity_I32: return e; |
| case Ity_I16: return unop(Iop_16Sto32,e); |
| case Ity_I8: return unop(Iop_8Sto32,e); |
| default: vpanic("widenSto32"); |
| } |
| } |
| |
| /* Narrow 8/16/32 bit int expr to 8/16/32. Clearly only some |
| of these combinations make sense. */ |
| static IRExpr* narrowTo ( IRType dst_ty, IRExpr* e ) |
| { |
| IRType src_ty = typeOfIRExpr(irsb->tyenv,e); |
| if (src_ty == dst_ty) |
| return e; |
| if (src_ty == Ity_I32 && dst_ty == Ity_I16) |
| return unop(Iop_32to16, e); |
| if (src_ty == Ity_I32 && dst_ty == Ity_I8) |
| return unop(Iop_32to8, e); |
| |
| vex_printf("\nsrc, dst tys are: "); |
| ppIRType(src_ty); |
| vex_printf(", "); |
| ppIRType(dst_ty); |
| vex_printf("\n"); |
| vpanic("narrowTo(x86)"); |
| } |
| |
| |
| /* Set the flags thunk OP, DEP1 and DEP2 fields. The supplied op is |
| auto-sized up to the real op. */ |
| |
| static |
| void setFlags_DEP1_DEP2 ( IROp op8, IRTemp dep1, IRTemp dep2, IRType ty ) |
| { |
| Int ccOp = ty==Ity_I8 ? 0 : (ty==Ity_I16 ? 1 : 2); |
| |
| vassert(ty == Ity_I8 || ty == Ity_I16 || ty == Ity_I32); |
| |
| switch (op8) { |
| case Iop_Add8: ccOp += X86G_CC_OP_ADDB; break; |
| case Iop_Sub8: ccOp += X86G_CC_OP_SUBB; break; |
| default: ppIROp(op8); |
| vpanic("setFlags_DEP1_DEP2(x86)"); |
| } |
| stmt( IRStmt_Put( OFFB_CC_OP, mkU32(ccOp)) ); |
| stmt( IRStmt_Put( OFFB_CC_DEP1, widenUto32(mkexpr(dep1))) ); |
| stmt( IRStmt_Put( OFFB_CC_DEP2, widenUto32(mkexpr(dep2))) ); |
| /* Set NDEP even though it isn't used. This makes redundant-PUT |
| elimination of previous stores to this field work better. */ |
| stmt( IRStmt_Put( OFFB_CC_NDEP, mkU32(0) )); |
| } |
| |
| |
| /* Set the OP and DEP1 fields only, and write zero to DEP2. */ |
| |
| static |
| void setFlags_DEP1 ( IROp op8, IRTemp dep1, IRType ty ) |
| { |
| Int ccOp = ty==Ity_I8 ? 0 : (ty==Ity_I16 ? 1 : 2); |
| |
| vassert(ty == Ity_I8 || ty == Ity_I16 || ty == Ity_I32); |
| |
| switch (op8) { |
| case Iop_Or8: |
| case Iop_And8: |
| case Iop_Xor8: ccOp += X86G_CC_OP_LOGICB; break; |
| default: ppIROp(op8); |
| vpanic("setFlags_DEP1(x86)"); |
| } |
| stmt( IRStmt_Put( OFFB_CC_OP, mkU32(ccOp)) ); |
| stmt( IRStmt_Put( OFFB_CC_DEP1, widenUto32(mkexpr(dep1))) ); |
| stmt( IRStmt_Put( OFFB_CC_DEP2, mkU32(0)) ); |
| /* Set NDEP even though it isn't used. This makes redundant-PUT |
| elimination of previous stores to this field work better. */ |
| stmt( IRStmt_Put( OFFB_CC_NDEP, mkU32(0) )); |
| } |
| |
| |
| /* For shift operations, we put in the result and the undershifted |
| result. Except if the shift amount is zero, the thunk is left |
| unchanged. */ |
| |
| static void setFlags_DEP1_DEP2_shift ( IROp op32, |
| IRTemp res, |
| IRTemp resUS, |
| IRType ty, |
| IRTemp guard ) |
| { |
| Int ccOp = ty==Ity_I8 ? 2 : (ty==Ity_I16 ? 1 : 0); |
| |
| vassert(ty == Ity_I8 || ty == Ity_I16 || ty == Ity_I32); |
| vassert(guard); |
| |
| /* Both kinds of right shifts are handled by the same thunk |
| operation. */ |
| switch (op32) { |
| case Iop_Shr32: |
| case Iop_Sar32: ccOp = X86G_CC_OP_SHRL - ccOp; break; |
| case Iop_Shl32: ccOp = X86G_CC_OP_SHLL - ccOp; break; |
| default: ppIROp(op32); |
| vpanic("setFlags_DEP1_DEP2_shift(x86)"); |
| } |
| |
| /* guard :: Ity_I8. We need to convert it to I1. */ |
| IRTemp guardB = newTemp(Ity_I1); |
| assign( guardB, binop(Iop_CmpNE8, mkexpr(guard), mkU8(0)) ); |
| |
| /* DEP1 contains the result, DEP2 contains the undershifted value. */ |
| stmt( IRStmt_Put( OFFB_CC_OP, |
| IRExpr_ITE( mkexpr(guardB), |
| mkU32(ccOp), |
| IRExpr_Get(OFFB_CC_OP,Ity_I32) ) )); |
| stmt( IRStmt_Put( OFFB_CC_DEP1, |
| IRExpr_ITE( mkexpr(guardB), |
| widenUto32(mkexpr(res)), |
| IRExpr_Get(OFFB_CC_DEP1,Ity_I32) ) )); |
| stmt( IRStmt_Put( OFFB_CC_DEP2, |
| IRExpr_ITE( mkexpr(guardB), |
| widenUto32(mkexpr(resUS)), |
| IRExpr_Get(OFFB_CC_DEP2,Ity_I32) ) )); |
| /* Set NDEP even though it isn't used. This makes redundant-PUT |
| elimination of previous stores to this field work better. */ |
| stmt( IRStmt_Put( OFFB_CC_NDEP, |
| IRExpr_ITE( mkexpr(guardB), |
| mkU32(0), |
| IRExpr_Get(OFFB_CC_NDEP,Ity_I32) ) )); |
| } |
| |
| |
| /* For the inc/dec case, we store in DEP1 the result value and in NDEP |
| the former value of the carry flag, which unfortunately we have to |
| compute. */ |
| |
| static void setFlags_INC_DEC ( Bool inc, IRTemp res, IRType ty ) |
| { |
| Int ccOp = inc ? X86G_CC_OP_INCB : X86G_CC_OP_DECB; |
| |
| ccOp += ty==Ity_I8 ? 0 : (ty==Ity_I16 ? 1 : 2); |
| vassert(ty == Ity_I8 || ty == Ity_I16 || ty == Ity_I32); |
| |
| /* This has to come first, because calculating the C flag |
| may require reading all four thunk fields. */ |
| stmt( IRStmt_Put( OFFB_CC_NDEP, mk_x86g_calculate_eflags_c()) ); |
| stmt( IRStmt_Put( OFFB_CC_OP, mkU32(ccOp)) ); |
| stmt( IRStmt_Put( OFFB_CC_DEP1, widenUto32(mkexpr(res))) ); |
| stmt( IRStmt_Put( OFFB_CC_DEP2, mkU32(0)) ); |
| } |
| |
| |
| /* Multiplies are pretty much like add and sub: DEP1 and DEP2 hold the |
| two arguments. */ |
| |
| static |
| void setFlags_MUL ( IRType ty, IRTemp arg1, IRTemp arg2, UInt base_op ) |
| { |
| switch (ty) { |
| case Ity_I8: |
| stmt( IRStmt_Put( OFFB_CC_OP, mkU32(base_op+0) ) ); |
| break; |
| case Ity_I16: |
| stmt( IRStmt_Put( OFFB_CC_OP, mkU32(base_op+1) ) ); |
| break; |
| case Ity_I32: |
| stmt( IRStmt_Put( OFFB_CC_OP, mkU32(base_op+2) ) ); |
| break; |
| default: |
| vpanic("setFlags_MUL(x86)"); |
| } |
| stmt( IRStmt_Put( OFFB_CC_DEP1, widenUto32(mkexpr(arg1)) )); |
| stmt( IRStmt_Put( OFFB_CC_DEP2, widenUto32(mkexpr(arg2)) )); |
| /* Set NDEP even though it isn't used. This makes redundant-PUT |
| elimination of previous stores to this field work better. */ |
| stmt( IRStmt_Put( OFFB_CC_NDEP, mkU32(0) )); |
| } |
| |
| |
| /* -------------- Condition codes. -------------- */ |
| |
| /* Condition codes, using the Intel encoding. */ |
| |
| static const HChar* name_X86Condcode ( X86Condcode cond ) |
| { |
| switch (cond) { |
| case X86CondO: return "o"; |
| case X86CondNO: return "no"; |
| case X86CondB: return "b"; |
| case X86CondNB: return "nb"; |
| case X86CondZ: return "z"; |
| case X86CondNZ: return "nz"; |
| case X86CondBE: return "be"; |
| case X86CondNBE: return "nbe"; |
| case X86CondS: return "s"; |
| case X86CondNS: return "ns"; |
| case X86CondP: return "p"; |
| case X86CondNP: return "np"; |
| case X86CondL: return "l"; |
| case X86CondNL: return "nl"; |
| case X86CondLE: return "le"; |
| case X86CondNLE: return "nle"; |
| case X86CondAlways: return "ALWAYS"; |
| default: vpanic("name_X86Condcode"); |
| } |
| } |
| |
| static |
| X86Condcode positiveIse_X86Condcode ( X86Condcode cond, |
| Bool* needInvert ) |
| { |
| vassert(cond >= X86CondO && cond <= X86CondNLE); |
| if (cond & 1) { |
| *needInvert = True; |
| return cond-1; |
| } else { |
| *needInvert = False; |
| return cond; |
| } |
| } |
| |
| |
| /* -------------- Helpers for ADD/SUB with carry. -------------- */ |
| |
| /* Given ta1, ta2 and tres, compute tres = ADC(ta1,ta2) and set flags |
| appropriately. |
| |
| Optionally, generate a store for the 'tres' value. This can either |
| be a normal store, or it can be a cas-with-possible-failure style |
| store: |
| |
| if taddr is IRTemp_INVALID, then no store is generated. |
| |
| if taddr is not IRTemp_INVALID, then a store (using taddr as |
| the address) is generated: |
| |
| if texpVal is IRTemp_INVALID then a normal store is |
| generated, and restart_point must be zero (it is irrelevant). |
| |
| if texpVal is not IRTemp_INVALID then a cas-style store is |
| generated. texpVal is the expected value, restart_point |
| is the restart point if the store fails, and texpVal must |
| have the same type as tres. |
| */ |
| static void helper_ADC ( Int sz, |
| IRTemp tres, IRTemp ta1, IRTemp ta2, |
| /* info about optional store: */ |
| IRTemp taddr, IRTemp texpVal, Addr32 restart_point ) |
| { |
| UInt thunkOp; |
| IRType ty = szToITy(sz); |
| IRTemp oldc = newTemp(Ity_I32); |
| IRTemp oldcn = newTemp(ty); |
| IROp plus = mkSizedOp(ty, Iop_Add8); |
| IROp xor = mkSizedOp(ty, Iop_Xor8); |
| |
| vassert(typeOfIRTemp(irsb->tyenv, tres) == ty); |
| vassert(sz == 1 || sz == 2 || sz == 4); |
| thunkOp = sz==4 ? X86G_CC_OP_ADCL |
| : (sz==2 ? X86G_CC_OP_ADCW : X86G_CC_OP_ADCB); |
| |
| /* oldc = old carry flag, 0 or 1 */ |
| assign( oldc, binop(Iop_And32, |
| mk_x86g_calculate_eflags_c(), |
| mkU32(1)) ); |
| |
| assign( oldcn, narrowTo(ty, mkexpr(oldc)) ); |
| |
| assign( tres, binop(plus, |
| binop(plus,mkexpr(ta1),mkexpr(ta2)), |
| mkexpr(oldcn)) ); |
| |
| /* Possibly generate a store of 'tres' to 'taddr'. See comment at |
| start of this function. */ |
| if (taddr != IRTemp_INVALID) { |
| if (texpVal == IRTemp_INVALID) { |
| vassert(restart_point == 0); |
| storeLE( mkexpr(taddr), mkexpr(tres) ); |
| } else { |
| vassert(typeOfIRTemp(irsb->tyenv, texpVal) == ty); |
| /* .. and hence 'texpVal' has the same type as 'tres'. */ |
| casLE( mkexpr(taddr), |
| mkexpr(texpVal), mkexpr(tres), restart_point ); |
| } |
| } |
| |
| stmt( IRStmt_Put( OFFB_CC_OP, mkU32(thunkOp) ) ); |
| stmt( IRStmt_Put( OFFB_CC_DEP1, widenUto32(mkexpr(ta1)) )); |
| stmt( IRStmt_Put( OFFB_CC_DEP2, widenUto32(binop(xor, mkexpr(ta2), |
| mkexpr(oldcn)) )) ); |
| stmt( IRStmt_Put( OFFB_CC_NDEP, mkexpr(oldc) ) ); |
| } |
| |
| |
| /* Given ta1, ta2 and tres, compute tres = SBB(ta1,ta2) and set flags |
| appropriately. As with helper_ADC, possibly generate a store of |
| the result -- see comments on helper_ADC for details. |
| */ |
| static void helper_SBB ( Int sz, |
| IRTemp tres, IRTemp ta1, IRTemp ta2, |
| /* info about optional store: */ |
| IRTemp taddr, IRTemp texpVal, Addr32 restart_point ) |
| { |
| UInt thunkOp; |
| IRType ty = szToITy(sz); |
| IRTemp oldc = newTemp(Ity_I32); |
| IRTemp oldcn = newTemp(ty); |
| IROp minus = mkSizedOp(ty, Iop_Sub8); |
| IROp xor = mkSizedOp(ty, Iop_Xor8); |
| |
| vassert(typeOfIRTemp(irsb->tyenv, tres) == ty); |
| vassert(sz == 1 || sz == 2 || sz == 4); |
| thunkOp = sz==4 ? X86G_CC_OP_SBBL |
| : (sz==2 ? X86G_CC_OP_SBBW : X86G_CC_OP_SBBB); |
| |
| /* oldc = old carry flag, 0 or 1 */ |
| assign( oldc, binop(Iop_And32, |
| mk_x86g_calculate_eflags_c(), |
| mkU32(1)) ); |
| |
| assign( oldcn, narrowTo(ty, mkexpr(oldc)) ); |
| |
| assign( tres, binop(minus, |
| binop(minus,mkexpr(ta1),mkexpr(ta2)), |
| mkexpr(oldcn)) ); |
| |
| /* Possibly generate a store of 'tres' to 'taddr'. See comment at |
| start of this function. */ |
| if (taddr != IRTemp_INVALID) { |
| if (texpVal == IRTemp_INVALID) { |
| vassert(restart_point == 0); |
| storeLE( mkexpr(taddr), mkexpr(tres) ); |
| } else { |
| vassert(typeOfIRTemp(irsb->tyenv, texpVal) == ty); |
| /* .. and hence 'texpVal' has the same type as 'tres'. */ |
| casLE( mkexpr(taddr), |
| mkexpr(texpVal), mkexpr(tres), restart_point ); |
| } |
| } |
| |
| stmt( IRStmt_Put( OFFB_CC_OP, mkU32(thunkOp) ) ); |
| stmt( IRStmt_Put( OFFB_CC_DEP1, widenUto32(mkexpr(ta1) )) ); |
| stmt( IRStmt_Put( OFFB_CC_DEP2, widenUto32(binop(xor, mkexpr(ta2), |
| mkexpr(oldcn)) )) ); |
| stmt( IRStmt_Put( OFFB_CC_NDEP, mkexpr(oldc) ) ); |
| } |
| |
| |
| /* -------------- Helpers for disassembly printing. -------------- */ |
| |
| static const HChar* nameGrp1 ( Int opc_aux ) |
| { |
| static const HChar* grp1_names[8] |
| = { "add", "or", "adc", "sbb", "and", "sub", "xor", "cmp" }; |
| if (opc_aux < 0 || opc_aux > 7) vpanic("nameGrp1(x86)"); |
| return grp1_names[opc_aux]; |
| } |
| |
| static const HChar* nameGrp2 ( Int opc_aux ) |
| { |
| static const HChar* grp2_names[8] |
| = { "rol", "ror", "rcl", "rcr", "shl", "shr", "shl", "sar" }; |
| if (opc_aux < 0 || opc_aux > 7) vpanic("nameGrp2(x86)"); |
| return grp2_names[opc_aux]; |
| } |
| |
| static const HChar* nameGrp4 ( Int opc_aux ) |
| { |
| static const HChar* grp4_names[8] |
| = { "inc", "dec", "???", "???", "???", "???", "???", "???" }; |
| if (opc_aux < 0 || opc_aux > 1) vpanic("nameGrp4(x86)"); |
| return grp4_names[opc_aux]; |
| } |
| |
| static const HChar* nameGrp5 ( Int opc_aux ) |
| { |
| static const HChar* grp5_names[8] |
| = { "inc", "dec", "call*", "call*", "jmp*", "jmp*", "push", "???" }; |
| if (opc_aux < 0 || opc_aux > 6) vpanic("nameGrp5(x86)"); |
| return grp5_names[opc_aux]; |
| } |
| |
| static const HChar* nameGrp8 ( Int opc_aux ) |
| { |
| static const HChar* grp8_names[8] |
| = { "???", "???", "???", "???", "bt", "bts", "btr", "btc" }; |
| if (opc_aux < 4 || opc_aux > 7) vpanic("nameGrp8(x86)"); |
| return grp8_names[opc_aux]; |
| } |
| |
| static const HChar* nameIReg ( Int size, Int reg ) |
| { |
| static const HChar* ireg32_names[8] |
| = { "%eax", "%ecx", "%edx", "%ebx", |
| "%esp", "%ebp", "%esi", "%edi" }; |
| static const HChar* ireg16_names[8] |
| = { "%ax", "%cx", "%dx", "%bx", "%sp", "%bp", "%si", "%di" }; |
| static const HChar* ireg8_names[8] |
| = { "%al", "%cl", "%dl", "%bl", |
| "%ah{sp}", "%ch{bp}", "%dh{si}", "%bh{di}" }; |
| if (reg < 0 || reg > 7) goto bad; |
| switch (size) { |
| case 4: return ireg32_names[reg]; |
| case 2: return ireg16_names[reg]; |
| case 1: return ireg8_names[reg]; |
| } |
| bad: |
| vpanic("nameIReg(X86)"); |
| return NULL; /*notreached*/ |
| } |
| |
| static const HChar* nameSReg ( UInt sreg ) |
| { |
| switch (sreg) { |
| case R_ES: return "%es"; |
| case R_CS: return "%cs"; |
| case R_SS: return "%ss"; |
| case R_DS: return "%ds"; |
| case R_FS: return "%fs"; |
| case R_GS: return "%gs"; |
| default: vpanic("nameSReg(x86)"); |
| } |
| } |
| |
| static const HChar* nameMMXReg ( Int mmxreg ) |
| { |
| static const HChar* mmx_names[8] |
| = { "%mm0", "%mm1", "%mm2", "%mm3", "%mm4", "%mm5", "%mm6", "%mm7" }; |
| if (mmxreg < 0 || mmxreg > 7) vpanic("nameMMXReg(x86,guest)"); |
| return mmx_names[mmxreg]; |
| } |
| |
| static const HChar* nameXMMReg ( Int xmmreg ) |
| { |
| static const HChar* xmm_names[8] |
| = { "%xmm0", "%xmm1", "%xmm2", "%xmm3", |
| "%xmm4", "%xmm5", "%xmm6", "%xmm7" }; |
| if (xmmreg < 0 || xmmreg > 7) vpanic("name_of_xmm_reg"); |
| return xmm_names[xmmreg]; |
| } |
| |
| static const HChar* nameMMXGran ( Int gran ) |
| { |
| switch (gran) { |
| case 0: return "b"; |
| case 1: return "w"; |
| case 2: return "d"; |
| case 3: return "q"; |
| default: vpanic("nameMMXGran(x86,guest)"); |
| } |
| } |
| |
| static HChar nameISize ( Int size ) |
| { |
| switch (size) { |
| case 4: return 'l'; |
| case 2: return 'w'; |
| case 1: return 'b'; |
| default: vpanic("nameISize(x86)"); |
| } |
| } |
| |
| |
| /*------------------------------------------------------------*/ |
| /*--- JMP helpers ---*/ |
| /*------------------------------------------------------------*/ |
| |
| static void jmp_lit( /*MOD*/DisResult* dres, |
| IRJumpKind kind, Addr32 d32 ) |
| { |
| vassert(dres->whatNext == Dis_Continue); |
| vassert(dres->len == 0); |
| vassert(dres->continueAt == 0); |
| vassert(dres->jk_StopHere == Ijk_INVALID); |
| dres->whatNext = Dis_StopHere; |
| dres->jk_StopHere = kind; |
| stmt( IRStmt_Put( OFFB_EIP, mkU32(d32) ) ); |
| } |
| |
| static void jmp_treg( /*MOD*/DisResult* dres, |
| IRJumpKind kind, IRTemp t ) |
| { |
| vassert(dres->whatNext == Dis_Continue); |
| vassert(dres->len == 0); |
| vassert(dres->continueAt == 0); |
| vassert(dres->jk_StopHere == Ijk_INVALID); |
| dres->whatNext = Dis_StopHere; |
| dres->jk_StopHere = kind; |
| stmt( IRStmt_Put( OFFB_EIP, mkexpr(t) ) ); |
| } |
| |
| static |
| void jcc_01( /*MOD*/DisResult* dres, |
| X86Condcode cond, Addr32 d32_false, Addr32 d32_true ) |
| { |
| Bool invert; |
| X86Condcode condPos; |
| vassert(dres->whatNext == Dis_Continue); |
| vassert(dres->len == 0); |
| vassert(dres->continueAt == 0); |
| vassert(dres->jk_StopHere == Ijk_INVALID); |
| dres->whatNext = Dis_StopHere; |
| dres->jk_StopHere = Ijk_Boring; |
| condPos = positiveIse_X86Condcode ( cond, &invert ); |
| if (invert) { |
| stmt( IRStmt_Exit( mk_x86g_calculate_condition(condPos), |
| Ijk_Boring, |
| IRConst_U32(d32_false), |
| OFFB_EIP ) ); |
| stmt( IRStmt_Put( OFFB_EIP, mkU32(d32_true) ) ); |
| } else { |
| stmt( IRStmt_Exit( mk_x86g_calculate_condition(condPos), |
| Ijk_Boring, |
| IRConst_U32(d32_true), |
| OFFB_EIP ) ); |
| stmt( IRStmt_Put( OFFB_EIP, mkU32(d32_false) ) ); |
| } |
| } |
| |
| |
| /*------------------------------------------------------------*/ |
| /*--- Disassembling addressing modes ---*/ |
| /*------------------------------------------------------------*/ |
| |
| static |
| const HChar* sorbTxt ( UChar sorb ) |
| { |
| switch (sorb) { |
| case 0: return ""; /* no override */ |
| case 0x3E: return "%ds"; |
| case 0x26: return "%es:"; |
| case 0x64: return "%fs:"; |
| case 0x65: return "%gs:"; |
| default: vpanic("sorbTxt(x86,guest)"); |
| } |
| } |
| |
| |
| /* 'virtual' is an IRExpr* holding a virtual address. Convert it to a |
| linear address by adding any required segment override as indicated |
| by sorb. */ |
| static |
| IRExpr* handleSegOverride ( UChar sorb, IRExpr* virtual ) |
| { |
| Int sreg; |
| IRType hWordTy; |
| IRTemp ldt_ptr, gdt_ptr, seg_selector, r64; |
| |
| if (sorb == 0) |
| /* the common case - no override */ |
| return virtual; |
| |
| switch (sorb) { |
| case 0x3E: sreg = R_DS; break; |
| case 0x26: sreg = R_ES; break; |
| case 0x64: sreg = R_FS; break; |
| case 0x65: sreg = R_GS; break; |
| default: vpanic("handleSegOverride(x86,guest)"); |
| } |
| |
| hWordTy = sizeof(HWord)==4 ? Ity_I32 : Ity_I64; |
| |
| seg_selector = newTemp(Ity_I32); |
| ldt_ptr = newTemp(hWordTy); |
| gdt_ptr = newTemp(hWordTy); |
| r64 = newTemp(Ity_I64); |
| |
| assign( seg_selector, unop(Iop_16Uto32, getSReg(sreg)) ); |
| assign( ldt_ptr, IRExpr_Get( OFFB_LDT, hWordTy )); |
| assign( gdt_ptr, IRExpr_Get( OFFB_GDT, hWordTy )); |
| |
| /* |
| Call this to do the translation and limit checks: |
| ULong x86g_use_seg_selector ( HWord ldt, HWord gdt, |
| UInt seg_selector, UInt virtual_addr ) |
| */ |
| assign( |
| r64, |
| mkIRExprCCall( |
| Ity_I64, |
| 0/*regparms*/, |
| "x86g_use_seg_selector", |
| &x86g_use_seg_selector, |
| mkIRExprVec_4( mkexpr(ldt_ptr), mkexpr(gdt_ptr), |
| mkexpr(seg_selector), virtual) |
| ) |
| ); |
| |
| /* If the high 32 of the result are non-zero, there was a |
| failure in address translation. In which case, make a |
| quick exit. |
| */ |
| stmt( |
| IRStmt_Exit( |
| binop(Iop_CmpNE32, unop(Iop_64HIto32, mkexpr(r64)), mkU32(0)), |
| Ijk_MapFail, |
| IRConst_U32( guest_EIP_curr_instr ), |
| OFFB_EIP |
| ) |
| ); |
| |
| /* otherwise, here's the translated result. */ |
| return unop(Iop_64to32, mkexpr(r64)); |
| } |
| |
| |
| /* Generate IR to calculate an address indicated by a ModRM and |
| following SIB bytes. The expression, and the number of bytes in |
| the address mode, are returned. Note that this fn should not be |
| called if the R/M part of the address denotes a register instead of |
| memory. If print_codegen is true, text of the addressing mode is |
| placed in buf. |
| |
| The computed address is stored in a new tempreg, and the |
| identity of the tempreg is returned. */ |
| |
| static IRTemp disAMode_copy2tmp ( IRExpr* addr32 ) |
| { |
| IRTemp tmp = newTemp(Ity_I32); |
| assign( tmp, addr32 ); |
| return tmp; |
| } |
| |
| static |
| IRTemp disAMode ( Int* len, UChar sorb, Int delta, HChar* buf ) |
| { |
| UChar mod_reg_rm = getIByte(delta); |
| delta++; |
| |
| buf[0] = (UChar)0; |
| |
| /* squeeze out the reg field from mod_reg_rm, since a 256-entry |
| jump table seems a bit excessive. |
| */ |
| mod_reg_rm &= 0xC7; /* is now XX000YYY */ |
| mod_reg_rm = toUChar(mod_reg_rm | (mod_reg_rm >> 3)); |
| /* is now XX0XXYYY */ |
| mod_reg_rm &= 0x1F; /* is now 000XXYYY */ |
| switch (mod_reg_rm) { |
| |
| /* (%eax) .. (%edi), not including (%esp) or (%ebp). |
| --> GET %reg, t |
| */ |
| case 0x00: case 0x01: case 0x02: case 0x03: |
| /* ! 04 */ /* ! 05 */ case 0x06: case 0x07: |
| { UChar rm = mod_reg_rm; |
| DIS(buf, "%s(%s)", sorbTxt(sorb), nameIReg(4,rm)); |
| *len = 1; |
| return disAMode_copy2tmp( |
| handleSegOverride(sorb, getIReg(4,rm))); |
| } |
| |
| /* d8(%eax) ... d8(%edi), not including d8(%esp) |
| --> GET %reg, t ; ADDL d8, t |
| */ |
| case 0x08: case 0x09: case 0x0A: case 0x0B: |
| /* ! 0C */ case 0x0D: case 0x0E: case 0x0F: |
| { UChar rm = toUChar(mod_reg_rm & 7); |
| UInt d = getSDisp8(delta); |
| DIS(buf, "%s%d(%s)", sorbTxt(sorb), (Int)d, nameIReg(4,rm)); |
| *len = 2; |
| return disAMode_copy2tmp( |
| handleSegOverride(sorb, |
| binop(Iop_Add32,getIReg(4,rm),mkU32(d)))); |
| } |
| |
| /* d32(%eax) ... d32(%edi), not including d32(%esp) |
| --> GET %reg, t ; ADDL d8, t |
| */ |
| case 0x10: case 0x11: case 0x12: case 0x13: |
| /* ! 14 */ case 0x15: case 0x16: case 0x17: |
| { UChar rm = toUChar(mod_reg_rm & 7); |
| UInt d = getUDisp32(delta); |
| DIS(buf, "%s0x%x(%s)", sorbTxt(sorb), (Int)d, nameIReg(4,rm)); |
| *len = 5; |
| return disAMode_copy2tmp( |
| handleSegOverride(sorb, |
| binop(Iop_Add32,getIReg(4,rm),mkU32(d)))); |
| } |
| |
| /* a register, %eax .. %edi. This shouldn't happen. */ |
| case 0x18: case 0x19: case 0x1A: case 0x1B: |
| case 0x1C: case 0x1D: case 0x1E: case 0x1F: |
| vpanic("disAMode(x86): not an addr!"); |
| |
| /* a 32-bit literal address |
| --> MOV d32, tmp |
| */ |
| case 0x05: |
| { UInt d = getUDisp32(delta); |
| *len = 5; |
| DIS(buf, "%s(0x%x)", sorbTxt(sorb), d); |
| return disAMode_copy2tmp( |
| handleSegOverride(sorb, mkU32(d))); |
| } |
| |
| case 0x04: { |
| /* SIB, with no displacement. Special cases: |
| -- %esp cannot act as an index value. |
| If index_r indicates %esp, zero is used for the index. |
| -- when mod is zero and base indicates EBP, base is instead |
| a 32-bit literal. |
| It's all madness, I tell you. Extract %index, %base and |
| scale from the SIB byte. The value denoted is then: |
| | %index == %ESP && %base == %EBP |
| = d32 following SIB byte |
| | %index == %ESP && %base != %EBP |
| = %base |
| | %index != %ESP && %base == %EBP |
| = d32 following SIB byte + (%index << scale) |
| | %index != %ESP && %base != %ESP |
| = %base + (%index << scale) |
| |
| What happens to the souls of CPU architects who dream up such |
| horrendous schemes, do you suppose? |
| */ |
| UChar sib = getIByte(delta); |
| UChar scale = toUChar((sib >> 6) & 3); |
| UChar index_r = toUChar((sib >> 3) & 7); |
| UChar base_r = toUChar(sib & 7); |
| delta++; |
| |
| if (index_r != R_ESP && base_r != R_EBP) { |
| DIS(buf, "%s(%s,%s,%d)", sorbTxt(sorb), |
| nameIReg(4,base_r), nameIReg(4,index_r), 1<<scale); |
| *len = 2; |
| return |
| disAMode_copy2tmp( |
| handleSegOverride(sorb, |
| binop(Iop_Add32, |
| getIReg(4,base_r), |
| binop(Iop_Shl32, getIReg(4,index_r), |
| mkU8(scale))))); |
| } |
| |
| if (index_r != R_ESP && base_r == R_EBP) { |
| UInt d = getUDisp32(delta); |
| DIS(buf, "%s0x%x(,%s,%d)", sorbTxt(sorb), d, |
| nameIReg(4,index_r), 1<<scale); |
| *len = 6; |
| return |
| disAMode_copy2tmp( |
| handleSegOverride(sorb, |
| binop(Iop_Add32, |
| binop(Iop_Shl32, getIReg(4,index_r), mkU8(scale)), |
| mkU32(d)))); |
| } |
| |
| if (index_r == R_ESP && base_r != R_EBP) { |
| DIS(buf, "%s(%s,,)", sorbTxt(sorb), nameIReg(4,base_r)); |
| *len = 2; |
| return disAMode_copy2tmp( |
| handleSegOverride(sorb, getIReg(4,base_r))); |
| } |
| |
| if (index_r == R_ESP && base_r == R_EBP) { |
| UInt d = getUDisp32(delta); |
| DIS(buf, "%s0x%x(,,)", sorbTxt(sorb), d); |
| *len = 6; |
| return disAMode_copy2tmp( |
| handleSegOverride(sorb, mkU32(d))); |
| } |
| /*NOTREACHED*/ |
| vassert(0); |
| } |
| |
| /* SIB, with 8-bit displacement. Special cases: |
| -- %esp cannot act as an index value. |
| If index_r indicates %esp, zero is used for the index. |
| Denoted value is: |
| | %index == %ESP |
| = d8 + %base |
| | %index != %ESP |
| = d8 + %base + (%index << scale) |
| */ |
| case 0x0C: { |
| UChar sib = getIByte(delta); |
| UChar scale = toUChar((sib >> 6) & 3); |
| UChar index_r = toUChar((sib >> 3) & 7); |
| UChar base_r = toUChar(sib & 7); |
| UInt d = getSDisp8(delta+1); |
| |
| if (index_r == R_ESP) { |
| DIS(buf, "%s%d(%s,,)", sorbTxt(sorb), |
| (Int)d, nameIReg(4,base_r)); |
| *len = 3; |
| return disAMode_copy2tmp( |
| handleSegOverride(sorb, |
| binop(Iop_Add32, getIReg(4,base_r), mkU32(d)) )); |
| } else { |
| DIS(buf, "%s%d(%s,%s,%d)", sorbTxt(sorb), (Int)d, |
| nameIReg(4,base_r), nameIReg(4,index_r), 1<<scale); |
| *len = 3; |
| return |
| disAMode_copy2tmp( |
| handleSegOverride(sorb, |
| binop(Iop_Add32, |
| binop(Iop_Add32, |
| getIReg(4,base_r), |
| binop(Iop_Shl32, |
| getIReg(4,index_r), mkU8(scale))), |
| mkU32(d)))); |
| } |
| /*NOTREACHED*/ |
| vassert(0); |
| } |
| |
| /* SIB, with 32-bit displacement. Special cases: |
| -- %esp cannot act as an index value. |
| If index_r indicates %esp, zero is used for the index. |
| Denoted value is: |
| | %index == %ESP |
| = d32 + %base |
| | %index != %ESP |
| = d32 + %base + (%index << scale) |
| */ |
| case 0x14: { |
| UChar sib = getIByte(delta); |
| UChar scale = toUChar((sib >> 6) & 3); |
| UChar index_r = toUChar((sib >> 3) & 7); |
| UChar base_r = toUChar(sib & 7); |
| UInt d = getUDisp32(delta+1); |
| |
| if (index_r == R_ESP) { |
| DIS(buf, "%s%d(%s,,)", sorbTxt(sorb), |
| (Int)d, nameIReg(4,base_r)); |
| *len = 6; |
| return disAMode_copy2tmp( |
| handleSegOverride(sorb, |
| binop(Iop_Add32, getIReg(4,base_r), mkU32(d)) )); |
| } else { |
| DIS(buf, "%s%d(%s,%s,%d)", sorbTxt(sorb), (Int)d, |
| nameIReg(4,base_r), nameIReg(4,index_r), 1<<scale); |
| *len = 6; |
| return |
| disAMode_copy2tmp( |
| handleSegOverride(sorb, |
| binop(Iop_Add32, |
| binop(Iop_Add32, |
| getIReg(4,base_r), |
| binop(Iop_Shl32, |
| getIReg(4,index_r), mkU8(scale))), |
| mkU32(d)))); |
| } |
| /*NOTREACHED*/ |
| vassert(0); |
| } |
| |
| default: |
| vpanic("disAMode(x86)"); |
| return 0; /*notreached*/ |
| } |
| } |
| |
| |
| /* Figure out the number of (insn-stream) bytes constituting the amode |
| beginning at delta. Is useful for getting hold of literals beyond |
| the end of the amode before it has been disassembled. */ |
| |
| static UInt lengthAMode ( Int delta ) |
| { |
| UChar mod_reg_rm = getIByte(delta); delta++; |
| |
| /* squeeze out the reg field from mod_reg_rm, since a 256-entry |
| jump table seems a bit excessive. |
| */ |
| mod_reg_rm &= 0xC7; /* is now XX000YYY */ |
| mod_reg_rm = toUChar(mod_reg_rm | (mod_reg_rm >> 3)); |
| /* is now XX0XXYYY */ |
| mod_reg_rm &= 0x1F; /* is now 000XXYYY */ |
| switch (mod_reg_rm) { |
| |
| /* (%eax) .. (%edi), not including (%esp) or (%ebp). */ |
| case 0x00: case 0x01: case 0x02: case 0x03: |
| /* ! 04 */ /* ! 05 */ case 0x06: case 0x07: |
| return 1; |
| |
| /* d8(%eax) ... d8(%edi), not including d8(%esp). */ |
| case 0x08: case 0x09: case 0x0A: case 0x0B: |
| /* ! 0C */ case 0x0D: case 0x0E: case 0x0F: |
| return 2; |
| |
| /* d32(%eax) ... d32(%edi), not including d32(%esp). */ |
| case 0x10: case 0x11: case 0x12: case 0x13: |
| /* ! 14 */ case 0x15: case 0x16: case 0x17: |
| return 5; |
| |
| /* a register, %eax .. %edi. (Not an addr, but still handled.) */ |
| case 0x18: case 0x19: case 0x1A: case 0x1B: |
| case 0x1C: case 0x1D: case 0x1E: case 0x1F: |
| return 1; |
| |
| /* a 32-bit literal address. */ |
| case 0x05: return 5; |
| |
| /* SIB, no displacement. */ |
| case 0x04: { |
| UChar sib = getIByte(delta); |
| UChar base_r = toUChar(sib & 7); |
| if (base_r == R_EBP) return 6; else return 2; |
| } |
| /* SIB, with 8-bit displacement. */ |
| case 0x0C: return 3; |
| |
| /* SIB, with 32-bit displacement. */ |
| case 0x14: return 6; |
| |
| default: |
| vpanic("lengthAMode"); |
| return 0; /*notreached*/ |
| } |
| } |
| |
| /*------------------------------------------------------------*/ |
| /*--- Disassembling common idioms ---*/ |
| /*------------------------------------------------------------*/ |
| |
| /* Handle binary integer instructions of the form |
| op E, G meaning |
| op reg-or-mem, reg |
| Is passed the a ptr to the modRM byte, the actual operation, and the |
| data size. Returns the address advanced completely over this |
| instruction. |
| |
| E(src) is reg-or-mem |
| G(dst) is reg. |
| |
| If E is reg, --> GET %G, tmp |
| OP %E, tmp |
| PUT tmp, %G |
| |
| If E is mem and OP is not reversible, |
| --> (getAddr E) -> tmpa |
| LD (tmpa), tmpa |
| GET %G, tmp2 |
| OP tmpa, tmp2 |
| PUT tmp2, %G |
| |
| If E is mem and OP is reversible |
| --> (getAddr E) -> tmpa |
| LD (tmpa), tmpa |
| OP %G, tmpa |
| PUT tmpa, %G |
| */ |
| static |
| UInt dis_op2_E_G ( UChar sorb, |
| Bool addSubCarry, |
| IROp op8, |
| Bool keep, |
| Int size, |
| Int delta0, |
| const HChar* t_x86opc ) |
| { |
| HChar dis_buf[50]; |
| Int len; |
| IRType ty = szToITy(size); |
| IRTemp dst1 = newTemp(ty); |
| IRTemp src = newTemp(ty); |
| IRTemp dst0 = newTemp(ty); |
| UChar rm = getUChar(delta0); |
| IRTemp addr = IRTemp_INVALID; |
| |
| /* addSubCarry == True indicates the intended operation is |
| add-with-carry or subtract-with-borrow. */ |
| if (addSubCarry) { |
| vassert(op8 == Iop_Add8 || op8 == Iop_Sub8); |
| vassert(keep); |
| } |
| |
| if (epartIsReg(rm)) { |
| /* Specially handle XOR reg,reg, because that doesn't really |
| depend on reg, and doing the obvious thing potentially |
| generates a spurious value check failure due to the bogus |
| dependency. Ditto SBB reg,reg. */ |
| if ((op8 == Iop_Xor8 || (op8 == Iop_Sub8 && addSubCarry)) |
| && gregOfRM(rm) == eregOfRM(rm)) { |
| putIReg(size, gregOfRM(rm), mkU(ty,0)); |
| } |
| assign( dst0, getIReg(size,gregOfRM(rm)) ); |
| assign( src, getIReg(size,eregOfRM(rm)) ); |
| |
| if (addSubCarry && op8 == Iop_Add8) { |
| helper_ADC( size, dst1, dst0, src, |
| /*no store*/IRTemp_INVALID, IRTemp_INVALID, 0 ); |
| putIReg(size, gregOfRM(rm), mkexpr(dst1)); |
| } else |
| if (addSubCarry && op8 == Iop_Sub8) { |
| helper_SBB( size, dst1, dst0, src, |
| /*no store*/IRTemp_INVALID, IRTemp_INVALID, 0 ); |
| putIReg(size, gregOfRM(rm), mkexpr(dst1)); |
| } else { |
| assign( dst1, binop(mkSizedOp(ty,op8), mkexpr(dst0), mkexpr(src)) ); |
| if (isAddSub(op8)) |
| setFlags_DEP1_DEP2(op8, dst0, src, ty); |
| else |
| setFlags_DEP1(op8, dst1, ty); |
| if (keep) |
| putIReg(size, gregOfRM(rm), mkexpr(dst1)); |
| } |
| |
| DIP("%s%c %s,%s\n", t_x86opc, nameISize(size), |
| nameIReg(size,eregOfRM(rm)), |
| nameIReg(size,gregOfRM(rm))); |
| return 1+delta0; |
| } else { |
| /* E refers to memory */ |
| addr = disAMode ( &len, sorb, delta0, dis_buf); |
| assign( dst0, getIReg(size,gregOfRM(rm)) ); |
| assign( src, loadLE(szToITy(size), mkexpr(addr)) ); |
| |
| if (addSubCarry && op8 == Iop_Add8) { |
| helper_ADC( size, dst1, dst0, src, |
| /*no store*/IRTemp_INVALID, IRTemp_INVALID, 0 ); |
| putIReg(size, gregOfRM(rm), mkexpr(dst1)); |
| } else |
| if (addSubCarry && op8 == Iop_Sub8) { |
| helper_SBB( size, dst1, dst0, src, |
| /*no store*/IRTemp_INVALID, IRTemp_INVALID, 0 ); |
| putIReg(size, gregOfRM(rm), mkexpr(dst1)); |
| } else { |
| assign( dst1, binop(mkSizedOp(ty,op8), mkexpr(dst0), mkexpr(src)) ); |
| if (isAddSub(op8)) |
| setFlags_DEP1_DEP2(op8, dst0, src, ty); |
| else |
| setFlags_DEP1(op8, dst1, ty); |
| if (keep) |
| putIReg(size, gregOfRM(rm), mkexpr(dst1)); |
| } |
| |
| DIP("%s%c %s,%s\n", t_x86opc, nameISize(size), |
| dis_buf,nameIReg(size,gregOfRM(rm))); |
| return len+delta0; |
| } |
| } |
| |
| |
| |
| /* Handle binary integer instructions of the form |
| op G, E meaning |
| op reg, reg-or-mem |
| Is passed the a ptr to the modRM byte, the actual operation, and the |
| data size. Returns the address advanced completely over this |
| instruction. |
| |
| G(src) is reg. |
| E(dst) is reg-or-mem |
| |
| If E is reg, --> GET %E, tmp |
| OP %G, tmp |
| PUT tmp, %E |
| |
| If E is mem, --> (getAddr E) -> tmpa |
| LD (tmpa), tmpv |
| OP %G, tmpv |
| ST tmpv, (tmpa) |
| */ |
| static |
| UInt dis_op2_G_E ( UChar sorb, |
| Bool locked, |
| Bool addSubCarry, |
| IROp op8, |
| Bool keep, |
| Int size, |
| Int delta0, |
| const HChar* t_x86opc ) |
| { |
| HChar dis_buf[50]; |
| Int len; |
| IRType ty = szToITy(size); |
| IRTemp dst1 = newTemp(ty); |
| IRTemp src = newTemp(ty); |
| IRTemp dst0 = newTemp(ty); |
| UChar rm = getIByte(delta0); |
| IRTemp addr = IRTemp_INVALID; |
| |
| /* addSubCarry == True indicates the intended operation is |
| add-with-carry or subtract-with-borrow. */ |
| if (addSubCarry) { |
| vassert(op8 == Iop_Add8 || op8 == Iop_Sub8); |
| vassert(keep); |
| } |
| |
| if (epartIsReg(rm)) { |
| /* Specially handle XOR reg,reg, because that doesn't really |
| depend on reg, and doing the obvious thing potentially |
| generates a spurious value check failure due to the bogus |
| dependency. Ditto SBB reg,reg.*/ |
| if ((op8 == Iop_Xor8 || (op8 == Iop_Sub8 && addSubCarry)) |
| && gregOfRM(rm) == eregOfRM(rm)) { |
| putIReg(size, eregOfRM(rm), mkU(ty,0)); |
| } |
| assign(dst0, getIReg(size,eregOfRM(rm))); |
| assign(src, getIReg(size,gregOfRM(rm))); |
| |
| if (addSubCarry && op8 == Iop_Add8) { |
| helper_ADC( size, dst1, dst0, src, |
| /*no store*/IRTemp_INVALID, IRTemp_INVALID, 0 ); |
| putIReg(size, eregOfRM(rm), mkexpr(dst1)); |
| } else |
| if (addSubCarry && op8 == Iop_Sub8) { |
| helper_SBB( size, dst1, dst0, src, |
| /*no store*/IRTemp_INVALID, IRTemp_INVALID, 0 ); |
| putIReg(size, eregOfRM(rm), mkexpr(dst1)); |
| } else { |
| assign(dst1, binop(mkSizedOp(ty,op8), mkexpr(dst0), mkexpr(src))); |
| if (isAddSub(op8)) |
| setFlags_DEP1_DEP2(op8, dst0, src, ty); |
| else |
| setFlags_DEP1(op8, dst1, ty); |
| if (keep) |
| putIReg(size, eregOfRM(rm), mkexpr(dst1)); |
| } |
| |
| DIP("%s%c %s,%s\n", t_x86opc, nameISize(size), |
| nameIReg(size,gregOfRM(rm)), |
| nameIReg(size,eregOfRM(rm))); |
| return 1+delta0; |
| } |
| |
| /* E refers to memory */ |
| { |
| addr = disAMode ( &len, sorb, delta0, dis_buf); |
| assign(dst0, loadLE(ty,mkexpr(addr))); |
| assign(src, getIReg(size,gregOfRM(rm))); |
| |
| if (addSubCarry && op8 == Iop_Add8) { |
| if (locked) { |
| /* cas-style store */ |
| helper_ADC( size, dst1, dst0, src, |
| /*store*/addr, dst0/*expVal*/, guest_EIP_curr_instr ); |
| } else { |
| /* normal store */ |
| helper_ADC( size, dst1, dst0, src, |
| /*store*/addr, IRTemp_INVALID, 0 ); |
| } |
| } else |
| if (addSubCarry && op8 == Iop_Sub8) { |
| if (locked) { |
| /* cas-style store */ |
| helper_SBB( size, dst1, dst0, src, |
| /*store*/addr, dst0/*expVal*/, guest_EIP_curr_instr ); |
| } else { |
| /* normal store */ |
| helper_SBB( size, dst1, dst0, src, |
| /*store*/addr, IRTemp_INVALID, 0 ); |
| } |
| } else { |
| assign(dst1, binop(mkSizedOp(ty,op8), mkexpr(dst0), mkexpr(src))); |
| if (keep) { |
| if (locked) { |
| if (0) vex_printf("locked case\n" ); |
| casLE( mkexpr(addr), |
| mkexpr(dst0)/*expval*/, |
| mkexpr(dst1)/*newval*/, guest_EIP_curr_instr ); |
| } else { |
| if (0) vex_printf("nonlocked case\n"); |
| storeLE(mkexpr(addr), mkexpr(dst1)); |
| } |
| } |
| if (isAddSub(op8)) |
| setFlags_DEP1_DEP2(op8, dst0, src, ty); |
| else |
| setFlags_DEP1(op8, dst1, ty); |
| } |
| |
| DIP("%s%c %s,%s\n", t_x86opc, nameISize(size), |
| nameIReg(size,gregOfRM(rm)), dis_buf); |
| return len+delta0; |
| } |
| } |
| |
| |
| /* Handle move instructions of the form |
| mov E, G meaning |
| mov reg-or-mem, reg |
| Is passed the a ptr to the modRM byte, and the data size. Returns |
| the address advanced completely over this instruction. |
| |
| E(src) is reg-or-mem |
| G(dst) is reg. |
| |
| If E is reg, --> GET %E, tmpv |
| PUT tmpv, %G |
| |
| If E is mem --> (getAddr E) -> tmpa |
| LD (tmpa), tmpb |
| PUT tmpb, %G |
| */ |
| static |
| UInt dis_mov_E_G ( UChar sorb, |
| Int size, |
| Int delta0 ) |
| { |
| Int len; |
| UChar rm = getIByte(delta0); |
| HChar dis_buf[50]; |
| |
| if (epartIsReg(rm)) { |
| putIReg(size, gregOfRM(rm), getIReg(size, eregOfRM(rm))); |
| DIP("mov%c %s,%s\n", nameISize(size), |
| nameIReg(size,eregOfRM(rm)), |
| nameIReg(size,gregOfRM(rm))); |
| return 1+delta0; |
| } |
| |
| /* E refers to memory */ |
| { |
| IRTemp addr = disAMode ( &len, sorb, delta0, dis_buf ); |
| putIReg(size, gregOfRM(rm), loadLE(szToITy(size), mkexpr(addr))); |
| DIP("mov%c %s,%s\n", nameISize(size), |
| dis_buf,nameIReg(size,gregOfRM(rm))); |
| return delta0+len; |
| } |
| } |
| |
| |
| /* Handle move instructions of the form |
| mov G, E meaning |
| mov reg, reg-or-mem |
| Is passed the a ptr to the modRM byte, and the data size. Returns |
| the address advanced completely over this instruction. |
| |
| G(src) is reg. |
| E(dst) is reg-or-mem |
| |
| If E is reg, --> GET %G, tmp |
| PUT tmp, %E |
| |
| If E is mem, --> (getAddr E) -> tmpa |
| GET %G, tmpv |
| ST tmpv, (tmpa) |
| */ |
| static |
| UInt dis_mov_G_E ( UChar sorb, |
| Int size, |
| Int delta0 ) |
| { |
| Int len; |
| UChar rm = getIByte(delta0); |
| HChar dis_buf[50]; |
| |
| if (epartIsReg(rm)) { |
| putIReg(size, eregOfRM(rm), getIReg(size, gregOfRM(rm))); |
| DIP("mov%c %s,%s\n", nameISize(size), |
| nameIReg(size,gregOfRM(rm)), |
| nameIReg(size,eregOfRM(rm))); |
| return 1+delta0; |
| } |
| |
| /* E refers to memory */ |
| { |
| IRTemp addr = disAMode ( &len, sorb, delta0, dis_buf); |
| storeLE( mkexpr(addr), getIReg(size, gregOfRM(rm)) ); |
| DIP("mov%c %s,%s\n", nameISize(size), |
| nameIReg(size,gregOfRM(rm)), dis_buf); |
| return len+delta0; |
| } |
| } |
| |
| |
| /* op $immediate, AL/AX/EAX. */ |
| static |
| UInt dis_op_imm_A ( Int size, |
| Bool carrying, |
| IROp op8, |
| Bool keep, |
| Int delta, |
| const HChar* t_x86opc ) |
| { |
| IRType ty = szToITy(size); |
| IRTemp dst0 = newTemp(ty); |
| IRTemp src = newTemp(ty); |
| IRTemp dst1 = newTemp(ty); |
| UInt lit = getUDisp(size,delta); |
| assign(dst0, getIReg(size,R_EAX)); |
| assign(src, mkU(ty,lit)); |
| |
| if (isAddSub(op8) && !carrying) { |
| assign(dst1, binop(mkSizedOp(ty,op8), mkexpr(dst0), mkexpr(src)) ); |
| setFlags_DEP1_DEP2(op8, dst0, src, ty); |
| } |
| else |
| if (isLogic(op8)) { |
| vassert(!carrying); |
| assign(dst1, binop(mkSizedOp(ty,op8), mkexpr(dst0), mkexpr(src)) ); |
| setFlags_DEP1(op8, dst1, ty); |
| } |
| else |
| if (op8 == Iop_Add8 && carrying) { |
| helper_ADC( size, dst1, dst0, src, |
| /*no store*/IRTemp_INVALID, IRTemp_INVALID, 0 ); |
| } |
| else |
| if (op8 == Iop_Sub8 && carrying) { |
| helper_SBB( size, dst1, dst0, src, |
| /*no store*/IRTemp_INVALID, IRTemp_INVALID, 0 ); |
| } |
| else |
| vpanic("dis_op_imm_A(x86,guest)"); |
| |
| if (keep) |
| putIReg(size, R_EAX, mkexpr(dst1)); |
| |
| DIP("%s%c $0x%x, %s\n", t_x86opc, nameISize(size), |
| lit, nameIReg(size,R_EAX)); |
| return delta+size; |
| } |
| |
| |
| /* Sign- and Zero-extending moves. */ |
| static |
| UInt dis_movx_E_G ( UChar sorb, |
| Int delta, Int szs, Int szd, Bool sign_extend ) |
| { |
| UChar rm = getIByte(delta); |
| if (epartIsReg(rm)) { |
| if (szd == szs) { |
| // mutant case. See #250799 |
| putIReg(szd, gregOfRM(rm), |
| getIReg(szs,eregOfRM(rm))); |
| } else { |
| // normal case |
| putIReg(szd, gregOfRM(rm), |
| unop(mkWidenOp(szs,szd,sign_extend), |
| getIReg(szs,eregOfRM(rm)))); |
| } |
| DIP("mov%c%c%c %s,%s\n", sign_extend ? 's' : 'z', |
| nameISize(szs), nameISize(szd), |
| nameIReg(szs,eregOfRM(rm)), |
| nameIReg(szd,gregOfRM(rm))); |
| return 1+delta; |
| } |
| |
| /* E refers to memory */ |
| { |
| Int len; |
| HChar dis_buf[50]; |
| IRTemp addr = disAMode ( &len, sorb, delta, dis_buf ); |
| if (szd == szs) { |
| // mutant case. See #250799 |
| putIReg(szd, gregOfRM(rm), |
| loadLE(szToITy(szs),mkexpr(addr))); |
| } else { |
| // normal case |
| putIReg(szd, gregOfRM(rm), |
| unop(mkWidenOp(szs,szd,sign_extend), |
| loadLE(szToITy(szs),mkexpr(addr)))); |
| } |
| DIP("mov%c%c%c %s,%s\n", sign_extend ? 's' : 'z', |
| nameISize(szs), nameISize(szd), |
| dis_buf, nameIReg(szd,gregOfRM(rm))); |
| return len+delta; |
| } |
| } |
| |
| |
| /* Generate code to divide ArchRegs EDX:EAX / DX:AX / AX by the 32 / |
| 16 / 8 bit quantity in the given IRTemp. */ |
| static |
| void codegen_div ( Int sz, IRTemp t, Bool signed_divide ) |
| { |
| IROp op = signed_divide ? Iop_DivModS64to32 : Iop_DivModU64to32; |
| IRTemp src64 = newTemp(Ity_I64); |
| IRTemp dst64 = newTemp(Ity_I64); |
| switch (sz) { |
| case 4: |
| assign( src64, binop(Iop_32HLto64, |
| getIReg(4,R_EDX), getIReg(4,R_EAX)) ); |
| assign( dst64, binop(op, mkexpr(src64), mkexpr(t)) ); |
| putIReg( 4, R_EAX, unop(Iop_64to32,mkexpr(dst64)) ); |
| putIReg( 4, R_EDX, unop(Iop_64HIto32,mkexpr(dst64)) ); |
| break; |
| case 2: { |
| IROp widen3264 = signed_divide ? Iop_32Sto64 : Iop_32Uto64; |
| IROp widen1632 = signed_divide ? Iop_16Sto32 : Iop_16Uto32; |
| assign( src64, unop(widen3264, |
| binop(Iop_16HLto32, |
| getIReg(2,R_EDX), getIReg(2,R_EAX))) ); |
| assign( dst64, binop(op, mkexpr(src64), unop(widen1632,mkexpr(t))) ); |
| putIReg( 2, R_EAX, unop(Iop_32to16,unop(Iop_64to32,mkexpr(dst64))) ); |
| putIReg( 2, R_EDX, unop(Iop_32to16,unop(Iop_64HIto32,mkexpr(dst64))) ); |
| break; |
| } |
| case 1: { |
| IROp widen3264 = signed_divide ? Iop_32Sto64 : Iop_32Uto64; |
| IROp widen1632 = signed_divide ? Iop_16Sto32 : Iop_16Uto32; |
| IROp widen816 = signed_divide ? Iop_8Sto16 : Iop_8Uto16; |
| assign( src64, unop(widen3264, unop(widen1632, getIReg(2,R_EAX))) ); |
| assign( dst64, |
| binop(op, mkexpr(src64), |
| unop(widen1632, unop(widen816, mkexpr(t)))) ); |
| putIReg( 1, R_AL, unop(Iop_16to8, unop(Iop_32to16, |
| unop(Iop_64to32,mkexpr(dst64)))) ); |
| putIReg( 1, R_AH, unop(Iop_16to8, unop(Iop_32to16, |
| unop(Iop_64HIto32,mkexpr(dst64)))) ); |
| break; |
| } |
| default: vpanic("codegen_div(x86)"); |
| } |
| } |
| |
| |
| static |
| UInt dis_Grp1 ( UChar sorb, Bool locked, |
| Int delta, UChar modrm, |
| Int am_sz, Int d_sz, Int sz, UInt d32 ) |
| { |
| Int len; |
| HChar dis_buf[50]; |
| IRType ty = szToITy(sz); |
| IRTemp dst1 = newTemp(ty); |
| IRTemp src = newTemp(ty); |
| IRTemp dst0 = newTemp(ty); |
| IRTemp addr = IRTemp_INVALID; |
| IROp op8 = Iop_INVALID; |
| UInt mask = sz==1 ? 0xFF : (sz==2 ? 0xFFFF : 0xFFFFFFFF); |
| |
| switch (gregOfRM(modrm)) { |
| case 0: op8 = Iop_Add8; break; case 1: op8 = Iop_Or8; break; |
| case 2: break; // ADC |
| case 3: break; // SBB |
| case 4: op8 = Iop_And8; break; case 5: op8 = Iop_Sub8; break; |
| case 6: op8 = Iop_Xor8; break; case 7: op8 = Iop_Sub8; break; |
| /*NOTREACHED*/ |
| default: vpanic("dis_Grp1: unhandled case"); |
| } |
| |
| if (epartIsReg(modrm)) { |
| vassert(am_sz == 1); |
| |
| assign(dst0, getIReg(sz,eregOfRM(modrm))); |
| assign(src, mkU(ty,d32 & mask)); |
| |
| if (gregOfRM(modrm) == 2 /* ADC */) { |
| helper_ADC( sz, dst1, dst0, src, |
| /*no store*/IRTemp_INVALID, IRTemp_INVALID, 0 ); |
| } else |
| if (gregOfRM(modrm) == 3 /* SBB */) { |
| helper_SBB( sz, dst1, dst0, src, |
| /*no store*/IRTemp_INVALID, IRTemp_INVALID, 0 ); |
| } else { |
| assign(dst1, binop(mkSizedOp(ty,op8), mkexpr(dst0), mkexpr(src))); |
| if (isAddSub(op8)) |
| setFlags_DEP1_DEP2(op8, dst0, src, ty); |
| else |
| setFlags_DEP1(op8, dst1, ty); |
| } |
| |
| if (gregOfRM(modrm) < 7) |
| putIReg(sz, eregOfRM(modrm), mkexpr(dst1)); |
| |
| delta += (am_sz + d_sz); |
| DIP("%s%c $0x%x, %s\n", nameGrp1(gregOfRM(modrm)), nameISize(sz), d32, |
| nameIReg(sz,eregOfRM(modrm))); |
| } else { |
| addr = disAMode ( &len, sorb, delta, dis_buf); |
| |
| assign(dst0, loadLE(ty,mkexpr(addr))); |
| assign(src, mkU(ty,d32 & mask)); |
| |
| if (gregOfRM(modrm) == 2 /* ADC */) { |
| if (locked) { |
| /* cas-style store */ |
| helper_ADC( sz, dst1, dst0, src, |
| /*store*/addr, dst0/*expVal*/, guest_EIP_curr_instr ); |
| } else { |
| /* normal store */ |
| helper_ADC( sz, dst1, dst0, src, |
| /*store*/addr, IRTemp_INVALID, 0 ); |
| } |
| } else |
| if (gregOfRM(modrm) == 3 /* SBB */) { |
| if (locked) { |
| /* cas-style store */ |
| helper_SBB( sz, dst1, dst0, src, |
| /*store*/addr, dst0/*expVal*/, guest_EIP_curr_instr ); |
| } else { |
| /* normal store */ |
| helper_SBB( sz, dst1, dst0, src, |
| /*store*/addr, IRTemp_INVALID, 0 ); |
| } |
| } else { |
| assign(dst1, binop(mkSizedOp(ty,op8), mkexpr(dst0), mkexpr(src))); |
| if (gregOfRM(modrm) < 7) { |
| if (locked) { |
| casLE( mkexpr(addr), mkexpr(dst0)/*expVal*/, |
| mkexpr(dst1)/*newVal*/, |
| guest_EIP_curr_instr ); |
| } else { |
| storeLE(mkexpr(addr), mkexpr(dst1)); |
| } |
| } |
| if (isAddSub(op8)) |
| setFlags_DEP1_DEP2(op8, dst0, src, ty); |
| else |
| setFlags_DEP1(op8, dst1, ty); |
| } |
| |
| delta += (len+d_sz); |
| DIP("%s%c $0x%x, %s\n", nameGrp1(gregOfRM(modrm)), nameISize(sz), |
| d32, dis_buf); |
| } |
| return delta; |
| } |
| |
| |
| /* Group 2 extended opcodes. shift_expr must be an 8-bit typed |
| expression. */ |
| |
| static |
| UInt dis_Grp2 ( UChar sorb, |
| Int delta, UChar modrm, |
| Int am_sz, Int d_sz, Int sz, IRExpr* shift_expr, |
| const HChar* shift_expr_txt, Bool* decode_OK ) |
| { |
| /* delta on entry points at the modrm byte. */ |
| HChar dis_buf[50]; |
| Int len; |
| Bool isShift, isRotate, isRotateC; |
| IRType ty = szToITy(sz); |
| IRTemp dst0 = newTemp(ty); |
| IRTemp dst1 = newTemp(ty); |
| IRTemp addr = IRTemp_INVALID; |
| |
| *decode_OK = True; |
| |
| vassert(sz == 1 || sz == 2 || sz == 4); |
| |
| /* Put value to shift/rotate in dst0. */ |
| if (epartIsReg(modrm)) { |
| assign(dst0, getIReg(sz, eregOfRM(modrm))); |
| delta += (am_sz + d_sz); |
| } else { |
| addr = disAMode ( &len, sorb, delta, dis_buf); |
| assign(dst0, loadLE(ty,mkexpr(addr))); |
| delta += len + d_sz; |
| } |
| |
| isShift = False; |
| switch (gregOfRM(modrm)) { case 4: case 5: case 6: case 7: isShift = True; } |
| |
| isRotate = False; |
| switch (gregOfRM(modrm)) { case 0: case 1: isRotate = True; } |
| |
| isRotateC = False; |
| switch (gregOfRM(modrm)) { case 2: case 3: isRotateC = True; } |
| |
| if (!isShift && !isRotate && !isRotateC) { |
| /*NOTREACHED*/ |
| vpanic("dis_Grp2(Reg): unhandled case(x86)"); |
| } |
| |
| if (isRotateC) { |
| /* call a helper; these insns are so ridiculous they do not |
| deserve better */ |
| Bool left = toBool(gregOfRM(modrm) == 2); |
| IRTemp r64 = newTemp(Ity_I64); |
| IRExpr** args |
| = mkIRExprVec_4( widenUto32(mkexpr(dst0)), /* thing to rotate */ |
| widenUto32(shift_expr), /* rotate amount */ |
| widenUto32(mk_x86g_calculate_eflags_all()), |
| mkU32(sz) ); |
| assign( r64, mkIRExprCCall( |
| Ity_I64, |
| 0/*regparm*/, |
| left ? "x86g_calculate_RCL" : "x86g_calculate_RCR", |
| left ? &x86g_calculate_RCL : &x86g_calculate_RCR, |
| args |
| ) |
| ); |
| /* new eflags in hi half r64; new value in lo half r64 */ |
| assign( dst1, narrowTo(ty, unop(Iop_64to32, mkexpr(r64))) ); |
| stmt( IRStmt_Put( OFFB_CC_OP, mkU32(X86G_CC_OP_COPY) )); |
| stmt( IRStmt_Put( OFFB_CC_DEP1, unop(Iop_64HIto32, mkexpr(r64)) )); |
| stmt( IRStmt_Put( OFFB_CC_DEP2, mkU32(0) )); |
| /* Set NDEP even though it isn't used. This makes redundant-PUT |
| elimination of previous stores to this field work better. */ |
| stmt( IRStmt_Put( OFFB_CC_NDEP, mkU32(0) )); |
| } |
| |
| if (isShift) { |
| |
| IRTemp pre32 = newTemp(Ity_I32); |
| IRTemp res32 = newTemp(Ity_I32); |
| IRTemp res32ss = newTemp(Ity_I32); |
| IRTemp shift_amt = newTemp(Ity_I8); |
| IROp op32; |
| |
| switch (gregOfRM(modrm)) { |
| case 4: op32 = Iop_Shl32; break; |
| case 5: op32 = Iop_Shr32; break; |
| case 6: op32 = Iop_Shl32; break; |
| case 7: op32 = Iop_Sar32; break; |
| /*NOTREACHED*/ |
| default: vpanic("dis_Grp2:shift"); break; |
| } |
| |
| /* Widen the value to be shifted to 32 bits, do the shift, and |
| narrow back down. This seems surprisingly long-winded, but |
| unfortunately the Intel semantics requires that 8/16-bit |
| shifts give defined results for shift values all the way up |
| to 31, and this seems the simplest way to do it. It has the |
| advantage that the only IR level shifts generated are of 32 |
| bit values, and the shift amount is guaranteed to be in the |
| range 0 .. 31, thereby observing the IR semantics requiring |
| all shift values to be in the range 0 .. 2^word_size-1. */ |
| |
| /* shift_amt = shift_expr & 31, regardless of operation size */ |
| assign( shift_amt, binop(Iop_And8, shift_expr, mkU8(31)) ); |
| |
| /* suitably widen the value to be shifted to 32 bits. */ |
| assign( pre32, op32==Iop_Sar32 ? widenSto32(mkexpr(dst0)) |
| : widenUto32(mkexpr(dst0)) ); |
| |
| /* res32 = pre32 `shift` shift_amt */ |
| assign( res32, binop(op32, mkexpr(pre32), mkexpr(shift_amt)) ); |
| |
| /* res32ss = pre32 `shift` ((shift_amt - 1) & 31) */ |
| assign( res32ss, |
| binop(op32, |
| mkexpr(pre32), |
| binop(Iop_And8, |
| binop(Iop_Sub8, |
| mkexpr(shift_amt), mkU8(1)), |
| mkU8(31))) ); |
| |
| /* Build the flags thunk. */ |
| setFlags_DEP1_DEP2_shift(op32, res32, res32ss, ty, shift_amt); |
| |
| /* Narrow the result back down. */ |
| assign( dst1, narrowTo(ty, mkexpr(res32)) ); |
| |
| } /* if (isShift) */ |
| |
| else |
| if (isRotate) { |
| Int ccOp = ty==Ity_I8 ? 0 : (ty==Ity_I16 ? 1 : 2); |
| Bool left = toBool(gregOfRM(modrm) == 0); |
| IRTemp rot_amt = newTemp(Ity_I8); |
| IRTemp rot_amt32 = newTemp(Ity_I8); |
| IRTemp oldFlags = newTemp(Ity_I32); |
| |
| /* rot_amt = shift_expr & mask */ |
| /* By masking the rotate amount thusly, the IR-level Shl/Shr |
| expressions never shift beyond the word size and thus remain |
| well defined. */ |
| assign(rot_amt32, binop(Iop_And8, shift_expr, mkU8(31))); |
| |
| if (ty == Ity_I32) |
| assign(rot_amt, mkexpr(rot_amt32)); |
| else |
| assign(rot_amt, binop(Iop_And8, mkexpr(rot_amt32), mkU8(8*sz-1))); |
| |
| if (left) { |
| |
| /* dst1 = (dst0 << rot_amt) | (dst0 >>u (wordsize-rot_amt)) */ |
| assign(dst1, |
| binop( mkSizedOp(ty,Iop_Or8), |
| binop( mkSizedOp(ty,Iop_Shl8), |
| mkexpr(dst0), |
| mkexpr(rot_amt) |
| ), |
| binop( mkSizedOp(ty,Iop_Shr8), |
| mkexpr(dst0), |
| binop(Iop_Sub8,mkU8(8*sz), mkexpr(rot_amt)) |
| ) |
| ) |
| ); |
| ccOp += X86G_CC_OP_ROLB; |
| |
| } else { /* right */ |
| |
| /* dst1 = (dst0 >>u rot_amt) | (dst0 << (wordsize-rot_amt)) */ |
| assign(dst1, |
| binop( mkSizedOp(ty,Iop_Or8), |
| binop( mkSizedOp(ty,Iop_Shr8), |
| mkexpr(dst0), |
| mkexpr(rot_amt) |
| ), |
| binop( mkSizedOp(ty,Iop_Shl8), |
| mkexpr(dst0), |
| binop(Iop_Sub8,mkU8(8*sz), mkexpr(rot_amt)) |
| ) |
| ) |
| ); |
| ccOp += X86G_CC_OP_RORB; |
| |
| } |
| |
| /* dst1 now holds the rotated value. Build flag thunk. We |
| need the resulting value for this, and the previous flags. |
| Except don't set it if the rotate count is zero. */ |
| |
| assign(oldFlags, mk_x86g_calculate_eflags_all()); |
| |
| /* rot_amt32 :: Ity_I8. We need to convert it to I1. */ |
| IRTemp rot_amt32b = newTemp(Ity_I1); |
| assign(rot_amt32b, binop(Iop_CmpNE8, mkexpr(rot_amt32), mkU8(0)) ); |
| |
| /* CC_DEP1 is the rotated value. CC_NDEP is flags before. */ |
| stmt( IRStmt_Put( OFFB_CC_OP, |
| IRExpr_ITE( mkexpr(rot_amt32b), |
| mkU32(ccOp), |
| IRExpr_Get(OFFB_CC_OP,Ity_I32) ) )); |
| stmt( IRStmt_Put( OFFB_CC_DEP1, |
| IRExpr_ITE( mkexpr(rot_amt32b), |
| widenUto32(mkexpr(dst1)), |
| IRExpr_Get(OFFB_CC_DEP1,Ity_I32) ) )); |
| stmt( IRStmt_Put( OFFB_CC_DEP2, |
| IRExpr_ITE( mkexpr(rot_amt32b), |
| mkU32(0), |
| IRExpr_Get(OFFB_CC_DEP2,Ity_I32) ) )); |
| stmt( IRStmt_Put( OFFB_CC_NDEP, |
| IRExpr_ITE( mkexpr(rot_amt32b), |
| mkexpr(oldFlags), |
| IRExpr_Get(OFFB_CC_NDEP,Ity_I32) ) )); |
| } /* if (isRotate) */ |
| |
| /* Save result, and finish up. */ |
| if (epartIsReg(modrm)) { |
| putIReg(sz, eregOfRM(modrm), mkexpr(dst1)); |
| if (vex_traceflags & VEX_TRACE_FE) { |
| vex_printf("%s%c ", |
| nameGrp2(gregOfRM(modrm)), nameISize(sz) ); |
| if (shift_expr_txt) |
| vex_printf("%s", shift_expr_txt); |
| else |
| ppIRExpr(shift_expr); |
| vex_printf(", %s\n", nameIReg(sz,eregOfRM(modrm))); |
| } |
| } else { |
| storeLE(mkexpr(addr), mkexpr(dst1)); |
| if (vex_traceflags & VEX_TRACE_FE) { |
| vex_printf("%s%c ", |
| nameGrp2(gregOfRM(modrm)), nameISize(sz) ); |
| if (shift_expr_txt) |
| vex_printf("%s", shift_expr_txt); |
| else |
| ppIRExpr(shift_expr); |
| vex_printf(", %s\n", dis_buf); |
| } |
| } |
| return delta; |
| } |
| |
| |
| /* Group 8 extended opcodes (but BT/BTS/BTC/BTR only). */ |
| static |
| UInt dis_Grp8_Imm ( UChar sorb, |
| Bool locked, |
| Int delta, UChar modrm, |
| Int am_sz, Int sz, UInt src_val, |
| Bool* decode_OK ) |
| { |
| /* src_val denotes a d8. |
| And delta on entry points at the modrm byte. */ |
| |
| IRType ty = szToITy(sz); |
| IRTemp t2 = newTemp(Ity_I32); |
| IRTemp t2m = newTemp(Ity_I32); |
| IRTemp t_addr = IRTemp_INVALID; |
| HChar dis_buf[50]; |
| UInt mask; |
| |
| /* we're optimists :-) */ |
| *decode_OK = True; |
| |
| /* Limit src_val -- the bit offset -- to something within a word. |
| The Intel docs say that literal offsets larger than a word are |
| masked in this way. */ |
| switch (sz) { |
| case 2: src_val &= 15; break; |
| case 4: src_val &= 31; break; |
| default: *decode_OK = False; return delta; |
| } |
| |
| /* Invent a mask suitable for the operation. */ |
| switch (gregOfRM(modrm)) { |
| case 4: /* BT */ mask = 0; break; |
| case 5: /* BTS */ mask = 1 << src_val; break; |
| case 6: /* BTR */ mask = ~(1 << src_val); break; |
| case 7: /* BTC */ mask = 1 << src_val; break; |
| /* If this needs to be extended, probably simplest to make a |
| new function to handle the other cases (0 .. 3). The |
| Intel docs do however not indicate any use for 0 .. 3, so |
| we don't expect this to happen. */ |
| default: *decode_OK = False; return delta; |
| } |
| |
| /* Fetch the value to be tested and modified into t2, which is |
| 32-bits wide regardless of sz. */ |
| if (epartIsReg(modrm)) { |
| vassert(am_sz == 1); |
| assign( t2, widenUto32(getIReg(sz, eregOfRM(modrm))) ); |
| delta += (am_sz + 1); |
| DIP("%s%c $0x%x, %s\n", nameGrp8(gregOfRM(modrm)), nameISize(sz), |
| src_val, nameIReg(sz,eregOfRM(modrm))); |
| } else { |
| Int len; |
| t_addr = disAMode ( &len, sorb, delta, dis_buf); |
| delta += (len+1); |
| assign( t2, widenUto32(loadLE(ty, mkexpr(t_addr))) ); |
| DIP("%s%c $0x%x, %s\n", nameGrp8(gregOfRM(modrm)), nameISize(sz), |
| src_val, dis_buf); |
| } |
| |
| /* Compute the new value into t2m, if non-BT. */ |
| switch (gregOfRM(modrm)) { |
| case 4: /* BT */ |
| break; |
| case 5: /* BTS */ |
| assign( t2m, binop(Iop_Or32, mkU32(mask), mkexpr(t2)) ); |
| break; |
| case 6: /* BTR */ |
| assign( t2m, binop(Iop_And32, mkU32(mask), mkexpr(t2)) ); |
| break; |
| case 7: /* BTC */ |
| assign( t2m, binop(Iop_Xor32, mkU32(mask), mkexpr(t2)) ); |
| break; |
| default: |
| /*NOTREACHED*/ /*the previous switch guards this*/ |
| vassert(0); |
| } |
| |
| /* Write the result back, if non-BT. If the CAS fails then we |
| side-exit from the trace at this point, and so the flag state is |
| not affected. This is of course as required. */ |
| if (gregOfRM(modrm) != 4 /* BT */) { |
| if (epartIsReg(modrm)) { |
| putIReg(sz, eregOfRM(modrm), narrowTo(ty, mkexpr(t2m))); |
| } else { |
| if (locked) { |
| casLE( mkexpr(t_addr), |
| narrowTo(ty, mkexpr(t2))/*expd*/, |
| narrowTo(ty, mkexpr(t2m))/*new*/, |
| guest_EIP_curr_instr ); |
| } else { |
| storeLE(mkexpr(t_addr), narrowTo(ty, mkexpr(t2m))); |
| } |
| } |
| } |
| |
| /* Copy relevant bit from t2 into the carry flag. */ |
| /* Flags: C=selected bit, O,S,Z,A,P undefined, so are set to zero. */ |
| stmt( IRStmt_Put( OFFB_CC_OP, mkU32(X86G_CC_OP_COPY) )); |
| stmt( IRStmt_Put( OFFB_CC_DEP2, mkU32(0) )); |
| stmt( IRStmt_Put( |
| OFFB_CC_DEP1, |
| binop(Iop_And32, |
| binop(Iop_Shr32, mkexpr(t2), mkU8(src_val)), |
| mkU32(1)) |
| )); |
| /* Set NDEP even though it isn't used. This makes redundant-PUT |
| elimination of previous stores to this field work better. */ |
| stmt( IRStmt_Put( OFFB_CC_NDEP, mkU32(0) )); |
| |
| return delta; |
| } |
| |
| |
| /* Signed/unsigned widening multiply. Generate IR to multiply the |
| value in EAX/AX/AL by the given IRTemp, and park the result in |
| EDX:EAX/DX:AX/AX. |
| */ |
| static void codegen_mulL_A_D ( Int sz, Bool syned, |
| IRTemp tmp, const HChar* tmp_txt ) |
| { |
| IRType ty = szToITy(sz); |
| IRTemp t1 = newTemp(ty); |
| |
| assign( t1, getIReg(sz, R_EAX) ); |
| |
| switch (ty) { |
| case Ity_I32: { |
| IRTemp res64 = newTemp(Ity_I64); |
| IRTemp resHi = newTemp(Ity_I32); |
| IRTemp resLo = newTemp(Ity_I32); |
| IROp mulOp = syned ? Iop_MullS32 : Iop_MullU32; |
| UInt tBaseOp = syned ? X86G_CC_OP_SMULB : X86G_CC_OP_UMULB; |
| setFlags_MUL ( Ity_I32, t1, tmp, tBaseOp ); |
| assign( res64, binop(mulOp, mkexpr(t1), mkexpr(tmp)) ); |
| assign( resHi, unop(Iop_64HIto32,mkexpr(res64))); |
| assign( resLo, unop(Iop_64to32,mkexpr(res64))); |
| putIReg(4, R_EDX, mkexpr(resHi)); |
| putIReg(4, R_EAX, mkexpr(resLo)); |
| break; |
| } |
| case Ity_I16: { |
| IRTemp res32 = newTemp(Ity_I32); |
| IRTemp resHi = newTemp(Ity_I16); |
| IRTemp resLo = newTemp(Ity_I16); |
| IROp mulOp = syned ? Iop_MullS16 : Iop_MullU16; |
| UInt tBaseOp = syned ? X86G_CC_OP_SMULB : X86G_CC_OP_UMULB; |
| setFlags_MUL ( Ity_I16, t1, tmp, tBaseOp ); |
| assign( res32, binop(mulOp, mkexpr(t1), mkexpr(tmp)) ); |
| assign( resHi, unop(Iop_32HIto16,mkexpr(res32))); |
| assign( resLo, unop(Iop_32to16,mkexpr(res32))); |
| putIReg(2, R_EDX, mkexpr(resHi)); |
| putIReg(2, R_EAX, mkexpr(resLo)); |
| break; |
| } |
| case Ity_I8: { |
| IRTemp res16 = newTemp(Ity_I16); |
| IRTemp resHi = newTemp(Ity_I8); |
| IRTemp resLo = newTemp(Ity_I8); |
| IROp mulOp = syned ? Iop_MullS8 : Iop_MullU8; |
| UInt tBaseOp = syned ? X86G_CC_OP_SMULB : X86G_CC_OP_UMULB; |
| setFlags_MUL ( Ity_I8, t1, tmp, tBaseOp ); |
| assign( res16, binop(mulOp, mkexpr(t1), mkexpr(tmp)) ); |
| assign( resHi, unop(Iop_16HIto8,mkexpr(res16))); |
| assign( resLo, unop(Iop_16to8,mkexpr(res16))); |
| putIReg(2, R_EAX, mkexpr(res16)); |
| break; |
| } |
| default: |
| vpanic("codegen_mulL_A_D(x86)"); |
| } |
| DIP("%s%c %s\n", syned ? "imul" : "mul", nameISize(sz), tmp_txt); |
| } |
| |
| |
| /* Group 3 extended opcodes. */ |
| static |
| UInt dis_Grp3 ( UChar sorb, Bool locked, Int sz, Int delta, Bool* decode_OK ) |
| { |
| UInt d32; |
| UChar modrm; |
| HChar dis_buf[50]; |
| Int len; |
| IRTemp addr; |
| IRType ty = szToITy(sz); |
| IRTemp t1 = newTemp(ty); |
| IRTemp dst1, src, dst0; |
| |
| *decode_OK = True; /* may change this later */ |
| |
| modrm = getIByte(delta); |
| |
| if (locked && (gregOfRM(modrm) != 2 && gregOfRM(modrm) != 3)) { |
| /* LOCK prefix only allowed with not and neg subopcodes */ |
| *decode_OK = False; |
| return delta; |
| } |
| |
| if (epartIsReg(modrm)) { |
| switch (gregOfRM(modrm)) { |
| case 0: { /* TEST */ |
| delta++; d32 = getUDisp(sz, delta); delta += sz; |
| dst1 = newTemp(ty); |
| assign(dst1, binop(mkSizedOp(ty,Iop_And8), |
| getIReg(sz,eregOfRM(modrm)), |
| mkU(ty,d32))); |
| setFlags_DEP1( Iop_And8, dst1, ty ); |
| DIP("test%c $0x%x, %s\n", nameISize(sz), d32, |
| nameIReg(sz, eregOfRM(modrm))); |
| break; |
| } |
| case 1: /* UNDEFINED */ |
| /* The Intel docs imply this insn is undefined and binutils |
| agrees. Unfortunately Core 2 will run it (with who |
| knows what result?) sandpile.org reckons it's an alias |
| for case 0. We play safe. */ |
| *decode_OK = False; |
| break; |
| case 2: /* NOT */ |
| delta++; |
| putIReg(sz, eregOfRM(modrm), |
| unop(mkSizedOp(ty,Iop_Not8), |
| getIReg(sz, eregOfRM(modrm)))); |
| DIP("not%c %s\n", nameISize(sz), nameIReg(sz, eregOfRM(modrm))); |
| break; |
| case 3: /* NEG */ |
| delta++; |
| dst0 = newTemp(ty); |
| src = newTemp(ty); |
| dst1 = newTemp(ty); |
| assign(dst0, mkU(ty,0)); |
| assign(src, getIReg(sz,eregOfRM(modrm))); |
| assign(dst1, binop(mkSizedOp(ty,Iop_Sub8), mkexpr(dst0), mkexpr(src))); |
| setFlags_DEP1_DEP2(Iop_Sub8, dst0, src, ty); |
| putIReg(sz, eregOfRM(modrm), mkexpr(dst1)); |
| DIP("neg%c %s\n", nameISize(sz), nameIReg(sz, eregOfRM(modrm))); |
| break; |
| case 4: /* MUL (unsigned widening) */ |
| delta++; |
| src = newTemp(ty); |
| assign(src, getIReg(sz,eregOfRM(modrm))); |
| codegen_mulL_A_D ( sz, False, src, nameIReg(sz,eregOfRM(modrm)) ); |
| break; |
| case 5: /* IMUL (signed widening) */ |
| delta++; |
| src = newTemp(ty); |
| assign(src, getIReg(sz,eregOfRM(modrm))); |
| codegen_mulL_A_D ( sz, True, src, nameIReg(sz,eregOfRM(modrm)) ); |
| break; |
| case 6: /* DIV */ |
| delta++; |
| assign( t1, getIReg(sz, eregOfRM(modrm)) ); |
| codegen_div ( sz, t1, False ); |
| DIP("div%c %s\n", nameISize(sz), nameIReg(sz, eregOfRM(modrm))); |
| break; |
| case 7: /* IDIV */ |
| delta++; |
| assign( t1, getIReg(sz, eregOfRM(modrm)) ); |
| codegen_div ( sz, t1, True ); |
| DIP("idiv%c %s\n", nameISize(sz), nameIReg(sz, eregOfRM(modrm))); |
| break; |
| default: |
| /* This can't happen - gregOfRM should return 0 .. 7 only */ |
| vpanic("Grp3(x86)"); |
| } |
| } else { |
| addr = disAMode ( &len, sorb, delta, dis_buf ); |
| t1 = newTemp(ty); |
| delta += len; |
| assign(t1, loadLE(ty,mkexpr(addr))); |
| switch (gregOfRM(modrm)) { |
| case 0: { /* TEST */ |
| d32 = getUDisp(sz, delta); delta += sz; |
| dst1 = newTemp(ty); |
| assign(dst1, binop(mkSizedOp(ty,Iop_And8), |
| mkexpr(t1), mkU(ty,d32))); |
| setFlags_DEP1( Iop_And8, dst1, ty ); |
| DIP("test%c $0x%x, %s\n", nameISize(sz), d32, dis_buf); |
| break; |
| } |
| case 1: /* UNDEFINED */ |
| /* See comment above on R case */ |
| *decode_OK = False; |
| break; |
| case 2: /* NOT */ |
| dst1 = newTemp(ty); |
| assign(dst1, unop(mkSizedOp(ty,Iop_Not8), mkexpr(t1))); |
| if (locked) { |
| casLE( mkexpr(addr), mkexpr(t1)/*expd*/, mkexpr(dst1)/*new*/, |
| guest_EIP_curr_instr ); |
| } else { |
| storeLE( mkexpr(addr), mkexpr(dst1) ); |
| } |
| DIP("not%c %s\n", nameISize(sz), dis_buf); |
| break; |
| case 3: /* NEG */ |
| dst0 = newTemp(ty); |
| src = newTemp(ty); |
| dst1 = newTemp(ty); |
| assign(dst0, mkU(ty,0)); |
| assign(src, mkexpr(t1)); |
| assign(dst1, binop(mkSizedOp(ty,Iop_Sub8), |
| mkexpr(dst0), mkexpr(src))); |
| if (locked) { |
| casLE( mkexpr(addr), mkexpr(t1)/*expd*/, mkexpr(dst1)/*new*/, |
| guest_EIP_curr_instr ); |
| } else { |
| storeLE( mkexpr(addr), mkexpr(dst1) ); |
| } |
| setFlags_DEP1_DEP2(Iop_Sub8, dst0, src, ty); |
| DIP("neg%c %s\n", nameISize(sz), dis_buf); |
| break; |
| case 4: /* MUL */ |
| codegen_mulL_A_D ( sz, False, t1, dis_buf ); |
| break; |
| case 5: /* IMUL */ |
| codegen_mulL_A_D ( sz, True, t1, dis_buf ); |
| break; |
| case 6: /* DIV */ |
| codegen_div ( sz, t1, False ); |
| DIP("div%c %s\n", nameISize(sz), dis_buf); |
| break; |
| case 7: /* IDIV */ |
| codegen_div ( sz, t1, True ); |
| DIP("idiv%c %s\n", nameISize(sz), dis_buf); |
| break; |
| default: |
| /* This can't happen - gregOfRM should return 0 .. 7 only */ |
| vpanic("Grp3(x86)"); |
| } |
| } |
| return delta; |
| } |
| |
| |
| /* Group 4 extended opcodes. */ |
| static |
| UInt dis_Grp4 ( UChar sorb, Bool locked, Int delta, Bool* decode_OK ) |
| { |
| Int alen; |
| UChar modrm; |
| HChar dis_buf[50]; |
| IRType ty = Ity_I8; |
| IRTemp t1 = newTemp(ty); |
| IRTemp t2 = newTemp(ty); |
| |
| *decode_OK = True; |
| |
| modrm = getIByte(delta); |
| |
| if (locked && (gregOfRM(modrm) != 0 && gregOfRM(modrm) != 1)) { |
| /* LOCK prefix only allowed with inc and dec subopcodes */ |
| *decode_OK = False; |
| return delta; |
| } |
| |
| if (epartIsReg(modrm)) { |
| assign(t1, getIReg(1, eregOfRM(modrm))); |
| switch (gregOfRM(modrm)) { |
| case 0: /* INC */ |
| assign(t2, binop(Iop_Add8, mkexpr(t1), mkU8(1))); |
| putIReg(1, eregOfRM(modrm), mkexpr(t2)); |
| setFlags_INC_DEC( True, t2, ty ); |
| break; |
| case 1: /* DEC */ |
| assign(t2, binop(Iop_Sub8, mkexpr(t1), mkU8(1))); |
| putIReg(1, eregOfRM(modrm), mkexpr(t2)); |
| setFlags_INC_DEC( False, t2, ty ); |
| break; |
| default: |
| *decode_OK = False; |
| return delta; |
| } |
| delta++; |
| DIP("%sb %s\n", nameGrp4(gregOfRM(modrm)), |
| nameIReg(1, eregOfRM(modrm))); |
| } else { |
| IRTemp addr = disAMode ( &alen, sorb, delta, dis_buf ); |
| assign( t1, loadLE(ty, mkexpr(addr)) ); |
| switch (gregOfRM(modrm)) { |
| case 0: /* INC */ |
| assign(t2, binop(Iop_Add8, mkexpr(t1), mkU8(1))); |
| if (locked) { |
| casLE( mkexpr(addr), mkexpr(t1)/*expd*/, mkexpr(t2)/*new*/, |
| guest_EIP_curr_instr ); |
| } else { |
| storeLE( mkexpr(addr), mkexpr(t2) ); |
| } |
| setFlags_INC_DEC( True, t2, ty ); |
| break; |
| case 1: /* DEC */ |
| assign(t2, binop(Iop_Sub8, mkexpr(t1), mkU8(1))); |
| if (locked) { |
| casLE( mkexpr(addr), mkexpr(t1)/*expd*/, mkexpr(t2)/*new*/, |
| guest_EIP_curr_instr ); |
| } else { |
| storeLE( mkexpr(addr), mkexpr(t2) ); |
| } |
| setFlags_INC_DEC( False, t2, ty ); |
| break; |
| default: |
| *decode_OK = False; |
| return delta; |
| } |
| delta += alen; |
| DIP("%sb %s\n", nameGrp4(gregOfRM(modrm)), dis_buf); |
| } |
| return delta; |
| } |
| |
| |
| /* Group 5 extended opcodes. */ |
| static |
| UInt dis_Grp5 ( UChar sorb, Bool locked, Int sz, Int delta, |
| /*MOD*/DisResult* dres, /*OUT*/Bool* decode_OK ) |
| { |
| Int len; |
| UChar modrm; |
| HChar dis_buf[50]; |
| IRTemp addr = IRTemp_INVALID; |
| IRType ty = szToITy(sz); |
| IRTemp t1 = newTemp(ty); |
| IRTemp t2 = IRTemp_INVALID; |
| |
| *decode_OK = True; |
| |
| modrm = getIByte(delta); |
| |
| if (locked && (gregOfRM(modrm) != 0 && gregOfRM(modrm) != 1)) { |
| /* LOCK prefix only allowed with inc and dec subopcodes */ |
| *decode_OK = False; |
| return delta; |
| } |
| |
| if (epartIsReg(modrm)) { |
| assign(t1, getIReg(sz,eregOfRM(modrm))); |
| switch (gregOfRM(modrm)) { |
| case 0: /* INC */ |
| vassert(sz == 2 || sz == 4); |
| t2 = newTemp(ty); |
| assign(t2, binop(mkSizedOp(ty,Iop_Add8), |
| mkexpr(t1), mkU(ty,1))); |
| setFlags_INC_DEC( True, t2, ty ); |
| putIReg(sz,eregOfRM(modrm),mkexpr(t2)); |
| break; |
| case 1: /* DEC */ |
| vassert(sz == 2 || sz == 4); |
| t2 = newTemp(ty); |
| assign(t2, binop(mkSizedOp(ty,Iop_Sub8), |
| mkexpr(t1), mkU(ty,1))); |
| setFlags_INC_DEC( False, t2, ty ); |
| putIReg(sz,eregOfRM(modrm),mkexpr(t2)); |
| break; |
| case 2: /* call Ev */ |
| vassert(sz == 4); |
| t2 = newTemp(Ity_I32); |
| assign(t2, binop(Iop_Sub32, getIReg(4,R_ESP), mkU32(4))); |
| putIReg(4, R_ESP, mkexpr(t2)); |
| storeLE( mkexpr(t2), mkU32(guest_EIP_bbstart+delta+1)); |
| jmp_treg(dres, Ijk_Call, t1); |
| vassert(dres->whatNext == Dis_StopHere); |
| break; |
| case 4: /* jmp Ev */ |
| vassert(sz == 4); |
| jmp_treg(dres, Ijk_Boring, t1); |
| vassert(dres->whatNext == Dis_StopHere); |
| break; |
| case 6: /* PUSH Ev */ |
| vassert(sz == 4 || sz == 2); |
| t2 = newTemp(Ity_I32); |
| assign( t2, binop(Iop_Sub32,getIReg(4,R_ESP),mkU32(sz)) ); |
| putIReg(4, R_ESP, mkexpr(t2) ); |
| storeLE( mkexpr(t2), mkexpr(t1) ); |
| break; |
| default: |
| *decode_OK = False; |
| return delta; |
| } |
| delta++; |
| DIP("%s%c %s\n", nameGrp5(gregOfRM(modrm)), |
| nameISize(sz), nameIReg(sz, eregOfRM(modrm))); |
| } else { |
| addr = disAMode ( &len, sorb, delta, dis_buf ); |
| assign(t1, loadLE(ty,mkexpr(addr))); |
| switch (gregOfRM(modrm)) { |
| case 0: /* INC */ |
| t2 = newTemp(ty); |
| assign(t2, binop(mkSizedOp(ty,Iop_Add8), |
| mkexpr(t1), mkU(ty,1))); |
| if (locked) { |
| casLE( mkexpr(addr), |
| mkexpr(t1), mkexpr(t2), guest_EIP_curr_instr ); |
| } else { |
| storeLE(mkexpr(addr),mkexpr(t2)); |
| } |
| setFlags_INC_DEC( True, t2, ty ); |
| break; |
| case 1: /* DEC */ |
| t2 = newTemp(ty); |
| assign(t2, binop(mkSizedOp(ty,Iop_Sub8), |
| mkexpr(t1), mkU(ty,1))); |
| if (locked) { |
| casLE( mkexpr(addr), |
| mkexpr(t1), mkexpr(t2), guest_EIP_curr_instr ); |
| } else { |
| storeLE(mkexpr(addr),mkexpr(t2)); |
| } |
| setFlags_INC_DEC( False, t2, ty ); |
| break; |
| case 2: /* call Ev */ |
| vassert(sz == 4); |
| t2 = newTemp(Ity_I32); |
| assign(t2, binop(Iop_Sub32, getIReg(4,R_ESP), mkU32(4))); |
| putIReg(4, R_ESP, mkexpr(t2)); |
| storeLE( mkexpr(t2), mkU32(guest_EIP_bbstart+delta+len)); |
| jmp_treg(dres, Ijk_Call, t1); |
| vassert(dres->whatNext == Dis_StopHere); |
| break; |
| case 4: /* JMP Ev */ |
| vassert(sz == 4); |
| jmp_treg(dres, Ijk_Boring, t1); |
| vassert(dres->whatNext == Dis_StopHere); |
| break; |
| case 6: /* PUSH Ev */ |
| vassert(sz == 4 || sz == 2); |
| t2 = newTemp(Ity_I32); |
| assign( t2, binop(Iop_Sub32,getIReg(4,R_ESP),mkU32(sz)) ); |
| putIReg(4, R_ESP, mkexpr(t2) ); |
| storeLE( mkexpr(t2), mkexpr(t1) ); |
| break; |
| default: |
| *decode_OK = False; |
| return delta; |
| } |
| delta += len; |
| DIP("%s%c %s\n", nameGrp5(gregOfRM(modrm)), |
| nameISize(sz), dis_buf); |
| } |
| return delta; |
| } |
| |
| |
| /*------------------------------------------------------------*/ |
| /*--- Disassembling string ops (including REP prefixes) ---*/ |
| /*------------------------------------------------------------*/ |
| |
| /* Code shared by all the string ops */ |
| static |
| void dis_string_op_increment(Int sz, Int t_inc) |
| { |
| if (sz == 4 || sz == 2) { |
| assign( t_inc, |
| binop(Iop_Shl32, IRExpr_Get( OFFB_DFLAG, Ity_I32 ), |
| mkU8(sz/2) ) ); |
| } else { |
| assign( t_inc, |
| IRExpr_Get( OFFB_DFLAG, Ity_I32 ) ); |
| } |
| } |
| |
| static |
| void dis_string_op( void (*dis_OP)( Int, IRTemp ), |
| Int sz, const HChar* name, UChar sorb ) |
| { |
| IRTemp t_inc = newTemp(Ity_I32); |
| vassert(sorb == 0); /* hmm. so what was the point of passing it in? */ |
| dis_string_op_increment(sz, t_inc); |
| dis_OP( sz, t_inc ); |
| DIP("%s%c\n", name, nameISize(sz)); |
| } |
| |
| static |
| void dis_MOVS ( Int sz, IRTemp t_inc ) |
| { |
| IRType ty = szToITy(sz); |
| IRTemp td = newTemp(Ity_I32); /* EDI */ |
| IRTemp ts = newTemp(Ity_I32); /* ESI */ |
| |
| assign( td, getIReg(4, R_EDI) ); |
| assign( ts, getIReg(4, R_ESI) ); |
| |
| storeLE( mkexpr(td), loadLE(ty,mkexpr(ts)) ); |
| |
| putIReg( 4, R_EDI, binop(Iop_Add32, mkexpr(td), mkexpr(t_inc)) ); |
| putIReg( 4, R_ESI, binop(Iop_Add32, mkexpr(ts), mkexpr(t_inc)) ); |
| } |
| |
| static |
| void dis_LODS ( Int sz, IRTemp t_inc ) |
| { |
| IRType ty = szToITy(sz); |
| IRTemp ts = newTemp(Ity_I32); /* ESI */ |
| |
| assign( ts, getIReg(4, R_ESI) ); |
| |
| putIReg( sz, R_EAX, loadLE(ty, mkexpr(ts)) ); |
| |
| putIReg( 4, R_ESI, binop(Iop_Add32, mkexpr(ts), mkexpr(t_inc)) ); |
| } |
| |
| static |
| void dis_STOS ( Int sz, IRTemp t_inc ) |
| { |
| IRType ty = szToITy(sz); |
| IRTemp ta = newTemp(ty); /* EAX */ |
| IRTemp td = newTemp(Ity_I32); /* EDI */ |
| |
| assign( ta, getIReg(sz, R_EAX) ); |
| assign( td, getIReg(4, R_EDI) ); |
| |
| storeLE( mkexpr(td), mkexpr(ta) ); |
| |
| putIReg( 4, R_EDI, binop(Iop_Add32, mkexpr(td), mkexpr(t_inc)) ); |
| } |
| |
| static |
| void dis_CMPS ( Int sz, IRTemp t_inc ) |
| { |
| IRType ty = szToITy(sz); |
| IRTemp tdv = newTemp(ty); /* (EDI) */ |
| IRTemp tsv = newTemp(ty); /* (ESI) */ |
| IRTemp td = newTemp(Ity_I32); /* EDI */ |
| IRTemp ts = newTemp(Ity_I32); /* ESI */ |
| |
| assign( td, getIReg(4, R_EDI) ); |
| assign( ts, getIReg(4, R_ESI) ); |
| |
| assign( tdv, loadLE(ty,mkexpr(td)) ); |
| assign( tsv, loadLE(ty,mkexpr(ts)) ); |
| |
| setFlags_DEP1_DEP2 ( Iop_Sub8, tsv, tdv, ty ); |
| |
| putIReg(4, R_EDI, binop(Iop_Add32, mkexpr(td), mkexpr(t_inc)) ); |
| putIReg(4, R_ESI, binop(Iop_Add32, mkexpr(ts), mkexpr(t_inc)) ); |
| } |
| |
| static |
| void dis_SCAS ( Int sz, IRTemp t_inc ) |
| { |
| IRType ty = szToITy(sz); |
| IRTemp ta = newTemp(ty); /* EAX */ |
| IRTemp td = newTemp(Ity_I32); /* EDI */ |
| IRTemp tdv = newTemp(ty); /* (EDI) */ |
| |
| assign( ta, getIReg(sz, R_EAX) ); |
| assign( td, getIReg(4, R_EDI) ); |
| |
| assign( tdv, loadLE(ty,mkexpr(td)) ); |
| setFlags_DEP1_DEP2 ( Iop_Sub8, ta, tdv, ty ); |
| |
| putIReg(4, R_EDI, binop(Iop_Add32, mkexpr(td), mkexpr(t_inc)) ); |
| } |
| |
| |
| /* Wrap the appropriate string op inside a REP/REPE/REPNE. |
| We assume the insn is the last one in the basic block, and so emit a jump |
| to the next insn, rather than just falling through. */ |
| static |
| void dis_REP_op ( /*MOD*/DisResult* dres, |
| X86Condcode cond, |
| void (*dis_OP)(Int, IRTemp), |
| Int sz, Addr32 eip, Addr32 eip_next, const HChar* name ) |
| { |
| IRTemp t_inc = newTemp(Ity_I32); |
| IRTemp tc = newTemp(Ity_I32); /* ECX */ |
| |
| assign( tc, getIReg(4,R_ECX) ); |
| |
| stmt( IRStmt_Exit( binop(Iop_CmpEQ32,mkexpr(tc),mkU32(0)), |
| Ijk_Boring, |
| IRConst_U32(eip_next), OFFB_EIP ) ); |
| |
| putIReg(4, R_ECX, binop(Iop_Sub32, mkexpr(tc), mkU32(1)) ); |
| |
| dis_string_op_increment(sz, t_inc); |
| dis_OP (sz, t_inc); |
| |
| if (cond == X86CondAlways) { |
| jmp_lit(dres, Ijk_Boring, eip); |
| vassert(dres->whatNext == Dis_StopHere); |
| } else { |
| stmt( IRStmt_Exit( mk_x86g_calculate_condition(cond), |
| Ijk_Boring, |
| IRConst_U32(eip), OFFB_EIP ) ); |
| jmp_lit(dres, Ijk_Boring, eip_next); |
| vassert(dres->whatNext == Dis_StopHere); |
| } |
| DIP("%s%c\n", name, nameISize(sz)); |
| } |
| |
| |
| /*------------------------------------------------------------*/ |
| /*--- Arithmetic, etc. ---*/ |
| /*------------------------------------------------------------*/ |
| |
| /* IMUL E, G. Supplied eip points to the modR/M byte. */ |
| static |
| UInt dis_mul_E_G ( UChar sorb, |
| Int size, |
| Int delta0 ) |
| { |
| Int alen; |
| HChar dis_buf[50]; |
| UChar rm = getIByte(delta0); |
| IRType ty = szToITy(size); |
| IRTemp te = newTemp(ty); |
| IRTemp tg = newTemp(ty); |
| IRTemp resLo = newTemp(ty); |
| |
| assign( tg, getIReg(size, gregOfRM(rm)) ); |
| if (epartIsReg(rm)) { |
| assign( te, getIReg(size, eregOfRM(rm)) ); |
| } else { |
| IRTemp addr = disAMode( &alen, sorb, delta0, dis_buf ); |
| assign( te, loadLE(ty,mkexpr(addr)) ); |
| } |
| |
| setFlags_MUL ( ty, te, tg, X86G_CC_OP_SMULB ); |
| |
| assign( resLo, binop( mkSizedOp(ty, Iop_Mul8), mkexpr(te), mkexpr(tg) ) ); |
| |
| putIReg(size, gregOfRM(rm), mkexpr(resLo) ); |
| |
| if (epartIsReg(rm)) { |
| DIP("imul%c %s, %s\n", nameISize(size), |
| nameIReg(size,eregOfRM(rm)), |
| nameIReg(size,gregOfRM(rm))); |
| return 1+delta0; |
| } else { |
| DIP("imul%c %s, %s\n", nameISize(size), |
| dis_buf, nameIReg(size,gregOfRM(rm))); |
| return alen+delta0; |
| } |
| } |
| |
| |
| /* IMUL I * E -> G. Supplied eip points to the modR/M byte. */ |
| static |
| UInt dis_imul_I_E_G ( UChar sorb, |
| Int size, |
| Int delta, |
| Int litsize ) |
| { |
| Int d32, alen; |
| HChar dis_buf[50]; |
| UChar rm = getIByte(delta); |
| IRType ty = szToITy(size); |
| IRTemp te = newTemp(ty); |
| IRTemp tl = newTemp(ty); |
| IRTemp resLo = newTemp(ty); |
| |
| vassert(size == 1 || size == 2 || size == 4); |
| |
| if (epartIsReg(rm)) { |
| assign(te, getIReg(size, eregOfRM(rm))); |
| delta++; |
| } else { |
| IRTemp addr = disAMode( &alen, sorb, delta, dis_buf ); |
| assign(te, loadLE(ty, mkexpr(addr))); |
| delta += alen; |
| } |
| d32 = getSDisp(litsize,delta); |
| delta += litsize; |
| |
| if (size == 1) d32 &= 0xFF; |
| if (size == 2) d32 &= 0xFFFF; |
| |
| assign(tl, mkU(ty,d32)); |
| |
| assign( resLo, binop( mkSizedOp(ty, Iop_Mul8), mkexpr(te), mkexpr(tl) )); |
| |
| setFlags_MUL ( ty, te, tl, X86G_CC_OP_SMULB ); |
| |
| putIReg(size, gregOfRM(rm), mkexpr(resLo)); |
| |
| DIP("imul %d, %s, %s\n", d32, |
| ( epartIsReg(rm) ? nameIReg(size,eregOfRM(rm)) : dis_buf ), |
| nameIReg(size,gregOfRM(rm)) ); |
| return delta; |
| } |
| |
| |
| /* Generate an IR sequence to do a count-leading-zeroes operation on |
| the supplied IRTemp, and return a new IRTemp holding the result. |
| 'ty' may be Ity_I16 or Ity_I32 only. In the case where the |
| argument is zero, return the number of bits in the word (the |
| natural semantics). */ |
| static IRTemp gen_LZCNT ( IRType ty, IRTemp src ) |
| { |
| vassert(ty == Ity_I32 || ty == Ity_I16); |
| |
| IRTemp src32 = newTemp(Ity_I32); |
| assign(src32, widenUto32( mkexpr(src) )); |
| |
| IRTemp src32x = newTemp(Ity_I32); |
| assign(src32x, |
| binop(Iop_Shl32, mkexpr(src32), |
| mkU8(32 - 8 * sizeofIRType(ty)))); |
| |
| // Clz32 has undefined semantics when its input is zero, so |
| // special-case around that. |
| IRTemp res32 = newTemp(Ity_I32); |
| assign(res32, |
| IRExpr_ITE( |
| binop(Iop_CmpEQ32, mkexpr(src32x), mkU32(0)), |
| mkU32(8 * sizeofIRType(ty)), |
| unop(Iop_Clz32, mkexpr(src32x)) |
| )); |
| |
| IRTemp res = newTemp(ty); |
| assign(res, narrowTo(ty, mkexpr(res32))); |
| return res; |
| } |
| |
| |
| /*------------------------------------------------------------*/ |
| /*--- ---*/ |
| /*--- x87 FLOATING POINT INSTRUCTIONS ---*/ |
| /*--- ---*/ |
| /*------------------------------------------------------------*/ |
| |
| /* --- Helper functions for dealing with the register stack. --- */ |
| |
| /* --- Set the emulation-warning pseudo-register. --- */ |
| |
| static void put_emwarn ( IRExpr* e /* :: Ity_I32 */ ) |
| { |
| vassert(typeOfIRExpr(irsb->tyenv, e) == Ity_I32); |
| stmt( IRStmt_Put( OFFB_EMNOTE, e ) ); |
| } |
| |
| /* --- Produce an IRExpr* denoting a 64-bit QNaN. --- */ |
| |
| static IRExpr* mkQNaN64 ( void ) |
| { |
| /* QNaN is 0 2047 1 0(51times) |
| == 0b 11111111111b 1 0(51times) |
| == 0x7FF8 0000 0000 0000 |
| */ |
| return IRExpr_Const(IRConst_F64i(0x7FF8000000000000ULL)); |
| } |
| |
| /* --------- Get/put the top-of-stack pointer. --------- */ |
| |
| static IRExpr* get_ftop ( void ) |
| { |
| return IRExpr_Get( OFFB_FTOP, Ity_I32 ); |
| } |
| |
| static void put_ftop ( IRExpr* e ) |
| { |
| vassert(typeOfIRExpr(irsb->tyenv, e) == Ity_I32); |
| stmt( IRStmt_Put( OFFB_FTOP, e ) ); |
| } |
| |
| /* --------- Get/put the C3210 bits. --------- */ |
| |
| static IRExpr* get_C3210 ( void ) |
| { |
| return IRExpr_Get( OFFB_FC3210, Ity_I32 ); |
| } |
| |
| static void put_C3210 ( IRExpr* e ) |
| { |
| stmt( IRStmt_Put( OFFB_FC3210, e ) ); |
| } |
| |
| /* --------- Get/put the FPU rounding mode. --------- */ |
| static IRExpr* /* :: Ity_I32 */ get_fpround ( void ) |
| { |
| return IRExpr_Get( OFFB_FPROUND, Ity_I32 ); |
| } |
| |
| static void put_fpround ( IRExpr* /* :: Ity_I32 */ e ) |
| { |
| stmt( IRStmt_Put( OFFB_FPROUND, e ) ); |
| } |
| |
| |
| /* --------- Synthesise a 2-bit FPU rounding mode. --------- */ |
| /* Produces a value in 0 .. 3, which is encoded as per the type |
| IRRoundingMode. Since the guest_FPROUND value is also encoded as |
| per IRRoundingMode, we merely need to get it and mask it for |
| safety. |
| */ |
| static IRExpr* /* :: Ity_I32 */ get_roundingmode ( void ) |
| { |
| return binop( Iop_And32, get_fpround(), mkU32(3) ); |
| } |
| |
| static IRExpr* /* :: Ity_I32 */ get_FAKE_roundingmode ( void ) |
| { |
| return mkU32(Irrm_NEAREST); |
| } |
| |
| |
| /* --------- Get/set FP register tag bytes. --------- */ |
| |
| /* Given i, and some expression e, generate 'ST_TAG(i) = e'. */ |
| |
| static void put_ST_TAG ( Int i, IRExpr* value ) |
| { |
| IRRegArray* descr; |
| vassert(typeOfIRExpr(irsb->tyenv, value) == Ity_I8); |
| descr = mkIRRegArray( OFFB_FPTAGS, Ity_I8, 8 ); |
| stmt( IRStmt_PutI( mkIRPutI(descr, get_ftop(), i, value) ) ); |
| } |
| |
| /* Given i, generate an expression yielding 'ST_TAG(i)'. This will be |
| zero to indicate "Empty" and nonzero to indicate "NonEmpty". */ |
| |
| static IRExpr* get_ST_TAG ( Int i ) |
| { |
| IRRegArray* descr = mkIRRegArray( OFFB_FPTAGS, Ity_I8, 8 ); |
| return IRExpr_GetI( descr, get_ftop(), i ); |
| } |
| |
| |
| /* --------- Get/set FP registers. --------- */ |
| |
| /* Given i, and some expression e, emit 'ST(i) = e' and set the |
| register's tag to indicate the register is full. The previous |
| state of the register is not checked. */ |
| |
| static void put_ST_UNCHECKED ( Int i, IRExpr* value ) |
| { |
| IRRegArray* descr; |
| vassert(typeOfIRExpr(irsb->tyenv, value) == Ity_F64); |
| descr = mkIRRegArray( OFFB_FPREGS, Ity_F64, 8 ); |
| stmt( IRStmt_PutI( mkIRPutI(descr, get_ftop(), i, value) ) ); |
| /* Mark the register as in-use. */ |
| put_ST_TAG(i, mkU8(1)); |
| } |
| |
| /* Given i, and some expression e, emit |
| ST(i) = is_full(i) ? NaN : e |
| and set the tag accordingly. |
| */ |
| |
| static void put_ST ( Int i, IRExpr* value ) |
| { |
| put_ST_UNCHECKED( |
| i, |
| IRExpr_ITE( binop(Iop_CmpNE8, get_ST_TAG(i), mkU8(0)), |
| /* non-0 means full */ |
| mkQNaN64(), |
| /* 0 means empty */ |
| value |
| ) |
| ); |
| } |
| |
| |
| /* Given i, generate an expression yielding 'ST(i)'. */ |
| |
| static IRExpr* get_ST_UNCHECKED ( Int i ) |
| { |
| IRRegArray* descr = mkIRRegArray( OFFB_FPREGS, Ity_F64, 8 ); |
| return IRExpr_GetI( descr, get_ftop(), i ); |
| } |
| |
| |
| /* Given i, generate an expression yielding |
| is_full(i) ? ST(i) : NaN |
| */ |
| |
| static IRExpr* get_ST ( Int i ) |
| { |
| return |
| IRExpr_ITE( binop(Iop_CmpNE8, get_ST_TAG(i), mkU8(0)), |
| /* non-0 means full */ |
| get_ST_UNCHECKED(i), |
| /* 0 means empty */ |
| mkQNaN64()); |
| } |
| |
| |
| /* Adjust FTOP downwards by one register. */ |
| |
| static void fp_push ( void ) |
| { |
| put_ftop( binop(Iop_Sub32, get_ftop(), mkU32(1)) ); |
| } |
| |
| /* Adjust FTOP upwards by one register, and mark the vacated register |
| as empty. */ |
| |
| static void fp_pop ( void ) |
| { |
| put_ST_TAG(0, mkU8(0)); |
| put_ftop( binop(Iop_Add32, get_ftop(), mkU32(1)) ); |
| } |
| |
| /* Clear the C2 bit of the FPU status register, for |
| sin/cos/tan/sincos. */ |
| |
| static void clear_C2 ( void ) |
| { |
| put_C3210( binop(Iop_And32, get_C3210(), mkU32(~X86G_FC_MASK_C2)) ); |
| } |
| |
| /* Invent a plausible-looking FPU status word value: |
| ((ftop & 7) << 11) | (c3210 & 0x4700) |
| */ |
| static IRExpr* get_FPU_sw ( void ) |
| { |
| return |
| unop(Iop_32to16, |
| binop(Iop_Or32, |
| binop(Iop_Shl32, |
| binop(Iop_And32, get_ftop(), mkU32(7)), |
| mkU8(11)), |
| binop(Iop_And32, get_C3210(), mkU32(0x4700)) |
| )); |
| } |
| |
| |
| /* ------------------------------------------------------- */ |
| /* Given all that stack-mangling junk, we can now go ahead |
| and describe FP instructions. |
| */ |
| |
| /* ST(0) = ST(0) `op` mem64/32(addr) |
| Need to check ST(0)'s tag on read, but not on write. |
| */ |
| static |
| void fp_do_op_mem_ST_0 ( IRTemp addr, const HChar* op_txt, HChar* dis_buf, |
| IROp op, Bool dbl ) |
| { |
| DIP("f%s%c %s\n", op_txt, dbl?'l':'s', dis_buf); |
| if (dbl) { |
| put_ST_UNCHECKED(0, |
| triop( op, |
| get_FAKE_roundingmode(), /* XXXROUNDINGFIXME */ |
| get_ST(0), |
| loadLE(Ity_F64,mkexpr(addr)) |
| )); |
| } else { |
| put_ST_UNCHECKED(0, |
| triop( op, |
| get_FAKE_roundingmode(), /* XXXROUNDINGFIXME */ |
| get_ST(0), |
| unop(Iop_F32toF64, loadLE(Ity_F32,mkexpr(addr))) |
| )); |
| } |
| } |
| |
| |
| /* ST(0) = mem64/32(addr) `op` ST(0) |
| Need to check ST(0)'s tag on read, but not on write. |
| */ |
| static |
| void fp_do_oprev_mem_ST_0 ( IRTemp addr, const HChar* op_txt, HChar* dis_buf, |
| IROp op, Bool dbl ) |
| { |
| DIP("f%s%c %s\n", op_txt, dbl?'l':'s', dis_buf); |
| if (dbl) { |
| put_ST_UNCHECKED(0, |
| triop( op, |
| get_FAKE_roundingmode(), /* XXXROUNDINGFIXME */ |
| loadLE(Ity_F64,mkexpr(addr)), |
| get_ST(0) |
| )); |
| } else { |
| put_ST_UNCHECKED(0, |
| triop( op, |
| get_FAKE_roundingmode(), /* XXXROUNDINGFIXME */ |
| unop(Iop_F32toF64, loadLE(Ity_F32,mkexpr(addr))), |
| get_ST(0) |
| )); |
| } |
| } |
| |
| |
| /* ST(dst) = ST(dst) `op` ST(src). |
| Check dst and src tags when reading but not on write. |
| */ |
| static |
| void fp_do_op_ST_ST ( const HChar* op_txt, IROp op, UInt st_src, UInt st_dst, |
| Bool pop_after ) |
| { |
| DIP("f%s%s st(%d), st(%d)\n", op_txt, pop_after?"p":"", |
| (Int)st_src, (Int)st_dst ); |
| put_ST_UNCHECKED( |
| st_dst, |
| triop( op, |
| get_FAKE_roundingmode(), /* XXXROUNDINGFIXME */ |
| get_ST(st_dst), |
| get_ST(st_src) ) |
| ); |
| if (pop_after) |
| fp_pop(); |
| } |
| |
| /* ST(dst) = ST(src) `op` ST(dst). |
| Check dst and src tags when reading but not on write. |
| */ |
| static |
| void fp_do_oprev_ST_ST ( const HChar* op_txt, IROp op, UInt st_src, |
| UInt st_dst, Bool pop_after ) |
| { |
| DIP("f%s%s st(%d), st(%d)\n", op_txt, pop_after?"p":"", |
| (Int)st_src, (Int)st_dst ); |
| put_ST_UNCHECKED( |
| st_dst, |
| triop( op, |
| get_FAKE_roundingmode(), /* XXXROUNDINGFIXME */ |
| get_ST(st_src), |
| get_ST(st_dst) ) |
| ); |
| if (pop_after) |
| fp_pop(); |
| } |
| |
| /* %eflags(Z,P,C) = UCOMI( st(0), st(i) ) */ |
| static void fp_do_ucomi_ST0_STi ( UInt i, Bool pop_after ) |
| { |
| DIP("fucomi%s %%st(0),%%st(%d)\n", pop_after ? "p" : "", (Int)i ); |
| /* This is a bit of a hack (and isn't really right). It sets |
| Z,P,C,O correctly, but forces A and S to zero, whereas the Intel |
| documentation implies A and S are unchanged. |
| */ |
| /* It's also fishy in that it is used both for COMIP and |
| UCOMIP, and they aren't the same (although similar). */ |
| stmt( IRStmt_Put( OFFB_CC_OP, mkU32(X86G_CC_OP_COPY) )); |
| stmt( IRStmt_Put( OFFB_CC_DEP2, mkU32(0) )); |
| stmt( IRStmt_Put( OFFB_CC_DEP1, |
| binop( Iop_And32, |
| binop(Iop_CmpF64, get_ST(0), get_ST(i)), |
| mkU32(0x45) |
| ))); |
| /* Set NDEP even though it isn't used. This makes redundant-PUT |
| elimination of previous stores to this field work better. */ |
| stmt( IRStmt_Put( OFFB_CC_NDEP, mkU32(0) )); |
| if (pop_after) |
| fp_pop(); |
| } |
| |
| |
| static |
| UInt dis_FPU ( Bool* decode_ok, UChar sorb, Int delta ) |
| { |
| Int len; |
| UInt r_src, r_dst; |
| HChar dis_buf[50]; |
| IRTemp t1, t2; |
| |
| /* On entry, delta points at the second byte of the insn (the modrm |
| byte).*/ |
| UChar first_opcode = getIByte(delta-1); |
| UChar modrm = getIByte(delta+0); |
| |
| /* -+-+-+-+-+-+-+-+-+-+-+-+ 0xD8 opcodes +-+-+-+-+-+-+-+ */ |
| |
| if (first_opcode == 0xD8) { |
| if (modrm < 0xC0) { |
| |
| /* bits 5,4,3 are an opcode extension, and the modRM also |
| specifies an address. */ |
| IRTemp addr = disAMode( &len, sorb, delta, dis_buf ); |
| delta += len; |
| |
| switch (gregOfRM(modrm)) { |
| |
| case 0: /* FADD single-real */ |
| fp_do_op_mem_ST_0 ( addr, "add", dis_buf, Iop_AddF64, False ); |
| break; |
| |
| case 1: /* FMUL single-real */ |
| fp_do_op_mem_ST_0 ( addr, "mul", dis_buf, Iop_MulF64, False ); |
| break; |
| |
| case 2: /* FCOM single-real */ |
| DIP("fcoms %s\n", dis_buf); |
| /* This forces C1 to zero, which isn't right. */ |
| put_C3210( |
| binop( Iop_And32, |
| binop(Iop_Shl32, |
| binop(Iop_CmpF64, |
| get_ST(0), |
| unop(Iop_F32toF64, |
| loadLE(Ity_F32,mkexpr(addr)))), |
| mkU8(8)), |
| mkU32(0x4500) |
| )); |
| break; |
| |
| case 3: /* FCOMP single-real */ |
| DIP("fcomps %s\n", dis_buf); |
| /* This forces C1 to zero, which isn't right. */ |
| put_C3210( |
| binop( Iop_And32, |
| binop(Iop_Shl32, |
| binop(Iop_CmpF64, |
| get_ST(0), |
| unop(Iop_F32toF64, |
| loadLE(Ity_F32,mkexpr(addr)))), |
| mkU8(8)), |
| mkU32(0x4500) |
| )); |
| fp_pop(); |
| break; |
| |
| case 4: /* FSUB single-real */ |
| fp_do_op_mem_ST_0 ( addr, "sub", dis_buf, Iop_SubF64, False ); |
| break; |
| |
| case 5: /* FSUBR single-real */ |
| fp_do_oprev_mem_ST_0 ( addr, "subr", dis_buf, Iop_SubF64, False ); |
| break; |
| |
| case 6: /* FDIV single-real */ |
| fp_do_op_mem_ST_0 ( addr, "div", dis_buf, Iop_DivF64, False ); |
| break; |
| |
| case 7: /* FDIVR single-real */ |
| fp_do_oprev_mem_ST_0 ( addr, "divr", dis_buf, Iop_DivF64, False ); |
| break; |
| |
| default: |
| vex_printf("unhandled opc_aux = 0x%2x\n", gregOfRM(modrm)); |
| vex_printf("first_opcode == 0xD8\n"); |
| goto decode_fail; |
| } |
| } else { |
| delta++; |
| switch (modrm) { |
| |
| case 0xC0 ... 0xC7: /* FADD %st(?),%st(0) */ |
| fp_do_op_ST_ST ( "add", Iop_AddF64, modrm - 0xC0, 0, False ); |
| break; |
| |
| case 0xC8 ... 0xCF: /* FMUL %st(?),%st(0) */ |
| fp_do_op_ST_ST ( "mul", Iop_MulF64, modrm - 0xC8, 0, False ); |
| break; |
| |
| /* Dunno if this is right */ |
| case 0xD0 ... 0xD7: /* FCOM %st(?),%st(0) */ |
| r_dst = (UInt)modrm - 0xD0; |
| DIP("fcom %%st(0),%%st(%d)\n", (Int)r_dst); |
| /* This forces C1 to zero, which isn't right. */ |
| put_C3210( |
| binop( Iop_And32, |
| binop(Iop_Shl32, |
| binop(Iop_CmpF64, get_ST(0), get_ST(r_dst)), |
| mkU8(8)), |
| mkU32(0x4500) |
| )); |
| break; |
| |
| /* Dunno if this is right */ |
| case 0xD8 ... 0xDF: /* FCOMP %st(?),%st(0) */ |
| r_dst = (UInt)modrm - 0xD8; |
| DIP("fcomp %%st(0),%%st(%d)\n", (Int)r_dst); |
| /* This forces C1 to zero, which isn't right. */ |
| put_C3210( |
| binop( Iop_And32, |
| binop(Iop_Shl32, |
| binop(Iop_CmpF64, get_ST(0), get_ST(r_dst)), |
| mkU8(8)), |
| mkU32(0x4500) |
| )); |
| fp_pop(); |
| break; |
| |
| case 0xE0 ... 0xE7: /* FSUB %st(?),%st(0) */ |
| fp_do_op_ST_ST ( "sub", Iop_SubF64, modrm - 0xE0, 0, False ); |
| break; |
| |
| case 0xE8 ... 0xEF: /* FSUBR %st(?),%st(0) */ |
| fp_do_oprev_ST_ST ( "subr", Iop_SubF64, modrm - 0xE8, 0, False ); |
| break; |
| |
| case 0xF0 ... 0xF7: /* FDIV %st(?),%st(0) */ |
| fp_do_op_ST_ST ( "div", Iop_DivF64, modrm - 0xF0, 0, False ); |
| break; |
| |
| case 0xF8 ... 0xFF: /* FDIVR %st(?),%st(0) */ |
| fp_do_oprev_ST_ST ( "divr", Iop_DivF64, modrm - 0xF8, 0, False ); |
| break; |
| |
| default: |
| goto decode_fail; |
| } |
| } |
| } |
| |
| /* -+-+-+-+-+-+-+-+-+-+-+-+ 0xD9 opcodes +-+-+-+-+-+-+-+ */ |
| else |
| if (first_opcode == 0xD9) { |
| if (modrm < 0xC0) { |
| |
| /* bits 5,4,3 are an opcode extension, and the modRM also |
| specifies an address. */ |
| IRTemp addr = disAMode( &len, sorb, delta, dis_buf ); |
| delta += len; |
| |
| switch (gregOfRM(modrm)) { |
| |
| case 0: /* FLD single-real */ |
| DIP("flds %s\n", dis_buf); |
| fp_push(); |
| put_ST(0, unop(Iop_F32toF64, |
| loadLE(Ity_F32, mkexpr(addr)))); |
| break; |
| |
| case 2: /* FST single-real */ |
| DIP("fsts %s\n", dis_buf); |
| storeLE(mkexpr(addr), |
| binop(Iop_F64toF32, get_roundingmode(), get_ST(0))); |
| break; |
| |
| case 3: /* FSTP single-real */ |
| DIP("fstps %s\n", dis_buf); |
| storeLE(mkexpr(addr), |
| binop(Iop_F64toF32, get_roundingmode(), get_ST(0))); |
| fp_pop(); |
| break; |
| |
| case 4: { /* FLDENV m28 */ |
| /* Uses dirty helper: |
| VexEmNote x86g_do_FLDENV ( VexGuestX86State*, HWord ) */ |
| IRTemp ew = newTemp(Ity_I32); |
| IRDirty* d = unsafeIRDirty_0_N ( |
| 0/*regparms*/, |
| "x86g_dirtyhelper_FLDENV", |
| &x86g_dirtyhelper_FLDENV, |
| mkIRExprVec_1( mkexpr(addr) ) |
| ); |
| d->needsBBP = True; |
| d->tmp = ew; |
| /* declare we're reading memory */ |
| d->mFx = Ifx_Read; |
| d->mAddr = mkexpr(addr); |
| d->mSize = 28; |
| |
| /* declare we're writing guest state */ |
| d->nFxState = 4; |
| vex_bzero(&d->fxState, sizeof(d->fxState)); |
| |
| d->fxState[0].fx = Ifx_Write; |
| d->fxState[0].offset = OFFB_FTOP; |
| d->fxState[0].size = sizeof(UInt); |
| |
| d->fxState[1].fx = Ifx_Write; |
| d->fxState[1].offset = OFFB_FPTAGS; |
| d->fxState[1].size = 8 * sizeof(UChar); |
| |
| d->fxState[2].fx = Ifx_Write; |
| d->fxState[2].offset = OFFB_FPROUND; |
| d->fxState[2].size = sizeof(UInt); |
| |
| d->fxState[3].fx = Ifx_Write; |
| d->fxState[3].offset = OFFB_FC3210; |
| d->fxState[3].size = sizeof(UInt); |
| |
| stmt( IRStmt_Dirty(d) ); |
| |
| /* ew contains any emulation warning we may need to |
| issue. If needed, side-exit to the next insn, |
| reporting the warning, so that Valgrind's dispatcher |
| sees the warning. */ |
| put_emwarn( mkexpr(ew) ); |
| stmt( |
| IRStmt_Exit( |
| binop(Iop_CmpNE32, mkexpr(ew), mkU32(0)), |
| Ijk_EmWarn, |
| IRConst_U32( ((Addr32)guest_EIP_bbstart)+delta), |
| OFFB_EIP |
| ) |
| ); |
| |
| DIP("fldenv %s\n", dis_buf); |
| break; |
| } |
| |
| case 5: {/* FLDCW */ |
| /* The only thing we observe in the control word is the |
| rounding mode. Therefore, pass the 16-bit value |
| (x87 native-format control word) to a clean helper, |
| getting back a 64-bit value, the lower half of which |
| is the FPROUND value to store, and the upper half of |
| which is the emulation-warning token which may be |
| generated. |
| */ |
| /* ULong x86h_check_fldcw ( UInt ); */ |
| IRTemp t64 = newTemp(Ity_I64); |
| IRTemp ew = newTemp(Ity_I32); |
| DIP("fldcw %s\n", dis_buf); |
| assign( t64, mkIRExprCCall( |
| Ity_I64, 0/*regparms*/, |
| "x86g_check_fldcw", |
| &x86g_check_fldcw, |
| mkIRExprVec_1( |
| unop( Iop_16Uto32, |
| loadLE(Ity_I16, mkexpr(addr))) |
| ) |
| ) |
| ); |
| |
| put_fpround( unop(Iop_64to32, mkexpr(t64)) ); |
| assign( ew, unop(Iop_64HIto32, mkexpr(t64) ) ); |
| put_emwarn( mkexpr(ew) ); |
| /* Finally, if an emulation warning was reported, |
| side-exit to the next insn, reporting the warning, |
| so that Valgrind's dispatcher sees the warning. */ |
| stmt( |
| IRStmt_Exit( |
| binop(Iop_CmpNE32, mkexpr(ew), mkU32(0)), |
| Ijk_EmWarn, |
| IRConst_U32( ((Addr32)guest_EIP_bbstart)+delta), |
| OFFB_EIP |
| ) |
| ); |
| break; |
| } |
| |
| case 6: { /* FNSTENV m28 */ |
| /* Uses dirty helper: |
| void x86g_do_FSTENV ( VexGuestX86State*, HWord ) */ |
| IRDirty* d = unsafeIRDirty_0_N ( |
| 0/*regparms*/, |
| "x86g_dirtyhelper_FSTENV", |
| &x86g_dirtyhelper_FSTENV, |
| mkIRExprVec_1( mkexpr(addr) ) |
| ); |
| d->needsBBP = True; |
| /* declare we're writing memory */ |
| d->mFx = Ifx_Write; |
| d->mAddr = mkexpr(addr); |
| d->mSize = 28; |
| |
| /* declare we're reading guest state */ |
| d->nFxState = 4; |
| vex_bzero(&d->fxState, sizeof(d->fxState)); |
| |
| d->fxState[0].fx = Ifx_Read; |
| d->fxState[0].offset = OFFB_FTOP; |
| d->fxState[0].size = sizeof(UInt); |
| |
| d->fxState[1].fx = Ifx_Read; |
| d->fxState[1].offset = OFFB_FPTAGS; |
| d->fxState[1].size = 8 * sizeof(UChar); |
| |
| d->fxState[2].fx = Ifx_Read; |
| d->fxState[2].offset = OFFB_FPROUND; |
| d->fxState[2].size = sizeof(UInt); |
| |
| d->fxState[3].fx = Ifx_Read; |
| d->fxState[3].offset = OFFB_FC3210; |
| d->fxState[3].size = sizeof(UInt); |
| |
| stmt( IRStmt_Dirty(d) ); |
| |
| DIP("fnstenv %s\n", dis_buf); |
| break; |
| } |
| |
| case 7: /* FNSTCW */ |
| /* Fake up a native x87 FPU control word. The only |
| thing it depends on is FPROUND[1:0], so call a clean |
| helper to cook it up. */ |
| /* UInt x86h_create_fpucw ( UInt fpround ) */ |
| DIP("fnstcw %s\n", dis_buf); |
| storeLE( |
| mkexpr(addr), |
| unop( Iop_32to16, |
| mkIRExprCCall( |
| Ity_I32, 0/*regp*/, |
| "x86g_create_fpucw", &x86g_create_fpucw, |
| mkIRExprVec_1( get_fpround() ) |
| ) |
| ) |
| ); |
| break; |
| |
| default: |
| vex_printf("unhandled opc_aux = 0x%2x\n", gregOfRM(modrm)); |
| vex_printf("first_opcode == 0xD9\n"); |
| goto decode_fail; |
| } |
| |
| } else { |
| delta++; |
| switch (modrm) { |
| |
| case 0xC0 ... 0xC7: /* FLD %st(?) */ |
| r_src = (UInt)modrm - 0xC0; |
| DIP("fld %%st(%d)\n", (Int)r_src); |
| t1 = newTemp(Ity_F64); |
| assign(t1, get_ST(r_src)); |
| fp_push(); |
| put_ST(0, mkexpr(t1)); |
| break; |
| |
| case 0xC8 ... 0xCF: /* FXCH %st(?) */ |
| r_src = (UInt)modrm - 0xC8; |
| DIP("fxch %%st(%d)\n", (Int)r_src); |
| t1 = newTemp(Ity_F64); |
| t2 = newTemp(Ity_F64); |
| assign(t1, get_ST(0)); |
| assign(t2, get_ST(r_src)); |
| put_ST_UNCHECKED(0, mkexpr(t2)); |
| put_ST_UNCHECKED(r_src, mkexpr(t1)); |
| break; |
| |
| case 0xE0: /* FCHS */ |
| DIP("fchs\n"); |
| put_ST_UNCHECKED(0, unop(Iop_NegF64, get_ST(0))); |
| break; |
| |
| case 0xE1: /* FABS */ |
| DIP("fabs\n"); |
| put_ST_UNCHECKED(0, unop(Iop_AbsF64, get_ST(0))); |
| break; |
| |
| case 0xE4: /* FTST */ |
| DIP("ftst\n"); |
| /* This forces C1 to zero, which isn't right. */ |
| /* Well, in fact the Intel docs say (bizarrely): "C1 is |
| set to 0 if stack underflow occurred; otherwise, set |
| to 0" which is pretty nonsensical. I guess it's a |
| typo. */ |
| put_C3210( |
| binop( Iop_And32, |
| binop(Iop_Shl32, |
| binop(Iop_CmpF64, |
| get_ST(0), |
| IRExpr_Const(IRConst_F64i(0x0ULL))), |
| mkU8(8)), |
| mkU32(0x4500) |
| )); |
| break; |
| |
| case 0xE5: { /* FXAM */ |
| /* This is an interesting one. It examines %st(0), |
| regardless of whether the tag says it's empty or not. |
| Here, just pass both the tag (in our format) and the |
| value (as a double, actually a ULong) to a helper |
| function. */ |
| IRExpr** args |
| = mkIRExprVec_2( unop(Iop_8Uto32, get_ST_TAG(0)), |
| unop(Iop_ReinterpF64asI64, |
| get_ST_UNCHECKED(0)) ); |
| put_C3210(mkIRExprCCall( |
| Ity_I32, |
| 0/*regparm*/, |
| "x86g_calculate_FXAM", &x86g_calculate_FXAM, |
| args |
| )); |
| DIP("fxam\n"); |
| break; |
| } |
| |
| case 0xE8: /* FLD1 */ |
| DIP("fld1\n"); |
| fp_push(); |
| /* put_ST(0, IRExpr_Const(IRConst_F64(1.0))); */ |
| put_ST(0, IRExpr_Const(IRConst_F64i(0x3ff0000000000000ULL))); |
| break; |
| |
| case 0xE9: /* FLDL2T */ |
| DIP("fldl2t\n"); |
| fp_push(); |
| /* put_ST(0, IRExpr_Const(IRConst_F64(3.32192809488736234781))); */ |
| put_ST(0, IRExpr_Const(IRConst_F64i(0x400a934f0979a371ULL))); |
| break; |
| |
| case 0xEA: /* FLDL2E */ |
| DIP("fldl2e\n"); |
| fp_push(); |
| /* put_ST(0, IRExpr_Const(IRConst_F64(1.44269504088896340739))); */ |
| put_ST(0, IRExpr_Const(IRConst_F64i(0x3ff71547652b82feULL))); |
| break; |
| |
| case 0xEB: /* FLDPI */ |
| DIP("fldpi\n"); |
| fp_push(); |
| /* put_ST(0, IRExpr_Const(IRConst_F64(3.14159265358979323851))); */ |
| put_ST(0, IRExpr_Const(IRConst_F64i(0x400921fb54442d18ULL))); |
| break; |
| |
| case 0xEC: /* FLDLG2 */ |
| DIP("fldlg2\n"); |
| fp_push(); |
| /* put_ST(0, IRExpr_Const(IRConst_F64(0.301029995663981143))); */ |
| put_ST(0, IRExpr_Const(IRConst_F64i(0x3fd34413509f79ffULL))); |
| break; |
| |
| case 0xED: /* FLDLN2 */ |
| DIP("fldln2\n"); |
| fp_push(); |
| /* put_ST(0, IRExpr_Const(IRConst_F64(0.69314718055994530942))); */ |
| put_ST(0, IRExpr_Const(IRConst_F64i(0x3fe62e42fefa39efULL))); |
| break; |
| |
| case 0xEE: /* FLDZ */ |
| DIP("fldz\n"); |
| fp_push(); |
| /* put_ST(0, IRExpr_Const(IRConst_F64(0.0))); */ |
| put_ST(0, IRExpr_Const(IRConst_F64i(0x0000000000000000ULL))); |
| break; |
| |
| case 0xF0: /* F2XM1 */ |
| DIP("f2xm1\n"); |
| put_ST_UNCHECKED(0, |
| binop(Iop_2xm1F64, |
| get_FAKE_roundingmode(), /* XXXROUNDINGFIXME */ |
| get_ST(0))); |
| break; |
| |
| case 0xF1: /* FYL2X */ |
| DIP("fyl2x\n"); |
| put_ST_UNCHECKED(1, |
| triop(Iop_Yl2xF64, |
| get_FAKE_roundingmode(), /* XXXROUNDINGFIXME */ |
| get_ST(1), |
| get_ST(0))); |
| fp_pop(); |
| break; |
| |
| case 0xF2: /* FPTAN */ |
| DIP("ftan\n"); |
| put_ST_UNCHECKED(0, |
| binop(Iop_TanF64, |
| get_FAKE_roundingmode(), /* XXXROUNDINGFIXME */ |
| get_ST(0))); |
| fp_push(); |
| put_ST(0, IRExpr_Const(IRConst_F64(1.0))); |
| clear_C2(); /* HACK */ |
| break; |
| |
| case 0xF3: /* FPATAN */ |
| DIP("fpatan\n"); |
| put_ST_UNCHECKED(1, |
| triop(Iop_AtanF64, |
| get_FAKE_roundingmode(), /* XXXROUNDINGFIXME */ |
| get_ST(1), |
| get_ST(0))); |
| fp_pop(); |
| break; |
| |
| case 0xF4: { /* FXTRACT */ |
| IRTemp argF = newTemp(Ity_F64); |
| IRTemp sigF = newTemp(Ity_F64); |
| IRTemp expF = newTemp(Ity_F64); |
| IRTemp argI = newTemp(Ity_I64); |
| IRTemp sigI = newTemp(Ity_I64); |
| IRTemp expI = newTemp(Ity_I64); |
| DIP("fxtract\n"); |
| assign( argF, get_ST(0) ); |
| assign( argI, unop(Iop_ReinterpF64asI64, mkexpr(argF))); |
| assign( sigI, |
| mkIRExprCCall( |
| Ity_I64, 0/*regparms*/, |
| "x86amd64g_calculate_FXTRACT", |
| &x86amd64g_calculate_FXTRACT, |
| mkIRExprVec_2( mkexpr(argI), |
| mkIRExpr_HWord(0)/*sig*/ )) |
| ); |
| assign( expI, |
| mkIRExprCCall( |
| Ity_I64, 0/*regparms*/, |
| "x86amd64g_calculate_FXTRACT", |
| &x86amd64g_calculate_FXTRACT, |
| mkIRExprVec_2( mkexpr(argI), |
| mkIRExpr_HWord(1)/*exp*/ )) |
| ); |
| assign( sigF, unop(Iop_ReinterpI64asF64, mkexpr(sigI)) ); |
| assign( expF, unop(Iop_ReinterpI64asF64, mkexpr(expI)) ); |
| /* exponent */ |
| put_ST_UNCHECKED(0, mkexpr(expF) ); |
| fp_push(); |
| /* significand */ |
| put_ST(0, mkexpr(sigF) ); |
| break; |
| } |
| |
| case 0xF5: { /* FPREM1 -- IEEE compliant */ |
| IRTemp a1 = newTemp(Ity_F64); |
| IRTemp a2 = newTemp(Ity_F64); |
| DIP("fprem1\n"); |
| /* Do FPREM1 twice, once to get the remainder, and once |
| to get the C3210 flag values. */ |
| assign( a1, get_ST(0) ); |
| assign( a2, get_ST(1) ); |
| put_ST_UNCHECKED(0, |
| triop(Iop_PRem1F64, |
| get_FAKE_roundingmode(), /* XXXROUNDINGFIXME */ |
| mkexpr(a1), |
| mkexpr(a2))); |
| put_C3210( |
| triop(Iop_PRem1C3210F64, |
| get_FAKE_roundingmode(), /* XXXROUNDINGFIXME */ |
| mkexpr(a1), |
| mkexpr(a2)) ); |
| break; |
| } |
| |
| case 0xF7: /* FINCSTP */ |
| DIP("fprem\n"); |
| put_ftop( binop(Iop_Add32, get_ftop(), mkU32(1)) ); |
| break; |
| |
| case 0xF8: { /* FPREM -- not IEEE compliant */ |
| IRTemp a1 = newTemp(Ity_F64); |
| IRTemp a2 = newTemp(Ity_F64); |
| DIP("fprem\n"); |
| /* Do FPREM twice, once to get the remainder, and once |
| to get the C3210 flag values. */ |
| assign( a1, get_ST(0) ); |
| assign( a2, get_ST(1) ); |
| put_ST_UNCHECKED(0, |
| triop(Iop_PRemF64, |
| get_FAKE_roundingmode(), /* XXXROUNDINGFIXME */ |
| mkexpr(a1), |
| mkexpr(a2))); |
| put_C3210( |
| triop(Iop_PRemC3210F64, |
| get_FAKE_roundingmode(), /* XXXROUNDINGFIXME */ |
| mkexpr(a1), |
| mkexpr(a2)) ); |
| break; |
| } |
| |
| case 0xF9: /* FYL2XP1 */ |
| DIP("fyl2xp1\n"); |
| put_ST_UNCHECKED(1, |
| triop(Iop_Yl2xp1F64, |
| get_FAKE_roundingmode(), /* XXXROUNDINGFIXME */ |
| get_ST(1), |
| get_ST(0))); |
| fp_pop(); |
| break; |
| |
| case 0xFA: /* FSQRT */ |
| DIP("fsqrt\n"); |
| put_ST_UNCHECKED(0, |
| binop(Iop_SqrtF64, |
| get_FAKE_roundingmode(), /* XXXROUNDINGFIXME */ |
| get_ST(0))); |
| break; |
| |
| case 0xFB: { /* FSINCOS */ |
| IRTemp a1 = newTemp(Ity_F64); |
| assign( a1, get_ST(0) ); |
| DIP("fsincos\n"); |
| put_ST_UNCHECKED(0, |
| binop(Iop_SinF64, |
| get_FAKE_roundingmode(), /* XXXROUNDINGFIXME */ |
| mkexpr(a1))); |
| fp_push(); |
| put_ST(0, |
| binop(Iop_CosF64, |
| get_FAKE_roundingmode(), /* XXXROUNDINGFIXME */ |
| mkexpr(a1))); |
| clear_C2(); /* HACK */ |
| break; |
| } |
| |
| case 0xFC: /* FRNDINT */ |
| DIP("frndint\n"); |
| put_ST_UNCHECKED(0, |
| binop(Iop_RoundF64toInt, get_roundingmode(), get_ST(0)) ); |
| break; |
| |
| case 0xFD: /* FSCALE */ |
| DIP("fscale\n"); |
| put_ST_UNCHECKED(0, |
| triop(Iop_ScaleF64, |
| get_FAKE_roundingmode(), /* XXXROUNDINGFIXME */ |
| get_ST(0), |
| get_ST(1))); |
| break; |
| |
| case 0xFE: /* FSIN */ |
| DIP("fsin\n"); |
| put_ST_UNCHECKED(0, |
| binop(Iop_SinF64, |
| get_FAKE_roundingmode(), /* XXXROUNDINGFIXME */ |
| get_ST(0))); |
| clear_C2(); /* HACK */ |
| break; |
| |
| case 0xFF: /* FCOS */ |
| DIP("fcos\n"); |
| put_ST_UNCHECKED(0, |
| binop(Iop_CosF64, |
| get_FAKE_roundingmode(), /* XXXROUNDINGFIXME */ |
| get_ST(0))); |
| clear_C2(); /* HACK */ |
| break; |
| |
| default: |
| goto decode_fail; |
| } |
| } |
| } |
| |
| /* -+-+-+-+-+-+-+-+-+-+-+-+ 0xDA opcodes +-+-+-+-+-+-+-+ */ |
| else |
| if (first_opcode == 0xDA) { |
| |
| if (modrm < 0xC0) { |
| |
| /* bits 5,4,3 are an opcode extension, and the modRM also |
| specifies an address. */ |
| IROp fop; |
| IRTemp addr = disAMode( &len, sorb, delta, dis_buf ); |
| delta += len; |
| switch (gregOfRM(modrm)) { |
| |
| case 0: /* FIADD m32int */ /* ST(0) += m32int */ |
| DIP("fiaddl %s\n", dis_buf); |
| fop = Iop_AddF64; |
| goto do_fop_m32; |
| |
| case 1: /* FIMUL m32int */ /* ST(0) *= m32int */ |
| DIP("fimull %s\n", dis_buf); |
| fop = Iop_MulF64; |
| goto do_fop_m32; |
| |
| case 2: /* FICOM m32int */ |
| DIP("ficoml %s\n", dis_buf); |
| /* This forces C1 to zero, which isn't right. */ |
| put_C3210( |
| binop( Iop_And32, |
| binop(Iop_Shl32, |
| binop(Iop_CmpF64, |
| get_ST(0), |
| unop(Iop_I32StoF64, |
| loadLE(Ity_I32,mkexpr(addr)))), |
| mkU8(8)), |
| mkU32(0x4500) |
| )); |
| break; |
| |
| case 3: /* FICOMP m32int */ |
| DIP("ficompl %s\n", dis_buf); |
| /* This forces C1 to zero, which isn't right. */ |
| put_C3210( |
| binop( Iop_And32, |
| binop(Iop_Shl32, |
| binop(Iop_CmpF64, |
| get_ST(0), |
| unop(Iop_I32StoF64, |
| loadLE(Ity_I32,mkexpr(addr)))), |
| mkU8(8)), |
| mkU32(0x4500) |
| )); |
| fp_pop(); |
| break; |
| |
| case 4: /* FISUB m32int */ /* ST(0) -= m32int */ |
| DIP("fisubl %s\n", dis_buf); |
| fop = Iop_SubF64; |
| goto do_fop_m32; |
| |
| case 5: /* FISUBR m32int */ /* ST(0) = m32int - ST(0) */ |
| DIP("fisubrl %s\n", dis_buf); |
| fop = Iop_SubF64; |
| goto do_foprev_m32; |
| |
| case 6: /* FIDIV m32int */ /* ST(0) /= m32int */ |
| DIP("fidivl %s\n", dis_buf); |
| fop = Iop_DivF64; |
| goto do_fop_m32; |
| |
| case 7: /* FIDIVR m32int */ /* ST(0) = m32int / ST(0) */ |
| DIP("fidivrl %s\n", dis_buf); |
| fop = Iop_DivF64; |
| goto do_foprev_m32; |
| |
| do_fop_m32: |
| put_ST_UNCHECKED(0, |
| triop(fop, |
| get_FAKE_roundingmode(), /* XXXROUNDINGFIXME */ |
| get_ST(0), |
| unop(Iop_I32StoF64, |
| loadLE(Ity_I32, mkexpr(addr))))); |
| break; |
| |
| do_foprev_m32: |
| put_ST_UNCHECKED(0, |
| triop(fop, |
| get_FAKE_roundingmode(), /* XXXROUNDINGFIXME */ |
| unop(Iop_I32StoF64, |
| loadLE(Ity_I32, mkexpr(addr))), |
| get_ST(0))); |
| break; |
| |
| default: |
| vex_printf("unhandled opc_aux = 0x%2x\n", gregOfRM(modrm)); |
| vex_printf("first_opcode == 0xDA\n"); |
| goto decode_fail; |
| } |
| |
| } else { |
| |
| delta++; |
| switch (modrm) { |
| |
| case 0xC0 ... 0xC7: /* FCMOVB ST(i), ST(0) */ |
| r_src = (UInt)modrm - 0xC0; |
| DIP("fcmovb %%st(%d), %%st(0)\n", (Int)r_src); |
| put_ST_UNCHECKED(0, |
| IRExpr_ITE( |
| mk_x86g_calculate_condition(X86CondB), |
| get_ST(r_src), get_ST(0)) ); |
| break; |
| |
| case 0xC8 ... 0xCF: /* FCMOVE(Z) ST(i), ST(0) */ |
| r_src = (UInt)modrm - 0xC8; |
| DIP("fcmovz %%st(%d), %%st(0)\n", (Int)r_src); |
| put_ST_UNCHECKED(0, |
| IRExpr_ITE( |
| mk_x86g_calculate_condition(X86CondZ), |
| get_ST(r_src), get_ST(0)) ); |
| break; |
| |
| case 0xD0 ... 0xD7: /* FCMOVBE ST(i), ST(0) */ |
| r_src = (UInt)modrm - 0xD0; |
| DIP("fcmovbe %%st(%d), %%st(0)\n", (Int)r_src); |
| put_ST_UNCHECKED(0, |
| IRExpr_ITE( |
| mk_x86g_calculate_condition(X86CondBE), |
| get_ST(r_src), get_ST(0)) ); |
| break; |
| |
| case 0xD8 ... 0xDF: /* FCMOVU ST(i), ST(0) */ |
| r_src = (UInt)modrm - 0xD8; |
| DIP("fcmovu %%st(%d), %%st(0)\n", (Int)r_src); |
| put_ST_UNCHECKED(0, |
| IRExpr_ITE( |
| mk_x86g_calculate_condition(X86CondP), |
| get_ST(r_src), get_ST(0)) ); |
| break; |
| |
| case 0xE9: /* FUCOMPP %st(0),%st(1) */ |
| DIP("fucompp %%st(0),%%st(1)\n"); |
| /* This forces C1 to zero, which isn't right. */ |
| put_C3210( |
| binop( Iop_And32, |
| binop(Iop_Shl32, |
| binop(Iop_CmpF64, get_ST(0), get_ST(1)), |
| mkU8(8)), |
| mkU32(0x4500) |
| )); |
| fp_pop(); |
| fp_pop(); |
| break; |
| |
| default: |
| goto decode_fail; |
| } |
| |
| } |
| } |
| |
| /* -+-+-+-+-+-+-+-+-+-+-+-+ 0xDB opcodes +-+-+-+-+-+-+-+ */ |
| else |
| if (first_opcode == 0xDB) { |
| if (modrm < 0xC0) { |
| |
| /* bits 5,4,3 are an opcode extension, and the modRM also |
| specifies an address. */ |
| IRTemp addr = disAMode( &len, sorb, delta, dis_buf ); |
| delta += len; |
| |
| switch (gregOfRM(modrm)) { |
| |
| case 0: /* FILD m32int */ |
| DIP("fildl %s\n", dis_buf); |
| fp_push(); |
| put_ST(0, unop(Iop_I32StoF64, |
| loadLE(Ity_I32, mkexpr(addr)))); |
| break; |
| |
| case 1: /* FISTTPL m32 (SSE3) */ |
| DIP("fisttpl %s\n", dis_buf); |
| storeLE( mkexpr(addr), |
| binop(Iop_F64toI32S, mkU32(Irrm_ZERO), get_ST(0)) ); |
| fp_pop(); |
| break; |
| |
| case 2: /* FIST m32 */ |
| DIP("fistl %s\n", dis_buf); |
| storeLE( mkexpr(addr), |
| binop(Iop_F64toI32S, get_roundingmode(), get_ST(0)) ); |
| break; |
| |
| case 3: /* FISTP m32 */ |
| DIP("fistpl %s\n", dis_buf); |
| storeLE( mkexpr(addr), |
| binop(Iop_F64toI32S, get_roundingmode(), get_ST(0)) ); |
| fp_pop(); |
| break; |
| |
| case 5: { /* FLD extended-real */ |
| /* Uses dirty helper: |
| ULong x86g_loadF80le ( UInt ) |
| addr holds the address. First, do a dirty call to |
| get hold of the data. */ |
| IRTemp val = newTemp(Ity_I64); |
| IRExpr** args = mkIRExprVec_1 ( mkexpr(addr) ); |
| |
| IRDirty* d = unsafeIRDirty_1_N ( |
| val, |
| 0/*regparms*/, |
| "x86g_dirtyhelper_loadF80le", |
| &x86g_dirtyhelper_loadF80le, |
| args |
| ); |
| /* declare that we're reading memory */ |
| d->mFx = Ifx_Read; |
| d->mAddr = mkexpr(addr); |
| d->mSize = 10; |
| |
| /* execute the dirty call, dumping the result in val. */ |
| stmt( IRStmt_Dirty(d) ); |
| fp_push(); |
| put_ST(0, unop(Iop_ReinterpI64asF64, mkexpr(val))); |
| |
| DIP("fldt %s\n", dis_buf); |
| break; |
| } |
| |
| case 7: { /* FSTP extended-real */ |
| /* Uses dirty helper: void x86g_storeF80le ( UInt, ULong ) */ |
| IRExpr** args |
| = mkIRExprVec_2( mkexpr(addr), |
| unop(Iop_ReinterpF64asI64, get_ST(0)) ); |
| |
| IRDirty* d = unsafeIRDirty_0_N ( |
| 0/*regparms*/, |
| "x86g_dirtyhelper_storeF80le", |
| &x86g_dirtyhelper_storeF80le, |
| args |
| ); |
| /* declare we're writing memory */ |
| d->mFx = Ifx_Write; |
| d->mAddr = mkexpr(addr); |
| d->mSize = 10; |
| |
| /* execute the dirty call. */ |
| stmt( IRStmt_Dirty(d) ); |
| fp_pop(); |
| |
| DIP("fstpt\n %s", dis_buf); |
| break; |
| } |
| |
| default: |
| vex_printf("unhandled opc_aux = 0x%2x\n", gregOfRM(modrm)); |
| vex_printf("first_opcode == 0xDB\n"); |
| goto decode_fail; |
| } |
| |
| } else { |
| |
| delta++; |
| switch (modrm) { |
| |
| case 0xC0 ... 0xC7: /* FCMOVNB ST(i), ST(0) */ |
| r_src = (UInt)modrm - 0xC0; |
| DIP("fcmovnb %%st(%d), %%st(0)\n", (Int)r_src); |
| put_ST_UNCHECKED(0, |
| IRExpr_ITE( |
| mk_x86g_calculate_condition(X86CondNB), |
| get_ST(r_src), get_ST(0)) ); |
| break; |
| |
| case 0xC8 ... 0xCF: /* FCMOVNE(NZ) ST(i), ST(0) */ |
| r_src = (UInt)modrm - 0xC8; |
| DIP("fcmovnz %%st(%d), %%st(0)\n", (Int)r_src); |
| put_ST_UNCHECKED(0, |
| IRExpr_ITE( |
| mk_x86g_calculate_condition(X86CondNZ), |
| get_ST(r_src), get_ST(0)) ); |
| break; |
| |
| case 0xD0 ... 0xD7: /* FCMOVNBE ST(i), ST(0) */ |
| r_src = (UInt)modrm - 0xD0; |
| DIP("fcmovnbe %%st(%d), %%st(0)\n", (Int)r_src); |
| put_ST_UNCHECKED(0, |
| IRExpr_ITE( |
| mk_x86g_calculate_condition(X86CondNBE), |
| get_ST(r_src), get_ST(0)) ); |
| break; |
| |
| case 0xD8 ... 0xDF: /* FCMOVNU ST(i), ST(0) */ |
| r_src = (UInt)modrm - 0xD8; |
| DIP("fcmovnu %%st(%d), %%st(0)\n", (Int)r_src); |
| put_ST_UNCHECKED(0, |
| IRExpr_ITE( |
| mk_x86g_calculate_condition(X86CondNP), |
| get_ST(r_src), get_ST(0)) ); |
| break; |
| |
| case 0xE2: |
| DIP("fnclex\n"); |
| break; |
| |
| case 0xE3: { |
| /* Uses dirty helper: |
| void x86g_do_FINIT ( VexGuestX86State* ) */ |
| IRDirty* d = unsafeIRDirty_0_N ( |
| 0/*regparms*/, |
| "x86g_dirtyhelper_FINIT", |
| &x86g_dirtyhelper_FINIT, |
| mkIRExprVec_0() |
| ); |
| d->needsBBP = True; |
| |
| /* declare we're writing guest state */ |
| d->nFxState = 5; |
| vex_bzero(&d->fxState, sizeof(d->fxState)); |
| |
| d->fxState[0].fx = Ifx_Write; |
| d->fxState[0].offset = OFFB_FTOP; |
| d->fxState[0].size = sizeof(UInt); |
| |
| d->fxState[1].fx = Ifx_Write; |
| d->fxState[1].offset = OFFB_FPREGS; |
| d->fxState[1].size = 8 * sizeof(ULong); |
| |
| d->fxState[2].fx = Ifx_Write; |
| d->fxState[2].offset = OFFB_FPTAGS; |
| d->fxState[2].size = 8 * sizeof(UChar); |
| |
| d->fxState[3].fx = Ifx_Write; |
| d->fxState[3].offset = OFFB_FPROUND; |
| d->fxState[3].size = sizeof(UInt); |
| |
| d->fxState[4].fx = Ifx_Write; |
| d->fxState[4].offset = OFFB_FC3210; |
| d->fxState[4].size = sizeof(UInt); |
| |
| stmt( IRStmt_Dirty(d) ); |
| |
| DIP("fninit\n"); |
| break; |
| } |
| |
| case 0xE8 ... 0xEF: /* FUCOMI %st(0),%st(?) */ |
| fp_do_ucomi_ST0_STi( (UInt)modrm - 0xE8, False ); |
| break; |
| |
| case 0xF0 ... 0xF7: /* FCOMI %st(0),%st(?) */ |
| fp_do_ucomi_ST0_STi( (UInt)modrm - 0xF0, False ); |
| break; |
| |
| default: |
| goto decode_fail; |
| } |
| } |
| } |
| |
| /* -+-+-+-+-+-+-+-+-+-+-+-+ 0xDC opcodes +-+-+-+-+-+-+-+ */ |
| else |
| if (first_opcode == 0xDC) { |
| if (modrm < 0xC0) { |
| |
| /* bits 5,4,3 are an opcode extension, and the modRM also |
| specifies an address. */ |
| IRTemp addr = disAMode( &len, sorb, delta, dis_buf ); |
| delta += len; |
| |
| switch (gregOfRM(modrm)) { |
| |
| case 0: /* FADD double-real */ |
| fp_do_op_mem_ST_0 ( addr, "add", dis_buf, Iop_AddF64, True ); |
| break; |
| |
| case 1: /* FMUL double-real */ |
| fp_do_op_mem_ST_0 ( addr, "mul", dis_buf, Iop_MulF64, True ); |
| break; |
| |
| case 2: /* FCOM double-real */ |
| DIP("fcoml %s\n", dis_buf); |
| /* This forces C1 to zero, which isn't right. */ |
| put_C3210( |
| binop( Iop_And32, |
| binop(Iop_Shl32, |
| binop(Iop_CmpF64, |
| get_ST(0), |
| loadLE(Ity_F64,mkexpr(addr))), |
| mkU8(8)), |
| mkU32(0x4500) |
| )); |
| break; |
| |
| case 3: /* FCOMP double-real */ |
| DIP("fcompl %s\n", dis_buf); |
| /* This forces C1 to zero, which isn't right. */ |
| put_C3210( |
| binop( Iop_And32, |
| binop(Iop_Shl32, |
| binop(Iop_CmpF64, |
| get_ST(0), |
| loadLE(Ity_F64,mkexpr(addr))), |
| mkU8(8)), |
| mkU32(0x4500) |
| )); |
| fp_pop(); |
| break; |
| |
| case 4: /* FSUB double-real */ |
| fp_do_op_mem_ST_0 ( addr, "sub", dis_buf, Iop_SubF64, True ); |
| break; |
| |
| case 5: /* FSUBR double-real */ |
| fp_do_oprev_mem_ST_0 ( addr, "subr", dis_buf, Iop_SubF64, True ); |
| break; |
| |
| case 6: /* FDIV double-real */ |
| fp_do_op_mem_ST_0 ( addr, "div", dis_buf, Iop_DivF64, True ); |
| break; |
| |
| case 7: /* FDIVR double-real */ |
| fp_do_oprev_mem_ST_0 ( addr, "divr", dis_buf, Iop_DivF64, True ); |
| break; |
| |
| default: |
| vex_printf("unhandled opc_aux = 0x%2x\n", gregOfRM(modrm)); |
| vex_printf("first_opcode == 0xDC\n"); |
| goto decode_fail; |
| } |
| |
| } else { |
| |
| delta++; |
| switch (modrm) { |
| |
| case 0xC0 ... 0xC7: /* FADD %st(0),%st(?) */ |
| fp_do_op_ST_ST ( "add", Iop_AddF64, 0, modrm - 0xC0, False ); |
| break; |
| |
| case 0xC8 ... 0xCF: /* FMUL %st(0),%st(?) */ |
| fp_do_op_ST_ST ( "mul", Iop_MulF64, 0, modrm - 0xC8, False ); |
| break; |
| |
| case 0xE0 ... 0xE7: /* FSUBR %st(0),%st(?) */ |
| fp_do_oprev_ST_ST ( "subr", Iop_SubF64, 0, modrm - 0xE0, False ); |
| break; |
| |
| case 0xE8 ... 0xEF: /* FSUB %st(0),%st(?) */ |
| fp_do_op_ST_ST ( "sub", Iop_SubF64, 0, modrm - 0xE8, False ); |
| break; |
| |
| case 0xF0 ... 0xF7: /* FDIVR %st(0),%st(?) */ |
| fp_do_oprev_ST_ST ( "divr", Iop_DivF64, 0, modrm - 0xF0, False ); |
| break; |
| |
| case 0xF8 ... 0xFF: /* FDIV %st(0),%st(?) */ |
| fp_do_op_ST_ST ( "div", Iop_DivF64, 0, modrm - 0xF8, False ); |
| break; |
| |
| default: |
| goto decode_fail; |
| } |
| |
| } |
| } |
| |
| /* -+-+-+-+-+-+-+-+-+-+-+-+ 0xDD opcodes +-+-+-+-+-+-+-+ */ |
| else |
| if (first_opcode == 0xDD) { |
| |
| if (modrm < 0xC0) { |
| |
| /* bits 5,4,3 are an opcode extension, and the modRM also |
| specifies an address. */ |
| IRTemp addr = disAMode( &len, sorb, delta, dis_buf ); |
| delta += len; |
| |
| switch (gregOfRM(modrm)) { |
| |
| case 0: /* FLD double-real */ |
| DIP("fldl %s\n", dis_buf); |
| fp_push(); |
| put_ST(0, loadLE(Ity_F64, mkexpr(addr))); |
| break; |
| |
| case 1: /* FISTTPQ m64 (SSE3) */ |
| DIP("fistppll %s\n", dis_buf); |
| storeLE( mkexpr(addr), |
| binop(Iop_F64toI64S, mkU32(Irrm_ZERO), get_ST(0)) ); |
| fp_pop(); |
| break; |
| |
| case 2: /* FST double-real */ |
| DIP("fstl %s\n", dis_buf); |
| storeLE(mkexpr(addr), get_ST(0)); |
| break; |
| |
| case 3: /* FSTP double-real */ |
| DIP("fstpl %s\n", dis_buf); |
| storeLE(mkexpr(addr), get_ST(0)); |
| fp_pop(); |
| break; |
| |
| case 4: { /* FRSTOR m108 */ |
| /* Uses dirty helper: |
| VexEmNote x86g_do_FRSTOR ( VexGuestX86State*, Addr32 ) */ |
| IRTemp ew = newTemp(Ity_I32); |
| IRDirty* d = unsafeIRDirty_0_N ( |
| 0/*regparms*/, |
| "x86g_dirtyhelper_FRSTOR", |
| &x86g_dirtyhelper_FRSTOR, |
| mkIRExprVec_1( mkexpr(addr) ) |
| ); |
| d->needsBBP = True; |
| d->tmp = ew; |
| /* declare we're reading memory */ |
| d->mFx = Ifx_Read; |
| d->mAddr = mkexpr(addr); |
| d->mSize = 108; |
| |
| /* declare we're writing guest state */ |
| d->nFxState = 5; |
| vex_bzero(&d->fxState, sizeof(d->fxState)); |
| |
| d->fxState[0].fx = Ifx_Write; |
| d->fxState[0].offset = OFFB_FTOP; |
| d->fxState[0].size = sizeof(UInt); |
| |
| d->fxState[1].fx = Ifx_Write; |
| d->fxState[1].offset = OFFB_FPREGS; |
| d->fxState[1].size = 8 * sizeof(ULong); |
| |
| d->fxState[2].fx = Ifx_Write; |
| d->fxState[2].offset = OFFB_FPTAGS; |
| d->fxState[2].size = 8 * sizeof(UChar); |
| |
| d->fxState[3].fx = Ifx_Write; |
| d->fxState[3].offset = OFFB_FPROUND; |
| d->fxState[3].size = sizeof(UInt); |
| |
| d->fxState[4].fx = Ifx_Write; |
| d->fxState[4].offset = OFFB_FC3210; |
| d->fxState[4].size = sizeof(UInt); |
| |
| stmt( IRStmt_Dirty(d) ); |
| |
| /* ew contains any emulation warning we may need to |
| issue. If needed, side-exit to the next insn, |
| reporting the warning, so that Valgrind's dispatcher |
| sees the warning. */ |
| put_emwarn( mkexpr(ew) ); |
| stmt( |
| IRStmt_Exit( |
| binop(Iop_CmpNE32, mkexpr(ew), mkU32(0)), |
| Ijk_EmWarn, |
| IRConst_U32( ((Addr32)guest_EIP_bbstart)+delta), |
| OFFB_EIP |
| ) |
| ); |
| |
| DIP("frstor %s\n", dis_buf); |
| break; |
| } |
| |
| case 6: { /* FNSAVE m108 */ |
| /* Uses dirty helper: |
| void x86g_do_FSAVE ( VexGuestX86State*, UInt ) */ |
| IRDirty* d = unsafeIRDirty_0_N ( |
| 0/*regparms*/, |
| "x86g_dirtyhelper_FSAVE", |
| &x86g_dirtyhelper_FSAVE, |
| mkIRExprVec_1( mkexpr(addr) ) |
| ); |
| d->needsBBP = True; |
| /* declare we're writing memory */ |
| d->mFx = Ifx_Write; |
| d->mAddr = mkexpr(addr); |
| d->mSize = 108; |
| |
| /* declare we're reading guest state */ |
| d->nFxState = 5; |
| vex_bzero(&d->fxState, sizeof(d->fxState)); |
| |
| d->fxState[0].fx = Ifx_Read; |
| d->fxState[0].offset = OFFB_FTOP; |
| d->fxState[0].size = sizeof(UInt); |
| |
| d->fxState[1].fx = Ifx_Read; |
| d->fxState[1].offset = OFFB_FPREGS; |
| d->fxState[1].size = 8 * sizeof(ULong); |
| |
| d->fxState[2].fx = Ifx_Read; |
| d->fxState[2].offset = OFFB_FPTAGS; |
| d->fxState[2].size = 8 * sizeof(UChar); |
| |
| d->fxState[3].fx = Ifx_Read; |
| d->fxState[3].offset = OFFB_FPROUND; |
| d->fxState[3].size = sizeof(UInt); |
| |
| d->fxState[4].fx = Ifx_Read; |
| d->fxState[4].offset = OFFB_FC3210; |
| d->fxState[4].size = sizeof(UInt); |
| |
| stmt( IRStmt_Dirty(d) ); |
| |
| DIP("fnsave %s\n", dis_buf); |
| break; |
| } |
| |
| case 7: { /* FNSTSW m16 */ |
| IRExpr* sw = get_FPU_sw(); |
| vassert(typeOfIRExpr(irsb->tyenv, sw) == Ity_I16); |
| storeLE( mkexpr(addr), sw ); |
| DIP("fnstsw %s\n", dis_buf); |
| break; |
| } |
| |
| default: |
| vex_printf("unhandled opc_aux = 0x%2x\n", gregOfRM(modrm)); |
| vex_printf("first_opcode == 0xDD\n"); |
| goto decode_fail; |
| } |
| } else { |
| delta++; |
| switch (modrm) { |
| |
| case 0xC0 ... 0xC7: /* FFREE %st(?) */ |
| r_dst = (UInt)modrm - 0xC0; |
| DIP("ffree %%st(%d)\n", (Int)r_dst); |
| put_ST_TAG ( r_dst, mkU8(0) ); |
| break; |
| |
| case 0xD0 ... 0xD7: /* FST %st(0),%st(?) */ |
| r_dst = (UInt)modrm - 0xD0; |
| DIP("fst %%st(0),%%st(%d)\n", (Int)r_dst); |
| /* P4 manual says: "If the destination operand is a |
| non-empty register, the invalid-operation exception |
| is not generated. Hence put_ST_UNCHECKED. */ |
| put_ST_UNCHECKED(r_dst, get_ST(0)); |
| break; |
| |
| case 0xD8 ... 0xDF: /* FSTP %st(0),%st(?) */ |
| r_dst = (UInt)modrm - 0xD8; |
| DIP("fstp %%st(0),%%st(%d)\n", (Int)r_dst); |
| /* P4 manual says: "If the destination operand is a |
| non-empty register, the invalid-operation exception |
| is not generated. Hence put_ST_UNCHECKED. */ |
| put_ST_UNCHECKED(r_dst, get_ST(0)); |
| fp_pop(); |
| break; |
| |
| case 0xE0 ... 0xE7: /* FUCOM %st(0),%st(?) */ |
| r_dst = (UInt)modrm - 0xE0; |
| DIP("fucom %%st(0),%%st(%d)\n", (Int)r_dst); |
| /* This forces C1 to zero, which isn't right. */ |
| put_C3210( |
| binop( Iop_And32, |
| binop(Iop_Shl32, |
| binop(Iop_CmpF64, get_ST(0), get_ST(r_dst)), |
| mkU8(8)), |
| mkU32(0x4500) |
| )); |
| break; |
| |
| case 0xE8 ... 0xEF: /* FUCOMP %st(0),%st(?) */ |
| r_dst = (UInt)modrm - 0xE8; |
| DIP("fucomp %%st(0),%%st(%d)\n", (Int)r_dst); |
| /* This forces C1 to zero, which isn't right. */ |
| put_C3210( |
| binop( Iop_And32, |
| binop(Iop_Shl32, |
| binop(Iop_CmpF64, get_ST(0), get_ST(r_dst)), |
| mkU8(8)), |
| mkU32(0x4500) |
| )); |
| fp_pop(); |
| break; |
| |
| default: |
| goto decode_fail; |
| } |
| } |
| } |
| |
| /* -+-+-+-+-+-+-+-+-+-+-+-+ 0xDE opcodes +-+-+-+-+-+-+-+ */ |
| else |
| if (first_opcode == 0xDE) { |
| |
| if (modrm < 0xC0) { |
| |
| /* bits 5,4,3 are an opcode extension, and the modRM also |
| specifies an address. */ |
| IROp fop; |
| IRTemp addr = disAMode( &len, sorb, delta, dis_buf ); |
| delta += len; |
| |
| switch (gregOfRM(modrm)) { |
| |
| case 0: /* FIADD m16int */ /* ST(0) += m16int */ |
| DIP("fiaddw %s\n", dis_buf); |
| fop = Iop_AddF64; |
| goto do_fop_m16; |
| |
| case 1: /* FIMUL m16int */ /* ST(0) *= m16int */ |
| DIP("fimulw %s\n", dis_buf); |
| fop = Iop_MulF64; |
| goto do_fop_m16; |
| |
| case 2: /* FICOM m16int */ |
| DIP("ficomw %s\n", dis_buf); |
| /* This forces C1 to zero, which isn't right. */ |
| put_C3210( |
| binop( Iop_And32, |
| binop(Iop_Shl32, |
| binop(Iop_CmpF64, |
| get_ST(0), |
| unop(Iop_I32StoF64, |
| unop(Iop_16Sto32, |
| loadLE(Ity_I16,mkexpr(addr))))), |
| mkU8(8)), |
| mkU32(0x4500) |
| )); |
| break; |
| |
| case 3: /* FICOMP m16int */ |
| DIP("ficompw %s\n", dis_buf); |
| /* This forces C1 to zero, which isn't right. */ |
| put_C3210( |
| binop( Iop_And32, |
| binop(Iop_Shl32, |
| binop(Iop_CmpF64, |
| get_ST(0), |
| unop(Iop_I32StoF64, |
| unop(Iop_16Sto32, |
| loadLE(Ity_I16,mkexpr(addr))))), |
| mkU8(8)), |
| mkU32(0x4500) |
| )); |
| fp_pop(); |
| break; |
| |
| case 4: /* FISUB m16int */ /* ST(0) -= m16int */ |
| DIP("fisubw %s\n", dis_buf); |
| fop = Iop_SubF64; |
| goto do_fop_m16; |
| |
| case 5: /* FISUBR m16int */ /* ST(0) = m16int - ST(0) */ |
| DIP("fisubrw %s\n", dis_buf); |
| fop = Iop_SubF64; |
| goto do_foprev_m16; |
| |
| case 6: /* FIDIV m16int */ /* ST(0) /= m16int */ |
| DIP("fisubw %s\n", dis_buf); |
| fop = Iop_DivF64; |
| goto do_fop_m16; |
| |
| case 7: /* FIDIVR m16int */ /* ST(0) = m16int / ST(0) */ |
| DIP("fidivrw %s\n", dis_buf); |
| fop = Iop_DivF64; |
| goto do_foprev_m16; |
| |
| do_fop_m16: |
| put_ST_UNCHECKED(0, |
| triop(fop, |
| get_FAKE_roundingmode(), /* XXXROUNDINGFIXME */ |
| get_ST(0), |
| unop(Iop_I32StoF64, |
| unop(Iop_16Sto32, |
| loadLE(Ity_I16, mkexpr(addr)))))); |
| break; |
| |
| do_foprev_m16: |
| put_ST_UNCHECKED(0, |
| triop(fop, |
| get_FAKE_roundingmode(), /* XXXROUNDINGFIXME */ |
| unop(Iop_I32StoF64, |
| unop(Iop_16Sto32, |
| loadLE(Ity_I16, mkexpr(addr)))), |
| get_ST(0))); |
| break; |
| |
| default: |
| vex_printf("unhandled opc_aux = 0x%2x\n", gregOfRM(modrm)); |
| vex_printf("first_opcode == 0xDE\n"); |
| goto decode_fail; |
| } |
| |
| } else { |
| |
| delta++; |
| switch (modrm) { |
| |
| case 0xC0 ... 0xC7: /* FADDP %st(0),%st(?) */ |
| fp_do_op_ST_ST ( "add", Iop_AddF64, 0, modrm - 0xC0, True ); |
| break; |
| |
| case 0xC8 ... 0xCF: /* FMULP %st(0),%st(?) */ |
| fp_do_op_ST_ST ( "mul", Iop_MulF64, 0, modrm - 0xC8, True ); |
| break; |
| |
| case 0xD9: /* FCOMPP %st(0),%st(1) */ |
| DIP("fuompp %%st(0),%%st(1)\n"); |
| /* This forces C1 to zero, which isn't right. */ |
| put_C3210( |
| binop( Iop_And32, |
| binop(Iop_Shl32, |
| binop(Iop_CmpF64, get_ST(0), get_ST(1)), |
| mkU8(8)), |
| mkU32(0x4500) |
| )); |
| fp_pop(); |
| fp_pop(); |
| break; |
| |
| case 0xE0 ... 0xE7: /* FSUBRP %st(0),%st(?) */ |
| fp_do_oprev_ST_ST ( "subr", Iop_SubF64, 0, modrm - 0xE0, True ); |
| break; |
| |
| case 0xE8 ... 0xEF: /* FSUBP %st(0),%st(?) */ |
| fp_do_op_ST_ST ( "sub", Iop_SubF64, 0, modrm - 0xE8, True ); |
| break; |
| |
| case 0xF0 ... 0xF7: /* FDIVRP %st(0),%st(?) */ |
| fp_do_oprev_ST_ST ( "divr", Iop_DivF64, 0, modrm - 0xF0, True ); |
| break; |
| |
| case 0xF8 ... 0xFF: /* FDIVP %st(0),%st(?) */ |
| fp_do_op_ST_ST ( "div", Iop_DivF64, 0, modrm - 0xF8, True ); |
| break; |
| |
| default: |
| goto decode_fail; |
| } |
| |
| } |
| } |
| |
| /* -+-+-+-+-+-+-+-+-+-+-+-+ 0xDF opcodes +-+-+-+-+-+-+-+ */ |
| else |
| if (first_opcode == 0xDF) { |
| |
| if (modrm < 0xC0) { |
| |
| /* bits 5,4,3 are an opcode extension, and the modRM also |
| specifies an address. */ |
| IRTemp addr = disAMode( &len, sorb, delta, dis_buf ); |
| delta += len; |
| |
| switch (gregOfRM(modrm)) { |
| |
| case 0: /* FILD m16int */ |
| DIP("fildw %s\n", dis_buf); |
| fp_push(); |
| put_ST(0, unop(Iop_I32StoF64, |
| unop(Iop_16Sto32, |
| loadLE(Ity_I16, mkexpr(addr))))); |
| break; |
| |
| case 1: /* FISTTPS m16 (SSE3) */ |
| DIP("fisttps %s\n", dis_buf); |
| storeLE( mkexpr(addr), |
| binop(Iop_F64toI16S, mkU32(Irrm_ZERO), get_ST(0)) ); |
| fp_pop(); |
| break; |
| |
| case 2: /* FIST m16 */ |
| DIP("fistp %s\n", dis_buf); |
| storeLE( mkexpr(addr), |
| binop(Iop_F64toI16S, get_roundingmode(), get_ST(0)) ); |
| break; |
| |
| case 3: /* FISTP m16 */ |
| DIP("fistps %s\n", dis_buf); |
| storeLE( mkexpr(addr), |
| binop(Iop_F64toI16S, get_roundingmode(), get_ST(0)) ); |
| fp_pop(); |
| break; |
| |
| case 5: /* FILD m64 */ |
| DIP("fildll %s\n", dis_buf); |
| fp_push(); |
| put_ST(0, binop(Iop_I64StoF64, |
| get_roundingmode(), |
| loadLE(Ity_I64, mkexpr(addr)))); |
| break; |
| |
| case 7: /* FISTP m64 */ |
| DIP("fistpll %s\n", dis_buf); |
| storeLE( mkexpr(addr), |
| binop(Iop_F64toI64S, get_roundingmode(), get_ST(0)) ); |
| fp_pop(); |
| break; |
| |
| default: |
| vex_printf("unhandled opc_aux = 0x%2x\n", gregOfRM(modrm)); |
| vex_printf("first_opcode == 0xDF\n"); |
| goto decode_fail; |
| } |
| |
| } else { |
| |
| delta++; |
| switch (modrm) { |
| |
| case 0xC0: /* FFREEP %st(0) */ |
| DIP("ffreep %%st(%d)\n", 0); |
| put_ST_TAG ( 0, mkU8(0) ); |
| fp_pop(); |
| break; |
| |
| case 0xE0: /* FNSTSW %ax */ |
| DIP("fnstsw %%ax\n"); |
| /* Get the FPU status word value and dump it in %AX. */ |
| if (0) { |
| /* The obvious thing to do is simply dump the 16-bit |
| status word value in %AX. However, due to a |
| limitation in Memcheck's origin tracking |
| machinery, this causes Memcheck not to track the |
| origin of any undefinedness into %AH (only into |
| %AL/%AX/%EAX), which means origins are lost in |
| the sequence "fnstsw %ax; test $M,%ah; jcond .." */ |
| putIReg(2, R_EAX, get_FPU_sw()); |
| } else { |
| /* So a somewhat lame kludge is to make it very |
| clear to Memcheck that the value is written to |
| both %AH and %AL. This generates marginally |
| worse code, but I don't think it matters much. */ |
| IRTemp t16 = newTemp(Ity_I16); |
| assign(t16, get_FPU_sw()); |
| putIReg( 1, R_AL, unop(Iop_16to8, mkexpr(t16)) ); |
| putIReg( 1, R_AH, unop(Iop_16HIto8, mkexpr(t16)) ); |
| } |
| break; |
| |
| case 0xE8 ... 0xEF: /* FUCOMIP %st(0),%st(?) */ |
| fp_do_ucomi_ST0_STi( (UInt)modrm - 0xE8, True ); |
| break; |
| |
| case 0xF0 ... 0xF7: /* FCOMIP %st(0),%st(?) */ |
| /* not really right since COMIP != UCOMIP */ |
| fp_do_ucomi_ST0_STi( (UInt)modrm - 0xF0, True ); |
| break; |
| |
| default: |
| goto decode_fail; |
| } |
| } |
| |
| } |
| |
| else |
| vpanic("dis_FPU(x86): invalid primary opcode"); |
| |
| *decode_ok = True; |
| return delta; |
| |
| decode_fail: |
| *decode_ok = False; |
| return delta; |
| } |
| |
| |
| /*------------------------------------------------------------*/ |
| /*--- ---*/ |
| /*--- MMX INSTRUCTIONS ---*/ |
| /*--- ---*/ |
| /*------------------------------------------------------------*/ |
| |
| /* Effect of MMX insns on x87 FPU state (table 11-2 of |
| IA32 arch manual, volume 3): |
| |
| Read from, or write to MMX register (viz, any insn except EMMS): |
| * All tags set to Valid (non-empty) -- FPTAGS[i] := nonzero |
| * FP stack pointer set to zero |
| |
| EMMS: |
| * All tags set to Invalid (empty) -- FPTAGS[i] := zero |
| * FP stack pointer set to zero |
| */ |
| |
| static void do_MMX_preamble ( void ) |
| { |
| Int i; |
| IRRegArray* descr = mkIRRegArray( OFFB_FPTAGS, Ity_I8, 8 ); |
| IRExpr* zero = mkU32(0); |
| IRExpr* tag1 = mkU8(1); |
| put_ftop(zero); |
| for (i = 0; i < 8; i++) |
| stmt( IRStmt_PutI( mkIRPutI(descr, zero, i, tag1) ) ); |
| } |
| |
| static void do_EMMS_preamble ( void ) |
| { |
| Int i; |
| IRRegArray* descr = mkIRRegArray( OFFB_FPTAGS, Ity_I8, 8 ); |
| IRExpr* zero = mkU32(0); |
| IRExpr* tag0 = mkU8(0); |
| put_ftop(zero); |
| for (i = 0; i < 8; i++) |
| stmt( IRStmt_PutI( mkIRPutI(descr, zero, i, tag0) ) ); |
| } |
| |
| |
| static IRExpr* getMMXReg ( UInt archreg ) |
| { |
| vassert(archreg < 8); |
| return IRExpr_Get( OFFB_FPREGS + 8 * archreg, Ity_I64 ); |
| } |
| |
| |
| static void putMMXReg ( UInt archreg, IRExpr* e ) |
| { |
| vassert(archreg < 8); |
| vassert(typeOfIRExpr(irsb->tyenv,e) == Ity_I64); |
| stmt( IRStmt_Put( OFFB_FPREGS + 8 * archreg, e ) ); |
| } |
| |
| |
| /* Helper for non-shift MMX insns. Note this is incomplete in the |
| sense that it does not first call do_MMX_preamble() -- that is the |
| responsibility of its caller. */ |
| |
| static |
| UInt dis_MMXop_regmem_to_reg ( UChar sorb, |
| Int delta, |
| UChar opc, |
| const HChar* name, |
| Bool show_granularity ) |
| { |
| HChar dis_buf[50]; |
| UChar modrm = getIByte(delta); |
| Bool isReg = epartIsReg(modrm); |
| IRExpr* argL = NULL; |
| IRExpr* argR = NULL; |
| IRExpr* argG = NULL; |
| IRExpr* argE = NULL; |
| IRTemp res = newTemp(Ity_I64); |
| |
| Bool invG = False; |
| IROp op = Iop_INVALID; |
| void* hAddr = NULL; |
| Bool eLeft = False; |
| const HChar* hName = NULL; |
| |
| # define XXX(_name) do { hAddr = &_name; hName = #_name; } while (0) |
| |
| switch (opc) { |
| /* Original MMX ones */ |
| case 0xFC: op = Iop_Add8x8; break; |
| case 0xFD: op = Iop_Add16x4; break; |
| case 0xFE: op = Iop_Add32x2; break; |
| |
| case 0xEC: op = Iop_QAdd8Sx8; break; |
| case 0xED: op = Iop_QAdd16Sx4; break; |
| |
| case 0xDC: op = Iop_QAdd8Ux8; break; |
| case 0xDD: op = Iop_QAdd16Ux4; break; |
| |
| case 0xF8: op = Iop_Sub8x8; break; |
| case 0xF9: op = Iop_Sub16x4; break; |
| case 0xFA: op = Iop_Sub32x2; break; |
| |
| case 0xE8: op = Iop_QSub8Sx8; break; |
| case 0xE9: op = Iop_QSub16Sx4; break; |
| |
| case 0xD8: op = Iop_QSub8Ux8; break; |
| case 0xD9: op = Iop_QSub16Ux4; break; |
| |
| case 0xE5: op = Iop_MulHi16Sx4; break; |
| case 0xD5: op = Iop_Mul16x4; break; |
| case 0xF5: XXX(x86g_calculate_mmx_pmaddwd); break; |
| |
| case 0x74: op = Iop_CmpEQ8x8; break; |
| case 0x75: op = Iop_CmpEQ16x4; break; |
| case 0x76: op = Iop_CmpEQ32x2; break; |
| |
| case 0x64: op = Iop_CmpGT8Sx8; break; |
| case 0x65: op = Iop_CmpGT16Sx4; break; |
| case 0x66: op = Iop_CmpGT32Sx2; break; |
| |
| case 0x6B: op = Iop_QNarrowBin32Sto16Sx4; eLeft = True; break; |
| case 0x63: op = Iop_QNarrowBin16Sto8Sx8; eLeft = True; break; |
| case 0x67: op = Iop_QNarrowBin16Sto8Ux8; eLeft = True; break; |
| |
| case 0x68: op = Iop_InterleaveHI8x8; eLeft = True; break; |
| case 0x69: op = Iop_InterleaveHI16x4; eLeft = True; break; |
| case 0x6A: op = Iop_InterleaveHI32x2; eLeft = True; break; |
| |
| case 0x60: op = Iop_InterleaveLO8x8; eLeft = True; break; |
| case 0x61: op = Iop_InterleaveLO16x4; eLeft = True; break; |
| case 0x62: op = Iop_InterleaveLO32x2; eLeft = True; break; |
| |
| case 0xDB: op = Iop_And64; break; |
| case 0xDF: op = Iop_And64; invG = True; break; |
| case 0xEB: op = Iop_Or64; break; |
| case 0xEF: /* Possibly do better here if argL and argR are the |
| same reg */ |
| op = Iop_Xor64; break; |
| |
| /* Introduced in SSE1 */ |
| case 0xE0: op = Iop_Avg8Ux8; break; |
| case 0xE3: op = Iop_Avg16Ux4; break; |
| case 0xEE: op = Iop_Max16Sx4; break; |
| case 0xDE: op = Iop_Max8Ux8; break; |
| case 0xEA: op = Iop_Min16Sx4; break; |
| case 0xDA: op = Iop_Min8Ux8; break; |
| case 0xE4: op = Iop_MulHi16Ux4; break; |
| case 0xF6: XXX(x86g_calculate_mmx_psadbw); break; |
| |
| /* Introduced in SSE2 */ |
| case 0xD4: op = Iop_Add64; break; |
| case 0xFB: op = Iop_Sub64; break; |
| |
| default: |
| vex_printf("\n0x%x\n", (Int)opc); |
| vpanic("dis_MMXop_regmem_to_reg"); |
| } |
| |
| # undef XXX |
| |
| argG = getMMXReg(gregOfRM(modrm)); |
| if (invG) |
| argG = unop(Iop_Not64, argG); |
| |
| if (isReg) { |
| delta++; |
| argE = getMMXReg(eregOfRM(modrm)); |
| } else { |
| Int len; |
| IRTemp addr = disAMode( &len, sorb, delta, dis_buf ); |
| delta += len; |
| argE = loadLE(Ity_I64, mkexpr(addr)); |
| } |
| |
| if (eLeft) { |
| argL = argE; |
| argR = argG; |
| } else { |
| argL = argG; |
| argR = argE; |
| } |
| |
| if (op != Iop_INVALID) { |
| vassert(hName == NULL); |
| vassert(hAddr == NULL); |
| assign(res, binop(op, argL, argR)); |
| } else { |
| vassert(hName != NULL); |
| vassert(hAddr != NULL); |
| assign( res, |
| mkIRExprCCall( |
| Ity_I64, |
| 0/*regparms*/, hName, hAddr, |
| mkIRExprVec_2( argL, argR ) |
| ) |
| ); |
| } |
| |
| putMMXReg( gregOfRM(modrm), mkexpr(res) ); |
| |
| DIP("%s%s %s, %s\n", |
| name, show_granularity ? nameMMXGran(opc & 3) : "", |
| ( isReg ? nameMMXReg(eregOfRM(modrm)) : dis_buf ), |
| nameMMXReg(gregOfRM(modrm)) ); |
| |
| return delta; |
| } |
| |
| |
| /* Vector by scalar shift of G by the amount specified at the bottom |
| of E. This is a straight copy of dis_SSE_shiftG_byE. */ |
| |
| static UInt dis_MMX_shiftG_byE ( UChar sorb, Int delta, |
| const HChar* opname, IROp op ) |
| { |
| HChar dis_buf[50]; |
| Int alen, size; |
| IRTemp addr; |
| Bool shl, shr, sar; |
| UChar rm = getIByte(delta); |
| IRTemp g0 = newTemp(Ity_I64); |
| IRTemp g1 = newTemp(Ity_I64); |
| IRTemp amt = newTemp(Ity_I32); |
| IRTemp amt8 = newTemp(Ity_I8); |
| |
| if (epartIsReg(rm)) { |
| assign( amt, unop(Iop_64to32, getMMXReg(eregOfRM(rm))) ); |
| DIP("%s %s,%s\n", opname, |
| nameMMXReg(eregOfRM(rm)), |
| nameMMXReg(gregOfRM(rm)) ); |
| delta++; |
| } else { |
| addr = disAMode ( &alen, sorb, delta, dis_buf ); |
| assign( amt, loadLE(Ity_I32, mkexpr(addr)) ); |
| DIP("%s %s,%s\n", opname, |
| dis_buf, |
| nameMMXReg(gregOfRM(rm)) ); |
| delta += alen; |
| } |
| assign( g0, getMMXReg(gregOfRM(rm)) ); |
| assign( amt8, unop(Iop_32to8, mkexpr(amt)) ); |
| |
| shl = shr = sar = False; |
| size = 0; |
| switch (op) { |
| case Iop_ShlN16x4: shl = True; size = 32; break; |
| case Iop_ShlN32x2: shl = True; size = 32; break; |
| case Iop_Shl64: shl = True; size = 64; break; |
| case Iop_ShrN16x4: shr = True; size = 16; break; |
| case Iop_ShrN32x2: shr = True; size = 32; break; |
| case Iop_Shr64: shr = True; size = 64; break; |
| case Iop_SarN16x4: sar = True; size = 16; break; |
| case Iop_SarN32x2: sar = True; size = 32; break; |
| default: vassert(0); |
| } |
| |
| if (shl || shr) { |
| assign( |
| g1, |
| IRExpr_ITE( |
| binop(Iop_CmpLT32U,mkexpr(amt),mkU32(size)), |
| binop(op, mkexpr(g0), mkexpr(amt8)), |
| mkU64(0) |
| ) |
| ); |
| } else |
| if (sar) { |
| assign( |
| g1, |
| IRExpr_ITE( |
| binop(Iop_CmpLT32U,mkexpr(amt),mkU32(size)), |
| binop(op, mkexpr(g0), mkexpr(amt8)), |
| binop(op, mkexpr(g0), mkU8(size-1)) |
| ) |
| ); |
| } else { |
| /*NOTREACHED*/ |
| vassert(0); |
| } |
| |
| putMMXReg( gregOfRM(rm), mkexpr(g1) ); |
| return delta; |
| } |
| |
| |
| /* Vector by scalar shift of E by an immediate byte. This is a |
| straight copy of dis_SSE_shiftE_imm. */ |
| |
| static |
| UInt dis_MMX_shiftE_imm ( Int delta, const HChar* opname, IROp op ) |
| { |
| Bool shl, shr, sar; |
| UChar rm = getIByte(delta); |
| IRTemp e0 = newTemp(Ity_I64); |
| IRTemp e1 = newTemp(Ity_I64); |
| UChar amt, size; |
| vassert(epartIsReg(rm)); |
| vassert(gregOfRM(rm) == 2 |
| || gregOfRM(rm) == 4 || gregOfRM(rm) == 6); |
| amt = getIByte(delta+1); |
| delta += 2; |
| DIP("%s $%d,%s\n", opname, |
| (Int)amt, |
| nameMMXReg(eregOfRM(rm)) ); |
| |
| assign( e0, getMMXReg(eregOfRM(rm)) ); |
| |
| shl = shr = sar = False; |
| size = 0; |
| switch (op) { |
| case Iop_ShlN16x4: shl = True; size = 16; break; |
| case Iop_ShlN32x2: shl = True; size = 32; break; |
| case Iop_Shl64: shl = True; size = 64; break; |
| case Iop_SarN16x4: sar = True; size = 16; break; |
| case Iop_SarN32x2: sar = True; size = 32; break; |
| case Iop_ShrN16x4: shr = True; size = 16; break; |
| case Iop_ShrN32x2: shr = True; size = 32; break; |
| case Iop_Shr64: shr = True; size = 64; break; |
| default: vassert(0); |
| } |
| |
| if (shl || shr) { |
| assign( e1, amt >= size |
| ? mkU64(0) |
| : binop(op, mkexpr(e0), mkU8(amt)) |
| ); |
| } else |
| if (sar) { |
| assign( e1, amt >= size |
| ? binop(op, mkexpr(e0), mkU8(size-1)) |
| : binop(op, mkexpr(e0), mkU8(amt)) |
| ); |
| } else { |
| /*NOTREACHED*/ |
| vassert(0); |
| } |
| |
| putMMXReg( eregOfRM(rm), mkexpr(e1) ); |
| return delta; |
| } |
| |
| |
| /* Completely handle all MMX instructions except emms. */ |
| |
| static |
| UInt dis_MMX ( Bool* decode_ok, UChar sorb, Int sz, Int delta ) |
| { |
| Int len; |
| UChar modrm; |
| HChar dis_buf[50]; |
| UChar opc = getIByte(delta); |
| delta++; |
| |
| /* dis_MMX handles all insns except emms. */ |
| do_MMX_preamble(); |
| |
| switch (opc) { |
| |
| case 0x6E: |
| /* MOVD (src)ireg-or-mem (E), (dst)mmxreg (G)*/ |
| if (sz != 4) |
| goto mmx_decode_failure; |
| modrm = getIByte(delta); |
| if (epartIsReg(modrm)) { |
| delta++; |
| putMMXReg( |
| gregOfRM(modrm), |
| binop( Iop_32HLto64, |
| mkU32(0), |
| getIReg(4, eregOfRM(modrm)) ) ); |
| DIP("movd %s, %s\n", |
| nameIReg(4,eregOfRM(modrm)), nameMMXReg(gregOfRM(modrm))); |
| } else { |
| IRTemp addr = disAMode( &len, sorb, delta, dis_buf ); |
| delta += len; |
| putMMXReg( |
| gregOfRM(modrm), |
| binop( Iop_32HLto64, |
| mkU32(0), |
| loadLE(Ity_I32, mkexpr(addr)) ) ); |
| DIP("movd %s, %s\n", dis_buf, nameMMXReg(gregOfRM(modrm))); |
| } |
| break; |
| |
| case 0x7E: /* MOVD (src)mmxreg (G), (dst)ireg-or-mem (E) */ |
| if (sz != 4) |
| goto mmx_decode_failure; |
| modrm = getIByte(delta); |
| if (epartIsReg(modrm)) { |
| delta++; |
| putIReg( 4, eregOfRM(modrm), |
| unop(Iop_64to32, getMMXReg(gregOfRM(modrm)) ) ); |
| DIP("movd %s, %s\n", |
| nameMMXReg(gregOfRM(modrm)), nameIReg(4,eregOfRM(modrm))); |
| } else { |
| IRTemp addr = disAMode( &len, sorb, delta, dis_buf ); |
| delta += len; |
| storeLE( mkexpr(addr), |
| unop(Iop_64to32, getMMXReg(gregOfRM(modrm)) ) ); |
| DIP("movd %s, %s\n", nameMMXReg(gregOfRM(modrm)), dis_buf); |
| } |
| break; |
| |
| case 0x6F: |
| /* MOVQ (src)mmxreg-or-mem, (dst)mmxreg */ |
| if (sz != 4) |
| goto mmx_decode_failure; |
| modrm = getIByte(delta); |
| if (epartIsReg(modrm)) { |
| delta++; |
| putMMXReg( gregOfRM(modrm), getMMXReg(eregOfRM(modrm)) ); |
| DIP("movq %s, %s\n", |
| nameMMXReg(eregOfRM(modrm)), nameMMXReg(gregOfRM(modrm))); |
| } else { |
| IRTemp addr = disAMode( &len, sorb, delta, dis_buf ); |
| delta += len; |
| putMMXReg( gregOfRM(modrm), loadLE(Ity_I64, mkexpr(addr)) ); |
| DIP("movq %s, %s\n", |
| dis_buf, nameMMXReg(gregOfRM(modrm))); |
| } |
| break; |
| |
| case 0x7F: |
| /* MOVQ (src)mmxreg, (dst)mmxreg-or-mem */ |
| if (sz != 4) |
| goto mmx_decode_failure; |
| modrm = getIByte(delta); |
| if (epartIsReg(modrm)) { |
| delta++; |
| putMMXReg( eregOfRM(modrm), getMMXReg(gregOfRM(modrm)) ); |
| DIP("movq %s, %s\n", |
| nameMMXReg(gregOfRM(modrm)), nameMMXReg(eregOfRM(modrm))); |
| } else { |
| IRTemp addr = disAMode( &len, sorb, delta, dis_buf ); |
| delta += len; |
| storeLE( mkexpr(addr), getMMXReg(gregOfRM(modrm)) ); |
| DIP("mov(nt)q %s, %s\n", |
| nameMMXReg(gregOfRM(modrm)), dis_buf); |
| } |
| break; |
| |
| case 0xFC: |
| case 0xFD: |
| case 0xFE: /* PADDgg (src)mmxreg-or-mem, (dst)mmxreg */ |
| if (sz != 4) |
| goto mmx_decode_failure; |
| delta = dis_MMXop_regmem_to_reg ( sorb, delta, opc, "padd", True ); |
| break; |
| |
| case 0xEC: |
| case 0xED: /* PADDSgg (src)mmxreg-or-mem, (dst)mmxreg */ |
| if (sz != 4) |
| goto mmx_decode_failure; |
| delta = dis_MMXop_regmem_to_reg ( sorb, delta, opc, "padds", True ); |
| break; |
| |
| case 0xDC: |
| case 0xDD: /* PADDUSgg (src)mmxreg-or-mem, (dst)mmxreg */ |
| if (sz != 4) |
| goto mmx_decode_failure; |
| delta = dis_MMXop_regmem_to_reg ( sorb, delta, opc, "paddus", True ); |
| break; |
| |
| case 0xF8: |
| case 0xF9: |
| case 0xFA: /* PSUBgg (src)mmxreg-or-mem, (dst)mmxreg */ |
| if (sz != 4) |
| goto mmx_decode_failure; |
| delta = dis_MMXop_regmem_to_reg ( sorb, delta, opc, "psub", True ); |
| break; |
| |
| case 0xE8: |
| case 0xE9: /* PSUBSgg (src)mmxreg-or-mem, (dst)mmxreg */ |
| if (sz != 4) |
| goto mmx_decode_failure; |
| delta = dis_MMXop_regmem_to_reg ( sorb, delta, opc, "psubs", True ); |
| break; |
| |
| case 0xD8: |
| case 0xD9: /* PSUBUSgg (src)mmxreg-or-mem, (dst)mmxreg */ |
| if (sz != 4) |
| goto mmx_decode_failure; |
| delta = dis_MMXop_regmem_to_reg ( sorb, delta, opc, "psubus", True ); |
| break; |
| |
| case 0xE5: /* PMULHW (src)mmxreg-or-mem, (dst)mmxreg */ |
| if (sz != 4) |
| goto mmx_decode_failure; |
| delta = dis_MMXop_regmem_to_reg ( sorb, delta, opc, "pmulhw", False ); |
| break; |
| |
| case 0xD5: /* PMULLW (src)mmxreg-or-mem, (dst)mmxreg */ |
| if (sz != 4) |
| goto mmx_decode_failure; |
| delta = dis_MMXop_regmem_to_reg ( sorb, delta, opc, "pmullw", False ); |
| break; |
| |
| case 0xF5: /* PMADDWD (src)mmxreg-or-mem, (dst)mmxreg */ |
| vassert(sz == 4); |
| delta = dis_MMXop_regmem_to_reg ( sorb, delta, opc, "pmaddwd", False ); |
| break; |
| |
| case 0x74: |
| case 0x75: |
| case 0x76: /* PCMPEQgg (src)mmxreg-or-mem, (dst)mmxreg */ |
| if (sz != 4) |
| goto mmx_decode_failure; |
| delta = dis_MMXop_regmem_to_reg ( sorb, delta, opc, "pcmpeq", True ); |
| break; |
| |
| case 0x64: |
| case 0x65: |
| case 0x66: /* PCMPGTgg (src)mmxreg-or-mem, (dst)mmxreg */ |
| if (sz != 4) |
| goto mmx_decode_failure; |
| delta = dis_MMXop_regmem_to_reg ( sorb, delta, opc, "pcmpgt", True ); |
| break; |
| |
| case 0x6B: /* PACKSSDW (src)mmxreg-or-mem, (dst)mmxreg */ |
| if (sz != 4) |
| goto mmx_decode_failure; |
| delta = dis_MMXop_regmem_to_reg ( sorb, delta, opc, "packssdw", False ); |
| break; |
| |
| case 0x63: /* PACKSSWB (src)mmxreg-or-mem, (dst)mmxreg */ |
| if (sz != 4) |
| goto mmx_decode_failure; |
| delta = dis_MMXop_regmem_to_reg ( sorb, delta, opc, "packsswb", False ); |
| break; |
| |
| case 0x67: /* PACKUSWB (src)mmxreg-or-mem, (dst)mmxreg */ |
| if (sz != 4) |
| goto mmx_decode_failure; |
| delta = dis_MMXop_regmem_to_reg ( sorb, delta, opc, "packuswb", False ); |
| break; |
| |
| case 0x68: |
| case 0x69: |
| case 0x6A: /* PUNPCKHgg (src)mmxreg-or-mem, (dst)mmxreg */ |
| if (sz != 4) |
| goto mmx_decode_failure; |
| delta = dis_MMXop_regmem_to_reg ( sorb, delta, opc, "punpckh", True ); |
| break; |
| |
| case 0x60: |
| case 0x61: |
| case 0x62: /* PUNPCKLgg (src)mmxreg-or-mem, (dst)mmxreg */ |
| if (sz != 4) |
| goto mmx_decode_failure; |
| delta = dis_MMXop_regmem_to_reg ( sorb, delta, opc, "punpckl", True ); |
| break; |
| |
| case 0xDB: /* PAND (src)mmxreg-or-mem, (dst)mmxreg */ |
| if (sz != 4) |
| goto mmx_decode_failure; |
| delta = dis_MMXop_regmem_to_reg ( sorb, delta, opc, "pand", False ); |
| break; |
| |
| case 0xDF: /* PANDN (src)mmxreg-or-mem, (dst)mmxreg */ |
| if (sz != 4) |
| goto mmx_decode_failure; |
| delta = dis_MMXop_regmem_to_reg ( sorb, delta, opc, "pandn", False ); |
| break; |
| |
| case 0xEB: /* POR (src)mmxreg-or-mem, (dst)mmxreg */ |
| if (sz != 4) |
| goto mmx_decode_failure; |
| delta = dis_MMXop_regmem_to_reg ( sorb, delta, opc, "por", False ); |
| break; |
| |
| case 0xEF: /* PXOR (src)mmxreg-or-mem, (dst)mmxreg */ |
| if (sz != 4) |
| goto mmx_decode_failure; |
| delta = dis_MMXop_regmem_to_reg ( sorb, delta, opc, "pxor", False ); |
| break; |
| |
| # define SHIFT_BY_REG(_name,_op) \ |
| delta = dis_MMX_shiftG_byE(sorb, delta, _name, _op); \ |
| break; |
| |
| /* PSLLgg (src)mmxreg-or-mem, (dst)mmxreg */ |
| case 0xF1: SHIFT_BY_REG("psllw", Iop_ShlN16x4); |
| case 0xF2: SHIFT_BY_REG("pslld", Iop_ShlN32x2); |
| case 0xF3: SHIFT_BY_REG("psllq", Iop_Shl64); |
| |
| /* PSRLgg (src)mmxreg-or-mem, (dst)mmxreg */ |
| case 0xD1: SHIFT_BY_REG("psrlw", Iop_ShrN16x4); |
| case 0xD2: SHIFT_BY_REG("psrld", Iop_ShrN32x2); |
| case 0xD3: SHIFT_BY_REG("psrlq", Iop_Shr64); |
| |
| /* PSRAgg (src)mmxreg-or-mem, (dst)mmxreg */ |
| case 0xE1: SHIFT_BY_REG("psraw", Iop_SarN16x4); |
| case 0xE2: SHIFT_BY_REG("psrad", Iop_SarN32x2); |
| |
| # undef SHIFT_BY_REG |
| |
| case 0x71: |
| case 0x72: |
| case 0x73: { |
| /* (sz==4): PSLLgg/PSRAgg/PSRLgg mmxreg by imm8 */ |
| UChar byte2, subopc; |
| if (sz != 4) |
| goto mmx_decode_failure; |
| byte2 = getIByte(delta); /* amode / sub-opcode */ |
| subopc = toUChar( (byte2 >> 3) & 7 ); |
| |
| # define SHIFT_BY_IMM(_name,_op) \ |
| do { delta = dis_MMX_shiftE_imm(delta,_name,_op); \ |
| } while (0) |
| |
| if (subopc == 2 /*SRL*/ && opc == 0x71) |
| SHIFT_BY_IMM("psrlw", Iop_ShrN16x4); |
| else if (subopc == 2 /*SRL*/ && opc == 0x72) |
| SHIFT_BY_IMM("psrld", Iop_ShrN32x2); |
| else if (subopc == 2 /*SRL*/ && opc == 0x73) |
| SHIFT_BY_IMM("psrlq", Iop_Shr64); |
| |
| else if (subopc == 4 /*SAR*/ && opc == 0x71) |
| SHIFT_BY_IMM("psraw", Iop_SarN16x4); |
| else if (subopc == 4 /*SAR*/ && opc == 0x72) |
| SHIFT_BY_IMM("psrad", Iop_SarN32x2); |
| |
| else if (subopc == 6 /*SHL*/ && opc == 0x71) |
| SHIFT_BY_IMM("psllw", Iop_ShlN16x4); |
| else if (subopc == 6 /*SHL*/ && opc == 0x72) |
| SHIFT_BY_IMM("pslld", Iop_ShlN32x2); |
| else if (subopc == 6 /*SHL*/ && opc == 0x73) |
| SHIFT_BY_IMM("psllq", Iop_Shl64); |
| |
| else goto mmx_decode_failure; |
| |
| # undef SHIFT_BY_IMM |
| break; |
| } |
| |
| case 0xF7: { |
| IRTemp addr = newTemp(Ity_I32); |
| IRTemp regD = newTemp(Ity_I64); |
| IRTemp regM = newTemp(Ity_I64); |
| IRTemp mask = newTemp(Ity_I64); |
| IRTemp olddata = newTemp(Ity_I64); |
| IRTemp newdata = newTemp(Ity_I64); |
| |
| modrm = getIByte(delta); |
| if (sz != 4 || (!epartIsReg(modrm))) |
| goto mmx_decode_failure; |
| delta++; |
| |
| assign( addr, handleSegOverride( sorb, getIReg(4, R_EDI) )); |
| assign( regM, getMMXReg( eregOfRM(modrm) )); |
| assign( regD, getMMXReg( gregOfRM(modrm) )); |
| assign( mask, binop(Iop_SarN8x8, mkexpr(regM), mkU8(7)) ); |
| assign( olddata, loadLE( Ity_I64, mkexpr(addr) )); |
| assign( newdata, |
| binop(Iop_Or64, |
| binop(Iop_And64, |
| mkexpr(regD), |
| mkexpr(mask) ), |
| binop(Iop_And64, |
| mkexpr(olddata), |
| unop(Iop_Not64, mkexpr(mask)))) ); |
| storeLE( mkexpr(addr), mkexpr(newdata) ); |
| DIP("maskmovq %s,%s\n", nameMMXReg( eregOfRM(modrm) ), |
| nameMMXReg( gregOfRM(modrm) ) ); |
| break; |
| } |
| |
| /* --- MMX decode failure --- */ |
| default: |
| mmx_decode_failure: |
| *decode_ok = False; |
| return delta; /* ignored */ |
| |
| } |
| |
| *decode_ok = True; |
| return delta; |
| } |
| |
| |
| /*------------------------------------------------------------*/ |
| /*--- More misc arithmetic and other obscure insns. ---*/ |
| /*------------------------------------------------------------*/ |
| |
| /* Double length left and right shifts. Apparently only required in |
| v-size (no b- variant). */ |
| static |
| UInt dis_SHLRD_Gv_Ev ( UChar sorb, |
| Int delta, UChar modrm, |
| Int sz, |
| IRExpr* shift_amt, |
| Bool amt_is_literal, |
| const HChar* shift_amt_txt, |
| Bool left_shift ) |
| { |
| /* shift_amt :: Ity_I8 is the amount to shift. shift_amt_txt is used |
| for printing it. And eip on entry points at the modrm byte. */ |
| Int len; |
| HChar dis_buf[50]; |
| |
| IRType ty = szToITy(sz); |
| IRTemp gsrc = newTemp(ty); |
| IRTemp esrc = newTemp(ty); |
| IRTemp addr = IRTemp_INVALID; |
| IRTemp tmpSH = newTemp(Ity_I8); |
| IRTemp tmpL = IRTemp_INVALID; |
| IRTemp tmpRes = IRTemp_INVALID; |
| IRTemp tmpSubSh = IRTemp_INVALID; |
| IROp mkpair; |
| IROp getres; |
| IROp shift; |
| IRExpr* mask = NULL; |
| |
| vassert(sz == 2 || sz == 4); |
| |
| /* The E-part is the destination; this is shifted. The G-part |
| supplies bits to be shifted into the E-part, but is not |
| changed. |
| |
| If shifting left, form a double-length word with E at the top |
| and G at the bottom, and shift this left. The result is then in |
| the high part. |
| |
| If shifting right, form a double-length word with G at the top |
| and E at the bottom, and shift this right. The result is then |
| at the bottom. */ |
| |
| /* Fetch the operands. */ |
| |
| assign( gsrc, getIReg(sz, gregOfRM(modrm)) ); |
| |
| if (epartIsReg(modrm)) { |
| delta++; |
| assign( esrc, getIReg(sz, eregOfRM(modrm)) ); |
| DIP("sh%cd%c %s, %s, %s\n", |
| ( left_shift ? 'l' : 'r' ), nameISize(sz), |
| shift_amt_txt, |
| nameIReg(sz, gregOfRM(modrm)), nameIReg(sz, eregOfRM(modrm))); |
| } else { |
| addr = disAMode ( &len, sorb, delta, dis_buf ); |
| delta += len; |
| assign( esrc, loadLE(ty, mkexpr(addr)) ); |
| DIP("sh%cd%c %s, %s, %s\n", |
| ( left_shift ? 'l' : 'r' ), nameISize(sz), |
| shift_amt_txt, |
| nameIReg(sz, gregOfRM(modrm)), dis_buf); |
| } |
| |
| /* Round up the relevant primops. */ |
| |
| if (sz == 4) { |
| tmpL = newTemp(Ity_I64); |
| tmpRes = newTemp(Ity_I32); |
| tmpSubSh = newTemp(Ity_I32); |
| mkpair = Iop_32HLto64; |
| getres = left_shift ? Iop_64HIto32 : Iop_64to32; |
| shift = left_shift ? Iop_Shl64 : Iop_Shr64; |
| mask = mkU8(31); |
| } else { |
| /* sz == 2 */ |
| tmpL = newTemp(Ity_I32); |
| tmpRes = newTemp(Ity_I16); |
| tmpSubSh = newTemp(Ity_I16); |
| mkpair = Iop_16HLto32; |
| getres = left_shift ? Iop_32HIto16 : Iop_32to16; |
| shift = left_shift ? Iop_Shl32 : Iop_Shr32; |
| mask = mkU8(15); |
| } |
| |
| /* Do the shift, calculate the subshift value, and set |
| the flag thunk. */ |
| |
| assign( tmpSH, binop(Iop_And8, shift_amt, mask) ); |
| |
| if (left_shift) |
| assign( tmpL, binop(mkpair, mkexpr(esrc), mkexpr(gsrc)) ); |
| else |
| assign( tmpL, binop(mkpair, mkexpr(gsrc), mkexpr(esrc)) ); |
| |
| assign( tmpRes, unop(getres, binop(shift, mkexpr(tmpL), mkexpr(tmpSH)) ) ); |
| assign( tmpSubSh, |
| unop(getres, |
| binop(shift, |
| mkexpr(tmpL), |
| binop(Iop_And8, |
| binop(Iop_Sub8, mkexpr(tmpSH), mkU8(1) ), |
| mask))) ); |
| |
| setFlags_DEP1_DEP2_shift ( left_shift ? Iop_Shl32 : Iop_Sar32, |
| tmpRes, tmpSubSh, ty, tmpSH ); |
| |
| /* Put result back. */ |
| |
| if (epartIsReg(modrm)) { |
| putIReg(sz, eregOfRM(modrm), mkexpr(tmpRes)); |
| } else { |
| storeLE( mkexpr(addr), mkexpr(tmpRes) ); |
| } |
| |
| if (amt_is_literal) delta++; |
| return delta; |
| } |
| |
| |
| /* Handle BT/BTS/BTR/BTC Gv, Ev. Apparently b-size is not |
| required. */ |
| |
| typedef enum { BtOpNone, BtOpSet, BtOpReset, BtOpComp } BtOp; |
| |
| static const HChar* nameBtOp ( BtOp op ) |
| { |
| switch (op) { |
| case BtOpNone: return ""; |
| case BtOpSet: return "s"; |
| case BtOpReset: return "r"; |
| case BtOpComp: return "c"; |
| default: vpanic("nameBtOp(x86)"); |
| } |
| } |
| |
| |
| static |
| UInt dis_bt_G_E ( VexAbiInfo* vbi, |
| UChar sorb, Bool locked, Int sz, Int delta, BtOp op ) |
| { |
| HChar dis_buf[50]; |
| UChar modrm; |
| Int len; |
| IRTemp t_fetched, t_bitno0, t_bitno1, t_bitno2, t_addr0, |
| t_addr1, t_esp, t_mask, t_new; |
| |
| vassert(sz == 2 || sz == 4); |
| |
| t_fetched = t_bitno0 = t_bitno1 = t_bitno2 |
| = t_addr0 = t_addr1 = t_esp |
| = t_mask = t_new = IRTemp_INVALID; |
| |
| t_fetched = newTemp(Ity_I8); |
| t_new = newTemp(Ity_I8); |
| t_bitno0 = newTemp(Ity_I32); |
| t_bitno1 = newTemp(Ity_I32); |
| t_bitno2 = newTemp(Ity_I8); |
| t_addr1 = newTemp(Ity_I32); |
| modrm = getIByte(delta); |
| |
| assign( t_bitno0, widenSto32(getIReg(sz, gregOfRM(modrm))) ); |
| |
| if (epartIsReg(modrm)) { |
| delta++; |
| /* Get it onto the client's stack. */ |
| t_esp = newTemp(Ity_I32); |
| t_addr0 = newTemp(Ity_I32); |
| |
| /* For the choice of the value 128, see comment in dis_bt_G_E in |
| guest_amd64_toIR.c. We point out here only that 128 is |
| fast-cased in Memcheck and is > 0, so seems like a good |
| choice. */ |
| vassert(vbi->guest_stack_redzone_size == 0); |
| assign( t_esp, binop(Iop_Sub32, getIReg(4, R_ESP), mkU32(128)) ); |
| putIReg(4, R_ESP, mkexpr(t_esp)); |
| |
| storeLE( mkexpr(t_esp), getIReg(sz, eregOfRM(modrm)) ); |
| |
| /* Make t_addr0 point at it. */ |
| assign( t_addr0, mkexpr(t_esp) ); |
| |
| /* Mask out upper bits of the shift amount, since we're doing a |
| reg. */ |
| assign( t_bitno1, binop(Iop_And32, |
| mkexpr(t_bitno0), |
| mkU32(sz == 4 ? 31 : 15)) ); |
| |
| } else { |
| t_addr0 = disAMode ( &len, sorb, delta, dis_buf ); |
| delta += len; |
| assign( t_bitno1, mkexpr(t_bitno0) ); |
| } |
| |
| /* At this point: t_addr0 is the address being operated on. If it |
| was a reg, we will have pushed it onto the client's stack. |
| t_bitno1 is the bit number, suitably masked in the case of a |
| reg. */ |
| |
| /* Now the main sequence. */ |
| assign( t_addr1, |
| binop(Iop_Add32, |
| mkexpr(t_addr0), |
| binop(Iop_Sar32, mkexpr(t_bitno1), mkU8(3))) ); |
| |
| /* t_addr1 now holds effective address */ |
| |
| assign( t_bitno2, |
| unop(Iop_32to8, |
| binop(Iop_And32, mkexpr(t_bitno1), mkU32(7))) ); |
| |
| /* t_bitno2 contains offset of bit within byte */ |
| |
| if (op != BtOpNone) { |
| t_mask = newTemp(Ity_I8); |
| assign( t_mask, binop(Iop_Shl8, mkU8(1), mkexpr(t_bitno2)) ); |
| } |
| |
| /* t_mask is now a suitable byte mask */ |
| |
| assign( t_fetched, loadLE(Ity_I8, mkexpr(t_addr1)) ); |
| |
| if (op != BtOpNone) { |
| switch (op) { |
| case BtOpSet: |
| assign( t_new, |
| binop(Iop_Or8, mkexpr(t_fetched), mkexpr(t_mask)) ); |
| break; |
| case BtOpComp: |
| assign( t_new, |
| binop(Iop_Xor8, mkexpr(t_fetched), mkexpr(t_mask)) ); |
| break; |
| case BtOpReset: |
| assign( t_new, |
| binop(Iop_And8, mkexpr(t_fetched), |
| unop(Iop_Not8, mkexpr(t_mask))) ); |
| break; |
| default: |
| vpanic("dis_bt_G_E(x86)"); |
| } |
| if (locked && !epartIsReg(modrm)) { |
| casLE( mkexpr(t_addr1), mkexpr(t_fetched)/*expd*/, |
| mkexpr(t_new)/*new*/, |
| guest_EIP_curr_instr ); |
| } else { |
| storeLE( mkexpr(t_addr1), mkexpr(t_new) ); |
| } |
| } |
| |
| /* Side effect done; now get selected bit into Carry flag */ |
| /* Flags: C=selected bit, O,S,Z,A,P undefined, so are set to zero. */ |
| stmt( IRStmt_Put( OFFB_CC_OP, mkU32(X86G_CC_OP_COPY) )); |
| stmt( IRStmt_Put( OFFB_CC_DEP2, mkU32(0) )); |
| stmt( IRStmt_Put( |
| OFFB_CC_DEP1, |
| binop(Iop_And32, |
| binop(Iop_Shr32, |
| unop(Iop_8Uto32, mkexpr(t_fetched)), |
| mkexpr(t_bitno2)), |
| mkU32(1))) |
| ); |
| /* Set NDEP even though it isn't used. This makes redundant-PUT |
| elimination of previous stores to this field work better. */ |
| stmt( IRStmt_Put( OFFB_CC_NDEP, mkU32(0) )); |
| |
| /* Move reg operand from stack back to reg */ |
| if (epartIsReg(modrm)) { |
| /* t_esp still points at it. */ |
| putIReg(sz, eregOfRM(modrm), loadLE(szToITy(sz), mkexpr(t_esp)) ); |
| putIReg(4, R_ESP, binop(Iop_Add32, mkexpr(t_esp), mkU32(128)) ); |
| } |
| |
| DIP("bt%s%c %s, %s\n", |
| nameBtOp(op), nameISize(sz), nameIReg(sz, gregOfRM(modrm)), |
| ( epartIsReg(modrm) ? nameIReg(sz, eregOfRM(modrm)) : dis_buf ) ); |
| |
| return delta; |
| } |
| |
| |
| |
| /* Handle BSF/BSR. Only v-size seems necessary. */ |
| static |
| UInt dis_bs_E_G ( UChar sorb, Int sz, Int delta, Bool fwds ) |
| { |
| Bool isReg; |
| UChar modrm; |
| HChar dis_buf[50]; |
| |
| IRType ty = szToITy(sz); |
| IRTemp src = newTemp(ty); |
| IRTemp dst = newTemp(ty); |
| |
| IRTemp src32 = newTemp(Ity_I32); |
| IRTemp dst32 = newTemp(Ity_I32); |
| IRTemp srcB = newTemp(Ity_I1); |
| |
| vassert(sz == 4 || sz == 2); |
| |
| modrm = getIByte(delta); |
| |
| isReg = epartIsReg(modrm); |
| if (isReg) { |
| delta++; |
| assign( src, getIReg(sz, eregOfRM(modrm)) ); |
| } else { |
| Int len; |
| IRTemp addr = disAMode( &len, sorb, delta, dis_buf ); |
| delta += len; |
| assign( src, loadLE(ty, mkexpr(addr)) ); |
| } |
| |
| DIP("bs%c%c %s, %s\n", |
| fwds ? 'f' : 'r', nameISize(sz), |
| ( isReg ? nameIReg(sz, eregOfRM(modrm)) : dis_buf ), |
| nameIReg(sz, gregOfRM(modrm))); |
| |
| /* Generate a bool expression which is zero iff the original is |
| zero, and nonzero otherwise. Ask for a CmpNE version which, if |
| instrumented by Memcheck, is instrumented expensively, since |
| this may be used on the output of a preceding movmskb insn, |
| which has been known to be partially defined, and in need of |
| careful handling. */ |
| assign( srcB, binop(mkSizedOp(ty,Iop_ExpCmpNE8), |
| mkexpr(src), mkU(ty,0)) ); |
| |
| /* Flags: Z is 1 iff source value is zero. All others |
| are undefined -- we force them to zero. */ |
| stmt( IRStmt_Put( OFFB_CC_OP, mkU32(X86G_CC_OP_COPY) )); |
| stmt( IRStmt_Put( OFFB_CC_DEP2, mkU32(0) )); |
| stmt( IRStmt_Put( |
| OFFB_CC_DEP1, |
| IRExpr_ITE( mkexpr(srcB), |
| /* src!=0 */ |
| mkU32(0), |
| /* src==0 */ |
| mkU32(X86G_CC_MASK_Z) |
| ) |
| )); |
| /* Set NDEP even though it isn't used. This makes redundant-PUT |
| elimination of previous stores to this field work better. */ |
| stmt( IRStmt_Put( OFFB_CC_NDEP, mkU32(0) )); |
| |
| /* Result: iff source value is zero, we can't use |
| Iop_Clz32/Iop_Ctz32 as they have no defined result in that case. |
| But anyway, Intel x86 semantics say the result is undefined in |
| such situations. Hence handle the zero case specially. */ |
| |
| /* Bleh. What we compute: |
| |
| bsf32: if src == 0 then 0 else Ctz32(src) |
| bsr32: if src == 0 then 0 else 31 - Clz32(src) |
| |
| bsf16: if src == 0 then 0 else Ctz32(16Uto32(src)) |
| bsr16: if src == 0 then 0 else 31 - Clz32(16Uto32(src)) |
| |
| First, widen src to 32 bits if it is not already. |
| |
| Postscript 15 Oct 04: it seems that at least VIA Nehemiah leaves the |
| dst register unchanged when src == 0. Hence change accordingly. |
| */ |
| if (sz == 2) |
| assign( src32, unop(Iop_16Uto32, mkexpr(src)) ); |
| else |
| assign( src32, mkexpr(src) ); |
| |
| /* The main computation, guarding against zero. */ |
| assign( dst32, |
| IRExpr_ITE( |
| mkexpr(srcB), |
| /* src != 0 */ |
| fwds ? unop(Iop_Ctz32, mkexpr(src32)) |
| : binop(Iop_Sub32, |
| mkU32(31), |
| unop(Iop_Clz32, mkexpr(src32))), |
| /* src == 0 -- leave dst unchanged */ |
| widenUto32( getIReg( sz, gregOfRM(modrm) ) ) |
| ) |
| ); |
| |
| if (sz == 2) |
| assign( dst, unop(Iop_32to16, mkexpr(dst32)) ); |
| else |
| assign( dst, mkexpr(dst32) ); |
| |
| /* dump result back */ |
| putIReg( sz, gregOfRM(modrm), mkexpr(dst) ); |
| |
| return delta; |
| } |
| |
| |
| static |
| void codegen_xchg_eAX_Reg ( Int sz, Int reg ) |
| { |
| IRType ty = szToITy(sz); |
| IRTemp t1 = newTemp(ty); |
| IRTemp t2 = newTemp(ty); |
| vassert(sz == 2 || sz == 4); |
| assign( t1, getIReg(sz, R_EAX) ); |
| assign( t2, getIReg(sz, reg) ); |
| putIReg( sz, R_EAX, mkexpr(t2) ); |
| putIReg( sz, reg, mkexpr(t1) ); |
| DIP("xchg%c %s, %s\n", |
| nameISize(sz), nameIReg(sz, R_EAX), nameIReg(sz, reg)); |
| } |
| |
| |
| static |
| void codegen_SAHF ( void ) |
| { |
| /* Set the flags to: |
| (x86g_calculate_flags_all() & X86G_CC_MASK_O) -- retain the old O flag |
| | (%AH & (X86G_CC_MASK_S|X86G_CC_MASK_Z|X86G_CC_MASK_A |
| |X86G_CC_MASK_P|X86G_CC_MASK_C) |
| */ |
| UInt mask_SZACP = X86G_CC_MASK_S|X86G_CC_MASK_Z|X86G_CC_MASK_A |
| |X86G_CC_MASK_C|X86G_CC_MASK_P; |
| IRTemp oldflags = newTemp(Ity_I32); |
| assign( oldflags, mk_x86g_calculate_eflags_all() ); |
| stmt( IRStmt_Put( OFFB_CC_OP, mkU32(X86G_CC_OP_COPY) )); |
| stmt( IRStmt_Put( OFFB_CC_NDEP, mkU32(0) )); |
| stmt( IRStmt_Put( OFFB_CC_DEP2, mkU32(0) )); |
| stmt( IRStmt_Put( OFFB_CC_DEP1, |
| binop(Iop_Or32, |
| binop(Iop_And32, mkexpr(oldflags), mkU32(X86G_CC_MASK_O)), |
| binop(Iop_And32, |
| binop(Iop_Shr32, getIReg(4, R_EAX), mkU8(8)), |
| mkU32(mask_SZACP)) |
| ) |
| )); |
| /* Set NDEP even though it isn't used. This makes redundant-PUT |
| elimination of previous stores to this field work better. */ |
| stmt( IRStmt_Put( OFFB_CC_NDEP, mkU32(0) )); |
| } |
| |
| |
| static |
| void codegen_LAHF ( void ) |
| { |
| /* AH <- EFLAGS(SF:ZF:0:AF:0:PF:1:CF) */ |
| IRExpr* eax_with_hole; |
| IRExpr* new_byte; |
| IRExpr* new_eax; |
| UInt mask_SZACP = X86G_CC_MASK_S|X86G_CC_MASK_Z|X86G_CC_MASK_A |
| |X86G_CC_MASK_C|X86G_CC_MASK_P; |
| |
| IRTemp flags = newTemp(Ity_I32); |
| assign( flags, mk_x86g_calculate_eflags_all() ); |
| |
| eax_with_hole |
| = binop(Iop_And32, getIReg(4, R_EAX), mkU32(0xFFFF00FF)); |
| new_byte |
| = binop(Iop_Or32, binop(Iop_And32, mkexpr(flags), mkU32(mask_SZACP)), |
| mkU32(1<<1)); |
| new_eax |
| = binop(Iop_Or32, eax_with_hole, |
| binop(Iop_Shl32, new_byte, mkU8(8))); |
| putIReg(4, R_EAX, new_eax); |
| } |
| |
| |
| static |
| UInt dis_cmpxchg_G_E ( UChar sorb, |
| Bool locked, |
| Int size, |
| Int delta0 ) |
| { |
| HChar dis_buf[50]; |
| Int len; |
| |
| IRType ty = szToITy(size); |
| IRTemp acc = newTemp(ty); |
| IRTemp src = newTemp(ty); |
| IRTemp dest = newTemp(ty); |
| IRTemp dest2 = newTemp(ty); |
| IRTemp acc2 = newTemp(ty); |
| IRTemp cond = newTemp(Ity_I1); |
| IRTemp addr = IRTemp_INVALID; |
| UChar rm = getUChar(delta0); |
| |
| /* There are 3 cases to consider: |
| |
| reg-reg: ignore any lock prefix, generate sequence based |
| on ITE |
| |
| reg-mem, not locked: ignore any lock prefix, generate sequence |
| based on ITE |
| |
| reg-mem, locked: use IRCAS |
| */ |
| if (epartIsReg(rm)) { |
| /* case 1 */ |
| assign( dest, getIReg(size, eregOfRM(rm)) ); |
| delta0++; |
| assign( src, getIReg(size, gregOfRM(rm)) ); |
| assign( acc, getIReg(size, R_EAX) ); |
| setFlags_DEP1_DEP2(Iop_Sub8, acc, dest, ty); |
| assign( cond, mk_x86g_calculate_condition(X86CondZ) ); |
| assign( dest2, IRExpr_ITE(mkexpr(cond), mkexpr(src), mkexpr(dest)) ); |
| assign( acc2, IRExpr_ITE(mkexpr(cond), mkexpr(acc), mkexpr(dest)) ); |
| putIReg(size, R_EAX, mkexpr(acc2)); |
| putIReg(size, eregOfRM(rm), mkexpr(dest2)); |
| DIP("cmpxchg%c %s,%s\n", nameISize(size), |
| nameIReg(size,gregOfRM(rm)), |
| nameIReg(size,eregOfRM(rm)) ); |
| } |
| else if (!epartIsReg(rm) && !locked) { |
| /* case 2 */ |
| addr = disAMode ( &len, sorb, delta0, dis_buf ); |
| assign( dest, loadLE(ty, mkexpr(addr)) ); |
| delta0 += len; |
| assign( src, getIReg(size, gregOfRM(rm)) ); |
| assign( acc, getIReg(size, R_EAX) ); |
| setFlags_DEP1_DEP2(Iop_Sub8, acc, dest, ty); |
| assign( cond, mk_x86g_calculate_condition(X86CondZ) ); |
| assign( dest2, IRExpr_ITE(mkexpr(cond), mkexpr(src), mkexpr(dest)) ); |
| assign( acc2, IRExpr_ITE(mkexpr(cond), mkexpr(acc), mkexpr(dest)) ); |
| putIReg(size, R_EAX, mkexpr(acc2)); |
| storeLE( mkexpr(addr), mkexpr(dest2) ); |
| DIP("cmpxchg%c %s,%s\n", nameISize(size), |
| nameIReg(size,gregOfRM(rm)), dis_buf); |
| } |
| else if (!epartIsReg(rm) && locked) { |
| /* case 3 */ |
| /* src is new value. acc is expected value. dest is old value. |
| Compute success from the output of the IRCAS, and steer the |
| new value for EAX accordingly: in case of success, EAX is |
| unchanged. */ |
| addr = disAMode ( &len, sorb, delta0, dis_buf ); |
| delta0 += len; |
| assign( src, getIReg(size, gregOfRM(rm)) ); |
| assign( acc, getIReg(size, R_EAX) ); |
| stmt( IRStmt_CAS( |
| mkIRCAS( IRTemp_INVALID, dest, Iend_LE, mkexpr(addr), |
| NULL, mkexpr(acc), NULL, mkexpr(src) ) |
| )); |
| setFlags_DEP1_DEP2(Iop_Sub8, acc, dest, ty); |
| assign( cond, mk_x86g_calculate_condition(X86CondZ) ); |
| assign( acc2, IRExpr_ITE(mkexpr(cond), mkexpr(acc), mkexpr(dest)) ); |
| putIReg(size, R_EAX, mkexpr(acc2)); |
| DIP("cmpxchg%c %s,%s\n", nameISize(size), |
| nameIReg(size,gregOfRM(rm)), dis_buf); |
| } |
| else vassert(0); |
| |
| return delta0; |
| } |
| |
| |
| /* Handle conditional move instructions of the form |
| cmovcc E(reg-or-mem), G(reg) |
| |
| E(src) is reg-or-mem |
| G(dst) is reg. |
| |
| If E is reg, --> GET %E, tmps |
| GET %G, tmpd |
| CMOVcc tmps, tmpd |
| PUT tmpd, %G |
| |
| If E is mem --> (getAddr E) -> tmpa |
| LD (tmpa), tmps |
| GET %G, tmpd |
| CMOVcc tmps, tmpd |
| PUT tmpd, %G |
| */ |
| static |
| UInt dis_cmov_E_G ( UChar sorb, |
| Int sz, |
| X86Condcode cond, |
| Int delta0 ) |
| { |
| UChar rm = getIByte(delta0); |
| HChar dis_buf[50]; |
| Int len; |
| |
| IRType ty = szToITy(sz); |
| IRTemp tmps = newTemp(ty); |
| IRTemp tmpd = newTemp(ty); |
| |
| if (epartIsReg(rm)) { |
| assign( tmps, getIReg(sz, eregOfRM(rm)) ); |
| assign( tmpd, getIReg(sz, gregOfRM(rm)) ); |
| |
| putIReg(sz, gregOfRM(rm), |
| IRExpr_ITE( mk_x86g_calculate_condition(cond), |
| mkexpr(tmps), |
| mkexpr(tmpd) ) |
| ); |
| DIP("cmov%c%s %s,%s\n", nameISize(sz), |
| name_X86Condcode(cond), |
| nameIReg(sz,eregOfRM(rm)), |
| nameIReg(sz,gregOfRM(rm))); |
| return 1+delta0; |
| } |
| |
| /* E refers to memory */ |
| { |
| IRTemp addr = disAMode ( &len, sorb, delta0, dis_buf ); |
| assign( tmps, loadLE(ty, mkexpr(addr)) ); |
| assign( tmpd, getIReg(sz, gregOfRM(rm)) ); |
| |
| putIReg(sz, gregOfRM(rm), |
| IRExpr_ITE( mk_x86g_calculate_condition(cond), |
| mkexpr(tmps), |
| mkexpr(tmpd) ) |
| ); |
| |
| DIP("cmov%c%s %s,%s\n", nameISize(sz), |
| name_X86Condcode(cond), |
| dis_buf, |
| nameIReg(sz,gregOfRM(rm))); |
| return len+delta0; |
| } |
| } |
| |
| |
| static |
| UInt dis_xadd_G_E ( UChar sorb, Bool locked, Int sz, Int delta0, |
| Bool* decodeOK ) |
| { |
| Int len; |
| UChar rm = getIByte(delta0); |
| HChar dis_buf[50]; |
| |
| IRType ty = szToITy(sz); |
| IRTemp tmpd = newTemp(ty); |
| IRTemp tmpt0 = newTemp(ty); |
| IRTemp tmpt1 = newTemp(ty); |
| |
| /* There are 3 cases to consider: |
| |
| reg-reg: ignore any lock prefix, |
| generate 'naive' (non-atomic) sequence |
| |
| reg-mem, not locked: ignore any lock prefix, generate 'naive' |
| (non-atomic) sequence |
| |
| reg-mem, locked: use IRCAS |
| */ |
| |
| if (epartIsReg(rm)) { |
| /* case 1 */ |
| assign( tmpd, getIReg(sz, eregOfRM(rm))); |
| assign( tmpt0, getIReg(sz, gregOfRM(rm)) ); |
| assign( tmpt1, binop(mkSizedOp(ty,Iop_Add8), |
| mkexpr(tmpd), mkexpr(tmpt0)) ); |
| setFlags_DEP1_DEP2( Iop_Add8, tmpd, tmpt0, ty ); |
| putIReg(sz, eregOfRM(rm), mkexpr(tmpt1)); |
| putIReg(sz, gregOfRM(rm), mkexpr(tmpd)); |
| DIP("xadd%c %s, %s\n", |
| nameISize(sz), nameIReg(sz,gregOfRM(rm)), |
| nameIReg(sz,eregOfRM(rm))); |
| *decodeOK = True; |
| return 1+delta0; |
| } |
| else if (!epartIsReg(rm) && !locked) { |
| /* case 2 */ |
| IRTemp addr = disAMode ( &len, sorb, delta0, dis_buf ); |
| assign( tmpd, loadLE(ty, mkexpr(addr)) ); |
| assign( tmpt0, getIReg(sz, gregOfRM(rm)) ); |
| assign( tmpt1, binop(mkSizedOp(ty,Iop_Add8), |
| mkexpr(tmpd), mkexpr(tmpt0)) ); |
| storeLE( mkexpr(addr), mkexpr(tmpt1) ); |
| setFlags_DEP1_DEP2( Iop_Add8, tmpd, tmpt0, ty ); |
| putIReg(sz, gregOfRM(rm), mkexpr(tmpd)); |
| DIP("xadd%c %s, %s\n", |
| nameISize(sz), nameIReg(sz,gregOfRM(rm)), dis_buf); |
| *decodeOK = True; |
| return len+delta0; |
| } |
| else if (!epartIsReg(rm) && locked) { |
| /* case 3 */ |
| IRTemp addr = disAMode ( &len, sorb, delta0, dis_buf ); |
| assign( tmpd, loadLE(ty, mkexpr(addr)) ); |
| assign( tmpt0, getIReg(sz, gregOfRM(rm)) ); |
| assign( tmpt1, binop(mkSizedOp(ty,Iop_Add8), |
| mkexpr(tmpd), mkexpr(tmpt0)) ); |
| casLE( mkexpr(addr), mkexpr(tmpd)/*expVal*/, |
| mkexpr(tmpt1)/*newVal*/, guest_EIP_curr_instr ); |
| setFlags_DEP1_DEP2( Iop_Add8, tmpd, tmpt0, ty ); |
| putIReg(sz, gregOfRM(rm), mkexpr(tmpd)); |
| DIP("xadd%c %s, %s\n", |
| nameISize(sz), nameIReg(sz,gregOfRM(rm)), dis_buf); |
| *decodeOK = True; |
| return len+delta0; |
| } |
| /*UNREACHED*/ |
| vassert(0); |
| } |
| |
| /* Move 16 bits from Ew (ireg or mem) to G (a segment register). */ |
| |
| static |
| UInt dis_mov_Ew_Sw ( UChar sorb, Int delta0 ) |
| { |
| Int len; |
| IRTemp addr; |
| UChar rm = getIByte(delta0); |
| HChar dis_buf[50]; |
| |
| if (epartIsReg(rm)) { |
| putSReg( gregOfRM(rm), getIReg(2, eregOfRM(rm)) ); |
| DIP("movw %s,%s\n", nameIReg(2,eregOfRM(rm)), nameSReg(gregOfRM(rm))); |
| return 1+delta0; |
| } else { |
| addr = disAMode ( &len, sorb, delta0, dis_buf ); |
| putSReg( gregOfRM(rm), loadLE(Ity_I16, mkexpr(addr)) ); |
| DIP("movw %s,%s\n", dis_buf, nameSReg(gregOfRM(rm))); |
| return len+delta0; |
| } |
| } |
| |
| /* Move 16 bits from G (a segment register) to Ew (ireg or mem). If |
| dst is ireg and sz==4, zero out top half of it. */ |
| |
| static |
| UInt dis_mov_Sw_Ew ( UChar sorb, |
| Int sz, |
| Int delta0 ) |
| { |
| Int len; |
| IRTemp addr; |
| UChar rm = getIByte(delta0); |
| HChar dis_buf[50]; |
| |
| vassert(sz == 2 || sz == 4); |
| |
| if (epartIsReg(rm)) { |
| if (sz == 4) |
| putIReg(4, eregOfRM(rm), unop(Iop_16Uto32, getSReg(gregOfRM(rm)))); |
| else |
| putIReg(2, eregOfRM(rm), getSReg(gregOfRM(rm))); |
| |
| DIP("mov %s,%s\n", nameSReg(gregOfRM(rm)), nameIReg(sz,eregOfRM(rm))); |
| return 1+delta0; |
| } else { |
| addr = disAMode ( &len, sorb, delta0, dis_buf ); |
| storeLE( mkexpr(addr), getSReg(gregOfRM(rm)) ); |
| DIP("mov %s,%s\n", nameSReg(gregOfRM(rm)), dis_buf); |
| return len+delta0; |
| } |
| } |
| |
| |
| static |
| void dis_push_segreg ( UInt sreg, Int sz ) |
| { |
| IRTemp t1 = newTemp(Ity_I16); |
| IRTemp ta = newTemp(Ity_I32); |
| vassert(sz == 2 || sz == 4); |
| |
| assign( t1, getSReg(sreg) ); |
| assign( ta, binop(Iop_Sub32, getIReg(4, R_ESP), mkU32(sz)) ); |
| putIReg(4, R_ESP, mkexpr(ta)); |
| storeLE( mkexpr(ta), mkexpr(t1) ); |
| |
| DIP("push%c %s\n", sz==2 ? 'w' : 'l', nameSReg(sreg)); |
| } |
| |
| static |
| void dis_pop_segreg ( UInt sreg, Int sz ) |
| { |
| IRTemp t1 = newTemp(Ity_I16); |
| IRTemp ta = newTemp(Ity_I32); |
| vassert(sz == 2 || sz == 4); |
| |
| assign( ta, getIReg(4, R_ESP) ); |
| assign( t1, loadLE(Ity_I16, mkexpr(ta)) ); |
| |
| putIReg(4, R_ESP, binop(Iop_Add32, mkexpr(ta), mkU32(sz)) ); |
| putSReg( sreg, mkexpr(t1) ); |
| DIP("pop%c %s\n", sz==2 ? 'w' : 'l', nameSReg(sreg)); |
| } |
| |
| static |
| void dis_ret ( /*MOD*/DisResult* dres, UInt d32 ) |
| { |
| IRTemp t1 = newTemp(Ity_I32); |
| IRTemp t2 = newTemp(Ity_I32); |
| assign(t1, getIReg(4,R_ESP)); |
| assign(t2, loadLE(Ity_I32,mkexpr(t1))); |
| putIReg(4, R_ESP,binop(Iop_Add32, mkexpr(t1), mkU32(4+d32))); |
| jmp_treg(dres, Ijk_Ret, t2); |
| vassert(dres->whatNext == Dis_StopHere); |
| } |
| |
| /*------------------------------------------------------------*/ |
| /*--- SSE/SSE2/SSE3 helpers ---*/ |
| /*------------------------------------------------------------*/ |
| |
| /* Worker function; do not call directly. |
| Handles full width G = G `op` E and G = (not G) `op` E. |
| */ |
| |
| static UInt dis_SSE_E_to_G_all_wrk ( |
| UChar sorb, Int delta, |
| const HChar* opname, IROp op, |
| Bool invertG |
| ) |
| { |
| HChar dis_buf[50]; |
| Int alen; |
| IRTemp addr; |
| UChar rm = getIByte(delta); |
| IRExpr* gpart |
| = invertG ? unop(Iop_NotV128, getXMMReg(gregOfRM(rm))) |
| : getXMMReg(gregOfRM(rm)); |
| if (epartIsReg(rm)) { |
| putXMMReg( gregOfRM(rm), |
| binop(op, gpart, |
| getXMMReg(eregOfRM(rm))) ); |
| DIP("%s %s,%s\n", opname, |
| nameXMMReg(eregOfRM(rm)), |
| nameXMMReg(gregOfRM(rm)) ); |
| return delta+1; |
| } else { |
| addr = disAMode ( &alen, sorb, delta, dis_buf ); |
| putXMMReg( gregOfRM(rm), |
| binop(op, gpart, |
| loadLE(Ity_V128, mkexpr(addr))) ); |
| DIP("%s %s,%s\n", opname, |
| dis_buf, |
| nameXMMReg(gregOfRM(rm)) ); |
| return delta+alen; |
| } |
| } |
| |
| |
| /* All lanes SSE binary operation, G = G `op` E. */ |
| |
| static |
| UInt dis_SSE_E_to_G_all ( UChar sorb, Int delta, const HChar* opname, IROp op ) |
| { |
| return dis_SSE_E_to_G_all_wrk( sorb, delta, opname, op, False ); |
| } |
| |
| /* All lanes SSE binary operation, G = (not G) `op` E. */ |
| |
| static |
| UInt dis_SSE_E_to_G_all_invG ( UChar sorb, Int delta, |
| const HChar* opname, IROp op ) |
| { |
| return dis_SSE_E_to_G_all_wrk( sorb, delta, opname, op, True ); |
| } |
| |
| |
| /* Lowest 32-bit lane only SSE binary operation, G = G `op` E. */ |
| |
| static UInt dis_SSE_E_to_G_lo32 ( UChar sorb, Int delta, |
| const HChar* opname, IROp op ) |
| { |
| HChar dis_buf[50]; |
| Int alen; |
| IRTemp addr; |
| UChar rm = getIByte(delta); |
| IRExpr* gpart = getXMMReg(gregOfRM(rm)); |
| if (epartIsReg(rm)) { |
| putXMMReg( gregOfRM(rm), |
| binop(op, gpart, |
| getXMMReg(eregOfRM(rm))) ); |
| DIP("%s %s,%s\n", opname, |
| nameXMMReg(eregOfRM(rm)), |
| nameXMMReg(gregOfRM(rm)) ); |
| return delta+1; |
| } else { |
| /* We can only do a 32-bit memory read, so the upper 3/4 of the |
| E operand needs to be made simply of zeroes. */ |
| IRTemp epart = newTemp(Ity_V128); |
| addr = disAMode ( &alen, sorb, delta, dis_buf ); |
| assign( epart, unop( Iop_32UtoV128, |
| loadLE(Ity_I32, mkexpr(addr))) ); |
| putXMMReg( gregOfRM(rm), |
| binop(op, gpart, mkexpr(epart)) ); |
| DIP("%s %s,%s\n", opname, |
| dis_buf, |
| nameXMMReg(gregOfRM(rm)) ); |
| return delta+alen; |
| } |
| } |
| |
| |
| /* Lower 64-bit lane only SSE binary operation, G = G `op` E. */ |
| |
| static UInt dis_SSE_E_to_G_lo64 ( UChar sorb, Int delta, |
| const HChar* opname, IROp op ) |
| { |
| HChar dis_buf[50]; |
| Int alen; |
| IRTemp addr; |
| UChar rm = getIByte(delta); |
| IRExpr* gpart = getXMMReg(gregOfRM(rm)); |
| if (epartIsReg(rm)) { |
| putXMMReg( gregOfRM(rm), |
| binop(op, gpart, |
| getXMMReg(eregOfRM(rm))) ); |
| DIP("%s %s,%s\n", opname, |
| nameXMMReg(eregOfRM(rm)), |
| nameXMMReg(gregOfRM(rm)) ); |
| return delta+1; |
| } else { |
| /* We can only do a 64-bit memory read, so the upper half of the |
| E operand needs to be made simply of zeroes. */ |
| IRTemp epart = newTemp(Ity_V128); |
| addr = disAMode ( &alen, sorb, delta, dis_buf ); |
| assign( epart, unop( Iop_64UtoV128, |
| loadLE(Ity_I64, mkexpr(addr))) ); |
| putXMMReg( gregOfRM(rm), |
| binop(op, gpart, mkexpr(epart)) ); |
| DIP("%s %s,%s\n", opname, |
| dis_buf, |
| nameXMMReg(gregOfRM(rm)) ); |
| return delta+alen; |
| } |
| } |
| |
| |
| /* All lanes unary SSE operation, G = op(E). */ |
| |
| static UInt dis_SSE_E_to_G_unary_all ( |
| UChar sorb, Int delta, |
| const HChar* opname, IROp op |
| ) |
| { |
| HChar dis_buf[50]; |
| Int alen; |
| IRTemp addr; |
| UChar rm = getIByte(delta); |
| if (epartIsReg(rm)) { |
| putXMMReg( gregOfRM(rm), |
| unop(op, getXMMReg(eregOfRM(rm))) ); |
| DIP("%s %s,%s\n", opname, |
| nameXMMReg(eregOfRM(rm)), |
| nameXMMReg(gregOfRM(rm)) ); |
| return delta+1; |
| } else { |
| addr = disAMode ( &alen, sorb, delta, dis_buf ); |
| putXMMReg( gregOfRM(rm), |
| unop(op, loadLE(Ity_V128, mkexpr(addr))) ); |
| DIP("%s %s,%s\n", opname, |
| dis_buf, |
| nameXMMReg(gregOfRM(rm)) ); |
| return delta+alen; |
| } |
| } |
| |
| |
| /* Lowest 32-bit lane only unary SSE operation, G = op(E). */ |
| |
| static UInt dis_SSE_E_to_G_unary_lo32 ( |
| UChar sorb, Int delta, |
| const HChar* opname, IROp op |
| ) |
| { |
| /* First we need to get the old G value and patch the low 32 bits |
| of the E operand into it. Then apply op and write back to G. */ |
| HChar dis_buf[50]; |
| Int alen; |
| IRTemp addr; |
| UChar rm = getIByte(delta); |
| IRTemp oldG0 = newTemp(Ity_V128); |
| IRTemp oldG1 = newTemp(Ity_V128); |
| |
| assign( oldG0, getXMMReg(gregOfRM(rm)) ); |
| |
| if (epartIsReg(rm)) { |
| assign( oldG1, |
| binop( Iop_SetV128lo32, |
| mkexpr(oldG0), |
| getXMMRegLane32(eregOfRM(rm), 0)) ); |
| putXMMReg( gregOfRM(rm), unop(op, mkexpr(oldG1)) ); |
| DIP("%s %s,%s\n", opname, |
| nameXMMReg(eregOfRM(rm)), |
| nameXMMReg(gregOfRM(rm)) ); |
| return delta+1; |
| } else { |
| addr = disAMode ( &alen, sorb, delta, dis_buf ); |
| assign( oldG1, |
| binop( Iop_SetV128lo32, |
| mkexpr(oldG0), |
| loadLE(Ity_I32, mkexpr(addr)) )); |
| putXMMReg( gregOfRM(rm), unop(op, mkexpr(oldG1)) ); |
| DIP("%s %s,%s\n", opname, |
| dis_buf, |
| nameXMMReg(gregOfRM(rm)) ); |
| return delta+alen; |
| } |
| } |
| |
| |
| /* Lowest 64-bit lane only unary SSE operation, G = op(E). */ |
| |
| static UInt dis_SSE_E_to_G_unary_lo64 ( |
| UChar sorb, Int delta, |
| const HChar* opname, IROp op |
| ) |
| { |
| /* First we need to get the old G value and patch the low 64 bits |
| of the E operand into it. Then apply op and write back to G. */ |
| HChar dis_buf[50]; |
| Int alen; |
| IRTemp addr; |
| UChar rm = getIByte(delta); |
| IRTemp oldG0 = newTemp(Ity_V128); |
| IRTemp oldG1 = newTemp(Ity_V128); |
| |
| assign( oldG0, getXMMReg(gregOfRM(rm)) ); |
| |
| if (epartIsReg(rm)) { |
| assign( oldG1, |
| binop( Iop_SetV128lo64, |
| mkexpr(oldG0), |
| getXMMRegLane64(eregOfRM(rm), 0)) ); |
| putXMMReg( gregOfRM(rm), unop(op, mkexpr(oldG1)) ); |
| DIP("%s %s,%s\n", opname, |
| nameXMMReg(eregOfRM(rm)), |
| nameXMMReg(gregOfRM(rm)) ); |
| return delta+1; |
| } else { |
| addr = disAMode ( &alen, sorb, delta, dis_buf ); |
| assign( oldG1, |
| binop( Iop_SetV128lo64, |
| mkexpr(oldG0), |
| loadLE(Ity_I64, mkexpr(addr)) )); |
| putXMMReg( gregOfRM(rm), unop(op, mkexpr(oldG1)) ); |
| DIP("%s %s,%s\n", opname, |
| dis_buf, |
| nameXMMReg(gregOfRM(rm)) ); |
| return delta+alen; |
| } |
| } |
| |
| |
| /* SSE integer binary operation: |
| G = G `op` E (eLeft == False) |
| G = E `op` G (eLeft == True) |
| */ |
| static UInt dis_SSEint_E_to_G( |
| UChar sorb, Int delta, |
| const HChar* opname, IROp op, |
| Bool eLeft |
| ) |
| { |
| HChar dis_buf[50]; |
| Int alen; |
| IRTemp addr; |
| UChar rm = getIByte(delta); |
| IRExpr* gpart = getXMMReg(gregOfRM(rm)); |
| IRExpr* epart = NULL; |
| if (epartIsReg(rm)) { |
| epart = getXMMReg(eregOfRM(rm)); |
| DIP("%s %s,%s\n", opname, |
| nameXMMReg(eregOfRM(rm)), |
| nameXMMReg(gregOfRM(rm)) ); |
| delta += 1; |
| } else { |
| addr = disAMode ( &alen, sorb, delta, dis_buf ); |
| epart = loadLE(Ity_V128, mkexpr(addr)); |
| DIP("%s %s,%s\n", opname, |
| dis_buf, |
| nameXMMReg(gregOfRM(rm)) ); |
| delta += alen; |
| } |
| putXMMReg( gregOfRM(rm), |
| eLeft ? binop(op, epart, gpart) |
| : binop(op, gpart, epart) ); |
| return delta; |
| } |
| |
| |
| /* Helper for doing SSE FP comparisons. */ |
| |
| static void findSSECmpOp ( Bool* needNot, IROp* op, |
| Int imm8, Bool all_lanes, Int sz ) |
| { |
| imm8 &= 7; |
| *needNot = False; |
| *op = Iop_INVALID; |
| if (imm8 >= 4) { |
| *needNot = True; |
| imm8 -= 4; |
| } |
| |
| if (sz == 4 && all_lanes) { |
| switch (imm8) { |
| case 0: *op = Iop_CmpEQ32Fx4; return; |
| case 1: *op = Iop_CmpLT32Fx4; return; |
| case 2: *op = Iop_CmpLE32Fx4; return; |
| case 3: *op = Iop_CmpUN32Fx4; return; |
| default: break; |
| } |
| } |
| if (sz == 4 && !all_lanes) { |
| switch (imm8) { |
| case 0: *op = Iop_CmpEQ32F0x4; return; |
| case 1: *op = Iop_CmpLT32F0x4; return; |
| case 2: *op = Iop_CmpLE32F0x4; return; |
| case 3: *op = Iop_CmpUN32F0x4; return; |
| default: break; |
| } |
| } |
| if (sz == 8 && all_lanes) { |
| switch (imm8) { |
| case 0: *op = Iop_CmpEQ64Fx2; return; |
| case 1: *op = Iop_CmpLT64Fx2; return; |
| case 2: *op = Iop_CmpLE64Fx2; return; |
| case 3: *op = Iop_CmpUN64Fx2; return; |
| default: break; |
| } |
| } |
| if (sz == 8 && !all_lanes) { |
| switch (imm8) { |
| case 0: *op = Iop_CmpEQ64F0x2; return; |
| case 1: *op = Iop_CmpLT64F0x2; return; |
| case 2: *op = Iop_CmpLE64F0x2; return; |
| case 3: *op = Iop_CmpUN64F0x2; return; |
| default: break; |
| } |
| } |
| vpanic("findSSECmpOp(x86,guest)"); |
| } |
| |
| /* Handles SSE 32F/64F comparisons. */ |
| |
| static UInt dis_SSEcmp_E_to_G ( UChar sorb, Int delta, |
| const HChar* opname, Bool all_lanes, Int sz ) |
| { |
| HChar dis_buf[50]; |
| Int alen, imm8; |
| IRTemp addr; |
| Bool needNot = False; |
| IROp op = Iop_INVALID; |
| IRTemp plain = newTemp(Ity_V128); |
| UChar rm = getIByte(delta); |
| UShort mask = 0; |
| vassert(sz == 4 || sz == 8); |
| if (epartIsReg(rm)) { |
| imm8 = getIByte(delta+1); |
| findSSECmpOp(&needNot, &op, imm8, all_lanes, sz); |
| assign( plain, binop(op, getXMMReg(gregOfRM(rm)), |
| getXMMReg(eregOfRM(rm))) ); |
| delta += 2; |
| DIP("%s $%d,%s,%s\n", opname, |
| (Int)imm8, |
| nameXMMReg(eregOfRM(rm)), |
| nameXMMReg(gregOfRM(rm)) ); |
| } else { |
| addr = disAMode ( &alen, sorb, delta, dis_buf ); |
| imm8 = getIByte(delta+alen); |
| findSSECmpOp(&needNot, &op, imm8, all_lanes, sz); |
| assign( plain, |
| binop( |
| op, |
| getXMMReg(gregOfRM(rm)), |
| all_lanes ? loadLE(Ity_V128, mkexpr(addr)) |
| : sz == 8 ? unop( Iop_64UtoV128, loadLE(Ity_I64, mkexpr(addr))) |
| : /*sz==4*/ unop( Iop_32UtoV128, loadLE(Ity_I32, mkexpr(addr))) |
| ) |
| ); |
| delta += alen+1; |
| DIP("%s $%d,%s,%s\n", opname, |
| (Int)imm8, |
| dis_buf, |
| nameXMMReg(gregOfRM(rm)) ); |
| } |
| |
| if (needNot && all_lanes) { |
| putXMMReg( gregOfRM(rm), |
| unop(Iop_NotV128, mkexpr(plain)) ); |
| } |
| else |
| if (needNot && !all_lanes) { |
| mask = toUShort( sz==4 ? 0x000F : 0x00FF ); |
| putXMMReg( gregOfRM(rm), |
| binop(Iop_XorV128, mkexpr(plain), mkV128(mask)) ); |
| } |
| else { |
| putXMMReg( gregOfRM(rm), mkexpr(plain) ); |
| } |
| |
| return delta; |
| } |
| |
| |
| /* Vector by scalar shift of G by the amount specified at the bottom |
| of E. */ |
| |
| static UInt dis_SSE_shiftG_byE ( UChar sorb, Int delta, |
| const HChar* opname, IROp op ) |
| { |
| HChar dis_buf[50]; |
| Int alen, size; |
| IRTemp addr; |
| Bool shl, shr, sar; |
| UChar rm = getIByte(delta); |
| IRTemp g0 = newTemp(Ity_V128); |
| IRTemp g1 = newTemp(Ity_V128); |
| IRTemp amt = newTemp(Ity_I32); |
| IRTemp amt8 = newTemp(Ity_I8); |
| if (epartIsReg(rm)) { |
| assign( amt, getXMMRegLane32(eregOfRM(rm), 0) ); |
| DIP("%s %s,%s\n", opname, |
| nameXMMReg(eregOfRM(rm)), |
| nameXMMReg(gregOfRM(rm)) ); |
| delta++; |
| } else { |
| addr = disAMode ( &alen, sorb, delta, dis_buf ); |
| assign( amt, loadLE(Ity_I32, mkexpr(addr)) ); |
| DIP("%s %s,%s\n", opname, |
| dis_buf, |
| nameXMMReg(gregOfRM(rm)) ); |
| delta += alen; |
| } |
| assign( g0, getXMMReg(gregOfRM(rm)) ); |
| assign( amt8, unop(Iop_32to8, mkexpr(amt)) ); |
| |
| shl = shr = sar = False; |
| size = 0; |
| switch (op) { |
| case Iop_ShlN16x8: shl = True; size = 32; break; |
| case Iop_ShlN32x4: shl = True; size = 32; break; |
| case Iop_ShlN64x2: shl = True; size = 64; break; |
| case Iop_SarN16x8: sar = True; size = 16; break; |
| case Iop_SarN32x4: sar = True; size = 32; break; |
| case Iop_ShrN16x8: shr = True; size = 16; break; |
| case Iop_ShrN32x4: shr = True; size = 32; break; |
| case Iop_ShrN64x2: shr = True; size = 64; break; |
| default: vassert(0); |
| } |
| |
| if (shl || shr) { |
| assign( |
| g1, |
| IRExpr_ITE( |
| binop(Iop_CmpLT32U,mkexpr(amt),mkU32(size)), |
| binop(op, mkexpr(g0), mkexpr(amt8)), |
| mkV128(0x0000) |
| ) |
| ); |
| } else |
| if (sar) { |
| assign( |
| g1, |
| IRExpr_ITE( |
| binop(Iop_CmpLT32U,mkexpr(amt),mkU32(size)), |
| binop(op, mkexpr(g0), mkexpr(amt8)), |
| binop(op, mkexpr(g0), mkU8(size-1)) |
| ) |
| ); |
| } else { |
| /*NOTREACHED*/ |
| vassert(0); |
| } |
| |
| putXMMReg( gregOfRM(rm), mkexpr(g1) ); |
| return delta; |
| } |
| |
| |
| /* Vector by scalar shift of E by an immediate byte. */ |
| |
| static |
| UInt dis_SSE_shiftE_imm ( Int delta, const HChar* opname, IROp op ) |
| { |
| Bool shl, shr, sar; |
| UChar rm = getIByte(delta); |
| IRTemp e0 = newTemp(Ity_V128); |
| IRTemp e1 = newTemp(Ity_V128); |
| UChar amt, size; |
| vassert(epartIsReg(rm)); |
| vassert(gregOfRM(rm) == 2 |
| || gregOfRM(rm) == 4 || gregOfRM(rm) == 6); |
| amt = getIByte(delta+1); |
| delta += 2; |
| DIP("%s $%d,%s\n", opname, |
| (Int)amt, |
| nameXMMReg(eregOfRM(rm)) ); |
| assign( e0, getXMMReg(eregOfRM(rm)) ); |
| |
| shl = shr = sar = False; |
| size = 0; |
| switch (op) { |
| case Iop_ShlN16x8: shl = True; size = 16; break; |
| case Iop_ShlN32x4: shl = True; size = 32; break; |
| case Iop_ShlN64x2: shl = True; size = 64; break; |
| case Iop_SarN16x8: sar = True; size = 16; break; |
| case Iop_SarN32x4: sar = True; size = 32; break; |
| case Iop_ShrN16x8: shr = True; size = 16; break; |
| case Iop_ShrN32x4: shr = True; size = 32; break; |
| case Iop_ShrN64x2: shr = True; size = 64; break; |
| default: vassert(0); |
| } |
| |
| if (shl || shr) { |
| assign( e1, amt >= size |
| ? mkV128(0x0000) |
| : binop(op, mkexpr(e0), mkU8(amt)) |
| ); |
| } else |
| if (sar) { |
| assign( e1, amt >= size |
| ? binop(op, mkexpr(e0), mkU8(size-1)) |
| : binop(op, mkexpr(e0), mkU8(amt)) |
| ); |
| } else { |
| /*NOTREACHED*/ |
| vassert(0); |
| } |
| |
| putXMMReg( eregOfRM(rm), mkexpr(e1) ); |
| return delta; |
| } |
| |
| |
| /* Get the current SSE rounding mode. */ |
| |
| static IRExpr* /* :: Ity_I32 */ get_sse_roundingmode ( void ) |
| { |
| return binop( Iop_And32, |
| IRExpr_Get( OFFB_SSEROUND, Ity_I32 ), |
| mkU32(3) ); |
| } |
| |
| static void put_sse_roundingmode ( IRExpr* sseround ) |
| { |
| vassert(typeOfIRExpr(irsb->tyenv, sseround) == Ity_I32); |
| stmt( IRStmt_Put( OFFB_SSEROUND, sseround ) ); |
| } |
| |
| /* Break a 128-bit value up into four 32-bit ints. */ |
| |
| static void breakup128to32s ( IRTemp t128, |
| /*OUTs*/ |
| IRTemp* t3, IRTemp* t2, |
| IRTemp* t1, IRTemp* t0 ) |
| { |
| IRTemp hi64 = newTemp(Ity_I64); |
| IRTemp lo64 = newTemp(Ity_I64); |
| assign( hi64, unop(Iop_V128HIto64, mkexpr(t128)) ); |
| assign( lo64, unop(Iop_V128to64, mkexpr(t128)) ); |
| |
| vassert(t0 && *t0 == IRTemp_INVALID); |
| vassert(t1 && *t1 == IRTemp_INVALID); |
| vassert(t2 && *t2 == IRTemp_INVALID); |
| vassert(t3 && *t3 == IRTemp_INVALID); |
| |
| *t0 = newTemp(Ity_I32); |
| *t1 = newTemp(Ity_I32); |
| *t2 = newTemp(Ity_I32); |
| *t3 = newTemp(Ity_I32); |
| assign( *t0, unop(Iop_64to32, mkexpr(lo64)) ); |
| assign( *t1, unop(Iop_64HIto32, mkexpr(lo64)) ); |
| assign( *t2, unop(Iop_64to32, mkexpr(hi64)) ); |
| assign( *t3, unop(Iop_64HIto32, mkexpr(hi64)) ); |
| } |
| |
| /* Construct a 128-bit value from four 32-bit ints. */ |
| |
| static IRExpr* mk128from32s ( IRTemp t3, IRTemp t2, |
| IRTemp t1, IRTemp t0 ) |
| { |
| return |
| binop( Iop_64HLtoV128, |
| binop(Iop_32HLto64, mkexpr(t3), mkexpr(t2)), |
| binop(Iop_32HLto64, mkexpr(t1), mkexpr(t0)) |
| ); |
| } |
| |
| /* Break a 64-bit value up into four 16-bit ints. */ |
| |
| static void breakup64to16s ( IRTemp t64, |
| /*OUTs*/ |
| IRTemp* t3, IRTemp* t2, |
| IRTemp* t1, IRTemp* t0 ) |
| { |
| IRTemp hi32 = newTemp(Ity_I32); |
| IRTemp lo32 = newTemp(Ity_I32); |
| assign( hi32, unop(Iop_64HIto32, mkexpr(t64)) ); |
| assign( lo32, unop(Iop_64to32, mkexpr(t64)) ); |
| |
| vassert(t0 && *t0 == IRTemp_INVALID); |
| vassert(t1 && *t1 == IRTemp_INVALID); |
| vassert(t2 && *t2 == IRTemp_INVALID); |
| vassert(t3 && *t3 == IRTemp_INVALID); |
| |
| *t0 = newTemp(Ity_I16); |
| *t1 = newTemp(Ity_I16); |
| *t2 = newTemp(Ity_I16); |
| *t3 = newTemp(Ity_I16); |
| assign( *t0, unop(Iop_32to16, mkexpr(lo32)) ); |
| assign( *t1, unop(Iop_32HIto16, mkexpr(lo32)) ); |
| assign( *t2, unop(Iop_32to16, mkexpr(hi32)) ); |
| assign( *t3, unop(Iop_32HIto16, mkexpr(hi32)) ); |
| } |
| |
| /* Construct a 64-bit value from four 16-bit ints. */ |
| |
| static IRExpr* mk64from16s ( IRTemp t3, IRTemp t2, |
| IRTemp t1, IRTemp t0 ) |
| { |
| return |
| binop( Iop_32HLto64, |
| binop(Iop_16HLto32, mkexpr(t3), mkexpr(t2)), |
| binop(Iop_16HLto32, mkexpr(t1), mkexpr(t0)) |
| ); |
| } |
| |
| /* Generate IR to set the guest %EFLAGS from the pushfl-format image |
| in the given 32-bit temporary. The flags that are set are: O S Z A |
| C P D ID AC. |
| |
| In all cases, code to set AC is generated. However, VEX actually |
| ignores the AC value and so can optionally emit an emulation |
| warning when it is enabled. In this routine, an emulation warning |
| is only emitted if emit_AC_emwarn is True, in which case |
| next_insn_EIP must be correct (this allows for correct code |
| generation for popfl/popfw). If emit_AC_emwarn is False, |
| next_insn_EIP is unimportant (this allows for easy if kludgey code |
| generation for IRET.) */ |
| |
| static |
| void set_EFLAGS_from_value ( IRTemp t1, |
| Bool emit_AC_emwarn, |
| Addr32 next_insn_EIP ) |
| { |
| vassert(typeOfIRTemp(irsb->tyenv,t1) == Ity_I32); |
| |
| /* t1 is the flag word. Mask out everything except OSZACP and set |
| the flags thunk to X86G_CC_OP_COPY. */ |
| stmt( IRStmt_Put( OFFB_CC_OP, mkU32(X86G_CC_OP_COPY) )); |
| stmt( IRStmt_Put( OFFB_CC_DEP2, mkU32(0) )); |
| stmt( IRStmt_Put( OFFB_CC_DEP1, |
| binop(Iop_And32, |
| mkexpr(t1), |
| mkU32( X86G_CC_MASK_C | X86G_CC_MASK_P |
| | X86G_CC_MASK_A | X86G_CC_MASK_Z |
| | X86G_CC_MASK_S| X86G_CC_MASK_O ) |
| ) |
| ) |
| ); |
| /* Set NDEP even though it isn't used. This makes redundant-PUT |
| elimination of previous stores to this field work better. */ |
| stmt( IRStmt_Put( OFFB_CC_NDEP, mkU32(0) )); |
| |
| /* Also need to set the D flag, which is held in bit 10 of t1. |
| If zero, put 1 in OFFB_DFLAG, else -1 in OFFB_DFLAG. */ |
| stmt( IRStmt_Put( |
| OFFB_DFLAG, |
| IRExpr_ITE( |
| unop(Iop_32to1, |
| binop(Iop_And32, |
| binop(Iop_Shr32, mkexpr(t1), mkU8(10)), |
| mkU32(1))), |
| mkU32(0xFFFFFFFF), |
| mkU32(1))) |
| ); |
| |
| /* Set the ID flag */ |
| stmt( IRStmt_Put( |
| OFFB_IDFLAG, |
| IRExpr_ITE( |
| unop(Iop_32to1, |
| binop(Iop_And32, |
| binop(Iop_Shr32, mkexpr(t1), mkU8(21)), |
| mkU32(1))), |
| mkU32(1), |
| mkU32(0))) |
| ); |
| |
| /* And set the AC flag. If setting it 1 to, possibly emit an |
| emulation warning. */ |
| stmt( IRStmt_Put( |
| OFFB_ACFLAG, |
| IRExpr_ITE( |
| unop(Iop_32to1, |
| binop(Iop_And32, |
| binop(Iop_Shr32, mkexpr(t1), mkU8(18)), |
| mkU32(1))), |
| mkU32(1), |
| mkU32(0))) |
| ); |
| |
| if (emit_AC_emwarn) { |
| put_emwarn( mkU32(EmWarn_X86_acFlag) ); |
| stmt( |
| IRStmt_Exit( |
| binop( Iop_CmpNE32, |
| binop(Iop_And32, mkexpr(t1), mkU32(1<<18)), |
| mkU32(0) ), |
| Ijk_EmWarn, |
| IRConst_U32( next_insn_EIP ), |
| OFFB_EIP |
| ) |
| ); |
| } |
| } |
| |
| |
| /* Helper for the SSSE3 (not SSE3) PMULHRSW insns. Given two 64-bit |
| values (aa,bb), computes, for each of the 4 16-bit lanes: |
| |
| (((aa_lane *s32 bb_lane) >>u 14) + 1) >>u 1 |
| */ |
| static IRExpr* dis_PMULHRSW_helper ( IRExpr* aax, IRExpr* bbx ) |
| { |
| IRTemp aa = newTemp(Ity_I64); |
| IRTemp bb = newTemp(Ity_I64); |
| IRTemp aahi32s = newTemp(Ity_I64); |
| IRTemp aalo32s = newTemp(Ity_I64); |
| IRTemp bbhi32s = newTemp(Ity_I64); |
| IRTemp bblo32s = newTemp(Ity_I64); |
| IRTemp rHi = newTemp(Ity_I64); |
| IRTemp rLo = newTemp(Ity_I64); |
| IRTemp one32x2 = newTemp(Ity_I64); |
| assign(aa, aax); |
| assign(bb, bbx); |
| assign( aahi32s, |
| binop(Iop_SarN32x2, |
| binop(Iop_InterleaveHI16x4, mkexpr(aa), mkexpr(aa)), |
| mkU8(16) )); |
| assign( aalo32s, |
| binop(Iop_SarN32x2, |
| binop(Iop_InterleaveLO16x4, mkexpr(aa), mkexpr(aa)), |
| mkU8(16) )); |
| assign( bbhi32s, |
| binop(Iop_SarN32x2, |
| binop(Iop_InterleaveHI16x4, mkexpr(bb), mkexpr(bb)), |
| mkU8(16) )); |
| assign( bblo32s, |
| binop(Iop_SarN32x2, |
| binop(Iop_InterleaveLO16x4, mkexpr(bb), mkexpr(bb)), |
| mkU8(16) )); |
| assign(one32x2, mkU64( (1ULL << 32) + 1 )); |
| assign( |
| rHi, |
| binop( |
| Iop_ShrN32x2, |
| binop( |
| Iop_Add32x2, |
| binop( |
| Iop_ShrN32x2, |
| binop(Iop_Mul32x2, mkexpr(aahi32s), mkexpr(bbhi32s)), |
| mkU8(14) |
| ), |
| mkexpr(one32x2) |
| ), |
| mkU8(1) |
| ) |
| ); |
| assign( |
| rLo, |
| binop( |
| Iop_ShrN32x2, |
| binop( |
| Iop_Add32x2, |
| binop( |
| Iop_ShrN32x2, |
| binop(Iop_Mul32x2, mkexpr(aalo32s), mkexpr(bblo32s)), |
| mkU8(14) |
| ), |
| mkexpr(one32x2) |
| ), |
| mkU8(1) |
| ) |
| ); |
| return |
| binop(Iop_CatEvenLanes16x4, mkexpr(rHi), mkexpr(rLo)); |
| } |
| |
| /* Helper for the SSSE3 (not SSE3) PSIGN{B,W,D} insns. Given two 64-bit |
| values (aa,bb), computes, for each lane: |
| |
| if aa_lane < 0 then - bb_lane |
| else if aa_lane > 0 then bb_lane |
| else 0 |
| */ |
| static IRExpr* dis_PSIGN_helper ( IRExpr* aax, IRExpr* bbx, Int laneszB ) |
| { |
| IRTemp aa = newTemp(Ity_I64); |
| IRTemp bb = newTemp(Ity_I64); |
| IRTemp zero = newTemp(Ity_I64); |
| IRTemp bbNeg = newTemp(Ity_I64); |
| IRTemp negMask = newTemp(Ity_I64); |
| IRTemp posMask = newTemp(Ity_I64); |
| IROp opSub = Iop_INVALID; |
| IROp opCmpGTS = Iop_INVALID; |
| |
| switch (laneszB) { |
| case 1: opSub = Iop_Sub8x8; opCmpGTS = Iop_CmpGT8Sx8; break; |
| case 2: opSub = Iop_Sub16x4; opCmpGTS = Iop_CmpGT16Sx4; break; |
| case 4: opSub = Iop_Sub32x2; opCmpGTS = Iop_CmpGT32Sx2; break; |
| default: vassert(0); |
| } |
| |
| assign( aa, aax ); |
| assign( bb, bbx ); |
| assign( zero, mkU64(0) ); |
| assign( bbNeg, binop(opSub, mkexpr(zero), mkexpr(bb)) ); |
| assign( negMask, binop(opCmpGTS, mkexpr(zero), mkexpr(aa)) ); |
| assign( posMask, binop(opCmpGTS, mkexpr(aa), mkexpr(zero)) ); |
| |
| return |
| binop(Iop_Or64, |
| binop(Iop_And64, mkexpr(bb), mkexpr(posMask)), |
| binop(Iop_And64, mkexpr(bbNeg), mkexpr(negMask)) ); |
| |
| } |
| |
| /* Helper for the SSSE3 (not SSE3) PABS{B,W,D} insns. Given a 64-bit |
| value aa, computes, for each lane |
| |
| if aa < 0 then -aa else aa |
| |
| Note that the result is interpreted as unsigned, so that the |
| absolute value of the most negative signed input can be |
| represented. |
| */ |
| static IRExpr* dis_PABS_helper ( IRExpr* aax, Int laneszB ) |
| { |
| IRTemp aa = newTemp(Ity_I64); |
| IRTemp zero = newTemp(Ity_I64); |
| IRTemp aaNeg = newTemp(Ity_I64); |
| IRTemp negMask = newTemp(Ity_I64); |
| IRTemp posMask = newTemp(Ity_I64); |
| IROp opSub = Iop_INVALID; |
| IROp opSarN = Iop_INVALID; |
| |
| switch (laneszB) { |
| case 1: opSub = Iop_Sub8x8; opSarN = Iop_SarN8x8; break; |
| case 2: opSub = Iop_Sub16x4; opSarN = Iop_SarN16x4; break; |
| case 4: opSub = Iop_Sub32x2; opSarN = Iop_SarN32x2; break; |
| default: vassert(0); |
| } |
| |
| assign( aa, aax ); |
| assign( negMask, binop(opSarN, mkexpr(aa), mkU8(8*laneszB-1)) ); |
| assign( posMask, unop(Iop_Not64, mkexpr(negMask)) ); |
| assign( zero, mkU64(0) ); |
| assign( aaNeg, binop(opSub, mkexpr(zero), mkexpr(aa)) ); |
| return |
| binop(Iop_Or64, |
| binop(Iop_And64, mkexpr(aa), mkexpr(posMask)), |
| binop(Iop_And64, mkexpr(aaNeg), mkexpr(negMask)) ); |
| } |
| |
| static IRExpr* dis_PALIGNR_XMM_helper ( IRTemp hi64, |
| IRTemp lo64, Int byteShift ) |
| { |
| vassert(byteShift >= 1 && byteShift <= 7); |
| return |
| binop(Iop_Or64, |
| binop(Iop_Shl64, mkexpr(hi64), mkU8(8*(8-byteShift))), |
| binop(Iop_Shr64, mkexpr(lo64), mkU8(8*byteShift)) |
| ); |
| } |
| |
| /* Generate a SIGSEGV followed by a restart of the current instruction |
| if effective_addr is not 16-aligned. This is required behaviour |
| for some SSE3 instructions and all 128-bit SSSE3 instructions. |
| This assumes that guest_RIP_curr_instr is set correctly! */ |
| static void gen_SEGV_if_not_16_aligned ( IRTemp effective_addr ) |
| { |
| stmt( |
| IRStmt_Exit( |
| binop(Iop_CmpNE32, |
| binop(Iop_And32,mkexpr(effective_addr),mkU32(0xF)), |
| mkU32(0)), |
| Ijk_SigSEGV, |
| IRConst_U32(guest_EIP_curr_instr), |
| OFFB_EIP |
| ) |
| ); |
| } |
| |
| |
| /* Helper for deciding whether a given insn (starting at the opcode |
| byte) may validly be used with a LOCK prefix. The following insns |
| may be used with LOCK when their destination operand is in memory. |
| AFAICS this is exactly the same for both 32-bit and 64-bit mode. |
| |
| ADD 80 /0, 81 /0, 82 /0, 83 /0, 00, 01 |
| OR 80 /1, 81 /1, 82 /x, 83 /1, 08, 09 |
| ADC 80 /2, 81 /2, 82 /2, 83 /2, 10, 11 |
| SBB 81 /3, 81 /3, 82 /x, 83 /3, 18, 19 |
| AND 80 /4, 81 /4, 82 /x, 83 /4, 20, 21 |
| SUB 80 /5, 81 /5, 82 /x, 83 /5, 28, 29 |
| XOR 80 /6, 81 /6, 82 /x, 83 /6, 30, 31 |
| |
| DEC FE /1, FF /1 |
| INC FE /0, FF /0 |
| |
| NEG F6 /3, F7 /3 |
| NOT F6 /2, F7 /2 |
| |
| XCHG 86, 87 |
| |
| BTC 0F BB, 0F BA /7 |
| BTR 0F B3, 0F BA /6 |
| BTS 0F AB, 0F BA /5 |
| |
| CMPXCHG 0F B0, 0F B1 |
| CMPXCHG8B 0F C7 /1 |
| |
| XADD 0F C0, 0F C1 |
| |
| ------------------------------ |
| |
| 80 /0 = addb $imm8, rm8 |
| 81 /0 = addl $imm32, rm32 and addw $imm16, rm16 |
| 82 /0 = addb $imm8, rm8 |
| 83 /0 = addl $simm8, rm32 and addw $simm8, rm16 |
| |
| 00 = addb r8, rm8 |
| 01 = addl r32, rm32 and addw r16, rm16 |
| |
| Same for ADD OR ADC SBB AND SUB XOR |
| |
| FE /1 = dec rm8 |
| FF /1 = dec rm32 and dec rm16 |
| |
| FE /0 = inc rm8 |
| FF /0 = inc rm32 and inc rm16 |
| |
| F6 /3 = neg rm8 |
| F7 /3 = neg rm32 and neg rm16 |
| |
| F6 /2 = not rm8 |
| F7 /2 = not rm32 and not rm16 |
| |
| 0F BB = btcw r16, rm16 and btcl r32, rm32 |
| OF BA /7 = btcw $imm8, rm16 and btcw $imm8, rm32 |
| |
| Same for BTS, BTR |
| */ |
| static Bool can_be_used_with_LOCK_prefix ( UChar* opc ) |
| { |
| switch (opc[0]) { |
| case 0x00: case 0x01: case 0x08: case 0x09: |
| case 0x10: case 0x11: case 0x18: case 0x19: |
| case 0x20: case 0x21: case 0x28: case 0x29: |
| case 0x30: case 0x31: |
| if (!epartIsReg(opc[1])) |
| return True; |
| break; |
| |
| case 0x80: case 0x81: case 0x82: case 0x83: |
| if (gregOfRM(opc[1]) >= 0 && gregOfRM(opc[1]) <= 6 |
| && !epartIsReg(opc[1])) |
| return True; |
| break; |
| |
| case 0xFE: case 0xFF: |
| if (gregOfRM(opc[1]) >= 0 && gregOfRM(opc[1]) <= 1 |
| && !epartIsReg(opc[1])) |
| return True; |
| break; |
| |
| case 0xF6: case 0xF7: |
| if (gregOfRM(opc[1]) >= 2 && gregOfRM(opc[1]) <= 3 |
| && !epartIsReg(opc[1])) |
| return True; |
| break; |
| |
| case 0x86: case 0x87: |
| if (!epartIsReg(opc[1])) |
| return True; |
| break; |
| |
| case 0x0F: { |
| switch (opc[1]) { |
| case 0xBB: case 0xB3: case 0xAB: |
| if (!epartIsReg(opc[2])) |
| return True; |
| break; |
| case 0xBA: |
| if (gregOfRM(opc[2]) >= 5 && gregOfRM(opc[2]) <= 7 |
| && !epartIsReg(opc[2])) |
| return True; |
| break; |
| case 0xB0: case 0xB1: |
| if (!epartIsReg(opc[2])) |
| return True; |
| break; |
| case 0xC7: |
| if (gregOfRM(opc[2]) == 1 && !epartIsReg(opc[2]) ) |
| return True; |
| break; |
| case 0xC0: case 0xC1: |
| if (!epartIsReg(opc[2])) |
| return True; |
| break; |
| default: |
| break; |
| } /* switch (opc[1]) */ |
| break; |
| } |
| |
| default: |
| break; |
| } /* switch (opc[0]) */ |
| |
| return False; |
| } |
| |
| static IRTemp math_BSWAP ( IRTemp t1, IRType ty ) |
| { |
| IRTemp t2 = newTemp(ty); |
| if (ty == Ity_I32) { |
| assign( t2, |
| binop( |
| Iop_Or32, |
| binop(Iop_Shl32, mkexpr(t1), mkU8(24)), |
| binop( |
| Iop_Or32, |
| binop(Iop_And32, binop(Iop_Shl32, mkexpr(t1), mkU8(8)), |
| mkU32(0x00FF0000)), |
| binop(Iop_Or32, |
| binop(Iop_And32, binop(Iop_Shr32, mkexpr(t1), mkU8(8)), |
| mkU32(0x0000FF00)), |
| binop(Iop_And32, binop(Iop_Shr32, mkexpr(t1), mkU8(24)), |
| mkU32(0x000000FF) ) |
| ))) |
| ); |
| return t2; |
| } |
| if (ty == Ity_I16) { |
| assign(t2, |
| binop(Iop_Or16, |
| binop(Iop_Shl16, mkexpr(t1), mkU8(8)), |
| binop(Iop_Shr16, mkexpr(t1), mkU8(8)) )); |
| return t2; |
| } |
| vassert(0); |
| /*NOTREACHED*/ |
| return IRTemp_INVALID; |
| } |
| |
| /*------------------------------------------------------------*/ |
| /*--- Disassemble a single instruction ---*/ |
| /*------------------------------------------------------------*/ |
| |
| /* Disassemble a single instruction into IR. The instruction is |
| located in host memory at &guest_code[delta]. *expect_CAS is set |
| to True if the resulting IR is expected to contain an IRCAS |
| statement, and False if it's not expected to. This makes it |
| possible for the caller of disInstr_X86_WRK to check that |
| LOCK-prefixed instructions are at least plausibly translated, in |
| that it becomes possible to check that a (validly) LOCK-prefixed |
| instruction generates a translation containing an IRCAS, and |
| instructions without LOCK prefixes don't generate translations |
| containing an IRCAS. |
| */ |
| static |
| DisResult disInstr_X86_WRK ( |
| /*OUT*/Bool* expect_CAS, |
| Bool (*resteerOkFn) ( /*opaque*/void*, Addr64 ), |
| Bool resteerCisOk, |
| void* callback_opaque, |
| Long delta64, |
| VexArchInfo* archinfo, |
| VexAbiInfo* vbi, |
| Bool sigill_diag |
| ) |
| { |
| IRType ty; |
| IRTemp addr, t0, t1, t2, t3, t4, t5, t6; |
| Int alen; |
| UChar opc, modrm, abyte, pre; |
| UInt d32; |
| HChar dis_buf[50]; |
| Int am_sz, d_sz, n_prefixes; |
| DisResult dres; |
| UChar* insn; /* used in SSE decoders */ |
| |
| /* The running delta */ |
| Int delta = (Int)delta64; |
| |
| /* Holds eip at the start of the insn, so that we can print |
| consistent error messages for unimplemented insns. */ |
| Int delta_start = delta; |
| |
| /* sz denotes the nominal data-op size of the insn; we change it to |
| 2 if an 0x66 prefix is seen */ |
| Int sz = 4; |
| |
| /* sorb holds the segment-override-prefix byte, if any. Zero if no |
| prefix has been seen, else one of {0x26, 0x3E, 0x64, 0x65} |
| indicating the prefix. */ |
| UChar sorb = 0; |
| |
| /* Gets set to True if a LOCK prefix is seen. */ |
| Bool pfx_lock = False; |
| |
| /* Set result defaults. */ |
| dres.whatNext = Dis_Continue; |
| dres.len = 0; |
| dres.continueAt = 0; |
| dres.jk_StopHere = Ijk_INVALID; |
| |
| *expect_CAS = False; |
| |
| addr = t0 = t1 = t2 = t3 = t4 = t5 = t6 = IRTemp_INVALID; |
| |
| vassert(guest_EIP_bbstart + delta == guest_EIP_curr_instr); |
| DIP("\t0x%x: ", guest_EIP_bbstart+delta); |
| |
| /* Spot "Special" instructions (see comment at top of file). */ |
| { |
| UChar* code = (UChar*)(guest_code + delta); |
| /* Spot the 12-byte preamble: |
| C1C703 roll $3, %edi |
| C1C70D roll $13, %edi |
| C1C71D roll $29, %edi |
| C1C713 roll $19, %edi |
| */ |
| if (code[ 0] == 0xC1 && code[ 1] == 0xC7 && code[ 2] == 0x03 && |
| code[ 3] == 0xC1 && code[ 4] == 0xC7 && code[ 5] == 0x0D && |
| code[ 6] == 0xC1 && code[ 7] == 0xC7 && code[ 8] == 0x1D && |
| code[ 9] == 0xC1 && code[10] == 0xC7 && code[11] == 0x13) { |
| /* Got a "Special" instruction preamble. Which one is it? */ |
| if (code[12] == 0x87 && code[13] == 0xDB /* xchgl %ebx,%ebx */) { |
| /* %EDX = client_request ( %EAX ) */ |
| DIP("%%edx = client_request ( %%eax )\n"); |
| delta += 14; |
| jmp_lit(&dres, Ijk_ClientReq, guest_EIP_bbstart+delta); |
| vassert(dres.whatNext == Dis_StopHere); |
| goto decode_success; |
| } |
| else |
| if (code[12] == 0x87 && code[13] == 0xC9 /* xchgl %ecx,%ecx */) { |
| /* %EAX = guest_NRADDR */ |
| DIP("%%eax = guest_NRADDR\n"); |
| delta += 14; |
| putIReg(4, R_EAX, IRExpr_Get( OFFB_NRADDR, Ity_I32 )); |
| goto decode_success; |
| } |
| else |
| if (code[12] == 0x87 && code[13] == 0xD2 /* xchgl %edx,%edx */) { |
| /* call-noredir *%EAX */ |
| DIP("call-noredir *%%eax\n"); |
| delta += 14; |
| t1 = newTemp(Ity_I32); |
| assign(t1, getIReg(4,R_EAX)); |
| t2 = newTemp(Ity_I32); |
| assign(t2, binop(Iop_Sub32, getIReg(4,R_ESP), mkU32(4))); |
| putIReg(4, R_ESP, mkexpr(t2)); |
| storeLE( mkexpr(t2), mkU32(guest_EIP_bbstart+delta)); |
| jmp_treg(&dres, Ijk_NoRedir, t1); |
| vassert(dres.whatNext == Dis_StopHere); |
| goto decode_success; |
| } |
| else |
| if (code[12] == 0x87 && code[13] == 0xFF /* xchgl %edi,%edi */) { |
| /* IR injection */ |
| DIP("IR injection\n"); |
| vex_inject_ir(irsb, Iend_LE); |
| |
| // Invalidate the current insn. The reason is that the IRop we're |
| // injecting here can change. In which case the translation has to |
| // be redone. For ease of handling, we simply invalidate all the |
| // time. |
| stmt(IRStmt_Put(OFFB_TISTART, mkU32(guest_EIP_curr_instr))); |
| stmt(IRStmt_Put(OFFB_TILEN, mkU32(14))); |
| |
| delta += 14; |
| |
| stmt( IRStmt_Put( OFFB_EIP, mkU32(guest_EIP_bbstart + delta) ) ); |
| dres.whatNext = Dis_StopHere; |
| dres.jk_StopHere = Ijk_TInval; |
| goto decode_success; |
| } |
| /* We don't know what it is. */ |
| goto decode_failure; |
| /*NOTREACHED*/ |
| } |
| } |
| |
| /* Handle a couple of weird-ass NOPs that have been observed in the |
| wild. */ |
| { |
| UChar* code = (UChar*)(guest_code + delta); |
| /* Sun's JVM 1.5.0 uses the following as a NOP: |
| 26 2E 64 65 90 %es:%cs:%fs:%gs:nop */ |
| if (code[0] == 0x26 && code[1] == 0x2E && code[2] == 0x64 |
| && code[3] == 0x65 && code[4] == 0x90) { |
| DIP("%%es:%%cs:%%fs:%%gs:nop\n"); |
| delta += 5; |
| goto decode_success; |
| } |
| /* Don't barf on recent binutils padding, |
| all variants of which are: nopw %cs:0x0(%eax,%eax,1) |
| 66 2e 0f 1f 84 00 00 00 00 00 |
| 66 66 2e 0f 1f 84 00 00 00 00 00 |
| 66 66 66 2e 0f 1f 84 00 00 00 00 00 |
| 66 66 66 66 2e 0f 1f 84 00 00 00 00 00 |
| 66 66 66 66 66 2e 0f 1f 84 00 00 00 00 00 |
| 66 66 66 66 66 66 2e 0f 1f 84 00 00 00 00 00 |
| */ |
| if (code[0] == 0x66) { |
| Int data16_cnt; |
| for (data16_cnt = 1; data16_cnt < 6; data16_cnt++) |
| if (code[data16_cnt] != 0x66) |
| break; |
| if (code[data16_cnt] == 0x2E && code[data16_cnt + 1] == 0x0F |
| && code[data16_cnt + 2] == 0x1F && code[data16_cnt + 3] == 0x84 |
| && code[data16_cnt + 4] == 0x00 && code[data16_cnt + 5] == 0x00 |
| && code[data16_cnt + 6] == 0x00 && code[data16_cnt + 7] == 0x00 |
| && code[data16_cnt + 8] == 0x00 ) { |
| DIP("nopw %%cs:0x0(%%eax,%%eax,1)\n"); |
| delta += 9 + data16_cnt; |
| goto decode_success; |
| } |
| } |
| } |
| |
| /* Normal instruction handling starts here. */ |
| |
| /* Deal with some but not all prefixes: |
| 66(oso) |
| F0(lock) |
| 2E(cs:) 3E(ds:) 26(es:) 64(fs:) 65(gs:) 36(ss:) |
| Not dealt with (left in place): |
| F2 F3 |
| */ |
| n_prefixes = 0; |
| while (True) { |
| if (n_prefixes > 7) goto decode_failure; |
| pre = getUChar(delta); |
| switch (pre) { |
| case 0x66: |
| sz = 2; |
| break; |
| case 0xF0: |
| pfx_lock = True; |
| *expect_CAS = True; |
| break; |
| case 0x3E: /* %DS: */ |
| case 0x26: /* %ES: */ |
| case 0x64: /* %FS: */ |
| case 0x65: /* %GS: */ |
| if (sorb != 0) |
| goto decode_failure; /* only one seg override allowed */ |
| sorb = pre; |
| break; |
| case 0x2E: { /* %CS: */ |
| /* 2E prefix on a conditional branch instruction is a |
| branch-prediction hint, which can safely be ignored. */ |
| UChar op1 = getIByte(delta+1); |
| UChar op2 = getIByte(delta+2); |
| if ((op1 >= 0x70 && op1 <= 0x7F) |
| || (op1 == 0xE3) |
| || (op1 == 0x0F && op2 >= 0x80 && op2 <= 0x8F)) { |
| if (0) vex_printf("vex x86->IR: ignoring branch hint\n"); |
| } else { |
| /* All other CS override cases are not handled */ |
| goto decode_failure; |
| } |
| break; |
| } |
| case 0x36: /* %SS: */ |
| /* SS override cases are not handled */ |
| goto decode_failure; |
| default: |
| goto not_a_prefix; |
| } |
| n_prefixes++; |
| delta++; |
| } |
| |
| not_a_prefix: |
| |
| /* Now we should be looking at the primary opcode byte or the |
| leading F2 or F3. Check that any LOCK prefix is actually |
| allowed. */ |
| |
| if (pfx_lock) { |
| if (can_be_used_with_LOCK_prefix( (UChar*)&guest_code[delta] )) { |
| DIP("lock "); |
| } else { |
| *expect_CAS = False; |
| goto decode_failure; |
| } |
| } |
| |
| |
| /* ---------------------------------------------------- */ |
| /* --- The SSE decoder. --- */ |
| /* ---------------------------------------------------- */ |
| |
| /* What did I do to deserve SSE ? Perhaps I was really bad in a |
| previous life? */ |
| |
| /* Note, this doesn't handle SSE2 or SSE3. That is handled in a |
| later section, further on. */ |
| |
| insn = (UChar*)&guest_code[delta]; |
| |
| /* Treat fxsave specially. It should be doable even on an SSE0 |
| (Pentium-II class) CPU. Hence be prepared to handle it on |
| any subarchitecture variant. |
| */ |
| |
| /* 0F AE /0 = FXSAVE m512 -- write x87 and SSE state to memory */ |
| if (sz == 4 && insn[0] == 0x0F && insn[1] == 0xAE |
| && !epartIsReg(insn[2]) && gregOfRM(insn[2]) == 0) { |
| IRDirty* d; |
| modrm = getIByte(delta+2); |
| vassert(sz == 4); |
| vassert(!epartIsReg(modrm)); |
| |
| addr = disAMode ( &alen, sorb, delta+2, dis_buf ); |
| delta += 2+alen; |
| gen_SEGV_if_not_16_aligned(addr); |
| |
| DIP("fxsave %s\n", dis_buf); |
| |
| /* Uses dirty helper: |
| void x86g_do_FXSAVE ( VexGuestX86State*, UInt ) */ |
| d = unsafeIRDirty_0_N ( |
| 0/*regparms*/, |
| "x86g_dirtyhelper_FXSAVE", |
| &x86g_dirtyhelper_FXSAVE, |
| mkIRExprVec_1( mkexpr(addr) ) |
| ); |
| d->needsBBP = True; |
| |
| /* declare we're writing memory */ |
| d->mFx = Ifx_Write; |
| d->mAddr = mkexpr(addr); |
| d->mSize = 464; /* according to recent Intel docs */ |
| |
| /* declare we're reading guest state */ |
| d->nFxState = 7; |
| vex_bzero(&d->fxState, sizeof(d->fxState)); |
| |
| d->fxState[0].fx = Ifx_Read; |
| d->fxState[0].offset = OFFB_FTOP; |
| d->fxState[0].size = sizeof(UInt); |
| |
| d->fxState[1].fx = Ifx_Read; |
| d->fxState[1].offset = OFFB_FPREGS; |
| d->fxState[1].size = 8 * sizeof(ULong); |
| |
| d->fxState[2].fx = Ifx_Read; |
| d->fxState[2].offset = OFFB_FPTAGS; |
| d->fxState[2].size = 8 * sizeof(UChar); |
| |
| d->fxState[3].fx = Ifx_Read; |
| d->fxState[3].offset = OFFB_FPROUND; |
| d->fxState[3].size = sizeof(UInt); |
| |
| d->fxState[4].fx = Ifx_Read; |
| d->fxState[4].offset = OFFB_FC3210; |
| d->fxState[4].size = sizeof(UInt); |
| |
| d->fxState[5].fx = Ifx_Read; |
| d->fxState[5].offset = OFFB_XMM0; |
| d->fxState[5].size = 8 * sizeof(U128); |
| |
| d->fxState[6].fx = Ifx_Read; |
| d->fxState[6].offset = OFFB_SSEROUND; |
| d->fxState[6].size = sizeof(UInt); |
| |
| /* Be paranoid ... this assertion tries to ensure the 8 %xmm |
| images are packed back-to-back. If not, the value of |
| d->fxState[5].size is wrong. */ |
| vassert(16 == sizeof(U128)); |
| vassert(OFFB_XMM7 == (OFFB_XMM0 + 7 * 16)); |
| |
| stmt( IRStmt_Dirty(d) ); |
| |
| goto decode_success; |
| } |
| |
| /* 0F AE /1 = FXRSTOR m512 -- read x87 and SSE state from memory */ |
| if (sz == 4 && insn[0] == 0x0F && insn[1] == 0xAE |
| && !epartIsReg(insn[2]) && gregOfRM(insn[2]) == 1) { |
| IRDirty* d; |
| modrm = getIByte(delta+2); |
| vassert(sz == 4); |
| vassert(!epartIsReg(modrm)); |
| |
| addr = disAMode ( &alen, sorb, delta+2, dis_buf ); |
| delta += 2+alen; |
| gen_SEGV_if_not_16_aligned(addr); |
| |
| DIP("fxrstor %s\n", dis_buf); |
| |
| /* Uses dirty helper: |
| VexEmNote x86g_do_FXRSTOR ( VexGuestX86State*, UInt ) |
| NOTE: |
| the VexEmNote value is simply ignored (unlike for FRSTOR) |
| */ |
| d = unsafeIRDirty_0_N ( |
| 0/*regparms*/, |
| "x86g_dirtyhelper_FXRSTOR", |
| &x86g_dirtyhelper_FXRSTOR, |
| mkIRExprVec_1( mkexpr(addr) ) |
| ); |
| d->needsBBP = True; |
| |
| /* declare we're reading memory */ |
| d->mFx = Ifx_Read; |
| d->mAddr = mkexpr(addr); |
| d->mSize = 464; /* according to recent Intel docs */ |
| |
| /* declare we're writing guest state */ |
| d->nFxState = 7; |
| vex_bzero(&d->fxState, sizeof(d->fxState)); |
| |
| d->fxState[0].fx = Ifx_Write; |
| d->fxState[0].offset = OFFB_FTOP; |
| d->fxState[0].size = sizeof(UInt); |
| |
| d->fxState[1].fx = Ifx_Write; |
| d->fxState[1].offset = OFFB_FPREGS; |
| d->fxState[1].size = 8 * sizeof(ULong); |
| |
| d->fxState[2].fx = Ifx_Write; |
| d->fxState[2].offset = OFFB_FPTAGS; |
| d->fxState[2].size = 8 * sizeof(UChar); |
| |
| d->fxState[3].fx = Ifx_Write; |
| d->fxState[3].offset = OFFB_FPROUND; |
| d->fxState[3].size = sizeof(UInt); |
| |
| d->fxState[4].fx = Ifx_Write; |
| d->fxState[4].offset = OFFB_FC3210; |
| d->fxState[4].size = sizeof(UInt); |
| |
| d->fxState[5].fx = Ifx_Write; |
| d->fxState[5].offset = OFFB_XMM0; |
| d->fxState[5].size = 8 * sizeof(U128); |
| |
| d->fxState[6].fx = Ifx_Write; |
| d->fxState[6].offset = OFFB_SSEROUND; |
| d->fxState[6].size = sizeof(UInt); |
| |
| /* Be paranoid ... this assertion tries to ensure the 8 %xmm |
| images are packed back-to-back. If not, the value of |
| d->fxState[5].size is wrong. */ |
| vassert(16 == sizeof(U128)); |
| vassert(OFFB_XMM7 == (OFFB_XMM0 + 7 * 16)); |
| |
| stmt( IRStmt_Dirty(d) ); |
| |
| goto decode_success; |
| } |
| |
| /* ------ SSE decoder main ------ */ |
| |
| /* Skip parts of the decoder which don't apply given the stated |
| guest subarchitecture. */ |
| if (archinfo->hwcaps == 0/*baseline, no sse at all*/) |
| goto after_sse_decoders; |
| |
| /* Otherwise we must be doing sse1 or sse2, so we can at least try |
| for SSE1 here. */ |
| |
| /* 0F 58 = ADDPS -- add 32Fx4 from R/M to R */ |
| if (sz == 4 && insn[0] == 0x0F && insn[1] == 0x58) { |
| delta = dis_SSE_E_to_G_all( sorb, delta+2, "addps", Iop_Add32Fx4 ); |
| goto decode_success; |
| } |
| |
| /* F3 0F 58 = ADDSS -- add 32F0x4 from R/M to R */ |
| if (insn[0] == 0xF3 && insn[1] == 0x0F && insn[2] == 0x58) { |
| vassert(sz == 4); |
| delta = dis_SSE_E_to_G_lo32( sorb, delta+3, "addss", Iop_Add32F0x4 ); |
| goto decode_success; |
| } |
| |
| /* 0F 55 = ANDNPS -- G = (not G) and E */ |
| if (sz == 4 && insn[0] == 0x0F && insn[1] == 0x55) { |
| delta = dis_SSE_E_to_G_all_invG( sorb, delta+2, "andnps", Iop_AndV128 ); |
| goto decode_success; |
| } |
| |
| /* 0F 54 = ANDPS -- G = G and E */ |
| if (sz == 4 && insn[0] == 0x0F && insn[1] == 0x54) { |
| delta = dis_SSE_E_to_G_all( sorb, delta+2, "andps", Iop_AndV128 ); |
| goto decode_success; |
| } |
| |
| /* 0F C2 = CMPPS -- 32Fx4 comparison from R/M to R */ |
| if (sz == 4 && insn[0] == 0x0F && insn[1] == 0xC2) { |
| delta = dis_SSEcmp_E_to_G( sorb, delta+2, "cmpps", True, 4 ); |
| goto decode_success; |
| } |
| |
| /* F3 0F C2 = CMPSS -- 32F0x4 comparison from R/M to R */ |
| if (insn[0] == 0xF3 && insn[1] == 0x0F && insn[2] == 0xC2) { |
| vassert(sz == 4); |
| delta = dis_SSEcmp_E_to_G( sorb, delta+3, "cmpss", False, 4 ); |
| goto decode_success; |
| } |
| |
| /* 0F 2F = COMISS -- 32F0x4 comparison G,E, and set ZCP */ |
| /* 0F 2E = UCOMISS -- 32F0x4 comparison G,E, and set ZCP */ |
| if (sz == 4 && insn[0] == 0x0F && (insn[1] == 0x2F || insn[1] == 0x2E)) { |
| IRTemp argL = newTemp(Ity_F32); |
| IRTemp argR = newTemp(Ity_F32); |
| modrm = getIByte(delta+2); |
| if (epartIsReg(modrm)) { |
| assign( argR, getXMMRegLane32F( eregOfRM(modrm), 0/*lowest lane*/ ) ); |
| delta += 2+1; |
| DIP("[u]comiss %s,%s\n", nameXMMReg(eregOfRM(modrm)), |
| nameXMMReg(gregOfRM(modrm)) ); |
| } else { |
| addr = disAMode ( &alen, sorb, delta+2, dis_buf ); |
| assign( argR, loadLE(Ity_F32, mkexpr(addr)) ); |
| delta += 2+alen; |
| DIP("[u]comiss %s,%s\n", dis_buf, |
| nameXMMReg(gregOfRM(modrm)) ); |
| } |
| assign( argL, getXMMRegLane32F( gregOfRM(modrm), 0/*lowest lane*/ ) ); |
| |
| stmt( IRStmt_Put( OFFB_CC_OP, mkU32(X86G_CC_OP_COPY) )); |
| stmt( IRStmt_Put( OFFB_CC_DEP2, mkU32(0) )); |
| stmt( IRStmt_Put( |
| OFFB_CC_DEP1, |
| binop( Iop_And32, |
| binop(Iop_CmpF64, |
| unop(Iop_F32toF64,mkexpr(argL)), |
| unop(Iop_F32toF64,mkexpr(argR))), |
| mkU32(0x45) |
| ))); |
| /* Set NDEP even though it isn't used. This makes redundant-PUT |
| elimination of previous stores to this field work better. */ |
| stmt( IRStmt_Put( OFFB_CC_NDEP, mkU32(0) )); |
| goto decode_success; |
| } |
| |
| /* 0F 2A = CVTPI2PS -- convert 2 x I32 in mem/mmx to 2 x F32 in low |
| half xmm */ |
| if (sz == 4 && insn[0] == 0x0F && insn[1] == 0x2A) { |
| IRTemp arg64 = newTemp(Ity_I64); |
| IRTemp rmode = newTemp(Ity_I32); |
| vassert(sz == 4); |
| |
| modrm = getIByte(delta+2); |
| do_MMX_preamble(); |
| if (epartIsReg(modrm)) { |
| assign( arg64, getMMXReg(eregOfRM(modrm)) ); |
| delta += 2+1; |
| DIP("cvtpi2ps %s,%s\n", nameMMXReg(eregOfRM(modrm)), |
| nameXMMReg(gregOfRM(modrm))); |
| } else { |
| addr = disAMode ( &alen, sorb, delta+2, dis_buf ); |
| assign( arg64, loadLE(Ity_I64, mkexpr(addr)) ); |
| delta += 2+alen; |
| DIP("cvtpi2ps %s,%s\n", dis_buf, |
| nameXMMReg(gregOfRM(modrm)) ); |
| } |
| |
| assign( rmode, get_sse_roundingmode() ); |
| |
| putXMMRegLane32F( |
| gregOfRM(modrm), 0, |
| binop(Iop_F64toF32, |
| mkexpr(rmode), |
| unop(Iop_I32StoF64, |
| unop(Iop_64to32, mkexpr(arg64)) )) ); |
| |
| putXMMRegLane32F( |
| gregOfRM(modrm), 1, |
| binop(Iop_F64toF32, |
| mkexpr(rmode), |
| unop(Iop_I32StoF64, |
| unop(Iop_64HIto32, mkexpr(arg64)) )) ); |
| |
| goto decode_success; |
| } |
| |
| /* F3 0F 2A = CVTSI2SS -- convert I32 in mem/ireg to F32 in low |
| quarter xmm */ |
| if (insn[0] == 0xF3 && insn[1] == 0x0F && insn[2] == 0x2A) { |
| IRTemp arg32 = newTemp(Ity_I32); |
| IRTemp rmode = newTemp(Ity_I32); |
| vassert(sz == 4); |
| |
| modrm = getIByte(delta+3); |
| if (epartIsReg(modrm)) { |
| assign( arg32, getIReg(4, eregOfRM(modrm)) ); |
| delta += 3+1; |
| DIP("cvtsi2ss %s,%s\n", nameIReg(4, eregOfRM(modrm)), |
| nameXMMReg(gregOfRM(modrm))); |
| } else { |
| addr = disAMode ( &alen, sorb, delta+3, dis_buf ); |
| assign( arg32, loadLE(Ity_I32, mkexpr(addr)) ); |
| delta += 3+alen; |
| DIP("cvtsi2ss %s,%s\n", dis_buf, |
| nameXMMReg(gregOfRM(modrm)) ); |
| } |
| |
| assign( rmode, get_sse_roundingmode() ); |
| |
| putXMMRegLane32F( |
| gregOfRM(modrm), 0, |
| binop(Iop_F64toF32, |
| mkexpr(rmode), |
| unop(Iop_I32StoF64, mkexpr(arg32)) ) ); |
| |
| goto decode_success; |
| } |
| |
| /* 0F 2D = CVTPS2PI -- convert 2 x F32 in mem/low half xmm to 2 x |
| I32 in mmx, according to prevailing SSE rounding mode */ |
| /* 0F 2C = CVTTPS2PI -- convert 2 x F32 in mem/low half xmm to 2 x |
| I32 in mmx, rounding towards zero */ |
| if (sz == 4 && insn[0] == 0x0F && (insn[1] == 0x2D || insn[1] == 0x2C)) { |
| IRTemp dst64 = newTemp(Ity_I64); |
| IRTemp rmode = newTemp(Ity_I32); |
| IRTemp f32lo = newTemp(Ity_F32); |
| IRTemp f32hi = newTemp(Ity_F32); |
| Bool r2zero = toBool(insn[1] == 0x2C); |
| |
| do_MMX_preamble(); |
| modrm = getIByte(delta+2); |
| |
| if (epartIsReg(modrm)) { |
| delta += 2+1; |
| assign(f32lo, getXMMRegLane32F(eregOfRM(modrm), 0)); |
| assign(f32hi, getXMMRegLane32F(eregOfRM(modrm), 1)); |
| DIP("cvt%sps2pi %s,%s\n", r2zero ? "t" : "", |
| nameXMMReg(eregOfRM(modrm)), |
| nameMMXReg(gregOfRM(modrm))); |
| } else { |
| addr = disAMode ( &alen, sorb, delta+2, dis_buf ); |
| assign(f32lo, loadLE(Ity_F32, mkexpr(addr))); |
| assign(f32hi, loadLE(Ity_F32, binop( Iop_Add32, |
| mkexpr(addr), |
| mkU32(4) ))); |
| delta += 2+alen; |
| DIP("cvt%sps2pi %s,%s\n", r2zero ? "t" : "", |
| dis_buf, |
| nameMMXReg(gregOfRM(modrm))); |
| } |
| |
| if (r2zero) { |
| assign(rmode, mkU32((UInt)Irrm_ZERO) ); |
| } else { |
| assign( rmode, get_sse_roundingmode() ); |
| } |
| |
| assign( |
| dst64, |
| binop( Iop_32HLto64, |
| binop( Iop_F64toI32S, |
| mkexpr(rmode), |
| unop( Iop_F32toF64, mkexpr(f32hi) ) ), |
| binop( Iop_F64toI32S, |
| mkexpr(rmode), |
| unop( Iop_F32toF64, mkexpr(f32lo) ) ) |
| ) |
| ); |
| |
| putMMXReg(gregOfRM(modrm), mkexpr(dst64)); |
| goto decode_success; |
| } |
| |
| /* F3 0F 2D = CVTSS2SI -- convert F32 in mem/low quarter xmm to |
| I32 in ireg, according to prevailing SSE rounding mode */ |
| /* F3 0F 2C = CVTTSS2SI -- convert F32 in mem/low quarter xmm to |
| I32 in ireg, rounding towards zero */ |
| if (insn[0] == 0xF3 && insn[1] == 0x0F |
| && (insn[2] == 0x2D || insn[2] == 0x2C)) { |
| IRTemp rmode = newTemp(Ity_I32); |
| IRTemp f32lo = newTemp(Ity_F32); |
| Bool r2zero = toBool(insn[2] == 0x2C); |
| vassert(sz == 4); |
| |
| modrm = getIByte(delta+3); |
| if (epartIsReg(modrm)) { |
| delta += 3+1; |
| assign(f32lo, getXMMRegLane32F(eregOfRM(modrm), 0)); |
| DIP("cvt%sss2si %s,%s\n", r2zero ? "t" : "", |
| nameXMMReg(eregOfRM(modrm)), |
| nameIReg(4, gregOfRM(modrm))); |
| } else { |
| addr = disAMode ( &alen, sorb, delta+3, dis_buf ); |
| assign(f32lo, loadLE(Ity_F32, mkexpr(addr))); |
| delta += 3+alen; |
| DIP("cvt%sss2si %s,%s\n", r2zero ? "t" : "", |
| dis_buf, |
| nameIReg(4, gregOfRM(modrm))); |
| } |
| |
| if (r2zero) { |
| assign( rmode, mkU32((UInt)Irrm_ZERO) ); |
| } else { |
| assign( rmode, get_sse_roundingmode() ); |
| } |
| |
| putIReg(4, gregOfRM(modrm), |
| binop( Iop_F64toI32S, |
| mkexpr(rmode), |
| unop( Iop_F32toF64, mkexpr(f32lo) ) ) |
| ); |
| |
| goto decode_success; |
| } |
| |
| /* 0F 5E = DIVPS -- div 32Fx4 from R/M to R */ |
| if (sz == 4 && insn[0] == 0x0F && insn[1] == 0x5E) { |
| delta = dis_SSE_E_to_G_all( sorb, delta+2, "divps", Iop_Div32Fx4 ); |
| goto decode_success; |
| } |
| |
| /* F3 0F 5E = DIVSS -- div 32F0x4 from R/M to R */ |
| if (insn[0] == 0xF3 && insn[1] == 0x0F && insn[2] == 0x5E) { |
| vassert(sz == 4); |
| delta = dis_SSE_E_to_G_lo32( sorb, delta+3, "divss", Iop_Div32F0x4 ); |
| goto decode_success; |
| } |
| |
| /* 0F AE /2 = LDMXCSR m32 -- load %mxcsr */ |
| if (insn[0] == 0x0F && insn[1] == 0xAE |
| && !epartIsReg(insn[2]) && gregOfRM(insn[2]) == 2) { |
| |
| IRTemp t64 = newTemp(Ity_I64); |
| IRTemp ew = newTemp(Ity_I32); |
| |
| modrm = getIByte(delta+2); |
| vassert(!epartIsReg(modrm)); |
| vassert(sz == 4); |
| |
| addr = disAMode ( &alen, sorb, delta+2, dis_buf ); |
| delta += 2+alen; |
| DIP("ldmxcsr %s\n", dis_buf); |
| |
| /* The only thing we observe in %mxcsr is the rounding mode. |
| Therefore, pass the 32-bit value (SSE native-format control |
| word) to a clean helper, getting back a 64-bit value, the |
| lower half of which is the SSEROUND value to store, and the |
| upper half of which is the emulation-warning token which may |
| be generated. |
| */ |
| /* ULong x86h_check_ldmxcsr ( UInt ); */ |
| assign( t64, mkIRExprCCall( |
| Ity_I64, 0/*regparms*/, |
| "x86g_check_ldmxcsr", |
| &x86g_check_ldmxcsr, |
| mkIRExprVec_1( loadLE(Ity_I32, mkexpr(addr)) ) |
| ) |
| ); |
| |
| put_sse_roundingmode( unop(Iop_64to32, mkexpr(t64)) ); |
| assign( ew, unop(Iop_64HIto32, mkexpr(t64) ) ); |
| put_emwarn( mkexpr(ew) ); |
| /* Finally, if an emulation warning was reported, side-exit to |
| the next insn, reporting the warning, so that Valgrind's |
| dispatcher sees the warning. */ |
| stmt( |
| IRStmt_Exit( |
| binop(Iop_CmpNE32, mkexpr(ew), mkU32(0)), |
| Ijk_EmWarn, |
| IRConst_U32( ((Addr32)guest_EIP_bbstart)+delta), |
| OFFB_EIP |
| ) |
| ); |
| goto decode_success; |
| } |
| |
| /* ***--- this is an MMX class insn introduced in SSE1 ---*** */ |
| /* 0F F7 = MASKMOVQ -- 8x8 masked store */ |
| if (sz == 4 && insn[0] == 0x0F && insn[1] == 0xF7) { |
| Bool ok = False; |
| delta = dis_MMX( &ok, sorb, sz, delta+1 ); |
| if (!ok) |
| goto decode_failure; |
| goto decode_success; |
| } |
| |
| /* 0F 5F = MAXPS -- max 32Fx4 from R/M to R */ |
| if (sz == 4 && insn[0] == 0x0F && insn[1] == 0x5F) { |
| delta = dis_SSE_E_to_G_all( sorb, delta+2, "maxps", Iop_Max32Fx4 ); |
| goto decode_success; |
| } |
| |
| /* F3 0F 5F = MAXSS -- max 32F0x4 from R/M to R */ |
| if (insn[0] == 0xF3 && insn[1] == 0x0F && insn[2] == 0x5F) { |
| vassert(sz == 4); |
| delta = dis_SSE_E_to_G_lo32( sorb, delta+3, "maxss", Iop_Max32F0x4 ); |
| goto decode_success; |
| } |
| |
| /* 0F 5D = MINPS -- min 32Fx4 from R/M to R */ |
| if (sz == 4 && insn[0] == 0x0F && insn[1] == 0x5D) { |
| delta = dis_SSE_E_to_G_all( sorb, delta+2, "minps", Iop_Min32Fx4 ); |
| goto decode_success; |
| } |
| |
| /* F3 0F 5D = MINSS -- min 32F0x4 from R/M to R */ |
| if (insn[0] == 0xF3 && insn[1] == 0x0F && insn[2] == 0x5D) { |
| vassert(sz == 4); |
| delta = dis_SSE_E_to_G_lo32( sorb, delta+3, "minss", Iop_Min32F0x4 ); |
| goto decode_success; |
| } |
| |
| /* 0F 28 = MOVAPS -- move from E (mem or xmm) to G (xmm). */ |
| /* 0F 10 = MOVUPS -- move from E (mem or xmm) to G (xmm). */ |
| if (sz == 4 && insn[0] == 0x0F && (insn[1] == 0x28 || insn[1] == 0x10)) { |
| modrm = getIByte(delta+2); |
| if (epartIsReg(modrm)) { |
| putXMMReg( gregOfRM(modrm), |
| getXMMReg( eregOfRM(modrm) )); |
| DIP("mov[ua]ps %s,%s\n", nameXMMReg(eregOfRM(modrm)), |
| nameXMMReg(gregOfRM(modrm))); |
| delta += 2+1; |
| } else { |
| addr = disAMode ( &alen, sorb, delta+2, dis_buf ); |
| if (insn[1] == 0x28/*movaps*/) |
| gen_SEGV_if_not_16_aligned( addr ); |
| putXMMReg( gregOfRM(modrm), |
| loadLE(Ity_V128, mkexpr(addr)) ); |
| DIP("mov[ua]ps %s,%s\n", dis_buf, |
| nameXMMReg(gregOfRM(modrm))); |
| delta += 2+alen; |
| } |
| goto decode_success; |
| } |
| |
| /* 0F 29 = MOVAPS -- move from G (xmm) to E (mem or xmm). */ |
| /* 0F 11 = MOVUPS -- move from G (xmm) to E (mem or xmm). */ |
| if (sz == 4 && insn[0] == 0x0F |
| && (insn[1] == 0x29 || insn[1] == 0x11)) { |
| modrm = getIByte(delta+2); |
| if (epartIsReg(modrm)) { |
| /* fall through; awaiting test case */ |
| } else { |
| addr = disAMode ( &alen, sorb, delta+2, dis_buf ); |
| if (insn[1] == 0x29/*movaps*/) |
| gen_SEGV_if_not_16_aligned( addr ); |
| storeLE( mkexpr(addr), getXMMReg(gregOfRM(modrm)) ); |
| DIP("mov[ua]ps %s,%s\n", nameXMMReg(gregOfRM(modrm)), |
| dis_buf ); |
| delta += 2+alen; |
| goto decode_success; |
| } |
| } |
| |
| /* 0F 16 = MOVHPS -- move from mem to high half of XMM. */ |
| /* 0F 16 = MOVLHPS -- move from lo half to hi half of XMM. */ |
| if (sz == 4 && insn[0] == 0x0F && insn[1] == 0x16) { |
| modrm = getIByte(delta+2); |
| if (epartIsReg(modrm)) { |
| delta += 2+1; |
| putXMMRegLane64( gregOfRM(modrm), 1/*upper lane*/, |
| getXMMRegLane64( eregOfRM(modrm), 0 ) ); |
| DIP("movhps %s,%s\n", nameXMMReg(eregOfRM(modrm)), |
| nameXMMReg(gregOfRM(modrm))); |
| } else { |
| addr = disAMode ( &alen, sorb, delta+2, dis_buf ); |
| delta += 2+alen; |
| putXMMRegLane64( gregOfRM(modrm), 1/*upper lane*/, |
| loadLE(Ity_I64, mkexpr(addr)) ); |
| DIP("movhps %s,%s\n", dis_buf, |
| nameXMMReg( gregOfRM(modrm) )); |
| } |
| goto decode_success; |
| } |
| |
| /* 0F 17 = MOVHPS -- move from high half of XMM to mem. */ |
| if (sz == 4 && insn[0] == 0x0F && insn[1] == 0x17) { |
| if (!epartIsReg(insn[2])) { |
| delta += 2; |
| addr = disAMode ( &alen, sorb, delta, dis_buf ); |
| delta += alen; |
| storeLE( mkexpr(addr), |
| getXMMRegLane64( gregOfRM(insn[2]), |
| 1/*upper lane*/ ) ); |
| DIP("movhps %s,%s\n", nameXMMReg( gregOfRM(insn[2]) ), |
| dis_buf); |
| goto decode_success; |
| } |
| /* else fall through */ |
| } |
| |
| /* 0F 12 = MOVLPS -- move from mem to low half of XMM. */ |
| /* OF 12 = MOVHLPS -- from from hi half to lo half of XMM. */ |
| if (sz == 4 && insn[0] == 0x0F && insn[1] == 0x12) { |
| modrm = getIByte(delta+2); |
| if (epartIsReg(modrm)) { |
| delta += 2+1; |
| putXMMRegLane64( gregOfRM(modrm), |
| 0/*lower lane*/, |
| getXMMRegLane64( eregOfRM(modrm), 1 )); |
| DIP("movhlps %s, %s\n", nameXMMReg(eregOfRM(modrm)), |
| nameXMMReg(gregOfRM(modrm))); |
| } else { |
| addr = disAMode ( &alen, sorb, delta+2, dis_buf ); |
| delta += 2+alen; |
| putXMMRegLane64( gregOfRM(modrm), 0/*lower lane*/, |
| loadLE(Ity_I64, mkexpr(addr)) ); |
| DIP("movlps %s, %s\n", |
| dis_buf, nameXMMReg( gregOfRM(modrm) )); |
| } |
| goto decode_success; |
| } |
| |
| /* 0F 13 = MOVLPS -- move from low half of XMM to mem. */ |
| if (sz == 4 && insn[0] == 0x0F && insn[1] == 0x13) { |
| if (!epartIsReg(insn[2])) { |
| delta += 2; |
| addr = disAMode ( &alen, sorb, delta, dis_buf ); |
| delta += alen; |
| storeLE( mkexpr(addr), |
| getXMMRegLane64( gregOfRM(insn[2]), |
| 0/*lower lane*/ ) ); |
| DIP("movlps %s, %s\n", nameXMMReg( gregOfRM(insn[2]) ), |
| dis_buf); |
| goto decode_success; |
| } |
| /* else fall through */ |
| } |
| |
| /* 0F 50 = MOVMSKPS - move 4 sign bits from 4 x F32 in xmm(E) |
| to 4 lowest bits of ireg(G) */ |
| if (insn[0] == 0x0F && insn[1] == 0x50) { |
| modrm = getIByte(delta+2); |
| if (sz == 4 && epartIsReg(modrm)) { |
| Int src; |
| t0 = newTemp(Ity_I32); |
| t1 = newTemp(Ity_I32); |
| t2 = newTemp(Ity_I32); |
| t3 = newTemp(Ity_I32); |
| delta += 2+1; |
| src = eregOfRM(modrm); |
| assign( t0, binop( Iop_And32, |
| binop(Iop_Shr32, getXMMRegLane32(src,0), mkU8(31)), |
| mkU32(1) )); |
| assign( t1, binop( Iop_And32, |
| binop(Iop_Shr32, getXMMRegLane32(src,1), mkU8(30)), |
| mkU32(2) )); |
| assign( t2, binop( Iop_And32, |
| binop(Iop_Shr32, getXMMRegLane32(src,2), mkU8(29)), |
| mkU32(4) )); |
| assign( t3, binop( Iop_And32, |
| binop(Iop_Shr32, getXMMRegLane32(src,3), mkU8(28)), |
| mkU32(8) )); |
| putIReg(4, gregOfRM(modrm), |
| binop(Iop_Or32, |
| binop(Iop_Or32, mkexpr(t0), mkexpr(t1)), |
| binop(Iop_Or32, mkexpr(t2), mkexpr(t3)) |
| ) |
| ); |
| DIP("movmskps %s,%s\n", nameXMMReg(src), |
| nameIReg(4, gregOfRM(modrm))); |
| goto decode_success; |
| } |
| /* else fall through */ |
| } |
| |
| /* 0F 2B = MOVNTPS -- for us, just a plain SSE store. */ |
| /* 66 0F 2B = MOVNTPD -- for us, just a plain SSE store. */ |
| if (insn[0] == 0x0F && insn[1] == 0x2B) { |
| modrm = getIByte(delta+2); |
| if (!epartIsReg(modrm)) { |
| addr = disAMode ( &alen, sorb, delta+2, dis_buf ); |
| gen_SEGV_if_not_16_aligned( addr ); |
| storeLE( mkexpr(addr), getXMMReg(gregOfRM(modrm)) ); |
| DIP("movntp%s %s,%s\n", sz==2 ? "d" : "s", |
| dis_buf, |
| nameXMMReg(gregOfRM(modrm))); |
| delta += 2+alen; |
| goto decode_success; |
| } |
| /* else fall through */ |
| } |
| |
| /* ***--- this is an MMX class insn introduced in SSE1 ---*** */ |
| /* 0F E7 = MOVNTQ -- for us, just a plain MMX store. Note, the |
| Intel manual does not say anything about the usual business of |
| the FP reg tags getting trashed whenever an MMX insn happens. |
| So we just leave them alone. |
| */ |
| if (insn[0] == 0x0F && insn[1] == 0xE7) { |
| modrm = getIByte(delta+2); |
| if (sz == 4 && !epartIsReg(modrm)) { |
| /* do_MMX_preamble(); Intel docs don't specify this */ |
| addr = disAMode ( &alen, sorb, delta+2, dis_buf ); |
| storeLE( mkexpr(addr), getMMXReg(gregOfRM(modrm)) ); |
| DIP("movntq %s,%s\n", dis_buf, |
| nameMMXReg(gregOfRM(modrm))); |
| delta += 2+alen; |
| goto decode_success; |
| } |
| /* else fall through */ |
| } |
| |
| /* F3 0F 10 = MOVSS -- move 32 bits from E (mem or lo 1/4 xmm) to G |
| (lo 1/4 xmm). If E is mem, upper 3/4 of G is zeroed out. */ |
| if (insn[0] == 0xF3 && insn[1] == 0x0F && insn[2] == 0x10) { |
| vassert(sz == 4); |
| modrm = getIByte(delta+3); |
| if (epartIsReg(modrm)) { |
| putXMMRegLane32( gregOfRM(modrm), 0, |
| getXMMRegLane32( eregOfRM(modrm), 0 )); |
| DIP("movss %s,%s\n", nameXMMReg(eregOfRM(modrm)), |
| nameXMMReg(gregOfRM(modrm))); |
| delta += 3+1; |
| } else { |
| addr = disAMode ( &alen, sorb, delta+3, dis_buf ); |
| /* zero bits 127:64 */ |
| putXMMRegLane64( gregOfRM(modrm), 1, mkU64(0) ); |
| /* zero bits 63:32 */ |
| putXMMRegLane32( gregOfRM(modrm), 1, mkU32(0) ); |
| /* write bits 31:0 */ |
| putXMMRegLane32( gregOfRM(modrm), 0, |
| loadLE(Ity_I32, mkexpr(addr)) ); |
| DIP("movss %s,%s\n", dis_buf, |
| nameXMMReg(gregOfRM(modrm))); |
| delta += 3+alen; |
| } |
| goto decode_success; |
| } |
| |
| /* F3 0F 11 = MOVSS -- move 32 bits from G (lo 1/4 xmm) to E (mem |
| or lo 1/4 xmm). */ |
| if (insn[0] == 0xF3 && insn[1] == 0x0F && insn[2] == 0x11) { |
| vassert(sz == 4); |
| modrm = getIByte(delta+3); |
| if (epartIsReg(modrm)) { |
| /* fall through, we don't yet have a test case */ |
| } else { |
| addr = disAMode ( &alen, sorb, delta+3, dis_buf ); |
| storeLE( mkexpr(addr), |
| getXMMRegLane32(gregOfRM(modrm), 0) ); |
| DIP("movss %s,%s\n", nameXMMReg(gregOfRM(modrm)), |
| dis_buf); |
| delta += 3+alen; |
| goto decode_success; |
| } |
| } |
| |
| /* 0F 59 = MULPS -- mul 32Fx4 from R/M to R */ |
| if (sz == 4 && insn[0] == 0x0F && insn[1] == 0x59) { |
| delta = dis_SSE_E_to_G_all( sorb, delta+2, "mulps", Iop_Mul32Fx4 ); |
| goto decode_success; |
| } |
| |
| /* F3 0F 59 = MULSS -- mul 32F0x4 from R/M to R */ |
| if (insn[0] == 0xF3 && insn[1] == 0x0F && insn[2] == 0x59) { |
| vassert(sz == 4); |
| delta = dis_SSE_E_to_G_lo32( sorb, delta+3, "mulss", Iop_Mul32F0x4 ); |
| goto decode_success; |
| } |
| |
| /* 0F 56 = ORPS -- G = G and E */ |
| if (sz == 4 && insn[0] == 0x0F && insn[1] == 0x56) { |
| delta = dis_SSE_E_to_G_all( sorb, delta+2, "orps", Iop_OrV128 ); |
| goto decode_success; |
| } |
| |
| /* ***--- this is an MMX class insn introduced in SSE1 ---*** */ |
| /* 0F E0 = PAVGB -- 8x8 unsigned Packed Average, with rounding */ |
| if (sz == 4 && insn[0] == 0x0F && insn[1] == 0xE0) { |
| do_MMX_preamble(); |
| delta = dis_MMXop_regmem_to_reg ( |
| sorb, delta+2, insn[1], "pavgb", False ); |
| goto decode_success; |
| } |
| |
| /* ***--- this is an MMX class insn introduced in SSE1 ---*** */ |
| /* 0F E3 = PAVGW -- 16x4 unsigned Packed Average, with rounding */ |
| if (sz == 4 && insn[0] == 0x0F && insn[1] == 0xE3) { |
| do_MMX_preamble(); |
| delta = dis_MMXop_regmem_to_reg ( |
| sorb, delta+2, insn[1], "pavgw", False ); |
| goto decode_success; |
| } |
| |
| /* ***--- this is an MMX class insn introduced in SSE1 ---*** */ |
| /* 0F C5 = PEXTRW -- extract 16-bit field from mmx(E) and put |
| zero-extend of it in ireg(G). */ |
| if (insn[0] == 0x0F && insn[1] == 0xC5) { |
| modrm = insn[2]; |
| if (sz == 4 && epartIsReg(modrm)) { |
| IRTemp sV = newTemp(Ity_I64); |
| t5 = newTemp(Ity_I16); |
| do_MMX_preamble(); |
| assign(sV, getMMXReg(eregOfRM(modrm))); |
| breakup64to16s( sV, &t3, &t2, &t1, &t0 ); |
| switch (insn[3] & 3) { |
| case 0: assign(t5, mkexpr(t0)); break; |
| case 1: assign(t5, mkexpr(t1)); break; |
| case 2: assign(t5, mkexpr(t2)); break; |
| case 3: assign(t5, mkexpr(t3)); break; |
| default: vassert(0); /*NOTREACHED*/ |
| } |
| putIReg(4, gregOfRM(modrm), unop(Iop_16Uto32, mkexpr(t5))); |
| DIP("pextrw $%d,%s,%s\n", |
| (Int)insn[3], nameMMXReg(eregOfRM(modrm)), |
| nameIReg(4,gregOfRM(modrm))); |
| delta += 4; |
| goto decode_success; |
| } |
| /* else fall through */ |
| } |
| |
| /* ***--- this is an MMX class insn introduced in SSE1 ---*** */ |
| /* 0F C4 = PINSRW -- get 16 bits from E(mem or low half ireg) and |
| put it into the specified lane of mmx(G). */ |
| if (sz == 4 && insn[0] == 0x0F && insn[1] == 0xC4) { |
| /* Use t0 .. t3 to hold the 4 original 16-bit lanes of the |
| mmx reg. t4 is the new lane value. t5 is the original |
| mmx value. t6 is the new mmx value. */ |
| Int lane; |
| t4 = newTemp(Ity_I16); |
| t5 = newTemp(Ity_I64); |
| t6 = newTemp(Ity_I64); |
| modrm = insn[2]; |
| do_MMX_preamble(); |
| |
| assign(t5, getMMXReg(gregOfRM(modrm))); |
| breakup64to16s( t5, &t3, &t2, &t1, &t0 ); |
| |
| if (epartIsReg(modrm)) { |
| assign(t4, getIReg(2, eregOfRM(modrm))); |
| delta += 3+1; |
| lane = insn[3+1-1]; |
| DIP("pinsrw $%d,%s,%s\n", (Int)lane, |
| nameIReg(2,eregOfRM(modrm)), |
| nameMMXReg(gregOfRM(modrm))); |
| } else { |
| addr = disAMode ( &alen, sorb, delta+2, dis_buf ); |
| delta += 3+alen; |
| lane = insn[3+alen-1]; |
| assign(t4, loadLE(Ity_I16, mkexpr(addr))); |
| DIP("pinsrw $%d,%s,%s\n", (Int)lane, |
| dis_buf, |
| nameMMXReg(gregOfRM(modrm))); |
| } |
| |
| switch (lane & 3) { |
| case 0: assign(t6, mk64from16s(t3,t2,t1,t4)); break; |
| case 1: assign(t6, mk64from16s(t3,t2,t4,t0)); break; |
| case 2: assign(t6, mk64from16s(t3,t4,t1,t0)); break; |
| case 3: assign(t6, mk64from16s(t4,t2,t1,t0)); break; |
| default: vassert(0); /*NOTREACHED*/ |
| } |
| putMMXReg(gregOfRM(modrm), mkexpr(t6)); |
| goto decode_success; |
| } |
| |
| /* ***--- this is an MMX class insn introduced in SSE1 ---*** */ |
| /* 0F EE = PMAXSW -- 16x4 signed max */ |
| if (sz == 4 && insn[0] == 0x0F && insn[1] == 0xEE) { |
| do_MMX_preamble(); |
| delta = dis_MMXop_regmem_to_reg ( |
| sorb, delta+2, insn[1], "pmaxsw", False ); |
| goto decode_success; |
| } |
| |
| /* ***--- this is an MMX class insn introduced in SSE1 ---*** */ |
| /* 0F DE = PMAXUB -- 8x8 unsigned max */ |
| if (sz == 4 && insn[0] == 0x0F && insn[1] == 0xDE) { |
| do_MMX_preamble(); |
| delta = dis_MMXop_regmem_to_reg ( |
| sorb, delta+2, insn[1], "pmaxub", False ); |
| goto decode_success; |
| } |
| |
| /* ***--- this is an MMX class insn introduced in SSE1 ---*** */ |
| /* 0F EA = PMINSW -- 16x4 signed min */ |
| if (sz == 4 && insn[0] == 0x0F && insn[1] == 0xEA) { |
| do_MMX_preamble(); |
| delta = dis_MMXop_regmem_to_reg ( |
| sorb, delta+2, insn[1], "pminsw", False ); |
| goto decode_success; |
| } |
| |
| /* ***--- this is an MMX class insn introduced in SSE1 ---*** */ |
| /* 0F DA = PMINUB -- 8x8 unsigned min */ |
| if (sz == 4 && insn[0] == 0x0F && insn[1] == 0xDA) { |
| do_MMX_preamble(); |
| delta = dis_MMXop_regmem_to_reg ( |
| sorb, delta+2, insn[1], "pminub", False ); |
| goto decode_success; |
| } |
| |
| /* ***--- this is an MMX class insn introduced in SSE1 ---*** */ |
| /* 0F D7 = PMOVMSKB -- extract sign bits from each of 8 lanes in |
| mmx(E), turn them into a byte, and put zero-extend of it in |
| ireg(G). */ |
| if (sz == 4 && insn[0] == 0x0F && insn[1] == 0xD7) { |
| modrm = insn[2]; |
| if (epartIsReg(modrm)) { |
| do_MMX_preamble(); |
| t0 = newTemp(Ity_I64); |
| t1 = newTemp(Ity_I32); |
| assign(t0, getMMXReg(eregOfRM(modrm))); |
| assign(t1, unop(Iop_8Uto32, unop(Iop_GetMSBs8x8, mkexpr(t0)))); |
| putIReg(4, gregOfRM(modrm), mkexpr(t1)); |
| DIP("pmovmskb %s,%s\n", nameMMXReg(eregOfRM(modrm)), |
| nameIReg(4,gregOfRM(modrm))); |
| delta += 3; |
| goto decode_success; |
| } |
| /* else fall through */ |
| } |
| |
| /* ***--- this is an MMX class insn introduced in SSE1 ---*** */ |
| /* 0F E4 = PMULUH -- 16x4 hi-half of unsigned widening multiply */ |
| if (sz == 4 && insn[0] == 0x0F && insn[1] == 0xE4) { |
| do_MMX_preamble(); |
| delta = dis_MMXop_regmem_to_reg ( |
| sorb, delta+2, insn[1], "pmuluh", False ); |
| goto decode_success; |
| } |
| |
| /* 0F 18 /0 = PREFETCHNTA -- prefetch into caches, */ |
| /* 0F 18 /1 = PREFETCH0 -- with various different hints */ |
| /* 0F 18 /2 = PREFETCH1 */ |
| /* 0F 18 /3 = PREFETCH2 */ |
| if (insn[0] == 0x0F && insn[1] == 0x18 |
| && !epartIsReg(insn[2]) |
| && gregOfRM(insn[2]) >= 0 && gregOfRM(insn[2]) <= 3) { |
| const HChar* hintstr = "??"; |
| |
| modrm = getIByte(delta+2); |
| vassert(!epartIsReg(modrm)); |
| |
| addr = disAMode ( &alen, sorb, delta+2, dis_buf ); |
| delta += 2+alen; |
| |
| switch (gregOfRM(modrm)) { |
| case 0: hintstr = "nta"; break; |
| case 1: hintstr = "t0"; break; |
| case 2: hintstr = "t1"; break; |
| case 3: hintstr = "t2"; break; |
| default: vassert(0); /*NOTREACHED*/ |
| } |
| |
| DIP("prefetch%s %s\n", hintstr, dis_buf); |
| goto decode_success; |
| } |
| |
| /* 0F 0D /0 = PREFETCH m8 -- 3DNow! prefetch */ |
| /* 0F 0D /1 = PREFETCHW m8 -- ditto, with some other hint */ |
| if (insn[0] == 0x0F && insn[1] == 0x0D |
| && !epartIsReg(insn[2]) |
| && gregOfRM(insn[2]) >= 0 && gregOfRM(insn[2]) <= 1) { |
| const HChar* hintstr = "??"; |
| |
| modrm = getIByte(delta+2); |
| vassert(!epartIsReg(modrm)); |
| |
| addr = disAMode ( &alen, sorb, delta+2, dis_buf ); |
| delta += 2+alen; |
| |
| switch (gregOfRM(modrm)) { |
| case 0: hintstr = ""; break; |
| case 1: hintstr = "w"; break; |
| default: vassert(0); /*NOTREACHED*/ |
| } |
| |
| DIP("prefetch%s %s\n", hintstr, dis_buf); |
| goto decode_success; |
| } |
| |
| /* ***--- this is an MMX class insn introduced in SSE1 ---*** */ |
| /* 0F F6 = PSADBW -- sum of 8Ux8 absolute differences */ |
| if (sz == 4 && insn[0] == 0x0F && insn[1] == 0xF6) { |
| do_MMX_preamble(); |
| delta = dis_MMXop_regmem_to_reg ( |
| sorb, delta+2, insn[1], "psadbw", False ); |
| goto decode_success; |
| } |
| |
| /* ***--- this is an MMX class insn introduced in SSE1 ---*** */ |
| /* 0F 70 = PSHUFW -- rearrange 4x16 from E(mmx or mem) to G(mmx) */ |
| if (sz == 4 && insn[0] == 0x0F && insn[1] == 0x70) { |
| Int order; |
| IRTemp sV, dV, s3, s2, s1, s0; |
| s3 = s2 = s1 = s0 = IRTemp_INVALID; |
| sV = newTemp(Ity_I64); |
| dV = newTemp(Ity_I64); |
| do_MMX_preamble(); |
| modrm = insn[2]; |
| if (epartIsReg(modrm)) { |
| assign( sV, getMMXReg(eregOfRM(modrm)) ); |
| order = (Int)insn[3]; |
| delta += 2+2; |
| DIP("pshufw $%d,%s,%s\n", order, |
| nameMMXReg(eregOfRM(modrm)), |
| nameMMXReg(gregOfRM(modrm))); |
| } else { |
| addr = disAMode ( &alen, sorb, delta+2, dis_buf ); |
| assign( sV, loadLE(Ity_I64, mkexpr(addr)) ); |
| order = (Int)insn[2+alen]; |
| delta += 3+alen; |
| DIP("pshufw $%d,%s,%s\n", order, |
| dis_buf, |
| nameMMXReg(gregOfRM(modrm))); |
| } |
| breakup64to16s( sV, &s3, &s2, &s1, &s0 ); |
| |
| # define SEL(n) \ |
| ((n)==0 ? s0 : ((n)==1 ? s1 : ((n)==2 ? s2 : s3))) |
| assign(dV, |
| mk64from16s( SEL((order>>6)&3), SEL((order>>4)&3), |
| SEL((order>>2)&3), SEL((order>>0)&3) ) |
| ); |
| putMMXReg(gregOfRM(modrm), mkexpr(dV)); |
| # undef SEL |
| goto decode_success; |
| } |
| |
| /* 0F 53 = RCPPS -- approx reciprocal 32Fx4 from R/M to R */ |
| if (insn[0] == 0x0F && insn[1] == 0x53) { |
| vassert(sz == 4); |
| delta = dis_SSE_E_to_G_unary_all( sorb, delta+2, |
| "rcpps", Iop_Recip32Fx4 ); |
| goto decode_success; |
| } |
| |
| /* F3 0F 53 = RCPSS -- approx reciprocal 32F0x4 from R/M to R */ |
| if (insn[0] == 0xF3 && insn[1] == 0x0F && insn[2] == 0x53) { |
| vassert(sz == 4); |
| delta = dis_SSE_E_to_G_unary_lo32( sorb, delta+3, |
| "rcpss", Iop_Recip32F0x4 ); |
| goto decode_success; |
| } |
| |
| /* 0F 52 = RSQRTPS -- approx reciprocal sqrt 32Fx4 from R/M to R */ |
| if (insn[0] == 0x0F && insn[1] == 0x52) { |
| vassert(sz == 4); |
| delta = dis_SSE_E_to_G_unary_all( sorb, delta+2, |
| "rsqrtps", Iop_RSqrt32Fx4 ); |
| goto decode_success; |
| } |
| |
| /* F3 0F 52 = RSQRTSS -- approx reciprocal sqrt 32F0x4 from R/M to R */ |
| if (insn[0] == 0xF3 && insn[1] == 0x0F && insn[2] == 0x52) { |
| vassert(sz == 4); |
| delta = dis_SSE_E_to_G_unary_lo32( sorb, delta+3, |
| "rsqrtss", Iop_RSqrt32F0x4 ); |
| goto decode_success; |
| } |
| |
| /* 0F AE /7 = SFENCE -- flush pending operations to memory */ |
| if (insn[0] == 0x0F && insn[1] == 0xAE |
| && epartIsReg(insn[2]) && gregOfRM(insn[2]) == 7) { |
| vassert(sz == 4); |
| delta += 3; |
| /* Insert a memory fence. It's sometimes important that these |
| are carried through to the generated code. */ |
| stmt( IRStmt_MBE(Imbe_Fence) ); |
| DIP("sfence\n"); |
| goto decode_success; |
| } |
| |
| /* 0F C6 /r ib = SHUFPS -- shuffle packed F32s */ |
| if (sz == 4 && insn[0] == 0x0F && insn[1] == 0xC6) { |
| Int select; |
| IRTemp sV, dV; |
| IRTemp s3, s2, s1, s0, d3, d2, d1, d0; |
| sV = newTemp(Ity_V128); |
| dV = newTemp(Ity_V128); |
| s3 = s2 = s1 = s0 = d3 = d2 = d1 = d0 = IRTemp_INVALID; |
| modrm = insn[2]; |
| assign( dV, getXMMReg(gregOfRM(modrm)) ); |
| |
| if (epartIsReg(modrm)) { |
| assign( sV, getXMMReg(eregOfRM(modrm)) ); |
| select = (Int)insn[3]; |
| delta += 2+2; |
| DIP("shufps $%d,%s,%s\n", select, |
| nameXMMReg(eregOfRM(modrm)), |
| nameXMMReg(gregOfRM(modrm))); |
| } else { |
| addr = disAMode ( &alen, sorb, delta+2, dis_buf ); |
| assign( sV, loadLE(Ity_V128, mkexpr(addr)) ); |
| select = (Int)insn[2+alen]; |
| delta += 3+alen; |
| DIP("shufps $%d,%s,%s\n", select, |
| dis_buf, |
| nameXMMReg(gregOfRM(modrm))); |
| } |
| |
| breakup128to32s( dV, &d3, &d2, &d1, &d0 ); |
| breakup128to32s( sV, &s3, &s2, &s1, &s0 ); |
| |
| # define SELD(n) ((n)==0 ? d0 : ((n)==1 ? d1 : ((n)==2 ? d2 : d3))) |
| # define SELS(n) ((n)==0 ? s0 : ((n)==1 ? s1 : ((n)==2 ? s2 : s3))) |
| |
| putXMMReg( |
| gregOfRM(modrm), |
| mk128from32s( SELS((select>>6)&3), SELS((select>>4)&3), |
| SELD((select>>2)&3), SELD((select>>0)&3) ) |
| ); |
| |
| # undef SELD |
| # undef SELS |
| |
| goto decode_success; |
| } |
| |
| /* 0F 51 = SQRTPS -- approx sqrt 32Fx4 from R/M to R */ |
| if (sz == 4 && insn[0] == 0x0F && insn[1] == 0x51) { |
| delta = dis_SSE_E_to_G_unary_all( sorb, delta+2, |
| "sqrtps", Iop_Sqrt32Fx4 ); |
| goto decode_success; |
| } |
| |
| /* F3 0F 51 = SQRTSS -- approx sqrt 32F0x4 from R/M to R */ |
| if (insn[0] == 0xF3 && insn[1] == 0x0F && insn[2] == 0x51) { |
| vassert(sz == 4); |
| delta = dis_SSE_E_to_G_unary_lo32( sorb, delta+3, |
| "sqrtss", Iop_Sqrt32F0x4 ); |
| goto decode_success; |
| } |
| |
| /* 0F AE /3 = STMXCSR m32 -- store %mxcsr */ |
| if (insn[0] == 0x0F && insn[1] == 0xAE |
| && !epartIsReg(insn[2]) && gregOfRM(insn[2]) == 3) { |
| modrm = getIByte(delta+2); |
| vassert(sz == 4); |
| vassert(!epartIsReg(modrm)); |
| |
| addr = disAMode ( &alen, sorb, delta+2, dis_buf ); |
| delta += 2+alen; |
| |
| /* Fake up a native SSE mxcsr word. The only thing it depends |
| on is SSEROUND[1:0], so call a clean helper to cook it up. |
| */ |
| /* UInt x86h_create_mxcsr ( UInt sseround ) */ |
| DIP("stmxcsr %s\n", dis_buf); |
| storeLE( mkexpr(addr), |
| mkIRExprCCall( |
| Ity_I32, 0/*regp*/, |
| "x86g_create_mxcsr", &x86g_create_mxcsr, |
| mkIRExprVec_1( get_sse_roundingmode() ) |
| ) |
| ); |
| goto decode_success; |
| } |
| |
| /* 0F 5C = SUBPS -- sub 32Fx4 from R/M to R */ |
| if (sz == 4 && insn[0] == 0x0F && insn[1] == 0x5C) { |
| delta = dis_SSE_E_to_G_all( sorb, delta+2, "subps", Iop_Sub32Fx4 ); |
| goto decode_success; |
| } |
| |
| /* F3 0F 5C = SUBSS -- sub 32F0x4 from R/M to R */ |
| if (insn[0] == 0xF3 && insn[1] == 0x0F && insn[2] == 0x5C) { |
| vassert(sz == 4); |
| delta = dis_SSE_E_to_G_lo32( sorb, delta+3, "subss", Iop_Sub32F0x4 ); |
| goto decode_success; |
| } |
| |
| /* 0F 15 = UNPCKHPS -- unpack and interleave high part F32s */ |
| /* 0F 14 = UNPCKLPS -- unpack and interleave low part F32s */ |
| /* These just appear to be special cases of SHUFPS */ |
| if (sz == 4 && insn[0] == 0x0F && (insn[1] == 0x15 || insn[1] == 0x14)) { |
| IRTemp sV, dV; |
| IRTemp s3, s2, s1, s0, d3, d2, d1, d0; |
| Bool hi = toBool(insn[1] == 0x15); |
| sV = newTemp(Ity_V128); |
| dV = newTemp(Ity_V128); |
| s3 = s2 = s1 = s0 = d3 = d2 = d1 = d0 = IRTemp_INVALID; |
| modrm = insn[2]; |
| assign( dV, getXMMReg(gregOfRM(modrm)) ); |
| |
| if (epartIsReg(modrm)) { |
| assign( sV, getXMMReg(eregOfRM(modrm)) ); |
| delta += 2+1; |
| DIP("unpck%sps %s,%s\n", hi ? "h" : "l", |
| nameXMMReg(eregOfRM(modrm)), |
| nameXMMReg(gregOfRM(modrm))); |
| } else { |
| addr = disAMode ( &alen, sorb, delta+2, dis_buf ); |
| assign( sV, loadLE(Ity_V128, mkexpr(addr)) ); |
| delta += 2+alen; |
| DIP("unpck%sps %s,%s\n", hi ? "h" : "l", |
| dis_buf, |
| nameXMMReg(gregOfRM(modrm))); |
| } |
| |
| breakup128to32s( dV, &d3, &d2, &d1, &d0 ); |
| breakup128to32s( sV, &s3, &s2, &s1, &s0 ); |
| |
| if (hi) { |
| putXMMReg( gregOfRM(modrm), mk128from32s( s3, d3, s2, d2 ) ); |
| } else { |
| putXMMReg( gregOfRM(modrm), mk128from32s( s1, d1, s0, d0 ) ); |
| } |
| |
| goto decode_success; |
| } |
| |
| /* 0F 57 = XORPS -- G = G and E */ |
| if (sz == 4 && insn[0] == 0x0F && insn[1] == 0x57) { |
| delta = dis_SSE_E_to_G_all( sorb, delta+2, "xorps", Iop_XorV128 ); |
| goto decode_success; |
| } |
| |
| /* ---------------------------------------------------- */ |
| /* --- end of the SSE decoder. --- */ |
| /* ---------------------------------------------------- */ |
| |
| /* ---------------------------------------------------- */ |
| /* --- start of the SSE2 decoder. --- */ |
| /* ---------------------------------------------------- */ |
| |
| /* Skip parts of the decoder which don't apply given the stated |
| guest subarchitecture. */ |
| if (0 == (archinfo->hwcaps & VEX_HWCAPS_X86_SSE2)) |
| goto after_sse_decoders; /* no SSE2 capabilities */ |
| |
| insn = (UChar*)&guest_code[delta]; |
| |
| /* 66 0F 58 = ADDPD -- add 32Fx4 from R/M to R */ |
| if (sz == 2 && insn[0] == 0x0F && insn[1] == 0x58) { |
| delta = dis_SSE_E_to_G_all( sorb, delta+2, "addpd", Iop_Add64Fx2 ); |
| goto decode_success; |
| } |
| |
| /* F2 0F 58 = ADDSD -- add 64F0x2 from R/M to R */ |
| if (insn[0] == 0xF2 && insn[1] == 0x0F && insn[2] == 0x58) { |
| vassert(sz == 4); |
| delta = dis_SSE_E_to_G_lo64( sorb, delta+3, "addsd", Iop_Add64F0x2 ); |
| goto decode_success; |
| } |
| |
| /* 66 0F 55 = ANDNPD -- G = (not G) and E */ |
| if (sz == 2 && insn[0] == 0x0F && insn[1] == 0x55) { |
| delta = dis_SSE_E_to_G_all_invG( sorb, delta+2, "andnpd", Iop_AndV128 ); |
| goto decode_success; |
| } |
| |
| /* 66 0F 54 = ANDPD -- G = G and E */ |
| if (sz == 2 && insn[0] == 0x0F && insn[1] == 0x54) { |
| delta = dis_SSE_E_to_G_all( sorb, delta+2, "andpd", Iop_AndV128 ); |
| goto decode_success; |
| } |
| |
| /* 66 0F C2 = CMPPD -- 64Fx2 comparison from R/M to R */ |
| if (sz == 2 && insn[0] == 0x0F && insn[1] == 0xC2) { |
| delta = dis_SSEcmp_E_to_G( sorb, delta+2, "cmppd", True, 8 ); |
| goto decode_success; |
| } |
| |
| /* F2 0F C2 = CMPSD -- 64F0x2 comparison from R/M to R */ |
| if (insn[0] == 0xF2 && insn[1] == 0x0F && insn[2] == 0xC2) { |
| vassert(sz == 4); |
| delta = dis_SSEcmp_E_to_G( sorb, delta+3, "cmpsd", False, 8 ); |
| goto decode_success; |
| } |
| |
| /* 66 0F 2F = COMISD -- 64F0x2 comparison G,E, and set ZCP */ |
| /* 66 0F 2E = UCOMISD -- 64F0x2 comparison G,E, and set ZCP */ |
| if (sz == 2 && insn[0] == 0x0F && (insn[1] == 0x2F || insn[1] == 0x2E)) { |
| IRTemp argL = newTemp(Ity_F64); |
| IRTemp argR = newTemp(Ity_F64); |
| modrm = getIByte(delta+2); |
| if (epartIsReg(modrm)) { |
| assign( argR, getXMMRegLane64F( eregOfRM(modrm), 0/*lowest lane*/ ) ); |
| delta += 2+1; |
| DIP("[u]comisd %s,%s\n", nameXMMReg(eregOfRM(modrm)), |
| nameXMMReg(gregOfRM(modrm)) ); |
| } else { |
| addr = disAMode ( &alen, sorb, delta+2, dis_buf ); |
| assign( argR, loadLE(Ity_F64, mkexpr(addr)) ); |
| delta += 2+alen; |
| DIP("[u]comisd %s,%s\n", dis_buf, |
| nameXMMReg(gregOfRM(modrm)) ); |
| } |
| assign( argL, getXMMRegLane64F( gregOfRM(modrm), 0/*lowest lane*/ ) ); |
| |
| stmt( IRStmt_Put( OFFB_CC_OP, mkU32(X86G_CC_OP_COPY) )); |
| stmt( IRStmt_Put( OFFB_CC_DEP2, mkU32(0) )); |
| stmt( IRStmt_Put( |
| OFFB_CC_DEP1, |
| binop( Iop_And32, |
| binop(Iop_CmpF64, mkexpr(argL), mkexpr(argR)), |
| mkU32(0x45) |
| ))); |
| /* Set NDEP even though it isn't used. This makes redundant-PUT |
| elimination of previous stores to this field work better. */ |
| stmt( IRStmt_Put( OFFB_CC_NDEP, mkU32(0) )); |
| goto decode_success; |
| } |
| |
| /* F3 0F E6 = CVTDQ2PD -- convert 2 x I32 in mem/lo half xmm to 2 x |
| F64 in xmm(G) */ |
| if (insn[0] == 0xF3 && insn[1] == 0x0F && insn[2] == 0xE6) { |
| IRTemp arg64 = newTemp(Ity_I64); |
| vassert(sz == 4); |
| |
| modrm = getIByte(delta+3); |
| if (epartIsReg(modrm)) { |
| assign( arg64, getXMMRegLane64(eregOfRM(modrm), 0) ); |
| delta += 3+1; |
| DIP("cvtdq2pd %s,%s\n", nameXMMReg(eregOfRM(modrm)), |
| nameXMMReg(gregOfRM(modrm))); |
| } else { |
| addr = disAMode ( &alen, sorb, delta+3, dis_buf ); |
| assign( arg64, loadLE(Ity_I64, mkexpr(addr)) ); |
| delta += 3+alen; |
| DIP("cvtdq2pd %s,%s\n", dis_buf, |
| nameXMMReg(gregOfRM(modrm)) ); |
| } |
| |
| putXMMRegLane64F( |
| gregOfRM(modrm), 0, |
| unop(Iop_I32StoF64, unop(Iop_64to32, mkexpr(arg64))) |
| ); |
| |
| putXMMRegLane64F( |
| gregOfRM(modrm), 1, |
| unop(Iop_I32StoF64, unop(Iop_64HIto32, mkexpr(arg64))) |
| ); |
| |
| goto decode_success; |
| } |
| |
| /* 0F 5B = CVTDQ2PS -- convert 4 x I32 in mem/xmm to 4 x F32 in |
| xmm(G) */ |
| if (sz == 4 && insn[0] == 0x0F && insn[1] == 0x5B) { |
| IRTemp argV = newTemp(Ity_V128); |
| IRTemp rmode = newTemp(Ity_I32); |
| |
| modrm = getIByte(delta+2); |
| if (epartIsReg(modrm)) { |
| assign( argV, getXMMReg(eregOfRM(modrm)) ); |
| delta += 2+1; |
| DIP("cvtdq2ps %s,%s\n", nameXMMReg(eregOfRM(modrm)), |
| nameXMMReg(gregOfRM(modrm))); |
| } else { |
| addr = disAMode ( &alen, sorb, delta+2, dis_buf ); |
| assign( argV, loadLE(Ity_V128, mkexpr(addr)) ); |
| delta += 2+alen; |
| DIP("cvtdq2ps %s,%s\n", dis_buf, |
| nameXMMReg(gregOfRM(modrm)) ); |
| } |
| |
| assign( rmode, get_sse_roundingmode() ); |
| breakup128to32s( argV, &t3, &t2, &t1, &t0 ); |
| |
| # define CVT(_t) binop( Iop_F64toF32, \ |
| mkexpr(rmode), \ |
| unop(Iop_I32StoF64,mkexpr(_t))) |
| |
| putXMMRegLane32F( gregOfRM(modrm), 3, CVT(t3) ); |
| putXMMRegLane32F( gregOfRM(modrm), 2, CVT(t2) ); |
| putXMMRegLane32F( gregOfRM(modrm), 1, CVT(t1) ); |
| putXMMRegLane32F( gregOfRM(modrm), 0, CVT(t0) ); |
| |
| # undef CVT |
| |
| goto decode_success; |
| } |
| |
| /* F2 0F E6 = CVTPD2DQ -- convert 2 x F64 in mem/xmm to 2 x I32 in |
| lo half xmm(G), and zero upper half */ |
| if (insn[0] == 0xF2 && insn[1] == 0x0F && insn[2] == 0xE6) { |
| IRTemp argV = newTemp(Ity_V128); |
| IRTemp rmode = newTemp(Ity_I32); |
| vassert(sz == 4); |
| |
| modrm = getIByte(delta+3); |
| if (epartIsReg(modrm)) { |
| assign( argV, getXMMReg(eregOfRM(modrm)) ); |
| delta += 3+1; |
| DIP("cvtpd2dq %s,%s\n", nameXMMReg(eregOfRM(modrm)), |
| nameXMMReg(gregOfRM(modrm))); |
| } else { |
| addr = disAMode ( &alen, sorb, delta+3, dis_buf ); |
| assign( argV, loadLE(Ity_V128, mkexpr(addr)) ); |
| delta += 3+alen; |
| DIP("cvtpd2dq %s,%s\n", dis_buf, |
| nameXMMReg(gregOfRM(modrm)) ); |
| } |
| |
| assign( rmode, get_sse_roundingmode() ); |
| t0 = newTemp(Ity_F64); |
| t1 = newTemp(Ity_F64); |
| assign( t0, unop(Iop_ReinterpI64asF64, |
| unop(Iop_V128to64, mkexpr(argV))) ); |
| assign( t1, unop(Iop_ReinterpI64asF64, |
| unop(Iop_V128HIto64, mkexpr(argV))) ); |
| |
| # define CVT(_t) binop( Iop_F64toI32S, \ |
| mkexpr(rmode), \ |
| mkexpr(_t) ) |
| |
| putXMMRegLane32( gregOfRM(modrm), 3, mkU32(0) ); |
| putXMMRegLane32( gregOfRM(modrm), 2, mkU32(0) ); |
| putXMMRegLane32( gregOfRM(modrm), 1, CVT(t1) ); |
| putXMMRegLane32( gregOfRM(modrm), 0, CVT(t0) ); |
| |
| # undef CVT |
| |
| goto decode_success; |
| } |
| |
| /* 66 0F 2D = CVTPD2PI -- convert 2 x F64 in mem/xmm to 2 x |
| I32 in mmx, according to prevailing SSE rounding mode */ |
| /* 66 0F 2C = CVTTPD2PI -- convert 2 x F64 in mem/xmm to 2 x |
| I32 in mmx, rounding towards zero */ |
| if (sz == 2 && insn[0] == 0x0F && (insn[1] == 0x2D || insn[1] == 0x2C)) { |
| IRTemp dst64 = newTemp(Ity_I64); |
| IRTemp rmode = newTemp(Ity_I32); |
| IRTemp f64lo = newTemp(Ity_F64); |
| IRTemp f64hi = newTemp(Ity_F64); |
| Bool r2zero = toBool(insn[1] == 0x2C); |
| |
| do_MMX_preamble(); |
| modrm = getIByte(delta+2); |
| |
| if (epartIsReg(modrm)) { |
| delta += 2+1; |
| assign(f64lo, getXMMRegLane64F(eregOfRM(modrm), 0)); |
| assign(f64hi, getXMMRegLane64F(eregOfRM(modrm), 1)); |
| DIP("cvt%spd2pi %s,%s\n", r2zero ? "t" : "", |
| nameXMMReg(eregOfRM(modrm)), |
| nameMMXReg(gregOfRM(modrm))); |
| } else { |
| addr = disAMode ( &alen, sorb, delta+2, dis_buf ); |
| assign(f64lo, loadLE(Ity_F64, mkexpr(addr))); |
| assign(f64hi, loadLE(Ity_F64, binop( Iop_Add32, |
| mkexpr(addr), |
| mkU32(8) ))); |
| delta += 2+alen; |
| DIP("cvt%spf2pi %s,%s\n", r2zero ? "t" : "", |
| dis_buf, |
| nameMMXReg(gregOfRM(modrm))); |
| } |
| |
| if (r2zero) { |
| assign(rmode, mkU32((UInt)Irrm_ZERO) ); |
| } else { |
| assign( rmode, get_sse_roundingmode() ); |
| } |
| |
| assign( |
| dst64, |
| binop( Iop_32HLto64, |
| binop( Iop_F64toI32S, mkexpr(rmode), mkexpr(f64hi) ), |
| binop( Iop_F64toI32S, mkexpr(rmode), mkexpr(f64lo) ) |
| ) |
| ); |
| |
| putMMXReg(gregOfRM(modrm), mkexpr(dst64)); |
| goto decode_success; |
| } |
| |
| /* 66 0F 5A = CVTPD2PS -- convert 2 x F64 in mem/xmm to 2 x F32 in |
| lo half xmm(G), and zero upper half */ |
| /* Note, this is practically identical to CVTPD2DQ. It would have |
| been nicer to merge them together, but the insn[] offsets differ |
| by one. */ |
| if (sz == 2 && insn[0] == 0x0F && insn[1] == 0x5A) { |
| IRTemp argV = newTemp(Ity_V128); |
| IRTemp rmode = newTemp(Ity_I32); |
| |
| modrm = getIByte(delta+2); |
| if (epartIsReg(modrm)) { |
| assign( argV, getXMMReg(eregOfRM(modrm)) ); |
| delta += 2+1; |
| DIP("cvtpd2ps %s,%s\n", nameXMMReg(eregOfRM(modrm)), |
| nameXMMReg(gregOfRM(modrm))); |
| } else { |
| addr = disAMode ( &alen, sorb, delta+2, dis_buf ); |
| assign( argV, loadLE(Ity_V128, mkexpr(addr)) ); |
| delta += 2+alen; |
| DIP("cvtpd2ps %s,%s\n", dis_buf, |
| nameXMMReg(gregOfRM(modrm)) ); |
| } |
| |
| assign( rmode, get_sse_roundingmode() ); |
| t0 = newTemp(Ity_F64); |
| t1 = newTemp(Ity_F64); |
| assign( t0, unop(Iop_ReinterpI64asF64, |
| unop(Iop_V128to64, mkexpr(argV))) ); |
| assign( t1, unop(Iop_ReinterpI64asF64, |
| unop(Iop_V128HIto64, mkexpr(argV))) ); |
| |
| # define CVT(_t) binop( Iop_F64toF32, \ |
| mkexpr(rmode), \ |
| mkexpr(_t) ) |
| |
| putXMMRegLane32( gregOfRM(modrm), 3, mkU32(0) ); |
| putXMMRegLane32( gregOfRM(modrm), 2, mkU32(0) ); |
| putXMMRegLane32F( gregOfRM(modrm), 1, CVT(t1) ); |
| putXMMRegLane32F( gregOfRM(modrm), 0, CVT(t0) ); |
| |
| # undef CVT |
| |
| goto decode_success; |
| } |
| |
| /* 66 0F 2A = CVTPI2PD -- convert 2 x I32 in mem/mmx to 2 x F64 in |
| xmm(G) */ |
| if (sz == 2 && insn[0] == 0x0F && insn[1] == 0x2A) { |
| IRTemp arg64 = newTemp(Ity_I64); |
| |
| modrm = getIByte(delta+2); |
| if (epartIsReg(modrm)) { |
| /* Only switch to MMX mode if the source is a MMX register. |
| This is inconsistent with all other instructions which |
| convert between XMM and (M64 or MMX), which always switch |
| to MMX mode even if 64-bit operand is M64 and not MMX. At |
| least, that's what the Intel docs seem to me to say. |
| Fixes #210264. */ |
| do_MMX_preamble(); |
| assign( arg64, getMMXReg(eregOfRM(modrm)) ); |
| delta += 2+1; |
| DIP("cvtpi2pd %s,%s\n", nameMMXReg(eregOfRM(modrm)), |
| nameXMMReg(gregOfRM(modrm))); |
| } else { |
| addr = disAMode ( &alen, sorb, delta+2, dis_buf ); |
| assign( arg64, loadLE(Ity_I64, mkexpr(addr)) ); |
| delta += 2+alen; |
| DIP("cvtpi2pd %s,%s\n", dis_buf, |
| nameXMMReg(gregOfRM(modrm)) ); |
| } |
| |
| putXMMRegLane64F( |
| gregOfRM(modrm), 0, |
| unop(Iop_I32StoF64, unop(Iop_64to32, mkexpr(arg64)) ) |
| ); |
| |
| putXMMRegLane64F( |
| gregOfRM(modrm), 1, |
| unop(Iop_I32StoF64, unop(Iop_64HIto32, mkexpr(arg64)) ) |
| ); |
| |
| goto decode_success; |
| } |
| |
| /* 66 0F 5B = CVTPS2DQ -- convert 4 x F32 in mem/xmm to 4 x I32 in |
| xmm(G) */ |
| if (sz == 2 && insn[0] == 0x0F && insn[1] == 0x5B) { |
| IRTemp argV = newTemp(Ity_V128); |
| IRTemp rmode = newTemp(Ity_I32); |
| |
| modrm = getIByte(delta+2); |
| if (epartIsReg(modrm)) { |
| assign( argV, getXMMReg(eregOfRM(modrm)) ); |
| delta += 2+1; |
| DIP("cvtps2dq %s,%s\n", nameXMMReg(eregOfRM(modrm)), |
| nameXMMReg(gregOfRM(modrm))); |
| } else { |
| addr = disAMode ( &alen, sorb, delta+2, dis_buf ); |
| assign( argV, loadLE(Ity_V128, mkexpr(addr)) ); |
| delta += 2+alen; |
| DIP("cvtps2dq %s,%s\n", dis_buf, |
| nameXMMReg(gregOfRM(modrm)) ); |
| } |
| |
| assign( rmode, get_sse_roundingmode() ); |
| breakup128to32s( argV, &t3, &t2, &t1, &t0 ); |
| |
| /* This is less than ideal. If it turns out to be a performance |
| bottleneck it can be improved. */ |
| # define CVT(_t) \ |
| binop( Iop_F64toI32S, \ |
| mkexpr(rmode), \ |
| unop( Iop_F32toF64, \ |
| unop( Iop_ReinterpI32asF32, mkexpr(_t))) ) |
| |
| putXMMRegLane32( gregOfRM(modrm), 3, CVT(t3) ); |
| putXMMRegLane32( gregOfRM(modrm), 2, CVT(t2) ); |
| putXMMRegLane32( gregOfRM(modrm), 1, CVT(t1) ); |
| putXMMRegLane32( gregOfRM(modrm), 0, CVT(t0) ); |
| |
| # undef CVT |
| |
| goto decode_success; |
| } |
| |
| /* 0F 5A = CVTPS2PD -- convert 2 x F32 in low half mem/xmm to 2 x |
| F64 in xmm(G). */ |
| if (sz == 4 && insn[0] == 0x0F && insn[1] == 0x5A) { |
| IRTemp f32lo = newTemp(Ity_F32); |
| IRTemp f32hi = newTemp(Ity_F32); |
| |
| modrm = getIByte(delta+2); |
| if (epartIsReg(modrm)) { |
| assign( f32lo, getXMMRegLane32F(eregOfRM(modrm), 0) ); |
| assign( f32hi, getXMMRegLane32F(eregOfRM(modrm), 1) ); |
| delta += 2+1; |
| DIP("cvtps2pd %s,%s\n", nameXMMReg(eregOfRM(modrm)), |
| nameXMMReg(gregOfRM(modrm))); |
| } else { |
| addr = disAMode ( &alen, sorb, delta+2, dis_buf ); |
| assign( f32lo, loadLE(Ity_F32, mkexpr(addr)) ); |
| assign( f32hi, loadLE(Ity_F32, |
| binop(Iop_Add32,mkexpr(addr),mkU32(4))) ); |
| delta += 2+alen; |
| DIP("cvtps2pd %s,%s\n", dis_buf, |
| nameXMMReg(gregOfRM(modrm)) ); |
| } |
| |
| putXMMRegLane64F( gregOfRM(modrm), 1, |
| unop(Iop_F32toF64, mkexpr(f32hi)) ); |
| putXMMRegLane64F( gregOfRM(modrm), 0, |
| unop(Iop_F32toF64, mkexpr(f32lo)) ); |
| |
| goto decode_success; |
| } |
| |
| /* F2 0F 2D = CVTSD2SI -- convert F64 in mem/low half xmm to |
| I32 in ireg, according to prevailing SSE rounding mode */ |
| /* F2 0F 2C = CVTTSD2SI -- convert F64 in mem/low half xmm to |
| I32 in ireg, rounding towards zero */ |
| if (insn[0] == 0xF2 && insn[1] == 0x0F |
| && (insn[2] == 0x2D || insn[2] == 0x2C)) { |
| IRTemp rmode = newTemp(Ity_I32); |
| IRTemp f64lo = newTemp(Ity_F64); |
| Bool r2zero = toBool(insn[2] == 0x2C); |
| vassert(sz == 4); |
| |
| modrm = getIByte(delta+3); |
| if (epartIsReg(modrm)) { |
| delta += 3+1; |
| assign(f64lo, getXMMRegLane64F(eregOfRM(modrm), 0)); |
| DIP("cvt%ssd2si %s,%s\n", r2zero ? "t" : "", |
| nameXMMReg(eregOfRM(modrm)), |
| nameIReg(4, gregOfRM(modrm))); |
| } else { |
| addr = disAMode ( &alen, sorb, delta+3, dis_buf ); |
| assign(f64lo, loadLE(Ity_F64, mkexpr(addr))); |
| delta += 3+alen; |
| DIP("cvt%ssd2si %s,%s\n", r2zero ? "t" : "", |
| dis_buf, |
| nameIReg(4, gregOfRM(modrm))); |
| } |
| |
| if (r2zero) { |
| assign( rmode, mkU32((UInt)Irrm_ZERO) ); |
| } else { |
| assign( rmode, get_sse_roundingmode() ); |
| } |
| |
| putIReg(4, gregOfRM(modrm), |
| binop( Iop_F64toI32S, mkexpr(rmode), mkexpr(f64lo)) ); |
| |
| goto decode_success; |
| } |
| |
| /* F2 0F 5A = CVTSD2SS -- convert F64 in mem/low half xmm to F32 in |
| low 1/4 xmm(G), according to prevailing SSE rounding mode */ |
| if (insn[0] == 0xF2 && insn[1] == 0x0F && insn[2] == 0x5A) { |
| IRTemp rmode = newTemp(Ity_I32); |
| IRTemp f64lo = newTemp(Ity_F64); |
| vassert(sz == 4); |
| |
| modrm = getIByte(delta+3); |
| if (epartIsReg(modrm)) { |
| delta += 3+1; |
| assign(f64lo, getXMMRegLane64F(eregOfRM(modrm), 0)); |
| DIP("cvtsd2ss %s,%s\n", nameXMMReg(eregOfRM(modrm)), |
| nameXMMReg(gregOfRM(modrm))); |
| } else { |
| addr = disAMode ( &alen, sorb, delta+3, dis_buf ); |
| assign(f64lo, loadLE(Ity_F64, mkexpr(addr))); |
| delta += 3+alen; |
| DIP("cvtsd2ss %s,%s\n", dis_buf, |
| nameXMMReg(gregOfRM(modrm))); |
| } |
| |
| assign( rmode, get_sse_roundingmode() ); |
| putXMMRegLane32F( |
| gregOfRM(modrm), 0, |
| binop( Iop_F64toF32, mkexpr(rmode), mkexpr(f64lo) ) |
| ); |
| |
| goto decode_success; |
| } |
| |
| /* F2 0F 2A = CVTSI2SD -- convert I32 in mem/ireg to F64 in low |
| half xmm */ |
| if (insn[0] == 0xF2 && insn[1] == 0x0F && insn[2] == 0x2A) { |
| IRTemp arg32 = newTemp(Ity_I32); |
| vassert(sz == 4); |
| |
| modrm = getIByte(delta+3); |
| if (epartIsReg(modrm)) { |
| assign( arg32, getIReg(4, eregOfRM(modrm)) ); |
| delta += 3+1; |
| DIP("cvtsi2sd %s,%s\n", nameIReg(4, eregOfRM(modrm)), |
| nameXMMReg(gregOfRM(modrm))); |
| } else { |
| addr = disAMode ( &alen, sorb, delta+3, dis_buf ); |
| assign( arg32, loadLE(Ity_I32, mkexpr(addr)) ); |
| delta += 3+alen; |
| DIP("cvtsi2sd %s,%s\n", dis_buf, |
| nameXMMReg(gregOfRM(modrm)) ); |
| } |
| |
| putXMMRegLane64F( |
| gregOfRM(modrm), 0, |
| unop(Iop_I32StoF64, mkexpr(arg32)) ); |
| |
| goto decode_success; |
| } |
| |
| /* F3 0F 5A = CVTSS2SD -- convert F32 in mem/low 1/4 xmm to F64 in |
| low half xmm(G) */ |
| if (insn[0] == 0xF3 && insn[1] == 0x0F && insn[2] == 0x5A) { |
| IRTemp f32lo = newTemp(Ity_F32); |
| vassert(sz == 4); |
| |
| modrm = getIByte(delta+3); |
| if (epartIsReg(modrm)) { |
| delta += 3+1; |
| assign(f32lo, getXMMRegLane32F(eregOfRM(modrm), 0)); |
| DIP("cvtss2sd %s,%s\n", nameXMMReg(eregOfRM(modrm)), |
| nameXMMReg(gregOfRM(modrm))); |
| } else { |
| addr = disAMode ( &alen, sorb, delta+3, dis_buf ); |
| assign(f32lo, loadLE(Ity_F32, mkexpr(addr))); |
| delta += 3+alen; |
| DIP("cvtss2sd %s,%s\n", dis_buf, |
| nameXMMReg(gregOfRM(modrm))); |
| } |
| |
| putXMMRegLane64F( gregOfRM(modrm), 0, |
| unop( Iop_F32toF64, mkexpr(f32lo) ) ); |
| |
| goto decode_success; |
| } |
| |
| /* 66 0F E6 = CVTTPD2DQ -- convert 2 x F64 in mem/xmm to 2 x I32 in |
| lo half xmm(G), and zero upper half, rounding towards zero */ |
| if (sz == 2 && insn[0] == 0x0F && insn[1] == 0xE6) { |
| IRTemp argV = newTemp(Ity_V128); |
| IRTemp rmode = newTemp(Ity_I32); |
| |
| modrm = getIByte(delta+2); |
| if (epartIsReg(modrm)) { |
| assign( argV, getXMMReg(eregOfRM(modrm)) ); |
| delta += 2+1; |
| DIP("cvttpd2dq %s,%s\n", nameXMMReg(eregOfRM(modrm)), |
| nameXMMReg(gregOfRM(modrm))); |
| } else { |
| addr = disAMode ( &alen, sorb, delta+2, dis_buf ); |
| assign( argV, loadLE(Ity_V128, mkexpr(addr)) ); |
| delta += 2+alen; |
| DIP("cvttpd2dq %s,%s\n", dis_buf, |
| nameXMMReg(gregOfRM(modrm)) ); |
| } |
| |
| assign( rmode, mkU32((UInt)Irrm_ZERO) ); |
| |
| t0 = newTemp(Ity_F64); |
| t1 = newTemp(Ity_F64); |
| assign( t0, unop(Iop_ReinterpI64asF64, |
| unop(Iop_V128to64, mkexpr(argV))) ); |
| assign( t1, unop(Iop_ReinterpI64asF64, |
| unop(Iop_V128HIto64, mkexpr(argV))) ); |
| |
| # define CVT(_t) binop( Iop_F64toI32S, \ |
| mkexpr(rmode), \ |
| mkexpr(_t) ) |
| |
| putXMMRegLane32( gregOfRM(modrm), 3, mkU32(0) ); |
| putXMMRegLane32( gregOfRM(modrm), 2, mkU32(0) ); |
| putXMMRegLane32( gregOfRM(modrm), 1, CVT(t1) ); |
| putXMMRegLane32( gregOfRM(modrm), 0, CVT(t0) ); |
| |
| # undef CVT |
| |
| goto decode_success; |
| } |
| |
| /* F3 0F 5B = CVTTPS2DQ -- convert 4 x F32 in mem/xmm to 4 x I32 in |
| xmm(G), rounding towards zero */ |
| if (insn[0] == 0xF3 && insn[1] == 0x0F && insn[2] == 0x5B) { |
| IRTemp argV = newTemp(Ity_V128); |
| IRTemp rmode = newTemp(Ity_I32); |
| vassert(sz == 4); |
| |
| modrm = getIByte(delta+3); |
| if (epartIsReg(modrm)) { |
| assign( argV, getXMMReg(eregOfRM(modrm)) ); |
| delta += 3+1; |
| DIP("cvttps2dq %s,%s\n", nameXMMReg(eregOfRM(modrm)), |
| nameXMMReg(gregOfRM(modrm))); |
| } else { |
| addr = disAMode ( &alen, sorb, delta+3, dis_buf ); |
| assign( argV, loadLE(Ity_V128, mkexpr(addr)) ); |
| delta += 3+alen; |
| DIP("cvttps2dq %s,%s\n", dis_buf, |
| nameXMMReg(gregOfRM(modrm)) ); |
| } |
| |
| assign( rmode, mkU32((UInt)Irrm_ZERO) ); |
| breakup128to32s( argV, &t3, &t2, &t1, &t0 ); |
| |
| /* This is less than ideal. If it turns out to be a performance |
| bottleneck it can be improved. */ |
| # define CVT(_t) \ |
| binop( Iop_F64toI32S, \ |
| mkexpr(rmode), \ |
| unop( Iop_F32toF64, \ |
| unop( Iop_ReinterpI32asF32, mkexpr(_t))) ) |
| |
| putXMMRegLane32( gregOfRM(modrm), 3, CVT(t3) ); |
| putXMMRegLane32( gregOfRM(modrm), 2, CVT(t2) ); |
| putXMMRegLane32( gregOfRM(modrm), 1, CVT(t1) ); |
| putXMMRegLane32( gregOfRM(modrm), 0, CVT(t0) ); |
| |
| # undef CVT |
| |
| goto decode_success; |
| } |
| |
| /* 66 0F 5E = DIVPD -- div 64Fx2 from R/M to R */ |
| if (sz == 2 && insn[0] == 0x0F && insn[1] == 0x5E) { |
| delta = dis_SSE_E_to_G_all( sorb, delta+2, "divpd", Iop_Div64Fx2 ); |
| goto decode_success; |
| } |
| |
| /* F2 0F 5E = DIVSD -- div 64F0x2 from R/M to R */ |
| if (insn[0] == 0xF2 && insn[1] == 0x0F && insn[2] == 0x5E) { |
| vassert(sz == 4); |
| delta = dis_SSE_E_to_G_lo64( sorb, delta+3, "divsd", Iop_Div64F0x2 ); |
| goto decode_success; |
| } |
| |
| /* 0F AE /5 = LFENCE -- flush pending operations to memory */ |
| /* 0F AE /6 = MFENCE -- flush pending operations to memory */ |
| if (insn[0] == 0x0F && insn[1] == 0xAE |
| && epartIsReg(insn[2]) |
| && (gregOfRM(insn[2]) == 5 || gregOfRM(insn[2]) == 6)) { |
| vassert(sz == 4); |
| delta += 3; |
| /* Insert a memory fence. It's sometimes important that these |
| are carried through to the generated code. */ |
| stmt( IRStmt_MBE(Imbe_Fence) ); |
| DIP("%sfence\n", gregOfRM(insn[2])==5 ? "l" : "m"); |
| goto decode_success; |
| } |
| |
| /* 66 0F 5F = MAXPD -- max 64Fx2 from R/M to R */ |
| if (sz == 2 && insn[0] == 0x0F && insn[1] == 0x5F) { |
| delta = dis_SSE_E_to_G_all( sorb, delta+2, "maxpd", Iop_Max64Fx2 ); |
| goto decode_success; |
| } |
| |
| /* F2 0F 5F = MAXSD -- max 64F0x2 from R/M to R */ |
| if (insn[0] == 0xF2 && insn[1] == 0x0F && insn[2] == 0x5F) { |
| vassert(sz == 4); |
| delta = dis_SSE_E_to_G_lo64( sorb, delta+3, "maxsd", Iop_Max64F0x2 ); |
| goto decode_success; |
| } |
| |
| /* 66 0F 5D = MINPD -- min 64Fx2 from R/M to R */ |
| if (sz == 2 && insn[0] == 0x0F && insn[1] == 0x5D) { |
| delta = dis_SSE_E_to_G_all( sorb, delta+2, "minpd", Iop_Min64Fx2 ); |
| goto decode_success; |
| } |
| |
| /* F2 0F 5D = MINSD -- min 64F0x2 from R/M to R */ |
| if (insn[0] == 0xF2 && insn[1] == 0x0F && insn[2] == 0x5D) { |
| vassert(sz == 4); |
| delta = dis_SSE_E_to_G_lo64( sorb, delta+3, "minsd", Iop_Min64F0x2 ); |
| goto decode_success; |
| } |
| |
| /* 66 0F 28 = MOVAPD -- move from E (mem or xmm) to G (xmm). */ |
| /* 66 0F 10 = MOVUPD -- move from E (mem or xmm) to G (xmm). */ |
| /* 66 0F 6F = MOVDQA -- move from E (mem or xmm) to G (xmm). */ |
| if (sz == 2 && insn[0] == 0x0F |
| && (insn[1] == 0x28 || insn[1] == 0x10 || insn[1] == 0x6F)) { |
| const HChar* wot = insn[1]==0x28 ? "apd" : |
| insn[1]==0x10 ? "upd" : "dqa"; |
| modrm = getIByte(delta+2); |
| if (epartIsReg(modrm)) { |
| putXMMReg( gregOfRM(modrm), |
| getXMMReg( eregOfRM(modrm) )); |
| DIP("mov%s %s,%s\n", wot, nameXMMReg(eregOfRM(modrm)), |
| nameXMMReg(gregOfRM(modrm))); |
| delta += 2+1; |
| } else { |
| addr = disAMode ( &alen, sorb, delta+2, dis_buf ); |
| if (insn[1] == 0x28/*movapd*/ || insn[1] == 0x6F/*movdqa*/) |
| gen_SEGV_if_not_16_aligned( addr ); |
| putXMMReg( gregOfRM(modrm), |
| loadLE(Ity_V128, mkexpr(addr)) ); |
| DIP("mov%s %s,%s\n", wot, dis_buf, |
| nameXMMReg(gregOfRM(modrm))); |
| delta += 2+alen; |
| } |
| goto decode_success; |
| } |
| |
| /* 66 0F 29 = MOVAPD -- move from G (xmm) to E (mem or xmm). */ |
| /* 66 0F 11 = MOVUPD -- move from G (xmm) to E (mem or xmm). */ |
| if (sz == 2 && insn[0] == 0x0F |
| && (insn[1] == 0x29 || insn[1] == 0x11)) { |
| const HChar* wot = insn[1]==0x29 ? "apd" : "upd"; |
| modrm = getIByte(delta+2); |
| if (epartIsReg(modrm)) { |
| /* fall through; awaiting test case */ |
| } else { |
| addr = disAMode ( &alen, sorb, delta+2, dis_buf ); |
| if (insn[1] == 0x29/*movapd*/) |
| gen_SEGV_if_not_16_aligned( addr ); |
| storeLE( mkexpr(addr), getXMMReg(gregOfRM(modrm)) ); |
| DIP("mov%s %s,%s\n", wot, nameXMMReg(gregOfRM(modrm)), |
| dis_buf ); |
| delta += 2+alen; |
| goto decode_success; |
| } |
| } |
| |
| /* 66 0F 6E = MOVD from r/m32 to xmm, zeroing high 3/4 of xmm. */ |
| if (sz == 2 && insn[0] == 0x0F && insn[1] == 0x6E) { |
| modrm = getIByte(delta+2); |
| if (epartIsReg(modrm)) { |
| delta += 2+1; |
| putXMMReg( |
| gregOfRM(modrm), |
| unop( Iop_32UtoV128, getIReg(4, eregOfRM(modrm)) ) |
| ); |
| DIP("movd %s, %s\n", |
| nameIReg(4,eregOfRM(modrm)), nameXMMReg(gregOfRM(modrm))); |
| } else { |
| addr = disAMode( &alen, sorb, delta+2, dis_buf ); |
| delta += 2+alen; |
| putXMMReg( |
| gregOfRM(modrm), |
| unop( Iop_32UtoV128,loadLE(Ity_I32, mkexpr(addr)) ) |
| ); |
| DIP("movd %s, %s\n", dis_buf, nameXMMReg(gregOfRM(modrm))); |
| } |
| goto decode_success; |
| } |
| |
| /* 66 0F 7E = MOVD from xmm low 1/4 to r/m32. */ |
| if (sz == 2 && insn[0] == 0x0F && insn[1] == 0x7E) { |
| modrm = getIByte(delta+2); |
| if (epartIsReg(modrm)) { |
| delta += 2+1; |
| putIReg( 4, eregOfRM(modrm), |
| getXMMRegLane32(gregOfRM(modrm), 0) ); |
| DIP("movd %s, %s\n", |
| nameXMMReg(gregOfRM(modrm)), nameIReg(4,eregOfRM(modrm))); |
| } else { |
| addr = disAMode( &alen, sorb, delta+2, dis_buf ); |
| delta += 2+alen; |
| storeLE( mkexpr(addr), |
| getXMMRegLane32(gregOfRM(modrm), 0) ); |
| DIP("movd %s, %s\n", nameXMMReg(gregOfRM(modrm)), dis_buf); |
| } |
| goto decode_success; |
| } |
| |
| /* 66 0F 7F = MOVDQA -- move from G (xmm) to E (mem or xmm). */ |
| if (sz == 2 && insn[0] == 0x0F && insn[1] == 0x7F) { |
| modrm = getIByte(delta+2); |
| if (epartIsReg(modrm)) { |
| delta += 2+1; |
| putXMMReg( eregOfRM(modrm), |
| getXMMReg(gregOfRM(modrm)) ); |
| DIP("movdqa %s, %s\n", nameXMMReg(gregOfRM(modrm)), |
| nameXMMReg(eregOfRM(modrm))); |
| } else { |
| addr = disAMode( &alen, sorb, delta+2, dis_buf ); |
| delta += 2+alen; |
| gen_SEGV_if_not_16_aligned( addr ); |
| storeLE( mkexpr(addr), getXMMReg(gregOfRM(modrm)) ); |
| DIP("movdqa %s, %s\n", nameXMMReg(gregOfRM(modrm)), dis_buf); |
| } |
| goto decode_success; |
| } |
| |
| /* F3 0F 6F = MOVDQU -- move from E (mem or xmm) to G (xmm). */ |
| /* Unfortunately can't simply use the MOVDQA case since the |
| prefix lengths are different (66 vs F3) */ |
| if (insn[0] == 0xF3 && insn[1] == 0x0F && insn[2] == 0x6F) { |
| vassert(sz == 4); |
| modrm = getIByte(delta+3); |
| if (epartIsReg(modrm)) { |
| putXMMReg( gregOfRM(modrm), |
| getXMMReg( eregOfRM(modrm) )); |
| DIP("movdqu %s,%s\n", nameXMMReg(eregOfRM(modrm)), |
| nameXMMReg(gregOfRM(modrm))); |
| delta += 3+1; |
| } else { |
| addr = disAMode ( &alen, sorb, delta+3, dis_buf ); |
| putXMMReg( gregOfRM(modrm), |
| loadLE(Ity_V128, mkexpr(addr)) ); |
| DIP("movdqu %s,%s\n", dis_buf, |
| nameXMMReg(gregOfRM(modrm))); |
| delta += 3+alen; |
| } |
| goto decode_success; |
| } |
| |
| /* F3 0F 7F = MOVDQU -- move from G (xmm) to E (mem or xmm). */ |
| /* Unfortunately can't simply use the MOVDQA case since the |
| prefix lengths are different (66 vs F3) */ |
| if (insn[0] == 0xF3 && insn[1] == 0x0F && insn[2] == 0x7F) { |
| vassert(sz == 4); |
| modrm = getIByte(delta+3); |
| if (epartIsReg(modrm)) { |
| delta += 3+1; |
| putXMMReg( eregOfRM(modrm), |
| getXMMReg(gregOfRM(modrm)) ); |
| DIP("movdqu %s, %s\n", nameXMMReg(gregOfRM(modrm)), |
| nameXMMReg(eregOfRM(modrm))); |
| } else { |
| addr = disAMode( &alen, sorb, delta+3, dis_buf ); |
| delta += 3+alen; |
| storeLE( mkexpr(addr), getXMMReg(gregOfRM(modrm)) ); |
| DIP("movdqu %s, %s\n", nameXMMReg(gregOfRM(modrm)), dis_buf); |
| } |
| goto decode_success; |
| } |
| |
| /* F2 0F D6 = MOVDQ2Q -- move from E (lo half xmm, not mem) to G (mmx). */ |
| if (insn[0] == 0xF2 && insn[1] == 0x0F && insn[2] == 0xD6) { |
| vassert(sz == 4); |
| modrm = getIByte(delta+3); |
| if (epartIsReg(modrm)) { |
| do_MMX_preamble(); |
| putMMXReg( gregOfRM(modrm), |
| getXMMRegLane64( eregOfRM(modrm), 0 )); |
| DIP("movdq2q %s,%s\n", nameXMMReg(eregOfRM(modrm)), |
| nameMMXReg(gregOfRM(modrm))); |
| delta += 3+1; |
| goto decode_success; |
| } else { |
| /* fall through, apparently no mem case for this insn */ |
| } |
| } |
| |
| /* 66 0F 16 = MOVHPD -- move from mem to high half of XMM. */ |
| /* These seems identical to MOVHPS. This instruction encoding is |
| completely crazy. */ |
| if (sz == 2 && insn[0] == 0x0F && insn[1] == 0x16) { |
| modrm = getIByte(delta+2); |
| if (epartIsReg(modrm)) { |
| /* fall through; apparently reg-reg is not possible */ |
| } else { |
| addr = disAMode ( &alen, sorb, delta+2, dis_buf ); |
| delta += 2+alen; |
| putXMMRegLane64( gregOfRM(modrm), 1/*upper lane*/, |
| loadLE(Ity_I64, mkexpr(addr)) ); |
| DIP("movhpd %s,%s\n", dis_buf, |
| nameXMMReg( gregOfRM(modrm) )); |
| goto decode_success; |
| } |
| } |
| |
| /* 66 0F 17 = MOVHPD -- move from high half of XMM to mem. */ |
| /* Again, this seems identical to MOVHPS. */ |
| if (sz == 2 && insn[0] == 0x0F && insn[1] == 0x17) { |
| if (!epartIsReg(insn[2])) { |
| delta += 2; |
| addr = disAMode ( &alen, sorb, delta, dis_buf ); |
| delta += alen; |
| storeLE( mkexpr(addr), |
| getXMMRegLane64( gregOfRM(insn[2]), |
| 1/*upper lane*/ ) ); |
| DIP("movhpd %s,%s\n", nameXMMReg( gregOfRM(insn[2]) ), |
| dis_buf); |
| goto decode_success; |
| } |
| /* else fall through */ |
| } |
| |
| /* 66 0F 12 = MOVLPD -- move from mem to low half of XMM. */ |
| /* Identical to MOVLPS ? */ |
| if (sz == 2 && insn[0] == 0x0F && insn[1] == 0x12) { |
| modrm = getIByte(delta+2); |
| if (epartIsReg(modrm)) { |
| /* fall through; apparently reg-reg is not possible */ |
| } else { |
| addr = disAMode ( &alen, sorb, delta+2, dis_buf ); |
| delta += 2+alen; |
| putXMMRegLane64( gregOfRM(modrm), 0/*lower lane*/, |
| loadLE(Ity_I64, mkexpr(addr)) ); |
| DIP("movlpd %s, %s\n", |
| dis_buf, nameXMMReg( gregOfRM(modrm) )); |
| goto decode_success; |
| } |
| } |
| |
| /* 66 0F 13 = MOVLPD -- move from low half of XMM to mem. */ |
| /* Identical to MOVLPS ? */ |
| if (sz == 2 && insn[0] == 0x0F && insn[1] == 0x13) { |
| if (!epartIsReg(insn[2])) { |
| delta += 2; |
| addr = disAMode ( &alen, sorb, delta, dis_buf ); |
| delta += alen; |
| storeLE( mkexpr(addr), |
| getXMMRegLane64( gregOfRM(insn[2]), |
| 0/*lower lane*/ ) ); |
| DIP("movlpd %s, %s\n", nameXMMReg( gregOfRM(insn[2]) ), |
| dis_buf); |
| goto decode_success; |
| } |
| /* else fall through */ |
| } |
| |
| /* 66 0F 50 = MOVMSKPD - move 2 sign bits from 2 x F64 in xmm(E) to |
| 2 lowest bits of ireg(G) */ |
| if (insn[0] == 0x0F && insn[1] == 0x50) { |
| modrm = getIByte(delta+2); |
| if (sz == 2 && epartIsReg(modrm)) { |
| Int src; |
| t0 = newTemp(Ity_I32); |
| t1 = newTemp(Ity_I32); |
| delta += 2+1; |
| src = eregOfRM(modrm); |
| assign( t0, binop( Iop_And32, |
| binop(Iop_Shr32, getXMMRegLane32(src,1), mkU8(31)), |
| mkU32(1) )); |
| assign( t1, binop( Iop_And32, |
| binop(Iop_Shr32, getXMMRegLane32(src,3), mkU8(30)), |
| mkU32(2) )); |
| putIReg(4, gregOfRM(modrm), |
| binop(Iop_Or32, mkexpr(t0), mkexpr(t1)) |
| ); |
| DIP("movmskpd %s,%s\n", nameXMMReg(src), |
| nameIReg(4, gregOfRM(modrm))); |
| goto decode_success; |
| } |
| /* else fall through */ |
| } |
| |
| /* 66 0F F7 = MASKMOVDQU -- store selected bytes of double quadword */ |
| if (insn[0] == 0x0F && insn[1] == 0xF7) { |
| modrm = getIByte(delta+2); |
| if (sz == 2 && epartIsReg(modrm)) { |
| IRTemp regD = newTemp(Ity_V128); |
| IRTemp mask = newTemp(Ity_V128); |
| IRTemp olddata = newTemp(Ity_V128); |
| IRTemp newdata = newTemp(Ity_V128); |
| addr = newTemp(Ity_I32); |
| |
| assign( addr, handleSegOverride( sorb, getIReg(4, R_EDI) )); |
| assign( regD, getXMMReg( gregOfRM(modrm) )); |
| |
| /* Unfortunately can't do the obvious thing with SarN8x16 |
| here since that can't be re-emitted as SSE2 code - no such |
| insn. */ |
| assign( |
| mask, |
| binop(Iop_64HLtoV128, |
| binop(Iop_SarN8x8, |
| getXMMRegLane64( eregOfRM(modrm), 1 ), |
| mkU8(7) ), |
| binop(Iop_SarN8x8, |
| getXMMRegLane64( eregOfRM(modrm), 0 ), |
| mkU8(7) ) )); |
| assign( olddata, loadLE( Ity_V128, mkexpr(addr) )); |
| assign( newdata, |
| binop(Iop_OrV128, |
| binop(Iop_AndV128, |
| mkexpr(regD), |
| mkexpr(mask) ), |
| binop(Iop_AndV128, |
| mkexpr(olddata), |
| unop(Iop_NotV128, mkexpr(mask)))) ); |
| storeLE( mkexpr(addr), mkexpr(newdata) ); |
| |
| delta += 2+1; |
| DIP("maskmovdqu %s,%s\n", nameXMMReg( eregOfRM(modrm) ), |
| nameXMMReg( gregOfRM(modrm) ) ); |
| goto decode_success; |
| } |
| /* else fall through */ |
| } |
| |
| /* 66 0F E7 = MOVNTDQ -- for us, just a plain SSE store. */ |
| if (insn[0] == 0x0F && insn[1] == 0xE7) { |
| modrm = getIByte(delta+2); |
| if (sz == 2 && !epartIsReg(modrm)) { |
| addr = disAMode ( &alen, sorb, delta+2, dis_buf ); |
| gen_SEGV_if_not_16_aligned( addr ); |
| storeLE( mkexpr(addr), getXMMReg(gregOfRM(modrm)) ); |
| DIP("movntdq %s,%s\n", dis_buf, |
| nameXMMReg(gregOfRM(modrm))); |
| delta += 2+alen; |
| goto decode_success; |
| } |
| /* else fall through */ |
| } |
| |
| /* 0F C3 = MOVNTI -- for us, just a plain ireg store. */ |
| if (insn[0] == 0x0F && insn[1] == 0xC3) { |
| vassert(sz == 4); |
| modrm = getIByte(delta+2); |
| if (!epartIsReg(modrm)) { |
| addr = disAMode ( &alen, sorb, delta+2, dis_buf ); |
| storeLE( mkexpr(addr), getIReg(4, gregOfRM(modrm)) ); |
| DIP("movnti %s,%s\n", dis_buf, |
| nameIReg(4, gregOfRM(modrm))); |
| delta += 2+alen; |
| goto decode_success; |
| } |
| /* else fall through */ |
| } |
| |
| /* 66 0F D6 = MOVQ -- move 64 bits from G (lo half xmm) to E (mem |
| or lo half xmm). */ |
| if (sz == 2 && insn[0] == 0x0F && insn[1] == 0xD6) { |
| modrm = getIByte(delta+2); |
| if (epartIsReg(modrm)) { |
| /* fall through, awaiting test case */ |
| /* dst: lo half copied, hi half zeroed */ |
| } else { |
| addr = disAMode ( &alen, sorb, delta+2, dis_buf ); |
| storeLE( mkexpr(addr), |
| getXMMRegLane64( gregOfRM(modrm), 0 )); |
| DIP("movq %s,%s\n", nameXMMReg(gregOfRM(modrm)), dis_buf ); |
| delta += 2+alen; |
| goto decode_success; |
| } |
| } |
| |
| /* F3 0F D6 = MOVQ2DQ -- move from E (mmx) to G (lo half xmm, zero |
| hi half). */ |
| if (insn[0] == 0xF3 && insn[1] == 0x0F && insn[2] == 0xD6) { |
| vassert(sz == 4); |
| modrm = getIByte(delta+3); |
| if (epartIsReg(modrm)) { |
| do_MMX_preamble(); |
| putXMMReg( gregOfRM(modrm), |
| unop(Iop_64UtoV128, getMMXReg( eregOfRM(modrm) )) ); |
| DIP("movq2dq %s,%s\n", nameMMXReg(eregOfRM(modrm)), |
| nameXMMReg(gregOfRM(modrm))); |
| delta += 3+1; |
| goto decode_success; |
| } else { |
| /* fall through, apparently no mem case for this insn */ |
| } |
| } |
| |
| /* F3 0F 7E = MOVQ -- move 64 bits from E (mem or lo half xmm) to |
| G (lo half xmm). Upper half of G is zeroed out. */ |
| /* F2 0F 10 = MOVSD -- move 64 bits from E (mem or lo half xmm) to |
| G (lo half xmm). If E is mem, upper half of G is zeroed out. |
| If E is reg, upper half of G is unchanged. */ |
| if ((insn[0] == 0xF2 && insn[1] == 0x0F && insn[2] == 0x10) |
| || (insn[0] == 0xF3 && insn[1] == 0x0F && insn[2] == 0x7E)) { |
| vassert(sz == 4); |
| modrm = getIByte(delta+3); |
| if (epartIsReg(modrm)) { |
| putXMMRegLane64( gregOfRM(modrm), 0, |
| getXMMRegLane64( eregOfRM(modrm), 0 )); |
| if (insn[0] == 0xF3/*MOVQ*/) { |
| /* zero bits 127:64 */ |
| putXMMRegLane64( gregOfRM(modrm), 1, mkU64(0) ); |
| } |
| DIP("movsd %s,%s\n", nameXMMReg(eregOfRM(modrm)), |
| nameXMMReg(gregOfRM(modrm))); |
| delta += 3+1; |
| } else { |
| addr = disAMode ( &alen, sorb, delta+3, dis_buf ); |
| /* zero bits 127:64 */ |
| putXMMRegLane64( gregOfRM(modrm), 1, mkU64(0) ); |
| /* write bits 63:0 */ |
| putXMMRegLane64( gregOfRM(modrm), 0, |
| loadLE(Ity_I64, mkexpr(addr)) ); |
| DIP("movsd %s,%s\n", dis_buf, |
| nameXMMReg(gregOfRM(modrm))); |
| delta += 3+alen; |
| } |
| goto decode_success; |
| } |
| |
| /* F2 0F 11 = MOVSD -- move 64 bits from G (lo half xmm) to E (mem |
| or lo half xmm). */ |
| if (insn[0] == 0xF2 && insn[1] == 0x0F && insn[2] == 0x11) { |
| vassert(sz == 4); |
| modrm = getIByte(delta+3); |
| if (epartIsReg(modrm)) { |
| putXMMRegLane64( eregOfRM(modrm), 0, |
| getXMMRegLane64( gregOfRM(modrm), 0 )); |
| DIP("movsd %s,%s\n", nameXMMReg(gregOfRM(modrm)), |
| nameXMMReg(eregOfRM(modrm))); |
| delta += 3+1; |
| } else { |
| addr = disAMode ( &alen, sorb, delta+3, dis_buf ); |
| storeLE( mkexpr(addr), |
| getXMMRegLane64(gregOfRM(modrm), 0) ); |
| DIP("movsd %s,%s\n", nameXMMReg(gregOfRM(modrm)), |
| dis_buf); |
| delta += 3+alen; |
| } |
| goto decode_success; |
| } |
| |
| /* 66 0F 59 = MULPD -- mul 64Fx2 from R/M to R */ |
| if (sz == 2 && insn[0] == 0x0F && insn[1] == 0x59) { |
| delta = dis_SSE_E_to_G_all( sorb, delta+2, "mulpd", Iop_Mul64Fx2 ); |
| goto decode_success; |
| } |
| |
| /* F2 0F 59 = MULSD -- mul 64F0x2 from R/M to R */ |
| if (insn[0] == 0xF2 && insn[1] == 0x0F && insn[2] == 0x59) { |
| vassert(sz == 4); |
| delta = dis_SSE_E_to_G_lo64( sorb, delta+3, "mulsd", Iop_Mul64F0x2 ); |
| goto decode_success; |
| } |
| |
| /* 66 0F 56 = ORPD -- G = G and E */ |
| if (sz == 2 && insn[0] == 0x0F && insn[1] == 0x56) { |
| delta = dis_SSE_E_to_G_all( sorb, delta+2, "orpd", Iop_OrV128 ); |
| goto decode_success; |
| } |
| |
| /* 66 0F C6 /r ib = SHUFPD -- shuffle packed F64s */ |
| if (sz == 2 && insn[0] == 0x0F && insn[1] == 0xC6) { |
| Int select; |
| IRTemp sV = newTemp(Ity_V128); |
| IRTemp dV = newTemp(Ity_V128); |
| IRTemp s1 = newTemp(Ity_I64); |
| IRTemp s0 = newTemp(Ity_I64); |
| IRTemp d1 = newTemp(Ity_I64); |
| IRTemp d0 = newTemp(Ity_I64); |
| |
| modrm = insn[2]; |
| assign( dV, getXMMReg(gregOfRM(modrm)) ); |
| |
| if (epartIsReg(modrm)) { |
| assign( sV, getXMMReg(eregOfRM(modrm)) ); |
| select = (Int)insn[3]; |
| delta += 2+2; |
| DIP("shufpd $%d,%s,%s\n", select, |
| nameXMMReg(eregOfRM(modrm)), |
| nameXMMReg(gregOfRM(modrm))); |
| } else { |
| addr = disAMode ( &alen, sorb, delta+2, dis_buf ); |
| assign( sV, loadLE(Ity_V128, mkexpr(addr)) ); |
| select = (Int)insn[2+alen]; |
| delta += 3+alen; |
| DIP("shufpd $%d,%s,%s\n", select, |
| dis_buf, |
| nameXMMReg(gregOfRM(modrm))); |
| } |
| |
| assign( d1, unop(Iop_V128HIto64, mkexpr(dV)) ); |
| assign( d0, unop(Iop_V128to64, mkexpr(dV)) ); |
| assign( s1, unop(Iop_V128HIto64, mkexpr(sV)) ); |
| assign( s0, unop(Iop_V128to64, mkexpr(sV)) ); |
| |
| # define SELD(n) mkexpr((n)==0 ? d0 : d1) |
| # define SELS(n) mkexpr((n)==0 ? s0 : s1) |
| |
| putXMMReg( |
| gregOfRM(modrm), |
| binop(Iop_64HLtoV128, SELS((select>>1)&1), SELD((select>>0)&1) ) |
| ); |
| |
| # undef SELD |
| # undef SELS |
| |
| goto decode_success; |
| } |
| |
| /* 66 0F 51 = SQRTPD -- approx sqrt 64Fx2 from R/M to R */ |
| if (sz == 2 && insn[0] == 0x0F && insn[1] == 0x51) { |
| delta = dis_SSE_E_to_G_unary_all( sorb, delta+2, |
| "sqrtpd", Iop_Sqrt64Fx2 ); |
| goto decode_success; |
| } |
| |
| /* F2 0F 51 = SQRTSD -- approx sqrt 64F0x2 from R/M to R */ |
| if (insn[0] == 0xF2 && insn[1] == 0x0F && insn[2] == 0x51) { |
| vassert(sz == 4); |
| delta = dis_SSE_E_to_G_unary_lo64( sorb, delta+3, |
| "sqrtsd", Iop_Sqrt64F0x2 ); |
| goto decode_success; |
| } |
| |
| /* 66 0F 5C = SUBPD -- sub 64Fx2 from R/M to R */ |
| if (sz == 2 && insn[0] == 0x0F && insn[1] == 0x5C) { |
| delta = dis_SSE_E_to_G_all( sorb, delta+2, "subpd", Iop_Sub64Fx2 ); |
| goto decode_success; |
| } |
| |
| /* F2 0F 5C = SUBSD -- sub 64F0x2 from R/M to R */ |
| if (insn[0] == 0xF2 && insn[1] == 0x0F && insn[2] == 0x5C) { |
| vassert(sz == 4); |
| delta = dis_SSE_E_to_G_lo64( sorb, delta+3, "subsd", Iop_Sub64F0x2 ); |
| goto decode_success; |
| } |
| |
| /* 66 0F 15 = UNPCKHPD -- unpack and interleave high part F64s */ |
| /* 66 0F 14 = UNPCKLPD -- unpack and interleave low part F64s */ |
| /* These just appear to be special cases of SHUFPS */ |
| if (sz == 2 && insn[0] == 0x0F && (insn[1] == 0x15 || insn[1] == 0x14)) { |
| IRTemp s1 = newTemp(Ity_I64); |
| IRTemp s0 = newTemp(Ity_I64); |
| IRTemp d1 = newTemp(Ity_I64); |
| IRTemp d0 = newTemp(Ity_I64); |
| IRTemp sV = newTemp(Ity_V128); |
| IRTemp dV = newTemp(Ity_V128); |
| Bool hi = toBool(insn[1] == 0x15); |
| |
| modrm = insn[2]; |
| assign( dV, getXMMReg(gregOfRM(modrm)) ); |
| |
| if (epartIsReg(modrm)) { |
| assign( sV, getXMMReg(eregOfRM(modrm)) ); |
| delta += 2+1; |
| DIP("unpck%sps %s,%s\n", hi ? "h" : "l", |
| nameXMMReg(eregOfRM(modrm)), |
| nameXMMReg(gregOfRM(modrm))); |
| } else { |
| addr = disAMode ( &alen, sorb, delta+2, dis_buf ); |
| assign( sV, loadLE(Ity_V128, mkexpr(addr)) ); |
| delta += 2+alen; |
| DIP("unpck%sps %s,%s\n", hi ? "h" : "l", |
| dis_buf, |
| nameXMMReg(gregOfRM(modrm))); |
| } |
| |
| assign( d1, unop(Iop_V128HIto64, mkexpr(dV)) ); |
| assign( d0, unop(Iop_V128to64, mkexpr(dV)) ); |
| assign( s1, unop(Iop_V128HIto64, mkexpr(sV)) ); |
| assign( s0, unop(Iop_V128to64, mkexpr(sV)) ); |
| |
| if (hi) { |
| putXMMReg( gregOfRM(modrm), |
| binop(Iop_64HLtoV128, mkexpr(s1), mkexpr(d1)) ); |
| } else { |
| putXMMReg( gregOfRM(modrm), |
| binop(Iop_64HLtoV128, mkexpr(s0), mkexpr(d0)) ); |
| } |
| |
| goto decode_success; |
| } |
| |
| /* 66 0F 57 = XORPD -- G = G and E */ |
| if (sz == 2 && insn[0] == 0x0F && insn[1] == 0x57) { |
| delta = dis_SSE_E_to_G_all( sorb, delta+2, "xorpd", Iop_XorV128 ); |
| goto decode_success; |
| } |
| |
| /* 66 0F 6B = PACKSSDW */ |
| if (sz == 2 && insn[0] == 0x0F && insn[1] == 0x6B) { |
| delta = dis_SSEint_E_to_G( sorb, delta+2, |
| "packssdw", |
| Iop_QNarrowBin32Sto16Sx8, True ); |
| goto decode_success; |
| } |
| |
| /* 66 0F 63 = PACKSSWB */ |
| if (sz == 2 && insn[0] == 0x0F && insn[1] == 0x63) { |
| delta = dis_SSEint_E_to_G( sorb, delta+2, |
| "packsswb", |
| Iop_QNarrowBin16Sto8Sx16, True ); |
| goto decode_success; |
| } |
| |
| /* 66 0F 67 = PACKUSWB */ |
| if (sz == 2 && insn[0] == 0x0F && insn[1] == 0x67) { |
| delta = dis_SSEint_E_to_G( sorb, delta+2, |
| "packuswb", |
| Iop_QNarrowBin16Sto8Ux16, True ); |
| goto decode_success; |
| } |
| |
| /* 66 0F FC = PADDB */ |
| if (sz == 2 && insn[0] == 0x0F && insn[1] == 0xFC) { |
| delta = dis_SSEint_E_to_G( sorb, delta+2, |
| "paddb", Iop_Add8x16, False ); |
| goto decode_success; |
| } |
| |
| /* 66 0F FE = PADDD */ |
| if (sz == 2 && insn[0] == 0x0F && insn[1] == 0xFE) { |
| delta = dis_SSEint_E_to_G( sorb, delta+2, |
| "paddd", Iop_Add32x4, False ); |
| goto decode_success; |
| } |
| |
| /* ***--- this is an MMX class insn introduced in SSE2 ---*** */ |
| /* 0F D4 = PADDQ -- add 64x1 */ |
| if (sz == 4 && insn[0] == 0x0F && insn[1] == 0xD4) { |
| do_MMX_preamble(); |
| delta = dis_MMXop_regmem_to_reg ( |
| sorb, delta+2, insn[1], "paddq", False ); |
| goto decode_success; |
| } |
| |
| /* 66 0F D4 = PADDQ */ |
| if (sz == 2 && insn[0] == 0x0F && insn[1] == 0xD4) { |
| delta = dis_SSEint_E_to_G( sorb, delta+2, |
| "paddq", Iop_Add64x2, False ); |
| goto decode_success; |
| } |
| |
| /* 66 0F FD = PADDW */ |
| if (sz == 2 && insn[0] == 0x0F && insn[1] == 0xFD) { |
| delta = dis_SSEint_E_to_G( sorb, delta+2, |
| "paddw", Iop_Add16x8, False ); |
| goto decode_success; |
| } |
| |
| /* 66 0F EC = PADDSB */ |
| if (sz == 2 && insn[0] == 0x0F && insn[1] == 0xEC) { |
| delta = dis_SSEint_E_to_G( sorb, delta+2, |
| "paddsb", Iop_QAdd8Sx16, False ); |
| goto decode_success; |
| } |
| |
| /* 66 0F ED = PADDSW */ |
| if (sz == 2 && insn[0] == 0x0F && insn[1] == 0xED) { |
| delta = dis_SSEint_E_to_G( sorb, delta+2, |
| "paddsw", Iop_QAdd16Sx8, False ); |
| goto decode_success; |
| } |
| |
| /* 66 0F DC = PADDUSB */ |
| if (sz == 2 && insn[0] == 0x0F && insn[1] == 0xDC) { |
| delta = dis_SSEint_E_to_G( sorb, delta+2, |
| "paddusb", Iop_QAdd8Ux16, False ); |
| goto decode_success; |
| } |
| |
| /* 66 0F DD = PADDUSW */ |
| if (sz == 2 && insn[0] == 0x0F && insn[1] == 0xDD) { |
| delta = dis_SSEint_E_to_G( sorb, delta+2, |
| "paddusw", Iop_QAdd16Ux8, False ); |
| goto decode_success; |
| } |
| |
| /* 66 0F DB = PAND */ |
| if (sz == 2 && insn[0] == 0x0F && insn[1] == 0xDB) { |
| delta = dis_SSE_E_to_G_all( sorb, delta+2, "pand", Iop_AndV128 ); |
| goto decode_success; |
| } |
| |
| /* 66 0F DF = PANDN */ |
| if (sz == 2 && insn[0] == 0x0F && insn[1] == 0xDF) { |
| delta = dis_SSE_E_to_G_all_invG( sorb, delta+2, "pandn", Iop_AndV128 ); |
| goto decode_success; |
| } |
| |
| /* 66 0F E0 = PAVGB */ |
| if (sz == 2 && insn[0] == 0x0F && insn[1] == 0xE0) { |
| delta = dis_SSEint_E_to_G( sorb, delta+2, |
| "pavgb", Iop_Avg8Ux16, False ); |
| goto decode_success; |
| } |
| |
| /* 66 0F E3 = PAVGW */ |
| if (sz == 2 && insn[0] == 0x0F && insn[1] == 0xE3) { |
| delta = dis_SSEint_E_to_G( sorb, delta+2, |
| "pavgw", Iop_Avg16Ux8, False ); |
| goto decode_success; |
| } |
| |
| /* 66 0F 74 = PCMPEQB */ |
| if (sz == 2 && insn[0] == 0x0F && insn[1] == 0x74) { |
| delta = dis_SSEint_E_to_G( sorb, delta+2, |
| "pcmpeqb", Iop_CmpEQ8x16, False ); |
| goto decode_success; |
| } |
| |
| /* 66 0F 76 = PCMPEQD */ |
| if (sz == 2 && insn[0] == 0x0F && insn[1] == 0x76) { |
| delta = dis_SSEint_E_to_G( sorb, delta+2, |
| "pcmpeqd", Iop_CmpEQ32x4, False ); |
| goto decode_success; |
| } |
| |
| /* 66 0F 75 = PCMPEQW */ |
| if (sz == 2 && insn[0] == 0x0F && insn[1] == 0x75) { |
| delta = dis_SSEint_E_to_G( sorb, delta+2, |
| "pcmpeqw", Iop_CmpEQ16x8, False ); |
| goto decode_success; |
| } |
| |
| /* 66 0F 64 = PCMPGTB */ |
| if (sz == 2 && insn[0] == 0x0F && insn[1] == 0x64) { |
| delta = dis_SSEint_E_to_G( sorb, delta+2, |
| "pcmpgtb", Iop_CmpGT8Sx16, False ); |
| goto decode_success; |
| } |
| |
| /* 66 0F 66 = PCMPGTD */ |
| if (sz == 2 && insn[0] == 0x0F && insn[1] == 0x66) { |
| delta = dis_SSEint_E_to_G( sorb, delta+2, |
| "pcmpgtd", Iop_CmpGT32Sx4, False ); |
| goto decode_success; |
| } |
| |
| /* 66 0F 65 = PCMPGTW */ |
| if (sz == 2 && insn[0] == 0x0F && insn[1] == 0x65) { |
| delta = dis_SSEint_E_to_G( sorb, delta+2, |
| "pcmpgtw", Iop_CmpGT16Sx8, False ); |
| goto decode_success; |
| } |
| |
| /* 66 0F C5 = PEXTRW -- extract 16-bit field from xmm(E) and put |
| zero-extend of it in ireg(G). */ |
| if (insn[0] == 0x0F && insn[1] == 0xC5) { |
| modrm = insn[2]; |
| if (sz == 2 && epartIsReg(modrm)) { |
| t5 = newTemp(Ity_V128); |
| t4 = newTemp(Ity_I16); |
| assign(t5, getXMMReg(eregOfRM(modrm))); |
| breakup128to32s( t5, &t3, &t2, &t1, &t0 ); |
| switch (insn[3] & 7) { |
| case 0: assign(t4, unop(Iop_32to16, mkexpr(t0))); break; |
| case 1: assign(t4, unop(Iop_32HIto16, mkexpr(t0))); break; |
| case 2: assign(t4, unop(Iop_32to16, mkexpr(t1))); break; |
| case 3: assign(t4, unop(Iop_32HIto16, mkexpr(t1))); break; |
| case 4: assign(t4, unop(Iop_32to16, mkexpr(t2))); break; |
| case 5: assign(t4, unop(Iop_32HIto16, mkexpr(t2))); break; |
| case 6: assign(t4, unop(Iop_32to16, mkexpr(t3))); break; |
| case 7: assign(t4, unop(Iop_32HIto16, mkexpr(t3))); break; |
| default: vassert(0); /*NOTREACHED*/ |
| } |
| putIReg(4, gregOfRM(modrm), unop(Iop_16Uto32, mkexpr(t4))); |
| DIP("pextrw $%d,%s,%s\n", |
| (Int)insn[3], nameXMMReg(eregOfRM(modrm)), |
| nameIReg(4,gregOfRM(modrm))); |
| delta += 4; |
| goto decode_success; |
| } |
| /* else fall through */ |
| } |
| |
| /* 66 0F C4 = PINSRW -- get 16 bits from E(mem or low half ireg) and |
| put it into the specified lane of xmm(G). */ |
| if (sz == 2 && insn[0] == 0x0F && insn[1] == 0xC4) { |
| Int lane; |
| t4 = newTemp(Ity_I16); |
| modrm = insn[2]; |
| |
| if (epartIsReg(modrm)) { |
| assign(t4, getIReg(2, eregOfRM(modrm))); |
| delta += 3+1; |
| lane = insn[3+1-1]; |
| DIP("pinsrw $%d,%s,%s\n", (Int)lane, |
| nameIReg(2,eregOfRM(modrm)), |
| nameXMMReg(gregOfRM(modrm))); |
| } else { |
| addr = disAMode ( &alen, sorb, delta+2, dis_buf ); |
| delta += 3+alen; |
| lane = insn[3+alen-1]; |
| assign(t4, loadLE(Ity_I16, mkexpr(addr))); |
| DIP("pinsrw $%d,%s,%s\n", (Int)lane, |
| dis_buf, |
| nameXMMReg(gregOfRM(modrm))); |
| } |
| |
| putXMMRegLane16( gregOfRM(modrm), lane & 7, mkexpr(t4) ); |
| goto decode_success; |
| } |
| |
| /* 66 0F F5 = PMADDWD -- Multiply and add packed integers from |
| E(xmm or mem) to G(xmm) */ |
| if (sz == 2 && insn[0] == 0x0F && insn[1] == 0xF5) { |
| IRTemp s1V = newTemp(Ity_V128); |
| IRTemp s2V = newTemp(Ity_V128); |
| IRTemp dV = newTemp(Ity_V128); |
| IRTemp s1Hi = newTemp(Ity_I64); |
| IRTemp s1Lo = newTemp(Ity_I64); |
| IRTemp s2Hi = newTemp(Ity_I64); |
| IRTemp s2Lo = newTemp(Ity_I64); |
| IRTemp dHi = newTemp(Ity_I64); |
| IRTemp dLo = newTemp(Ity_I64); |
| modrm = insn[2]; |
| if (epartIsReg(modrm)) { |
| assign( s1V, getXMMReg(eregOfRM(modrm)) ); |
| delta += 2+1; |
| DIP("pmaddwd %s,%s\n", nameXMMReg(eregOfRM(modrm)), |
| nameXMMReg(gregOfRM(modrm))); |
| } else { |
| addr = disAMode ( &alen, sorb, delta+2, dis_buf ); |
| assign( s1V, loadLE(Ity_V128, mkexpr(addr)) ); |
| delta += 2+alen; |
| DIP("pmaddwd %s,%s\n", dis_buf, |
| nameXMMReg(gregOfRM(modrm))); |
| } |
| assign( s2V, getXMMReg(gregOfRM(modrm)) ); |
| assign( s1Hi, unop(Iop_V128HIto64, mkexpr(s1V)) ); |
| assign( s1Lo, unop(Iop_V128to64, mkexpr(s1V)) ); |
| assign( s2Hi, unop(Iop_V128HIto64, mkexpr(s2V)) ); |
| assign( s2Lo, unop(Iop_V128to64, mkexpr(s2V)) ); |
| assign( dHi, mkIRExprCCall( |
| Ity_I64, 0/*regparms*/, |
| "x86g_calculate_mmx_pmaddwd", |
| &x86g_calculate_mmx_pmaddwd, |
| mkIRExprVec_2( mkexpr(s1Hi), mkexpr(s2Hi)) |
| )); |
| assign( dLo, mkIRExprCCall( |
| Ity_I64, 0/*regparms*/, |
| "x86g_calculate_mmx_pmaddwd", |
| &x86g_calculate_mmx_pmaddwd, |
| mkIRExprVec_2( mkexpr(s1Lo), mkexpr(s2Lo)) |
| )); |
| assign( dV, binop(Iop_64HLtoV128, mkexpr(dHi), mkexpr(dLo))) ; |
| putXMMReg(gregOfRM(modrm), mkexpr(dV)); |
| goto decode_success; |
| } |
| |
| /* 66 0F EE = PMAXSW -- 16x8 signed max */ |
| if (sz == 2 && insn[0] == 0x0F && insn[1] == 0xEE) { |
| delta = dis_SSEint_E_to_G( sorb, delta+2, |
| "pmaxsw", Iop_Max16Sx8, False ); |
| goto decode_success; |
| } |
| |
| /* 66 0F DE = PMAXUB -- 8x16 unsigned max */ |
| if (sz == 2 && insn[0] == 0x0F && insn[1] == 0xDE) { |
| delta = dis_SSEint_E_to_G( sorb, delta+2, |
| "pmaxub", Iop_Max8Ux16, False ); |
| goto decode_success; |
| } |
| |
| /* 66 0F EA = PMINSW -- 16x8 signed min */ |
| if (sz == 2 && insn[0] == 0x0F && insn[1] == 0xEA) { |
| delta = dis_SSEint_E_to_G( sorb, delta+2, |
| "pminsw", Iop_Min16Sx8, False ); |
| goto decode_success; |
| } |
| |
| /* 66 0F DA = PMINUB -- 8x16 unsigned min */ |
| if (sz == 2 && insn[0] == 0x0F && insn[1] == 0xDA) { |
| delta = dis_SSEint_E_to_G( sorb, delta+2, |
| "pminub", Iop_Min8Ux16, False ); |
| goto decode_success; |
| } |
| |
| /* 66 0F D7 = PMOVMSKB -- extract sign bits from each of 16 lanes |
| in xmm(E), turn them into a byte, and put zero-extend of it in |
| ireg(G). */ |
| if (sz == 2 && insn[0] == 0x0F && insn[1] == 0xD7) { |
| modrm = insn[2]; |
| if (epartIsReg(modrm)) { |
| t0 = newTemp(Ity_I64); |
| t1 = newTemp(Ity_I64); |
| assign(t0, getXMMRegLane64(eregOfRM(modrm), 0)); |
| assign(t1, getXMMRegLane64(eregOfRM(modrm), 1)); |
| t5 = newTemp(Ity_I32); |
| assign(t5, |
| unop(Iop_16Uto32, |
| binop(Iop_8HLto16, |
| unop(Iop_GetMSBs8x8, mkexpr(t1)), |
| unop(Iop_GetMSBs8x8, mkexpr(t0))))); |
| putIReg(4, gregOfRM(modrm), mkexpr(t5)); |
| DIP("pmovmskb %s,%s\n", nameXMMReg(eregOfRM(modrm)), |
| nameIReg(4,gregOfRM(modrm))); |
| delta += 3; |
| goto decode_success; |
| } |
| /* else fall through */ |
| } |
| |
| /* 66 0F E4 = PMULHUW -- 16x8 hi-half of unsigned widening multiply */ |
| if (sz == 2 && insn[0] == 0x0F && insn[1] == 0xE4) { |
| delta = dis_SSEint_E_to_G( sorb, delta+2, |
| "pmulhuw", Iop_MulHi16Ux8, False ); |
| goto decode_success; |
| } |
| |
| /* 66 0F E5 = PMULHW -- 16x8 hi-half of signed widening multiply */ |
| if (sz == 2 && insn[0] == 0x0F && insn[1] == 0xE5) { |
| delta = dis_SSEint_E_to_G( sorb, delta+2, |
| "pmulhw", Iop_MulHi16Sx8, False ); |
| goto decode_success; |
| } |
| |
| /* 66 0F D5 = PMULHL -- 16x8 multiply */ |
| if (sz == 2 && insn[0] == 0x0F && insn[1] == 0xD5) { |
| delta = dis_SSEint_E_to_G( sorb, delta+2, |
| "pmullw", Iop_Mul16x8, False ); |
| goto decode_success; |
| } |
| |
| /* ***--- this is an MMX class insn introduced in SSE2 ---*** */ |
| /* 0F F4 = PMULUDQ -- unsigned widening multiply of 32-lanes 0 x |
| 0 to form 64-bit result */ |
| if (sz == 4 && insn[0] == 0x0F && insn[1] == 0xF4) { |
| IRTemp sV = newTemp(Ity_I64); |
| IRTemp dV = newTemp(Ity_I64); |
| t1 = newTemp(Ity_I32); |
| t0 = newTemp(Ity_I32); |
| modrm = insn[2]; |
| |
| do_MMX_preamble(); |
| assign( dV, getMMXReg(gregOfRM(modrm)) ); |
| |
| if (epartIsReg(modrm)) { |
| assign( sV, getMMXReg(eregOfRM(modrm)) ); |
| delta += 2+1; |
| DIP("pmuludq %s,%s\n", nameMMXReg(eregOfRM(modrm)), |
| nameMMXReg(gregOfRM(modrm))); |
| } else { |
| addr = disAMode ( &alen, sorb, delta+2, dis_buf ); |
| assign( sV, loadLE(Ity_I64, mkexpr(addr)) ); |
| delta += 2+alen; |
| DIP("pmuludq %s,%s\n", dis_buf, |
| nameMMXReg(gregOfRM(modrm))); |
| } |
| |
| assign( t0, unop(Iop_64to32, mkexpr(dV)) ); |
| assign( t1, unop(Iop_64to32, mkexpr(sV)) ); |
| putMMXReg( gregOfRM(modrm), |
| binop( Iop_MullU32, mkexpr(t0), mkexpr(t1) ) ); |
| goto decode_success; |
| } |
| |
| /* 66 0F F4 = PMULUDQ -- unsigned widening multiply of 32-lanes 0 x |
| 0 to form lower 64-bit half and lanes 2 x 2 to form upper 64-bit |
| half */ |
| /* This is a really poor translation -- could be improved if |
| performance critical */ |
| if (sz == 2 && insn[0] == 0x0F && insn[1] == 0xF4) { |
| IRTemp sV, dV; |
| IRTemp s3, s2, s1, s0, d3, d2, d1, d0; |
| sV = newTemp(Ity_V128); |
| dV = newTemp(Ity_V128); |
| s3 = s2 = s1 = s0 = d3 = d2 = d1 = d0 = IRTemp_INVALID; |
| t1 = newTemp(Ity_I64); |
| t0 = newTemp(Ity_I64); |
| modrm = insn[2]; |
| assign( dV, getXMMReg(gregOfRM(modrm)) ); |
| |
| if (epartIsReg(modrm)) { |
| assign( sV, getXMMReg(eregOfRM(modrm)) ); |
| delta += 2+1; |
| DIP("pmuludq %s,%s\n", nameXMMReg(eregOfRM(modrm)), |
| nameXMMReg(gregOfRM(modrm))); |
| } else { |
| addr = disAMode ( &alen, sorb, delta+2, dis_buf ); |
| assign( sV, loadLE(Ity_V128, mkexpr(addr)) ); |
| delta += 2+alen; |
| DIP("pmuludq %s,%s\n", dis_buf, |
| nameXMMReg(gregOfRM(modrm))); |
| } |
| |
| breakup128to32s( dV, &d3, &d2, &d1, &d0 ); |
| breakup128to32s( sV, &s3, &s2, &s1, &s0 ); |
| |
| assign( t0, binop( Iop_MullU32, mkexpr(d0), mkexpr(s0)) ); |
| putXMMRegLane64( gregOfRM(modrm), 0, mkexpr(t0) ); |
| assign( t1, binop( Iop_MullU32, mkexpr(d2), mkexpr(s2)) ); |
| putXMMRegLane64( gregOfRM(modrm), 1, mkexpr(t1) ); |
| goto decode_success; |
| } |
| |
| /* 66 0F EB = POR */ |
| if (sz == 2 && insn[0] == 0x0F && insn[1] == 0xEB) { |
| delta = dis_SSE_E_to_G_all( sorb, delta+2, "por", Iop_OrV128 ); |
| goto decode_success; |
| } |
| |
| /* 66 0F F6 = PSADBW -- 2 x (8x8 -> 48 zeroes ++ u16) Sum Abs Diffs |
| from E(xmm or mem) to G(xmm) */ |
| if (sz == 2 && insn[0] == 0x0F && insn[1] == 0xF6) { |
| IRTemp s1V = newTemp(Ity_V128); |
| IRTemp s2V = newTemp(Ity_V128); |
| IRTemp dV = newTemp(Ity_V128); |
| IRTemp s1Hi = newTemp(Ity_I64); |
| IRTemp s1Lo = newTemp(Ity_I64); |
| IRTemp s2Hi = newTemp(Ity_I64); |
| IRTemp s2Lo = newTemp(Ity_I64); |
| IRTemp dHi = newTemp(Ity_I64); |
| IRTemp dLo = newTemp(Ity_I64); |
| modrm = insn[2]; |
| if (epartIsReg(modrm)) { |
| assign( s1V, getXMMReg(eregOfRM(modrm)) ); |
| delta += 2+1; |
| DIP("psadbw %s,%s\n", nameXMMReg(eregOfRM(modrm)), |
| nameXMMReg(gregOfRM(modrm))); |
| } else { |
| addr = disAMode ( &alen, sorb, delta+2, dis_buf ); |
| assign( s1V, loadLE(Ity_V128, mkexpr(addr)) ); |
| delta += 2+alen; |
| DIP("psadbw %s,%s\n", dis_buf, |
| nameXMMReg(gregOfRM(modrm))); |
| } |
| assign( s2V, getXMMReg(gregOfRM(modrm)) ); |
| assign( s1Hi, unop(Iop_V128HIto64, mkexpr(s1V)) ); |
| assign( s1Lo, unop(Iop_V128to64, mkexpr(s1V)) ); |
| assign( s2Hi, unop(Iop_V128HIto64, mkexpr(s2V)) ); |
| assign( s2Lo, unop(Iop_V128to64, mkexpr(s2V)) ); |
| assign( dHi, mkIRExprCCall( |
| Ity_I64, 0/*regparms*/, |
| "x86g_calculate_mmx_psadbw", |
| &x86g_calculate_mmx_psadbw, |
| mkIRExprVec_2( mkexpr(s1Hi), mkexpr(s2Hi)) |
| )); |
| assign( dLo, mkIRExprCCall( |
| Ity_I64, 0/*regparms*/, |
| "x86g_calculate_mmx_psadbw", |
| &x86g_calculate_mmx_psadbw, |
| mkIRExprVec_2( mkexpr(s1Lo), mkexpr(s2Lo)) |
| )); |
| assign( dV, binop(Iop_64HLtoV128, mkexpr(dHi), mkexpr(dLo))) ; |
| putXMMReg(gregOfRM(modrm), mkexpr(dV)); |
| goto decode_success; |
| } |
| |
| /* 66 0F 70 = PSHUFD -- rearrange 4x32 from E(xmm or mem) to G(xmm) */ |
| if (sz == 2 && insn[0] == 0x0F && insn[1] == 0x70) { |
| Int order; |
| IRTemp sV, dV, s3, s2, s1, s0; |
| s3 = s2 = s1 = s0 = IRTemp_INVALID; |
| sV = newTemp(Ity_V128); |
| dV = newTemp(Ity_V128); |
| modrm = insn[2]; |
| if (epartIsReg(modrm)) { |
| assign( sV, getXMMReg(eregOfRM(modrm)) ); |
| order = (Int)insn[3]; |
| delta += 2+2; |
| DIP("pshufd $%d,%s,%s\n", order, |
| nameXMMReg(eregOfRM(modrm)), |
| nameXMMReg(gregOfRM(modrm))); |
| } else { |
| addr = disAMode ( &alen, sorb, delta+2, dis_buf ); |
| assign( sV, loadLE(Ity_V128, mkexpr(addr)) ); |
| order = (Int)insn[2+alen]; |
| delta += 3+alen; |
| DIP("pshufd $%d,%s,%s\n", order, |
| dis_buf, |
| nameXMMReg(gregOfRM(modrm))); |
| } |
| breakup128to32s( sV, &s3, &s2, &s1, &s0 ); |
| |
| # define SEL(n) \ |
| ((n)==0 ? s0 : ((n)==1 ? s1 : ((n)==2 ? s2 : s3))) |
| assign(dV, |
| mk128from32s( SEL((order>>6)&3), SEL((order>>4)&3), |
| SEL((order>>2)&3), SEL((order>>0)&3) ) |
| ); |
| putXMMReg(gregOfRM(modrm), mkexpr(dV)); |
| # undef SEL |
| goto decode_success; |
| } |
| |
| /* F3 0F 70 = PSHUFHW -- rearrange upper half 4x16 from E(xmm or |
| mem) to G(xmm), and copy lower half */ |
| if (insn[0] == 0xF3 && insn[1] == 0x0F && insn[2] == 0x70) { |
| Int order; |
| IRTemp sVhi, dVhi, sV, dV, s3, s2, s1, s0; |
| s3 = s2 = s1 = s0 = IRTemp_INVALID; |
| sV = newTemp(Ity_V128); |
| dV = newTemp(Ity_V128); |
| sVhi = newTemp(Ity_I64); |
| dVhi = newTemp(Ity_I64); |
| modrm = insn[3]; |
| if (epartIsReg(modrm)) { |
| assign( sV, getXMMReg(eregOfRM(modrm)) ); |
| order = (Int)insn[4]; |
| delta += 4+1; |
| DIP("pshufhw $%d,%s,%s\n", order, |
| nameXMMReg(eregOfRM(modrm)), |
| nameXMMReg(gregOfRM(modrm))); |
| } else { |
| addr = disAMode ( &alen, sorb, delta+3, dis_buf ); |
| assign( sV, loadLE(Ity_V128, mkexpr(addr)) ); |
| order = (Int)insn[3+alen]; |
| delta += 4+alen; |
| DIP("pshufhw $%d,%s,%s\n", order, |
| dis_buf, |
| nameXMMReg(gregOfRM(modrm))); |
| } |
| assign( sVhi, unop(Iop_V128HIto64, mkexpr(sV)) ); |
| breakup64to16s( sVhi, &s3, &s2, &s1, &s0 ); |
| |
| # define SEL(n) \ |
| ((n)==0 ? s0 : ((n)==1 ? s1 : ((n)==2 ? s2 : s3))) |
| assign(dVhi, |
| mk64from16s( SEL((order>>6)&3), SEL((order>>4)&3), |
| SEL((order>>2)&3), SEL((order>>0)&3) ) |
| ); |
| assign(dV, binop( Iop_64HLtoV128, |
| mkexpr(dVhi), |
| unop(Iop_V128to64, mkexpr(sV))) ); |
| putXMMReg(gregOfRM(modrm), mkexpr(dV)); |
| # undef SEL |
| goto decode_success; |
| } |
| |
| /* F2 0F 70 = PSHUFLW -- rearrange lower half 4x16 from E(xmm or |
| mem) to G(xmm), and copy upper half */ |
| if (insn[0] == 0xF2 && insn[1] == 0x0F && insn[2] == 0x70) { |
| Int order; |
| IRTemp sVlo, dVlo, sV, dV, s3, s2, s1, s0; |
| s3 = s2 = s1 = s0 = IRTemp_INVALID; |
| sV = newTemp(Ity_V128); |
| dV = newTemp(Ity_V128); |
| sVlo = newTemp(Ity_I64); |
| dVlo = newTemp(Ity_I64); |
| modrm = insn[3]; |
| if (epartIsReg(modrm)) { |
| assign( sV, getXMMReg(eregOfRM(modrm)) ); |
| order = (Int)insn[4]; |
| delta += 4+1; |
| DIP("pshuflw $%d,%s,%s\n", order, |
| nameXMMReg(eregOfRM(modrm)), |
| nameXMMReg(gregOfRM(modrm))); |
| } else { |
| addr = disAMode ( &alen, sorb, delta+3, dis_buf ); |
| assign( sV, loadLE(Ity_V128, mkexpr(addr)) ); |
| order = (Int)insn[3+alen]; |
| delta += 4+alen; |
| DIP("pshuflw $%d,%s,%s\n", order, |
| dis_buf, |
| nameXMMReg(gregOfRM(modrm))); |
| } |
| assign( sVlo, unop(Iop_V128to64, mkexpr(sV)) ); |
| breakup64to16s( sVlo, &s3, &s2, &s1, &s0 ); |
| |
| # define SEL(n) \ |
| ((n)==0 ? s0 : ((n)==1 ? s1 : ((n)==2 ? s2 : s3))) |
| assign(dVlo, |
| mk64from16s( SEL((order>>6)&3), SEL((order>>4)&3), |
| SEL((order>>2)&3), SEL((order>>0)&3) ) |
| ); |
| assign(dV, binop( Iop_64HLtoV128, |
| unop(Iop_V128HIto64, mkexpr(sV)), |
| mkexpr(dVlo) ) ); |
| putXMMReg(gregOfRM(modrm), mkexpr(dV)); |
| # undef SEL |
| goto decode_success; |
| } |
| |
| /* 66 0F 72 /6 ib = PSLLD by immediate */ |
| if (sz == 2 && insn[0] == 0x0F && insn[1] == 0x72 |
| && epartIsReg(insn[2]) |
| && gregOfRM(insn[2]) == 6) { |
| delta = dis_SSE_shiftE_imm( delta+2, "pslld", Iop_ShlN32x4 ); |
| goto decode_success; |
| } |
| |
| /* 66 0F F2 = PSLLD by E */ |
| if (sz == 2 && insn[0] == 0x0F && insn[1] == 0xF2) { |
| delta = dis_SSE_shiftG_byE( sorb, delta+2, "pslld", Iop_ShlN32x4 ); |
| goto decode_success; |
| } |
| |
| /* 66 0F 73 /7 ib = PSLLDQ by immediate */ |
| if (sz == 2 && insn[0] == 0x0F && insn[1] == 0x73 |
| && epartIsReg(insn[2]) |
| && gregOfRM(insn[2]) == 7) { |
| IRTemp sV, dV, hi64, lo64, hi64r, lo64r; |
| Int imm = (Int)insn[3]; |
| Int reg = eregOfRM(insn[2]); |
| DIP("pslldq $%d,%s\n", imm, nameXMMReg(reg)); |
| vassert(imm >= 0 && imm <= 255); |
| delta += 4; |
| |
| sV = newTemp(Ity_V128); |
| dV = newTemp(Ity_V128); |
| hi64 = newTemp(Ity_I64); |
| lo64 = newTemp(Ity_I64); |
| hi64r = newTemp(Ity_I64); |
| lo64r = newTemp(Ity_I64); |
| |
| if (imm >= 16) { |
| putXMMReg(reg, mkV128(0x0000)); |
| goto decode_success; |
| } |
| |
| assign( sV, getXMMReg(reg) ); |
| assign( hi64, unop(Iop_V128HIto64, mkexpr(sV)) ); |
| assign( lo64, unop(Iop_V128to64, mkexpr(sV)) ); |
| |
| if (imm == 0) { |
| assign( lo64r, mkexpr(lo64) ); |
| assign( hi64r, mkexpr(hi64) ); |
| } |
| else |
| if (imm == 8) { |
| assign( lo64r, mkU64(0) ); |
| assign( hi64r, mkexpr(lo64) ); |
| } |
| else |
| if (imm > 8) { |
| assign( lo64r, mkU64(0) ); |
| assign( hi64r, binop( Iop_Shl64, |
| mkexpr(lo64), |
| mkU8( 8*(imm-8) ) )); |
| } else { |
| assign( lo64r, binop( Iop_Shl64, |
| mkexpr(lo64), |
| mkU8(8 * imm) )); |
| assign( hi64r, |
| binop( Iop_Or64, |
| binop(Iop_Shl64, mkexpr(hi64), |
| mkU8(8 * imm)), |
| binop(Iop_Shr64, mkexpr(lo64), |
| mkU8(8 * (8 - imm)) ) |
| ) |
| ); |
| } |
| assign( dV, binop(Iop_64HLtoV128, mkexpr(hi64r), mkexpr(lo64r)) ); |
| putXMMReg(reg, mkexpr(dV)); |
| goto decode_success; |
| } |
| |
| /* 66 0F 73 /6 ib = PSLLQ by immediate */ |
| if (sz == 2 && insn[0] == 0x0F && insn[1] == 0x73 |
| && epartIsReg(insn[2]) |
| && gregOfRM(insn[2]) == 6) { |
| delta = dis_SSE_shiftE_imm( delta+2, "psllq", Iop_ShlN64x2 ); |
| goto decode_success; |
| } |
| |
| /* 66 0F F3 = PSLLQ by E */ |
| if (sz == 2 && insn[0] == 0x0F && insn[1] == 0xF3) { |
| delta = dis_SSE_shiftG_byE( sorb, delta+2, "psllq", Iop_ShlN64x2 ); |
| goto decode_success; |
| } |
| |
| /* 66 0F 71 /6 ib = PSLLW by immediate */ |
| if (sz == 2 && insn[0] == 0x0F && insn[1] == 0x71 |
| && epartIsReg(insn[2]) |
| && gregOfRM(insn[2]) == 6) { |
| delta = dis_SSE_shiftE_imm( delta+2, "psllw", Iop_ShlN16x8 ); |
| goto decode_success; |
| } |
| |
| /* 66 0F F1 = PSLLW by E */ |
| if (sz == 2 && insn[0] == 0x0F && insn[1] == 0xF1) { |
| delta = dis_SSE_shiftG_byE( sorb, delta+2, "psllw", Iop_ShlN16x8 ); |
| goto decode_success; |
| } |
| |
| /* 66 0F 72 /4 ib = PSRAD by immediate */ |
| if (sz == 2 && insn[0] == 0x0F && insn[1] == 0x72 |
| && epartIsReg(insn[2]) |
| && gregOfRM(insn[2]) == 4) { |
| delta = dis_SSE_shiftE_imm( delta+2, "psrad", Iop_SarN32x4 ); |
| goto decode_success; |
| } |
| |
| /* 66 0F E2 = PSRAD by E */ |
| if (sz == 2 && insn[0] == 0x0F && insn[1] == 0xE2) { |
| delta = dis_SSE_shiftG_byE( sorb, delta+2, "psrad", Iop_SarN32x4 ); |
| goto decode_success; |
| } |
| |
| /* 66 0F 71 /4 ib = PSRAW by immediate */ |
| if (sz == 2 && insn[0] == 0x0F && insn[1] == 0x71 |
| && epartIsReg(insn[2]) |
| && gregOfRM(insn[2]) == 4) { |
| delta = dis_SSE_shiftE_imm( delta+2, "psraw", Iop_SarN16x8 ); |
| goto decode_success; |
| } |
| |
| /* 66 0F E1 = PSRAW by E */ |
| if (sz == 2 && insn[0] == 0x0F && insn[1] == 0xE1) { |
| delta = dis_SSE_shiftG_byE( sorb, delta+2, "psraw", Iop_SarN16x8 ); |
| goto decode_success; |
| } |
| |
| /* 66 0F 72 /2 ib = PSRLD by immediate */ |
| if (sz == 2 && insn[0] == 0x0F && insn[1] == 0x72 |
| && epartIsReg(insn[2]) |
| && gregOfRM(insn[2]) == 2) { |
| delta = dis_SSE_shiftE_imm( delta+2, "psrld", Iop_ShrN32x4 ); |
| goto decode_success; |
| } |
| |
| /* 66 0F D2 = PSRLD by E */ |
| if (sz == 2 && insn[0] == 0x0F && insn[1] == 0xD2) { |
| delta = dis_SSE_shiftG_byE( sorb, delta+2, "psrld", Iop_ShrN32x4 ); |
| goto decode_success; |
| } |
| |
| /* 66 0F 73 /3 ib = PSRLDQ by immediate */ |
| if (sz == 2 && insn[0] == 0x0F && insn[1] == 0x73 |
| && epartIsReg(insn[2]) |
| && gregOfRM(insn[2]) == 3) { |
| IRTemp sV, dV, hi64, lo64, hi64r, lo64r; |
| Int imm = (Int)insn[3]; |
| Int reg = eregOfRM(insn[2]); |
| DIP("psrldq $%d,%s\n", imm, nameXMMReg(reg)); |
| vassert(imm >= 0 && imm <= 255); |
| delta += 4; |
| |
| sV = newTemp(Ity_V128); |
| dV = newTemp(Ity_V128); |
| hi64 = newTemp(Ity_I64); |
| lo64 = newTemp(Ity_I64); |
| hi64r = newTemp(Ity_I64); |
| lo64r = newTemp(Ity_I64); |
| |
| if (imm >= 16) { |
| putXMMReg(reg, mkV128(0x0000)); |
| goto decode_success; |
| } |
| |
| assign( sV, getXMMReg(reg) ); |
| assign( hi64, unop(Iop_V128HIto64, mkexpr(sV)) ); |
| assign( lo64, unop(Iop_V128to64, mkexpr(sV)) ); |
| |
| if (imm == 0) { |
| assign( lo64r, mkexpr(lo64) ); |
| assign( hi64r, mkexpr(hi64) ); |
| } |
| else |
| if (imm == 8) { |
| assign( hi64r, mkU64(0) ); |
| assign( lo64r, mkexpr(hi64) ); |
| } |
| else |
| if (imm > 8) { |
| assign( hi64r, mkU64(0) ); |
| assign( lo64r, binop( Iop_Shr64, |
| mkexpr(hi64), |
| mkU8( 8*(imm-8) ) )); |
| } else { |
| assign( hi64r, binop( Iop_Shr64, |
| mkexpr(hi64), |
| mkU8(8 * imm) )); |
| assign( lo64r, |
| binop( Iop_Or64, |
| binop(Iop_Shr64, mkexpr(lo64), |
| mkU8(8 * imm)), |
| binop(Iop_Shl64, mkexpr(hi64), |
| mkU8(8 * (8 - imm)) ) |
| ) |
| ); |
| } |
| |
| assign( dV, binop(Iop_64HLtoV128, mkexpr(hi64r), mkexpr(lo64r)) ); |
| putXMMReg(reg, mkexpr(dV)); |
| goto decode_success; |
| } |
| |
| /* 66 0F 73 /2 ib = PSRLQ by immediate */ |
| if (sz == 2 && insn[0] == 0x0F && insn[1] == 0x73 |
| && epartIsReg(insn[2]) |
| && gregOfRM(insn[2]) == 2) { |
| delta = dis_SSE_shiftE_imm( delta+2, "psrlq", Iop_ShrN64x2 ); |
| goto decode_success; |
| } |
| |
| /* 66 0F D3 = PSRLQ by E */ |
| if (sz == 2 && insn[0] == 0x0F && insn[1] == 0xD3) { |
| delta = dis_SSE_shiftG_byE( sorb, delta+2, "psrlq", Iop_ShrN64x2 ); |
| goto decode_success; |
| } |
| |
| /* 66 0F 71 /2 ib = PSRLW by immediate */ |
| if (sz == 2 && insn[0] == 0x0F && insn[1] == 0x71 |
| && epartIsReg(insn[2]) |
| && gregOfRM(insn[2]) == 2) { |
| delta = dis_SSE_shiftE_imm( delta+2, "psrlw", Iop_ShrN16x8 ); |
| goto decode_success; |
| } |
| |
| /* 66 0F D1 = PSRLW by E */ |
| if (sz == 2 && insn[0] == 0x0F && insn[1] == 0xD1) { |
| delta = dis_SSE_shiftG_byE( sorb, delta+2, "psrlw", Iop_ShrN16x8 ); |
| goto decode_success; |
| } |
| |
| /* 66 0F F8 = PSUBB */ |
| if (sz == 2 && insn[0] == 0x0F && insn[1] == 0xF8) { |
| delta = dis_SSEint_E_to_G( sorb, delta+2, |
| "psubb", Iop_Sub8x16, False ); |
| goto decode_success; |
| } |
| |
| /* 66 0F FA = PSUBD */ |
| if (sz == 2 && insn[0] == 0x0F && insn[1] == 0xFA) { |
| delta = dis_SSEint_E_to_G( sorb, delta+2, |
| "psubd", Iop_Sub32x4, False ); |
| goto decode_success; |
| } |
| |
| /* ***--- this is an MMX class insn introduced in SSE2 ---*** */ |
| /* 0F FB = PSUBQ -- sub 64x1 */ |
| if (sz == 4 && insn[0] == 0x0F && insn[1] == 0xFB) { |
| do_MMX_preamble(); |
| delta = dis_MMXop_regmem_to_reg ( |
| sorb, delta+2, insn[1], "psubq", False ); |
| goto decode_success; |
| } |
| |
| /* 66 0F FB = PSUBQ */ |
| if (sz == 2 && insn[0] == 0x0F && insn[1] == 0xFB) { |
| delta = dis_SSEint_E_to_G( sorb, delta+2, |
| "psubq", Iop_Sub64x2, False ); |
| goto decode_success; |
| } |
| |
| /* 66 0F F9 = PSUBW */ |
| if (sz == 2 && insn[0] == 0x0F && insn[1] == 0xF9) { |
| delta = dis_SSEint_E_to_G( sorb, delta+2, |
| "psubw", Iop_Sub16x8, False ); |
| goto decode_success; |
| } |
| |
| /* 66 0F E8 = PSUBSB */ |
| if (sz == 2 && insn[0] == 0x0F && insn[1] == 0xE8) { |
| delta = dis_SSEint_E_to_G( sorb, delta+2, |
| "psubsb", Iop_QSub8Sx16, False ); |
| goto decode_success; |
| } |
| |
| /* 66 0F E9 = PSUBSW */ |
| if (sz == 2 && insn[0] == 0x0F && insn[1] == 0xE9) { |
| delta = dis_SSEint_E_to_G( sorb, delta+2, |
| "psubsw", Iop_QSub16Sx8, False ); |
| goto decode_success; |
| } |
| |
| /* 66 0F D8 = PSUBSB */ |
| if (sz == 2 && insn[0] == 0x0F && insn[1] == 0xD8) { |
| delta = dis_SSEint_E_to_G( sorb, delta+2, |
| "psubusb", Iop_QSub8Ux16, False ); |
| goto decode_success; |
| } |
| |
| /* 66 0F D9 = PSUBSW */ |
| if (sz == 2 && insn[0] == 0x0F && insn[1] == 0xD9) { |
| delta = dis_SSEint_E_to_G( sorb, delta+2, |
| "psubusw", Iop_QSub16Ux8, False ); |
| goto decode_success; |
| } |
| |
| /* 66 0F 68 = PUNPCKHBW */ |
| if (sz == 2 && insn[0] == 0x0F && insn[1] == 0x68) { |
| delta = dis_SSEint_E_to_G( sorb, delta+2, |
| "punpckhbw", |
| Iop_InterleaveHI8x16, True ); |
| goto decode_success; |
| } |
| |
| /* 66 0F 6A = PUNPCKHDQ */ |
| if (sz == 2 && insn[0] == 0x0F && insn[1] == 0x6A) { |
| delta = dis_SSEint_E_to_G( sorb, delta+2, |
| "punpckhdq", |
| Iop_InterleaveHI32x4, True ); |
| goto decode_success; |
| } |
| |
| /* 66 0F 6D = PUNPCKHQDQ */ |
| if (sz == 2 && insn[0] == 0x0F && insn[1] == 0x6D) { |
| delta = dis_SSEint_E_to_G( sorb, delta+2, |
| "punpckhqdq", |
| Iop_InterleaveHI64x2, True ); |
| goto decode_success; |
| } |
| |
| /* 66 0F 69 = PUNPCKHWD */ |
| if (sz == 2 && insn[0] == 0x0F && insn[1] == 0x69) { |
| delta = dis_SSEint_E_to_G( sorb, delta+2, |
| "punpckhwd", |
| Iop_InterleaveHI16x8, True ); |
| goto decode_success; |
| } |
| |
| /* 66 0F 60 = PUNPCKLBW */ |
| if (sz == 2 && insn[0] == 0x0F && insn[1] == 0x60) { |
| delta = dis_SSEint_E_to_G( sorb, delta+2, |
| "punpcklbw", |
| Iop_InterleaveLO8x16, True ); |
| goto decode_success; |
| } |
| |
| /* 66 0F 62 = PUNPCKLDQ */ |
| if (sz == 2 && insn[0] == 0x0F && insn[1] == 0x62) { |
| delta = dis_SSEint_E_to_G( sorb, delta+2, |
| "punpckldq", |
| Iop_InterleaveLO32x4, True ); |
| goto decode_success; |
| } |
| |
| /* 66 0F 6C = PUNPCKLQDQ */ |
| if (sz == 2 && insn[0] == 0x0F && insn[1] == 0x6C) { |
| delta = dis_SSEint_E_to_G( sorb, delta+2, |
| "punpcklqdq", |
| Iop_InterleaveLO64x2, True ); |
| goto decode_success; |
| } |
| |
| /* 66 0F 61 = PUNPCKLWD */ |
| if (sz == 2 && insn[0] == 0x0F && insn[1] == 0x61) { |
| delta = dis_SSEint_E_to_G( sorb, delta+2, |
| "punpcklwd", |
| Iop_InterleaveLO16x8, True ); |
| goto decode_success; |
| } |
| |
| /* 66 0F EF = PXOR */ |
| if (sz == 2 && insn[0] == 0x0F && insn[1] == 0xEF) { |
| delta = dis_SSE_E_to_G_all( sorb, delta+2, "pxor", Iop_XorV128 ); |
| goto decode_success; |
| } |
| |
| //-- /* FXSAVE/FXRSTOR m32 -- load/store the FPU/MMX/SSE state. */ |
| //-- if (insn[0] == 0x0F && insn[1] == 0xAE |
| //-- && (!epartIsReg(insn[2])) |
| //-- && (gregOfRM(insn[2]) == 1 || gregOfRM(insn[2]) == 0) ) { |
| //-- Bool store = gregOfRM(insn[2]) == 0; |
| //-- vg_assert(sz == 4); |
| //-- pair = disAMode ( cb, sorb, eip+2, dis_buf ); |
| //-- t1 = LOW24(pair); |
| //-- eip += 2+HI8(pair); |
| //-- uInstr3(cb, store ? SSE2a_MemWr : SSE2a_MemRd, 512, |
| //-- Lit16, (((UShort)insn[0]) << 8) | (UShort)insn[1], |
| //-- Lit16, (UShort)insn[2], |
| //-- TempReg, t1 ); |
| //-- DIP("fx%s %s\n", store ? "save" : "rstor", dis_buf ); |
| //-- goto decode_success; |
| //-- } |
| |
| /* 0F AE /7 = CLFLUSH -- flush cache line */ |
| if (sz == 4 && insn[0] == 0x0F && insn[1] == 0xAE |
| && !epartIsReg(insn[2]) && gregOfRM(insn[2]) == 7) { |
| |
| /* This is something of a hack. We need to know the size of the |
| cache line containing addr. Since we don't (easily), assume |
| 256 on the basis that no real cache would have a line that |
| big. It's safe to invalidate more stuff than we need, just |
| inefficient. */ |
| UInt lineszB = 256; |
| |
| addr = disAMode ( &alen, sorb, delta+2, dis_buf ); |
| delta += 2+alen; |
| |
| /* Round addr down to the start of the containing block. */ |
| stmt( IRStmt_Put( |
| OFFB_TISTART, |
| binop( Iop_And32, |
| mkexpr(addr), |
| mkU32( ~(lineszB-1) ))) ); |
| |
| stmt( IRStmt_Put(OFFB_TILEN, mkU32(lineszB) ) ); |
| |
| jmp_lit(&dres, Ijk_TInval, (Addr32)(guest_EIP_bbstart+delta)); |
| |
| DIP("clflush %s\n", dis_buf); |
| goto decode_success; |
| } |
| |
| /* ---------------------------------------------------- */ |
| /* --- end of the SSE2 decoder. --- */ |
| /* ---------------------------------------------------- */ |
| |
| /* ---------------------------------------------------- */ |
| /* --- start of the SSE3 decoder. --- */ |
| /* ---------------------------------------------------- */ |
| |
| /* Skip parts of the decoder which don't apply given the stated |
| guest subarchitecture. */ |
| /* if (0 == (archinfo->hwcaps & VEX_HWCAPS_X86_SSE3)) */ |
| /* In fact this is highly bogus; we accept SSE3 insns even on a |
| SSE2-only guest since they turn into IR which can be re-emitted |
| successfully on an SSE2 host. */ |
| if (0 == (archinfo->hwcaps & VEX_HWCAPS_X86_SSE2)) |
| goto after_sse_decoders; /* no SSE3 capabilities */ |
| |
| insn = (UChar*)&guest_code[delta]; |
| |
| /* F3 0F 12 = MOVSLDUP -- move from E (mem or xmm) to G (xmm), |
| duplicating some lanes (2:2:0:0). */ |
| /* F3 0F 16 = MOVSHDUP -- move from E (mem or xmm) to G (xmm), |
| duplicating some lanes (3:3:1:1). */ |
| if (sz == 4 && insn[0] == 0xF3 && insn[1] == 0x0F |
| && (insn[2] == 0x12 || insn[2] == 0x16)) { |
| IRTemp s3, s2, s1, s0; |
| IRTemp sV = newTemp(Ity_V128); |
| Bool isH = insn[2] == 0x16; |
| s3 = s2 = s1 = s0 = IRTemp_INVALID; |
| |
| modrm = insn[3]; |
| if (epartIsReg(modrm)) { |
| assign( sV, getXMMReg( eregOfRM(modrm)) ); |
| DIP("movs%cdup %s,%s\n", isH ? 'h' : 'l', |
| nameXMMReg(eregOfRM(modrm)), |
| nameXMMReg(gregOfRM(modrm))); |
| delta += 3+1; |
| } else { |
| addr = disAMode ( &alen, sorb, delta+3, dis_buf ); |
| gen_SEGV_if_not_16_aligned( addr ); |
| assign( sV, loadLE(Ity_V128, mkexpr(addr)) ); |
| DIP("movs%cdup %s,%s\n", isH ? 'h' : 'l', |
| dis_buf, |
| nameXMMReg(gregOfRM(modrm))); |
| delta += 3+alen; |
| } |
| |
| breakup128to32s( sV, &s3, &s2, &s1, &s0 ); |
| putXMMReg( gregOfRM(modrm), |
| isH ? mk128from32s( s3, s3, s1, s1 ) |
| : mk128from32s( s2, s2, s0, s0 ) ); |
| goto decode_success; |
| } |
| |
| /* F2 0F 12 = MOVDDUP -- move from E (mem or xmm) to G (xmm), |
| duplicating some lanes (0:1:0:1). */ |
| if (sz == 4 && insn[0] == 0xF2 && insn[1] == 0x0F && insn[2] == 0x12) { |
| IRTemp sV = newTemp(Ity_V128); |
| IRTemp d0 = newTemp(Ity_I64); |
| |
| modrm = insn[3]; |
| if (epartIsReg(modrm)) { |
| assign( sV, getXMMReg( eregOfRM(modrm)) ); |
| DIP("movddup %s,%s\n", nameXMMReg(eregOfRM(modrm)), |
| nameXMMReg(gregOfRM(modrm))); |
| delta += 3+1; |
| assign ( d0, unop(Iop_V128to64, mkexpr(sV)) ); |
| } else { |
| addr = disAMode ( &alen, sorb, delta+3, dis_buf ); |
| assign( d0, loadLE(Ity_I64, mkexpr(addr)) ); |
| DIP("movddup %s,%s\n", dis_buf, |
| nameXMMReg(gregOfRM(modrm))); |
| delta += 3+alen; |
| } |
| |
| putXMMReg( gregOfRM(modrm), binop(Iop_64HLtoV128,mkexpr(d0),mkexpr(d0)) ); |
| goto decode_success; |
| } |
| |
| /* F2 0F D0 = ADDSUBPS -- 32x4 +/-/+/- from E (mem or xmm) to G (xmm). */ |
| if (sz == 4 && insn[0] == 0xF2 && insn[1] == 0x0F && insn[2] == 0xD0) { |
| IRTemp a3, a2, a1, a0, s3, s2, s1, s0; |
| IRTemp eV = newTemp(Ity_V128); |
| IRTemp gV = newTemp(Ity_V128); |
| IRTemp addV = newTemp(Ity_V128); |
| IRTemp subV = newTemp(Ity_V128); |
| a3 = a2 = a1 = a0 = s3 = s2 = s1 = s0 = IRTemp_INVALID; |
| |
| modrm = insn[3]; |
| if (epartIsReg(modrm)) { |
| assign( eV, getXMMReg( eregOfRM(modrm)) ); |
| DIP("addsubps %s,%s\n", nameXMMReg(eregOfRM(modrm)), |
| nameXMMReg(gregOfRM(modrm))); |
| delta += 3+1; |
| } else { |
| addr = disAMode ( &alen, sorb, delta+3, dis_buf ); |
| assign( eV, loadLE(Ity_V128, mkexpr(addr)) ); |
| DIP("addsubps %s,%s\n", dis_buf, |
| nameXMMReg(gregOfRM(modrm))); |
| delta += 3+alen; |
| } |
| |
| assign( gV, getXMMReg(gregOfRM(modrm)) ); |
| |
| assign( addV, binop(Iop_Add32Fx4, mkexpr(gV), mkexpr(eV)) ); |
| assign( subV, binop(Iop_Sub32Fx4, mkexpr(gV), mkexpr(eV)) ); |
| |
| breakup128to32s( addV, &a3, &a2, &a1, &a0 ); |
| breakup128to32s( subV, &s3, &s2, &s1, &s0 ); |
| |
| putXMMReg( gregOfRM(modrm), mk128from32s( a3, s2, a1, s0 )); |
| goto decode_success; |
| } |
| |
| /* 66 0F D0 = ADDSUBPD -- 64x4 +/- from E (mem or xmm) to G (xmm). */ |
| if (sz == 2 && insn[0] == 0x0F && insn[1] == 0xD0) { |
| IRTemp eV = newTemp(Ity_V128); |
| IRTemp gV = newTemp(Ity_V128); |
| IRTemp addV = newTemp(Ity_V128); |
| IRTemp subV = newTemp(Ity_V128); |
| IRTemp a1 = newTemp(Ity_I64); |
| IRTemp s0 = newTemp(Ity_I64); |
| |
| modrm = insn[2]; |
| if (epartIsReg(modrm)) { |
| assign( eV, getXMMReg( eregOfRM(modrm)) ); |
| DIP("addsubpd %s,%s\n", nameXMMReg(eregOfRM(modrm)), |
| nameXMMReg(gregOfRM(modrm))); |
| delta += 2+1; |
| } else { |
| addr = disAMode ( &alen, sorb, delta+2, dis_buf ); |
| assign( eV, loadLE(Ity_V128, mkexpr(addr)) ); |
| DIP("addsubpd %s,%s\n", dis_buf, |
| nameXMMReg(gregOfRM(modrm))); |
| delta += 2+alen; |
| } |
| |
| assign( gV, getXMMReg(gregOfRM(modrm)) ); |
| |
| assign( addV, binop(Iop_Add64Fx2, mkexpr(gV), mkexpr(eV)) ); |
| assign( subV, binop(Iop_Sub64Fx2, mkexpr(gV), mkexpr(eV)) ); |
| |
| assign( a1, unop(Iop_V128HIto64, mkexpr(addV) )); |
| assign( s0, unop(Iop_V128to64, mkexpr(subV) )); |
| |
| putXMMReg( gregOfRM(modrm), |
| binop(Iop_64HLtoV128, mkexpr(a1), mkexpr(s0)) ); |
| goto decode_success; |
| } |
| |
| /* F2 0F 7D = HSUBPS -- 32x4 sub across from E (mem or xmm) to G (xmm). */ |
| /* F2 0F 7C = HADDPS -- 32x4 add across from E (mem or xmm) to G (xmm). */ |
| if (sz == 4 && insn[0] == 0xF2 && insn[1] == 0x0F |
| && (insn[2] == 0x7C || insn[2] == 0x7D)) { |
| IRTemp e3, e2, e1, e0, g3, g2, g1, g0; |
| IRTemp eV = newTemp(Ity_V128); |
| IRTemp gV = newTemp(Ity_V128); |
| IRTemp leftV = newTemp(Ity_V128); |
| IRTemp rightV = newTemp(Ity_V128); |
| Bool isAdd = insn[2] == 0x7C; |
| const HChar* str = isAdd ? "add" : "sub"; |
| e3 = e2 = e1 = e0 = g3 = g2 = g1 = g0 = IRTemp_INVALID; |
| |
| modrm = insn[3]; |
| if (epartIsReg(modrm)) { |
| assign( eV, getXMMReg( eregOfRM(modrm)) ); |
| DIP("h%sps %s,%s\n", str, nameXMMReg(eregOfRM(modrm)), |
| nameXMMReg(gregOfRM(modrm))); |
| delta += 3+1; |
| } else { |
| addr = disAMode ( &alen, sorb, delta+3, dis_buf ); |
| assign( eV, loadLE(Ity_V128, mkexpr(addr)) ); |
| DIP("h%sps %s,%s\n", str, dis_buf, |
| nameXMMReg(gregOfRM(modrm))); |
| delta += 3+alen; |
| } |
| |
| assign( gV, getXMMReg(gregOfRM(modrm)) ); |
| |
| breakup128to32s( eV, &e3, &e2, &e1, &e0 ); |
| breakup128to32s( gV, &g3, &g2, &g1, &g0 ); |
| |
| assign( leftV, mk128from32s( e2, e0, g2, g0 ) ); |
| assign( rightV, mk128from32s( e3, e1, g3, g1 ) ); |
| |
| putXMMReg( gregOfRM(modrm), |
| binop(isAdd ? Iop_Add32Fx4 : Iop_Sub32Fx4, |
| mkexpr(leftV), mkexpr(rightV) ) ); |
| goto decode_success; |
| } |
| |
| /* 66 0F 7D = HSUBPD -- 64x2 sub across from E (mem or xmm) to G (xmm). */ |
| /* 66 0F 7C = HADDPD -- 64x2 add across from E (mem or xmm) to G (xmm). */ |
| if (sz == 2 && insn[0] == 0x0F && (insn[1] == 0x7C || insn[1] == 0x7D)) { |
| IRTemp e1 = newTemp(Ity_I64); |
| IRTemp e0 = newTemp(Ity_I64); |
| IRTemp g1 = newTemp(Ity_I64); |
| IRTemp g0 = newTemp(Ity_I64); |
| IRTemp eV = newTemp(Ity_V128); |
| IRTemp gV = newTemp(Ity_V128); |
| IRTemp leftV = newTemp(Ity_V128); |
| IRTemp rightV = newTemp(Ity_V128); |
| Bool isAdd = insn[1] == 0x7C; |
| const HChar* str = isAdd ? "add" : "sub"; |
| |
| modrm = insn[2]; |
| if (epartIsReg(modrm)) { |
| assign( eV, getXMMReg( eregOfRM(modrm)) ); |
| DIP("h%spd %s,%s\n", str, nameXMMReg(eregOfRM(modrm)), |
| nameXMMReg(gregOfRM(modrm))); |
| delta += 2+1; |
| } else { |
| addr = disAMode ( &alen, sorb, delta+2, dis_buf ); |
| assign( eV, loadLE(Ity_V128, mkexpr(addr)) ); |
| DIP("h%spd %s,%s\n", str, dis_buf, |
| nameXMMReg(gregOfRM(modrm))); |
| delta += 2+alen; |
| } |
| |
| assign( gV, getXMMReg(gregOfRM(modrm)) ); |
| |
| assign( e1, unop(Iop_V128HIto64, mkexpr(eV) )); |
| assign( e0, unop(Iop_V128to64, mkexpr(eV) )); |
| assign( g1, unop(Iop_V128HIto64, mkexpr(gV) )); |
| assign( g0, unop(Iop_V128to64, mkexpr(gV) )); |
| |
| assign( leftV, binop(Iop_64HLtoV128, mkexpr(e0),mkexpr(g0)) ); |
| assign( rightV, binop(Iop_64HLtoV128, mkexpr(e1),mkexpr(g1)) ); |
| |
| putXMMReg( gregOfRM(modrm), |
| binop(isAdd ? Iop_Add64Fx2 : Iop_Sub64Fx2, |
| mkexpr(leftV), mkexpr(rightV) ) ); |
| goto decode_success; |
| } |
| |
| /* F2 0F F0 = LDDQU -- move from E (mem or xmm) to G (xmm). */ |
| if (sz == 4 && insn[0] == 0xF2 && insn[1] == 0x0F && insn[2] == 0xF0) { |
| modrm = getIByte(delta+3); |
| if (epartIsReg(modrm)) { |
| goto decode_failure; |
| } else { |
| addr = disAMode ( &alen, sorb, delta+3, dis_buf ); |
| putXMMReg( gregOfRM(modrm), |
| loadLE(Ity_V128, mkexpr(addr)) ); |
| DIP("lddqu %s,%s\n", dis_buf, |
| nameXMMReg(gregOfRM(modrm))); |
| delta += 3+alen; |
| } |
| goto decode_success; |
| } |
| |
| /* ---------------------------------------------------- */ |
| /* --- end of the SSE3 decoder. --- */ |
| /* ---------------------------------------------------- */ |
| |
| /* ---------------------------------------------------- */ |
| /* --- start of the SSSE3 decoder. --- */ |
| /* ---------------------------------------------------- */ |
| |
| /* 0F 38 04 = PMADDUBSW -- Multiply and Add Packed Signed and |
| Unsigned Bytes (MMX) */ |
| if (sz == 4 |
| && insn[0] == 0x0F && insn[1] == 0x38 && insn[2] == 0x04) { |
| IRTemp sV = newTemp(Ity_I64); |
| IRTemp dV = newTemp(Ity_I64); |
| IRTemp sVoddsSX = newTemp(Ity_I64); |
| IRTemp sVevensSX = newTemp(Ity_I64); |
| IRTemp dVoddsZX = newTemp(Ity_I64); |
| IRTemp dVevensZX = newTemp(Ity_I64); |
| |
| modrm = insn[3]; |
| do_MMX_preamble(); |
| assign( dV, getMMXReg(gregOfRM(modrm)) ); |
| |
| if (epartIsReg(modrm)) { |
| assign( sV, getMMXReg(eregOfRM(modrm)) ); |
| delta += 3+1; |
| DIP("pmaddubsw %s,%s\n", nameMMXReg(eregOfRM(modrm)), |
| nameMMXReg(gregOfRM(modrm))); |
| } else { |
| addr = disAMode ( &alen, sorb, delta+3, dis_buf ); |
| assign( sV, loadLE(Ity_I64, mkexpr(addr)) ); |
| delta += 3+alen; |
| DIP("pmaddubsw %s,%s\n", dis_buf, |
| nameMMXReg(gregOfRM(modrm))); |
| } |
| |
| /* compute dV unsigned x sV signed */ |
| assign( sVoddsSX, |
| binop(Iop_SarN16x4, mkexpr(sV), mkU8(8)) ); |
| assign( sVevensSX, |
| binop(Iop_SarN16x4, |
| binop(Iop_ShlN16x4, mkexpr(sV), mkU8(8)), |
| mkU8(8)) ); |
| assign( dVoddsZX, |
| binop(Iop_ShrN16x4, mkexpr(dV), mkU8(8)) ); |
| assign( dVevensZX, |
| binop(Iop_ShrN16x4, |
| binop(Iop_ShlN16x4, mkexpr(dV), mkU8(8)), |
| mkU8(8)) ); |
| |
| putMMXReg( |
| gregOfRM(modrm), |
| binop(Iop_QAdd16Sx4, |
| binop(Iop_Mul16x4, mkexpr(sVoddsSX), mkexpr(dVoddsZX)), |
| binop(Iop_Mul16x4, mkexpr(sVevensSX), mkexpr(dVevensZX)) |
| ) |
| ); |
| goto decode_success; |
| } |
| |
| /* 66 0F 38 04 = PMADDUBSW -- Multiply and Add Packed Signed and |
| Unsigned Bytes (XMM) */ |
| if (sz == 2 |
| && insn[0] == 0x0F && insn[1] == 0x38 && insn[2] == 0x04) { |
| IRTemp sV = newTemp(Ity_V128); |
| IRTemp dV = newTemp(Ity_V128); |
| IRTemp sVoddsSX = newTemp(Ity_V128); |
| IRTemp sVevensSX = newTemp(Ity_V128); |
| IRTemp dVoddsZX = newTemp(Ity_V128); |
| IRTemp dVevensZX = newTemp(Ity_V128); |
| |
| modrm = insn[3]; |
| assign( dV, getXMMReg(gregOfRM(modrm)) ); |
| |
| if (epartIsReg(modrm)) { |
| assign( sV, getXMMReg(eregOfRM(modrm)) ); |
| delta += 3+1; |
| DIP("pmaddubsw %s,%s\n", nameXMMReg(eregOfRM(modrm)), |
| nameXMMReg(gregOfRM(modrm))); |
| } else { |
| addr = disAMode ( &alen, sorb, delta+3, dis_buf ); |
| gen_SEGV_if_not_16_aligned( addr ); |
| assign( sV, loadLE(Ity_V128, mkexpr(addr)) ); |
| delta += 3+alen; |
| DIP("pmaddubsw %s,%s\n", dis_buf, |
| nameXMMReg(gregOfRM(modrm))); |
| } |
| |
| /* compute dV unsigned x sV signed */ |
| assign( sVoddsSX, |
| binop(Iop_SarN16x8, mkexpr(sV), mkU8(8)) ); |
| assign( sVevensSX, |
| binop(Iop_SarN16x8, |
| binop(Iop_ShlN16x8, mkexpr(sV), mkU8(8)), |
| mkU8(8)) ); |
| assign( dVoddsZX, |
| binop(Iop_ShrN16x8, mkexpr(dV), mkU8(8)) ); |
| assign( dVevensZX, |
| binop(Iop_ShrN16x8, |
| binop(Iop_ShlN16x8, mkexpr(dV), mkU8(8)), |
| mkU8(8)) ); |
| |
| putXMMReg( |
| gregOfRM(modrm), |
| binop(Iop_QAdd16Sx8, |
| binop(Iop_Mul16x8, mkexpr(sVoddsSX), mkexpr(dVoddsZX)), |
| binop(Iop_Mul16x8, mkexpr(sVevensSX), mkexpr(dVevensZX)) |
| ) |
| ); |
| goto decode_success; |
| } |
| |
| /* ***--- these are MMX class insns introduced in SSSE3 ---*** */ |
| /* 0F 38 03 = PHADDSW -- 16x4 signed qadd across from E (mem or |
| mmx) and G to G (mmx). */ |
| /* 0F 38 07 = PHSUBSW -- 16x4 signed qsub across from E (mem or |
| mmx) and G to G (mmx). */ |
| /* 0F 38 01 = PHADDW -- 16x4 add across from E (mem or mmx) and G |
| to G (mmx). */ |
| /* 0F 38 05 = PHSUBW -- 16x4 sub across from E (mem or mmx) and G |
| to G (mmx). */ |
| /* 0F 38 02 = PHADDD -- 32x2 add across from E (mem or mmx) and G |
| to G (mmx). */ |
| /* 0F 38 06 = PHSUBD -- 32x2 sub across from E (mem or mmx) and G |
| to G (mmx). */ |
| |
| if (sz == 4 |
| && insn[0] == 0x0F && insn[1] == 0x38 |
| && (insn[2] == 0x03 || insn[2] == 0x07 || insn[2] == 0x01 |
| || insn[2] == 0x05 || insn[2] == 0x02 || insn[2] == 0x06)) { |
| const HChar* str = "???"; |
| IROp opV64 = Iop_INVALID; |
| IROp opCatO = Iop_CatOddLanes16x4; |
| IROp opCatE = Iop_CatEvenLanes16x4; |
| IRTemp sV = newTemp(Ity_I64); |
| IRTemp dV = newTemp(Ity_I64); |
| |
| modrm = insn[3]; |
| |
| switch (insn[2]) { |
| case 0x03: opV64 = Iop_QAdd16Sx4; str = "addsw"; break; |
| case 0x07: opV64 = Iop_QSub16Sx4; str = "subsw"; break; |
| case 0x01: opV64 = Iop_Add16x4; str = "addw"; break; |
| case 0x05: opV64 = Iop_Sub16x4; str = "subw"; break; |
| case 0x02: opV64 = Iop_Add32x2; str = "addd"; break; |
| case 0x06: opV64 = Iop_Sub32x2; str = "subd"; break; |
| default: vassert(0); |
| } |
| if (insn[2] == 0x02 || insn[2] == 0x06) { |
| opCatO = Iop_InterleaveHI32x2; |
| opCatE = Iop_InterleaveLO32x2; |
| } |
| |
| do_MMX_preamble(); |
| assign( dV, getMMXReg(gregOfRM(modrm)) ); |
| |
| if (epartIsReg(modrm)) { |
| assign( sV, getMMXReg(eregOfRM(modrm)) ); |
| delta += 3+1; |
| DIP("ph%s %s,%s\n", str, nameMMXReg(eregOfRM(modrm)), |
| nameMMXReg(gregOfRM(modrm))); |
| } else { |
| addr = disAMode ( &alen, sorb, delta+3, dis_buf ); |
| assign( sV, loadLE(Ity_I64, mkexpr(addr)) ); |
| delta += 3+alen; |
| DIP("ph%s %s,%s\n", str, dis_buf, |
| nameMMXReg(gregOfRM(modrm))); |
| } |
| |
| putMMXReg( |
| gregOfRM(modrm), |
| binop(opV64, |
| binop(opCatE,mkexpr(sV),mkexpr(dV)), |
| binop(opCatO,mkexpr(sV),mkexpr(dV)) |
| ) |
| ); |
| goto decode_success; |
| } |
| |
| /* 66 0F 38 03 = PHADDSW -- 16x8 signed qadd across from E (mem or |
| xmm) and G to G (xmm). */ |
| /* 66 0F 38 07 = PHSUBSW -- 16x8 signed qsub across from E (mem or |
| xmm) and G to G (xmm). */ |
| /* 66 0F 38 01 = PHADDW -- 16x8 add across from E (mem or xmm) and |
| G to G (xmm). */ |
| /* 66 0F 38 05 = PHSUBW -- 16x8 sub across from E (mem or xmm) and |
| G to G (xmm). */ |
| /* 66 0F 38 02 = PHADDD -- 32x4 add across from E (mem or xmm) and |
| G to G (xmm). */ |
| /* 66 0F 38 06 = PHSUBD -- 32x4 sub across from E (mem or xmm) and |
| G to G (xmm). */ |
| |
| if (sz == 2 |
| && insn[0] == 0x0F && insn[1] == 0x38 |
| && (insn[2] == 0x03 || insn[2] == 0x07 || insn[2] == 0x01 |
| || insn[2] == 0x05 || insn[2] == 0x02 || insn[2] == 0x06)) { |
| const HChar* str = "???"; |
| IROp opV64 = Iop_INVALID; |
| IROp opCatO = Iop_CatOddLanes16x4; |
| IROp opCatE = Iop_CatEvenLanes16x4; |
| IRTemp sV = newTemp(Ity_V128); |
| IRTemp dV = newTemp(Ity_V128); |
| IRTemp sHi = newTemp(Ity_I64); |
| IRTemp sLo = newTemp(Ity_I64); |
| IRTemp dHi = newTemp(Ity_I64); |
| IRTemp dLo = newTemp(Ity_I64); |
| |
| modrm = insn[3]; |
| |
| switch (insn[2]) { |
| case 0x03: opV64 = Iop_QAdd16Sx4; str = "addsw"; break; |
| case 0x07: opV64 = Iop_QSub16Sx4; str = "subsw"; break; |
| case 0x01: opV64 = Iop_Add16x4; str = "addw"; break; |
| case 0x05: opV64 = Iop_Sub16x4; str = "subw"; break; |
| case 0x02: opV64 = Iop_Add32x2; str = "addd"; break; |
| case 0x06: opV64 = Iop_Sub32x2; str = "subd"; break; |
| default: vassert(0); |
| } |
| if (insn[2] == 0x02 || insn[2] == 0x06) { |
| opCatO = Iop_InterleaveHI32x2; |
| opCatE = Iop_InterleaveLO32x2; |
| } |
| |
| assign( dV, getXMMReg(gregOfRM(modrm)) ); |
| |
| if (epartIsReg(modrm)) { |
| assign( sV, getXMMReg( eregOfRM(modrm)) ); |
| DIP("ph%s %s,%s\n", str, nameXMMReg(eregOfRM(modrm)), |
| nameXMMReg(gregOfRM(modrm))); |
| delta += 3+1; |
| } else { |
| addr = disAMode ( &alen, sorb, delta+3, dis_buf ); |
| gen_SEGV_if_not_16_aligned( addr ); |
| assign( sV, loadLE(Ity_V128, mkexpr(addr)) ); |
| DIP("ph%s %s,%s\n", str, dis_buf, |
| nameXMMReg(gregOfRM(modrm))); |
| delta += 3+alen; |
| } |
| |
| assign( dHi, unop(Iop_V128HIto64, mkexpr(dV)) ); |
| assign( dLo, unop(Iop_V128to64, mkexpr(dV)) ); |
| assign( sHi, unop(Iop_V128HIto64, mkexpr(sV)) ); |
| assign( sLo, unop(Iop_V128to64, mkexpr(sV)) ); |
| |
| /* This isn't a particularly efficient way to compute the |
| result, but at least it avoids a proliferation of IROps, |
| hence avoids complication all the backends. */ |
| putXMMReg( |
| gregOfRM(modrm), |
| binop(Iop_64HLtoV128, |
| binop(opV64, |
| binop(opCatE,mkexpr(sHi),mkexpr(sLo)), |
| binop(opCatO,mkexpr(sHi),mkexpr(sLo)) |
| ), |
| binop(opV64, |
| binop(opCatE,mkexpr(dHi),mkexpr(dLo)), |
| binop(opCatO,mkexpr(dHi),mkexpr(dLo)) |
| ) |
| ) |
| ); |
| goto decode_success; |
| } |
| |
| /* 0F 38 0B = PMULHRSW -- Packed Multiply High with Round and Scale |
| (MMX) */ |
| if (sz == 4 |
| && insn[0] == 0x0F && insn[1] == 0x38 && insn[2] == 0x0B) { |
| IRTemp sV = newTemp(Ity_I64); |
| IRTemp dV = newTemp(Ity_I64); |
| |
| modrm = insn[3]; |
| do_MMX_preamble(); |
| assign( dV, getMMXReg(gregOfRM(modrm)) ); |
| |
| if (epartIsReg(modrm)) { |
| assign( sV, getMMXReg(eregOfRM(modrm)) ); |
| delta += 3+1; |
| DIP("pmulhrsw %s,%s\n", nameMMXReg(eregOfRM(modrm)), |
| nameMMXReg(gregOfRM(modrm))); |
| } else { |
| addr = disAMode ( &alen, sorb, delta+3, dis_buf ); |
| assign( sV, loadLE(Ity_I64, mkexpr(addr)) ); |
| delta += 3+alen; |
| DIP("pmulhrsw %s,%s\n", dis_buf, |
| nameMMXReg(gregOfRM(modrm))); |
| } |
| |
| putMMXReg( |
| gregOfRM(modrm), |
| dis_PMULHRSW_helper( mkexpr(sV), mkexpr(dV) ) |
| ); |
| goto decode_success; |
| } |
| |
| /* 66 0F 38 0B = PMULHRSW -- Packed Multiply High with Round and |
| Scale (XMM) */ |
| if (sz == 2 |
| && insn[0] == 0x0F && insn[1] == 0x38 && insn[2] == 0x0B) { |
| IRTemp sV = newTemp(Ity_V128); |
| IRTemp dV = newTemp(Ity_V128); |
| IRTemp sHi = newTemp(Ity_I64); |
| IRTemp sLo = newTemp(Ity_I64); |
| IRTemp dHi = newTemp(Ity_I64); |
| IRTemp dLo = newTemp(Ity_I64); |
| |
| modrm = insn[3]; |
| assign( dV, getXMMReg(gregOfRM(modrm)) ); |
| |
| if (epartIsReg(modrm)) { |
| assign( sV, getXMMReg(eregOfRM(modrm)) ); |
| delta += 3+1; |
| DIP("pmulhrsw %s,%s\n", nameXMMReg(eregOfRM(modrm)), |
| nameXMMReg(gregOfRM(modrm))); |
| } else { |
| addr = disAMode ( &alen, sorb, delta+3, dis_buf ); |
| gen_SEGV_if_not_16_aligned( addr ); |
| assign( sV, loadLE(Ity_V128, mkexpr(addr)) ); |
| delta += 3+alen; |
| DIP("pmulhrsw %s,%s\n", dis_buf, |
| nameXMMReg(gregOfRM(modrm))); |
| } |
| |
| assign( dHi, unop(Iop_V128HIto64, mkexpr(dV)) ); |
| assign( dLo, unop(Iop_V128to64, mkexpr(dV)) ); |
| assign( sHi, unop(Iop_V128HIto64, mkexpr(sV)) ); |
| assign( sLo, unop(Iop_V128to64, mkexpr(sV)) ); |
| |
| putXMMReg( |
| gregOfRM(modrm), |
| binop(Iop_64HLtoV128, |
| dis_PMULHRSW_helper( mkexpr(sHi), mkexpr(dHi) ), |
| dis_PMULHRSW_helper( mkexpr(sLo), mkexpr(dLo) ) |
| ) |
| ); |
| goto decode_success; |
| } |
| |
| /* 0F 38 08 = PSIGNB -- Packed Sign 8x8 (MMX) */ |
| /* 0F 38 09 = PSIGNW -- Packed Sign 16x4 (MMX) */ |
| /* 0F 38 09 = PSIGND -- Packed Sign 32x2 (MMX) */ |
| if (sz == 4 |
| && insn[0] == 0x0F && insn[1] == 0x38 |
| && (insn[2] == 0x08 || insn[2] == 0x09 || insn[2] == 0x0A)) { |
| IRTemp sV = newTemp(Ity_I64); |
| IRTemp dV = newTemp(Ity_I64); |
| const HChar* str = "???"; |
| Int laneszB = 0; |
| |
| switch (insn[2]) { |
| case 0x08: laneszB = 1; str = "b"; break; |
| case 0x09: laneszB = 2; str = "w"; break; |
| case 0x0A: laneszB = 4; str = "d"; break; |
| default: vassert(0); |
| } |
| |
| modrm = insn[3]; |
| do_MMX_preamble(); |
| assign( dV, getMMXReg(gregOfRM(modrm)) ); |
| |
| if (epartIsReg(modrm)) { |
| assign( sV, getMMXReg(eregOfRM(modrm)) ); |
| delta += 3+1; |
| DIP("psign%s %s,%s\n", str, nameMMXReg(eregOfRM(modrm)), |
| nameMMXReg(gregOfRM(modrm))); |
| } else { |
| addr = disAMode ( &alen, sorb, delta+3, dis_buf ); |
| assign( sV, loadLE(Ity_I64, mkexpr(addr)) ); |
| delta += 3+alen; |
| DIP("psign%s %s,%s\n", str, dis_buf, |
| nameMMXReg(gregOfRM(modrm))); |
| } |
| |
| putMMXReg( |
| gregOfRM(modrm), |
| dis_PSIGN_helper( mkexpr(sV), mkexpr(dV), laneszB ) |
| ); |
| goto decode_success; |
| } |
| |
| /* 66 0F 38 08 = PSIGNB -- Packed Sign 8x16 (XMM) */ |
| /* 66 0F 38 09 = PSIGNW -- Packed Sign 16x8 (XMM) */ |
| /* 66 0F 38 09 = PSIGND -- Packed Sign 32x4 (XMM) */ |
| if (sz == 2 |
| && insn[0] == 0x0F && insn[1] == 0x38 |
| && (insn[2] == 0x08 || insn[2] == 0x09 || insn[2] == 0x0A)) { |
| IRTemp sV = newTemp(Ity_V128); |
| IRTemp dV = newTemp(Ity_V128); |
| IRTemp sHi = newTemp(Ity_I64); |
| IRTemp sLo = newTemp(Ity_I64); |
| IRTemp dHi = newTemp(Ity_I64); |
| IRTemp dLo = newTemp(Ity_I64); |
| const HChar* str = "???"; |
| Int laneszB = 0; |
| |
| switch (insn[2]) { |
| case 0x08: laneszB = 1; str = "b"; break; |
| case 0x09: laneszB = 2; str = "w"; break; |
| case 0x0A: laneszB = 4; str = "d"; break; |
| default: vassert(0); |
| } |
| |
| modrm = insn[3]; |
| assign( dV, getXMMReg(gregOfRM(modrm)) ); |
| |
| if (epartIsReg(modrm)) { |
| assign( sV, getXMMReg(eregOfRM(modrm)) ); |
| delta += 3+1; |
| DIP("psign%s %s,%s\n", str, nameXMMReg(eregOfRM(modrm)), |
| nameXMMReg(gregOfRM(modrm))); |
| } else { |
| addr = disAMode ( &alen, sorb, delta+3, dis_buf ); |
| gen_SEGV_if_not_16_aligned( addr ); |
| assign( sV, loadLE(Ity_V128, mkexpr(addr)) ); |
| delta += 3+alen; |
| DIP("psign%s %s,%s\n", str, dis_buf, |
| nameXMMReg(gregOfRM(modrm))); |
| } |
| |
| assign( dHi, unop(Iop_V128HIto64, mkexpr(dV)) ); |
| assign( dLo, unop(Iop_V128to64, mkexpr(dV)) ); |
| assign( sHi, unop(Iop_V128HIto64, mkexpr(sV)) ); |
| assign( sLo, unop(Iop_V128to64, mkexpr(sV)) ); |
| |
| putXMMReg( |
| gregOfRM(modrm), |
| binop(Iop_64HLtoV128, |
| dis_PSIGN_helper( mkexpr(sHi), mkexpr(dHi), laneszB ), |
| dis_PSIGN_helper( mkexpr(sLo), mkexpr(dLo), laneszB ) |
| ) |
| ); |
| goto decode_success; |
| } |
| |
| /* 0F 38 1C = PABSB -- Packed Absolute Value 8x8 (MMX) */ |
| /* 0F 38 1D = PABSW -- Packed Absolute Value 16x4 (MMX) */ |
| /* 0F 38 1E = PABSD -- Packed Absolute Value 32x2 (MMX) */ |
| if (sz == 4 |
| && insn[0] == 0x0F && insn[1] == 0x38 |
| && (insn[2] == 0x1C || insn[2] == 0x1D || insn[2] == 0x1E)) { |
| IRTemp sV = newTemp(Ity_I64); |
| const HChar* str = "???"; |
| Int laneszB = 0; |
| |
| switch (insn[2]) { |
| case 0x1C: laneszB = 1; str = "b"; break; |
| case 0x1D: laneszB = 2; str = "w"; break; |
| case 0x1E: laneszB = 4; str = "d"; break; |
| default: vassert(0); |
| } |
| |
| modrm = insn[3]; |
| do_MMX_preamble(); |
| |
| if (epartIsReg(modrm)) { |
| assign( sV, getMMXReg(eregOfRM(modrm)) ); |
| delta += 3+1; |
| DIP("pabs%s %s,%s\n", str, nameMMXReg(eregOfRM(modrm)), |
| nameMMXReg(gregOfRM(modrm))); |
| } else { |
| addr = disAMode ( &alen, sorb, delta+3, dis_buf ); |
| assign( sV, loadLE(Ity_I64, mkexpr(addr)) ); |
| delta += 3+alen; |
| DIP("pabs%s %s,%s\n", str, dis_buf, |
| nameMMXReg(gregOfRM(modrm))); |
| } |
| |
| putMMXReg( |
| gregOfRM(modrm), |
| dis_PABS_helper( mkexpr(sV), laneszB ) |
| ); |
| goto decode_success; |
| } |
| |
| /* 66 0F 38 1C = PABSB -- Packed Absolute Value 8x16 (XMM) */ |
| /* 66 0F 38 1D = PABSW -- Packed Absolute Value 16x8 (XMM) */ |
| /* 66 0F 38 1E = PABSD -- Packed Absolute Value 32x4 (XMM) */ |
| if (sz == 2 |
| && insn[0] == 0x0F && insn[1] == 0x38 |
| && (insn[2] == 0x1C || insn[2] == 0x1D || insn[2] == 0x1E)) { |
| IRTemp sV = newTemp(Ity_V128); |
| IRTemp sHi = newTemp(Ity_I64); |
| IRTemp sLo = newTemp(Ity_I64); |
| const HChar* str = "???"; |
| Int laneszB = 0; |
| |
| switch (insn[2]) { |
| case 0x1C: laneszB = 1; str = "b"; break; |
| case 0x1D: laneszB = 2; str = "w"; break; |
| case 0x1E: laneszB = 4; str = "d"; break; |
| default: vassert(0); |
| } |
| |
| modrm = insn[3]; |
| |
| if (epartIsReg(modrm)) { |
| assign( sV, getXMMReg(eregOfRM(modrm)) ); |
| delta += 3+1; |
| DIP("pabs%s %s,%s\n", str, nameXMMReg(eregOfRM(modrm)), |
| nameXMMReg(gregOfRM(modrm))); |
| } else { |
| addr = disAMode ( &alen, sorb, delta+3, dis_buf ); |
| gen_SEGV_if_not_16_aligned( addr ); |
| assign( sV, loadLE(Ity_V128, mkexpr(addr)) ); |
| delta += 3+alen; |
| DIP("pabs%s %s,%s\n", str, dis_buf, |
| nameXMMReg(gregOfRM(modrm))); |
| } |
| |
| assign( sHi, unop(Iop_V128HIto64, mkexpr(sV)) ); |
| assign( sLo, unop(Iop_V128to64, mkexpr(sV)) ); |
| |
| putXMMReg( |
| gregOfRM(modrm), |
| binop(Iop_64HLtoV128, |
| dis_PABS_helper( mkexpr(sHi), laneszB ), |
| dis_PABS_helper( mkexpr(sLo), laneszB ) |
| ) |
| ); |
| goto decode_success; |
| } |
| |
| /* 0F 3A 0F = PALIGNR -- Packed Align Right (MMX) */ |
| if (sz == 4 |
| && insn[0] == 0x0F && insn[1] == 0x3A && insn[2] == 0x0F) { |
| IRTemp sV = newTemp(Ity_I64); |
| IRTemp dV = newTemp(Ity_I64); |
| IRTemp res = newTemp(Ity_I64); |
| |
| modrm = insn[3]; |
| do_MMX_preamble(); |
| assign( dV, getMMXReg(gregOfRM(modrm)) ); |
| |
| if (epartIsReg(modrm)) { |
| assign( sV, getMMXReg(eregOfRM(modrm)) ); |
| d32 = (UInt)insn[3+1]; |
| delta += 3+1+1; |
| DIP("palignr $%d,%s,%s\n", (Int)d32, |
| nameMMXReg(eregOfRM(modrm)), |
| nameMMXReg(gregOfRM(modrm))); |
| } else { |
| addr = disAMode ( &alen, sorb, delta+3, dis_buf ); |
| assign( sV, loadLE(Ity_I64, mkexpr(addr)) ); |
| d32 = (UInt)insn[3+alen]; |
| delta += 3+alen+1; |
| DIP("palignr $%d%s,%s\n", (Int)d32, |
| dis_buf, |
| nameMMXReg(gregOfRM(modrm))); |
| } |
| |
| if (d32 == 0) { |
| assign( res, mkexpr(sV) ); |
| } |
| else if (d32 >= 1 && d32 <= 7) { |
| assign(res, |
| binop(Iop_Or64, |
| binop(Iop_Shr64, mkexpr(sV), mkU8(8*d32)), |
| binop(Iop_Shl64, mkexpr(dV), mkU8(8*(8-d32)) |
| ))); |
| } |
| else if (d32 == 8) { |
| assign( res, mkexpr(dV) ); |
| } |
| else if (d32 >= 9 && d32 <= 15) { |
| assign( res, binop(Iop_Shr64, mkexpr(dV), mkU8(8*(d32-8))) ); |
| } |
| else if (d32 >= 16 && d32 <= 255) { |
| assign( res, mkU64(0) ); |
| } |
| else |
| vassert(0); |
| |
| putMMXReg( gregOfRM(modrm), mkexpr(res) ); |
| goto decode_success; |
| } |
| |
| /* 66 0F 3A 0F = PALIGNR -- Packed Align Right (XMM) */ |
| if (sz == 2 |
| && insn[0] == 0x0F && insn[1] == 0x3A && insn[2] == 0x0F) { |
| IRTemp sV = newTemp(Ity_V128); |
| IRTemp dV = newTemp(Ity_V128); |
| IRTemp sHi = newTemp(Ity_I64); |
| IRTemp sLo = newTemp(Ity_I64); |
| IRTemp dHi = newTemp(Ity_I64); |
| IRTemp dLo = newTemp(Ity_I64); |
| IRTemp rHi = newTemp(Ity_I64); |
| IRTemp rLo = newTemp(Ity_I64); |
| |
| modrm = insn[3]; |
| assign( dV, getXMMReg(gregOfRM(modrm)) ); |
| |
| if (epartIsReg(modrm)) { |
| assign( sV, getXMMReg(eregOfRM(modrm)) ); |
| d32 = (UInt)insn[3+1]; |
| delta += 3+1+1; |
| DIP("palignr $%d,%s,%s\n", (Int)d32, |
| nameXMMReg(eregOfRM(modrm)), |
| nameXMMReg(gregOfRM(modrm))); |
| } else { |
| addr = disAMode ( &alen, sorb, delta+3, dis_buf ); |
| gen_SEGV_if_not_16_aligned( addr ); |
| assign( sV, loadLE(Ity_V128, mkexpr(addr)) ); |
| d32 = (UInt)insn[3+alen]; |
| delta += 3+alen+1; |
| DIP("palignr $%d,%s,%s\n", (Int)d32, |
| dis_buf, |
| nameXMMReg(gregOfRM(modrm))); |
| } |
| |
| assign( dHi, unop(Iop_V128HIto64, mkexpr(dV)) ); |
| assign( dLo, unop(Iop_V128to64, mkexpr(dV)) ); |
| assign( sHi, unop(Iop_V128HIto64, mkexpr(sV)) ); |
| assign( sLo, unop(Iop_V128to64, mkexpr(sV)) ); |
| |
| if (d32 == 0) { |
| assign( rHi, mkexpr(sHi) ); |
| assign( rLo, mkexpr(sLo) ); |
| } |
| else if (d32 >= 1 && d32 <= 7) { |
| assign( rHi, dis_PALIGNR_XMM_helper(dLo, sHi, d32) ); |
| assign( rLo, dis_PALIGNR_XMM_helper(sHi, sLo, d32) ); |
| } |
| else if (d32 == 8) { |
| assign( rHi, mkexpr(dLo) ); |
| assign( rLo, mkexpr(sHi) ); |
| } |
| else if (d32 >= 9 && d32 <= 15) { |
| assign( rHi, dis_PALIGNR_XMM_helper(dHi, dLo, d32-8) ); |
| assign( rLo, dis_PALIGNR_XMM_helper(dLo, sHi, d32-8) ); |
| } |
| else if (d32 == 16) { |
| assign( rHi, mkexpr(dHi) ); |
| assign( rLo, mkexpr(dLo) ); |
| } |
| else if (d32 >= 17 && d32 <= 23) { |
| assign( rHi, binop(Iop_Shr64, mkexpr(dHi), mkU8(8*(d32-16))) ); |
| assign( rLo, dis_PALIGNR_XMM_helper(dHi, dLo, d32-16) ); |
| } |
| else if (d32 == 24) { |
| assign( rHi, mkU64(0) ); |
| assign( rLo, mkexpr(dHi) ); |
| } |
| else if (d32 >= 25 && d32 <= 31) { |
| assign( rHi, mkU64(0) ); |
| assign( rLo, binop(Iop_Shr64, mkexpr(dHi), mkU8(8*(d32-24))) ); |
| } |
| else if (d32 >= 32 && d32 <= 255) { |
| assign( rHi, mkU64(0) ); |
| assign( rLo, mkU64(0) ); |
| } |
| else |
| vassert(0); |
| |
| putXMMReg( |
| gregOfRM(modrm), |
| binop(Iop_64HLtoV128, mkexpr(rHi), mkexpr(rLo)) |
| ); |
| goto decode_success; |
| } |
| |
| /* 0F 38 00 = PSHUFB -- Packed Shuffle Bytes 8x8 (MMX) */ |
| if (sz == 4 |
| && insn[0] == 0x0F && insn[1] == 0x38 && insn[2] == 0x00) { |
| IRTemp sV = newTemp(Ity_I64); |
| IRTemp dV = newTemp(Ity_I64); |
| |
| modrm = insn[3]; |
| do_MMX_preamble(); |
| assign( dV, getMMXReg(gregOfRM(modrm)) ); |
| |
| if (epartIsReg(modrm)) { |
| assign( sV, getMMXReg(eregOfRM(modrm)) ); |
| delta += 3+1; |
| DIP("pshufb %s,%s\n", nameMMXReg(eregOfRM(modrm)), |
| nameMMXReg(gregOfRM(modrm))); |
| } else { |
| addr = disAMode ( &alen, sorb, delta+3, dis_buf ); |
| assign( sV, loadLE(Ity_I64, mkexpr(addr)) ); |
| delta += 3+alen; |
| DIP("pshufb %s,%s\n", dis_buf, |
| nameMMXReg(gregOfRM(modrm))); |
| } |
| |
| putMMXReg( |
| gregOfRM(modrm), |
| binop( |
| Iop_And64, |
| /* permute the lanes */ |
| binop( |
| Iop_Perm8x8, |
| mkexpr(dV), |
| binop(Iop_And64, mkexpr(sV), mkU64(0x0707070707070707ULL)) |
| ), |
| /* mask off lanes which have (index & 0x80) == 0x80 */ |
| unop(Iop_Not64, binop(Iop_SarN8x8, mkexpr(sV), mkU8(7))) |
| ) |
| ); |
| goto decode_success; |
| } |
| |
| /* 66 0F 38 00 = PSHUFB -- Packed Shuffle Bytes 8x16 (XMM) */ |
| if (sz == 2 |
| && insn[0] == 0x0F && insn[1] == 0x38 && insn[2] == 0x00) { |
| IRTemp sV = newTemp(Ity_V128); |
| IRTemp dV = newTemp(Ity_V128); |
| IRTemp sHi = newTemp(Ity_I64); |
| IRTemp sLo = newTemp(Ity_I64); |
| IRTemp dHi = newTemp(Ity_I64); |
| IRTemp dLo = newTemp(Ity_I64); |
| IRTemp rHi = newTemp(Ity_I64); |
| IRTemp rLo = newTemp(Ity_I64); |
| IRTemp sevens = newTemp(Ity_I64); |
| IRTemp mask0x80hi = newTemp(Ity_I64); |
| IRTemp mask0x80lo = newTemp(Ity_I64); |
| IRTemp maskBit3hi = newTemp(Ity_I64); |
| IRTemp maskBit3lo = newTemp(Ity_I64); |
| IRTemp sAnd7hi = newTemp(Ity_I64); |
| IRTemp sAnd7lo = newTemp(Ity_I64); |
| IRTemp permdHi = newTemp(Ity_I64); |
| IRTemp permdLo = newTemp(Ity_I64); |
| |
| modrm = insn[3]; |
| assign( dV, getXMMReg(gregOfRM(modrm)) ); |
| |
| if (epartIsReg(modrm)) { |
| assign( sV, getXMMReg(eregOfRM(modrm)) ); |
| delta += 3+1; |
| DIP("pshufb %s,%s\n", nameXMMReg(eregOfRM(modrm)), |
| nameXMMReg(gregOfRM(modrm))); |
| } else { |
| addr = disAMode ( &alen, sorb, delta+3, dis_buf ); |
| gen_SEGV_if_not_16_aligned( addr ); |
| assign( sV, loadLE(Ity_V128, mkexpr(addr)) ); |
| delta += 3+alen; |
| DIP("pshufb %s,%s\n", dis_buf, |
| nameXMMReg(gregOfRM(modrm))); |
| } |
| |
| assign( dHi, unop(Iop_V128HIto64, mkexpr(dV)) ); |
| assign( dLo, unop(Iop_V128to64, mkexpr(dV)) ); |
| assign( sHi, unop(Iop_V128HIto64, mkexpr(sV)) ); |
| assign( sLo, unop(Iop_V128to64, mkexpr(sV)) ); |
| |
| assign( sevens, mkU64(0x0707070707070707ULL) ); |
| |
| /* |
| mask0x80hi = Not(SarN8x8(sHi,7)) |
| maskBit3hi = SarN8x8(ShlN8x8(sHi,4),7) |
| sAnd7hi = And(sHi,sevens) |
| permdHi = Or( And(Perm8x8(dHi,sAnd7hi),maskBit3hi), |
| And(Perm8x8(dLo,sAnd7hi),Not(maskBit3hi)) ) |
| rHi = And(permdHi,mask0x80hi) |
| */ |
| assign( |
| mask0x80hi, |
| unop(Iop_Not64, binop(Iop_SarN8x8,mkexpr(sHi),mkU8(7)))); |
| |
| assign( |
| maskBit3hi, |
| binop(Iop_SarN8x8, |
| binop(Iop_ShlN8x8,mkexpr(sHi),mkU8(4)), |
| mkU8(7))); |
| |
| assign(sAnd7hi, binop(Iop_And64,mkexpr(sHi),mkexpr(sevens))); |
| |
| assign( |
| permdHi, |
| binop( |
| Iop_Or64, |
| binop(Iop_And64, |
| binop(Iop_Perm8x8,mkexpr(dHi),mkexpr(sAnd7hi)), |
| mkexpr(maskBit3hi)), |
| binop(Iop_And64, |
| binop(Iop_Perm8x8,mkexpr(dLo),mkexpr(sAnd7hi)), |
| unop(Iop_Not64,mkexpr(maskBit3hi))) )); |
| |
| assign(rHi, binop(Iop_And64,mkexpr(permdHi),mkexpr(mask0x80hi)) ); |
| |
| /* And the same for the lower half of the result. What fun. */ |
| |
| assign( |
| mask0x80lo, |
| unop(Iop_Not64, binop(Iop_SarN8x8,mkexpr(sLo),mkU8(7)))); |
| |
| assign( |
| maskBit3lo, |
| binop(Iop_SarN8x8, |
| binop(Iop_ShlN8x8,mkexpr(sLo),mkU8(4)), |
| mkU8(7))); |
| |
| assign(sAnd7lo, binop(Iop_And64,mkexpr(sLo),mkexpr(sevens))); |
| |
| assign( |
| permdLo, |
| binop( |
| Iop_Or64, |
| binop(Iop_And64, |
| binop(Iop_Perm8x8,mkexpr(dHi),mkexpr(sAnd7lo)), |
| mkexpr(maskBit3lo)), |
| binop(Iop_And64, |
| binop(Iop_Perm8x8,mkexpr(dLo),mkexpr(sAnd7lo)), |
| unop(Iop_Not64,mkexpr(maskBit3lo))) )); |
| |
| assign(rLo, binop(Iop_And64,mkexpr(permdLo),mkexpr(mask0x80lo)) ); |
| |
| putXMMReg( |
| gregOfRM(modrm), |
| binop(Iop_64HLtoV128, mkexpr(rHi), mkexpr(rLo)) |
| ); |
| goto decode_success; |
| } |
| |
| /* 0F 38 F0 = MOVBE m16/32(E), r16/32(G) */ |
| /* 0F 38 F1 = MOVBE r16/32(G), m16/32(E) */ |
| if ((sz == 2 || sz == 4) |
| && insn[0] == 0x0F && insn[1] == 0x38 |
| && (insn[2] == 0xF0 || insn[2] == 0xF1) |
| && !epartIsReg(insn[3])) { |
| |
| modrm = insn[3]; |
| addr = disAMode(&alen, sorb, delta + 3, dis_buf); |
| delta += 3 + alen; |
| ty = szToITy(sz); |
| IRTemp src = newTemp(ty); |
| |
| if (insn[2] == 0xF0) { /* LOAD */ |
| assign(src, loadLE(ty, mkexpr(addr))); |
| IRTemp dst = math_BSWAP(src, ty); |
| putIReg(sz, gregOfRM(modrm), mkexpr(dst)); |
| DIP("movbe %s,%s\n", dis_buf, nameIReg(sz, gregOfRM(modrm))); |
| } else { /* STORE */ |
| assign(src, getIReg(sz, gregOfRM(modrm))); |
| IRTemp dst = math_BSWAP(src, ty); |
| storeLE(mkexpr(addr), mkexpr(dst)); |
| DIP("movbe %s,%s\n", nameIReg(sz, gregOfRM(modrm)), dis_buf); |
| } |
| goto decode_success; |
| } |
| |
| /* ---------------------------------------------------- */ |
| /* --- end of the SSSE3 decoder. --- */ |
| /* ---------------------------------------------------- */ |
| |
| /* ---------------------------------------------------- */ |
| /* --- start of the SSE4 decoder --- */ |
| /* ---------------------------------------------------- */ |
| |
| /* 66 0F 3A 0B /r ib = ROUNDSD imm8, xmm2/m64, xmm1 |
| (Partial implementation only -- only deal with cases where |
| the rounding mode is specified directly by the immediate byte.) |
| 66 0F 3A 0A /r ib = ROUNDSS imm8, xmm2/m32, xmm1 |
| (Limitations ditto) |
| */ |
| if (sz == 2 |
| && insn[0] == 0x0F && insn[1] == 0x3A |
| && (/*insn[2] == 0x0B || */insn[2] == 0x0A)) { |
| |
| Bool isD = insn[2] == 0x0B; |
| IRTemp src = newTemp(isD ? Ity_F64 : Ity_F32); |
| IRTemp res = newTemp(isD ? Ity_F64 : Ity_F32); |
| Int imm = 0; |
| |
| modrm = insn[3]; |
| |
| if (epartIsReg(modrm)) { |
| assign( src, |
| isD ? getXMMRegLane64F( eregOfRM(modrm), 0 ) |
| : getXMMRegLane32F( eregOfRM(modrm), 0 ) ); |
| imm = insn[3+1]; |
| if (imm & ~3) goto decode_failure; |
| delta += 3+1+1; |
| DIP( "rounds%c $%d,%s,%s\n", |
| isD ? 'd' : 's', |
| imm, nameXMMReg( eregOfRM(modrm) ), |
| nameXMMReg( gregOfRM(modrm) ) ); |
| } else { |
| addr = disAMode( &alen, sorb, delta+3, dis_buf ); |
| assign( src, loadLE( isD ? Ity_F64 : Ity_F32, mkexpr(addr) )); |
| imm = insn[3+alen]; |
| if (imm & ~3) goto decode_failure; |
| delta += 3+alen+1; |
| DIP( "roundsd $%d,%s,%s\n", |
| imm, dis_buf, nameXMMReg( gregOfRM(modrm) ) ); |
| } |
| |
| /* (imm & 3) contains an Intel-encoded rounding mode. Because |
| that encoding is the same as the encoding for IRRoundingMode, |
| we can use that value directly in the IR as a rounding |
| mode. */ |
| assign(res, binop(isD ? Iop_RoundF64toInt : Iop_RoundF32toInt, |
| mkU32(imm & 3), mkexpr(src)) ); |
| |
| if (isD) |
| putXMMRegLane64F( gregOfRM(modrm), 0, mkexpr(res) ); |
| else |
| putXMMRegLane32F( gregOfRM(modrm), 0, mkexpr(res) ); |
| |
| goto decode_success; |
| } |
| |
| /* F3 0F BD -- LZCNT (count leading zeroes. An AMD extension, |
| which we can only decode if we're sure this is an AMD cpu that |
| supports LZCNT, since otherwise it's BSR, which behaves |
| differently. */ |
| if (insn[0] == 0xF3 && insn[1] == 0x0F && insn[2] == 0xBD |
| && 0 != (archinfo->hwcaps & VEX_HWCAPS_X86_LZCNT)) { |
| vassert(sz == 2 || sz == 4); |
| /*IRType*/ ty = szToITy(sz); |
| IRTemp src = newTemp(ty); |
| modrm = insn[3]; |
| if (epartIsReg(modrm)) { |
| assign(src, getIReg(sz, eregOfRM(modrm))); |
| delta += 3+1; |
| DIP("lzcnt%c %s, %s\n", nameISize(sz), |
| nameIReg(sz, eregOfRM(modrm)), |
| nameIReg(sz, gregOfRM(modrm))); |
| } else { |
| addr = disAMode( &alen, sorb, delta+3, dis_buf ); |
| assign(src, loadLE(ty, mkexpr(addr))); |
| delta += 3+alen; |
| DIP("lzcnt%c %s, %s\n", nameISize(sz), dis_buf, |
| nameIReg(sz, gregOfRM(modrm))); |
| } |
| |
| IRTemp res = gen_LZCNT(ty, src); |
| putIReg(sz, gregOfRM(modrm), mkexpr(res)); |
| |
| // Update flags. This is pretty lame .. perhaps can do better |
| // if this turns out to be performance critical. |
| // O S A P are cleared. Z is set if RESULT == 0. |
| // C is set if SRC is zero. |
| IRTemp src32 = newTemp(Ity_I32); |
| IRTemp res32 = newTemp(Ity_I32); |
| assign(src32, widenUto32(mkexpr(src))); |
| assign(res32, widenUto32(mkexpr(res))); |
| |
| IRTemp oszacp = newTemp(Ity_I32); |
| assign( |
| oszacp, |
| binop(Iop_Or32, |
| binop(Iop_Shl32, |
| unop(Iop_1Uto32, |
| binop(Iop_CmpEQ32, mkexpr(res32), mkU32(0))), |
| mkU8(X86G_CC_SHIFT_Z)), |
| binop(Iop_Shl32, |
| unop(Iop_1Uto32, |
| binop(Iop_CmpEQ32, mkexpr(src32), mkU32(0))), |
| mkU8(X86G_CC_SHIFT_C)) |
| ) |
| ); |
| |
| stmt( IRStmt_Put( OFFB_CC_OP, mkU32(X86G_CC_OP_COPY) )); |
| stmt( IRStmt_Put( OFFB_CC_DEP2, mkU32(0) )); |
| stmt( IRStmt_Put( OFFB_CC_NDEP, mkU32(0) )); |
| stmt( IRStmt_Put( OFFB_CC_DEP1, mkexpr(oszacp) )); |
| |
| goto decode_success; |
| } |
| |
| /* ---------------------------------------------------- */ |
| /* --- end of the SSE4 decoder --- */ |
| /* ---------------------------------------------------- */ |
| |
| after_sse_decoders: |
| |
| /* ---------------------------------------------------- */ |
| /* --- deal with misc 0x67 pfxs (addr size override) -- */ |
| /* ---------------------------------------------------- */ |
| |
| /* 67 E3 = JCXZ (for JECXZ see below) */ |
| if (insn[0] == 0x67 && insn[1] == 0xE3 && sz == 4) { |
| delta += 2; |
| d32 = (((Addr32)guest_EIP_bbstart)+delta+1) + getSDisp8(delta); |
| delta ++; |
| stmt( IRStmt_Exit( |
| binop(Iop_CmpEQ16, getIReg(2,R_ECX), mkU16(0)), |
| Ijk_Boring, |
| IRConst_U32(d32), |
| OFFB_EIP |
| )); |
| DIP("jcxz 0x%x\n", d32); |
| goto decode_success; |
| } |
| |
| /* ---------------------------------------------------- */ |
| /* --- start of the baseline insn decoder -- */ |
| /* ---------------------------------------------------- */ |
| |
| /* Get the primary opcode. */ |
| opc = getIByte(delta); delta++; |
| |
| /* We get here if the current insn isn't SSE, or this CPU doesn't |
| support SSE. */ |
| |
| switch (opc) { |
| |
| /* ------------------------ Control flow --------------- */ |
| |
| case 0xC2: /* RET imm16 */ |
| d32 = getUDisp16(delta); |
| delta += 2; |
| dis_ret(&dres, d32); |
| DIP("ret %d\n", (Int)d32); |
| break; |
| case 0xC3: /* RET */ |
| dis_ret(&dres, 0); |
| DIP("ret\n"); |
| break; |
| |
| case 0xCF: /* IRET */ |
| /* Note, this is an extremely kludgey and limited implementation |
| of iret. All it really does is: |
| popl %EIP; popl %CS; popl %EFLAGS. |
| %CS is set but ignored (as it is in (eg) popw %cs)". */ |
| t1 = newTemp(Ity_I32); /* ESP */ |
| t2 = newTemp(Ity_I32); /* new EIP */ |
| t3 = newTemp(Ity_I32); /* new CS */ |
| t4 = newTemp(Ity_I32); /* new EFLAGS */ |
| assign(t1, getIReg(4,R_ESP)); |
| assign(t2, loadLE(Ity_I32, binop(Iop_Add32,mkexpr(t1),mkU32(0) ))); |
| assign(t3, loadLE(Ity_I32, binop(Iop_Add32,mkexpr(t1),mkU32(4) ))); |
| assign(t4, loadLE(Ity_I32, binop(Iop_Add32,mkexpr(t1),mkU32(8) ))); |
| /* Get stuff off stack */ |
| putIReg(4, R_ESP,binop(Iop_Add32, mkexpr(t1), mkU32(12))); |
| /* set %CS (which is ignored anyway) */ |
| putSReg( R_CS, unop(Iop_32to16, mkexpr(t3)) ); |
| /* set %EFLAGS */ |
| set_EFLAGS_from_value( t4, False/*!emit_AC_emwarn*/, 0/*unused*/ ); |
| /* goto new EIP value */ |
| jmp_treg(&dres, Ijk_Ret, t2); |
| vassert(dres.whatNext == Dis_StopHere); |
| DIP("iret (very kludgey)\n"); |
| break; |
| |
| case 0xE8: /* CALL J4 */ |
| d32 = getUDisp32(delta); delta += 4; |
| d32 += (guest_EIP_bbstart+delta); |
| /* (guest_eip_bbstart+delta) == return-to addr, d32 == call-to addr */ |
| if (d32 == guest_EIP_bbstart+delta && getIByte(delta) >= 0x58 |
| && getIByte(delta) <= 0x5F) { |
| /* Specially treat the position-independent-code idiom |
| call X |
| X: popl %reg |
| as |
| movl %eip, %reg. |
| since this generates better code, but for no other reason. */ |
| Int archReg = getIByte(delta) - 0x58; |
| /* vex_printf("-- fPIC thingy\n"); */ |
| putIReg(4, archReg, mkU32(guest_EIP_bbstart+delta)); |
| delta++; /* Step over the POP */ |
| DIP("call 0x%x ; popl %s\n",d32,nameIReg(4,archReg)); |
| } else { |
| /* The normal sequence for a call. */ |
| t1 = newTemp(Ity_I32); |
| assign(t1, binop(Iop_Sub32, getIReg(4,R_ESP), mkU32(4))); |
| putIReg(4, R_ESP, mkexpr(t1)); |
| storeLE( mkexpr(t1), mkU32(guest_EIP_bbstart+delta)); |
| if (resteerOkFn( callback_opaque, (Addr64)(Addr32)d32 )) { |
| /* follow into the call target. */ |
| dres.whatNext = Dis_ResteerU; |
| dres.continueAt = (Addr64)(Addr32)d32; |
| } else { |
| jmp_lit(&dres, Ijk_Call, d32); |
| vassert(dres.whatNext == Dis_StopHere); |
| } |
| DIP("call 0x%x\n",d32); |
| } |
| break; |
| |
| //-- case 0xC8: /* ENTER */ |
| //-- d32 = getUDisp16(eip); eip += 2; |
| //-- abyte = getIByte(delta); delta++; |
| //-- |
| //-- vg_assert(sz == 4); |
| //-- vg_assert(abyte == 0); |
| //-- |
| //-- t1 = newTemp(cb); t2 = newTemp(cb); |
| //-- uInstr2(cb, GET, sz, ArchReg, R_EBP, TempReg, t1); |
| //-- uInstr2(cb, GET, 4, ArchReg, R_ESP, TempReg, t2); |
| //-- uInstr2(cb, SUB, 4, Literal, 0, TempReg, t2); |
| //-- uLiteral(cb, sz); |
| //-- uInstr2(cb, PUT, 4, TempReg, t2, ArchReg, R_ESP); |
| //-- uInstr2(cb, STORE, 4, TempReg, t1, TempReg, t2); |
| //-- uInstr2(cb, PUT, 4, TempReg, t2, ArchReg, R_EBP); |
| //-- if (d32) { |
| //-- uInstr2(cb, SUB, 4, Literal, 0, TempReg, t2); |
| //-- uLiteral(cb, d32); |
| //-- uInstr2(cb, PUT, 4, TempReg, t2, ArchReg, R_ESP); |
| //-- } |
| //-- DIP("enter 0x%x, 0x%x", d32, abyte); |
| //-- break; |
| |
| case 0xC9: /* LEAVE */ |
| vassert(sz == 4); |
| t1 = newTemp(Ity_I32); t2 = newTemp(Ity_I32); |
| assign(t1, getIReg(4,R_EBP)); |
| /* First PUT ESP looks redundant, but need it because ESP must |
| always be up-to-date for Memcheck to work... */ |
| putIReg(4, R_ESP, mkexpr(t1)); |
| assign(t2, loadLE(Ity_I32,mkexpr(t1))); |
| putIReg(4, R_EBP, mkexpr(t2)); |
| putIReg(4, R_ESP, binop(Iop_Add32, mkexpr(t1), mkU32(4)) ); |
| DIP("leave\n"); |
| break; |
| |
| /* ---------------- Misc weird-ass insns --------------- */ |
| |
| case 0x27: /* DAA */ |
| case 0x2F: /* DAS */ |
| case 0x37: /* AAA */ |
| case 0x3F: /* AAS */ |
| /* An ugly implementation for some ugly instructions. Oh |
| well. */ |
| if (sz != 4) goto decode_failure; |
| t1 = newTemp(Ity_I32); |
| t2 = newTemp(Ity_I32); |
| /* Make up a 32-bit value (t1), with the old value of AX in the |
| bottom 16 bits, and the old OSZACP bitmask in the upper 16 |
| bits. */ |
| assign(t1, |
| binop(Iop_16HLto32, |
| unop(Iop_32to16, |
| mk_x86g_calculate_eflags_all()), |
| getIReg(2, R_EAX) |
| )); |
| /* Call the helper fn, to get a new AX and OSZACP value, and |
| poke both back into the guest state. Also pass the helper |
| the actual opcode so it knows which of the 4 instructions it |
| is doing the computation for. */ |
| vassert(opc == 0x27 || opc == 0x2F || opc == 0x37 || opc == 0x3F); |
| assign(t2, |
| mkIRExprCCall( |
| Ity_I32, 0/*regparm*/, "x86g_calculate_daa_das_aaa_aas", |
| &x86g_calculate_daa_das_aaa_aas, |
| mkIRExprVec_2( mkexpr(t1), mkU32( opc & 0xFF) ) |
| )); |
| putIReg(2, R_EAX, unop(Iop_32to16, mkexpr(t2) )); |
| |
| stmt( IRStmt_Put( OFFB_CC_OP, mkU32(X86G_CC_OP_COPY) )); |
| stmt( IRStmt_Put( OFFB_CC_DEP2, mkU32(0) )); |
| stmt( IRStmt_Put( OFFB_CC_DEP1, |
| binop(Iop_And32, |
| binop(Iop_Shr32, mkexpr(t2), mkU8(16)), |
| mkU32( X86G_CC_MASK_C | X86G_CC_MASK_P |
| | X86G_CC_MASK_A | X86G_CC_MASK_Z |
| | X86G_CC_MASK_S| X86G_CC_MASK_O ) |
| ) |
| ) |
| ); |
| /* Set NDEP even though it isn't used. This makes redundant-PUT |
| elimination of previous stores to this field work better. */ |
| stmt( IRStmt_Put( OFFB_CC_NDEP, mkU32(0) )); |
| switch (opc) { |
| case 0x27: DIP("daa\n"); break; |
| case 0x2F: DIP("das\n"); break; |
| case 0x37: DIP("aaa\n"); break; |
| case 0x3F: DIP("aas\n"); break; |
| default: vassert(0); |
| } |
| break; |
| |
| case 0xD4: /* AAM */ |
| case 0xD5: /* AAD */ |
| d32 = getIByte(delta); delta++; |
| if (sz != 4 || d32 != 10) goto decode_failure; |
| t1 = newTemp(Ity_I32); |
| t2 = newTemp(Ity_I32); |
| /* Make up a 32-bit value (t1), with the old value of AX in the |
| bottom 16 bits, and the old OSZACP bitmask in the upper 16 |
| bits. */ |
| assign(t1, |
| binop(Iop_16HLto32, |
| unop(Iop_32to16, |
| mk_x86g_calculate_eflags_all()), |
| getIReg(2, R_EAX) |
| )); |
| /* Call the helper fn, to get a new AX and OSZACP value, and |
| poke both back into the guest state. Also pass the helper |
| the actual opcode so it knows which of the 2 instructions it |
| is doing the computation for. */ |
| assign(t2, |
| mkIRExprCCall( |
| Ity_I32, 0/*regparm*/, "x86g_calculate_aad_aam", |
| &x86g_calculate_aad_aam, |
| mkIRExprVec_2( mkexpr(t1), mkU32( opc & 0xFF) ) |
| )); |
| putIReg(2, R_EAX, unop(Iop_32to16, mkexpr(t2) )); |
| |
| stmt( IRStmt_Put( OFFB_CC_OP, mkU32(X86G_CC_OP_COPY) )); |
| stmt( IRStmt_Put( OFFB_CC_DEP2, mkU32(0) )); |
| stmt( IRStmt_Put( OFFB_CC_DEP1, |
| binop(Iop_And32, |
| binop(Iop_Shr32, mkexpr(t2), mkU8(16)), |
| mkU32( X86G_CC_MASK_C | X86G_CC_MASK_P |
| | X86G_CC_MASK_A | X86G_CC_MASK_Z |
| | X86G_CC_MASK_S| X86G_CC_MASK_O ) |
| ) |
| ) |
| ); |
| /* Set NDEP even though it isn't used. This makes |
| redundant-PUT elimination of previous stores to this field |
| work better. */ |
| stmt( IRStmt_Put( OFFB_CC_NDEP, mkU32(0) )); |
| |
| DIP(opc == 0xD4 ? "aam\n" : "aad\n"); |
| break; |
| |
| /* ------------------------ CWD/CDQ -------------------- */ |
| |
| case 0x98: /* CBW */ |
| if (sz == 4) { |
| putIReg(4, R_EAX, unop(Iop_16Sto32, getIReg(2, R_EAX))); |
| DIP("cwde\n"); |
| } else { |
| vassert(sz == 2); |
| putIReg(2, R_EAX, unop(Iop_8Sto16, getIReg(1, R_EAX))); |
| DIP("cbw\n"); |
| } |
| break; |
| |
| case 0x99: /* CWD/CDQ */ |
| ty = szToITy(sz); |
| putIReg(sz, R_EDX, |
| binop(mkSizedOp(ty,Iop_Sar8), |
| getIReg(sz, R_EAX), |
| mkU8(sz == 2 ? 15 : 31)) ); |
| DIP(sz == 2 ? "cwdq\n" : "cdqq\n"); |
| break; |
| |
| /* ------------------------ FPU ops -------------------- */ |
| |
| case 0x9E: /* SAHF */ |
| codegen_SAHF(); |
| DIP("sahf\n"); |
| break; |
| |
| case 0x9F: /* LAHF */ |
| codegen_LAHF(); |
| DIP("lahf\n"); |
| break; |
| |
| case 0x9B: /* FWAIT */ |
| /* ignore? */ |
| DIP("fwait\n"); |
| break; |
| |
| case 0xD8: |
| case 0xD9: |
| case 0xDA: |
| case 0xDB: |
| case 0xDC: |
| case 0xDD: |
| case 0xDE: |
| case 0xDF: { |
| Int delta0 = delta; |
| Bool decode_OK = False; |
| delta = dis_FPU ( &decode_OK, sorb, delta ); |
| if (!decode_OK) { |
| delta = delta0; |
| goto decode_failure; |
| } |
| break; |
| } |
| |
| /* ------------------------ INC & DEC ------------------ */ |
| |
| case 0x40: /* INC eAX */ |
| case 0x41: /* INC eCX */ |
| case 0x42: /* INC eDX */ |
| case 0x43: /* INC eBX */ |
| case 0x44: /* INC eSP */ |
| case 0x45: /* INC eBP */ |
| case 0x46: /* INC eSI */ |
| case 0x47: /* INC eDI */ |
| vassert(sz == 2 || sz == 4); |
| ty = szToITy(sz); |
| t1 = newTemp(ty); |
| assign( t1, binop(mkSizedOp(ty,Iop_Add8), |
| getIReg(sz, (UInt)(opc - 0x40)), |
| mkU(ty,1)) ); |
| setFlags_INC_DEC( True, t1, ty ); |
| putIReg(sz, (UInt)(opc - 0x40), mkexpr(t1)); |
| DIP("inc%c %s\n", nameISize(sz), nameIReg(sz,opc-0x40)); |
| break; |
| |
| case 0x48: /* DEC eAX */ |
| case 0x49: /* DEC eCX */ |
| case 0x4A: /* DEC eDX */ |
| case 0x4B: /* DEC eBX */ |
| case 0x4C: /* DEC eSP */ |
| case 0x4D: /* DEC eBP */ |
| case 0x4E: /* DEC eSI */ |
| case 0x4F: /* DEC eDI */ |
| vassert(sz == 2 || sz == 4); |
| ty = szToITy(sz); |
| t1 = newTemp(ty); |
| assign( t1, binop(mkSizedOp(ty,Iop_Sub8), |
| getIReg(sz, (UInt)(opc - 0x48)), |
| mkU(ty,1)) ); |
| setFlags_INC_DEC( False, t1, ty ); |
| putIReg(sz, (UInt)(opc - 0x48), mkexpr(t1)); |
| DIP("dec%c %s\n", nameISize(sz), nameIReg(sz,opc-0x48)); |
| break; |
| |
| /* ------------------------ INT ------------------------ */ |
| |
| case 0xCC: /* INT 3 */ |
| jmp_lit(&dres, Ijk_SigTRAP, ((Addr32)guest_EIP_bbstart)+delta); |
| vassert(dres.whatNext == Dis_StopHere); |
| DIP("int $0x3\n"); |
| break; |
| |
| case 0xCD: /* INT imm8 */ |
| d32 = getIByte(delta); delta++; |
| |
| /* For any of the cases where we emit a jump (that is, for all |
| currently handled cases), it's important that all ArchRegs |
| carry their up-to-date value at this point. So we declare an |
| end-of-block here, which forces any TempRegs caching ArchRegs |
| to be flushed. */ |
| |
| /* Handle int $0x3F .. $0x4F by synthesising a segfault and a |
| restart of this instruction (hence the "-2" two lines below, |
| to get the restart EIP to be this instruction. This is |
| probably Linux-specific and it would be more correct to only |
| do this if the VexAbiInfo says that is what we should do. |
| This used to handle just 0x40-0x43; Jikes RVM uses a larger |
| range (0x3F-0x49), and this allows some slack as well. */ |
| if (d32 >= 0x3F && d32 <= 0x4F) { |
| jmp_lit(&dres, Ijk_SigSEGV, ((Addr32)guest_EIP_bbstart)+delta-2); |
| vassert(dres.whatNext == Dis_StopHere); |
| DIP("int $0x%x\n", (Int)d32); |
| break; |
| } |
| |
| /* Handle int $0x80 (linux syscalls), int $0x81 and $0x82 |
| (darwin syscalls). As part of this, note where we are, so we |
| can back up the guest to this point if the syscall needs to |
| be restarted. */ |
| if (d32 == 0x80) { |
| stmt( IRStmt_Put( OFFB_IP_AT_SYSCALL, |
| mkU32(guest_EIP_curr_instr) ) ); |
| jmp_lit(&dres, Ijk_Sys_int128, ((Addr32)guest_EIP_bbstart)+delta); |
| vassert(dres.whatNext == Dis_StopHere); |
| DIP("int $0x80\n"); |
| break; |
| } |
| if (d32 == 0x81) { |
| stmt( IRStmt_Put( OFFB_IP_AT_SYSCALL, |
| mkU32(guest_EIP_curr_instr) ) ); |
| jmp_lit(&dres, Ijk_Sys_int129, ((Addr32)guest_EIP_bbstart)+delta); |
| vassert(dres.whatNext == Dis_StopHere); |
| DIP("int $0x81\n"); |
| break; |
| } |
| if (d32 == 0x82) { |
| stmt( IRStmt_Put( OFFB_IP_AT_SYSCALL, |
| mkU32(guest_EIP_curr_instr) ) ); |
| jmp_lit(&dres, Ijk_Sys_int130, ((Addr32)guest_EIP_bbstart)+delta); |
| vassert(dres.whatNext == Dis_StopHere); |
| DIP("int $0x82\n"); |
| break; |
| } |
| |
| /* none of the above */ |
| goto decode_failure; |
| |
| /* ------------------------ Jcond, byte offset --------- */ |
| |
| case 0xEB: /* Jb (jump, byte offset) */ |
| d32 = (((Addr32)guest_EIP_bbstart)+delta+1) + getSDisp8(delta); |
| delta++; |
| if (resteerOkFn( callback_opaque, (Addr64)(Addr32)d32) ) { |
| dres.whatNext = Dis_ResteerU; |
| dres.continueAt = (Addr64)(Addr32)d32; |
| } else { |
| jmp_lit(&dres, Ijk_Boring, d32); |
| vassert(dres.whatNext == Dis_StopHere); |
| } |
| DIP("jmp-8 0x%x\n", d32); |
| break; |
| |
| case 0xE9: /* Jv (jump, 16/32 offset) */ |
| vassert(sz == 4); /* JRS added 2004 July 11 */ |
| d32 = (((Addr32)guest_EIP_bbstart)+delta+sz) + getSDisp(sz,delta); |
| delta += sz; |
| if (resteerOkFn( callback_opaque, (Addr64)(Addr32)d32) ) { |
| dres.whatNext = Dis_ResteerU; |
| dres.continueAt = (Addr64)(Addr32)d32; |
| } else { |
| jmp_lit(&dres, Ijk_Boring, d32); |
| vassert(dres.whatNext == Dis_StopHere); |
| } |
| DIP("jmp 0x%x\n", d32); |
| break; |
| |
| case 0x70: |
| case 0x71: |
| case 0x72: /* JBb/JNAEb (jump below) */ |
| case 0x73: /* JNBb/JAEb (jump not below) */ |
| case 0x74: /* JZb/JEb (jump zero) */ |
| case 0x75: /* JNZb/JNEb (jump not zero) */ |
| case 0x76: /* JBEb/JNAb (jump below or equal) */ |
| case 0x77: /* JNBEb/JAb (jump not below or equal) */ |
| case 0x78: /* JSb (jump negative) */ |
| case 0x79: /* JSb (jump not negative) */ |
| case 0x7A: /* JP (jump parity even) */ |
| case 0x7B: /* JNP/JPO (jump parity odd) */ |
| case 0x7C: /* JLb/JNGEb (jump less) */ |
| case 0x7D: /* JGEb/JNLb (jump greater or equal) */ |
| case 0x7E: /* JLEb/JNGb (jump less or equal) */ |
| case 0x7F: /* JGb/JNLEb (jump greater) */ |
| { Int jmpDelta; |
| const HChar* comment = ""; |
| jmpDelta = (Int)getSDisp8(delta); |
| vassert(-128 <= jmpDelta && jmpDelta < 128); |
| d32 = (((Addr32)guest_EIP_bbstart)+delta+1) + jmpDelta; |
| delta++; |
| if (resteerCisOk |
| && vex_control.guest_chase_cond |
| && (Addr32)d32 != (Addr32)guest_EIP_bbstart |
| && jmpDelta < 0 |
| && resteerOkFn( callback_opaque, (Addr64)(Addr32)d32) ) { |
| /* Speculation: assume this backward branch is taken. So we |
| need to emit a side-exit to the insn following this one, |
| on the negation of the condition, and continue at the |
| branch target address (d32). If we wind up back at the |
| first instruction of the trace, just stop; it's better to |
| let the IR loop unroller handle that case. */ |
| stmt( IRStmt_Exit( |
| mk_x86g_calculate_condition((X86Condcode)(1 ^ (opc - 0x70))), |
| Ijk_Boring, |
| IRConst_U32(guest_EIP_bbstart+delta), |
| OFFB_EIP ) ); |
| dres.whatNext = Dis_ResteerC; |
| dres.continueAt = (Addr64)(Addr32)d32; |
| comment = "(assumed taken)"; |
| } |
| else |
| if (resteerCisOk |
| && vex_control.guest_chase_cond |
| && (Addr32)d32 != (Addr32)guest_EIP_bbstart |
| && jmpDelta >= 0 |
| && resteerOkFn( callback_opaque, |
| (Addr64)(Addr32)(guest_EIP_bbstart+delta)) ) { |
| /* Speculation: assume this forward branch is not taken. So |
| we need to emit a side-exit to d32 (the dest) and continue |
| disassembling at the insn immediately following this |
| one. */ |
| stmt( IRStmt_Exit( |
| mk_x86g_calculate_condition((X86Condcode)(opc - 0x70)), |
| Ijk_Boring, |
| IRConst_U32(d32), |
| OFFB_EIP ) ); |
| dres.whatNext = Dis_ResteerC; |
| dres.continueAt = (Addr64)(Addr32)(guest_EIP_bbstart+delta); |
| comment = "(assumed not taken)"; |
| } |
| else { |
| /* Conservative default translation - end the block at this |
| point. */ |
| jcc_01( &dres, (X86Condcode)(opc - 0x70), |
| (Addr32)(guest_EIP_bbstart+delta), d32); |
| vassert(dres.whatNext == Dis_StopHere); |
| } |
| DIP("j%s-8 0x%x %s\n", name_X86Condcode(opc - 0x70), d32, comment); |
| break; |
| } |
| |
| case 0xE3: /* JECXZ (for JCXZ see above) */ |
| if (sz != 4) goto decode_failure; |
| d32 = (((Addr32)guest_EIP_bbstart)+delta+1) + getSDisp8(delta); |
| delta ++; |
| stmt( IRStmt_Exit( |
| binop(Iop_CmpEQ32, getIReg(4,R_ECX), mkU32(0)), |
| Ijk_Boring, |
| IRConst_U32(d32), |
| OFFB_EIP |
| )); |
| DIP("jecxz 0x%x\n", d32); |
| break; |
| |
| case 0xE0: /* LOOPNE disp8: decrement count, jump if count != 0 && ZF==0 */ |
| case 0xE1: /* LOOPE disp8: decrement count, jump if count != 0 && ZF==1 */ |
| case 0xE2: /* LOOP disp8: decrement count, jump if count != 0 */ |
| { /* Again, the docs say this uses ECX/CX as a count depending on |
| the address size override, not the operand one. Since we |
| don't handle address size overrides, I guess that means |
| ECX. */ |
| IRExpr* zbit = NULL; |
| IRExpr* count = NULL; |
| IRExpr* cond = NULL; |
| const HChar* xtra = NULL; |
| |
| if (sz != 4) goto decode_failure; |
| d32 = (((Addr32)guest_EIP_bbstart)+delta+1) + getSDisp8(delta); |
| delta++; |
| putIReg(4, R_ECX, binop(Iop_Sub32, getIReg(4,R_ECX), mkU32(1))); |
| |
| count = getIReg(4,R_ECX); |
| cond = binop(Iop_CmpNE32, count, mkU32(0)); |
| switch (opc) { |
| case 0xE2: |
| xtra = ""; |
| break; |
| case 0xE1: |
| xtra = "e"; |
| zbit = mk_x86g_calculate_condition( X86CondZ ); |
| cond = mkAnd1(cond, zbit); |
| break; |
| case 0xE0: |
| xtra = "ne"; |
| zbit = mk_x86g_calculate_condition( X86CondNZ ); |
| cond = mkAnd1(cond, zbit); |
| break; |
| default: |
| vassert(0); |
| } |
| stmt( IRStmt_Exit(cond, Ijk_Boring, IRConst_U32(d32), OFFB_EIP) ); |
| |
| DIP("loop%s 0x%x\n", xtra, d32); |
| break; |
| } |
| |
| /* ------------------------ IMUL ----------------------- */ |
| |
| case 0x69: /* IMUL Iv, Ev, Gv */ |
| delta = dis_imul_I_E_G ( sorb, sz, delta, sz ); |
| break; |
| case 0x6B: /* IMUL Ib, Ev, Gv */ |
| delta = dis_imul_I_E_G ( sorb, sz, delta, 1 ); |
| break; |
| |
| /* ------------------------ MOV ------------------------ */ |
| |
| case 0x88: /* MOV Gb,Eb */ |
| delta = dis_mov_G_E(sorb, 1, delta); |
| break; |
| |
| case 0x89: /* MOV Gv,Ev */ |
| delta = dis_mov_G_E(sorb, sz, delta); |
| break; |
| |
| case 0x8A: /* MOV Eb,Gb */ |
| delta = dis_mov_E_G(sorb, 1, delta); |
| break; |
| |
| case 0x8B: /* MOV Ev,Gv */ |
| delta = dis_mov_E_G(sorb, sz, delta); |
| break; |
| |
| case 0x8D: /* LEA M,Gv */ |
| if (sz != 4) |
| goto decode_failure; |
| modrm = getIByte(delta); |
| if (epartIsReg(modrm)) |
| goto decode_failure; |
| /* NOTE! this is the one place where a segment override prefix |
| has no effect on the address calculation. Therefore we pass |
| zero instead of sorb here. */ |
| addr = disAMode ( &alen, /*sorb*/ 0, delta, dis_buf ); |
| delta += alen; |
| putIReg(sz, gregOfRM(modrm), mkexpr(addr)); |
| DIP("lea%c %s, %s\n", nameISize(sz), dis_buf, |
| nameIReg(sz,gregOfRM(modrm))); |
| break; |
| |
| case 0x8C: /* MOV Sw,Ew -- MOV from a SEGMENT REGISTER */ |
| delta = dis_mov_Sw_Ew(sorb, sz, delta); |
| break; |
| |
| case 0x8E: /* MOV Ew,Sw -- MOV to a SEGMENT REGISTER */ |
| delta = dis_mov_Ew_Sw(sorb, delta); |
| break; |
| |
| case 0xA0: /* MOV Ob,AL */ |
| sz = 1; |
| /* Fall through ... */ |
| case 0xA1: /* MOV Ov,eAX */ |
| d32 = getUDisp32(delta); delta += 4; |
| ty = szToITy(sz); |
| addr = newTemp(Ity_I32); |
| assign( addr, handleSegOverride(sorb, mkU32(d32)) ); |
| putIReg(sz, R_EAX, loadLE(ty, mkexpr(addr))); |
| DIP("mov%c %s0x%x, %s\n", nameISize(sz), sorbTxt(sorb), |
| d32, nameIReg(sz,R_EAX)); |
| break; |
| |
| case 0xA2: /* MOV Ob,AL */ |
| sz = 1; |
| /* Fall through ... */ |
| case 0xA3: /* MOV eAX,Ov */ |
| d32 = getUDisp32(delta); delta += 4; |
| ty = szToITy(sz); |
| addr = newTemp(Ity_I32); |
| assign( addr, handleSegOverride(sorb, mkU32(d32)) ); |
| storeLE( mkexpr(addr), getIReg(sz,R_EAX) ); |
| DIP("mov%c %s, %s0x%x\n", nameISize(sz), nameIReg(sz,R_EAX), |
| sorbTxt(sorb), d32); |
| break; |
| |
| case 0xB0: /* MOV imm,AL */ |
| case 0xB1: /* MOV imm,CL */ |
| case 0xB2: /* MOV imm,DL */ |
| case 0xB3: /* MOV imm,BL */ |
| case 0xB4: /* MOV imm,AH */ |
| case 0xB5: /* MOV imm,CH */ |
| case 0xB6: /* MOV imm,DH */ |
| case 0xB7: /* MOV imm,BH */ |
| d32 = getIByte(delta); delta += 1; |
| putIReg(1, opc-0xB0, mkU8(d32)); |
| DIP("movb $0x%x,%s\n", d32, nameIReg(1,opc-0xB0)); |
| break; |
| |
| case 0xB8: /* MOV imm,eAX */ |
| case 0xB9: /* MOV imm,eCX */ |
| case 0xBA: /* MOV imm,eDX */ |
| case 0xBB: /* MOV imm,eBX */ |
| case 0xBC: /* MOV imm,eSP */ |
| case 0xBD: /* MOV imm,eBP */ |
| case 0xBE: /* MOV imm,eSI */ |
| case 0xBF: /* MOV imm,eDI */ |
| d32 = getUDisp(sz,delta); delta += sz; |
| putIReg(sz, opc-0xB8, mkU(szToITy(sz), d32)); |
| DIP("mov%c $0x%x,%s\n", nameISize(sz), d32, nameIReg(sz,opc-0xB8)); |
| break; |
| |
| case 0xC6: /* MOV Ib,Eb */ |
| sz = 1; |
| goto do_Mov_I_E; |
| case 0xC7: /* MOV Iv,Ev */ |
| goto do_Mov_I_E; |
| |
| do_Mov_I_E: |
| modrm = getIByte(delta); |
| if (epartIsReg(modrm)) { |
| delta++; /* mod/rm byte */ |
| d32 = getUDisp(sz,delta); delta += sz; |
| putIReg(sz, eregOfRM(modrm), mkU(szToITy(sz), d32)); |
| DIP("mov%c $0x%x, %s\n", nameISize(sz), d32, |
| nameIReg(sz,eregOfRM(modrm))); |
| } else { |
| addr = disAMode ( &alen, sorb, delta, dis_buf ); |
| delta += alen; |
| d32 = getUDisp(sz,delta); delta += sz; |
| storeLE(mkexpr(addr), mkU(szToITy(sz), d32)); |
| DIP("mov%c $0x%x, %s\n", nameISize(sz), d32, dis_buf); |
| } |
| break; |
| |
| /* ------------------------ opl imm, A ----------------- */ |
| |
| case 0x04: /* ADD Ib, AL */ |
| delta = dis_op_imm_A( 1, False, Iop_Add8, True, delta, "add" ); |
| break; |
| case 0x05: /* ADD Iv, eAX */ |
| delta = dis_op_imm_A( sz, False, Iop_Add8, True, delta, "add" ); |
| break; |
| |
| case 0x0C: /* OR Ib, AL */ |
| delta = dis_op_imm_A( 1, False, Iop_Or8, True, delta, "or" ); |
| break; |
| case 0x0D: /* OR Iv, eAX */ |
| delta = dis_op_imm_A( sz, False, Iop_Or8, True, delta, "or" ); |
| break; |
| |
| case 0x14: /* ADC Ib, AL */ |
| delta = dis_op_imm_A( 1, True, Iop_Add8, True, delta, "adc" ); |
| break; |
| case 0x15: /* ADC Iv, eAX */ |
| delta = dis_op_imm_A( sz, True, Iop_Add8, True, delta, "adc" ); |
| break; |
| |
| case 0x1C: /* SBB Ib, AL */ |
| delta = dis_op_imm_A( 1, True, Iop_Sub8, True, delta, "sbb" ); |
| break; |
| case 0x1D: /* SBB Iv, eAX */ |
| delta = dis_op_imm_A( sz, True, Iop_Sub8, True, delta, "sbb" ); |
| break; |
| |
| case 0x24: /* AND Ib, AL */ |
| delta = dis_op_imm_A( 1, False, Iop_And8, True, delta, "and" ); |
| break; |
| case 0x25: /* AND Iv, eAX */ |
| delta = dis_op_imm_A( sz, False, Iop_And8, True, delta, "and" ); |
| break; |
| |
| case 0x2C: /* SUB Ib, AL */ |
| delta = dis_op_imm_A( 1, False, Iop_Sub8, True, delta, "sub" ); |
| break; |
| case 0x2D: /* SUB Iv, eAX */ |
| delta = dis_op_imm_A( sz, False, Iop_Sub8, True, delta, "sub" ); |
| break; |
| |
| case 0x34: /* XOR Ib, AL */ |
| delta = dis_op_imm_A( 1, False, Iop_Xor8, True, delta, "xor" ); |
| break; |
| case 0x35: /* XOR Iv, eAX */ |
| delta = dis_op_imm_A( sz, False, Iop_Xor8, True, delta, "xor" ); |
| break; |
| |
| case 0x3C: /* CMP Ib, AL */ |
| delta = dis_op_imm_A( 1, False, Iop_Sub8, False, delta, "cmp" ); |
| break; |
| case 0x3D: /* CMP Iv, eAX */ |
| delta = dis_op_imm_A( sz, False, Iop_Sub8, False, delta, "cmp" ); |
| break; |
| |
| case 0xA8: /* TEST Ib, AL */ |
| delta = dis_op_imm_A( 1, False, Iop_And8, False, delta, "test" ); |
| break; |
| case 0xA9: /* TEST Iv, eAX */ |
| delta = dis_op_imm_A( sz, False, Iop_And8, False, delta, "test" ); |
| break; |
| |
| /* ------------------------ opl Ev, Gv ----------------- */ |
| |
| case 0x02: /* ADD Eb,Gb */ |
| delta = dis_op2_E_G ( sorb, False, Iop_Add8, True, 1, delta, "add" ); |
| break; |
| case 0x03: /* ADD Ev,Gv */ |
| delta = dis_op2_E_G ( sorb, False, Iop_Add8, True, sz, delta, "add" ); |
| break; |
| |
| case 0x0A: /* OR Eb,Gb */ |
| delta = dis_op2_E_G ( sorb, False, Iop_Or8, True, 1, delta, "or" ); |
| break; |
| case 0x0B: /* OR Ev,Gv */ |
| delta = dis_op2_E_G ( sorb, False, Iop_Or8, True, sz, delta, "or" ); |
| break; |
| |
| case 0x12: /* ADC Eb,Gb */ |
| delta = dis_op2_E_G ( sorb, True, Iop_Add8, True, 1, delta, "adc" ); |
| break; |
| case 0x13: /* ADC Ev,Gv */ |
| delta = dis_op2_E_G ( sorb, True, Iop_Add8, True, sz, delta, "adc" ); |
| break; |
| |
| case 0x1A: /* SBB Eb,Gb */ |
| delta = dis_op2_E_G ( sorb, True, Iop_Sub8, True, 1, delta, "sbb" ); |
| break; |
| case 0x1B: /* SBB Ev,Gv */ |
| delta = dis_op2_E_G ( sorb, True, Iop_Sub8, True, sz, delta, "sbb" ); |
| break; |
| |
| case 0x22: /* AND Eb,Gb */ |
| delta = dis_op2_E_G ( sorb, False, Iop_And8, True, 1, delta, "and" ); |
| break; |
| case 0x23: /* AND Ev,Gv */ |
| delta = dis_op2_E_G ( sorb, False, Iop_And8, True, sz, delta, "and" ); |
| break; |
| |
| case 0x2A: /* SUB Eb,Gb */ |
| delta = dis_op2_E_G ( sorb, False, Iop_Sub8, True, 1, delta, "sub" ); |
| break; |
| case 0x2B: /* SUB Ev,Gv */ |
| delta = dis_op2_E_G ( sorb, False, Iop_Sub8, True, sz, delta, "sub" ); |
| break; |
| |
| case 0x32: /* XOR Eb,Gb */ |
| delta = dis_op2_E_G ( sorb, False, Iop_Xor8, True, 1, delta, "xor" ); |
| break; |
| case 0x33: /* XOR Ev,Gv */ |
| delta = dis_op2_E_G ( sorb, False, Iop_Xor8, True, sz, delta, "xor" ); |
| break; |
| |
| case 0x3A: /* CMP Eb,Gb */ |
| delta = dis_op2_E_G ( sorb, False, Iop_Sub8, False, 1, delta, "cmp" ); |
| break; |
| case 0x3B: /* CMP Ev,Gv */ |
| delta = dis_op2_E_G ( sorb, False, Iop_Sub8, False, sz, delta, "cmp" ); |
| break; |
| |
| case 0x84: /* TEST Eb,Gb */ |
| delta = dis_op2_E_G ( sorb, False, Iop_And8, False, 1, delta, "test" ); |
| break; |
| case 0x85: /* TEST Ev,Gv */ |
| delta = dis_op2_E_G ( sorb, False, Iop_And8, False, sz, delta, "test" ); |
| break; |
| |
| /* ------------------------ opl Gv, Ev ----------------- */ |
| |
| case 0x00: /* ADD Gb,Eb */ |
| delta = dis_op2_G_E ( sorb, pfx_lock, False, |
| Iop_Add8, True, 1, delta, "add" ); |
| break; |
| case 0x01: /* ADD Gv,Ev */ |
| delta = dis_op2_G_E ( sorb, pfx_lock, False, |
| Iop_Add8, True, sz, delta, "add" ); |
| break; |
| |
| case 0x08: /* OR Gb,Eb */ |
| delta = dis_op2_G_E ( sorb, pfx_lock, False, |
| Iop_Or8, True, 1, delta, "or" ); |
| break; |
| case 0x09: /* OR Gv,Ev */ |
| delta = dis_op2_G_E ( sorb, pfx_lock, False, |
| Iop_Or8, True, sz, delta, "or" ); |
| break; |
| |
| case 0x10: /* ADC Gb,Eb */ |
| delta = dis_op2_G_E ( sorb, pfx_lock, True, |
| Iop_Add8, True, 1, delta, "adc" ); |
| break; |
| case 0x11: /* ADC Gv,Ev */ |
| delta = dis_op2_G_E ( sorb, pfx_lock, True, |
| Iop_Add8, True, sz, delta, "adc" ); |
| break; |
| |
| case 0x18: /* SBB Gb,Eb */ |
| delta = dis_op2_G_E ( sorb, pfx_lock, True, |
| Iop_Sub8, True, 1, delta, "sbb" ); |
| break; |
| case 0x19: /* SBB Gv,Ev */ |
| delta = dis_op2_G_E ( sorb, pfx_lock, True, |
| Iop_Sub8, True, sz, delta, "sbb" ); |
| break; |
| |
| case 0x20: /* AND Gb,Eb */ |
| delta = dis_op2_G_E ( sorb, pfx_lock, False, |
| Iop_And8, True, 1, delta, "and" ); |
| break; |
| case 0x21: /* AND Gv,Ev */ |
| delta = dis_op2_G_E ( sorb, pfx_lock, False, |
| Iop_And8, True, sz, delta, "and" ); |
| break; |
| |
| case 0x28: /* SUB Gb,Eb */ |
| delta = dis_op2_G_E ( sorb, pfx_lock, False, |
| Iop_Sub8, True, 1, delta, "sub" ); |
| break; |
| case 0x29: /* SUB Gv,Ev */ |
| delta = dis_op2_G_E ( sorb, pfx_lock, False, |
| Iop_Sub8, True, sz, delta, "sub" ); |
| break; |
| |
| case 0x30: /* XOR Gb,Eb */ |
| delta = dis_op2_G_E ( sorb, pfx_lock, False, |
| Iop_Xor8, True, 1, delta, "xor" ); |
| break; |
| case 0x31: /* XOR Gv,Ev */ |
| delta = dis_op2_G_E ( sorb, pfx_lock, False, |
| Iop_Xor8, True, sz, delta, "xor" ); |
| break; |
| |
| case 0x38: /* CMP Gb,Eb */ |
| delta = dis_op2_G_E ( sorb, pfx_lock, False, |
| Iop_Sub8, False, 1, delta, "cmp" ); |
| break; |
| case 0x39: /* CMP Gv,Ev */ |
| delta = dis_op2_G_E ( sorb, pfx_lock, False, |
| Iop_Sub8, False, sz, delta, "cmp" ); |
| break; |
| |
| /* ------------------------ POP ------------------------ */ |
| |
| case 0x58: /* POP eAX */ |
| case 0x59: /* POP eCX */ |
| case 0x5A: /* POP eDX */ |
| case 0x5B: /* POP eBX */ |
| case 0x5D: /* POP eBP */ |
| case 0x5E: /* POP eSI */ |
| case 0x5F: /* POP eDI */ |
| case 0x5C: /* POP eSP */ |
| vassert(sz == 2 || sz == 4); |
| t1 = newTemp(szToITy(sz)); t2 = newTemp(Ity_I32); |
| assign(t2, getIReg(4, R_ESP)); |
| assign(t1, loadLE(szToITy(sz),mkexpr(t2))); |
| putIReg(4, R_ESP, binop(Iop_Add32, mkexpr(t2), mkU32(sz))); |
| putIReg(sz, opc-0x58, mkexpr(t1)); |
| DIP("pop%c %s\n", nameISize(sz), nameIReg(sz,opc-0x58)); |
| break; |
| |
| case 0x9D: /* POPF */ |
| vassert(sz == 2 || sz == 4); |
| t1 = newTemp(Ity_I32); t2 = newTemp(Ity_I32); |
| assign(t2, getIReg(4, R_ESP)); |
| assign(t1, widenUto32(loadLE(szToITy(sz),mkexpr(t2)))); |
| putIReg(4, R_ESP, binop(Iop_Add32, mkexpr(t2), mkU32(sz))); |
| |
| /* Generate IR to set %EFLAGS{O,S,Z,A,C,P,D,ID,AC} from the |
| value in t1. */ |
| set_EFLAGS_from_value( t1, True/*emit_AC_emwarn*/, |
| ((Addr32)guest_EIP_bbstart)+delta ); |
| |
| DIP("popf%c\n", nameISize(sz)); |
| break; |
| |
| case 0x61: /* POPA */ |
| /* This is almost certainly wrong for sz==2. So ... */ |
| if (sz != 4) goto decode_failure; |
| |
| /* t5 is the old %ESP value. */ |
| t5 = newTemp(Ity_I32); |
| assign( t5, getIReg(4, R_ESP) ); |
| |
| /* Reload all the registers, except %esp. */ |
| putIReg(4,R_EAX, loadLE(Ity_I32, binop(Iop_Add32,mkexpr(t5),mkU32(28)) )); |
| putIReg(4,R_ECX, loadLE(Ity_I32, binop(Iop_Add32,mkexpr(t5),mkU32(24)) )); |
| putIReg(4,R_EDX, loadLE(Ity_I32, binop(Iop_Add32,mkexpr(t5),mkU32(20)) )); |
| putIReg(4,R_EBX, loadLE(Ity_I32, binop(Iop_Add32,mkexpr(t5),mkU32(16)) )); |
| /* ignore saved %ESP */ |
| putIReg(4,R_EBP, loadLE(Ity_I32, binop(Iop_Add32,mkexpr(t5),mkU32( 8)) )); |
| putIReg(4,R_ESI, loadLE(Ity_I32, binop(Iop_Add32,mkexpr(t5),mkU32( 4)) )); |
| putIReg(4,R_EDI, loadLE(Ity_I32, binop(Iop_Add32,mkexpr(t5),mkU32( 0)) )); |
| |
| /* and move %ESP back up */ |
| putIReg( 4, R_ESP, binop(Iop_Add32, mkexpr(t5), mkU32(8*4)) ); |
| |
| DIP("popa%c\n", nameISize(sz)); |
| break; |
| |
| case 0x8F: /* POPL/POPW m32 */ |
| { Int len; |
| UChar rm = getIByte(delta); |
| |
| /* make sure this instruction is correct POP */ |
| if (epartIsReg(rm) || gregOfRM(rm) != 0) |
| goto decode_failure; |
| /* and has correct size */ |
| if (sz != 4 && sz != 2) |
| goto decode_failure; |
| ty = szToITy(sz); |
| |
| t1 = newTemp(Ity_I32); /* stack address */ |
| t3 = newTemp(ty); /* data */ |
| /* set t1 to ESP: t1 = ESP */ |
| assign( t1, getIReg(4, R_ESP) ); |
| /* load M[ESP] to virtual register t3: t3 = M[t1] */ |
| assign( t3, loadLE(ty, mkexpr(t1)) ); |
| |
| /* increase ESP; must be done before the STORE. Intel manual says: |
| If the ESP register is used as a base register for addressing |
| a destination operand in memory, the POP instruction computes |
| the effective address of the operand after it increments the |
| ESP register. |
| */ |
| putIReg(4, R_ESP, binop(Iop_Add32, mkexpr(t1), mkU32(sz)) ); |
| |
| /* resolve MODR/M */ |
| addr = disAMode ( &len, sorb, delta, dis_buf); |
| storeLE( mkexpr(addr), mkexpr(t3) ); |
| |
| DIP("pop%c %s\n", sz==2 ? 'w' : 'l', dis_buf); |
| |
| delta += len; |
| break; |
| } |
| |
| case 0x1F: /* POP %DS */ |
| dis_pop_segreg( R_DS, sz ); break; |
| case 0x07: /* POP %ES */ |
| dis_pop_segreg( R_ES, sz ); break; |
| case 0x17: /* POP %SS */ |
| dis_pop_segreg( R_SS, sz ); break; |
| |
| /* ------------------------ PUSH ----------------------- */ |
| |
| case 0x50: /* PUSH eAX */ |
| case 0x51: /* PUSH eCX */ |
| case 0x52: /* PUSH eDX */ |
| case 0x53: /* PUSH eBX */ |
| case 0x55: /* PUSH eBP */ |
| case 0x56: /* PUSH eSI */ |
| case 0x57: /* PUSH eDI */ |
| case 0x54: /* PUSH eSP */ |
| /* This is the Right Way, in that the value to be pushed is |
| established before %esp is changed, so that pushl %esp |
| correctly pushes the old value. */ |
| vassert(sz == 2 || sz == 4); |
| ty = sz==2 ? Ity_I16 : Ity_I32; |
| t1 = newTemp(ty); t2 = newTemp(Ity_I32); |
| assign(t1, getIReg(sz, opc-0x50)); |
| assign(t2, binop(Iop_Sub32, getIReg(4, R_ESP), mkU32(sz))); |
| putIReg(4, R_ESP, mkexpr(t2) ); |
| storeLE(mkexpr(t2),mkexpr(t1)); |
| DIP("push%c %s\n", nameISize(sz), nameIReg(sz,opc-0x50)); |
| break; |
| |
| |
| case 0x68: /* PUSH Iv */ |
| d32 = getUDisp(sz,delta); delta += sz; |
| goto do_push_I; |
| case 0x6A: /* PUSH Ib, sign-extended to sz */ |
| d32 = getSDisp8(delta); delta += 1; |
| goto do_push_I; |
| do_push_I: |
| ty = szToITy(sz); |
| t1 = newTemp(Ity_I32); t2 = newTemp(ty); |
| assign( t1, binop(Iop_Sub32,getIReg(4,R_ESP),mkU32(sz)) ); |
| putIReg(4, R_ESP, mkexpr(t1) ); |
| /* stop mkU16 asserting if d32 is a negative 16-bit number |
| (bug #132813) */ |
| if (ty == Ity_I16) |
| d32 &= 0xFFFF; |
| storeLE( mkexpr(t1), mkU(ty,d32) ); |
| DIP("push%c $0x%x\n", nameISize(sz), d32); |
| break; |
| |
| case 0x9C: /* PUSHF */ { |
| vassert(sz == 2 || sz == 4); |
| |
| t1 = newTemp(Ity_I32); |
| assign( t1, binop(Iop_Sub32,getIReg(4,R_ESP),mkU32(sz)) ); |
| putIReg(4, R_ESP, mkexpr(t1) ); |
| |
| /* Calculate OSZACP, and patch in fixed fields as per |
| Intel docs. |
| - bit 1 is always 1 |
| - bit 9 is Interrupt Enable (should always be 1 in user mode?) |
| */ |
| t2 = newTemp(Ity_I32); |
| assign( t2, binop(Iop_Or32, |
| mk_x86g_calculate_eflags_all(), |
| mkU32( (1<<1)|(1<<9) ) )); |
| |
| /* Patch in the D flag. This can simply be a copy of bit 10 of |
| baseBlock[OFFB_DFLAG]. */ |
| t3 = newTemp(Ity_I32); |
| assign( t3, binop(Iop_Or32, |
| mkexpr(t2), |
| binop(Iop_And32, |
| IRExpr_Get(OFFB_DFLAG,Ity_I32), |
| mkU32(1<<10))) |
| ); |
| |
| /* And patch in the ID flag. */ |
| t4 = newTemp(Ity_I32); |
| assign( t4, binop(Iop_Or32, |
| mkexpr(t3), |
| binop(Iop_And32, |
| binop(Iop_Shl32, IRExpr_Get(OFFB_IDFLAG,Ity_I32), |
| mkU8(21)), |
| mkU32(1<<21))) |
| ); |
| |
| /* And patch in the AC flag. */ |
| t5 = newTemp(Ity_I32); |
| assign( t5, binop(Iop_Or32, |
| mkexpr(t4), |
| binop(Iop_And32, |
| binop(Iop_Shl32, IRExpr_Get(OFFB_ACFLAG,Ity_I32), |
| mkU8(18)), |
| mkU32(1<<18))) |
| ); |
| |
| /* if sz==2, the stored value needs to be narrowed. */ |
| if (sz == 2) |
| storeLE( mkexpr(t1), unop(Iop_32to16,mkexpr(t5)) ); |
| else |
| storeLE( mkexpr(t1), mkexpr(t5) ); |
| |
| DIP("pushf%c\n", nameISize(sz)); |
| break; |
| } |
| |
| case 0x60: /* PUSHA */ |
| /* This is almost certainly wrong for sz==2. So ... */ |
| if (sz != 4) goto decode_failure; |
| |
| /* This is the Right Way, in that the value to be pushed is |
| established before %esp is changed, so that pusha |
| correctly pushes the old %esp value. New value of %esp is |
| pushed at start. */ |
| /* t0 is the %ESP value we're going to push. */ |
| t0 = newTemp(Ity_I32); |
| assign( t0, getIReg(4, R_ESP) ); |
| |
| /* t5 will be the new %ESP value. */ |
| t5 = newTemp(Ity_I32); |
| assign( t5, binop(Iop_Sub32, mkexpr(t0), mkU32(8*4)) ); |
| |
| /* Update guest state before prodding memory. */ |
| putIReg(4, R_ESP, mkexpr(t5)); |
| |
| /* Dump all the registers. */ |
| storeLE( binop(Iop_Add32,mkexpr(t5),mkU32(28)), getIReg(4,R_EAX) ); |
| storeLE( binop(Iop_Add32,mkexpr(t5),mkU32(24)), getIReg(4,R_ECX) ); |
| storeLE( binop(Iop_Add32,mkexpr(t5),mkU32(20)), getIReg(4,R_EDX) ); |
| storeLE( binop(Iop_Add32,mkexpr(t5),mkU32(16)), getIReg(4,R_EBX) ); |
| storeLE( binop(Iop_Add32,mkexpr(t5),mkU32(12)), mkexpr(t0) /*esp*/); |
| storeLE( binop(Iop_Add32,mkexpr(t5),mkU32( 8)), getIReg(4,R_EBP) ); |
| storeLE( binop(Iop_Add32,mkexpr(t5),mkU32( 4)), getIReg(4,R_ESI) ); |
| storeLE( binop(Iop_Add32,mkexpr(t5),mkU32( 0)), getIReg(4,R_EDI) ); |
| |
| DIP("pusha%c\n", nameISize(sz)); |
| break; |
| |
| case 0x0E: /* PUSH %CS */ |
| dis_push_segreg( R_CS, sz ); break; |
| case 0x1E: /* PUSH %DS */ |
| dis_push_segreg( R_DS, sz ); break; |
| case 0x06: /* PUSH %ES */ |
| dis_push_segreg( R_ES, sz ); break; |
| case 0x16: /* PUSH %SS */ |
| dis_push_segreg( R_SS, sz ); break; |
| |
| /* ------------------------ SCAS et al ----------------- */ |
| |
| case 0xA4: /* MOVS, no REP prefix */ |
| case 0xA5: |
| if (sorb != 0) |
| goto decode_failure; /* else dis_string_op asserts */ |
| dis_string_op( dis_MOVS, ( opc == 0xA4 ? 1 : sz ), "movs", sorb ); |
| break; |
| |
| case 0xA6: /* CMPSb, no REP prefix */ |
| case 0xA7: |
| if (sorb != 0) |
| goto decode_failure; /* else dis_string_op asserts */ |
| dis_string_op( dis_CMPS, ( opc == 0xA6 ? 1 : sz ), "cmps", sorb ); |
| break; |
| |
| case 0xAA: /* STOS, no REP prefix */ |
| case 0xAB: |
| if (sorb != 0) |
| goto decode_failure; /* else dis_string_op asserts */ |
| dis_string_op( dis_STOS, ( opc == 0xAA ? 1 : sz ), "stos", sorb ); |
| break; |
| |
| case 0xAC: /* LODS, no REP prefix */ |
| case 0xAD: |
| if (sorb != 0) |
| goto decode_failure; /* else dis_string_op asserts */ |
| dis_string_op( dis_LODS, ( opc == 0xAC ? 1 : sz ), "lods", sorb ); |
| break; |
| |
| case 0xAE: /* SCAS, no REP prefix */ |
| case 0xAF: |
| if (sorb != 0) |
| goto decode_failure; /* else dis_string_op asserts */ |
| dis_string_op( dis_SCAS, ( opc == 0xAE ? 1 : sz ), "scas", sorb ); |
| break; |
| |
| |
| case 0xFC: /* CLD */ |
| stmt( IRStmt_Put( OFFB_DFLAG, mkU32(1)) ); |
| DIP("cld\n"); |
| break; |
| |
| case 0xFD: /* STD */ |
| stmt( IRStmt_Put( OFFB_DFLAG, mkU32(0xFFFFFFFF)) ); |
| DIP("std\n"); |
| break; |
| |
| case 0xF8: /* CLC */ |
| case 0xF9: /* STC */ |
| case 0xF5: /* CMC */ |
| t0 = newTemp(Ity_I32); |
| t1 = newTemp(Ity_I32); |
| assign( t0, mk_x86g_calculate_eflags_all() ); |
| switch (opc) { |
| case 0xF8: |
| assign( t1, binop(Iop_And32, mkexpr(t0), |
| mkU32(~X86G_CC_MASK_C))); |
| DIP("clc\n"); |
| break; |
| case 0xF9: |
| assign( t1, binop(Iop_Or32, mkexpr(t0), |
| mkU32(X86G_CC_MASK_C))); |
| DIP("stc\n"); |
| break; |
| case 0xF5: |
| assign( t1, binop(Iop_Xor32, mkexpr(t0), |
| mkU32(X86G_CC_MASK_C))); |
| DIP("cmc\n"); |
| break; |
| default: |
| vpanic("disInstr(x86)(clc/stc/cmc)"); |
| } |
| stmt( IRStmt_Put( OFFB_CC_OP, mkU32(X86G_CC_OP_COPY) )); |
| stmt( IRStmt_Put( OFFB_CC_DEP2, mkU32(0) )); |
| stmt( IRStmt_Put( OFFB_CC_DEP1, mkexpr(t1) )); |
| /* Set NDEP even though it isn't used. This makes redundant-PUT |
| elimination of previous stores to this field work better. */ |
| stmt( IRStmt_Put( OFFB_CC_NDEP, mkU32(0) )); |
| break; |
| |
| case 0xD6: /* SALC */ |
| t0 = newTemp(Ity_I32); |
| t1 = newTemp(Ity_I32); |
| assign( t0, binop(Iop_And32, |
| mk_x86g_calculate_eflags_c(), |
| mkU32(1)) ); |
| assign( t1, binop(Iop_Sar32, |
| binop(Iop_Shl32, mkexpr(t0), mkU8(31)), |
| mkU8(31)) ); |
| putIReg(1, R_EAX, unop(Iop_32to8, mkexpr(t1)) ); |
| DIP("salc\n"); |
| break; |
| |
| /* REPNE prefix insn */ |
| case 0xF2: { |
| Addr32 eip_orig = guest_EIP_bbstart + delta_start; |
| if (sorb != 0) goto decode_failure; |
| abyte = getIByte(delta); delta++; |
| |
| if (abyte == 0x66) { sz = 2; abyte = getIByte(delta); delta++; } |
| |
| switch (abyte) { |
| /* According to the Intel manual, "repne movs" should never occur, but |
| * in practice it has happened, so allow for it here... */ |
| case 0xA4: sz = 1; /* REPNE MOVS<sz> */ |
| case 0xA5: |
| dis_REP_op ( &dres, X86CondNZ, dis_MOVS, sz, eip_orig, |
| guest_EIP_bbstart+delta, "repne movs" ); |
| break; |
| |
| case 0xA6: sz = 1; /* REPNE CMP<sz> */ |
| case 0xA7: |
| dis_REP_op ( &dres, X86CondNZ, dis_CMPS, sz, eip_orig, |
| guest_EIP_bbstart+delta, "repne cmps" ); |
| break; |
| |
| case 0xAA: sz = 1; /* REPNE STOS<sz> */ |
| case 0xAB: |
| dis_REP_op ( &dres, X86CondNZ, dis_STOS, sz, eip_orig, |
| guest_EIP_bbstart+delta, "repne stos" ); |
| break; |
| |
| case 0xAE: sz = 1; /* REPNE SCAS<sz> */ |
| case 0xAF: |
| dis_REP_op ( &dres, X86CondNZ, dis_SCAS, sz, eip_orig, |
| guest_EIP_bbstart+delta, "repne scas" ); |
| break; |
| |
| default: |
| goto decode_failure; |
| } |
| break; |
| } |
| |
| /* REP/REPE prefix insn (for SCAS and CMPS, 0xF3 means REPE, |
| for the rest, it means REP) */ |
| case 0xF3: { |
| Addr32 eip_orig = guest_EIP_bbstart + delta_start; |
| abyte = getIByte(delta); delta++; |
| |
| if (abyte == 0x66) { sz = 2; abyte = getIByte(delta); delta++; } |
| |
| if (sorb != 0 && abyte != 0x0F) goto decode_failure; |
| |
| switch (abyte) { |
| case 0x0F: |
| switch (getIByte(delta)) { |
| /* On older CPUs, TZCNT behaves the same as BSF. */ |
| case 0xBC: /* REP BSF Gv,Ev */ |
| delta = dis_bs_E_G ( sorb, sz, delta + 1, True ); |
| break; |
| /* On older CPUs, LZCNT behaves the same as BSR. */ |
| case 0xBD: /* REP BSR Gv,Ev */ |
| delta = dis_bs_E_G ( sorb, sz, delta + 1, False ); |
| break; |
| default: |
| goto decode_failure; |
| } |
| break; |
| |
| case 0xA4: sz = 1; /* REP MOVS<sz> */ |
| case 0xA5: |
| dis_REP_op ( &dres, X86CondAlways, dis_MOVS, sz, eip_orig, |
| guest_EIP_bbstart+delta, "rep movs" ); |
| break; |
| |
| case 0xA6: sz = 1; /* REPE CMP<sz> */ |
| case 0xA7: |
| dis_REP_op ( &dres, X86CondZ, dis_CMPS, sz, eip_orig, |
| guest_EIP_bbstart+delta, "repe cmps" ); |
| break; |
| |
| case 0xAA: sz = 1; /* REP STOS<sz> */ |
| case 0xAB: |
| dis_REP_op ( &dres, X86CondAlways, dis_STOS, sz, eip_orig, |
| guest_EIP_bbstart+delta, "rep stos" ); |
| break; |
| |
| case 0xAC: sz = 1; /* REP LODS<sz> */ |
| case 0xAD: |
| dis_REP_op ( &dres, X86CondAlways, dis_LODS, sz, eip_orig, |
| guest_EIP_bbstart+delta, "rep lods" ); |
| break; |
| |
| case 0xAE: sz = 1; /* REPE SCAS<sz> */ |
| case 0xAF: |
| dis_REP_op ( &dres, X86CondZ, dis_SCAS, sz, eip_orig, |
| guest_EIP_bbstart+delta, "repe scas" ); |
| break; |
| |
| case 0x90: /* REP NOP (PAUSE) */ |
| /* a hint to the P4 re spin-wait loop */ |
| DIP("rep nop (P4 pause)\n"); |
| /* "observe" the hint. The Vex client needs to be careful not |
| to cause very long delays as a result, though. */ |
| jmp_lit(&dres, Ijk_Yield, ((Addr32)guest_EIP_bbstart)+delta); |
| vassert(dres.whatNext == Dis_StopHere); |
| break; |
| |
| case 0xC3: /* REP RET -- same as normal ret? */ |
| dis_ret(&dres, 0); |
| DIP("rep ret\n"); |
| break; |
| |
| default: |
| goto decode_failure; |
| } |
| break; |
| } |
| |
| /* ------------------------ XCHG ----------------------- */ |
| |
| /* XCHG reg,mem automatically asserts LOCK# even without a LOCK |
| prefix; hence it must be translated with an IRCAS (at least, the |
| memory variant). */ |
| case 0x86: /* XCHG Gb,Eb */ |
| sz = 1; |
| /* Fall through ... */ |
| case 0x87: /* XCHG Gv,Ev */ |
| modrm = getIByte(delta); |
| ty = szToITy(sz); |
| t1 = newTemp(ty); t2 = newTemp(ty); |
| if (epartIsReg(modrm)) { |
| assign(t1, getIReg(sz, eregOfRM(modrm))); |
| assign(t2, getIReg(sz, gregOfRM(modrm))); |
| putIReg(sz, gregOfRM(modrm), mkexpr(t1)); |
| putIReg(sz, eregOfRM(modrm), mkexpr(t2)); |
| delta++; |
| DIP("xchg%c %s, %s\n", |
| nameISize(sz), nameIReg(sz,gregOfRM(modrm)), |
| nameIReg(sz,eregOfRM(modrm))); |
| } else { |
| *expect_CAS = True; |
| addr = disAMode ( &alen, sorb, delta, dis_buf ); |
| assign( t1, loadLE(ty,mkexpr(addr)) ); |
| assign( t2, getIReg(sz,gregOfRM(modrm)) ); |
| casLE( mkexpr(addr), |
| mkexpr(t1), mkexpr(t2), guest_EIP_curr_instr ); |
| putIReg( sz, gregOfRM(modrm), mkexpr(t1) ); |
| delta += alen; |
| DIP("xchg%c %s, %s\n", nameISize(sz), |
| nameIReg(sz,gregOfRM(modrm)), dis_buf); |
| } |
| break; |
| |
| case 0x90: /* XCHG eAX,eAX */ |
| DIP("nop\n"); |
| break; |
| case 0x91: /* XCHG eAX,eCX */ |
| case 0x92: /* XCHG eAX,eDX */ |
| case 0x93: /* XCHG eAX,eBX */ |
| case 0x94: /* XCHG eAX,eSP */ |
| case 0x95: /* XCHG eAX,eBP */ |
| case 0x96: /* XCHG eAX,eSI */ |
| case 0x97: /* XCHG eAX,eDI */ |
| codegen_xchg_eAX_Reg ( sz, opc - 0x90 ); |
| break; |
| |
| /* ------------------------ XLAT ----------------------- */ |
| |
| case 0xD7: /* XLAT */ |
| if (sz != 4) goto decode_failure; /* sz == 2 is also allowed (0x66) */ |
| putIReg( |
| 1, |
| R_EAX/*AL*/, |
| loadLE(Ity_I8, |
| handleSegOverride( |
| sorb, |
| binop(Iop_Add32, |
| getIReg(4, R_EBX), |
| unop(Iop_8Uto32, getIReg(1, R_EAX/*AL*/)))))); |
| |
| DIP("xlat%c [ebx]\n", nameISize(sz)); |
| break; |
| |
| /* ------------------------ IN / OUT ----------------------- */ |
| |
| case 0xE4: /* IN imm8, AL */ |
| sz = 1; |
| t1 = newTemp(Ity_I32); |
| abyte = getIByte(delta); delta++; |
| assign(t1, mkU32( abyte & 0xFF )); |
| DIP("in%c $%d,%s\n", nameISize(sz), (Int)abyte, nameIReg(sz,R_EAX)); |
| goto do_IN; |
| case 0xE5: /* IN imm8, eAX */ |
| vassert(sz == 2 || sz == 4); |
| t1 = newTemp(Ity_I32); |
| abyte = getIByte(delta); delta++; |
| assign(t1, mkU32( abyte & 0xFF )); |
| DIP("in%c $%d,%s\n", nameISize(sz), (Int)abyte, nameIReg(sz,R_EAX)); |
| goto do_IN; |
| case 0xEC: /* IN %DX, AL */ |
| sz = 1; |
| t1 = newTemp(Ity_I32); |
| assign(t1, unop(Iop_16Uto32, getIReg(2, R_EDX))); |
| DIP("in%c %s,%s\n", nameISize(sz), nameIReg(2,R_EDX), |
| nameIReg(sz,R_EAX)); |
| goto do_IN; |
| case 0xED: /* IN %DX, eAX */ |
| vassert(sz == 2 || sz == 4); |
| t1 = newTemp(Ity_I32); |
| assign(t1, unop(Iop_16Uto32, getIReg(2, R_EDX))); |
| DIP("in%c %s,%s\n", nameISize(sz), nameIReg(2,R_EDX), |
| nameIReg(sz,R_EAX)); |
| goto do_IN; |
| do_IN: { |
| /* At this point, sz indicates the width, and t1 is a 32-bit |
| value giving port number. */ |
| IRDirty* d; |
| vassert(sz == 1 || sz == 2 || sz == 4); |
| ty = szToITy(sz); |
| t2 = newTemp(Ity_I32); |
| d = unsafeIRDirty_1_N( |
| t2, |
| 0/*regparms*/, |
| "x86g_dirtyhelper_IN", |
| &x86g_dirtyhelper_IN, |
| mkIRExprVec_2( mkexpr(t1), mkU32(sz) ) |
| ); |
| /* do the call, dumping the result in t2. */ |
| stmt( IRStmt_Dirty(d) ); |
| putIReg(sz, R_EAX, narrowTo( ty, mkexpr(t2) ) ); |
| break; |
| } |
| |
| case 0xE6: /* OUT AL, imm8 */ |
| sz = 1; |
| t1 = newTemp(Ity_I32); |
| abyte = getIByte(delta); delta++; |
| assign( t1, mkU32( abyte & 0xFF ) ); |
| DIP("out%c %s,$%d\n", nameISize(sz), nameIReg(sz,R_EAX), (Int)abyte); |
| goto do_OUT; |
| case 0xE7: /* OUT eAX, imm8 */ |
| vassert(sz == 2 || sz == 4); |
| t1 = newTemp(Ity_I32); |
| abyte = getIByte(delta); delta++; |
| assign( t1, mkU32( abyte & 0xFF ) ); |
| DIP("out%c %s,$%d\n", nameISize(sz), nameIReg(sz,R_EAX), (Int)abyte); |
| goto do_OUT; |
| case 0xEE: /* OUT AL, %DX */ |
| sz = 1; |
| t1 = newTemp(Ity_I32); |
| assign( t1, unop(Iop_16Uto32, getIReg(2, R_EDX)) ); |
| DIP("out%c %s,%s\n", nameISize(sz), nameIReg(sz,R_EAX), |
| nameIReg(2,R_EDX)); |
| goto do_OUT; |
| case 0xEF: /* OUT eAX, %DX */ |
| vassert(sz == 2 || sz == 4); |
| t1 = newTemp(Ity_I32); |
| assign( t1, unop(Iop_16Uto32, getIReg(2, R_EDX)) ); |
| DIP("out%c %s,%s\n", nameISize(sz), nameIReg(sz,R_EAX), |
| nameIReg(2,R_EDX)); |
| goto do_OUT; |
| do_OUT: { |
| /* At this point, sz indicates the width, and t1 is a 32-bit |
| value giving port number. */ |
| IRDirty* d; |
| vassert(sz == 1 || sz == 2 || sz == 4); |
| ty = szToITy(sz); |
| d = unsafeIRDirty_0_N( |
| 0/*regparms*/, |
| "x86g_dirtyhelper_OUT", |
| &x86g_dirtyhelper_OUT, |
| mkIRExprVec_3( mkexpr(t1), |
| widenUto32( getIReg(sz, R_EAX) ), |
| mkU32(sz) ) |
| ); |
| stmt( IRStmt_Dirty(d) ); |
| break; |
| } |
| |
| /* ------------------------ (Grp1 extensions) ---------- */ |
| |
| case 0x82: /* Grp1 Ib,Eb too. Apparently this is the same as |
| case 0x80, but only in 32-bit mode. */ |
| /* fallthru */ |
| case 0x80: /* Grp1 Ib,Eb */ |
| modrm = getIByte(delta); |
| am_sz = lengthAMode(delta); |
| sz = 1; |
| d_sz = 1; |
| d32 = getUChar(delta + am_sz); |
| delta = dis_Grp1 ( sorb, pfx_lock, delta, modrm, am_sz, d_sz, sz, d32 ); |
| break; |
| |
| case 0x81: /* Grp1 Iv,Ev */ |
| modrm = getIByte(delta); |
| am_sz = lengthAMode(delta); |
| d_sz = sz; |
| d32 = getUDisp(d_sz, delta + am_sz); |
| delta = dis_Grp1 ( sorb, pfx_lock, delta, modrm, am_sz, d_sz, sz, d32 ); |
| break; |
| |
| case 0x83: /* Grp1 Ib,Ev */ |
| modrm = getIByte(delta); |
| am_sz = lengthAMode(delta); |
| d_sz = 1; |
| d32 = getSDisp8(delta + am_sz); |
| delta = dis_Grp1 ( sorb, pfx_lock, delta, modrm, am_sz, d_sz, sz, d32 ); |
| break; |
| |
| /* ------------------------ (Grp2 extensions) ---------- */ |
| |
| case 0xC0: { /* Grp2 Ib,Eb */ |
| Bool decode_OK = True; |
| modrm = getIByte(delta); |
| am_sz = lengthAMode(delta); |
| d_sz = 1; |
| d32 = getUChar(delta + am_sz); |
| sz = 1; |
| delta = dis_Grp2 ( sorb, delta, modrm, am_sz, d_sz, sz, |
| mkU8(d32 & 0xFF), NULL, &decode_OK ); |
| if (!decode_OK) |
| goto decode_failure; |
| break; |
| } |
| case 0xC1: { /* Grp2 Ib,Ev */ |
| Bool decode_OK = True; |
| modrm = getIByte(delta); |
| am_sz = lengthAMode(delta); |
| d_sz = 1; |
| d32 = getUChar(delta + am_sz); |
| delta = dis_Grp2 ( sorb, delta, modrm, am_sz, d_sz, sz, |
| mkU8(d32 & 0xFF), NULL, &decode_OK ); |
| if (!decode_OK) |
| goto decode_failure; |
| break; |
| } |
| case 0xD0: { /* Grp2 1,Eb */ |
| Bool decode_OK = True; |
| modrm = getIByte(delta); |
| am_sz = lengthAMode(delta); |
| d_sz = 0; |
| d32 = 1; |
| sz = 1; |
| delta = dis_Grp2 ( sorb, delta, modrm, am_sz, d_sz, sz, |
| mkU8(d32), NULL, &decode_OK ); |
| if (!decode_OK) |
| goto decode_failure; |
| break; |
| } |
| case 0xD1: { /* Grp2 1,Ev */ |
| Bool decode_OK = True; |
| modrm = getUChar(delta); |
| am_sz = lengthAMode(delta); |
| d_sz = 0; |
| d32 = 1; |
| delta = dis_Grp2 ( sorb, delta, modrm, am_sz, d_sz, sz, |
| mkU8(d32), NULL, &decode_OK ); |
| if (!decode_OK) |
| goto decode_failure; |
| break; |
| } |
| case 0xD2: { /* Grp2 CL,Eb */ |
| Bool decode_OK = True; |
| modrm = getUChar(delta); |
| am_sz = lengthAMode(delta); |
| d_sz = 0; |
| sz = 1; |
| delta = dis_Grp2 ( sorb, delta, modrm, am_sz, d_sz, sz, |
| getIReg(1,R_ECX), "%cl", &decode_OK ); |
| if (!decode_OK) |
| goto decode_failure; |
| break; |
| } |
| case 0xD3: { /* Grp2 CL,Ev */ |
| Bool decode_OK = True; |
| modrm = getIByte(delta); |
| am_sz = lengthAMode(delta); |
| d_sz = 0; |
| delta = dis_Grp2 ( sorb, delta, modrm, am_sz, d_sz, sz, |
| getIReg(1,R_ECX), "%cl", &decode_OK ); |
| if (!decode_OK) |
| goto decode_failure; |
| break; |
| } |
| |
| /* ------------------------ (Grp3 extensions) ---------- */ |
| |
| case 0xF6: { /* Grp3 Eb */ |
| Bool decode_OK = True; |
| delta = dis_Grp3 ( sorb, pfx_lock, 1, delta, &decode_OK ); |
| if (!decode_OK) |
| goto decode_failure; |
| break; |
| } |
| case 0xF7: { /* Grp3 Ev */ |
| Bool decode_OK = True; |
| delta = dis_Grp3 ( sorb, pfx_lock, sz, delta, &decode_OK ); |
| if (!decode_OK) |
| goto decode_failure; |
| break; |
| } |
| |
| /* ------------------------ (Grp4 extensions) ---------- */ |
| |
| case 0xFE: { /* Grp4 Eb */ |
| Bool decode_OK = True; |
| delta = dis_Grp4 ( sorb, pfx_lock, delta, &decode_OK ); |
| if (!decode_OK) |
| goto decode_failure; |
| break; |
| } |
| |
| /* ------------------------ (Grp5 extensions) ---------- */ |
| |
| case 0xFF: { /* Grp5 Ev */ |
| Bool decode_OK = True; |
| delta = dis_Grp5 ( sorb, pfx_lock, sz, delta, &dres, &decode_OK ); |
| if (!decode_OK) |
| goto decode_failure; |
| break; |
| } |
| |
| /* ------------------------ Escapes to 2-byte opcodes -- */ |
| |
| case 0x0F: { |
| opc = getIByte(delta); delta++; |
| switch (opc) { |
| |
| /* =-=-=-=-=-=-=-=-=- Grp8 =-=-=-=-=-=-=-=-=-=-=-= */ |
| |
| case 0xBA: { /* Grp8 Ib,Ev */ |
| Bool decode_OK = False; |
| modrm = getUChar(delta); |
| am_sz = lengthAMode(delta); |
| d32 = getSDisp8(delta + am_sz); |
| delta = dis_Grp8_Imm ( sorb, pfx_lock, delta, modrm, |
| am_sz, sz, d32, &decode_OK ); |
| if (!decode_OK) |
| goto decode_failure; |
| break; |
| } |
| |
| /* =-=-=-=-=-=-=-=-=- BSF/BSR -=-=-=-=-=-=-=-=-=-= */ |
| |
| case 0xBC: /* BSF Gv,Ev */ |
| delta = dis_bs_E_G ( sorb, sz, delta, True ); |
| break; |
| case 0xBD: /* BSR Gv,Ev */ |
| delta = dis_bs_E_G ( sorb, sz, delta, False ); |
| break; |
| |
| /* =-=-=-=-=-=-=-=-=- BSWAP -=-=-=-=-=-=-=-=-=-=-= */ |
| |
| case 0xC8: /* BSWAP %eax */ |
| case 0xC9: |
| case 0xCA: |
| case 0xCB: |
| case 0xCC: |
| case 0xCD: |
| case 0xCE: |
| case 0xCF: /* BSWAP %edi */ |
| /* AFAICS from the Intel docs, this only exists at size 4. */ |
| if (sz != 4) goto decode_failure; |
| |
| t1 = newTemp(Ity_I32); |
| assign( t1, getIReg(4, opc-0xC8) ); |
| t2 = math_BSWAP(t1, Ity_I32); |
| |
| putIReg(4, opc-0xC8, mkexpr(t2)); |
| DIP("bswapl %s\n", nameIReg(4, opc-0xC8)); |
| break; |
| |
| /* =-=-=-=-=-=-=-=-=- BT/BTS/BTR/BTC =-=-=-=-=-=-= */ |
| |
| case 0xA3: /* BT Gv,Ev */ |
| delta = dis_bt_G_E ( vbi, sorb, pfx_lock, sz, delta, BtOpNone ); |
| break; |
| case 0xB3: /* BTR Gv,Ev */ |
| delta = dis_bt_G_E ( vbi, sorb, pfx_lock, sz, delta, BtOpReset ); |
| break; |
| case 0xAB: /* BTS Gv,Ev */ |
| delta = dis_bt_G_E ( vbi, sorb, pfx_lock, sz, delta, BtOpSet ); |
| break; |
| case 0xBB: /* BTC Gv,Ev */ |
| delta = dis_bt_G_E ( vbi, sorb, pfx_lock, sz, delta, BtOpComp ); |
| break; |
| |
| /* =-=-=-=-=-=-=-=-=- CMOV =-=-=-=-=-=-=-=-=-=-=-= */ |
| |
| case 0x40: |
| case 0x41: |
| case 0x42: /* CMOVBb/CMOVNAEb (cmov below) */ |
| case 0x43: /* CMOVNBb/CMOVAEb (cmov not below) */ |
| case 0x44: /* CMOVZb/CMOVEb (cmov zero) */ |
| case 0x45: /* CMOVNZb/CMOVNEb (cmov not zero) */ |
| case 0x46: /* CMOVBEb/CMOVNAb (cmov below or equal) */ |
| case 0x47: /* CMOVNBEb/CMOVAb (cmov not below or equal) */ |
| case 0x48: /* CMOVSb (cmov negative) */ |
| case 0x49: /* CMOVSb (cmov not negative) */ |
| case 0x4A: /* CMOVP (cmov parity even) */ |
| case 0x4B: /* CMOVNP (cmov parity odd) */ |
| case 0x4C: /* CMOVLb/CMOVNGEb (cmov less) */ |
| case 0x4D: /* CMOVGEb/CMOVNLb (cmov greater or equal) */ |
| case 0x4E: /* CMOVLEb/CMOVNGb (cmov less or equal) */ |
| case 0x4F: /* CMOVGb/CMOVNLEb (cmov greater) */ |
| delta = dis_cmov_E_G(sorb, sz, (X86Condcode)(opc - 0x40), delta); |
| break; |
| |
| /* =-=-=-=-=-=-=-=-=- CMPXCHG -=-=-=-=-=-=-=-=-=-= */ |
| |
| case 0xB0: /* CMPXCHG Gb,Eb */ |
| delta = dis_cmpxchg_G_E ( sorb, pfx_lock, 1, delta ); |
| break; |
| case 0xB1: /* CMPXCHG Gv,Ev */ |
| delta = dis_cmpxchg_G_E ( sorb, pfx_lock, sz, delta ); |
| break; |
| |
| case 0xC7: { /* CMPXCHG8B Gv (0F C7 /1) */ |
| IRTemp expdHi = newTemp(Ity_I32); |
| IRTemp expdLo = newTemp(Ity_I32); |
| IRTemp dataHi = newTemp(Ity_I32); |
| IRTemp dataLo = newTemp(Ity_I32); |
| IRTemp oldHi = newTemp(Ity_I32); |
| IRTemp oldLo = newTemp(Ity_I32); |
| IRTemp flags_old = newTemp(Ity_I32); |
| IRTemp flags_new = newTemp(Ity_I32); |
| IRTemp success = newTemp(Ity_I1); |
| |
| /* Translate this using a DCAS, even if there is no LOCK |
| prefix. Life is too short to bother with generating two |
| different translations for the with/without-LOCK-prefix |
| cases. */ |
| *expect_CAS = True; |
| |
| /* Decode, and generate address. */ |
| if (sz != 4) goto decode_failure; |
| modrm = getIByte(delta); |
| if (epartIsReg(modrm)) goto decode_failure; |
| if (gregOfRM(modrm) != 1) goto decode_failure; |
| addr = disAMode ( &alen, sorb, delta, dis_buf ); |
| delta += alen; |
| |
| /* Get the expected and new values. */ |
| assign( expdHi, getIReg(4,R_EDX) ); |
| assign( expdLo, getIReg(4,R_EAX) ); |
| assign( dataHi, getIReg(4,R_ECX) ); |
| assign( dataLo, getIReg(4,R_EBX) ); |
| |
| /* Do the DCAS */ |
| stmt( IRStmt_CAS( |
| mkIRCAS( oldHi, oldLo, |
| Iend_LE, mkexpr(addr), |
| mkexpr(expdHi), mkexpr(expdLo), |
| mkexpr(dataHi), mkexpr(dataLo) |
| ))); |
| |
| /* success when oldHi:oldLo == expdHi:expdLo */ |
| assign( success, |
| binop(Iop_CasCmpEQ32, |
| binop(Iop_Or32, |
| binop(Iop_Xor32, mkexpr(oldHi), mkexpr(expdHi)), |
| binop(Iop_Xor32, mkexpr(oldLo), mkexpr(expdLo)) |
| ), |
| mkU32(0) |
| )); |
| |
| /* If the DCAS is successful, that is to say oldHi:oldLo == |
| expdHi:expdLo, then put expdHi:expdLo back in EDX:EAX, |
| which is where they came from originally. Both the actual |
| contents of these two regs, and any shadow values, are |
| unchanged. If the DCAS fails then we're putting into |
| EDX:EAX the value seen in memory. */ |
| putIReg(4, R_EDX, |
| IRExpr_ITE( mkexpr(success), |
| mkexpr(expdHi), mkexpr(oldHi) |
| )); |
| putIReg(4, R_EAX, |
| IRExpr_ITE( mkexpr(success), |
| mkexpr(expdLo), mkexpr(oldLo) |
| )); |
| |
| /* Copy the success bit into the Z flag and leave the others |
| unchanged */ |
| assign( flags_old, widenUto32(mk_x86g_calculate_eflags_all())); |
| assign( |
| flags_new, |
| binop(Iop_Or32, |
| binop(Iop_And32, mkexpr(flags_old), |
| mkU32(~X86G_CC_MASK_Z)), |
| binop(Iop_Shl32, |
| binop(Iop_And32, |
| unop(Iop_1Uto32, mkexpr(success)), mkU32(1)), |
| mkU8(X86G_CC_SHIFT_Z)) )); |
| |
| stmt( IRStmt_Put( OFFB_CC_OP, mkU32(X86G_CC_OP_COPY) )); |
| stmt( IRStmt_Put( OFFB_CC_DEP1, mkexpr(flags_new) )); |
| stmt( IRStmt_Put( OFFB_CC_DEP2, mkU32(0) )); |
| /* Set NDEP even though it isn't used. This makes |
| redundant-PUT elimination of previous stores to this field |
| work better. */ |
| stmt( IRStmt_Put( OFFB_CC_NDEP, mkU32(0) )); |
| |
| /* Sheesh. Aren't you glad it was me and not you that had to |
| write and validate all this grunge? */ |
| |
| DIP("cmpxchg8b %s\n", dis_buf); |
| break; |
| } |
| |
| /* =-=-=-=-=-=-=-=-=- CPUID -=-=-=-=-=-=-=-=-=-=-= */ |
| |
| case 0xA2: { /* CPUID */ |
| /* Uses dirty helper: |
| void dirtyhelper_CPUID_sse[012] ( VexGuestX86State* ) |
| declared to mod eax, wr ebx, ecx, edx |
| */ |
| IRDirty* d = NULL; |
| void* fAddr = NULL; |
| const HChar* fName = NULL; |
| if (archinfo->hwcaps & VEX_HWCAPS_X86_SSE2) { |
| fName = "x86g_dirtyhelper_CPUID_sse2"; |
| fAddr = &x86g_dirtyhelper_CPUID_sse2; |
| } |
| else |
| if (archinfo->hwcaps & VEX_HWCAPS_X86_SSE1) { |
| fName = "x86g_dirtyhelper_CPUID_sse1"; |
| fAddr = &x86g_dirtyhelper_CPUID_sse1; |
| } |
| else |
| if (archinfo->hwcaps == 0/*no SSE*/) { |
| fName = "x86g_dirtyhelper_CPUID_sse0"; |
| fAddr = &x86g_dirtyhelper_CPUID_sse0; |
| } else |
| vpanic("disInstr(x86)(cpuid)"); |
| |
| vassert(fName); vassert(fAddr); |
| d = unsafeIRDirty_0_N ( 0/*regparms*/, |
| fName, fAddr, mkIRExprVec_0() ); |
| /* declare guest state effects */ |
| d->needsBBP = True; |
| d->nFxState = 4; |
| vex_bzero(&d->fxState, sizeof(d->fxState)); |
| d->fxState[0].fx = Ifx_Modify; |
| d->fxState[0].offset = OFFB_EAX; |
| d->fxState[0].size = 4; |
| d->fxState[1].fx = Ifx_Write; |
| d->fxState[1].offset = OFFB_EBX; |
| d->fxState[1].size = 4; |
| d->fxState[2].fx = Ifx_Modify; |
| d->fxState[2].offset = OFFB_ECX; |
| d->fxState[2].size = 4; |
| d->fxState[3].fx = Ifx_Write; |
| d->fxState[3].offset = OFFB_EDX; |
| d->fxState[3].size = 4; |
| /* execute the dirty call, side-effecting guest state */ |
| stmt( IRStmt_Dirty(d) ); |
| /* CPUID is a serialising insn. So, just in case someone is |
| using it as a memory fence ... */ |
| stmt( IRStmt_MBE(Imbe_Fence) ); |
| DIP("cpuid\n"); |
| break; |
| } |
| |
| //-- if (!VG_(cpu_has_feature)(VG_X86_FEAT_CPUID)) |
| //-- goto decode_failure; |
| //-- |
| //-- t1 = newTemp(cb); |
| //-- t2 = newTemp(cb); |
| //-- t3 = newTemp(cb); |
| //-- t4 = newTemp(cb); |
| //-- uInstr0(cb, CALLM_S, 0); |
| //-- |
| //-- uInstr2(cb, GET, 4, ArchReg, R_EAX, TempReg, t1); |
| //-- uInstr1(cb, PUSH, 4, TempReg, t1); |
| //-- |
| //-- uInstr2(cb, MOV, 4, Literal, 0, TempReg, t2); |
| //-- uLiteral(cb, 0); |
| //-- uInstr1(cb, PUSH, 4, TempReg, t2); |
| //-- |
| //-- uInstr2(cb, MOV, 4, Literal, 0, TempReg, t3); |
| //-- uLiteral(cb, 0); |
| //-- uInstr1(cb, PUSH, 4, TempReg, t3); |
| //-- |
| //-- uInstr2(cb, MOV, 4, Literal, 0, TempReg, t4); |
| //-- uLiteral(cb, 0); |
| //-- uInstr1(cb, PUSH, 4, TempReg, t4); |
| //-- |
| //-- uInstr1(cb, CALLM, 0, Lit16, VGOFF_(helper_CPUID)); |
| //-- uFlagsRWU(cb, FlagsEmpty, FlagsEmpty, FlagsEmpty); |
| //-- |
| //-- uInstr1(cb, POP, 4, TempReg, t4); |
| //-- uInstr2(cb, PUT, 4, TempReg, t4, ArchReg, R_EDX); |
| //-- |
| //-- uInstr1(cb, POP, 4, TempReg, t3); |
| //-- uInstr2(cb, PUT, 4, TempReg, t3, ArchReg, R_ECX); |
| //-- |
| //-- uInstr1(cb, POP, 4, TempReg, t2); |
| //-- uInstr2(cb, PUT, 4, TempReg, t2, ArchReg, R_EBX); |
| //-- |
| //-- uInstr1(cb, POP, 4, TempReg, t1); |
| //-- uInstr2(cb, PUT, 4, TempReg, t1, ArchReg, R_EAX); |
| //-- |
| //-- uInstr0(cb, CALLM_E, 0); |
| //-- DIP("cpuid\n"); |
| //-- break; |
| //-- |
| /* =-=-=-=-=-=-=-=-=- MOVZX, MOVSX =-=-=-=-=-=-=-= */ |
| |
| case 0xB6: /* MOVZXb Eb,Gv */ |
| if (sz != 2 && sz != 4) |
| goto decode_failure; |
| delta = dis_movx_E_G ( sorb, delta, 1, sz, False ); |
| break; |
| |
| case 0xB7: /* MOVZXw Ew,Gv */ |
| if (sz != 4) |
| goto decode_failure; |
| delta = dis_movx_E_G ( sorb, delta, 2, 4, False ); |
| break; |
| |
| case 0xBE: /* MOVSXb Eb,Gv */ |
| if (sz != 2 && sz != 4) |
| goto decode_failure; |
| delta = dis_movx_E_G ( sorb, delta, 1, sz, True ); |
| break; |
| |
| case 0xBF: /* MOVSXw Ew,Gv */ |
| if (sz != 4 && /* accept movsww, sigh, see #250799 */sz != 2) |
| goto decode_failure; |
| delta = dis_movx_E_G ( sorb, delta, 2, sz, True ); |
| break; |
| |
| //-- /* =-=-=-=-=-=-=-=-=-=-= MOVNTI -=-=-=-=-=-=-=-=-= */ |
| //-- |
| //-- case 0xC3: /* MOVNTI Gv,Ev */ |
| //-- vg_assert(sz == 4); |
| //-- modrm = getUChar(eip); |
| //-- vg_assert(!epartIsReg(modrm)); |
| //-- t1 = newTemp(cb); |
| //-- uInstr2(cb, GET, 4, ArchReg, gregOfRM(modrm), TempReg, t1); |
| //-- pair = disAMode ( cb, sorb, eip, dis_buf ); |
| //-- t2 = LOW24(pair); |
| //-- eip += HI8(pair); |
| //-- uInstr2(cb, STORE, 4, TempReg, t1, TempReg, t2); |
| //-- DIP("movnti %s,%s\n", nameIReg(4,gregOfRM(modrm)), dis_buf); |
| //-- break; |
| |
| /* =-=-=-=-=-=-=-=-=- MUL/IMUL =-=-=-=-=-=-=-=-=-= */ |
| |
| case 0xAF: /* IMUL Ev, Gv */ |
| delta = dis_mul_E_G ( sorb, sz, delta ); |
| break; |
| |
| /* =-=-=-=-=-=-=-=-=- NOPs =-=-=-=-=-=-=-=-=-=-=-= */ |
| |
| case 0x1F: |
| modrm = getUChar(delta); |
| if (epartIsReg(modrm)) goto decode_failure; |
| addr = disAMode ( &alen, sorb, delta, dis_buf ); |
| delta += alen; |
| DIP("nop%c %s\n", nameISize(sz), dis_buf); |
| break; |
| |
| /* =-=-=-=-=-=-=-=-=- Jcond d32 -=-=-=-=-=-=-=-=-= */ |
| case 0x80: |
| case 0x81: |
| case 0x82: /* JBb/JNAEb (jump below) */ |
| case 0x83: /* JNBb/JAEb (jump not below) */ |
| case 0x84: /* JZb/JEb (jump zero) */ |
| case 0x85: /* JNZb/JNEb (jump not zero) */ |
| case 0x86: /* JBEb/JNAb (jump below or equal) */ |
| case 0x87: /* JNBEb/JAb (jump not below or equal) */ |
| case 0x88: /* JSb (jump negative) */ |
| case 0x89: /* JSb (jump not negative) */ |
| case 0x8A: /* JP (jump parity even) */ |
| case 0x8B: /* JNP/JPO (jump parity odd) */ |
| case 0x8C: /* JLb/JNGEb (jump less) */ |
| case 0x8D: /* JGEb/JNLb (jump greater or equal) */ |
| case 0x8E: /* JLEb/JNGb (jump less or equal) */ |
| case 0x8F: /* JGb/JNLEb (jump greater) */ |
| { Int jmpDelta; |
| const HChar* comment = ""; |
| jmpDelta = (Int)getUDisp32(delta); |
| d32 = (((Addr32)guest_EIP_bbstart)+delta+4) + jmpDelta; |
| delta += 4; |
| if (resteerCisOk |
| && vex_control.guest_chase_cond |
| && (Addr32)d32 != (Addr32)guest_EIP_bbstart |
| && jmpDelta < 0 |
| && resteerOkFn( callback_opaque, (Addr64)(Addr32)d32) ) { |
| /* Speculation: assume this backward branch is taken. So |
| we need to emit a side-exit to the insn following this |
| one, on the negation of the condition, and continue at |
| the branch target address (d32). If we wind up back at |
| the first instruction of the trace, just stop; it's |
| better to let the IR loop unroller handle that case.*/ |
| stmt( IRStmt_Exit( |
| mk_x86g_calculate_condition((X86Condcode) |
| (1 ^ (opc - 0x80))), |
| Ijk_Boring, |
| IRConst_U32(guest_EIP_bbstart+delta), |
| OFFB_EIP ) ); |
| dres.whatNext = Dis_ResteerC; |
| dres.continueAt = (Addr64)(Addr32)d32; |
| comment = "(assumed taken)"; |
| } |
| else |
| if (resteerCisOk |
| && vex_control.guest_chase_cond |
| && (Addr32)d32 != (Addr32)guest_EIP_bbstart |
| && jmpDelta >= 0 |
| && resteerOkFn( callback_opaque, |
| (Addr64)(Addr32)(guest_EIP_bbstart+delta)) ) { |
| /* Speculation: assume this forward branch is not taken. |
| So we need to emit a side-exit to d32 (the dest) and |
| continue disassembling at the insn immediately |
| following this one. */ |
| stmt( IRStmt_Exit( |
| mk_x86g_calculate_condition((X86Condcode)(opc - 0x80)), |
| Ijk_Boring, |
| IRConst_U32(d32), |
| OFFB_EIP ) ); |
| dres.whatNext = Dis_ResteerC; |
| dres.continueAt = (Addr64)(Addr32)(guest_EIP_bbstart+delta); |
| comment = "(assumed not taken)"; |
| } |
| else { |
| /* Conservative default translation - end the block at |
| this point. */ |
| jcc_01( &dres, (X86Condcode)(opc - 0x80), |
| (Addr32)(guest_EIP_bbstart+delta), d32); |
| vassert(dres.whatNext == Dis_StopHere); |
| } |
| DIP("j%s-32 0x%x %s\n", name_X86Condcode(opc - 0x80), d32, comment); |
| break; |
| } |
| |
| /* =-=-=-=-=-=-=-=-=- RDTSC -=-=-=-=-=-=-=-=-=-=-= */ |
| case 0x31: { /* RDTSC */ |
| IRTemp val = newTemp(Ity_I64); |
| IRExpr** args = mkIRExprVec_0(); |
| IRDirty* d = unsafeIRDirty_1_N ( |
| val, |
| 0/*regparms*/, |
| "x86g_dirtyhelper_RDTSC", |
| &x86g_dirtyhelper_RDTSC, |
| args |
| ); |
| /* execute the dirty call, dumping the result in val. */ |
| stmt( IRStmt_Dirty(d) ); |
| putIReg(4, R_EDX, unop(Iop_64HIto32, mkexpr(val))); |
| putIReg(4, R_EAX, unop(Iop_64to32, mkexpr(val))); |
| DIP("rdtsc\n"); |
| break; |
| } |
| |
| /* =-=-=-=-=-=-=-=-=- PUSH/POP Sreg =-=-=-=-=-=-=-=-=-= */ |
| |
| case 0xA1: /* POP %FS */ |
| dis_pop_segreg( R_FS, sz ); break; |
| case 0xA9: /* POP %GS */ |
| dis_pop_segreg( R_GS, sz ); break; |
| |
| case 0xA0: /* PUSH %FS */ |
| dis_push_segreg( R_FS, sz ); break; |
| case 0xA8: /* PUSH %GS */ |
| dis_push_segreg( R_GS, sz ); break; |
| |
| /* =-=-=-=-=-=-=-=-=- SETcc Eb =-=-=-=-=-=-=-=-=-= */ |
| case 0x90: |
| case 0x91: |
| case 0x92: /* set-Bb/set-NAEb (jump below) */ |
| case 0x93: /* set-NBb/set-AEb (jump not below) */ |
| case 0x94: /* set-Zb/set-Eb (jump zero) */ |
| case 0x95: /* set-NZb/set-NEb (jump not zero) */ |
| case 0x96: /* set-BEb/set-NAb (jump below or equal) */ |
| case 0x97: /* set-NBEb/set-Ab (jump not below or equal) */ |
| case 0x98: /* set-Sb (jump negative) */ |
| case 0x99: /* set-Sb (jump not negative) */ |
| case 0x9A: /* set-P (jump parity even) */ |
| case 0x9B: /* set-NP (jump parity odd) */ |
| case 0x9C: /* set-Lb/set-NGEb (jump less) */ |
| case 0x9D: /* set-GEb/set-NLb (jump greater or equal) */ |
| case 0x9E: /* set-LEb/set-NGb (jump less or equal) */ |
| case 0x9F: /* set-Gb/set-NLEb (jump greater) */ |
| t1 = newTemp(Ity_I8); |
| assign( t1, unop(Iop_1Uto8,mk_x86g_calculate_condition(opc-0x90)) ); |
| modrm = getIByte(delta); |
| if (epartIsReg(modrm)) { |
| delta++; |
| putIReg(1, eregOfRM(modrm), mkexpr(t1)); |
| DIP("set%s %s\n", name_X86Condcode(opc-0x90), |
| nameIReg(1,eregOfRM(modrm))); |
| } else { |
| addr = disAMode ( &alen, sorb, delta, dis_buf ); |
| delta += alen; |
| storeLE( mkexpr(addr), mkexpr(t1) ); |
| DIP("set%s %s\n", name_X86Condcode(opc-0x90), dis_buf); |
| } |
| break; |
| |
| /* =-=-=-=-=-=-=-=-=- SHLD/SHRD -=-=-=-=-=-=-=-=-= */ |
| |
| case 0xA4: /* SHLDv imm8,Gv,Ev */ |
| modrm = getIByte(delta); |
| d32 = delta + lengthAMode(delta); |
| vex_sprintf(dis_buf, "$%d", getIByte(d32)); |
| delta = dis_SHLRD_Gv_Ev ( |
| sorb, delta, modrm, sz, |
| mkU8(getIByte(d32)), True, /* literal */ |
| dis_buf, True ); |
| break; |
| case 0xA5: /* SHLDv %cl,Gv,Ev */ |
| modrm = getIByte(delta); |
| delta = dis_SHLRD_Gv_Ev ( |
| sorb, delta, modrm, sz, |
| getIReg(1,R_ECX), False, /* not literal */ |
| "%cl", True ); |
| break; |
| |
| case 0xAC: /* SHRDv imm8,Gv,Ev */ |
| modrm = getIByte(delta); |
| d32 = delta + lengthAMode(delta); |
| vex_sprintf(dis_buf, "$%d", getIByte(d32)); |
| delta = dis_SHLRD_Gv_Ev ( |
| sorb, delta, modrm, sz, |
| mkU8(getIByte(d32)), True, /* literal */ |
| dis_buf, False ); |
| break; |
| case 0xAD: /* SHRDv %cl,Gv,Ev */ |
| modrm = getIByte(delta); |
| delta = dis_SHLRD_Gv_Ev ( |
| sorb, delta, modrm, sz, |
| getIReg(1,R_ECX), False, /* not literal */ |
| "%cl", False ); |
| break; |
| |
| /* =-=-=-=-=-=-=-=-=- SYSENTER -=-=-=-=-=-=-=-=-=-= */ |
| |
| case 0x34: |
| /* Simple implementation needing a long explaination. |
| |
| sysenter is a kind of syscall entry. The key thing here |
| is that the return address is not known -- that is |
| something that is beyond Vex's knowledge. So this IR |
| forces a return to the scheduler, which can do what it |
| likes to simulate the systenter, but it MUST set this |
| thread's guest_EIP field with the continuation address |
| before resuming execution. If that doesn't happen, the |
| thread will jump to address zero, which is probably |
| fatal. |
| */ |
| |
| /* Note where we are, so we can back up the guest to this |
| point if the syscall needs to be restarted. */ |
| stmt( IRStmt_Put( OFFB_IP_AT_SYSCALL, |
| mkU32(guest_EIP_curr_instr) ) ); |
| jmp_lit(&dres, Ijk_Sys_sysenter, 0/*bogus next EIP value*/); |
| vassert(dres.whatNext == Dis_StopHere); |
| DIP("sysenter"); |
| break; |
| |
| /* =-=-=-=-=-=-=-=-=- XADD -=-=-=-=-=-=-=-=-=-= */ |
| |
| case 0xC0: { /* XADD Gb,Eb */ |
| Bool decodeOK; |
| delta = dis_xadd_G_E ( sorb, pfx_lock, 1, delta, &decodeOK ); |
| if (!decodeOK) goto decode_failure; |
| break; |
| } |
| case 0xC1: { /* XADD Gv,Ev */ |
| Bool decodeOK; |
| delta = dis_xadd_G_E ( sorb, pfx_lock, sz, delta, &decodeOK ); |
| if (!decodeOK) goto decode_failure; |
| break; |
| } |
| |
| /* =-=-=-=-=-=-=-=-=- MMXery =-=-=-=-=-=-=-=-=-=-= */ |
| |
| case 0x71: |
| case 0x72: |
| case 0x73: /* PSLLgg/PSRAgg/PSRLgg mmxreg by imm8 */ |
| |
| case 0x6E: /* MOVD (src)ireg-or-mem, (dst)mmxreg */ |
| case 0x7E: /* MOVD (src)mmxreg, (dst)ireg-or-mem */ |
| case 0x7F: /* MOVQ (src)mmxreg, (dst)mmxreg-or-mem */ |
| case 0x6F: /* MOVQ (src)mmxreg-or-mem, (dst)mmxreg */ |
| |
| case 0xFC: |
| case 0xFD: |
| case 0xFE: /* PADDgg (src)mmxreg-or-mem, (dst)mmxreg */ |
| |
| case 0xEC: |
| case 0xED: /* PADDSgg (src)mmxreg-or-mem, (dst)mmxreg */ |
| |
| case 0xDC: |
| case 0xDD: /* PADDUSgg (src)mmxreg-or-mem, (dst)mmxreg */ |
| |
| case 0xF8: |
| case 0xF9: |
| case 0xFA: /* PSUBgg (src)mmxreg-or-mem, (dst)mmxreg */ |
| |
| case 0xE8: |
| case 0xE9: /* PSUBSgg (src)mmxreg-or-mem, (dst)mmxreg */ |
| |
| case 0xD8: |
| case 0xD9: /* PSUBUSgg (src)mmxreg-or-mem, (dst)mmxreg */ |
| |
| case 0xE5: /* PMULHW (src)mmxreg-or-mem, (dst)mmxreg */ |
| case 0xD5: /* PMULLW (src)mmxreg-or-mem, (dst)mmxreg */ |
| |
| case 0xF5: /* PMADDWD (src)mmxreg-or-mem, (dst)mmxreg */ |
| |
| case 0x74: |
| case 0x75: |
| case 0x76: /* PCMPEQgg (src)mmxreg-or-mem, (dst)mmxreg */ |
| |
| case 0x64: |
| case 0x65: |
| case 0x66: /* PCMPGTgg (src)mmxreg-or-mem, (dst)mmxreg */ |
| |
| case 0x6B: /* PACKSSDW (src)mmxreg-or-mem, (dst)mmxreg */ |
| case 0x63: /* PACKSSWB (src)mmxreg-or-mem, (dst)mmxreg */ |
| case 0x67: /* PACKUSWB (src)mmxreg-or-mem, (dst)mmxreg */ |
| |
| case 0x68: |
| case 0x69: |
| case 0x6A: /* PUNPCKHgg (src)mmxreg-or-mem, (dst)mmxreg */ |
| |
| case 0x60: |
| case 0x61: |
| case 0x62: /* PUNPCKLgg (src)mmxreg-or-mem, (dst)mmxreg */ |
| |
| case 0xDB: /* PAND (src)mmxreg-or-mem, (dst)mmxreg */ |
| case 0xDF: /* PANDN (src)mmxreg-or-mem, (dst)mmxreg */ |
| case 0xEB: /* POR (src)mmxreg-or-mem, (dst)mmxreg */ |
| case 0xEF: /* PXOR (src)mmxreg-or-mem, (dst)mmxreg */ |
| |
| case 0xF1: /* PSLLgg (src)mmxreg-or-mem, (dst)mmxreg */ |
| case 0xF2: |
| case 0xF3: |
| |
| case 0xD1: /* PSRLgg (src)mmxreg-or-mem, (dst)mmxreg */ |
| case 0xD2: |
| case 0xD3: |
| |
| case 0xE1: /* PSRAgg (src)mmxreg-or-mem, (dst)mmxreg */ |
| case 0xE2: |
| { |
| Int delta0 = delta-1; |
| Bool decode_OK = False; |
| |
| /* If sz==2 this is SSE, and we assume sse idec has |
| already spotted those cases by now. */ |
| if (sz != 4) |
| goto decode_failure; |
| |
| delta = dis_MMX ( &decode_OK, sorb, sz, delta-1 ); |
| if (!decode_OK) { |
| delta = delta0; |
| goto decode_failure; |
| } |
| break; |
| } |
| |
| case 0x0E: /* FEMMS */ |
| case 0x77: /* EMMS */ |
| if (sz != 4) |
| goto decode_failure; |
| do_EMMS_preamble(); |
| DIP("{f}emms\n"); |
| break; |
| |
| /* =-=-=-=-=-=-=-=-=- SGDT and SIDT =-=-=-=-=-=-=-=-=-=-= */ |
| case 0x01: /* 0F 01 /0 -- SGDT */ |
| /* 0F 01 /1 -- SIDT */ |
| { |
| /* This is really revolting, but ... since each processor |
| (core) only has one IDT and one GDT, just let the guest |
| see it (pass-through semantics). I can't see any way to |
| construct a faked-up value, so don't bother to try. */ |
| modrm = getUChar(delta); |
| addr = disAMode ( &alen, sorb, delta, dis_buf ); |
| delta += alen; |
| if (epartIsReg(modrm)) goto decode_failure; |
| if (gregOfRM(modrm) != 0 && gregOfRM(modrm) != 1) |
| goto decode_failure; |
| switch (gregOfRM(modrm)) { |
| case 0: DIP("sgdt %s\n", dis_buf); break; |
| case 1: DIP("sidt %s\n", dis_buf); break; |
| default: vassert(0); /*NOTREACHED*/ |
| } |
| |
| IRDirty* d = unsafeIRDirty_0_N ( |
| 0/*regparms*/, |
| "x86g_dirtyhelper_SxDT", |
| &x86g_dirtyhelper_SxDT, |
| mkIRExprVec_2( mkexpr(addr), |
| mkU32(gregOfRM(modrm)) ) |
| ); |
| /* declare we're writing memory */ |
| d->mFx = Ifx_Write; |
| d->mAddr = mkexpr(addr); |
| d->mSize = 6; |
| stmt( IRStmt_Dirty(d) ); |
| break; |
| } |
| |
| /* =-=-=-=-=-=-=-=-=- unimp2 =-=-=-=-=-=-=-=-=-=-= */ |
| |
| default: |
| goto decode_failure; |
| } /* switch (opc) for the 2-byte opcodes */ |
| goto decode_success; |
| } /* case 0x0F: of primary opcode */ |
| |
| /* ------------------------ ??? ------------------------ */ |
| |
| default: |
| decode_failure: |
| /* All decode failures end up here. */ |
| if (sigill_diag) { |
| vex_printf("vex x86->IR: unhandled instruction bytes: " |
| "0x%x 0x%x 0x%x 0x%x\n", |
| (Int)getIByte(delta_start+0), |
| (Int)getIByte(delta_start+1), |
| (Int)getIByte(delta_start+2), |
| (Int)getIByte(delta_start+3) ); |
| } |
| |
| /* Tell the dispatcher that this insn cannot be decoded, and so has |
| not been executed, and (is currently) the next to be executed. |
| EIP should be up-to-date since it made so at the start of each |
| insn, but nevertheless be paranoid and update it again right |
| now. */ |
| stmt( IRStmt_Put( OFFB_EIP, mkU32(guest_EIP_curr_instr) ) ); |
| jmp_lit(&dres, Ijk_NoDecode, guest_EIP_curr_instr); |
| vassert(dres.whatNext == Dis_StopHere); |
| dres.len = 0; |
| /* We also need to say that a CAS is not expected now, regardless |
| of what it might have been set to at the start of the function, |
| since the IR that we've emitted just above (to synthesis a |
| SIGILL) does not involve any CAS, and presumably no other IR has |
| been emitted for this (non-decoded) insn. */ |
| *expect_CAS = False; |
| return dres; |
| |
| } /* switch (opc) for the main (primary) opcode switch. */ |
| |
| decode_success: |
| /* All decode successes end up here. */ |
| switch (dres.whatNext) { |
| case Dis_Continue: |
| stmt( IRStmt_Put( OFFB_EIP, mkU32(guest_EIP_bbstart + delta) ) ); |
| break; |
| case Dis_ResteerU: |
| case Dis_ResteerC: |
| stmt( IRStmt_Put( OFFB_EIP, mkU32(dres.continueAt) ) ); |
| break; |
| case Dis_StopHere: |
| break; |
| default: |
| vassert(0); |
| } |
| |
| DIP("\n"); |
| dres.len = delta - delta_start; |
| return dres; |
| } |
| |
| #undef DIP |
| #undef DIS |
| |
| |
| /*------------------------------------------------------------*/ |
| /*--- Top-level fn ---*/ |
| /*------------------------------------------------------------*/ |
| |
| /* Disassemble a single instruction into IR. The instruction |
| is located in host memory at &guest_code[delta]. */ |
| |
| DisResult disInstr_X86 ( IRSB* irsb_IN, |
| Bool (*resteerOkFn) ( void*, Addr64 ), |
| Bool resteerCisOk, |
| void* callback_opaque, |
| UChar* guest_code_IN, |
| Long delta, |
| Addr64 guest_IP, |
| VexArch guest_arch, |
| VexArchInfo* archinfo, |
| VexAbiInfo* abiinfo, |
| Bool host_bigendian_IN, |
| Bool sigill_diag_IN ) |
| { |
| Int i, x1, x2; |
| Bool expect_CAS, has_CAS; |
| DisResult dres; |
| |
| /* Set globals (see top of this file) */ |
| vassert(guest_arch == VexArchX86); |
| guest_code = guest_code_IN; |
| irsb = irsb_IN; |
| host_is_bigendian = host_bigendian_IN; |
| guest_EIP_curr_instr = (Addr32)guest_IP; |
| guest_EIP_bbstart = (Addr32)toUInt(guest_IP - delta); |
| |
| x1 = irsb_IN->stmts_used; |
| expect_CAS = False; |
| dres = disInstr_X86_WRK ( &expect_CAS, resteerOkFn, |
| resteerCisOk, |
| callback_opaque, |
| delta, archinfo, abiinfo, sigill_diag_IN ); |
| x2 = irsb_IN->stmts_used; |
| vassert(x2 >= x1); |
| |
| /* See comment at the top of disInstr_X86_WRK for meaning of |
| expect_CAS. Here, we (sanity-)check for the presence/absence of |
| IRCAS as directed by the returned expect_CAS value. */ |
| has_CAS = False; |
| for (i = x1; i < x2; i++) { |
| if (irsb_IN->stmts[i]->tag == Ist_CAS) |
| has_CAS = True; |
| } |
| |
| if (expect_CAS != has_CAS) { |
| /* inconsistency detected. re-disassemble the instruction so as |
| to generate a useful error message; then assert. */ |
| vex_traceflags |= VEX_TRACE_FE; |
| dres = disInstr_X86_WRK ( &expect_CAS, resteerOkFn, |
| resteerCisOk, |
| callback_opaque, |
| delta, archinfo, abiinfo, sigill_diag_IN ); |
| for (i = x1; i < x2; i++) { |
| vex_printf("\t\t"); |
| ppIRStmt(irsb_IN->stmts[i]); |
| vex_printf("\n"); |
| } |
| /* Failure of this assertion is serious and denotes a bug in |
| disInstr. */ |
| vpanic("disInstr_X86: inconsistency in LOCK prefix handling"); |
| } |
| |
| return dres; |
| } |
| |
| |
| /*--------------------------------------------------------------------*/ |
| /*--- end guest_x86_toIR.c ---*/ |
| /*--------------------------------------------------------------------*/ |