blob: 6e4e7dc39fcabfb64e2fb6489c88d0c3d804ed8a [file] [log] [blame]
/* HOW TO COMPILE:
* 64bit build:
* gcc -Winline -Wall -g -O -mregnames -maltivec -m64
*/
/*
* test_isa_3_0.c:
* Copyright (C) 2016-2017 Carl Love <cel@us.ibm.com>
* Copyright (C) 2016-2017 Will Schmidt <will_schmidt@vnet.ibm.com>
*
* This testfile contains tests for the ISA 3.0 instructions.
* The framework of this test file was based on the framework
* of the jm-insns.c testfile, whose original author was
* Jocelyn Mayer.
*/
/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License V2
* as published by the Free Software Foundation
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/*
* Theory of operations:
* a few registers are reserved for the test program:
* r14...r18
* f14...f18
* - pre-load test values in r14 through r17
* - patch the test opcode if any immediate operands are
* required
* - execute the tested opcode.
* CR and FPSCR are cleared before every test.
* results in {r,f}17
* check FPSCR for floating point operations.
*/
/*
* Operation details
* -----------------
* The 'test' functions (via all_tests[]) are wrappers of
* single __asm__ instructions
*
* The 'loops' (e.g. int_loops) do the actual work:
* - loops over as many arguments as the instruction needs (regs | imms)
* - sets up the environment (reset cr, assign src regs...)
* - maybe modifies the asm instruction to test different immediate args
* - call the test function
* - retrieve relevant register data (rD,cr,...)
* - prints argument and result data.
*
* all_tests[i] holds instruction tests
* - of which each holds: {instn_test_arr[], description, flags}
*
* flags hold 3 instruction classifiers: {family, type, arg_type}
*
* // The main test loop:
* do_tests( user_ctl_flags ) {
* foreach(curr_test = all_test[i]) {
*
* // flags are used to control what tests are run:
* if (curr_test->flags && !user_ctl_flags)
* continue;
*
* // a 'loop_family_arr' is chosen based on the 'family' flag...
* switch(curr_test->flags->family) {
* case x: loop_family_arr = int_loops;
* ...
* }
*
* // ...and the actual test_loop to run is found by indexing into
* // the loop_family_arr with the 'arg_type' flag:
* test_loop = loop_family[curr_test->flags->arg_type]
*
* // finally, loop over all instn tests for this test:
* foreach (instn_test = curr_test->instn_test_arr[i]) {
*
* // and call the test_loop with the current instn_test function,name
* test_loop( instn_test->func, instn_test->name )
* }
* }
* }
*/
#include <stdio.h>
#include <stdint.h>
/* This test is only valid on machines that support IBM POWER ISA 3.0. */
#ifdef HAS_ISA_3_00
#include <assert.h>
#include <ctype.h> // isspace
#include <stdlib.h>
#include <string.h>
#include <unistd.h> // getopt
#include <altivec.h> // vector
#undef DEBUG_VECTOR_PERMUTE
static int verbose = 0;
#include "../ppc64/ppc64_helpers.h" // SET_CR() and friends.
#define VERBOSE_FUNCTION_CALLOUT \
if (verbose) \
printf("Test Harness Function: %s\n", __FUNCTION__);
/* generic out-of-range reporting.
* Note: results are typically 'undefined' in these cases, so rather than
* pushing through and getting potentially random results, avoid the check.
* The caller should suppress output when insert_extract_error is set. */
#define vinsertextract_err \
insert_extract_error = 1; \
if (verbose > 1) \
printf("Expected error - index out of range in %s (%d)\n", \
__FUNCTION__, x_index);
#define MAX(x, y) (x > y ? x : y)
/* Used in do_tests, indexed by flags->nb_args
Elements correspond to enum test_flags::num args
*/
/* XXXX these must all be callee-save regs! */
register HWord_t r14 __asm__ ("r14");
register HWord_t r15 __asm__ ("r15");
register HWord_t r16 __asm__ ("r16");
register HWord_t r17 __asm__ ("r17");
register double f14 __asm__ ("fr14");
register double f15 __asm__ ("fr15");
/* globals used for vector tests */
static vector unsigned long vec_xa, vec_xb, vec_xc, vec_xt;
/* globals for the condition register fields. These are used to
* capture the condition register values immediately after the
* instruction under test is tested.
* This is to help prevent other test overhead, switch statements,
* compares, what-not from interfering.
*/
unsigned long local_cr;
unsigned long local_fpscr;
unsigned long local_xer;
volatile unsigned int cr_value;
/* global for holding the DFP values */
dfp_val_t dfp_value;
/* individual instruction tests */
typedef void (*test_func_t) (void);
struct test_list_t {
test_func_t func;
const char *name;
};
typedef struct test_list_t test_list_t;
/* global variable, used to pass shift info down to the test functions.*/
volatile int x_shift;
/* Indicator for DCMX (Data Class Mask) matches. */
volatile int dcmx_match;
/* Error indicator to determine of the UIN (Unsigned Immediate) field
* from insert/extract was out of range */
volatile int insert_extract_error;
/* vector splat value */
volatile int x_splat;
volatile int dfp_significance;
/* global variable, ... vector insert functions. */
volatile int x_index;
/* global variable, used to pass shift info down to the test functions.*/
/* Also used to control DRM,RM values for mffs* functions. */
volatile int x_shift;
/* groups of instruction tests, calling individual tests */
typedef void (*test_group_t) (const char *name, test_func_t func,
unsigned int test_flags);
enum test_flags {
/* Nb arguments */
PPC_ONE_ARG = 0x00000001,
PPC_TWO_ARGS = 0x00000002,
PPC_THREE_ARGS = 0x00000003,
PPC_FOUR_ARGS = 0x00000004,
PPC_COMPARE_ARGS = 0x00000005,
PPC_LD_ARGS = 0x00000006,
PPC_ST_ARGS = 0x00000007,
PPC_ONE_IMM = 0x00000008,
PPC_NB_ARGS_MASK = 0x0000000F,
/* Type */
PPC_ARITH = 0x00000100,
PPC_LOGICAL = 0x00000200,
PPC_COMPARE = 0x00000300,
PPC_LDST = 0x00000400,
PPC_POPCNT = 0x00000500,
PPC_INSERTEXTRACT = 0x00000600,
PPC_PERMUTE = 0x00000700,
PPC_ROUND = 0x00000800,
PPC_TYPE_MASK = 0x00000F00,
/* Family */
PPC_INTEGER = 0x00010000,
PPC_ALTIVEC = 0x00030000,
PPC_ALTIVEC_QUAD = 0x00040000,
PPC_ALTIVEC_DOUBLE = 0x00050000,
PPC_DFP = 0x00060000,
PPC_BCD = 0x00070000,
PPC_MISC = 0x00080000,
PPC_NO_OP = 0x00090000,
PPC_PC_IMMEDIATE = 0x000A0000,
PPC_MFFS = 0x000B0000,
PPC_FAMILY_MASK = 0x000F0000,
/* Flags: these may be combined, so use separate bit-fields. */
PPC_CR = 0x01000000,
PPC_XER_CA = 0x02000000,
};
static void test_cnttzw (void)
{
__asm__ __volatile__ ("cnttzw 17, 14");
}
static void test_cnttzd (void)
{
__asm__ __volatile__ ("cnttzd 17, 14");
}
static void test_dotted_cnttzw (void)
{
__asm__ __volatile__ ("cnttzw. 17, 14");
}
static void test_dotted_cnttzd (void)
{
__asm__ __volatile__ ("cnttzd. 17, 14");
}
static test_list_t testgroup_logical_one[] = {
{ &test_cnttzw , "cnttzw" },
{ &test_cnttzd , "cnttzd" },
{ &test_dotted_cnttzw, "cnttzw." },
{ &test_dotted_cnttzd, "cnttzd." },
{ NULL , NULL },
};
static void test_modsw (void)
{
__asm__ __volatile__ ("modsw 17, 14, 15");
}
static void test_moduw (void)
{
__asm__ __volatile__ ("moduw 17, 14, 15");
}
static void test_modsd (void)
{
__asm__ __volatile__ ("modsd 17, 14, 15");
}
static void test_modud (void)
{
__asm__ __volatile__ ("modud 17, 14, 15");
}
static void test_addex(void) {
/* addex RT,RA,RB,CY # at the time of this writing, only CY=0 is valid. CY values of 1,2,3 are reserved. */
__asm__ __volatile__ ("addex %0, %1, %2, 0" : "=r" (r17) : "r" (r14), "r" (r15) );
}
static test_list_t testgroup_ia_ops_two[] = {
{ &test_modsw, "modsw" },
{ &test_moduw, "moduw" },
{ &test_modsd, "modsd" },
{ &test_modud, "modud" },
//{ &test_addex, "addex" },
{ NULL , NULL },
};
static void test_dotted_extswsli (void)
{
switch(x_shift) {
case SH_0:
__asm__ __volatile__ ("extswsli. %0, %1, %2" : "=r" (r17) : "r" (r14), "i" (SH_0) );
break;
case SH_1:
__asm__ __volatile__ ("extswsli. %0, %1, %2" : "=r" (r17) : "r" (r14), "i" (SH_1) );
break;
case SH_2:
__asm__ __volatile__ ("extswsli. %0, %1, %2" : "=r" (r17) : "r" (r14), "i" (SH_2) );
break;
case SH_3:
__asm__ __volatile__ ("extswsli. %0, %1, %2" : "=r" (r17) : "r" (r14), "i" (SH_3) );
break;
default:
printf("Unhandled shift value for extswsli. %d\n", x_shift);
}
}
static void test_extswsli (void)
{
switch(x_shift) {
case SH_0:
__asm__ __volatile__ ("extswsli %0, %1, %2" : "=r" (r17) : "r" (r14), "i"(SH_0));
break;
case SH_1:
__asm__ __volatile__ ("extswsli %0, %1, %2" : "=r" (r17) : "r" (r14), "i"(SH_1));
break;
case SH_2:
__asm__ __volatile__ ("extswsli %0, %1, %2" : "=r" (r17) : "r" (r14), "i"(SH_2));
break;
case SH_3:
__asm__ __volatile__ ("extswsli %0, %1, %2" : "=r" (r17) : "r" (r14), "i"(SH_3));
break;
default:
printf("Unhandled shift value for extswsli %d\n", x_shift);
}
}
static test_list_t testgroup_shifted_one[] = {
{ &test_extswsli , "extswsli " },
{ &test_dotted_extswsli, "extswsli." },
{ NULL , NULL },
};
static void test_maddhd (void)
{
__asm__ __volatile__ ("maddhd 17, 14, 15, 16");
}
static void test_maddhdu (void)
{
__asm__ __volatile__ ("maddhdu 17, 14, 15, 16");
}
static void test_maddld (void)
{
__asm__ __volatile__ ("maddld 17, 14, 15, 16");
}
static test_list_t testgroup_three_args[] = {
{ &test_maddhd , "maddhd " },
{ &test_maddhdu, "maddhdu" },
{ &test_maddld , "maddld " },
{ NULL , NULL },
};
/* VSX vector permutes. */
static void test_xxperm (void)
{
__asm__ __volatile__ ("xxperm %x0, %x1, %x2" : "+wa" (vec_xt): "wa" (vec_xa), "wa" (vec_xb));
}
/* VSX vector permute, right indexed. */
static void test_xxpermr (void)
{
__asm__ __volatile__ ("xxpermr %x0, %x1, %x2" : "+wa" (vec_xt): "wa" (vec_xa), "wa" (vec_xb));
}
static test_list_t testgroup_vsx_xxpermute[] = {
{ &test_xxperm , "xxperm" },
{ &test_xxpermr, "xxpermr" },
{ NULL , NULL },
};
static void test_vabsdub(void) {
__asm__ __volatile__ ("vabsdub %0, %1, %2" : "+v" (vec_xt): "v" (vec_xa), "v" (vec_xb));
}
static void test_vabsduh(void) {
__asm__ __volatile__ ("vabsduh %0, %1, %2" : "+v" (vec_xt): "v" (vec_xa), "v" (vec_xb));
}
static void test_vabsduw(void) {
__asm__ __volatile__ ("vabsduw %0, %1, %2" : "+v" (vec_xt): "v" (vec_xa), "v" (vec_xb));
}
static void test_vcmpneb(void) {
__asm__ __volatile__ ("vcmpneb %0, %1, %2" : "+v" (vec_xt): "v" (vec_xa), "v" (vec_xb));
}
static void test_dotted_vcmpneb(void) {
__asm__ __volatile__ ("vcmpneb. %0, %1, %2" : "+v" (vec_xt): "v" (vec_xa), "v" (vec_xb));
}
static void test_vcmpnezb(void) {
__asm__ __volatile__ ("vcmpnezb %0, %1, %2" : "+v" (vec_xt): "v" (vec_xa), "v" (vec_xb));
}
static void test_dotted_vcmpnezb(void) {
__asm__ __volatile__ ("vcmpnezb. %0, %1, %2" : "+v" (vec_xt): "v" (vec_xa), "v" (vec_xb));
}
static void test_vcmpneh(void) {
__asm__ __volatile__ ("vcmpneh %0, %1, %2" : "+v" (vec_xt): "v" (vec_xa), "v" (vec_xb));
}
static void test_dotted_vcmpneh(void) {
__asm__ __volatile__ ("vcmpneh. %0, %1, %2" : "+v" (vec_xt): "v" (vec_xa), "v" (vec_xb));
}
static void test_vcmpnezh(void) {
__asm__ __volatile__ ("vcmpnezh %0, %1, %2" : "+v" (vec_xt): "v" (vec_xa), "v" (vec_xb));
}
static void test_dotted_vcmpnezh(void) {
__asm__ __volatile__ ("vcmpnezh. %0, %1, %2" : "+v" (vec_xt): "v" (vec_xa), "v" (vec_xb));
}
static void test_vcmpnew(void) {
__asm__ __volatile__ ("vcmpnew %0, %1, %2" : "+v" (vec_xt): "v" (vec_xa), "v" (vec_xb));
}
static void test_dotted_vcmpnew(void) {
__asm__ __volatile__ ("vcmpnew. %0, %1, %2" : "+v" (vec_xt): "v" (vec_xa), "v" (vec_xb));
}
static void test_vcmpnezw(void) {
__asm__ __volatile__ ("vcmpnezw %0, %1, %2" : "+v" (vec_xt): "v" (vec_xa), "v" (vec_xb));
}
static void test_dotted_vcmpnezw(void) {
__asm__ __volatile__ ("vcmpnezw. %0, %1, %2" : "+v" (vec_xt): "v" (vec_xa), "v" (vec_xb));
}
static void test_vrlwmi(void) {
__asm__ __volatile__ ("vrlwmi %0, %1, %2" : "+v" (vec_xt): "v" (vec_xa), "v" (vec_xb));
}
static void test_vrldmi(void) {
__asm__ __volatile__ ("vrldmi %0, %1, %2" : "+v" (vec_xt): "v" (vec_xa), "v" (vec_xb));
}
static void test_vbpermd(void) {
/* vector bit permute doubleword */
__asm__ __volatile__ ("vbpermd %0, %1, %2 " : "+v" (vec_xt): "v" (vec_xa), "v" (vec_xb));
}
static void test_vrlwnm(void) {
__asm__ __volatile__ ("vrlwnm %0, %1, %2" : "+v" (vec_xt): "v" (vec_xa), "v" (vec_xb));
}
static void test_vrldnm(void) {
__asm__ __volatile__ ("vrldnm %0, %1, %2" : "+v" (vec_xt): "v" (vec_xa), "v" (vec_xb));
}
static void test_xviexpdp(void) {
__asm__ __volatile__ ("xviexpdp %0, %1, %2 " : "+wa" (vec_xt): "wa" (vec_xa), "wa" (vec_xb));
}
static void test_xviexpsp(void) {
__asm__ __volatile__ ("xviexpsp %0, %1, %2 " : "+wa" (vec_xt): "wa" (vec_xa), "wa" (vec_xb));
}
static test_list_t testgroup_vsx_absolute[] = {
{ &test_vabsdub , "vabsdub" },
{ &test_vabsduh , "vabsduh" },
{ &test_vabsduw , "vabsduw" },
{ &test_vcmpneb , "vcmpneb" },
{ &test_dotted_vcmpneb , "vcmpneb." },
{ &test_vcmpnezb , "vcmpnezb" },
{ &test_dotted_vcmpnezb, "vcmpnezb." },
{ &test_vcmpneh , "vcmpneh" },
{ &test_dotted_vcmpneh , "vcmpneh." },
{ &test_vcmpnezh , "vcmpnezh" },
{ &test_dotted_vcmpnezh, "vcmpnezh." },
{ &test_vcmpnew , "vcmpnew" },
{ &test_dotted_vcmpnew , "vcmpnew." },
{ &test_vcmpnezw , "vcmpnezw" },
{ &test_dotted_vcmpnezw, "vcmpnezw." },
{ &test_vrlwnm , "vrlwnm" },
{ &test_vrlwmi , "vrlwmi" },
{ &test_vrldnm , "vrldnm" },
{ &test_vrldmi , "vrldmi" },
{ &test_vbpermd , "vbpermd" },
{ &test_xviexpdp , "xviexpdp" },
{ &test_xviexpsp , "xviexpsp" },
{ NULL , NULL },
};
static void test_vpermr(void)
{ /* vector permute right-indexed */
__asm__ __volatile__ ("vpermr %0, %1, %2, %3 " : "+v" (vec_xt): "v" (vec_xa), "v" (vec_xb), "v" (vec_xc));
}
static void test_vmsumudm(void)
{ /* vector multiply-sum unsigned byte modulo. */
__asm__ __volatile__ ("vmsumudm %0, %1, %2, %3 " : "+v" (vec_xt): "v" (vec_xa), "v" (vec_xb), "v" (vec_xc));
}
/* vector, 3->1 unique; four arguments. xt, xa, xb, xc (xc = permute) */
static test_list_t testgroup_vector_four[] = {
{ &test_vpermr, "vpermr" },
// { &test_vmsumudm, "vmsumudm" },
{ NULL , NULL },
};
/* vector insert instructions */
#define VINSERTB(X) __asm__ __volatile__ ("vinsertb %0, %1, %2" : "+v" (vec_xt) : "v" (vec_xb), "i"(X));
#define VINSERTH(X) __asm__ __volatile__ ("vinserth %0, %1, %2" : "+v" (vec_xt) : "v" (vec_xb), "i"(X));
#define VINSERTW(X) __asm__ __volatile__ ("vinsertw %0, %1, %2" : "+v" (vec_xt) : "v" (vec_xb), "i"(X));
#define VINSERTD(X) __asm__ __volatile__ ("vinsertd %0, %1, %2" : "+v" (vec_xt) : "v" (vec_xb), "i"(X));
#define VEXTRACTUB(X) __asm__ __volatile__ ("vextractub %0, %1, %2" : "+v" (vec_xt) : "v" (vec_xb), "i"(X));
#define VEXTRACTUH(X) __asm__ __volatile__ ("vextractuh %0, %1, %2" : "+v" (vec_xt) : "v" (vec_xb), "i"(X));
#define VEXTRACTUW(X) __asm__ __volatile__ ("vextractuw %0, %1, %2" : "+v" (vec_xt) : "v" (vec_xb), "i"(X));
#define VEXTRACTD(X) __asm__ __volatile__ ("vextractd %0, %1, %2" : "+v" (vec_xt) : "v" (vec_xb), "i"(X));
#define XXINSERTW(X) __asm__ __volatile__ ("xxinsertw %0, %1, %2" : "+wa" (vec_xt) : "wa" (vec_xb), "i"(X));
#define XXEXTRACTUW(X) __asm__ __volatile__ ("xxextractuw %0, %1, %2" : "+wa" (vec_xt) : "wa" (vec_xb), "i"(X));
static void test_vinsertb (void)
{
switch(x_index) {
case 0: VINSERTB( 0); break;
case 1: VINSERTB( 1); break;
case 2: VINSERTB( 2); break;
case 3: VINSERTB( 3); break;
case 4: VINSERTB( 4); break;
case 5: VINSERTB( 5); break;
case 6: VINSERTB( 6); break;
case 7: VINSERTB( 7); break;
case 8: VINSERTB( 8); break;
case 9: VINSERTB( 9); break;
case 10: VINSERTB(10); break;
case 11: VINSERTB(11); break;
case 12: VINSERTB(12); break;
case 13: VINSERTB(13); break;
case 14: VINSERTB(14); break;
case 15: VINSERTB(15); break;
default:
vinsertextract_err;
break;
}
}
static void test_vinserth (void)
{
switch(x_index) {
case 0: VINSERTH(0); break;
case 1: VINSERTH(1); break;
case 2: VINSERTH(2); break;
case 3: VINSERTH(3); break;
case 4: VINSERTH(4); break;
case 5: VINSERTH(5); break;
case 6: VINSERTH(6); break;
case 7: VINSERTH(7); break;
case 8: VINSERTH(8); break;
case 9: VINSERTH(9); break;
case 10: VINSERTH(10); break;
case 11: VINSERTH(11); break;
case 12: VINSERTH(12); break;
case 13: VINSERTH(13); break;
case 14: VINSERTH(14); break;
default:
vinsertextract_err;
break;
}
}
static void test_vinsertw (void)
{
switch(x_index) {
case 0: VINSERTW(0); break;
case 1: VINSERTW(1); break;
case 2: VINSERTW(2); break;
case 3: VINSERTW(3); break;
case 4: VINSERTW(4); break;
case 5: VINSERTW(5); break;
case 6: VINSERTW(6); break;
case 7: VINSERTW(7); break;
case 8: VINSERTW(8); break;
case 9: VINSERTW(9); break;
case 10: VINSERTW(10); break;
case 11: VINSERTW(11); break;
case 12: VINSERTW(12); break;
default:
vinsertextract_err;
break;
}
}
static void test_vinsertd (void)
{
switch(x_index) {
case 0: VINSERTD(0); break;
case 1: VINSERTD(1); break;
case 2: VINSERTD(2); break;
case 3: VINSERTD(3); break;
case 4: VINSERTD(4); break;
case 5: VINSERTD(5); break;
case 6: VINSERTD(6); break;
case 7: VINSERTD(7); break;
case 8: VINSERTD(8); break;
default:
vinsertextract_err;
break;
}
}
/* extracts */
static void test_vextractub (void)
{
switch(x_index) {
case 0: VEXTRACTUB( 0); break;
case 1: VEXTRACTUB( 1); break;
case 2: VEXTRACTUB( 2); break;
case 3: VEXTRACTUB( 3); break;
case 4: VEXTRACTUB( 4); break;
case 5: VEXTRACTUB( 5); break;
case 6: VEXTRACTUB( 6); break;
case 7: VEXTRACTUB( 7); break;
case 8: VEXTRACTUB( 8); break;
case 9: VEXTRACTUB( 9); break;
case 10: VEXTRACTUB(10); break;
case 11: VEXTRACTUB(11); break;
case 12: VEXTRACTUB(12); break;
case 13: VEXTRACTUB(13); break;
case 14: VEXTRACTUB(14); break;
case 15: VEXTRACTUB(15); break;
default:
vinsertextract_err;
break;
}
}
static void test_vextractuh (void)
{
switch(x_index) {
case 0: VEXTRACTUH( 0); break;
case 1: VEXTRACTUH( 1); break;
case 2: VEXTRACTUH( 2); break;
case 3: VEXTRACTUH( 3); break;
case 4: VEXTRACTUH( 4); break;
case 5: VEXTRACTUH( 5); break;
case 6: VEXTRACTUH( 6); break;
case 7: VEXTRACTUH( 7); break;
case 8: VEXTRACTUH( 8); break;
case 9: VEXTRACTUH( 9); break;
case 10: VEXTRACTUH(10); break;
case 11: VEXTRACTUH(11); break;
case 12: VEXTRACTUH(12); break;
case 13: VEXTRACTUH(13); break;
case 14: VEXTRACTUH(14); break;
default:
vinsertextract_err;
break;
}
}
static void test_vextractuw (void)
{
switch(x_index) {
case 0: VEXTRACTUW( 0); break;
case 1: VEXTRACTUW( 1); break;
case 2: VEXTRACTUW( 2); break;
case 3: VEXTRACTUW( 3); break;
case 4: VEXTRACTUW( 4); break;
case 5: VEXTRACTUW( 5); break;
case 6: VEXTRACTUW( 6); break;
case 7: VEXTRACTUW( 7); break;
case 8: VEXTRACTUW( 8); break;
case 9: VEXTRACTUW( 9); break;
case 10: VEXTRACTUW(10); break;
case 11: VEXTRACTUW(11); break;
default:
vinsertextract_err;
break;
}
}
static void test_vextractd (void)
{
switch(x_index) {
case 0: VEXTRACTD( 0); break;
case 1: VEXTRACTD( 1); break;
case 2: VEXTRACTD( 2); break;
case 3: VEXTRACTD( 3); break;
case 4: VEXTRACTD( 4); break;
case 5: VEXTRACTD( 5); break;
case 6: VEXTRACTD( 6); break;
case 7: VEXTRACTD( 7); break;
case 8: VEXTRACTD( 8); break;
default:
vinsertextract_err;
break;
}
}
static void test_xxinsertw (void)
{
switch(x_index) {
case 0: XXINSERTW( 0); break;
case 1: XXINSERTW( 1); break;
case 2: XXINSERTW( 2); break;
case 3: XXINSERTW( 3); break;
case 4: XXINSERTW( 4); break;
case 5: XXINSERTW( 5); break;
case 6: XXINSERTW( 6); break;
case 7: XXINSERTW( 7); break;
case 8: XXINSERTW( 8); break;
case 9: XXINSERTW( 9); break;
case 10: XXINSERTW(10); break;
case 11: XXINSERTW(11); break;
case 12: XXINSERTW(12); break;
default:
vinsertextract_err;
break;
}
}
static void test_xxextractuw (void)
{
switch(x_index) {
case 0: XXEXTRACTUW( 0); break;
case 1: XXEXTRACTUW( 1); break;
case 2: XXEXTRACTUW( 2); break;
case 3: XXEXTRACTUW( 3); break;
case 4: XXEXTRACTUW( 4); break;
case 5: XXEXTRACTUW( 5); break;
case 6: XXEXTRACTUW( 6); break;
case 7: XXEXTRACTUW( 7); break;
case 8: XXEXTRACTUW( 8); break;
case 9: XXEXTRACTUW( 9); break;
case 10: XXEXTRACTUW(10); break;
case 11: XXEXTRACTUW(11); break;
case 12: XXEXTRACTUW(12); break;
default:
vinsertextract_err;
break;
}
}
static test_list_t testgroup_vector_inserts[] = {
{ &test_vinsertb , "vinsertb " },
{ &test_vinserth , "vinserth " },
{ &test_vinsertw , "vinsertw " },
{ &test_vinsertd , "vinsertd " },
{ &test_vextractub , "vextractub " },
{ &test_vextractuh , "vextractuh " },
{ &test_vextractuw , "vextractuw " },
{ &test_vextractd , "vextractd " },
{ &test_xxinsertw , "xxinsertw " },
{ &test_xxextractuw, "xxextractuw" },
{ NULL , NULL },
};
static void test_xxspltib(void)
{ /* vector splat byte */
switch(x_splat) {
case SPLAT0: __asm__ __volatile__ ("xxspltib %x0, %1 " : "=wa"(vec_xt) : "i"(SPLAT0)); break;
case SPLAT1: __asm__ __volatile__ ("xxspltib %x0, %1 " : "=wa"(vec_xt) : "i"(SPLAT1)); break;
case SPLAT2: __asm__ __volatile__ ("xxspltib %x0, %1 " : "=wa"(vec_xt) : "i"(SPLAT2)); break;
case SPLAT3: __asm__ __volatile__ ("xxspltib %x0, %1 " : "=wa"(vec_xt) : "i"(SPLAT3)); break;
case SPLAT4: __asm__ __volatile__ ("xxspltib %x0, %1 " : "=wa"(vec_xt) : "i"(SPLAT4)); break;
default:
printf("Unhandled splat value for %s %d\n", __FUNCTION__, x_splat);
}
};
static test_list_t testgroup_vector_immediate[] = {
{ &test_xxspltib, "xxspltib" },
{ NULL , NULL },
};
/* vector reverse bytes ... */
static void test_xxbrh(void)
{ /* vector reverse byte halfword*/
__asm__ __volatile__ ("xxbrh %x0, %x1 " : "=wa" (vec_xt) : "wa" (vec_xa));
}
static void test_xxbrw(void)
{ /* vector reverse byte word*/
__asm__ __volatile__ ("xxbrw %x0, %x1 " : "=wa" (vec_xt) : "wa" (vec_xa));
}
static void test_xxbrd(void)
{ /* vector reverse byte double*/
__asm__ __volatile__ ("xxbrd %x0, %x1 " : "=wa" (vec_xt) : "wa" (vec_xa));
}
static void test_xxbrq(void)
{ /* vector reverse byte */
__asm__ __volatile__ ("xxbrq %x0, %x1 " : "=wa" (vec_xt) : "wa" (vec_xa));
}
static void test_xvxexpdp(void) {
__asm__ __volatile__ ("xvxexpdp %x0, %x1 " : "=wa" (vec_xt) : "wa" (vec_xa));
}
static void test_xvxexpsp(void) {
__asm__ __volatile__ ("xvxexpsp %x0, %x1 " : "=wa" (vec_xt) : "wa" (vec_xa));
}
static void test_xvxsigdp(void) {
__asm__ __volatile__ ("xvxsigdp %x0, %x1 " : "=wa" (vec_xt) : "wa" (vec_xa));
}
static void test_xvxsigsp(void) {
__asm__ __volatile__ ("xvxsigsp %x0, %x1 " : "=wa" (vec_xt) : "wa" (vec_xa));
}
static void test_xsxexpdp(void) {
__asm__ __volatile__ ("xsxexpdp %x0, %x1 " : "=wa" (vec_xt) : "wa" (vec_xa));
}
static void test_xsxsigdp(void) {
__asm__ __volatile__ ("xsxsigdp %x0, %x1 " : "=wa" (vec_xt) : "wa" (vec_xa));
}
static test_list_t testgroup_vector_logical_one[] = {
{ &test_xxbrh , "xxbrh" },
{ &test_xxbrw , "xxbrw" },
{ &test_xxbrd , "xxbrd" },
{ &test_xxbrq , "xxbrq" },
{ &test_xvxexpdp, "xvxexpdp" },
{ &test_xvxexpsp, "xvxexpsp" },
{ &test_xvxsigdp, "xvxsigdp" },
{ &test_xvxsigsp, "xvxsigsp" },
{ &test_xsxexpdp, "xsxexpdp" },
{ &test_xsxsigdp, "xsxsigdp" },
{ NULL , NULL },
};
static void test_lxvx(void) {
__asm__ __volatile__ ("lxvx %x0, 14, 15" : "=wa" (vec_xt));
}
static void test_lxvwsx(void) {
__asm__ __volatile__ ("lxvwsx %x0, 14, 15" : "=wa" (vec_xt));
}
static void test_lxvh8x(void) {
__asm__ __volatile__ ("lxvh8x %x0, 14, 15" : "=wa" (vec_xt));
}
static void test_lxvb16x(void) {
__asm__ __volatile__ ("lxvb16x %x0, 14, 15" : "=wa" (vec_xt));
}
static void test_stxvx(void) {
__asm__ __volatile__ ("stxvx %x0, 14, 15" : "=wa" (vec_xt));
}
static void test_stxvh8x(void) {
__asm__ __volatile__ ("stxvh8x %x0, 14, 15" : "=wa" (vec_xt));
}
static void test_stxvb16x(void) {
__asm__ __volatile__ ("stxvb16x %x0, 14, 15" : "=wa" (vec_xt));
}
static test_list_t testgroup_vector_loadstore[] = {
{ &test_lxvx , "lxvx" },
{ &test_lxvwsx , "lxvwsx" },
{ &test_lxvh8x , "lxvh8x" },
{ &test_lxvb16x , "lxvb16x" },
{ &test_stxvx , "stxvx" },
{ &test_stxvh8x , "stxvh8x" },
{ &test_stxvb16x, "stxvb16x" },
{ NULL , NULL },
};
static void test_lxvl(void) {
__asm__ __volatile__ ("lxvl %0, 14, 15" : "=wa" (vec_xt));
}
static void test_stxvl(void) {
__asm__ __volatile__ ("stxvl %0, 14, 15" : "=wa" (vec_xt));
}
static void test_lxvll(void) {
__asm__ __volatile__ ("lxvll %0, 14, 15" : "=wa" (vec_xt));
}
static void test_stxvll(void) {
__asm__ __volatile__ ("stxvll %0, 14, 15" : "=wa" (vec_xt));
}
static void test_lxsibzx(void) {
__asm__ __volatile__ ("lxsibzx %x0, 14, 15" : "=wa" (vec_xt));
}
static void test_lxsihzx(void) {
__asm__ __volatile__ ("lxsihzx %x0, 14, 15" : "=wa" (vec_xt));
}
static void test_stxsibx(void) {
__asm__ __volatile__ ("stxsibx %x0, 14, 15" : "=wa" (vec_xt));
}
static void test_stxsihx(void) {
__asm__ __volatile__ ("stxsihx %x0, 14, 15" : "=wa" (vec_xt));
}
/* d-form vsx load/store */
static void test_lxsd_0(void) {
__asm__ __volatile__ ("lxsd %0, 0(%1) " : "=v"(vec_xt) : "r"(r14));
}
static void test_stxsd_0(void) {
__asm__ __volatile__ ("stxsd %0, 0(%1)" : "=v"(vec_xt) : "r"(r14));
}
static void test_lxsd_16(void) {
__asm__ __volatile__ ("lxsd %0, 16(%1)" : "=v"(vec_xt) : "r"(r14));
}
static void test_stxsd_16(void) {
__asm__ __volatile__ ("stxsd %0, 16(%1)" : "=v"(vec_xt) : "r"(r14));
}
static void test_lxssp_0(void) {
__asm__ __volatile__ ("lxssp %0, 0(%1)" : "=wa"(vec_xt) : "r"(r14));
}
static void test_stxssp_0(void) {
__asm__ __volatile__ ("stxssp %0, 0(%1)" : "=wa"(vec_xt) : "r"(r14));
}
static void test_lxssp_16(void) {
__asm__ __volatile__ ("lxssp %0, 16(%1)" : "=wa"(vec_xt) : "r"(r14));
}
static void test_stxssp_16(void) {
__asm__ __volatile__ ("stxssp %0, 16(%1)" : "=wa"(vec_xt) : "r"(r14));
}
static void test_lxv_0(void) {
__asm__ __volatile__ ("lxv %0, 0(%1)" : "=wa"(vec_xt) : "r"(r14));
}
static void test_stxv_0(void) {
__asm__ __volatile__ ("stxv %0, 0(%1)" : "=wa"(vec_xt) : "r"(r14));
}
static void test_lxv_16(void) {
__asm__ __volatile__ ("lxv %0, 16(%1)" : "=wa"(vec_xt) : "r"(r14));
}
static void test_stxv_16(void) {
__asm__ __volatile__ ("stxv %0, 16(%1)" : "=wa"(vec_xt) : "r"(r14));
}
static test_list_t testgroup_vector_scalar_loadstore_length[] = {
{ &test_lxvl , "lxvl " },
{ &test_lxvll , "lxvll " },
{ &test_lxsibzx , "lxsibzx " },
{ &test_lxsihzx , "lxsihzx " },
{ &test_stxvl , "stxvl " },
{ &test_stxvll , "stxvll " },
{ &test_stxsibx , "stxsibx " },
{ &test_stxsihx , "stxsihx " },
{ &test_lxsd_0 , "lxsd 0 " },
{ &test_stxsd_0 , "stxsd 0 " },
{ &test_lxsd_16 , "lxsd 16 " },
{ &test_stxsd_16 , "stxsd 16 " },
{ &test_lxssp_0 , "lxssp 0 " },
{ &test_stxssp_0 , "stxssp 0 " },
{ &test_lxssp_16 , "lxssp 16 " },
{ &test_stxssp_16, "stxssp 16" },
{ &test_lxv_0 , "lxv 0 " },
{ &test_stxv_0 , "stxv 0 " },
{ &test_lxv_16 , "lxv 16 " },
{ &test_stxv_16 , "stxv 16 " },
{ NULL , NULL },
};
/* move from/to VSR */
static void test_mfvsrld (void)
{
__asm__ __volatile__ ("mfvsrld %0, %x1" : "=r" (r14) : "wa" (vec_xt));
};
static void test_mtvsrdd (void)
{
__asm__ __volatile__ ("mtvsrdd %x0, 14, 15" : "=wa" (vec_xt));
};
static void test_mtvsrws (void)
{ /* To fit in better with the caller for the mfvsrdd test, use r15
* instead of r14 as input here.
*/
__asm__ __volatile__ ("mtvsrws %0, 15" : "=wa" (vec_xt));
};
static test_list_t testgroup_vectorscalar_move_tofrom[] = {
{ &test_mfvsrld, "mfvsrld" }, /* RA, XS */
{ &test_mtvsrdd, "mtvsrdd" }, /* XT, RA, RB */
{ &test_mtvsrws, "mtvsrws" }, /* XT, RA */
{ NULL , NULL },
};
/* vector count {leading, trailing} zero least-significant bits byte.
* roughly... how many leading/trailing bytes are even. */
static void test_vclzlsbb(void) {
__asm__ __volatile__ ("vclzlsbb %0, %1" : "=r"(r14) : "v"(vec_xb));
}
static void test_vctzlsbb(void) {
__asm__ __volatile__ ("vctzlsbb %0, %1" : "=r"(r14) : "v"(vec_xb));
}
static test_list_t testgroup_vector_count_bytes[] = {
{ &test_vclzlsbb, "vclzlsbb" },
{ &test_vctzlsbb, "vctzlsbb" },
{ NULL , NULL },
};
static void test_vextsb2w(void) {
__asm__ __volatile__ ("vextsb2w %0, %1" : "=v"(vec_xt) : "v"(vec_xb));
}
static void test_vextsb2d(void) {
__asm__ __volatile__ ("vextsb2d %0, %1" : "=v"(vec_xt) : "v"(vec_xb));
}
static void test_vextsh2w(void) {
__asm__ __volatile__ ("vextsh2w %0, %1" : "=v"(vec_xt) : "v"(vec_xb));
}
static void test_vextsh2d(void) {
__asm__ __volatile__ ("vextsh2d %0, %1" : "=v"(vec_xt) : "v"(vec_xb));
}
static void test_vextsw2d(void) {
__asm__ __volatile__ ("vextsw2d %0, %1" : "=v"(vec_xt) : "v"(vec_xb));
}
static void test_vnegw(void) {
__asm__ __volatile__ ("vnegw %0, %1" : "=v"(vec_xt) : "v"(vec_xb));
}
static void test_vnegd(void) {
__asm__ __volatile__ ("vnegd %0, %1" : "=v"(vec_xt) : "v"(vec_xb));
}
static void test_vprtybw(void) {
__asm__ __volatile__ ("vprtybw %0, %1" : "=v"(vec_xt) : "v"(vec_xb));
}
static void test_vprtybd(void) {
__asm__ __volatile__ ("vprtybd %0, %1" : "=v"(vec_xt) : "v"(vec_xb));
}
static void test_vprtybq(void) {
__asm__ __volatile__ ("vprtybq %0, %1" : "=v"(vec_xt) : "v"(vec_xb));
}
static void test_vctzb(void) {
__asm__ __volatile__ ("vctzb %0, %1" : "=v"(vec_xt) : "v"(vec_xb));
}
static void test_vctzh(void) {
__asm__ __volatile__ ("vctzh %0, %1" : "=v"(vec_xt) : "v"(vec_xb));
}
static void test_vctzw(void) {
__asm__ __volatile__ ("vctzw %0, %1" : "=v"(vec_xt) : "v"(vec_xb));
}
static void test_vctzd(void) {
__asm__ __volatile__ ("vctzd %0, %1" : "=v"(vec_xt) : "v"(vec_xb));
}
static test_list_t testgroup_vector_extend_sign[] = {
{ &test_vextsb2w, "vextsb2w" },
{ &test_vextsb2d, "vextsb2d" },
{ &test_vextsh2w, "vextsh2w" },
{ &test_vextsh2d, "vextsh2d" },
{ &test_vextsw2d, "vextsw2d" },
{ &test_vnegw , "vnegw " },
{ &test_vnegd , "vnegd " },
{ &test_vprtybw , "vprtybw " },
{ &test_vprtybd , "vprtybd " },
{ &test_vprtybq , "vprtybq " },
{ &test_vctzb , "vctzb " },
{ &test_vctzh , "vctzh " },
{ &test_vctzw , "vctzw " },
{ &test_vctzd , "vctzd " },
{ NULL , NULL },
};
static void test_vextublx(void) {
__asm__ __volatile__ ("vextublx %0, %1, %2" : "=r"(r14) : "r" (r15), "v" (vec_xb));
}
static void test_vextubrx(void) {
__asm__ __volatile__ ("vextubrx %0, %1, %2" : "=r"(r14) : "r"(r15), "v"(vec_xb));
}
static void test_vextuhlx(void) {
if (r15 > 14) return; // limit to 14 halfwords
__asm__ __volatile__ ("vextuhlx %0, %1, %2" : "=r"(r14) : "r"(r15), "v"(vec_xb));
}
static void test_vextuhrx(void) {
if (r15 > 14) return; // limit to 14 halfwords
__asm__ __volatile__ ("vextuhrx %0, %1, %2" : "=r"(r14) : "r"(r15), "v"(vec_xb));
}
static void test_vextuwlx(void) {
if (r15 > 12) return; // limit to 12 words
__asm__ __volatile__ ("vextuwlx %0, %1, %2" : "=r"(r14) : "r"(r15), "v"(vec_xb));
}
static void test_vextuwrx(void) {
if (r15 > 12) return; // limit to 12 words
__asm__ __volatile__ ("vextuwrx %0, %1, %2" : "=r"(r14) : "r"(r15), "v"(vec_xb));
}
static test_list_t testgroup_vector_extract[] = {
{ &test_vextublx, "vextublx" },
{ &test_vextubrx, "vextubrx" },
{ &test_vextuhlx, "vextuhlx" },
{ &test_vextuhrx, "vextuhrx" },
{ &test_vextuwlx, "vextuwlx" },
{ &test_vextuwrx, "vextuwrx" },
{ NULL , NULL },
};
#define XSCMPEXPDP(x) \
SET_FPSCR_ZERO \
SET_CR_ZERO \
__asm__ __volatile__ \
("xscmpexpdp %0, %1, %2"::"i"(x), "wa"(vec_xa), "wa"(vec_xb));\
GET_CR(local_cr); \
GET_FPSCR(local_fpscr);
static void test_xscmpexpdp(void) {
switch(x_index) {
case 0: XSCMPEXPDP(0); break;
case 1: XSCMPEXPDP(1); break;
case 2: XSCMPEXPDP(2); break;
case 3: XSCMPEXPDP(3); break;
case 4: XSCMPEXPDP(4); break;
case 5: XSCMPEXPDP(5); break;
case 6: XSCMPEXPDP(6); break;
case 7: XSCMPEXPDP(7); break;
default:
printf("Unhandled shift value for %s %x\n", __FUNCTION__, x_index);
};
}
static test_list_t testgroup_vector_scalar_compare_exp_double[] = {
{ &test_xscmpexpdp , "xscmpexpdp " },
{ NULL , NULL },
};
#define XSTSTDCQP(R,DCMX) \
SET_FPSCR_ZERO \
SET_CR_ZERO \
__asm__ __volatile__ \
("xststdcqp %0, %1, %2":: "i"(R), "wa"(vec_xb), "i"(DCMX)); \
GET_CR(local_cr); \
GET_FPSCR(local_fpscr);
#define XSTSTDCDP(R,DCMX) \
SET_FPSCR_ZERO \
SET_CR_ZERO \
__asm__ __volatile__ \
("xststdcdp %0, %1, %2":: "i"(R), "wa"(vec_xb), "i"(DCMX)); \
GET_CR(local_cr); \
GET_FPSCR(local_fpscr);
#define XSTSTDCSP(R,DCMX) \
SET_FPSCR_ZERO \
SET_CR_ZERO \
__asm__ __volatile__ \
("xststdcsp %0, %1, %2":: "i"(R), "wa"(vec_xb), "i"(DCMX)); \
GET_CR(local_cr); \
GET_FPSCR(local_fpscr);
#define XVTSTDCDP(R,DCMX) \
SET_FPSCR_ZERO \
SET_CR_ZERO \
__asm__ __volatile__ \
("xvtstdcdp %0, %1, %2": "=wa"(vec_xt) : "wa"(vec_xb), "i"(DCMX)); \
GET_CR(local_cr); \
GET_FPSCR(local_fpscr);
#define XVTSTDCSP(R,DCMX) \
SET_FPSCR_ZERO \
SET_CR_ZERO \
__asm__ __volatile__ \
("xvtstdcsp %0, %1, %2": "=wa"(vec_xt) : "wa"(vec_xb), "i"(DCMX)); \
GET_CR(local_cr); \
GET_FPSCR(local_fpscr);
static void test_xststdcqp(void) {
switch(x_index) {
case 1: XSTSTDCQP(3, 0x01); break; /* NaN */
case 2: XSTSTDCQP(3, 0x02); break; /* +inf */
case 3: XSTSTDCQP(3, 0x04); break; /* -inf */
case 4: XSTSTDCQP(3, 0x08); break; /* +zero */
case 5: XSTSTDCQP(3, 0x10); break; /* -zero */
case 6: XSTSTDCQP(3, 0x20); break; /* +denormal */
case 7: XSTSTDCQP(3, 0x40); break; /* -denormal */
case 0: XSTSTDCQP(3, 0x7f); break; /* all of the above */
}
}
static void test_xststdcdp(void) {
switch(x_index) {
case 1: XSTSTDCDP(3, 0x01); break; /* NaN */
case 2: XSTSTDCDP(3, 0x02); break; /* +inf */
case 3: XSTSTDCDP(3, 0x04); break; /* -inf */
case 4: XSTSTDCDP(3, 0x08); break; /* +zero */
case 5: XSTSTDCDP(3, 0x10); break; /* -zero */
case 6: XSTSTDCDP(3, 0x20); break; /* +denormal */
case 7: XSTSTDCDP(3, 0x40); break; /* -denormal */
case 0: XSTSTDCDP(3, 0x7f); break; /* all of the above */
}
}
static void test_xststdcsp(void) {
switch(x_index) {
case 1: XSTSTDCSP(3, 0x01); break; /* NaN */
case 2: XSTSTDCSP(3, 0x02); break; /* +inf */
case 3: XSTSTDCSP(3, 0x04); break; /* -inf */
case 4: XSTSTDCSP(3, 0x08); break; /* +zero */
case 5: XSTSTDCSP(3, 0x10); break; /* -zero */
case 6: XSTSTDCSP(3, 0x20); break; /* +denormal */
case 7: XSTSTDCSP(3, 0x40); break; /* -denormal */
case 0: XSTSTDCSP(3, 0x7f); break; /* all of the above */
}
}
static void test_xvtstdcdp(void) {
switch(x_index) {
case 1: XVTSTDCDP(3, 0x01); break; /* NaN */
case 2: XVTSTDCDP(3, 0x02); break; /* +inf */
case 3: XVTSTDCDP(3, 0x04); break; /* -inf */
case 4: XVTSTDCDP(3, 0x08); break; /* +zero */
case 5: XVTSTDCDP(3, 0x10); break; /* -zero */
case 6: XVTSTDCDP(3, 0x20); break; /* +denormal */
case 7: XVTSTDCDP(3, 0x40); break; /* -denormal */
case 0: XVTSTDCDP(3, 0x7f); break; /* all of the above */
}
}
/* Note: Due to the test groupings, the input for the xvtstdcsp test is
* actually 'double'. It is good enough for this test, but may wish to break
* this one out eventually.
*/
static void test_xvtstdcsp(void) {
switch(x_index) {
case 1: XVTSTDCSP(3, 0x01); break; /* NaN */
case 2: XVTSTDCSP(3, 0x02); break; /* +inf */
case 3: XVTSTDCSP(3, 0x04); break; /* -inf */
case 4: XVTSTDCSP(3, 0x08); break; /* +zero */
case 5: XVTSTDCSP(3, 0x10); break; /* -zero */
case 6: XVTSTDCSP(3, 0x20); break; /* +denormal */
case 7: XVTSTDCSP(3, 0x40); break; /* -denormal */
case 0: XVTSTDCSP(3, 0x7f); break; /* all of the above */
}
}
static test_list_t testgroup_vector_scalar_data_class[] = {
{ &test_xststdcqp, "xststdcqp " },
{ &test_xststdcdp, "xststdcdp " },
{ &test_xststdcsp, "xststdcsp " },
{ &test_xvtstdcsp, "xvtstdcsp " },
{ &test_xvtstdcdp, "xvtstdcdp " },
{ NULL , NULL },
};
static void test_setb (void) {
/* setb RT,BFA
* BFA is a 3-bit field. */
switch(x_index) {
case 0:SET_CR0_FIELD(cr_value);
__asm__ __volatile__ ("setb %0, 0" : "=r" (r14)); break;
case 1:SET_CR1_FIELD(cr_value);
__asm__ __volatile__ ("setb %0, 1" : "=r" (r14)); break;
case 2:SET_CR2_FIELD(cr_value);
__asm__ __volatile__ ("setb %0, 2" : "=r" (r14)); break;
case 3:SET_CR3_FIELD(cr_value);
__asm__ __volatile__ ("setb %0, 3" : "=r" (r14)); break;
case 4:SET_CR4_FIELD(cr_value);
__asm__ __volatile__ ("setb %0, 4" : "=r" (r14)); break;
case 5:SET_CR5_FIELD(cr_value);
__asm__ __volatile__ ("setb %0, 5" : "=r" (r14)); break;
case 6:SET_CR6_FIELD(cr_value);
__asm__ __volatile__ ("setb %0, 6" : "=r" (r14)); break;
case 7:SET_CR7_FIELD(cr_value);
__asm__ __volatile__ ("setb %0, 7" : "=r" (r14)); break;
}
GET_CR(local_cr);
if (verbose) {
dissect_cr(local_cr);
}
}
static test_list_t testgroup_set_boolean[] = {
{ &test_setb, "setb"},
{ NULL , NULL },
};
/* cmprb l = 0:
* compares r14 = src with range specified by values in r15
* bits (48:55 - 56:63)].
*
* cmprb l=1:
* compares r14 = src with ranges between two pairs of values, as above and
* also in r15 bits (32:39 - 40:47 .
*/
static void test_cmprb_l0() {
switch(x_index) {
case 0: __asm__ __volatile__ ("cmprb 0, 0, %0, %1" : : "r"(r14), "r"(r15));
GET_CR(local_cr); break;
case 1: __asm__ __volatile__ ("cmprb 1, 0, %0, %1" : : "r"(r14), "r"(r15));
GET_CR(local_cr); break;
case 2: __asm__ __volatile__ ("cmprb 2, 0, %0, %1" : : "r"(r14), "r"(r15));
GET_CR(local_cr); break;
case 3: __asm__ __volatile__ ("cmprb 3, 0, %0, %1" : : "r"(r14), "r"(r15));
GET_CR(local_cr); break;
case 4: __asm__ __volatile__ ("cmprb 4, 0, %0, %1" : : "r"(r14), "r"(r15));
GET_CR(local_cr); break;
case 5: __asm__ __volatile__ ("cmprb 5, 0, %0, %1" : : "r"(r14), "r"(r15));
GET_CR(local_cr); break;
case 6: __asm__ __volatile__ ("cmprb 6, 0, %0, %1" : : "r"(r14), "r"(r15));
GET_CR(local_cr); break;
case 7: __asm__ __volatile__ ("cmprb 7, 0, %0, %1" : : "r"(r14), "r"(r15));
GET_CR(local_cr); break;
}
}
static void test_cmprb_l1() {
switch(x_index) {
case 0: __asm__ __volatile__ ("cmprb 0, 1 ,%0, %1" : : "r"(r14), "r"(r15));
GET_CR(local_cr); break;
case 1: __asm__ __volatile__ ("cmprb 1, 1, %0, %1" : : "r"(r14), "r"(r15));
GET_CR(local_cr); break;
case 2: __asm__ __volatile__ ("cmprb 2, 1, %0, %1" : : "r"(r14), "r"(r15));
GET_CR(local_cr); break;
case 3: __asm__ __volatile__ ("cmprb 3, 1, %0, %1" : : "r"(r14), "r"(r15));
GET_CR(local_cr); break;
case 4: __asm__ __volatile__ ("cmprb 4, 1, %0, %1" : : "r"(r14), "r"(r15));
GET_CR(local_cr); break;
case 5: __asm__ __volatile__ ("cmprb 5, 1, %0, %1" : : "r"(r14), "r"(r15));
GET_CR(local_cr); break;
case 6: __asm__ __volatile__ ("cmprb 6, 1, %0, %1" : : "r"(r14), "r"(r15));
GET_CR(local_cr); break;
case 7: __asm__ __volatile__ ("cmprb 7, 1, %0, %1" : : "r"(r14), "r"(r15));
GET_CR(local_cr); break;
}
}
static void test_cmpeqb() {
switch(x_index) {
case 0: __asm__ __volatile__ ("cmpeqb 0,%0, %1" : : "r"(r14), "r"(r15));
GET_CR(local_cr); break;
case 1: __asm__ __volatile__ ("cmpeqb 1,%0, %1" : : "r"(r14), "r"(r15));
GET_CR(local_cr); break;
case 2: __asm__ __volatile__ ("cmpeqb 2,%0, %1" : : "r"(r14), "r"(r15));
GET_CR(local_cr); break;
case 3: __asm__ __volatile__ ("cmpeqb 3,%0, %1" : : "r"(r14), "r"(r15));
GET_CR(local_cr); break;
case 4: __asm__ __volatile__ ("cmpeqb 4,%0, %1" : : "r"(r14), "r"(r15));
GET_CR(local_cr); break;
case 5: __asm__ __volatile__ ("cmpeqb 5,%0, %1" : : "r"(r14), "r"(r15));
GET_CR(local_cr); break;
case 6: __asm__ __volatile__ ("cmpeqb 6,%0, %1" : : "r"(r14), "r"(r15));
GET_CR(local_cr); break;
case 7: __asm__ __volatile__ ("cmpeqb 7,%0, %1" : : "r"(r14), "r"(r15));
GET_CR(local_cr); break;
}
}
static test_list_t testgroup_char_compare[] = {
{ &test_cmprb_l0, "cmprb l=0" },
{ &test_cmprb_l1, "cmprb l=1" },
{ &test_cmpeqb , "cmpeqb" },
{ NULL , NULL },
};
static void test_bcdtrunc_p0(void) {
__asm__ __volatile__ ("bcdtrunc. %0, %1, %2, 0": "=v"(vec_xt) : "v"(vec_xa), "v"(vec_xb));
}
static void test_bcdtrunc_p1(void) {
__asm__ __volatile__ ("bcdtrunc. %0, %1, %2, 1": "=v"(vec_xt) : "v"(vec_xa), "v"(vec_xb));
}
static void test_bcdutrunc(void) {
__asm__ __volatile__ ("bcdutrunc. %0, %1, %2 ": "=v"(vec_xt) : "v"(vec_xa), "v"(vec_xb));
}
static void test_bcdadd_p0(void) {
__asm__ __volatile__ ("bcdadd. %0, %1, %2, 0" : "=v"(vec_xt) : "v"(vec_xa), "v"(vec_xb));
}
static void test_bcdadd_p1(void) {
__asm__ __volatile__ ("bcdadd. %0, %1, %2, 1" : "=v"(vec_xt) : "v"(vec_xa), "v"(vec_xb));
}
static void test_bcdsub_p0(void) {
__asm__ __volatile__ ("bcdsub. %0, %1, %2, 0" : "=v"(vec_xt) : "v"(vec_xa), "v"(vec_xb));
}
static void test_bcdsub_p1(void) {
__asm__ __volatile__ ("bcdsub. %0, %1, %2, 1" : "=v"(vec_xt) : "v"(vec_xa), "v"(vec_xb));
}
static void test_bcdcpsgn(void) {
__asm__ __volatile__ ("bcdcpsgn. %0, %1, %2 ": "=v"(vec_xt) : "v"(vec_xa), "v"(vec_xb));
}
static void test_bcdctz_p0(void) {
__asm__ __volatile__ ("bcdctz. %0, %1, 0 " : "=v"(vec_xt) : "v"(vec_xb));
}
static void test_bcdctz_p1(void) {
__asm__ __volatile__ ("bcdctz. %0, %1, 1 " : "=v"(vec_xt) : "v"(vec_xb));
}
static void test_bcdsetsgn_p0(void) {
__asm__ __volatile__ ("bcdsetsgn. %0, %1, 0 " : "=v"(vec_xt) : "v"(vec_xb));
}
static void test_bcdsetsgn_p1(void) {
__asm__ __volatile__ ("bcdsetsgn. %0, %1, 1 " : "=v"(vec_xt) : "v"(vec_xb));
}
static void test_bcds_p0(void) {
__asm__ __volatile__ ("bcds. %0, %1, %2, 0" : "=v"(vec_xt) : "v"(vec_xa), "v"(vec_xb));
}
static void test_bcds_p1(void) {
__asm__ __volatile__ ("bcds. %0, %1, %2, 1" : "=v"(vec_xt) : "v"(vec_xa), "v"(vec_xb));
}
static void test_bcdus(void) {
__asm__ __volatile__ ("bcdus. %0, %1, %2 " : "=v"(vec_xt) : "v"(vec_xa), "v"(vec_xb));
}
static void test_bcdsr_p0(void) {
__asm__ __volatile__ ("bcdsr. %0, %1, %2, 0" : "=v"(vec_xt) : "v"(vec_xa), "v"(vec_xb));
}
static void test_bcdsr_p1(void) {
__asm__ __volatile__ ("bcdsr. %0, %1, %2, 1" : "=v"(vec_xt) : "v"(vec_xa), "v"(vec_xb));
}
static void test_bcdcfn_p0(void) {
__asm__ __volatile__ ("bcdcfn. %0, %1, 0 " : "=v"(vec_xt) : "v"(vec_xb));
}
static void test_bcdcfn_p1(void) {
__asm__ __volatile__ ("bcdcfn. %0, %1, 1 " : "=v"(vec_xt) : "v"(vec_xb));
}
static void test_bcdcfz_p0(void) {
__asm__ __volatile__ ("bcdcfz. %0, %1, 0 " : "=v"(vec_xt) : "v"(vec_xb));
}
static void test_bcdcfz_p1(void) {
__asm__ __volatile__ ("bcdcfz. %0, %1, 1 " : "=v"(vec_xt) : "v"(vec_xb));
}
static void test_bcdctn(void) {
__asm__ __volatile__ ("bcdctn. %0, %1 " : "=v"(vec_xt) : "v"(vec_xb));
}
static void test_vmul10uq(void) {
__asm__ __volatile__ ("vmul10uq %0, %1 " : "=v"(vec_xt) : "v"(vec_xa));
}
static void test_vmul10cuq(void) {
__asm__ __volatile__ ("vmul10cuq %0, %1 " : "=v"(vec_xt) : "v"(vec_xa));
}
static void test_vmul10euq(void) {
__asm__ __volatile__ ("vmul10euq %0, %1, %2 " : "=v"(vec_xt) : "v"(vec_xa), "v"(vec_xb));
}
static void test_vmul10ecuq(void) {
__asm__ __volatile__ ("vmul10ecuq %0, %1, %2 " : "=v"(vec_xt) : "v"(vec_xa), "v"(vec_xb));
}
static void test_bcdctsq(void) {
__asm__ __volatile__ ("bcdctsq. %0, %1 " : "=v"(vec_xt) : "v"(vec_xb));
}
static void test_bcdcfsq_p0(void) {
__asm__ __volatile__ ("bcdcfsq. %0, %1, 0 " : "=v"(vec_xt) : "v"(vec_xb));
}
static void test_bcdcfsq_p1(void) {
__asm__ __volatile__ ("bcdcfsq. %0, %1, 1 " : "=v"(vec_xt) : "v"(vec_xb));
}
static test_list_t testgroup_bcd_misc[] = {
{ &test_bcdadd_p0 , "bcdadd. p0" },
{ &test_bcdadd_p1 , "bcdadd. p1" },
{ &test_bcdsub_p0 , "bcdsub. p0" },
{ &test_bcdsub_p1 , "bcdsub. p1" },
{ &test_bcdcfn_p0 , "bcdcfn. p0" },
{ &test_bcdcfn_p1 , "bcdcfn. p1" },
{ &test_bcdcfz_p0 , "bcdcfz. p0" }, /* The p0, p1 substrings are used later */
{ &test_bcdcfz_p1 , "bcdcfz. p1" }, /* " " */
{ &test_bcdctn , "bcdctn. " },
{ &test_bcdctz_p0 , "bcdctz. p0" }, /* note: p0, p1 substrings are used later */
{ &test_bcdctz_p1 , "bcdctz. p1" }, /* " " */
{ &test_bcdcpsgn , "bcdcpsgn." },
{ &test_bcdsetsgn_p0, "bcdsetsgn. p0" },
{ &test_bcdsetsgn_p1, "bcdsetsgn. p1" },
{ &test_bcds_p0 , "bcds. p0" },
{ &test_bcds_p1 , "bcds. p1" },
{ &test_bcdus , "bcdus. " },
{ &test_bcdsr_p0 , "bcdsr. p0" },
{ &test_bcdsr_p1 , "bcdsr. p1" },
{ &test_bcdtrunc_p0 , "bcdtrunc. p0" },
{ &test_bcdtrunc_p1 , "bcdtrunc. p1" },
{ &test_bcdutrunc , "bcdutrunc. " },
{ &test_vmul10uq , "vmul10uq " },
{ &test_vmul10cuq , "vmul10cuq " },
{ &test_vmul10euq , "vmul10euq " },
{ &test_vmul10ecuq , "vmul10ecuq " },
{ &test_bcdctsq , "bcdctsq." },
{ &test_bcdcfsq_p0 , "bcdcfsq. p0" },
{ &test_bcdcfsq_p1 , "bcdcfsq. p1" },
{ NULL , NULL },
};
static void test_wait(void) {
__asm__ __volatile__ ("wait 0" : :);
}
static test_list_t testgroup_noop_misc[] = {
{ &test_wait, "wait ",},
{ NULL , NULL, },
};
/* The significance field can be any values within bits 10-15 of the
* instruction. For this test, limiting the values to one per bit location.
*/
static void test_dtstsfi() {
_Decimal128 df14 = dfp_value.dec_val128;
switch(dfp_significance) {
case 0x00: __asm__ __volatile__ ("dtstsfi 3, 0x00, %0" : : "f" (df14));
GET_CR(local_cr); break;
case 0x01: __asm__ __volatile__ ("dtstsfi 3, 0x01, %0" : : "f" (df14));
GET_CR(local_cr); break;
case 0x02: __asm__ __volatile__ ("dtstsfi 3, 0x02, %0" : : "f" (df14));
GET_CR(local_cr); break;
case 0x03: __asm__ __volatile__ ("dtstsfi 3, 0x03, %0" : : "f" (df14));
GET_CR(local_cr); break;
case 0x04: __asm__ __volatile__ ("dtstsfi 3, 0x04, %0" : : "f" (df14));
GET_CR(local_cr); break;
case 0x06: __asm__ __volatile__ ("dtstsfi 3, 0x06, %0" : : "f" (df14));
GET_CR(local_cr); break;
case 0x08: __asm__ __volatile__ ("dtstsfi 3, 0x08, %0" : : "f" (df14));
GET_CR(local_cr); break;
case 0x0c: __asm__ __volatile__ ("dtstsfi 3, 0x0c, %0" : : "f" (df14));
GET_CR(local_cr); break;
case 0x10: __asm__ __volatile__ ("dtstsfi 3, 0x10, %0" : : "f" (df14));
GET_CR(local_cr); break;
case 0x18: __asm__ __volatile__ ("dtstsfi 3, 0x18, %0" : : "f" (df14));
GET_CR(local_cr); break;
case 0x20: __asm__ __volatile__ ("dtstsfi 3, 0x20, %0" : : "f" (df14));
GET_CR(local_cr); break;
}
}
static void test_dtstsfiq() {
_Decimal128 df14 = dfp_value.dec_val128;
switch(dfp_significance) {
case 0x00: __asm__ __volatile__ ("dtstsfiq 3, 0x00, %0" : : "f" (df14));
GET_CR(local_cr); break;
case 0x01: __asm__ __volatile__ ("dtstsfiq 3, 0x01, %0" : : "f" (df14));
GET_CR(local_cr); break;
case 0x02: __asm__ __volatile__ ("dtstsfiq 3, 0x02, %0" : : "f" (df14));
GET_CR(local_cr); break;
case 0x03: __asm__ __volatile__ ("dtstsfiq 3, 0x03, %0" : : "f" (df14));
GET_CR(local_cr); break;
case 0x04: __asm__ __volatile__ ("dtstsfiq 3, 0x04, %0" : : "f" (df14));
GET_CR(local_cr); break;
case 0x06: __asm__ __volatile__ ("dtstsfiq 3, 0x06, %0" : : "f" (df14));
GET_CR(local_cr); break;
case 0x08: __asm__ __volatile__ ("dtstsfiq 3, 0x08, %0" : : "f" (df14));
GET_CR(local_cr); break;
case 0x0c: __asm__ __volatile__ ("dtstsfiq 3, 0x0c, %0" : : "f" (df14));
GET_CR(local_cr); break;
case 0x10: __asm__ __volatile__ ("dtstsfiq 3, 0x10, %0" : : "f" (df14));
GET_CR(local_cr); break;
case 0x18: __asm__ __volatile__ ("dtstsfiq 3, 0x18, %0" : : "f" (df14));
GET_CR(local_cr); break;
case 0x20: __asm__ __volatile__ ("dtstsfiq 3, 0x20, %0" : : "f" (df14));
GET_CR(local_cr); break;
}
}
static test_list_t testgroup_dfp_significance[] = {
{ &test_dtstsfi , "dtstsfi" },
{ &test_dtstsfiq, "dtstsfiq" },
{ NULL , NULL },
};
static void test_addpcis(void) {
switch (x_index) {
case 0x0: __asm__ __volatile__ ("addpcis 14, %0" : : "i"(0x0) ); break;
case 0x1: __asm__ __volatile__ ("addpcis 14, %0" : : "i"(0x1) ); break;
case 0x2: __asm__ __volatile__ ("addpcis 14, %0" : : "i"(0x2) ); break;
case 0x3: __asm__ __volatile__ ("addpcis 14, %0" : : "i"(0x40) ); break;
case 0x4: __asm__ __volatile__ ("addpcis 14, %0" : : "i"(0x800) ); break;
case 0x5: __asm__ __volatile__ ("addpcis 14, %0" : : "i"(0x2000) ); break;
case 0x6: __asm__ __volatile__ ("addpcis 14, %0" : : "i"(0x7fff) ); break;
case 0x7: __asm__ __volatile__ ("addpcis 14, %0" : : "i"(0x8000) ); break;
case 0x8: __asm__ __volatile__ ("addpcis 14, -%0" : : "i"(0x0) ); break;
case 0x9: __asm__ __volatile__ ("addpcis 14, -%0" : : "i"(0x1) ); break;
case 0xa: __asm__ __volatile__ ("addpcis 14, -%0" : : "i"(0x2) ); break;
case 0xb: __asm__ __volatile__ ("addpcis 14, -%0" : : "i"(0x40) ); break;
case 0xc: __asm__ __volatile__ ("addpcis 14, -%0" : : "i"(0x800) ); break;
case 0xd: __asm__ __volatile__ ("addpcis 14, -%0" : : "i"(0x2000) ); break;
case 0xe: __asm__ __volatile__ ("addpcis 14, -%0" : : "i"(0x7fff) ); break;
case 0xf: __asm__ __volatile__ ("addpcis 14, -%0" : : "i"(0x8000) ); break;
}
}
static void test_subpcis(void) {
switch (x_index) {
case 0x0: __asm__ __volatile__ ("subpcis 14, %0" : : "i"(0x0) ); break;
case 0x1: __asm__ __volatile__ ("subpcis 14, %0" : : "i"(0x1) ); break;
case 0x2: __asm__ __volatile__ ("subpcis 14, %0" : : "i"(0x2) ); break;
case 0x3: __asm__ __volatile__ ("subpcis 14, %0" : : "i"(0x40) ); break;
case 0x4: __asm__ __volatile__ ("subpcis 14, %0" : : "i"(0x800) ); break;
case 0x5: __asm__ __volatile__ ("subpcis 14, %0" : : "i"(0x2000) ); break;
case 0x6: __asm__ __volatile__ ("subpcis 14, %0" : : "i"(0x7fff) ); break;
case 0x7: __asm__ __volatile__ ("subpcis 14, %0" : : "i"(0x8000) ); break;
case 0x8: __asm__ __volatile__ ("subpcis 14, -%0" : : "i"(0x0) ); break;
case 0x9: __asm__ __volatile__ ("subpcis 14, -%0" : : "i"(0x1) ); break;
case 0xa: __asm__ __volatile__ ("subpcis 14, -%0" : : "i"(0x2) ); break;
case 0xb: __asm__ __volatile__ ("subpcis 14, -%0" : : "i"(0x40) ); break;
case 0xc: __asm__ __volatile__ ("subpcis 14, -%0" : : "i"(0x80) ); break;
case 0xd: __asm__ __volatile__ ("subpcis 14, -%0" : : "i"(0x200) ); break;
case 0xe: __asm__ __volatile__ ("subpcis 14, -%0" : : "i"(0x7fff) ); break;
case 0xf: __asm__ __volatile__ ("subpcis 14, -%0" : : "i"(0x8000) ); break;
}
}
static test_list_t testgroup_pc_immediate_misc[] = {
{ &test_addpcis, "addpcis " },
{ &test_subpcis, "subpcis " },
{ NULL , NULL },
};
static void test_xsiexpdp(void) {
__asm__ __volatile__ ("xsiexpdp %0, %1, %2 " : "+wa" (vec_xt): "r" (r14), "r" (r15));
}
static void test_xscvhpdp(void) {
__asm__ __volatile__ ("xscvhpdp %x0, %x1 " : "+wa" (vec_xt) : "wa" (vec_xb));
}
static void test_xscvdphp(void) {
__asm__ __volatile__ ("xscvdphp %x0, %x1 " : "+wi" (vec_xt) : "wi" (vec_xb));
}
static void test_xvcvhpsp(void) {
__asm__ __volatile__ ("xvcvhpsp %x0, %x1 " : "+ww" (vec_xt) : "ww" (vec_xb));
}
static void test_xvcvsphp(void) {
__asm__ __volatile__ ("xvcvsphp %x0, %x1 " : "+ww" (vec_xt) : "ww" (vec_xb));
}
static test_list_t testgroup_vector_scalar_two_double[] = {
{ &test_xsiexpdp, "xsiexpdp" },
{ &test_xscvhpdp, "xscvhpdp" },
{ &test_xscvdphp, "xscvdphp" },
{ &test_xvcvhpsp, "xvcvhpsp" },
{ &test_xvcvsphp, "xvcvsphp" },
{ NULL , NULL },
};
static void test_xsabsqp(void) {
__asm__ __volatile__ ("xsabsqp %0, %1" : "+v"(vec_xt) : "v"(vec_xb));
}
static void test_xscvdpqp(void) {
__asm__ __volatile__ ("xscvdpqp %0, %1" : "+v"(vec_xt) : "v"(vec_xb));
}
static void test_xscvqpdp(void) {
__asm__ __volatile__ ("xscvqpdp %0, %1" : "+v"(vec_xt) : "v"(vec_xb));
}
static void test_xscvqpdpo(void) {
__asm__ __volatile__ ("xscvqpdpo %0, %1" : "+v"(vec_xt) : "v"(vec_xb));
}
static void test_xscvqpsdz(void) {
__asm__ __volatile__ ("xscvqpsdz %0, %1" : "+v"(vec_xt) : "v"(vec_xb));
}
static void test_xscvqpswz(void) {
__asm__ __volatile__ ("xscvqpswz %0, %1" : "+v"(vec_xt) : "v"(vec_xb));
}
static void test_xscvqpudz(void) {
__asm__ __volatile__ ("xscvqpudz %0, %1" : "+v"(vec_xt) : "v"(vec_xb));
}
static void test_xscvqpuwz(void) {
__asm__ __volatile__ ("xscvqpuwz %0, %1" : "+v"(vec_xt) : "v"(vec_xb));
}
static void test_xscvsdqp(void) {
__asm__ __volatile__ ("xscvsdqp %0, %1" : "+v"(vec_xt) : "v"(vec_xb));
}
static void test_xscvudqp(void) {
__asm__ __volatile__ ("xscvudqp %0, %1" : "+v"(vec_xt) : "v"(vec_xb));
}
static void test_xsxexpqp(void) {
__asm__ __volatile__ ("xsxexpqp %0, %1" : "+v"(vec_xt) : "v"(vec_xb));
}
static void test_xsxsigqp(void) {
__asm__ __volatile__ ("xsxsigqp %0, %1" : "+v"(vec_xt) : "v"(vec_xb));
}
static void test_xsnegqp(void) {
__asm__ __volatile__ ("xsnegqp %0, %1" : "+v"(vec_xt) : "v"(vec_xb));
}
static void test_xsnabsqp(void) {
__asm__ __volatile__ ("xsnabsqp %0, %1" : "+v"(vec_xt) : "v"(vec_xb));
}
static void test_xssqrtqp(void) {
__asm__ __volatile__ ("xssqrtqp %0, %1" : "+v"(vec_xt) : "v"(vec_xb));
}
static void test_xssqrtqpo(void) {
__asm__ __volatile__ ("xssqrtqpo %0, %1" : "+v"(vec_xt) : "v"(vec_xb));
}
static test_list_t testgroup_vector_scalar_two_quad[] = {
{ &test_xsabsqp , "xsabsqp " },
{ &test_xscvdpqp , "xscvdpqp " },
{ &test_xscvqpdp , "xscvqpdp " },
{ &test_xscvqpdpo, "xscvqpdpo " },
{ &test_xscvqpsdz, "xscvqpsdz " },
{ &test_xscvqpswz, "xscvqpswz " },
{ &test_xscvqpudz, "xscvqpudz " },
{ &test_xscvqpuwz, "xscvqpuwz " },
{ &test_xscvsdqp , "xscvsdqp " },
{ &test_xscvudqp , "xscvudqp " },
{ &test_xsxexpqp , "xsxexpqp " },
{ &test_xsxsigqp , "xsxsigqp " },
{ &test_xsnegqp , "xsnegqp " },
{ &test_xsnabsqp , "xsnabsqp " },
{ &test_xssqrtqp , "xssqrtqp " },
{ &test_xssqrtqpo, "xssqrtqpo " },
{ NULL , NULL },
};
static void test_xsaddqp(void) {
__asm__ __volatile__ ("xsaddqp %0, %1, %2" : "+v"(vec_xt) : "v"(vec_xa), "v"(vec_xb));
}
static void test_xsaddqpo(void) {
__asm__ __volatile__ ("xsaddqpo %0, %1, %2" : "+v"(vec_xt) : "v"(vec_xa), "v"(vec_xb));
}
static void test_xscpsgnqp(void) {
__asm__ __volatile__ ("xscpsgnqp %0, %1, %2" : "+v"(vec_xt) : "v"(vec_xa), "v"(vec_xb));
}
static void test_xsdivqp(void) {
__asm__ __volatile__ ("xsdivqp %0, %1, %2" : "+v"(vec_xt) : "v"(vec_xa), "v"(vec_xb));
}
static void test_xsdivqpo(void) {
__asm__ __volatile__ ("xsdivqpo %0, %1, %2" : "+v"(vec_xt) : "v"(vec_xa), "v"(vec_xb));
}
static void test_xsiexpqp(void) {
__asm__ __volatile__ ("xsiexpqp %0, %1, %2" : "+v"(vec_xt) : "v"(vec_xa), "v"(vec_xb));
}
static void test_xsmaddqp(void) {
__asm__ __volatile__ ("xsmaddqp %0, %1, %2" : "+v"(vec_xt) : "v"(vec_xa), "v"(vec_xb));
}
static void test_xsmaddqpo(void) {
__asm__ __volatile__ ("xsmaddqpo %0, %1, %2" : "+v"(vec_xt) : "v"(vec_xa), "v"(vec_xb));
}
static void test_xsmsubqp(void) {
__asm__ __volatile__ ("xsmsubqp %0, %1, %2" : "+v"(vec_xt) : "v"(vec_xa), "v"(vec_xb));
}
static void test_xsmsubqpo(void) {
__asm__ __volatile__ ("xsmsubqpo %0, %1, %2" : "+v"(vec_xt) : "v"(vec_xa), "v"(vec_xb));
}
static void test_xsmulqp(void) {
__asm__ __volatile__ ("xsmulqp %0, %1, %2" : "+v"(vec_xt) : "v"(vec_xa), "v"(vec_xb));
}
static void test_xsmulqpo(void) {
__asm__ __volatile__ ("xsmulqpo %0, %1, %2" : "+v"(vec_xt) : "v"(vec_xa), "v"(vec_xb));
}
static void test_xsnmaddqp(void) {
__asm__ __volatile__ ("xsnmaddqp %0, %1, %2" : "+v"(vec_xt) : "v"(vec_xa), "v"(vec_xb));
}
static void test_xsnmaddqpo(void) {
__asm__ __volatile__ ("xsnmaddqpo %0, %1, %2" : "+v"(vec_xt) : "v"(vec_xa), "v"(vec_xb));
}
static void test_xsnmsubqp(void) {
__asm__ __volatile__ ("xsnmsubqp %0, %1, %2" : "+v"(vec_xt) : "v"(vec_xa), "v"(vec_xb));
}
static void test_xsnmsubqpo(void) {
__asm__ __volatile__ ("xsnmsubqpo %0, %1, %2" : "+v"(vec_xt) : "v"(vec_xa), "v"(vec_xb));
}
static void test_xssubqp(void) {
__asm__ __volatile__ ("xssubqp %0, %1, %2" : "+v"(vec_xt) : "v"(vec_xa), "v"(vec_xb));
}
static void test_xssubqpo(void) {
__asm__ __volatile__ ("xssubqpo %0, %1, %2" : "+v"(vec_xt) : "v"(vec_xa), "v"(vec_xb));
}
static test_list_t testgroup_vector_three_quad[] = {
{ &test_xsaddqp , "xsaddqp " },
{ &test_xsaddqpo , "xsaddqpo " },
{ &test_xscpsgnqp , "xscpsgnqp " },
{ &test_xsdivqp , "xsdivqp " },
{ &test_xsdivqpo , "xsdivqpo " },
{ &test_xsiexpqp , "xsiexpqp " },
{ &test_xsmaddqp , "xsmaddqp " },
{ &test_xsmaddqpo , "xsmaddqpo " },
{ &test_xsmsubqp , "xsmsubqp " },
{ &test_xsmsubqpo , "xsmsubqpo " },
{ &test_xsmulqp , "xsmulqp " },
{ &test_xsmulqpo , "xsmulqpo " },
{ &test_xsnmaddqp , "xsnmaddqp " },
{ &test_xsnmaddqpo, "xsnmaddqpo " },
{ &test_xsnmsubqp , "xsnmsubqp " },
{ &test_xsnmsubqpo, "xsnmsubqpo " },
{ &test_xssubqp , "xssubqp " },
{ &test_xssubqpo , "xssubqpo " },
{ NULL , NULL },
};
#define XSCMPEXPQP(x) \
SET_FPSCR_ZERO \
SET_CR_ZERO \
__asm__ __volatile__ \
("xscmpexpqp %0, %1, %2" :: "i"(x), "v"(vec_xa), "v"(vec_xb)); \
GET_CR(local_cr); \
GET_FPSCR(local_fpscr);
#define XSCMPOQP(x) \
SET_FPSCR_ZERO \
SET_CR_ZERO \
__asm__ __volatile__ \
("xscmpoqp %0, %1, %2" :: "i"(x), "v"(vec_xa), "v"(vec_xb)); \
GET_CR(local_cr); \
GET_FPSCR(local_fpscr);
#define XSCMPUQP(x) \
SET_FPSCR_ZERO \
SET_CR_ZERO \
__asm__ __volatile__ \
("xscmpuqp %0, %1, %2"::"i"(x), "v"(vec_xa), "v"(vec_xb)); \
GET_CR(local_cr); \
GET_FPSCR(local_fpscr);
static void test_xscmpexpqp(void) {
switch(x_index) {
case 0: XSCMPEXPQP(0); break;
case 1: XSCMPEXPQP(1); break;
case 2: XSCMPEXPQP(2); break;
case 3: XSCMPEXPQP(3); break;
case 4: XSCMPEXPQP(4); break;
case 5: XSCMPEXPQP(5); break;
case 6: XSCMPEXPQP(6); break;
case 7: XSCMPEXPQP(7); break;
default:
printf("Unhandled shift value for %s %x\n", __FUNCTION__, x_index);
};
}
static void test_xscmpoqp(void) {
switch(x_index) {
case 0: XSCMPOQP(0); break;
case 1: XSCMPOQP(1); break;
case 2: XSCMPOQP(2); break;
case 3: XSCMPOQP(3); break;
case 4: XSCMPOQP(4); break;
case 5: XSCMPOQP(5); break;
case 6: XSCMPOQP(6); break;
case 7: XSCMPOQP(7); break;
default:
printf("Unhandled shift value for %s %x\n", __FUNCTION__, x_index);
};
}
static void test_xscmpuqp(void) {
switch(x_index) {
case 0: XSCMPUQP(0); break;
case 1: XSCMPUQP(1); break;
case 2: XSCMPUQP(2); break;
case 3: XSCMPUQP(3); break;
case 4: XSCMPUQP(4); break;
case 5: XSCMPUQP(5); break;
case 6: XSCMPUQP(6); break;
case 7: XSCMPUQP(7); break;
default:
printf("Unhandled shift value for %s %x\n", __FUNCTION__, x_index);
};
}
static test_list_t testgroup_vector_scalar_compare_quads[] = {
{ &test_xscmpexpqp, "xscmpexpqp" },
{ &test_xscmpoqp , "xscmpoqp " },
{ &test_xscmpuqp , "xscmpuqp " },
{ NULL , NULL },
};
#define XSRQPI(R,RMC) \
SET_FPSCR_ZERO \
SET_CR_ZERO \
__asm__ __volatile__ \
("xsrqpi %1, %0, %2, %3" : "=v"(vec_xt) : "i"(R), "v"(vec_xb), "i"(RMC)); \
GET_CR(local_cr); \
GET_FPSCR(local_fpscr);
#define XSRQPIX(R,RMC) \
SET_FPSCR_ZERO \
SET_CR_ZERO \
__asm__ __volatile__ \
("xsrqpix %1, %0, %2, %3" : "=v"(vec_xt) : "i"(R), "v"(vec_xb), "i"(RMC));\
GET_CR(local_cr); \
GET_FPSCR(local_fpscr);
#define XSRQPXP(R,RMC) \
SET_FPSCR_ZERO \
SET_CR_ZERO \
__asm__ __volatile__ \
("xsrqpxp %1, %0, %2, %3" : "=v"(vec_xt) : "i"(R), "v"(vec_xb), "i"(RMC));\
GET_CR(local_cr); \
GET_FPSCR(local_fpscr);
/* For the scalar round to quad instructions, x_index is used to key into
* two fields; x_index bit [2] becomes the one-bit 'R' and x_index bits [0, 1]
* becomes the two-bit 'RMC'.
*/
static void test_xsrqpi(void) {
switch(x_index) {
case 0: XSRQPI(0, 0); break;
case 1: XSRQPI(0, 1); break;
case 2: XSRQPI(0, 2); break;
case 3: XSRQPI(0, 3); break;
case 4: XSRQPI(1, 0); break;
case 5: XSRQPI(1, 1); break;
case 6: XSRQPI(1, 2); break;
case 7: XSRQPI(1, 3); break;
}
}
static void test_xsrqpix(void) {
switch(x_index) {
case 0: XSRQPIX(0, 0); break;
case 1: XSRQPIX(0, 1); break;
case 2: XSRQPIX(0, 2); break;
case 3: XSRQPIX(0, 3); break;
case 4: XSRQPIX(1, 0); break;
case 5: XSRQPIX(1, 1); break;
case 6: XSRQPIX(1, 2); break;
case 7: XSRQPIX(1, 3); break;
}
}
static void test_xsrqpxp(void) {
switch(x_index) {
case 0: XSRQPXP(0, 0); break;
case 1: XSRQPXP(0, 1); break;
case 2: XSRQPXP(0, 2); break;
case 3: XSRQPXP(0, 3); break;
case 4: XSRQPXP(1, 0); break;
case 5: XSRQPXP(1, 1); break;
case 6: XSRQPXP(1, 2); break;
case 7: XSRQPXP(1, 3); break;
}
}
static test_list_t testgroup_vector_scalar_rounding_quads[] = {
{ &test_xsrqpi , "xsrqpi " },
{ &test_xsrqpix, "xsrqpix" },
{ &test_xsrqpxp, "xsrqpxp" },
{ NULL , NULL },
};
/* Move From FPSCR variants:
* Move From FpScr [ &
* Clear Enables |
* Lightweight |
* Control [&
* set DRN [ Immediate] |
* set RN [ Immediate ] ]]
*/
/* mffs FRT # Move From FPSCR*/
static void test_mffs (void) {
__asm__ __volatile__ ("mffs %0" : "=f"(f14) );
GET_FPSCR(local_fpscr);
}
/* mffsce FRT # Move From FPSCR and Clear Enables */
static void test_mffsce (void) {
__asm__ __volatile__ ("mffsce %0" : "=f"(f14) );
GET_FPSCR(local_fpscr);
}
/* mffscdrn FRT,FRB # Move From FpScr and Control &set DRN */
static void test_mffscdrn (void) {
__asm__ __volatile__ ("mffscdrn %0,%1" : "=f"(f14): "f"(f15) );
GET_FPSCR(local_fpscr);
}
/* mffscdrni FRT,DRM # Move From FpScr & Control &set DRN Immediate*/
static void test_mffscdrni (void) {
switch(x_shift) {
default:
case 0:
__asm__ __volatile__ ("mffscdrni %0,0" : "=f"(f14) );
GET_FPSCR(local_fpscr);
break;
case 1:
__asm__ __volatile__ ("mffscdrni %0,1" : "=f"(f14) );
GET_FPSCR(local_fpscr);
break;
case 2:
__asm__ __volatile__ ("mffscdrni %0,2" : "=f"(f14) );
GET_FPSCR(local_fpscr);
break;
}
}
/* mffscrn FRT,FRB # Move From FpScr and Control &set RN*/
static void test_mffscrn (void) {
__asm__ __volatile__ ("mffscrn %0,%1" : "=f"(f14):"f"(f15));
GET_FPSCR(local_fpscr);
}
/* mffscrni FRT,RM # Move from FpScr and Control &set RN Immediate*/
static void test_mffscrni (void) {
switch(x_shift) {
case 0:
__asm__ __volatile__ ("mffscrni %0,0" : "=f"(f14) );
GET_FPSCR(local_fpscr);
break;
case 1:
__asm__ __volatile__ ("mffscrni %0,1" : "=f"(f14) );
GET_FPSCR(local_fpscr);
break;
case 2:
__asm__ __volatile__ ("mffscrni %0,2" : "=f"(f14) );
GET_FPSCR(local_fpscr);
break;
}
}
/* mffsl FRT # Move From FpScr Lightweight */
static void test_mffsl (void) {
__asm__ __volatile__ ("mffsl %0" : "=f"(f14) );
GET_FPSCR(local_fpscr);
}
/* mffs* instructions using FRT only. */
/* Note to self - Watch DRM,RM fields. */
static test_list_t testgroup_mffs_misc[] = {
// { &test_mffsce, "mffsce" },
// { &test_mffsl, "mffsl" },
{ &test_mffs, "mffs" },
{ NULL , NULL },
};
/* mffs* instructions using FRT,FRB. */
static test_list_t testgroup_mffs_misc_one[] = {
// { &test_mffscdrni, "mffscdrni" },
// { &test_mffscdrn, "mffscdrn" },
// { &test_mffscrni, "mffscrni" },
// { &test_mffscrn, "mffscrn" },
{ NULL , NULL },
};
/* ###### begin all_tests table. */
/* table containing all of the instruction groups */
struct test_group_table_t {
test_list_t *tests;
const char *name;
unsigned int flags;
};
typedef struct test_group_table_t test_group_table_t;
static test_group_table_t all_tests[] = {
{
testgroup_ia_ops_two,
"PPC integer arith instructions with two args",
PPC_INTEGER | PPC_ARITH | PPC_TWO_ARGS,
},
{
testgroup_shifted_one,
"ppc one argument plus shift",
PPC_MISC | PPC_CR | PPC_TWO_ARGS,
},
{
testgroup_three_args,
"ppc three parameter ops",
PPC_INTEGER | PPC_ARITH | PPC_THREE_ARGS,
},
{
testgroup_logical_one,
"ppc count zeros",
PPC_INTEGER | PPC_LOGICAL | PPC_ONE_ARG,
},
{
testgroup_set_boolean,
"ppc set boolean",
PPC_INTEGER | PPC_LOGICAL | PPC_ONE_IMM,
},
{
testgroup_char_compare,
"ppc char compare",
PPC_INTEGER | PPC_COMPARE,
},
{
testgroup_vsx_absolute,
"ppc vector absolutes",
PPC_ALTIVEC | PPC_ARITH | PPC_TWO_ARGS,
},
{
testgroup_vector_immediate,
"ppc vector logical immediate",
PPC_ALTIVEC | PPC_LOGICAL | PPC_ONE_IMM,
},
{
testgroup_vector_logical_one,
"ppc vector logical one",
PPC_ALTIVEC | PPC_LOGICAL | PPC_ONE_ARG,
},
{
testgroup_vector_extend_sign,
"ppc vector extend sign",
PPC_ALTIVEC | PPC_LOGICAL | PPC_TWO_ARGS,
},
{
testgroup_vector_three_quad,
"ppc vector three quad",
PPC_ALTIVEC | PPC_LOGICAL | PPC_THREE_ARGS,
},
{
testgroup_vector_scalar_two_quad,
"ppc vector scalar quad",
PPC_ALTIVEC_QUAD | PPC_LOGICAL | PPC_TWO_ARGS,
},
{
testgroup_vector_scalar_compare_quads,
"ppc vector scalar compare exponents quads",
PPC_ALTIVEC_QUAD | PPC_COMPARE | PPC_COMPARE_ARGS,
},
{
testgroup_vector_scalar_rounding_quads,
"ppc vector scalar rounding quads",
PPC_ALTIVEC_QUAD | PPC_ROUND,
},
{
testgroup_vsx_xxpermute,
"ppc vector permutes",
PPC_ALTIVEC | PPC_PERMUTE,
},
{
testgroup_vector_four,
"ppc vector three args + dest",
PPC_ALTIVEC | PPC_LOGICAL | PPC_FOUR_ARGS,
},
{
testgroup_vector_inserts,
"ppc vector inserts",
PPC_ALTIVEC | PPC_INSERTEXTRACT | PPC_ONE_IMM,
},
{
testgroup_vector_extract,
"ppc vector extract from vector to reg",
PPC_ALTIVEC | PPC_INSERTEXTRACT | PPC_TWO_ARGS,
},
{
testgroup_vector_count_bytes,
"ppc vector count leading/trailing bytes",
PPC_ALTIVEC | PPC_POPCNT,
},
{
testgroup_vector_scalar_loadstore_length,
"ppc vector load/store",
PPC_ALTIVEC | PPC_LDST | PPC_ONE_IMM,
},
{
testgroup_vector_loadstore,
"ppc vector load/store",
PPC_ALTIVEC | PPC_LDST | PPC_TWO_ARGS,
},
{
testgroup_vectorscalar_move_tofrom,
"ppc vector scalar move to/from",
PPC_MISC | PPC_TWO_ARGS,
},
{
testgroup_vector_scalar_compare_exp_double,
"ppc vector scalar compare exponents doubles",
PPC_ALTIVEC_DOUBLE | PPC_COMPARE | PPC_COMPARE_ARGS,
},
{
testgroup_vector_scalar_data_class,
"ppc vector scalar test data class tests",
PPC_ALTIVEC_DOUBLE | PPC_COMPARE | PPC_ONE_ARG,
},
{
testgroup_vector_scalar_two_double,
"ppc vector scalar tests against float double two args ",
PPC_ALTIVEC_DOUBLE | PPC_COMPARE | PPC_TWO_ARGS,
},
{
testgroup_dfp_significance,
"ppc dfp significance",
PPC_DFP,
},
{
testgroup_bcd_misc,
"ppc bcd misc",
PPC_BCD,
},
{
testgroup_noop_misc,
"ppc noop misc",
PPC_NO_OP,
},
{
testgroup_pc_immediate_misc,
"ppc addpc_misc",
PPC_PC_IMMEDIATE,
},
{
testgroup_mffs_misc,
"ppc mffpscr",
PPC_MFFS,
},
{
testgroup_mffs_misc_one,
"ppc mffpscr",
PPC_MFFS,
},
{ NULL, NULL, 0x00000000, },
};
#define instruction_touches_xer(instruction_name) \
(strncmp(instruction_name, "addex", 5) == 0)
static void testfunction_int_two_args (const char* instruction_name,
test_func_t func,
unsigned int test_flags)
{
volatile HWord_t res;
volatile unsigned int cr;
int i, j;
VERBOSE_FUNCTION_CALLOUT
for (i = 0; i < nb_iargs; i++) {
for (j = 0; j < nb_iargs; j++) {
r14 = iargs[i];
r15 = iargs[j];
SET_CR_ZERO;
(*func)();
GET_CR(cr);
GET_XER(local_xer);
res = r17;
printf("%s %016lx, %016lx => %016lx (%08x)",
instruction_name, (long unsigned)iargs[i],
(long unsigned)iargs[j], (long unsigned)res,
cr);
if (instruction_touches_xer(instruction_name)) {
dissect_xer(local_xer);
}
printf("\n");
}
if (verbose) printf("\n");
}
}
#define instruction_sets_cr0_to_zero(inst_name) \
( (strncmp(inst_name, "cnttzw.", 7) == 0 ) || \
(strncmp(inst_name, "cnttzd.", 7) == 0 ) )
static void testfunction_logical_one (const char* instruction_name,
test_func_t func,
unsigned int test_flags) {
int i;
volatile HWord_t res;
volatile unsigned int cr;
VERBOSE_FUNCTION_CALLOUT
for (i = 0; i < nb_iargs; i++) {
r14 = iargs[i];
/* The logical instructions will set CR fields to zero, so
* lets start with some non zero content in CR0.
*/
SET_CR0_FIELD(0xF);
(*func)();
res = r17;
GET_CR(cr);
printf("%s %016lx => %016lx",
instruction_name, (long unsigned)iargs[i], (long unsigned)res);
if (instruction_sets_cr0_to_zero(instruction_name)
&& ((cr & 0xF0000000) != 0 )) {
/* The dotted version sets the CR0 to 0, verify */
printf(" Expected cr0 to be zero, it is (%08x)\n", cr & 0xF0000000);
}
printf("\n");
if (verbose) printf("\n");
}
}
void testfunction_one_arg_with_shift (const char* instruction_name,
test_func_t test_function,
unsigned int ignore_test_flags)
{
/*This function uses global variable x_shift */
volatile HWord_t res;
volatile unsigned int cr;
int i, j;
VERBOSE_FUNCTION_CALLOUT
for (i = 0; i < SHIFT_VALUES_SIZE; i++) {
for (j = 0; j < SHIFT_ARRAY_SIZE; j++) {
r14 = values_to_shift[i];
x_shift = shift_amounts[j];
SET_CR_ZERO;
(*test_function)();
GET_CR(cr);
res = r17;
printf("%s %016lx, %016lx => %016lx (%08x)\n",
instruction_name, (long unsigned)values_to_shift[i],
(long unsigned)x_shift, (long unsigned)res, cr);
}
}
}
static void testfunction_three_args (const char* instruction_name,
test_func_t test_function,
unsigned int ignore_test_flags)
{
volatile HWord_t res;
volatile unsigned int cr;
int i, j, l;
VERBOSE_FUNCTION_CALLOUT
for (i = 0; i < nb_iargs; i++) {
for (j = 0; j < nb_iargs; j++) {
for (l = 0; l < nb_iargs; l++) {
r14 = iargs[i];
r15 = iargs[j];
r16 = iargs[l];
SET_CR_ZERO;
(*test_function)();
GET_CR(cr);
res = r17;
printf("%s %016lx, %016lx, %016lx => %016lx (%08x)\n",
instruction_name,
(long unsigned)r14, (long unsigned)r15,
(long unsigned)r16, (long unsigned)res,
cr);
}
}
}
}
static void testfunction_vector_absolute (const char* instruction_name,
test_func_t test_function,
unsigned int ignore_test_flags)
{
/* Notes:
* iterate across xa, xb values.
* Results are in xt.
*/
volatile unsigned int cr;
int i, j;
VERBOSE_FUNCTION_CALLOUT
for (i = 0; i < nb_vargs; i += 4) {
/* patterns more interesting when shifted like so.. */
for (j = 0; j < nb_vpcv; j += 2) {
vec_xa = (vector unsigned long){vsxargs[i], vsxargs[i+1]};
vec_xb = (vector unsigned long){vsxargs[j], vsxargs[j]};
vec_xt = (vector unsigned long){0, 0};
printf("%s xa:%016lx %016lx xb:%016lx %016lx ",
instruction_name,
vec_xa[1],vec_xa[0],
vec_xb[0],vec_xb[1]
);
printf(" => ");
SET_CR_ZERO;
(*test_function)();
GET_CR(cr);
printf(" xt:%016lx %016lx (%08x)\n", vec_xt[0], vec_xt[1], cr);
}
if (verbose) printf("\n");
}
}
static void testfunction_vector_xxpermute (const char* instruction_name,
test_func_t test_function,
unsigned int ignore_test_flags)
{
/* Notes:
* VSX permute uses both xt and xa as source registers.
* Permute control vector is in xb.
* Results are in xt.
*/
volatile unsigned int cr;
int i, j;
VERBOSE_FUNCTION_CALLOUT
for (i = 0; i < nb_vargs; i += 4) {
for (j = 0; j < nb_vpcv; j += 2) {
vec_xa = (vector unsigned long){vsxargs[i], vsxargs[i+1]};
vec_xt = (vector unsigned long){vsxargs[i+2], vsxargs[i+3]};
vec_xb = (vector unsigned long){vpcv[j], vpcv[j+1]};
printf("%s %016lx %016lx %016lx %016lx, pcv[%016lx %016lx] => ",
instruction_name,
vec_xa[1], vec_xa[0],
vec_xt[1], vec_xt[0],
vec_xb[0], vec_xb[1]);
SET_CR_ZERO;
(*test_function)();
GET_CR(cr);
printf(" %016lx %016lx (%08x)\n", vec_xt[0], vec_xt[1], cr);
#if defined (DEBUG_VECTOR_PERMUTE)
printf("DEBUG:%s %016lx %016lx %016lx %016lx, pcv[%016lx %016lx]\n",
ignore_name,
vec_xa[0], vec_xa[1],
vec_xt[0], vec_xt[1],
vec_xb[0], vec_xb[1]);
#endif
}
if (verbose) printf("\n");
}
}
static void testfunction_vector_logical_one (const char* instruction_name,
test_func_t test_function,
unsigned int ignore_test_flags)
{
/* Notes:
* vector instructions with one input, one output.
* xt, xa
*/
int i;
int t;
VERBOSE_FUNCTION_CALLOUT
for (i = 0; i < nb_vargs; i += 2) {
vec_xa = (vector unsigned long){vsxargs[i], vsxargs[i+1]};
for (t = 0; t < 2; t++) {
vec_xt[0] = (t == 0) ? 0 : 0xffffffffffffffff;
vec_xt[1] = (t == 0) ? 0 : 0xffffffffffffffff;
printf("%s xa:%016lx %016lx xt:%016lx %016lx => ",
instruction_name,
vec_xa[0], vec_xa[1],
vec_xt[0], vec_xt[1]);
(*test_function)();
printf(" xt:%016lx %016lx\n",
vec_xt[0], vec_xt[1]);
}
}
if (verbose) printf("\n");
}
static void testfunction_vector_logical_four (const char* instruction_name,
test_func_t test_function,
unsigned int ignore_test_flags) {
/* Notes:
* vector instructions with three input arguments, one output.
* xt, xa, xb, xc.
* Permute control vector is in xc.
* Results are in xt.
*/
volatile unsigned int cr;
int i, j;
int p;
VERBOSE_FUNCTION_CALLOUT
for (i = 0; i < nb_vargs; i += 4) {
for (j = 0; j < nb_vargs; j += 4) {
for (p = 0; p < nb_vpcv; p += 2) {
vec_xa = (vector unsigned long){vsxargs[i], vsxargs[i+1]};
vec_xb = (vector unsigned long){vsxargs[j], vsxargs[j+1]};
vec_xc = (vector unsigned long){vpcv[p], vpcv[p+1]};
printf("%s %016lx %016lx %016lx %016lx, pcv[%016lx %016lx] => ",
instruction_name,
vec_xa[1], vec_xa[0],
vec_xb[1], vec_xb[0],
vec_xc[0], vec_xc[1]);
SET_CR_ZERO;
(*test_function)();
GET_CR(cr);
printf(" %016lx %016lx (%08x)\n", vec_xt[0], vec_xt[1], cr);
}
}
if (verbose) printf("\n");
}
}
static
void testfunction_vector_insert_or_extract_immediate (const char* instruction_name,
test_func_t test_function,
unsigned int ignore_test_flags) {
/* Uses global variable x_index */
/* uses global variable insert_extract_error */
int i;
int t;
VERBOSE_FUNCTION_CALLOUT
/* for the insert and extract tests, we deliberately use only a
* subset of the vsxargs array as input data.
*/
for (i = 2; i < 9 ; i += 4) { /* index into vsxargs[] array */
/* Note:
* Determining the proper offset for {extract, insert} byte, halfword,
* word, double would complicate things. For simplicity, allow the
* sub-functions to ignore input that would be invalid. Catch and
* suppress output for those cases per the global variable.
*/
for (x_index = 0; x_index < 16 ; x_index++) {
vec_xb[0] = (unsigned long) vsxargs[i];
vec_xb[1] = (unsigned long) vsxargs[i+1];
/* Run each test against all zeros and then all ones,
* This is intended to help any bitfield changes stand out.
*/
for (t = 0; t < 2; t++) {
vec_xt[0] = (t == 0) ? 0 : 0xffffffffffffffff;
vec_xt[1] = (t == 0) ? 0 : 0xffffffffffffffff;
insert_extract_error = 0;
(*test_function)();
if (!insert_extract_error) {
printf("%s %016lx %016lx [%d] (into%s) => ",
instruction_name, vec_xb[1], vec_xb[0], x_index,
(t == 0 ? " zeros" : " ones") );
printf("%016lx %016lx\n", vec_xt[1], vec_xt[0]);
}
}
}
}
}
static void testfunction_vector_immediate (const char * instruction_name,
test_func_t test_function,
unsigned int ignore_test_flags) {
/* Uses global variable x_splat */
int i;
int t;
VERBOSE_FUNCTION_CALLOUT
for (i = 0; i < SPLAT_ARRAY_SIZE; i++) {
x_splat = splat_values[i];
for (t = 0; t < 2; t++) {
vec_xt[0] = (t == 0) ? 0 : 0xffffffffffffffff;
vec_xt[1] = (t == 0) ? 0 : 0xffffffffffffffff;
printf("%s %016lx %016lx [%2x] => ",
instruction_name, vec_xt[1], vec_xt[0], x_splat);
(*test_function)();
printf("%016lx %016lx\n", vec_xt[1], vec_xt[0]);
}
}
}
static void testfunction_vector_loadstore (const char* instruction_name,
test_func_t test_function,
unsigned int ignore_flags) {
/* exercises vector loads from memory, and vector stores from memory.
* <load or store instruction> XS, RA, RB
* For these tests, RA will be zero.
* EA is then, simply, RB.
*/
int i;
int buffer_pattern;
VERBOSE_FUNCTION_CALLOUT
for (i = 0; i < nb_vargs; i += 2) {
vec_xt = (vector unsigned long){vsxargs[i], vsxargs[i+1]};
r14 = 0;
r15 = (unsigned long) & buffer;
for (buffer_pattern = 0; buffer_pattern < MAX_BUFFER_PATTERNS;
buffer_pattern++) {
/* set patterns on both ends */
initialize_buffer(buffer_pattern);
printf("%s ", instruction_name);
printf("%016lx %016lx ", vec_xt[1], vec_xt[0]);
dump_small_buffer();
printf(" =>\n");
(*test_function)();
printf(" %016lx %016lx ", vec_xt[1], vec_xt[0]);
dump_small_buffer();
printf("\n");
}
}
}
static void testfunction_vectorscalar_move_tofrom (const char * instruction_name,
test_func_t test_function,
unsigned int ignore_test_flags) {
/* Move to / move from vector scalar. spin through simple variants of
* both the VSR and the register.
* for simplicity, RA from 'mtvsrdd xt, ra, rb' is 0.
*/
int i, v;
VERBOSE_FUNCTION_CALLOUT
for (i = 0; i < PATTERN_SIZE; i++) {
for (v = 0; v < PATTERN_SIZE; v++) {
/* if i==v, patterns will match, so just skip these as
* non-interesting..
*/
if (i == v) continue;
r14 = 0;
r15 = pattern[i%PATTERN_SIZE];
vec_xt[0] = pattern[v%PATTERN_SIZE];
vec_xt[1] = pattern[v%PATTERN_SIZE];
printf("%s ", instruction_name);
printf("%016lx %016lx %lx %016lx ", vec_xt[1], vec_xt[0],
(long unsigned)r14, (long unsigned)r15 );
(*test_function)();
printf("=> %016lx %016lx %lx %016lx", vec_xt[1], vec_xt[0],
(long unsigned)r14, (long unsigned)r15 );
printf("\n");
}
}
}
/* Some of the load/store vector instructions use a length value that
* is stored in bits 0:7 of RB. */
#define uses_bits_0to7(instruction_name) ( \
(strncmp(instruction_name, "lxvl " ,5) == 0) || \
(strncmp(instruction_name, "lxvll " ,6) == 0) || \
(strncmp(instruction_name, "stxvl " ,6) == 0) || \
(strncmp(instruction_name, "stxvll ",7) == 0) )
static void testfunction_vector_scalar_loadstore_length (const char* instruction_name,
test_func_t test_function,
unsigned int ignore_flags) {
/* exercises vector loads from memory, and vector stores from memory.
* with length specification.
* <load or store instruction> XS, RA, RB
* For these tests, RA (i.e. EA) is address of source/dest and can
* not be zero.
* The length value is in rb. For a subset of these instructions,
* the length is stored in bits 0:7, versus 56:63 of r15.
*/
int i;
unsigned long l;
int buffer_pattern;
VERBOSE_FUNCTION_CALLOUT
for (i = 0; i < nb_vargs; i += 2) {
for (l = 0; l <= 16; l += 4) {
for (buffer_pattern = 0; buffer_pattern < MAX_BUFFER_PATTERNS;
buffer_pattern++) {
/* set patterns on both ends */
vec_xt = (vector unsigned long){vsxargs[i], vsxargs[i+1]};
r14 = (unsigned long) & buffer;
if (uses_bits_0to7(instruction_name)) {
/* length is stored in bits 0:7 of gpr[r15]. */
r15 = (unsigned long)((0xff & l) << 56);
} else {
/* length is stored in gpr[r15]. */
r15 = l;
}
initialize_buffer(buffer_pattern);
printf("%s ", instruction_name);
printf("%016lx %016lx ", vec_xt[1], vec_xt[0] );
if (uses_bits_0to7(instruction_name)) {
printf(" 0x%2lx ", (long unsigned)r15>>56 );
} else {
printf(" l = 0x%2lx ", (long unsigned)r15 );
}
dump_small_buffer();
(*test_function)();
printf("=> %016lx %016lx & %16lx", vec_xt[1], vec_xt[0],
(long unsigned)r15 );
printf("\n");
}
}
}
}
static void testfunction_vector_count_bytes (const char* instruction_name,
test_func_t test_function,
unsigned int ignore_flags)
{
int i;
VERBOSE_FUNCTION_CALLOUT
for (i = 0; i < nb_vargs; i += 2) {
vec_xb = (vector unsigned long){vsxargs[i], vsxargs[i+1]};
r14 = 0;
printf("%s ", instruction_name);
printf("%016lx %016lx %2d ", vec_xb[1], vec_xb[0], (unsigned)r14);
(*test_function)();
printf("=> %2d\n", (unsigned)r14 );
}
}
static void testfunction_vector_extract (const char* instruction_name,
test_func_t test_function,
unsigned int ignore_flags)
{
int i;
VERBOSE_FUNCTION_CALLOUT
for (i = 0; i < nb_vargs; i += 2) {
vec_xb = (vector unsigned long){vsxargs[i], vsxargs[i+1]};
for (r15 = 0; r15 < 16; r15++) {
r14 = 0;
printf("%s ", instruction_name);
printf("%016lx %016lx %2d ", vec_xb[1], vec_xb[0], (unsigned)r15);
(*test_function)();
printf("=> %16lx\n", (long unsigned)r14 );
}
}
}
static void testfunction_vector_extend_sign (const char* instruction_name,
test_func_t test_function,
unsigned int ignore_flags)
{
int i;
VERBOSE_FUNCTION_CALLOUT
for (i = 0; i < nb_vargs; i += 2) {
vec_xb = (vector unsigned long){vsxargs[i], vsxargs[i+1]};
vec_xt = (vector unsigned long){0, 0};
printf("%s ", instruction_name);
printf("%016lx %016lx ", vec_xb[1], vec_xb[0]);
(*test_function)();
printf("=> %016lx %016lx\n", vec_xt[1], vec_xt[0]);
}
}
/* packed binary decimal misc */
#define convert_from_zoned(instruction_name) (strncmp(instruction_name, "bcdcfz", 6) ==0 )
#define convert_from_national(instruction_name) (strncmp(instruction_name, "bcdcfn", 6) == 0)
#define convert_to_zoned(instruction_name) (strncmp(instruction_name, "bcdctz", 6) == 0)
#define convert_to_national(instruction_name) (strncmp(instruction_name, "bcdctn", 6) == 0)
#define shift_or_truncate(instruction_name) \
(strncmp(instruction_name, "bcds", 4) == 0 || \
strncmp(instruction_name, "bcdus", 5) == 0 || \
strncmp(instruction_name, "bcdsr", 5) == 0 || \
strncmp(instruction_name, "bcdtrunc", 8) == 0 || \
strncmp(instruction_name, "bcdutrunc", 9) == 0)
/* Helper function - returns 1 or 0 per whether the p1 or p0 string
* exists in the instruction name passed in. The PS indicates preferred
* sign, and has meaning for some of the BCD instructions.
*/
static inline int p_value(const char * instruction_name) {
char * found_p0;
char * found_p1;
found_p1 = strstr(instruction_name, "p1");
found_p0 = strstr(instruction_name, "p0");
if (found_p1) return 1;
if (found_p0) return 0;
if (verbose) printf("p* substring not found in (%s)\n", instruction_name);
return 0;
}
/* bcd test has been split out a bit.. a few bcd specific global vars here
* to help keep that clean.
*/
long shift_or_truncate_instruction;
int xa_sign, xb_sign, xt_sign;
int short_circuit;
/* testfunction_bcd_setup_inputs
* This is a helper function that sets up the vec_xa, vec_xb values for
* use in the bcd tests.
*/
static inline void testfunction_bcd_setup_inputs(const char * instruction_name,
int i, int j) {
short_circuit=0;
if (shift_or_truncate_instruction) {
if (i >= nb_decimal_shift_entries - 2) {
short_circuit = 1;
return;
}
vec_xa = (vector unsigned long) {decimal_shift_table[i+1],
decimal_shift_table[i]};
} else {
if (i >= nb_decimal_shift_entries - 2) {
short_circuit = 1;
return;
}
vec_xa = (vector unsigned long) {packed_decimal_table[i+1],
packed_decimal_table[i]};
xa_sign = extract_packed_decimal_sign(vec_xa[0], vec_xa[1]);
}
if (convert_from_zoned(instruction_name)) { /* convert from zoned */
if (j >= nb_zoned_decimal_entries - 2) {
short_circuit = 1;
return;
}
vec_xb = (vector unsigned long) {zoned_decimal_table[j+1],
zoned_decimal_table[j]};
xb_sign = extract_zoned_decimal_sign(vec_xb[0], vec_xb[1]);
} else if (convert_from_national(instruction_name)) {
/* convert from national */
if (j >= nb_national_decimal_entries - 2) {
short_circuit = 1;
return;
}
vec_xb = (vector unsigned long) {national_decimal_table[j+1],
national_decimal_table[j]};
xb_sign = extract_national_decimal_sign(vec_xb[0], vec_xb[1]);
} else {
/* packed decimal entries */
if (j >= nb_packed_decimal_entries - 2) {
short_circuit = 1;
return;
}
vec_xb = (vector unsigned long) {packed_decimal_table[j+1],
packed_decimal_table[j]};
xb_sign = extract_packed_decimal_sign(vec_xb[0], vec_xb[1]);
}
}
static inline void testfunction_bcd_display_outputs(const char * instruction_name) {
printf(" xt:%016lx %016lx", vec_xt[0], vec_xt[1] );
if (convert_to_zoned(instruction_name)) {
/* convert to zoned */
xt_sign = extract_zoned_decimal_sign(vec_xt[0], vec_xt[1]);
dissect_zoned_decimal_sign(xt_sign, p_value(instruction_name));
} else if (convert_to_national(instruction_name)) {
/* convert to national */
xt_sign = extract_national_decimal_sign(vec_xt[0], vec_xt[1]);
dissect_national_decimal_sign(xt_sign);
} else {
/* packed decimal entries, or shift/truncate */
if (!shift_or_truncate_instruction) {
xt_sign = extract_packed_decimal_sign(vec_xt[0], vec_xt[1]);
dissect_packed_decimal_sign(xt_sign);
}
}
printf("\n");
}
#define uses_half_precision_input(instruction_name) ( \
(strncmp(instruction_name, "xscvhpdp", 8) == 0) || \
(strncmp(instruction_name, "xvcvhpsp", 8) == 0) )
#define uses_single_precision_input(instruction_name) ( \
(strncmp(instruction_name, "xvcvsphp", 8) == 0) )
#define uses_double_precision_input(instruction_name) ( \
(strncmp(instruction_name, "xscvdphp", 8) == 0) )
#define uses_half_precision_output(instruction_name) ( \
(strncmp(instruction_name, "xscvdphp", 8) == 0) || \
(strncmp(instruction_name, "xvcvsphp", 8) == 0) )
#define is_half_precision_instruction(instruction_name) ( \
uses_half_precision_input(instruction_name) || \
uses_half_precision_output(instruction_name) )
/* Helper for those instructions with an unused second dword, indicating
* the outer loop can be short-circuited after one pass.
*/
#define unused_second_dword(instruction_name) ( \
(strncmp(instruction_name, "xscvhpdp", 8) == 0) || \
(strncmp(instruction_name, "xscvdphp", 8) == 0) )
static void testfunction_vector_scalar_two_quad (const char* instruction_name,
test_func_t test_function,
unsigned int ignore_flags)
{
int i;
VERBOSE_FUNCTION_CALLOUT
for (i = 0; i < nb_vargs; i += 2) {
if (uses_half_precision_input(instruction_name)) {
vec_xb = (vector unsigned long){binary16_float_vsxargs[i],
binary16_float_vsxargs[i+1]};
} else {
vec_xb = (vector unsigned long){vsxargs[i], vsxargs[i+1]};
}
vec_xt = (vector unsigned long){0, 0};
printf("%s ", instruction_name);
printf("%016lx %016lx ", vec_xb[1], vec_xb[0]);
SET_FPSCR_ZERO
(*test_function)();
GET_FPSCR(local_fpscr);
printf("=> %016lx %016lx", vec_xt[1], vec_xt[0]);
dissect_fpscr(local_fpscr);
printf("\n");
}
}
static void
testfunction_vector_scalar_compare_exp_double (const char* instruction_name,
test_func_t test_function,
unsigned int ignore_test_flags){
int i,j;
/* Uses global variable x_index */
VERBOSE_FUNCTION_CALLOUT
for (i = 0; i < nb_float_vsxargs - 1; i++) {
for (j = 0; j < nb_float_vsxargs - 1; j++) {
for (x_index = 2; x_index < 3; x_index++) {
/* TODO FIXME- there was a casting issue below. This incantation
* works, but I suspect can be simplified...
*/
vec_xa = (vector unsigned long){(unsigned long)binary64_float_vsxargs[i+1], (unsigned long)binary64_float_vsxargs[i]};
vec_xb = (vector unsigned long){(unsigned long)binary64_float_vsxargs[j], (unsigned long)binary64_float_vsxargs[j+1]};
/* run each test against cleared CR and FPSCR */
/* Note that the SET_*_ZERO calls are not actually sufficient here,
* due to infrastructure between here and there that also set some
* of the CR bits. The condition regs are cleared here, but are
* also both cleared and read within the to-be-tested asm chunk to
* get accurate results.
*/
SET_CR_ZERO
SET_FPSCR_ZERO
printf("%s %016lx %016lx %016lx %016lx",
instruction_name,
vec_xa[0], vec_xa[1],
vec_xb[0], vec_xb[1]);
if (verbose) printf(" cr#%d ", x_index);
printf(" => ");
(*test_function)();
dissect_fpscr(local_fpscr);
dissect_fpscr_result_value_class(local_fpscr);
dissect_cr_rn(local_cr, x_index);
printf("\n");
}
}
}
}
/* These instructions set the floating point condition codes. */
/* verify logic reversal */
#define does_not_set_floating_point_cc(instruction_name) \
(strncmp(instruction_name, "xvtstdcdp", 9) == 0) | \
(strncmp(instruction_name, "xvtstdcsp", 9) == 0)
static void
testfunction_vector_scalar_data_class (const char* instruction_name,
test_func_t test_function,
unsigned int ignore_test_flags) {
int j;
/* x_index is used as a key into the DCMX value.
*
* BF, XB, DCMX
* For instruction tests called through this function, note that we are only
* utilizing bf (condition register) #3; where 3 was mostly randomly
* chosen, and has no special meaning.
*/
VERBOSE_FUNCTION_CALLOUT
for (j = 0; j < nb_float_vsxargs - 1; j++) {
/* for dcmx field, start with x_index=1 to skip the 'all' dcmx entry. */
for (x_index = 1; x_index < 8; x_index++) {
vec_xb[0] = float_vsxargs[j];
vec_xb[1] = float_vsxargs[j+1];
vec_xt[0] = 0x0a0a0a0a0a0a0a0a;
vec_xt[1] = 0x0505050505050505;
SET_CR_ZERO
SET_FPSCR_ZERO
dcmx_match = 0;
(*test_function)();
/* the local_fpscr value is gathered within the test_function call. */
dcmx_match = (local_fpscr & FPCC_FE_BIT);
if (dcmx_match || (verbose>2)) {
printf("%s %016lx, %016lx ",
instruction_name, vec_xb[1], vec_xb[0]);
print_dcmx_field(x_index);
if (dcmx_match)
printf(" => Match. ");
printf(" %016lx, %016lx ", vec_xt[1], vec_xt[0]);
dissect_cr_rn(local_cr,3);
dissect_fpscr_dcmx_indicator(local_fpscr);
printf("\n");
}
printf("%s %016lx, %016lx => ",
instruction_name, vec_xb[1], vec_xb[0]);
printf(" %016lx, %016lx\n", vec_xt[1], vec_xt[0]);
}
}
}
static void testfunction_vector_scalar_compare_quads (const char* instruction_name,
test_func_t test_function,
unsigned int ignore_test_flags) {
/* Uses global variable x_index */
int i,j;
VERBOSE_FUNCTION_CALLOUT
for (i = 0; i < nb_float_vsxargs - 1; i++) {
for (j = 0; j < nb_float_vsxargs - 1; j++) {
for (x_index = 0; x_index < 3 ; x_index++) {
vec_xa[0] = float_vsxargs[i];
vec_xa[1] = float_vsxargs[i+1];
vec_xb[0] = float_vsxargs[j];
vec_xb[1] = float_vsxargs[j+1];
/* run each test against cleared CR and FPSCR */
/* Note that the SET_*_ZERO calls are not actually sufficient here,
* due to infrastructure between here and there that also set some
* of the CR bits. The condition regs are cleared here, but are
* also both cleared and read within the to-be-tested asm chunk
* to get accurate results.
*/
printf("%s %016lx%016lx %016lx%016lx (cr#%d) => ",
instruction_name,
vec_xa[1], vec_xa[0],
vec_xb[1], vec_xb[0],
x_index);
SET_CR_ZERO
SET_FPSCR_ZERO
(*test_function)();
GET_CR(local_cr);
GET_FPSCR(local_fpscr);
dissect_fpscr(local_fpscr);
dissect_cr_rn(local_cr, x_index);
printf("\n");
}
}
}
}
static void testfunction_vector_scalar_rounding_quads (const char* instruction_name,
test_func_t test_function,
unsigned int ignore_test_flags) {
/* Uses global variable x_index */
/* For this function, x_index is used as a key into R and RMC values.
* Also note, the fpscr.rn value may be used to affect the rounding mode.
* that variation is not evaluated here. */
int j;
VERBOSE_FUNCTION_CALLOUT
for (j = 0; j < nb_float_vsxargs - 1; j++) {
for (x_index = 0; x_index < 8; x_index++) {
vec_xb[0] = float_vsxargs[j];
vec_xb[1] = float_vsxargs[j+1];
printf("%s %016lx%016lx (R=%x) (RMC=%x) => ",
instruction_name,
vec_xb[1], vec_xb[0],
(x_index & 0x4) >> 2, x_index & 0x3);
SET_CR_ZERO
SET_FPSCR_ZERO
(*test_function)();
GET_FPSCR(local_fpscr);
printf("%016lx%016lx", vec_xt[1], vec_xt[0]);
dissect_fpscr(local_fpscr);
printf("\n");
}
}
}
static void testfunction_vector_three_special (const char* instruction_name,
test_func_t test_function,
unsigned int ignore_test_flags){
/* Notes:
* vector instructions with two inputs, one output.
* vrt, vra, vrb
*/
int i, j;
int t;
VERBOSE_FUNCTION_CALLOUT
for (i = 0; i < nb_float_vsxargs - 1; i++) {
for (j = 0; j < nb_float_vsxargs - 1; j++) {
vec_xa[0] = float_vsxargs[i];
vec_xa[1] = float_vsxargs[i+1];
vec_xb[0] = float_vsxargs[j];
vec_xb[1] = float_vsxargs[j+1];
for (t = 0; t < 2; t++) {
vec_xt[0] = (t == 0) ? 0 : 0xffffffffffffffff;
vec_xt[1] = (t == 0) ? 0 : 0xffffffffffffffff;
SET_FPSCR_ZERO;
printf("%s %016lx%016lx %016lx%016lx %016lx%016lx => ",
instruction_name,
vec_xa[1], vec_xa[0],
vec_xb[1], vec_xb[0],
vec_xt[1], vec_xt[0]);
(*test_function)();
GET_FPSCR(local_fpscr);
printf(" %016lx%016lx", vec_xt[1], vec_xt[0]);
dissect_fpscr(local_fpscr);
printf("\n");
}
}
}
}
#define vector_instruction_is_xvcvhpsp(instruction_name) \
(strncmp(instruction_name, "xvcvhpsp", 8) == 0)
static void testfunction_vector_scalar_two_double(const char* instruction_name,
test_func_t test_function,
unsigned int ignore_test_flags) {
/* Notes:
* iterate across double values stored in xa, xb.
* Or, on half-word values in vec_xb.
* Results are in vec_xt.
*/
int i, j;
VERBOSE_FUNCTION_CALLOUT
for (i = 0; i < nb_float_vsxargs - 1; i += 2) {
for (j = 0; j < nb_float_vsxargs - 1; j += 2) {
/* vec_xb is only used by the convert instructions, the other callers
* use the r14, r15 fields.
* The 16-bit converts reference every other half-word in the vector.
* For this reason, populate the input field with a cross-section of
* values.
*/
printf("%s ",instruction_name);
if (uses_half_precision_input(instruction_name)) {
vec_xb = (vector unsigned long) {
binary16_float_vsxargs[i] |
binary16_float_vsxargs[j] << 16 |
binary16_float_vsxargs[i+1] << 32 |
binary16_float_vsxargs[j+1] << 48,
binary16_float_vsxargs[(nb_float_vsxargs - 1) - j - 1 ] |
binary16_float_vsxargs[(nb_float_vsxargs - 1) - i - 1] << 16 |
binary16_float_vsxargs[(nb_float_vsxargs - 1) - j ] << 32 |
binary16_float_vsxargs[(nb_float_vsxargs - 1) - i ] << 48
};
printf(" vec_xb[1] = 0x%lx, vec_xb[0] = 0x%lx ",
vec_xb[1], vec_xb[0]);
} else if (uses_single_precision_input(instruction_name)) {
vec_xb = (vector unsigned long) {
binary32_float_vsxargs[i] |
binary32_float_vsxargs[i+1] << 32,
binary32_float_vsxargs[nb_float_vsxargs - 1 - j ] |
binary32_float_vsxargs[nb_float_vsxargs - 1 - j ] << 32
};
printf(" vec_xb[1] = 0x%lx, vec_xb[0] = 0x%lx ",
vec_xb[1], vec_xb[0]);
} else { /* uses double */
r14 = binary64_float_vsxargs[i];
r15 = binary64_float_vsxargs[j];
printf(" r14 = 0x%lx, r15 = 0x%lx ", r14, r15);
}
vec_xt = (vector unsigned long){0, 0};
printf("%016lx %016lx ", vec_xb[1], vec_xb[0] );
if ((verbose > 2) && uses_double_precision_input(instruction_name)) {
dissect_binary64_float(vec_xb[1]);
dissect_binary64_float(vec_xb[0]);
}
printf(" => ");
SET_FPSCR_ZERO
(*test_function)();
GET_FPSCR(local_fpscr);
printf(" %016lx %016lx", vec_xt[1], vec_xt[0]);
if ((verbose > 2) && uses_half_precision_output(instruction_name)) {
dissect_double_as_16s(vec_xt[1]);
dissect_double_as_16s(vec_xt[0]);
}
/* The xvcvhpsp instruction does not set the C and FPCC fields */
if (!vector_instruction_is_xvcvhpsp(instruction_name))
dissect_fpscr(local_fpscr);
printf("\n");
} // j
/* If we are doing half precision conversions, the i-loop can be
* short-circuited to avoid duplicate input values. */
if (unused_second_dword(instruction_name))
i = nb_float_vsxargs+1;
} // i
}
static void testfunction_set_boolean (const char* instruction_name,
test_func_t test_function,
unsigned int ignore_test_flags)
{
int cr_base_value;
/* Notes:
* Set RT to values 0, -1, 1 depending on what bits are set in the specified
* CR field. x_index references here reflect the cr_field number.
*/
VERBOSE_FUNCTION_CALLOUT
for (x_index = 0; x_index <= 7; x_index++) {
for (cr_base_value = 0; cr_base_value <= 8; cr_base_value++) {
cr_value = (0x11111111 * cr_base_value)
& (0xf << (4 * (7 - x_index))) ;
r14 = 0xa5a5a5a5c7c7c7c7;
printf("%s cr_field:%1x cr_value::%08x",
instruction_name, x_index,cr_value);
printf(" => ");
(*test_function)();
printf(" %016lx\n", r14);
}
}
}
static void testfunction_char_compare (const char* instruction_name,
test_func_t test_function,
unsigned int ignore_test_flags)
{
/* Notes:
* iterate through char values stored in RA, RB.
* Results stored in cr field BF.
*/
int i, j;
int local_crf;
VERBOSE_FUNCTION_CALLOUT
for (x_index = 0; x_index <= 7; x_index++) {
for (i = 0; i < nb_char_ranges; i += 4) {
for (j = 0; j < nb_char_args; j++) {
r14 = char_args[j];
/* For cmprb*, only needs the lower characters. */
r15 = char_ranges[i] | (char_ranges[i+1] << 8) |
char_ranges[i+2] << 16 | (char_ranges[i+3] << 24);
/* For cmpeqb, also load the rest of the range field, shift allk
* chars up by one.
*/
r15 |= (r15 + 0x01010101) << 32;
printf("%s 0x%02lx (%c) (cmpeq:0x%016lx) (cmprb:src22(%c-%c) src21(%c-%c))",
instruction_name,
r14, (int)r14,
r15, (int)(r15 & 0xff), (int)((r15 >> 8) & 0xff),
(int)((r15 >> 16) & 0xff), (int)((r15 >> 24) & 0xff)
);
printf(" =>");
(*test_function)();
GET_CR(local_cr);
local_crf = extract_cr_rn(local_cr, x_index);
if (verbose)
printf(" %s found or in range (%x)",
(cr_positive_set(local_crf))?" " : " not", local_crf);
else
if (cr_positive_set(local_crf)) printf(" in range/found");
printf("\n");
}
}
}
}
#define instruction_uses_quads(instruction_name) (strncmp(instruction_name, "dtstsfiq", 8) == 0)
static void testfunction_dfp_significance (const char* instruction_name,
test_func_t test_function,
unsigned int ignore_test_flags)
{
int local_crf;
int i;
int num_dfp_vals;
VERBOSE_FUNCTION_CALLOUT
if (instruction_uses_quads(instruction_name)) {
num_dfp_vals = nb_dfp128_vals;
} else {
num_dfp_vals = nb_dfp64_vals;
}
for (i = 0; i < num_dfp_vals; i++) {
if (instruction_uses_quads(instruction_name)) {
dfp_value.u128.vall = dfp128_vals[i * 2];
dfp_value.u128.valu = dfp128_vals[(i * 2) + 1];
} else {
// could rework this to use u64.val, but...
dfp_value.u128.vall = dfp128_vals[i ];
dfp_value.u128.valu = dfp128_vals[i ];
}
/* Keeping test simpler, always using cr3 within test_dtstsfi* */
for (dfp_significance = 0; dfp_significance <= 63;) {
/* Todo: tweak output here, or input values so the generated content
* looks better.
*/
printf("%s significance(0x%02x) ",
instruction_name, dfp_significance);
if (instruction_uses_quads(instruction_name)) {
dissect_dfp128_float(dfp_value.u128.vall, dfp_value.u128.valu);
if (verbose > 6)
printf("(RAW) value = %16lx,%016lx ",
dfp_value.u128.vall, dfp_value.u128.valu /*f14, f15 */);
} else {
dissect_dfp64_float(dfp_value.u128.vall);
if (verbose > 6)
printf("(RAW) value = %16lx ", dfp_value.u128.vall /*f14 */);
}
(*test_function)();
GET_CR(local_cr);
local_crf = extract_cr_rn(local_cr, /* hardcoded cr3 */ 3);
dissect_cr_rn(local_cr, /* hardcoded cr3 */ 3);
printf(" (%x)", local_crf);
printf("\n");
/* Special case for incrementation of the significance checking
* value.
*/
if (dfp_significance < 8)
dfp_significance += 4; /* 0, 4, 8 */
else if (dfp_significance < 32)
dfp_significance += 8; /* 16, 24, 32 */
else if (dfp_significance < 48)
dfp_significance += 16; /* 48 */
else
dfp_significance += 15; /* 63 */
}
}
}
/* packed binary decimal misc */
#define convert_tofrom_instruction(instruction_name) \
( (strncmp(instruction_name, "bcdcf", 5) == 0) || \
(strncmp(instruction_name, "bcdct", 5) == 0) )
static void testfunction_bcd_misc (const char* instruction_name,
test_func_t test_function,
unsigned int ignore_test_flags)
{
int i, j;
int local_crf;
long max_xa_entries = 0;
long max_xb_entries = 0;
VERBOSE_FUNCTION_CALLOUT
shift_or_truncate_instruction = shift_or_truncate(instruction_name);
max_xa_entries = MAX(max_xa_entries, nb_decimal_shift_entries);
max_xa_entries = MAX(max_xa_entries, nb_packed_decimal_entries);
max_xb_entries = MAX(max_xb_entries, nb_zoned_decimal_entries);
max_xb_entries = MAX(max_xb_entries, nb_national_decimal_entries);
max_xb_entries = MAX(max_xb_entries, nb_packed_decimal_entries);
for (i = 0; i < (max_xa_entries - 1); i += 2) {
for (j = 0; j < (max_xb_entries - 1); j += 2) {
testfunction_bcd_setup_inputs(instruction_name, i, j);
if (short_circuit) continue;
printf("%s ", instruction_name);
printf("xa:%016lx %016lx ", vec_xa[0], vec_xa[1]);
if (!shift_or_truncate_instruction)
dissect_packed_decimal_sign(xa_sign);
printf(" xb:%016lx %016lx ", vec_xb[0], vec_xb[1]);
if (convert_from_zoned(instruction_name)) {
/* convert from zoned */
dissect_zoned_decimal_sign(xb_sign, p_value(instruction_name));
} else if (convert_from_national(instruction_name)) {
/* convert from national */
dissect_national_decimal_sign(xb_sign);
} else {
/* packed decimal entries */
if (!shift_or_truncate_instruction)
dissect_packed_decimal_sign(xb_sign);
}
printf(" => ");
SET_CR_ZERO
(*test_function)();
GET_CR(local_cr);
/* note: the bcd instructions are hard wired to use cr6. */
local_crf = extract_cr_rn(local_cr, 6);
dissect_cr_rn(local_cr, 6);
printf(" (%x)", local_crf);
if (cr_overflow_set(local_crf)) {
/* If overflow (S0) is set the results are undefined. Force the
* output to print as zeros so we have consistent results for
* comparison.
*/
printf(" xt:%016lx %016lx", 0UL, 0UL);
} else {
testfunction_bcd_display_outputs(instruction_name);
}
printf("\n");
} // j = xb loop.
/* Since the bcdct* convert_tofrom instructions do not use the xa
* field, we will short-circuit the xa (i=*) loop here.
*/
if (convert_tofrom_instruction(instruction_name))
i = nb_packed_decimal_entries;
} //i = xa loop.
}
static void testfunction_noop_misc (const char* instruction_name,
test_func_t test_function,
unsigned int ignore_test_flags)
{
VERBOSE_FUNCTION_CALLOUT
printf("%s ", instruction_name);
printf(" =>");
(*test_function)();
printf("\n");
}
static void testfunction_pc_immediate_misc (const char* instruction_name,
test_func_t test_function,
unsigned int ignore_test_flags)
{
VERBOSE_FUNCTION_CALLOUT
for (x_index = 0; x_index < 16; x_index++) {
printf("%s ", instruction_name);
printf(" %016x ", x_index);
printf(" => ");
(*test_function)();
/* printf(" %016lx\n", r14); */
printf(" %016x\n", 0); /* test is not portable just print zero */
}
}
/* Identify those mffs* variants that take additional arguments.
* This includes the immediate mffs*i variants. */
#define is_not_simple_mffs_instruction(instruction_name) \
( (strncmp(instruction_name,"mffscdrn",8)==0) || \
(strncmp(instruction_name,"mffscrn",7)==0) )
/* Because some of the mffs* variants here are updating the fpscr as part
* of the read, be sure to dissect both the retrieved (f14) and the updated
* (local_fpscr) fpscr values. */
static void testfunction_mffs(const char* instruction_name,
test_func_t test_function,
unsigned int ignore_test_flags)
{
union reg_t {
unsigned long int uli;
double dble;
} f14_reg, f15_reg;
/*This function uses global variable x_shift */
VERBOSE_FUNCTION_CALLOUT
if (is_not_simple_mffs_instruction(instruction_name)) {
/* iterate x_shift across values used for RN,RM */
for (x_shift = 0; x_shift < 3; x_shift++) {
printf("%s ", instruction_name);
/* make sure bits in f14 get cleared so we can
see correct resulg*/
f14_reg.uli = 0x3FFFFFFFFUL;
if (strcmp("mffscdrn", instruction_name) == 0) {
/* instruction uses input reg f15 as input for DRN field */
f15_reg.uli = (unsigned long int)x_shift << 32;
printf(" f15 0X%lx ", f15_reg.uli);
/* Setup input register value */
f15 = f15_reg.dble;
} else if (strcmp("mffscrn", instruction_name) == 0) {
/* instruction uses input reg f15 as input for RN field */
f15_reg.uli = (unsigned long int)x_shift;
printf(" f15 0X%lx ", f15_reg.uli);
/* Setup input register value */
f15 = f15_reg.dble;
} else {
printf(" %x ", x_shift);
}
(*test_function)();
printf(" => ");
f14_reg.dble = f14;
printf(" 0X%lx\n", f14_reg.uli);
printf(" fpscr: f14 ");
dissect_fpscr(f14);
printf(" local_fpscr: ");
dissect_fpscr(local_fpscr);
printf("\n");
}
} else {
printf("%s ", instruction_name);
printf(" => ");
(*test_function)();
printf(" %016f\n", f14);
printf(" fpscr: f14 ");
dissect_fpscr(f14);
printf("\n");
printf(" local_fpscr: ");
dissect_fpscr(local_fpscr);
printf("\n");
}
}
/* ######## begin grand testing loops. */
typedef struct insn_sel_flags_t_struct {
unsigned int one_arg, two_args, three_args, four_args, cmp_args, ld_args, st_args,
one_imed_args;
unsigned int arith, logical, compare, popcnt, ldst, insert_extract, permute, round;
unsigned int integer, altivec, altivec_quad, altivec_double, dfp, bcd, misc, mffs,
no_op, pc_immediate;
unsigned int cr;
} insn_sel_flags_t;
static void do_tests ( insn_sel_flags_t seln_flags)
{
test_group_t group_function;
test_list_t *tests;
unsigned int nb_args, type, family;
int i, j, n;
n = 0;
group_function = NULL;
/* self-test of some utility functions. */
if (verbose > 1) {
printf("fpscr zero'd out:");
dissect_fpscr(0);
printf("\n");
printf("fpscr all ones:");
dissect_fpscr(0xffffffffffffffff);
printf("\n");
printf("fpscr RN bits:");
dissect_fpscr_rounding_mode(0x0000000000000003);
dissect_fpscr_rounding_mode(0x0000000000000002);
dissect_fpscr_rounding_mode(0x0000000000000001);
dissect_fpscr_rounding_mode(0x0000000000000000);
printf("\n");
printf("XER bits: (64)");
dissect_xer(0xffffffffffffffff);
printf("\n");
printf("XER bits: (32)");
dissect_xer(0xffffffff);
printf("\n\n");
}
for (i=0; all_tests[i].name != NULL; i++) {
nb_args = all_tests[i].flags & PPC_NB_ARGS_MASK;
/* Check number of arguments */
if ((nb_args == 1 && !seln_flags.one_arg) ||
(nb_args == 2 && !seln_flags.two_args) ||
(nb_args == 3 && !seln_flags.three_args) ||
(nb_args == 4 && !seln_flags.four_args) ||
(nb_args == 5 && !seln_flags.cmp_args) ||
(nb_args == 6 && !seln_flags.ld_args) ||
(nb_args == 7 && !seln_flags.st_args) ||
(nb_args == 8 && !seln_flags.one_imed_args))
continue;
/* Check instruction type */
type = all_tests[i].flags & PPC_TYPE_MASK;
if ((type == PPC_ARITH && !seln_flags.arith) ||
(type == PPC_LDST && !seln_flags.ldst) ||
(type == PPC_LOGICAL && !seln_flags.logical) ||
(type == PPC_COMPARE && !seln_flags.compare) ||
(type == PPC_POPCNT && !seln_flags.compare) ||
(type == PPC_INSERTEXTRACT && !seln_flags.insert_extract))
continue;
/* Check instruction family */
family = all_tests[i].flags & PPC_FAMILY_MASK;
/* do each check each case individually to reduce computation */
if (family == PPC_INTEGER && seln_flags.integer == 0) continue;
if (family == PPC_ALTIVEC && seln_flags.altivec == 0) continue;
if (family == PPC_DFP && seln_flags.dfp == 0) continue;
if (family == PPC_BCD && seln_flags.bcd == 0) continue;
if (family == PPC_NO_OP && seln_flags.no_op == 0) continue;
if (family == PPC_MISC && seln_flags.misc == 0) continue;
if (family == PPC_MFFS && seln_flags.mffs == 0) continue;
if (family == PPC_ALTIVEC_DOUBLE && seln_flags.altivec_double == 0)
continue;
if (family == PPC_ALTIVEC_QUAD && seln_flags.altivec_quad == 0)
continue;
if (family == PPC_PC_IMMEDIATE && seln_flags.pc_immediate == 0)
continue;
/* Check flags update */
if (((all_tests[i].flags & PPC_CR) && seln_flags.cr == 0) ||
(!(all_tests[i].flags & PPC_CR) && seln_flags.cr == 1))
continue;
/* All criteria validation passed, do the tests */
tests = all_tests[i].tests;
/* Select the test group */
switch (family) {
case PPC_MFFS:
group_function = &testfunction_mffs;
break;
case PPC_INTEGER:
switch(type) {
case PPC_ARITH:
switch(nb_args) {
case PPC_TWO_ARGS:
group_function = &testfunction_int_two_args;
break;
case PPC_THREE_ARGS:
group_function = &testfunction_three_args;
break;
default:
printf("ERROR: PPC_INTEGER, unhandled number of arguments. 0x%08x\n",
nb_args);
}
break;
case PPC_LOGICAL:
switch(nb_args) {
case PPC_ONE_IMM:
group_function = &testfunction_set_boolean;
break;
case PPC_ONE_ARG:
group_function = &testfunction_logical_one;
break;
default:
printf("ERROR: PPC_LOGICAL, unhandled number of arguments. 0x%08x\n",
nb_args);
}
break;
case PPC_COMPARE:
group_function = &testfunction_char_compare;
break;
default:
printf("ERROR: PPC_INTEGER, unhandled type 0x%08x\n", type);
continue;
} /* switch (type) */
break;
case PPC_ALTIVEC:
switch(type) {
case PPC_ARITH:
switch(nb_args) {
case PPC_TWO_ARGS:
group_function = &testfunction_vector_absolute;
break;
default:
printf("ERROR: PPC_ALTIVEC, PPC_ARITH, unhandled number of arguments. 0x%08x\n", nb_args);
continue;
} /* switch (PPC_ARITH, nb_args) */
break;
case PPC_LOGICAL:
switch(nb_args) {
case PPC_ONE_IMM:
group_function = &testfunction_vector_immediate;
break;
case PPC_ONE_ARG:
group_function = &testfunction_vector_logical_one;
break;
case PPC_TWO_ARGS:
group_function = &testfunction_vector_extend_sign;
break;
case PPC_THREE_ARGS:
group_function = &testfunction_vector_three_special;
break;
case PPC_FOUR_ARGS:
group_function = &testfunction_vector_logical_four;
break;
default:
printf("ERROR: PPC_ALTIVEC, PPC_LOGICAL, unhandled number of arguments. 0x%08x\n", nb_args);
continue;
} /* switch(PPC_INSERTEXTRACT, nb_args) */
break;
case PPC_INSERTEXTRACT:
switch(nb_args) {
case PPC_ONE_IMM:
group_function = &testfunction_vector_insert_or_extract_immediate;
break;
case PPC_TWO_ARGS:
group_function = testfunction_vector_extract;
break;
default:
printf("ERROR: PPC_ALTIVEC, PPC_INSERTEXTRACT, unhandled number of arguments. 0x%08x\n", nb_args);
continue;
} /* switch(PPC_INSERTEXTRACT, nb_args) */
break;
case PPC_PERMUTE:
group_function = &testfunction_vector_xxpermute;
break;
case PPC_LDST:
switch(nb_args) {
case PPC_ONE_IMM:
/* Register holds immediate length value */
group_function = &testfunction_vector_scalar_loadstore_length;
break;
case PPC_TWO_ARGS:
/* Register holds address of buffer */
group_function = &testfunction_vector_loadstore;
break;
default:
printf("ERROR: PPC_ALTIVEC, PPC_LDST, unhandled number of arguments. 0x%08x\n", nb_args);
continue;
} /* switch(PPC_LDST, nb_args) */
break;
case PPC_POPCNT:
group_function = &testfunction_vector_count_bytes;
break;
default:
printf("ERROR: PPC_ALTIVEC, unhandled type. %d\n", type);
continue;
} /* switch (PPC_ALTIVEC, type) */
break;
case PPC_MISC:
switch(nb_args) {
case PPC_TWO_ARGS:
group_function = &testfunction_vectorscalar_move_tofrom;
break;
case PPC_THREE_ARGS:
group_function = &testfunction_one_arg_with_shift;
break;
default:
printf("ERROR: PPC_MISC, unhandled number of arguments. 0x%08x\n", nb_args);
continue;
} /* switch(PPC_MISC, nb_args) */
break;
case PPC_ALTIVEC_QUAD:
switch(type) {
case PPC_LOGICAL:
switch(nb_args) {
case PPC_TWO_ARGS:
group_function = &testfunction_vector_scalar_two_quad;
break;
default:
printf("ERROR: PPC_ALTIVEC_QUAD, PPC_LOGICAL, unhandled number of arguments. 0x%08x\n", nb_args);
continue;
} /* switch(PPC_LOGICAL, nb_args) */
break;
case PPC_COMPARE:
group_function = &testfunction_vector_scalar_compare_quads;
break;
case PPC_ROUND:
group_function = &testfunction_vector_scalar_rounding_quads;
break;
default:
printf("ERROR: PPC_ALTIVEC_QUAD, unhandled type. %d\n", type);
continue;
} /* switch(type) */
break;
case PPC_ALTIVEC_DOUBLE:
switch(type) {
case PPC_COMPARE:
switch(nb_args) {
case PPC_ONE_ARG:
group_function = &testfunction_vector_scalar_data_class;
break;
case PPC_TWO_ARGS:
group_function = &testfunction_vector_scalar_two_double;
break;
case PPC_COMPARE_ARGS:
group_function = &testfunction_vector_scalar_compare_exp_double;
break;
default:
printf("ERROR: PPC_ALTIVEC_DOUBLE, PPC_COMPARE, unhandled number of arguments. 0x%08x\n", nb_args);
continue;
} /* switch(PPC_COMPARE, nb_args) */
break;
default:
printf("ERROR: PPC_ALTIVEC_DOUBLE, unhandled type. %d\n", type);
continue;
} /* switch(type) */
break;
case PPC_DFP:
group_function = &testfunction_dfp_significance;
break;
case PPC_BCD:
group_function = &testfunction_bcd_misc;
break;
case PPC_NO_OP:
group_function = &testfunction_noop_misc;
break;
case PPC_PC_IMMEDIATE:
group_function = &testfunction_pc_immediate_misc;
break;
default:
printf("ERROR: unknown instruction family %08x\n", family);
continue;
} /* switch(family) */
printf("%s:\n", all_tests[i].name);
printf("Test instruction group [%s]\n", all_tests[i].name);
/* Now, spin through all entries in the group_function to
* run the individual instruction tests.
*/
for (j = 0; tests[j].name != NULL; j++) {
if (verbose > 1)
printf("Test instruction %s\n", tests[j].name);
(*group_function)(tests[j].name, tests[j].func, all_tests[i].flags);
printf("\n");
n++;
}
if (verbose) printf("\n");
printf("All done. Tested %d different instructions\n", n);
} /* for (i = 0; all_tests[i].name...) */
}
static void usage (void)
{
fprintf(stderr,
"Usage: test_isa_3_0 [OPTIONS]\n"
"\t-i: test integer instructions (default)\n"
"\t-a: test altivec instructions\n"
"\t-d: test altivec double instructions\n"
"\t-q: test altivec quad instructions\n"
"\t-D: test DFP instructions\n"
"\t-B: test BCD instructions\n"
"\t-N: test No Op instructions\n"
"\t-P: test PC Immediate Shifted instructions\n"
"\t-m: test miscellaneous instructions\n"
"\t-M: test MFFS instructions\n"
"\t-v: be verbose\n"
"\t-h: display this help and exit\n"
);
}
#endif // HAS_ISA_3_00
int main (int argc, char **argv)
{
#ifndef HAS_ISA_3_00
printf("NO ISA 3.00 SUPPORT\n");
return 0;
#else
insn_sel_flags_t flags;
int c;
// Args
flags.one_arg = 1;
flags.two_args = 1;
flags.three_args = 1;
flags.four_args = 1;
flags.cmp_args = 1;
flags.ld_args = 1;
flags.st_args = 1;
flags.one_imed_args = 1;
// Type
flags.arith = 1;
flags.logical = 1;
flags.compare = 1;
flags.ldst = 1;
flags.popcnt = 1;
flags.insert_extract = 1;
flags.permute = 1;
flags.round = 1;
// Family
flags.integer = 0;
flags.altivec = 0;
flags.altivec_double = 0;
flags.altivec_quad = 0;
flags.dfp = 0;
flags.bcd = 0;
flags.misc = 0;
flags.mffs = 0;
flags.no_op = 0;
flags.pc_immediate = 0;
// Flags
flags.cr = 2;
while ((c = getopt(argc, argv, "ifmadqhvADBMNP")) != -1) {
switch (c) {
case 'i':
flags.integer = 1;
break;
case 'a':
flags.altivec = 1;
break;
case 'd':
flags.altivec_double = 1;
break;
case 'q':
flags.altivec_quad = 1;
break;
case 'D':
flags.dfp = 1;
break;
case 'B':
flags.bcd = 1;
break;
case 'm':
flags.misc = 1;
break;
case 'M':
flags.mffs = 1;
break;
case 'N':
flags.no_op = 1;
break;
case 'P':
flags.pc_immediate = 1;
break;
case 'h':
usage();
return 0;
case 'v':
verbose++;
break;
default:
usage();
fprintf(stderr, "Unknown argument: '%c'\n", c);
return 1;
}
}
build_iargs_table();
build_vsx_table();
build_float_vsx_tables();
build_vector_permute_table();
build_char_table();
build_char_range_table();
build_packed_decimal_table();
build_national_decimal_table();
build_zoned_decimal_table();
build_decimal_shift_table();
if (verbose>2) {
dump_char_table();
dump_char_range_table();
dump_float_vsx_table();
dump_packed_decimal_table();
dump_national_decimal_table();
dump_zoned_decimal_table();
dump_decimal_shift_table();
dump_dfp64_table();
dump_dfp128_table();
}
if (verbose > 1) {
printf("\nInstruction Selection:\n");
printf(" n_args: \n");
printf(" one_arg = %d\n", flags.one_arg);
printf(" two_args = %d\n", flags.two_args);
printf(" three_args = %d\n", flags.three_args);
printf(" four_args = %d\n", flags.four_args);
printf(" cmp_args = %d\n", flags.cmp_args);
printf(" load_args = %d\n", flags.ld_args);
printf(" store_args = %d\n", flags.st_args);
printf(" one_im_args = %d\n", flags.one_imed_args);
printf(" type: \n");
printf(" arith = %d\n", flags.arith);
printf(" logical = %d\n", flags.logical);
printf(" popcnt = %d\n", flags.popcnt);
printf(" compare = %d\n", flags.compare);
printf(" inset/extract = %d\n", flags.insert_extract);
printf(" family: \n");
printf(" integer = %d\n", flags.integer);
printf(" altivec = %d\n", flags.altivec);
printf(" altivec double = %d\n", flags.altivec_double);
printf(" altivec quad = %d\n", flags.altivec_quad);
printf(" DFP = %d\n", flags.dfp);
printf(" BCD = %d\n", flags.bcd);
printf(" PC immediate shifted = %d\n", flags.pc_immediate);
printf(" misc = %d\n", flags.misc);
printf(" cr update: \n");
printf(" cr = %d\n", flags.cr);
printf("\n");
printf(" num args: \n");
printf(" iargs - %d\n", nb_iargs);
printf("\n");
}
do_tests( flags );
#endif
return 0;
}