blob: 9e5d1bab24d88e77bf70a53f912a367bf88e2c77 [file] [log] [blame]
/*
This file is part of drd, a data race detector.
Copyright (C) 2006-2008 Bart Van Assche
bart.vanassche@gmail.com
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307, USA.
The GNU General Public License is contained in the file COPYING.
*/
#include "pub_tool_basics.h" // Addr, SizeT
#include "pub_tool_debuginfo.h" // VG_(get_objname)()
#include "pub_tool_libcassert.h" // tl_assert()
#include "pub_tool_libcbase.h" // VG_(memset)
#include "pub_tool_libcprint.h" // VG_(printf)
#include "pub_tool_machine.h" // VG_(get_IP)()
#include "pub_tool_mallocfree.h" // VG_(malloc), VG_(free)
#include "pub_drd_bitmap.h"
#include "drd_bitmap.h"
#include "drd_error.h"
#include "drd_suppression.h"
/* Forward declarations. */
struct bitmap2;
/* Local function declarations. */
static void bm2_merge(struct bitmap2* const bm2l,
const struct bitmap2* const bm2r);
/* Local constants. */
static ULong s_bitmap_creation_count;
/* Function definitions. */
struct bitmap* bm_new()
{
unsigned i;
struct bitmap* bm;
/* If this assert fails, fix the definition of BITS_PER_BITS_PER_UWORD */
/* in drd_bitmap.h. */
tl_assert((1 << BITS_PER_BITS_PER_UWORD) == BITS_PER_UWORD);
bm = VG_(malloc)("drd.bitmap.bn.1", sizeof(*bm));
tl_assert(bm);
/* Cache initialization. a1 is initialized with a value that never can */
/* match any valid address: the upper ADDR0_BITS bits of a1 are always */
/* zero for a valid cache entry. */
for (i = 0; i < N_CACHE_ELEM; i++)
{
bm->cache[i].a1 = ~(UWord)1;
bm->cache[i].bm2 = 0;
}
bm->oset = VG_(OSetGen_Create)(0, 0, VG_(malloc), "drd.bitmap.bn.2",
VG_(free));
s_bitmap_creation_count++;
return bm;
}
void bm_delete(struct bitmap* const bm)
{
struct bitmap2* bm2;
struct bitmap2ref* bm2ref;
tl_assert(bm);
VG_(OSetGen_ResetIter)(bm->oset);
for ( ; (bm2ref = VG_(OSetGen_Next)(bm->oset)) != 0; )
{
bm2 = bm2ref->bm2;
tl_assert(bm2->refcnt >= 1);
if (--bm2->refcnt == 0)
{
VG_(free)(bm2);
}
}
VG_(OSetGen_Destroy)(bm->oset);
VG_(free)(bm);
}
/**
* Record an access of type access_type at addresses a .. a + size - 1 in
* bitmap bm.
*/
void bm_access_range(struct bitmap* const bm,
const Addr a1, const Addr a2,
const BmAccessTypeT access_type)
{
Addr b, b_next;
tl_assert(bm);
tl_assert(a1 < a2);
/* The current implementation of bm_access_range does not work for the */
/* ADDR0_COUNT highest addresses in the address range. At least on Linux */
/* this is not a problem since the upper part of the address space is */
/* reserved for the kernel. */
tl_assert(a2 + ADDR0_COUNT > a2);
for (b = a1; b < a2; b = b_next)
{
Addr b_start;
Addr b_end;
struct bitmap2* bm2;
SPLIT_ADDRESS(b);
b_next = (b & ~ADDR0_MASK) + ADDR0_COUNT;
if (b_next > a2)
{
b_next = a2;
}
bm2 = bm2_lookup_or_insert_exclusive(bm, b1);
tl_assert(bm2);
if ((bm2->addr << ADDR0_BITS) < a1)
b_start = a1;
else
if ((bm2->addr << ADDR0_BITS) < a2)
b_start = (bm2->addr << ADDR0_BITS);
else
break;
tl_assert(a1 <= b_start && b_start <= a2);
if ((bm2->addr << ADDR0_BITS) + ADDR0_COUNT < a2)
b_end = (bm2->addr << ADDR0_BITS) + ADDR0_COUNT;
else
b_end = a2;
tl_assert(a1 <= b_end && b_end <= a2);
tl_assert(b_start < b_end);
tl_assert((b_start & ADDR0_MASK) <= ((b_end - 1) & ADDR0_MASK));
if (access_type == eLoad)
{
for (b0 = b_start & ADDR0_MASK; b0 <= ((b_end - 1) & ADDR0_MASK); b0++)
{
bm0_set(bm2->bm1.bm0_r, b0);
}
}
else
{
for (b0 = b_start & ADDR0_MASK; b0 <= ((b_end - 1) & ADDR0_MASK); b0++)
{
bm0_set(bm2->bm1.bm0_w, b0);
}
}
}
}
void bm_access_range_load(struct bitmap* const bm,
const Addr a1, const Addr a2)
{
bm_access_range(bm, a1, a2, eLoad);
}
void bm_access_load_1(struct bitmap* const bm, const Addr a1)
{
bm_access_aligned_load(bm, a1, 1);
}
void bm_access_load_2(struct bitmap* const bm, const Addr a1)
{
if ((a1 & 1) == 0)
bm_access_aligned_load(bm, a1, 2);
else
bm_access_range(bm, a1, a1 + 2, eLoad);
}
void bm_access_load_4(struct bitmap* const bm, const Addr a1)
{
if ((a1 & 3) == 0)
bm_access_aligned_load(bm, a1, 4);
else
bm_access_range(bm, a1, a1 + 4, eLoad);
}
void bm_access_load_8(struct bitmap* const bm, const Addr a1)
{
if ((a1 & 7) == 0)
bm_access_aligned_load(bm, a1, 8);
else if ((a1 & 3) == 0)
{
bm_access_aligned_load(bm, a1 + 0, 4);
bm_access_aligned_load(bm, a1 + 4, 4);
}
else
bm_access_range(bm, a1, a1 + 8, eLoad);
}
void bm_access_range_store(struct bitmap* const bm,
const Addr a1, const Addr a2)
{
bm_access_range(bm, a1, a2, eStore);
}
void bm_access_store_1(struct bitmap* const bm, const Addr a1)
{
bm_access_aligned_store(bm, a1, 1);
}
void bm_access_store_2(struct bitmap* const bm, const Addr a1)
{
if ((a1 & 1) == 0)
bm_access_aligned_store(bm, a1, 2);
else
bm_access_range(bm, a1, a1 + 2, eStore);
}
void bm_access_store_4(struct bitmap* const bm, const Addr a1)
{
if ((a1 & 3) == 0)
bm_access_aligned_store(bm, a1, 4);
else
bm_access_range(bm, a1, a1 + 4, eStore);
}
void bm_access_store_8(struct bitmap* const bm, const Addr a1)
{
if ((a1 & 7) == 0)
bm_access_aligned_store(bm, a1, 8);
else if ((a1 & 3) == 0)
{
bm_access_aligned_store(bm, a1 + 0, 4);
bm_access_aligned_store(bm, a1 + 4, 4);
}
else
bm_access_range(bm, a1, a1 + 8, eStore);
}
Bool bm_has(struct bitmap* const bm, const Addr a1, const Addr a2,
const BmAccessTypeT access_type)
{
Addr b;
for (b = a1; b < a2; b++)
{
if (! bm_has_1(bm, b, access_type))
{
return False;
}
}
return True;
}
Bool bm_has_any_load(struct bitmap* const bm, const Addr a1, const Addr a2)
{
Addr b, b_next;
tl_assert(bm);
for (b = a1; b < a2; b = b_next)
{
const struct bitmap2* bm2 = bm2_lookup(bm, b >> ADDR0_BITS);
b_next = (b & ~ADDR0_MASK) + ADDR0_COUNT;
if (b_next > a2)
{
b_next = a2;
}
if (bm2)
{
Addr b_start;
Addr b_end;
UWord b0;
const struct bitmap1* const p1 = &bm2->bm1;
if ((bm2->addr << ADDR0_BITS) < a1)
b_start = a1;
else
if ((bm2->addr << ADDR0_BITS) < a2)
b_start = (bm2->addr << ADDR0_BITS);
else
break;
tl_assert(a1 <= b_start && b_start <= a2);
if ((bm2->addr << ADDR0_BITS) + ADDR0_COUNT < a2)
b_end = (bm2->addr << ADDR0_BITS) + ADDR0_COUNT;
else
b_end = a2;
tl_assert(a1 <= b_end && b_end <= a2);
tl_assert(b_start < b_end);
tl_assert((b_start & ADDR0_MASK) <= ((b_end - 1) & ADDR0_MASK));
for (b0 = b_start & ADDR0_MASK; b0 <= ((b_end-1) & ADDR0_MASK); b0++)
{
if (bm0_is_set(p1->bm0_r, b0))
{
return True;
}
}
}
}
return 0;
}
Bool bm_has_any_store(struct bitmap* const bm,
const Addr a1, const Addr a2)
{
Addr b, b_next;
tl_assert(bm);
for (b = a1; b < a2; b = b_next)
{
const struct bitmap2* bm2 = bm2_lookup(bm, b >> ADDR0_BITS);
b_next = (b & ~ADDR0_MASK) + ADDR0_COUNT;
if (b_next > a2)
{
b_next = a2;
}
if (bm2)
{
Addr b_start;
Addr b_end;
UWord b0;
const struct bitmap1* const p1 = &bm2->bm1;
if ((bm2->addr << ADDR0_BITS) < a1)
b_start = a1;
else
if ((bm2->addr << ADDR0_BITS) < a2)
b_start = (bm2->addr << ADDR0_BITS);
else
break;
tl_assert(a1 <= b_start && b_start <= a2);
if ((bm2->addr << ADDR0_BITS) + ADDR0_COUNT < a2)
b_end = (bm2->addr << ADDR0_BITS) + ADDR0_COUNT;
else
b_end = a2;
tl_assert(a1 <= b_end && b_end <= a2);
tl_assert(b_start < b_end);
tl_assert((b_start & ADDR0_MASK) <= ((b_end - 1) & ADDR0_MASK));
for (b0 = b_start & ADDR0_MASK; b0 <= ((b_end-1) & ADDR0_MASK); b0++)
{
if (bm0_is_set(p1->bm0_w, b0))
{
return True;
}
}
}
}
return 0;
}
/* Return True if there is a read access, write access or both */
/* to any of the addresses in the range [ a1, a2 [ in bitmap bm. */
Bool bm_has_any_access(struct bitmap* const bm,
const Addr a1, const Addr a2)
{
Addr b, b_next;
tl_assert(bm);
for (b = a1; b < a2; b = b_next)
{
const struct bitmap2* bm2 = bm2_lookup(bm, b >> ADDR0_BITS);
b_next = (b & ~ADDR0_MASK) + ADDR0_COUNT;
if (b_next > a2)
{
b_next = a2;
}
if (bm2)
{
Addr b_start;
Addr b_end;
UWord b0;
const struct bitmap1* const p1 = &bm2->bm1;
if ((bm2->addr << ADDR0_BITS) < a1)
b_start = a1;
else
if ((bm2->addr << ADDR0_BITS) < a2)
b_start = (bm2->addr << ADDR0_BITS);
else
break;
tl_assert(a1 <= b_start && b_start <= a2);
if ((bm2->addr << ADDR0_BITS) + ADDR0_COUNT < a2)
b_end = (bm2->addr << ADDR0_BITS) + ADDR0_COUNT;
else
b_end = a2;
tl_assert(a1 <= b_end && b_end <= a2);
tl_assert(b_start < b_end);
tl_assert((b_start & ADDR0_MASK) <= ((b_end - 1) & ADDR0_MASK));
for (b0 = b_start & ADDR0_MASK; b0 <= ((b_end-1) & ADDR0_MASK); b0++)
{
if (bm0_is_set(p1->bm0_r, b0) | bm0_is_set(p1->bm0_w, b0))
{
return True;
}
}
}
}
return False;
}
/** Report whether an access of type access_type at address a is recorded in
* bitmap bm.
*/
Bool bm_has_1(struct bitmap* const bm,
const Addr a, const BmAccessTypeT access_type)
{
const struct bitmap2* p2;
const struct bitmap1* p1;
const UWord* p0;
const UWord a0 = a & ADDR0_MASK;
tl_assert(bm);
p2 = bm2_lookup(bm, a >> ADDR0_BITS);
if (p2)
{
p1 = &p2->bm1;
p0 = (access_type == eLoad) ? p1->bm0_r : p1->bm0_w;
return bm0_is_set(p0, a0) ? True : False;
}
return False;
}
void bm_clear(struct bitmap* const bm,
const Addr a1,
const Addr a2)
{
Addr b, b_next;
tl_assert(bm);
tl_assert(a1);
tl_assert(a1 <= a2);
for (b = a1; b < a2; b = b_next)
{
struct bitmap2* const p2 = bm2_lookup_exclusive(bm, b >> ADDR0_BITS);
b_next = (b & ~ADDR0_MASK) + ADDR0_COUNT;
if (b_next > a2)
{
b_next = a2;
}
if (p2)
{
Addr c = b;
/* If the first address in the bitmap that must be cleared does not */
/* start on an UWord boundary, start clearing the first addresses. */
if (UWORD_LSB(c))
{
Addr c_next = UWORD_MSB(c) + BITS_PER_UWORD;
if (c_next > b_next)
c_next = b_next;
bm0_clear_range(p2->bm1.bm0_r, c & ADDR0_MASK, c_next - c);
bm0_clear_range(p2->bm1.bm0_w, c & ADDR0_MASK, c_next - c);
c = c_next;
}
/* If some UWords have to be cleared entirely, do this now. */
if (UWORD_LSB(c) == 0)
{
const Addr c_next = UWORD_MSB(b_next);
tl_assert(UWORD_LSB(c) == 0);
tl_assert(UWORD_LSB(c_next) == 0);
tl_assert(c_next <= b_next);
tl_assert(c <= c_next);
if (c_next > c)
{
UWord idx = (c & ADDR0_MASK) >> BITS_PER_BITS_PER_UWORD;
VG_(memset)(&p2->bm1.bm0_r[idx], 0, (c_next - c) / 8);
VG_(memset)(&p2->bm1.bm0_w[idx], 0, (c_next - c) / 8);
c = c_next;
}
}
/* If the last address in the bitmap that must be cleared does not */
/* fall on an UWord boundary, clear the last addresses. */
/* tl_assert(c <= b_next); */
bm0_clear_range(p2->bm1.bm0_r, c & ADDR0_MASK, b_next - c);
bm0_clear_range(p2->bm1.bm0_w, c & ADDR0_MASK, b_next - c);
}
}
}
/** Clear all references to loads in bitmap bm starting at address a1 and
* up to but not including address a2.
*/
void bm_clear_load(struct bitmap* const bm,
const Addr a1, const Addr a2)
{
Addr a;
for (a = a1; a < a2; a++)
{
struct bitmap2* const p2 = bm2_lookup_exclusive(bm, a >> ADDR0_BITS);
if (p2)
{
bm0_clear(p2->bm1.bm0_r, a & ADDR0_MASK);
}
}
}
/** Clear all references to stores in bitmap bm starting at address a1 and
* up to but not including address a2.
*/
void bm_clear_store(struct bitmap* const bm,
const Addr a1, const Addr a2)
{
Addr a;
for (a = a1; a < a2; a++)
{
struct bitmap2* const p2 = bm2_lookup_exclusive(bm, a >> ADDR0_BITS);
if (p2)
{
bm0_clear(p2->bm1.bm0_w, a & ADDR0_MASK);
}
}
}
/** Clear bitmap bm starting at address a1 and up to but not including address
* a2. Return True if and only if any of the addresses was set before
* clearing.
*/
Bool bm_test_and_clear(struct bitmap* const bm,
const Addr a1, const Addr a2)
{
Bool result;
result = bm_has_any_access(bm, a1, a2) != 0;
bm_clear(bm, a1, a2);
return result;
}
Bool bm_has_conflict_with(struct bitmap* const bm,
const Addr a1, const Addr a2,
const BmAccessTypeT access_type)
{
Addr b, b_next;
tl_assert(bm);
for (b = a1; b < a2; b = b_next)
{
const struct bitmap2* bm2 = bm2_lookup(bm, b >> ADDR0_BITS);
b_next = (b & ~ADDR0_MASK) + ADDR0_COUNT;
if (b_next > a2)
{
b_next = a2;
}
if (bm2)
{
Addr b_start;
Addr b_end;
UWord b0;
const struct bitmap1* const p1 = &bm2->bm1;
if ((bm2->addr << ADDR0_BITS) < a1)
b_start = a1;
else
if ((bm2->addr << ADDR0_BITS) < a2)
b_start = (bm2->addr << ADDR0_BITS);
else
break;
tl_assert(a1 <= b_start && b_start <= a2);
if ((bm2->addr << ADDR0_BITS) + ADDR0_COUNT < a2)
b_end = (bm2->addr << ADDR0_BITS) + ADDR0_COUNT;
else
b_end = a2;
tl_assert(a1 <= b_end && b_end <= a2);
tl_assert(b_start < b_end);
tl_assert((b_start & ADDR0_MASK) <= ((b_end - 1) & ADDR0_MASK));
for (b0 = b_start & ADDR0_MASK; b0 <= ((b_end-1) & ADDR0_MASK); b0++)
{
if (access_type == eLoad)
{
if (bm0_is_set(p1->bm0_w, b0))
{
return True;
}
}
else
{
tl_assert(access_type == eStore);
if (bm0_is_set(p1->bm0_r, b0)
| bm0_is_set(p1->bm0_w, b0))
{
return True;
}
}
}
}
}
return False;
}
Bool bm_load_has_conflict_with(struct bitmap* const bm,
const Addr a1, const Addr a2)
{
return bm_has_conflict_with(bm, a1, a2, eLoad);
}
Bool bm_load_1_has_conflict_with(struct bitmap* const bm, const Addr a1)
{
return bm_aligned_load_has_conflict_with(bm, a1, 1);
}
Bool bm_load_2_has_conflict_with(struct bitmap* const bm, const Addr a1)
{
if ((a1 & 1) == 0)
return bm_aligned_load_has_conflict_with(bm, a1, 2);
else
return bm_has_conflict_with(bm, a1, a1 + 2, eLoad);
}
Bool bm_load_4_has_conflict_with(struct bitmap* const bm, const Addr a1)
{
if ((a1 & 3) == 0)
return bm_aligned_load_has_conflict_with(bm, a1, 4);
else
return bm_has_conflict_with(bm, a1, a1 + 4, eLoad);
}
Bool bm_load_8_has_conflict_with(struct bitmap* const bm, const Addr a1)
{
if ((a1 & 7) == 0)
return bm_aligned_load_has_conflict_with(bm, a1, 8);
else
return bm_has_conflict_with(bm, a1, a1 + 8, eLoad);
}
Bool bm_store_1_has_conflict_with(struct bitmap* const bm, const Addr a1)
{
return bm_aligned_store_has_conflict_with(bm, a1, 1);
}
Bool bm_store_2_has_conflict_with(struct bitmap* const bm, const Addr a1)
{
if ((a1 & 1) == 0)
return bm_aligned_store_has_conflict_with(bm, a1, 2);
else
return bm_has_conflict_with(bm, a1, a1 + 2, eStore);
}
Bool bm_store_4_has_conflict_with(struct bitmap* const bm, const Addr a1)
{
if ((a1 & 3) == 0)
return bm_aligned_store_has_conflict_with(bm, a1, 4);
else
return bm_has_conflict_with(bm, a1, a1 + 4, eStore);
}
Bool bm_store_8_has_conflict_with(struct bitmap* const bm, const Addr a1)
{
if ((a1 & 7) == 0)
return bm_aligned_store_has_conflict_with(bm, a1, 8);
else
return bm_has_conflict_with(bm, a1, a1 + 8, eStore);
}
Bool bm_store_has_conflict_with(struct bitmap* const bm,
const Addr a1, const Addr a2)
{
return bm_has_conflict_with(bm, a1, a2, eStore);
}
/** Return True if the two bitmaps *lhs and *rhs are identical, and false
* if not.
*/
Bool bm_equal(struct bitmap* const lhs, struct bitmap* const rhs)
{
struct bitmap2* bm2l;
struct bitmap2ref* bm2l_ref;
struct bitmap2* bm2r;
const struct bitmap2ref* bm2r_ref;
/* It's not possible to have two independent iterators over the same OSet, */
/* so complain if lhs == rhs. */
tl_assert(lhs != rhs);
VG_(OSetGen_ResetIter)(lhs->oset);
VG_(OSetGen_ResetIter)(rhs->oset);
for ( ; (bm2l_ref = VG_(OSetGen_Next)(lhs->oset)) != 0; )
{
while (bm2l_ref
&& (bm2l = bm2l_ref->bm2)
&& bm2l
&& ! bm_has_any_access(lhs,
bm2l->addr << ADDR0_BITS,
(bm2l->addr + 1) << ADDR0_BITS))
{
bm2l_ref = VG_(OSetGen_Next)(lhs->oset);
}
if (bm2l_ref == 0)
break;
tl_assert(bm2l);
#if 0
VG_(message)(Vg_DebugMsg, "bm_equal: at 0x%lx", bm2l->addr << ADDR0_BITS);
#endif
bm2r_ref = VG_(OSetGen_Next)(rhs->oset);
if (bm2r_ref == 0)
{
#if 0
VG_(message)(Vg_DebugMsg, "bm_equal: no match found");
#endif
return False;
}
bm2r = bm2r_ref->bm2;
tl_assert(bm2r);
tl_assert(bm_has_any_access(rhs,
bm2r->addr << ADDR0_BITS,
(bm2r->addr + 1) << ADDR0_BITS));
if (bm2l != bm2r
&& (bm2l->addr != bm2r->addr
|| VG_(memcmp)(&bm2l->bm1, &bm2r->bm1, sizeof(bm2l->bm1)) != 0))
{
#if 0
VG_(message)(Vg_DebugMsg, "bm_equal: rhs 0x%lx -- returning false",
bm2r->addr << ADDR0_BITS);
#endif
return False;
}
}
bm2r = VG_(OSetGen_Next)(rhs->oset);
if (bm2r)
{
tl_assert(bm_has_any_access(rhs,
bm2r->addr << ADDR0_BITS,
(bm2r->addr + 1) << ADDR0_BITS));
#if 0
VG_(message)(Vg_DebugMsg,
"bm_equal: remaining rhs 0x%lx -- returning false",
bm2r->addr << ADDR0_BITS);
#endif
return False;
}
return True;
}
void bm_swap(struct bitmap* const bm1, struct bitmap* const bm2)
{
OSet* const tmp = bm1->oset;
bm1->oset = bm2->oset;
bm2->oset = tmp;
}
/** Merge bitmaps *lhs and *rhs into *lhs. */
void bm_merge2(struct bitmap* const lhs,
struct bitmap* const rhs)
{
struct bitmap2* bm2l;
struct bitmap2ref* bm2l_ref;
struct bitmap2* bm2r;
const struct bitmap2ref* bm2r_ref;
VG_(OSetGen_ResetIter)(rhs->oset);
for ( ; (bm2r_ref = VG_(OSetGen_Next)(rhs->oset)) != 0; )
{
bm2r = bm2r_ref->bm2;
bm2l_ref = VG_(OSetGen_Lookup)(lhs->oset, &bm2r->addr);
if (bm2l_ref)
{
bm2l = bm2l_ref->bm2;
if (bm2l != bm2r)
{
if (bm2l->refcnt > 1)
bm2l = bm2_make_exclusive(lhs, bm2l_ref);
bm2_merge(bm2l, bm2r);
}
}
else
{
bm2_insert_addref(lhs, bm2r);
}
}
}
/**
* Report whether there are any RW / WR / WW patterns in lhs and rhs.
* @param lhs First bitmap.
* @param rhs Bitmap to be compared with lhs.
* @return !=0 if there are data races, == 0 if there are none.
*/
int bm_has_races(struct bitmap* const lhs,
struct bitmap* const rhs)
{
VG_(OSetGen_ResetIter)(lhs->oset);
VG_(OSetGen_ResetIter)(rhs->oset);
for (;;)
{
const struct bitmap2ref* bm2l_ref;
const struct bitmap2ref* bm2r_ref;
const struct bitmap2* bm2l;
const struct bitmap2* bm2r;
const struct bitmap1* bm1l;
const struct bitmap1* bm1r;
unsigned k;
bm2l_ref = VG_(OSetGen_Next)(lhs->oset);
bm2l = bm2l_ref->bm2;
bm2r_ref = VG_(OSetGen_Next)(rhs->oset);
bm2r = bm2r_ref->bm2;
while (bm2l && bm2r && bm2l->addr != bm2r->addr)
{
if (bm2l->addr < bm2r->addr)
bm2l = (bm2l_ref = VG_(OSetGen_Next)(lhs->oset))->bm2;
else
bm2r = (bm2r_ref = VG_(OSetGen_Next)(rhs->oset))->bm2;
}
if (bm2l == 0 || bm2r == 0)
break;
bm1l = &bm2l->bm1;
bm1r = &bm2r->bm1;
for (k = 0; k < BITMAP1_UWORD_COUNT; k++)
{
unsigned b;
for (b = 0; b < BITS_PER_UWORD; b++)
{
UWord const access_mask
= ((bm1l->bm0_r[k] & bm0_mask(b)) ? LHS_R : 0)
| ((bm1l->bm0_w[k] & bm0_mask(b)) ? LHS_W : 0)
| ((bm1r->bm0_r[k] & bm0_mask(b)) ? RHS_R : 0)
| ((bm1r->bm0_w[k] & bm0_mask(b)) ? RHS_W : 0);
Addr const a = MAKE_ADDRESS(bm2l->addr, k * BITS_PER_UWORD | b);
if (HAS_RACE(access_mask) && ! drd_is_suppressed(a, a + 1))
{
return 1;
}
}
}
}
return 0;
}
void bm_print(struct bitmap* const bm)
{
struct bitmap2* bm2;
struct bitmap2ref* bm2ref;
VG_(OSetGen_ResetIter)(bm->oset);
for ( ; (bm2ref = VG_(OSetGen_Next)(bm->oset)) != 0; )
{
const struct bitmap1* bm1;
unsigned b;
bm2 = bm2ref->bm2;
bm1 = &bm2->bm1;
for (b = 0; b < ADDR0_COUNT; b++)
{
const Addr a = (bm2->addr << ADDR0_BITS) | b;
const Bool r = bm0_is_set(bm1->bm0_r, b) != 0;
const Bool w = bm0_is_set(bm1->bm0_w, b) != 0;
if (r || w)
{
VG_(printf)("0x%08lx %c %c\n",
a,
w ? 'W' : ' ',
r ? 'R' : ' ');
}
}
}
}
ULong bm_get_bitmap_creation_count(void)
{
return s_bitmap_creation_count;
}
ULong bm_get_bitmap2_node_creation_count(void)
{
return s_bitmap2_node_creation_count;
}
ULong bm_get_bitmap2_creation_count(void)
{
return s_bitmap2_creation_count;
}
/** Allocate and initialize a second level bitmap. */
static struct bitmap2* bm2_new(const UWord a1)
{
struct bitmap2* bm2;
bm2 = VG_(malloc)("drd.bitmap.bm2n.1", sizeof(*bm2));
bm2->addr = a1;
bm2->refcnt = 1;
s_bitmap2_creation_count++;
return bm2;
}
/** Make a copy of a shared second level bitmap such that the copy can be
* modified.
*
* @param a1 client address shifted right by ADDR0_BITS.
* @param bm bitmap pointer.
*/
static
struct bitmap2* bm2_make_exclusive(struct bitmap* const bm,
struct bitmap2ref* const bm2ref)
{
UWord a1;
struct bitmap2* bm2;
struct bitmap2* bm2_copy;
tl_assert(bm);
tl_assert(bm2ref);
bm2 = bm2ref->bm2;
tl_assert(bm2);
tl_assert(bm2->refcnt > 1);
bm2->refcnt--;
tl_assert(bm2->refcnt >= 1);
a1 = bm2->addr;
bm2_copy = bm2_new(a1);
tl_assert(bm2_copy);
tl_assert(bm2_copy->addr == a1);
tl_assert(bm2_copy->refcnt == 1);
VG_(memcpy)(&bm2_copy->bm1, &bm2->bm1, sizeof(bm2->bm1));
bm2ref->bm2 = bm2_copy;
bm_update_cache(bm, a1, bm2_copy);
return bm2_copy;
}
static void bm2_merge(struct bitmap2* const bm2l,
const struct bitmap2* const bm2r)
{
unsigned k;
tl_assert(bm2l);
tl_assert(bm2r);
tl_assert(bm2l->addr == bm2r->addr);
tl_assert(bm2l->refcnt == 1);
for (k = 0; k < BITMAP1_UWORD_COUNT; k++)
{
bm2l->bm1.bm0_r[k] |= bm2r->bm1.bm0_r[k];
}
for (k = 0; k < BITMAP1_UWORD_COUNT; k++)
{
bm2l->bm1.bm0_w[k] |= bm2r->bm1.bm0_w[k];
}
}