blob: 9a24a45ec9b0b5164a6bbd982390209d871ae928 [file] [log] [blame]
/*--------------------------------------------------------------------*/
/*--- malloc/free wrappers for detecting errors and updating bits. ---*/
/*--- mc_malloc_wrappers.c ---*/
/*--------------------------------------------------------------------*/
/*
This file is part of MemCheck, a heavyweight Valgrind tool for
detecting memory errors.
Copyright (C) 2000-2007 Julian Seward
jseward@acm.org
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307, USA.
The GNU General Public License is contained in the file COPYING.
*/
#include "pub_tool_basics.h"
#include "pub_tool_execontext.h"
#include "pub_tool_hashtable.h"
#include "pub_tool_libcbase.h"
#include "pub_tool_libcassert.h"
#include "pub_tool_libcprint.h"
#include "pub_tool_mallocfree.h"
#include "pub_tool_options.h"
#include "pub_tool_replacemalloc.h"
#include "pub_tool_threadstate.h"
#include "pub_tool_tooliface.h" // Needed for mc_include.h
#include "pub_tool_stacktrace.h" // For VG_(get_and_pp_StackTrace)
#include "mc_include.h"
/*------------------------------------------------------------*/
/*--- Defns ---*/
/*------------------------------------------------------------*/
/* Stats ... */
static SizeT cmalloc_n_mallocs = 0;
static SizeT cmalloc_n_frees = 0;
static ULong cmalloc_bs_mallocd = 0;
/* For debug printing to do with mempools: what stack trace
depth to show. */
#define MEMPOOL_DEBUG_STACKTRACE_DEPTH 16
/*------------------------------------------------------------*/
/*--- Tracking malloc'd and free'd blocks ---*/
/*------------------------------------------------------------*/
/* Record malloc'd blocks. */
VgHashTable MC_(malloc_list) = NULL;
/* Memory pools. */
VgHashTable MC_(mempool_list) = NULL;
/* Records blocks after freeing. */
static MC_Chunk* freed_list_start = NULL;
static MC_Chunk* freed_list_end = NULL;
static Int freed_list_volume = 0;
/* Put a shadow chunk on the freed blocks queue, possibly freeing up
some of the oldest blocks in the queue at the same time. */
static void add_to_freed_queue ( MC_Chunk* mc )
{
/* Put it at the end of the freed list */
if (freed_list_end == NULL) {
tl_assert(freed_list_start == NULL);
freed_list_end = freed_list_start = mc;
freed_list_volume = mc->szB;
} else {
tl_assert(freed_list_end->next == NULL);
freed_list_end->next = mc;
freed_list_end = mc;
freed_list_volume += mc->szB;
}
mc->next = NULL;
/* Release enough of the oldest blocks to bring the free queue
volume below vg_clo_freelist_vol. */
while (freed_list_volume > MC_(clo_freelist_vol)) {
MC_Chunk* mc1;
tl_assert(freed_list_start != NULL);
tl_assert(freed_list_end != NULL);
mc1 = freed_list_start;
freed_list_volume -= mc1->szB;
/* VG_(printf)("volume now %d\n", freed_list_volume); */
tl_assert(freed_list_volume >= 0);
if (freed_list_start == freed_list_end) {
freed_list_start = freed_list_end = NULL;
} else {
freed_list_start = mc1->next;
}
mc1->next = NULL; /* just paranoia */
/* free MC_Chunk */
VG_(cli_free) ( (void*)(mc1->data) );
VG_(free) ( mc1 );
}
}
MC_Chunk* MC_(get_freed_list_head)(void)
{
return freed_list_start;
}
/* Allocate its shadow chunk, put it on the appropriate list. */
static
MC_Chunk* create_MC_Chunk ( ThreadId tid, Addr p, SizeT szB,
MC_AllocKind kind)
{
MC_Chunk* mc = VG_(malloc)(sizeof(MC_Chunk));
mc->data = p;
mc->szB = szB;
mc->allockind = kind;
mc->where = VG_(record_ExeContext)(tid);
/* Paranoia ... ensure the MC_Chunk is off-limits to the client, so
the mc->data field isn't visible to the leak checker. If memory
management is working correctly, any pointer returned by VG_(malloc)
should be noaccess as far as the client is concerned. */
if (!MC_(check_mem_is_noaccess)( (Addr)mc, sizeof(MC_Chunk), NULL )) {
VG_(tool_panic)("create_MC_Chunk: shadow area is accessible");
}
return mc;
}
/*------------------------------------------------------------*/
/*--- client_malloc(), etc ---*/
/*------------------------------------------------------------*/
static Bool complain_about_silly_args(SizeT sizeB, Char* fn)
{
// Cast to a signed type to catch any unexpectedly negative args. We're
// assuming here that the size asked for is not greater than 2^31 bytes
// (for 32-bit platforms) or 2^63 bytes (for 64-bit platforms).
if ((SSizeT)sizeB < 0) {
VG_(message)(Vg_UserMsg, "Warning: silly arg (%ld) to %s()",
(SSizeT)sizeB, fn );
return True;
}
return False;
}
static Bool complain_about_silly_args2(SizeT n, SizeT sizeB)
{
if ((SSizeT)n < 0 || (SSizeT)sizeB < 0) {
VG_(message)(Vg_UserMsg, "Warning: silly args (%ld,%ld) to calloc()",
(SSizeT)n, (SSizeT)sizeB);
return True;
}
return False;
}
/* Allocate memory and note change in memory available */
__inline__
void* MC_(new_block) ( ThreadId tid,
Addr p, SizeT szB, SizeT alignB, UInt rzB,
Bool is_zeroed, MC_AllocKind kind, VgHashTable table)
{
cmalloc_n_mallocs ++;
// Allocate and zero if necessary
if (p) {
tl_assert(MC_AllocCustom == kind);
} else {
tl_assert(MC_AllocCustom != kind);
p = (Addr)VG_(cli_malloc)( alignB, szB );
if (!p) {
return NULL;
}
if (is_zeroed) VG_(memset)((void*)p, 0, szB);
}
// Only update this stat if allocation succeeded.
cmalloc_bs_mallocd += (ULong)szB;
VG_(HT_add_node)( table, create_MC_Chunk(tid, p, szB, kind) );
if (is_zeroed)
MC_(make_mem_defined)( p, szB );
else
MC_(make_mem_undefined)( p, szB );
return (void*)p;
}
void* MC_(malloc) ( ThreadId tid, SizeT n )
{
if (complain_about_silly_args(n, "malloc")) {
return NULL;
} else {
return MC_(new_block) ( tid, 0, n, VG_(clo_alignment),
MC_MALLOC_REDZONE_SZB, /*is_zeroed*/False, MC_AllocMalloc,
MC_(malloc_list));
}
}
void* MC_(__builtin_new) ( ThreadId tid, SizeT n )
{
if (complain_about_silly_args(n, "__builtin_new")) {
return NULL;
} else {
return MC_(new_block) ( tid, 0, n, VG_(clo_alignment),
MC_MALLOC_REDZONE_SZB, /*is_zeroed*/False, MC_AllocNew,
MC_(malloc_list));
}
}
void* MC_(__builtin_vec_new) ( ThreadId tid, SizeT n )
{
if (complain_about_silly_args(n, "__builtin_vec_new")) {
return NULL;
} else {
return MC_(new_block) ( tid, 0, n, VG_(clo_alignment),
MC_MALLOC_REDZONE_SZB, /*is_zeroed*/False, MC_AllocNewVec,
MC_(malloc_list));
}
}
void* MC_(memalign) ( ThreadId tid, SizeT alignB, SizeT n )
{
if (complain_about_silly_args(n, "memalign")) {
return NULL;
} else {
return MC_(new_block) ( tid, 0, n, alignB,
MC_MALLOC_REDZONE_SZB, /*is_zeroed*/False, MC_AllocMalloc,
MC_(malloc_list));
}
}
void* MC_(calloc) ( ThreadId tid, SizeT nmemb, SizeT size1 )
{
if (complain_about_silly_args2(nmemb, size1)) {
return NULL;
} else {
return MC_(new_block) ( tid, 0, nmemb*size1, VG_(clo_alignment),
MC_MALLOC_REDZONE_SZB, /*is_zeroed*/True, MC_AllocMalloc,
MC_(malloc_list));
}
}
static
void die_and_free_mem ( ThreadId tid, MC_Chunk* mc, SizeT rzB )
{
/* Note: make redzones noaccess again -- just in case user made them
accessible with a client request... */
MC_(make_mem_noaccess)( mc->data-rzB, mc->szB + 2*rzB );
/* Put it out of harm's way for a while, if not from a client request */
if (MC_AllocCustom != mc->allockind) {
/* Record where freed */
mc->where = VG_(record_ExeContext) ( tid );
add_to_freed_queue ( mc );
} else {
VG_(free) ( mc );
}
}
__inline__
void MC_(handle_free) ( ThreadId tid, Addr p, UInt rzB, MC_AllocKind kind )
{
MC_Chunk* mc;
cmalloc_n_frees++;
mc = VG_(HT_remove) ( MC_(malloc_list), (UWord)p );
if (mc == NULL) {
MC_(record_free_error) ( tid, p );
} else {
/* check if it is a matching free() / delete / delete [] */
if (kind != mc->allockind) {
tl_assert(p == mc->data);
MC_(record_freemismatch_error) ( tid, mc );
}
die_and_free_mem ( tid, mc, rzB );
}
}
void MC_(free) ( ThreadId tid, void* p )
{
MC_(handle_free)(
tid, (Addr)p, MC_MALLOC_REDZONE_SZB, MC_AllocMalloc );
}
void MC_(__builtin_delete) ( ThreadId tid, void* p )
{
MC_(handle_free)(
tid, (Addr)p, MC_MALLOC_REDZONE_SZB, MC_AllocNew);
}
void MC_(__builtin_vec_delete) ( ThreadId tid, void* p )
{
MC_(handle_free)(
tid, (Addr)p, MC_MALLOC_REDZONE_SZB, MC_AllocNewVec);
}
void* MC_(realloc) ( ThreadId tid, void* p_old, SizeT new_szB )
{
MC_Chunk* mc;
void* p_new;
SizeT old_szB;
cmalloc_n_frees ++;
cmalloc_n_mallocs ++;
cmalloc_bs_mallocd += (ULong)new_szB;
if (complain_about_silly_args(new_szB, "realloc"))
return NULL;
/* Remove the old block */
mc = VG_(HT_remove) ( MC_(malloc_list), (UWord)p_old );
if (mc == NULL) {
MC_(record_free_error) ( tid, (Addr)p_old );
/* We return to the program regardless. */
return NULL;
}
/* check if its a matching free() / delete / delete [] */
if (MC_AllocMalloc != mc->allockind) {
/* can not realloc a range that was allocated with new or new [] */
tl_assert((Addr)p_old == mc->data);
MC_(record_freemismatch_error) ( tid, mc );
/* but keep going anyway */
}
old_szB = mc->szB;
if (old_szB == new_szB) {
/* size unchanged */
mc->where = VG_(record_ExeContext)(tid);
p_new = p_old;
} else if (old_szB > new_szB) {
/* new size is smaller */
MC_(make_mem_noaccess)( mc->data+new_szB, mc->szB-new_szB );
mc->szB = new_szB;
mc->where = VG_(record_ExeContext)(tid);
p_new = p_old;
} else {
/* new size is bigger */
/* Get new memory */
Addr a_new = (Addr)VG_(cli_malloc)(VG_(clo_alignment), new_szB);
if (a_new) {
/* First half kept and copied, second half new, red zones as normal */
MC_(make_mem_noaccess)( a_new-MC_MALLOC_REDZONE_SZB, MC_MALLOC_REDZONE_SZB );
MC_(copy_address_range_state)( (Addr)p_old, a_new, mc->szB );
MC_(make_mem_undefined)( a_new+mc->szB, new_szB-mc->szB );
MC_(make_mem_noaccess) ( a_new+new_szB, MC_MALLOC_REDZONE_SZB );
/* Copy from old to new */
VG_(memcpy)((void*)a_new, p_old, mc->szB);
/* Free old memory */
/* Nb: we have to allocate a new MC_Chunk for the new memory rather
than recycling the old one, so that any erroneous accesses to the
old memory are reported. */
die_and_free_mem ( tid, mc, MC_MALLOC_REDZONE_SZB );
// Allocate a new chunk.
mc = create_MC_Chunk( tid, a_new, new_szB, MC_AllocMalloc );
}
p_new = (void*)a_new;
}
// Now insert the new mc (with a possibly new 'data' field) into
// malloc_list. If this realloc() did not increase the memory size, we
// will have removed and then re-added mc unnecessarily. But that's ok
// because shrinking a block with realloc() is (presumably) much rarer
// than growing it, and this way simplifies the growing case.
VG_(HT_add_node)( MC_(malloc_list), mc );
return p_new;
}
/* Memory pool stuff. */
void MC_(create_mempool)(Addr pool, UInt rzB, Bool is_zeroed)
{
MC_Mempool* mp;
if (VG_(clo_verbosity) > 2) {
VG_(message)(Vg_UserMsg, "create_mempool(%p, %d, %d)",
pool, rzB, is_zeroed);
VG_(get_and_pp_StackTrace)
(VG_(get_running_tid)(), MEMPOOL_DEBUG_STACKTRACE_DEPTH);
}
mp = VG_(HT_lookup)(MC_(mempool_list), (UWord)pool);
if (mp != NULL) {
VG_(tool_panic)("MC_(create_mempool): duplicate pool creation");
}
mp = VG_(malloc)(sizeof(MC_Mempool));
mp->pool = pool;
mp->rzB = rzB;
mp->is_zeroed = is_zeroed;
mp->chunks = VG_(HT_construct)( 3001 ); // prime, not so big
/* Paranoia ... ensure this area is off-limits to the client, so
the mp->data field isn't visible to the leak checker. If memory
management is working correctly, anything pointer returned by
VG_(malloc) should be noaccess as far as the client is
concerned. */
if (!MC_(check_mem_is_noaccess)( (Addr)mp, sizeof(MC_Mempool), NULL )) {
VG_(tool_panic)("MC_(create_mempool): shadow area is accessible");
}
VG_(HT_add_node)( MC_(mempool_list), mp );
}
void MC_(destroy_mempool)(Addr pool)
{
MC_Chunk* mc;
MC_Mempool* mp;
if (VG_(clo_verbosity) > 2) {
VG_(message)(Vg_UserMsg, "destroy_mempool(%p)", pool);
VG_(get_and_pp_StackTrace)
(VG_(get_running_tid)(), MEMPOOL_DEBUG_STACKTRACE_DEPTH);
}
mp = VG_(HT_remove) ( MC_(mempool_list), (UWord)pool );
if (mp == NULL) {
ThreadId tid = VG_(get_running_tid)();
MC_(record_illegal_mempool_error) ( tid, pool );
return;
}
// Clean up the chunks, one by one
VG_(HT_ResetIter)(mp->chunks);
while ( (mc = VG_(HT_Next)(mp->chunks)) ) {
/* Note: make redzones noaccess again -- just in case user made them
accessible with a client request... */
MC_(make_mem_noaccess)(mc->data-mp->rzB, mc->szB + 2*mp->rzB );
}
// Destroy the chunk table
VG_(HT_destruct)(mp->chunks);
VG_(free)(mp);
}
static Int
mp_compar(void* n1, void* n2)
{
MC_Chunk* mc1 = *(MC_Chunk**)n1;
MC_Chunk* mc2 = *(MC_Chunk**)n2;
return (mc1->data < mc2->data ? -1 : 1);
}
static void
check_mempool_sane(MC_Mempool* mp)
{
UInt n_chunks, i, bad = 0;
static UInt tick = 0;
MC_Chunk **chunks = (MC_Chunk**) VG_(HT_to_array)( mp->chunks, &n_chunks );
if (!chunks)
return;
if (VG_(clo_verbosity) > 1) {
if (tick++ >= 10000)
{
UInt total_pools = 0, total_chunks = 0;
MC_Mempool* mp2;
VG_(HT_ResetIter)(MC_(mempool_list));
while ( (mp2 = VG_(HT_Next)(MC_(mempool_list))) ) {
total_pools++;
VG_(HT_ResetIter)(mp2->chunks);
while (VG_(HT_Next)(mp2->chunks)) {
total_chunks++;
}
}
VG_(message)(Vg_UserMsg,
"Total mempools active: %d pools, %d chunks\n",
total_pools, total_chunks);
tick = 0;
}
}
VG_(ssort)((void*)chunks, n_chunks, sizeof(VgHashNode*), mp_compar);
/* Sanity check; assert that the blocks are now in order */
for (i = 0; i < n_chunks-1; i++) {
if (chunks[i]->data > chunks[i+1]->data) {
VG_(message)(Vg_UserMsg,
"Mempool chunk %d / %d is out of order "
"wrt. its successor",
i+1, n_chunks);
bad = 1;
}
}
/* Sanity check -- make sure they don't overlap */
for (i = 0; i < n_chunks-1; i++) {
if (chunks[i]->data + chunks[i]->szB > chunks[i+1]->data ) {
VG_(message)(Vg_UserMsg,
"Mempool chunk %d / %d overlaps with its successor",
i+1, n_chunks);
bad = 1;
}
}
if (bad) {
VG_(message)(Vg_UserMsg,
"Bad mempool (%d chunks), dumping chunks for inspection:",
n_chunks);
for (i = 0; i < n_chunks; ++i) {
VG_(message)(Vg_UserMsg,
"Mempool chunk %d / %d: %d bytes [%x,%x), allocated:",
i+1,
n_chunks,
chunks[i]->szB,
chunks[i]->data,
chunks[i]->data + chunks[i]->szB);
VG_(pp_ExeContext)(chunks[i]->where);
}
}
VG_(free)(chunks);
}
void MC_(mempool_alloc)(ThreadId tid, Addr pool, Addr addr, SizeT szB)
{
MC_Mempool* mp;
if (VG_(clo_verbosity) > 2) {
VG_(message)(Vg_UserMsg, "mempool_alloc(%p, %p, %d)", pool, addr, szB);
VG_(get_and_pp_StackTrace) (tid, MEMPOOL_DEBUG_STACKTRACE_DEPTH);
}
mp = VG_(HT_lookup) ( MC_(mempool_list), (UWord)pool );
if (mp == NULL) {
MC_(record_illegal_mempool_error) ( tid, pool );
} else {
check_mempool_sane(mp);
MC_(new_block)(tid, addr, szB, /*ignored*/0, mp->rzB, mp->is_zeroed,
MC_AllocCustom, mp->chunks);
check_mempool_sane(mp);
}
}
void MC_(mempool_free)(Addr pool, Addr addr)
{
MC_Mempool* mp;
MC_Chunk* mc;
ThreadId tid = VG_(get_running_tid)();
mp = VG_(HT_lookup)(MC_(mempool_list), (UWord)pool);
if (mp == NULL) {
MC_(record_illegal_mempool_error)(tid, pool);
return;
}
if (VG_(clo_verbosity) > 2) {
VG_(message)(Vg_UserMsg, "mempool_free(%p, %p)", pool, addr);
VG_(get_and_pp_StackTrace) (tid, MEMPOOL_DEBUG_STACKTRACE_DEPTH);
}
check_mempool_sane(mp);
mc = VG_(HT_remove)(mp->chunks, (UWord)addr);
if (mc == NULL) {
MC_(record_free_error)(tid, (Addr)addr);
return;
}
if (VG_(clo_verbosity) > 2) {
VG_(message)(Vg_UserMsg,
"mempool_free(%p, %p) freed chunk of %d bytes",
pool, addr, mc->szB);
}
die_and_free_mem ( tid, mc, mp->rzB );
check_mempool_sane(mp);
}
void MC_(mempool_trim)(Addr pool, Addr addr, SizeT szB)
{
MC_Mempool* mp;
MC_Chunk* mc;
ThreadId tid = VG_(get_running_tid)();
UInt n_shadows, i;
VgHashNode** chunks;
if (VG_(clo_verbosity) > 2) {
VG_(message)(Vg_UserMsg, "mempool_trim(%p, %p, %d)", pool, addr, szB);
VG_(get_and_pp_StackTrace) (tid, MEMPOOL_DEBUG_STACKTRACE_DEPTH);
}
mp = VG_(HT_lookup)(MC_(mempool_list), (UWord)pool);
if (mp == NULL) {
MC_(record_illegal_mempool_error)(tid, pool);
return;
}
check_mempool_sane(mp);
chunks = VG_(HT_to_array) ( mp->chunks, &n_shadows );
if (n_shadows == 0) {
tl_assert(chunks == NULL);
return;
}
tl_assert(chunks != NULL);
for (i = 0; i < n_shadows; ++i) {
Addr lo, hi, min, max;
mc = (MC_Chunk*) chunks[i];
lo = mc->data;
hi = mc->szB == 0 ? mc->data : mc->data + mc->szB - 1;
#define EXTENT_CONTAINS(x) ((addr <= (x)) && ((x) < addr + szB))
if (EXTENT_CONTAINS(lo) && EXTENT_CONTAINS(hi)) {
/* The current chunk is entirely within the trim extent: keep
it. */
continue;
} else if ( (! EXTENT_CONTAINS(lo)) &&
(! EXTENT_CONTAINS(hi)) ) {
/* The current chunk is entirely outside the trim extent:
delete it. */
if (VG_(HT_remove)(mp->chunks, (UWord)mc->data) == NULL) {
MC_(record_free_error)(tid, (Addr)mc->data);
VG_(free)(chunks);
check_mempool_sane(mp);
return;
}
die_and_free_mem ( tid, mc, mp->rzB );
} else {
/* The current chunk intersects the trim extent: remove,
trim, and reinsert it. */
tl_assert(EXTENT_CONTAINS(lo) ||
EXTENT_CONTAINS(hi));
if (VG_(HT_remove)(mp->chunks, (UWord)mc->data) == NULL) {
MC_(record_free_error)(tid, (Addr)mc->data);
VG_(free)(chunks);
check_mempool_sane(mp);
return;
}
if (mc->data < addr) {
min = mc->data;
lo = addr;
} else {
min = addr;
lo = mc->data;
}
if (mc->data + szB > addr + szB) {
max = mc->data + szB;
hi = addr + szB;
} else {
max = addr + szB;
hi = mc->data + szB;
}
tl_assert(min <= lo);
tl_assert(lo < hi);
tl_assert(hi <= max);
if (min < lo && !EXTENT_CONTAINS(min)) {
MC_(make_mem_noaccess)( min, lo - min);
}
if (hi < max && !EXTENT_CONTAINS(max)) {
MC_(make_mem_noaccess)( hi, max - hi );
}
mc->data = lo;
mc->szB = (UInt) (hi - lo);
VG_(HT_add_node)( mp->chunks, mc );
}
#undef EXTENT_CONTAINS
}
check_mempool_sane(mp);
VG_(free)(chunks);
}
void MC_(move_mempool)(Addr poolA, Addr poolB)
{
MC_Mempool* mp;
if (VG_(clo_verbosity) > 2) {
VG_(message)(Vg_UserMsg, "move_mempool(%p, %p)", poolA, poolB);
VG_(get_and_pp_StackTrace)
(VG_(get_running_tid)(), MEMPOOL_DEBUG_STACKTRACE_DEPTH);
}
mp = VG_(HT_remove) ( MC_(mempool_list), (UWord)poolA );
if (mp == NULL) {
ThreadId tid = VG_(get_running_tid)();
MC_(record_illegal_mempool_error) ( tid, poolA );
return;
}
mp->pool = poolB;
VG_(HT_add_node)( MC_(mempool_list), mp );
}
void MC_(mempool_change)(Addr pool, Addr addrA, Addr addrB, SizeT szB)
{
MC_Mempool* mp;
MC_Chunk* mc;
ThreadId tid = VG_(get_running_tid)();
if (VG_(clo_verbosity) > 2) {
VG_(message)(Vg_UserMsg, "mempool_change(%p, %p, %p, %d)",
pool, addrA, addrB, szB);
VG_(get_and_pp_StackTrace) (tid, MEMPOOL_DEBUG_STACKTRACE_DEPTH);
}
mp = VG_(HT_lookup)(MC_(mempool_list), (UWord)pool);
if (mp == NULL) {
MC_(record_illegal_mempool_error)(tid, pool);
return;
}
check_mempool_sane(mp);
mc = VG_(HT_remove)(mp->chunks, (UWord)addrA);
if (mc == NULL) {
MC_(record_free_error)(tid, (Addr)addrA);
return;
}
mc->data = addrB;
mc->szB = szB;
VG_(HT_add_node)( mp->chunks, mc );
check_mempool_sane(mp);
}
Bool MC_(mempool_exists)(Addr pool)
{
MC_Mempool* mp;
mp = VG_(HT_lookup)(MC_(mempool_list), (UWord)pool);
if (mp == NULL) {
return False;
}
return True;
}
/*------------------------------------------------------------*/
/*--- Statistics printing ---*/
/*------------------------------------------------------------*/
void MC_(print_malloc_stats) ( void )
{
MC_Chunk* mc;
SizeT nblocks = 0;
ULong nbytes = 0;
if (VG_(clo_verbosity) == 0)
return;
if (VG_(clo_xml))
return;
/* Count memory still in use. */
VG_(HT_ResetIter)(MC_(malloc_list));
while ( (mc = VG_(HT_Next)(MC_(malloc_list))) ) {
nblocks++;
nbytes += (ULong)mc->szB;
}
VG_(message)(Vg_UserMsg,
"malloc/free: in use at exit: %,llu bytes in %,lu blocks.",
nbytes, nblocks);
VG_(message)(Vg_UserMsg,
"malloc/free: %,lu allocs, %,lu frees, %,llu bytes allocated.",
cmalloc_n_mallocs,
cmalloc_n_frees, cmalloc_bs_mallocd);
if (VG_(clo_verbosity) > 1)
VG_(message)(Vg_UserMsg, "");
}
/*--------------------------------------------------------------------*/
/*--- end ---*/
/*--------------------------------------------------------------------*/