blob: 1e0493c0ef59937c3c857372fa9b7b2863177f69 [file] [log] [blame]
/*--------------------------------------------------------------------*/
/*--- Cachegrind: every but the simulation itself. ---*/
/*--- cg_main.c ---*/
/*--------------------------------------------------------------------*/
/*
This file is part of Cachegrind, a Valgrind tool for cache
profiling programs.
Copyright (C) 2002-2004 Nicholas Nethercote
njn25@cam.ac.uk
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307, USA.
The GNU General Public License is contained in the file COPYING.
*/
#include "vg_skin.h"
//#include "vg_profile.c"
/* For cache simulation */
typedef struct {
int size; /* bytes */
int assoc;
int line_size; /* bytes */
} cache_t;
#include "cg_sim.c"
/*------------------------------------------------------------*/
/*--- Constants ---*/
/*------------------------------------------------------------*/
#define MAX_x86_INSTR_SIZE 16 // According to ia32 sw dev manual vol 2
#define MIN_LINE_SIZE 16
#define FILE_LEN 256
#define FN_LEN 256
/*------------------------------------------------------------*/
/*--- Profiling events ---*/
/*------------------------------------------------------------*/
typedef
enum {
VgpGetLineCC = VgpFini+1,
VgpCacheSimulate,
VgpCacheResults
}
VgpToolCC;
/*------------------------------------------------------------*/
/*--- Types and Data Structures ---*/
/*------------------------------------------------------------*/
typedef struct _CC CC;
struct _CC {
ULong a;
ULong m1;
ULong m2;
};
//------------------------------------------------------------
// Primary data structure #1: CC table
// - Holds the per-source-line hit/miss stats, grouped by file/function/line.
// - hash(file, hash(fn, hash(line+CC)))
// - Each hash table is separately chained.
// - The array sizes below work fairly well for Konqueror.
// - Lookups done by instr_addr, which is converted immediately to a source
// location.
// - Traversed for dumping stats at end in file/func/line hierarchy.
#define N_FILE_ENTRIES 251
#define N_FN_ENTRIES 53
#define N_LINE_ENTRIES 37
typedef struct _lineCC lineCC;
struct _lineCC {
Int line;
CC Ir;
CC Dr;
CC Dw;
lineCC* next;
};
typedef struct _fnCC fnCC;
struct _fnCC {
Char* fn;
fnCC* next;
lineCC* lines[N_LINE_ENTRIES];
};
typedef struct _fileCC fileCC;
struct _fileCC {
Char* file;
fileCC* next;
fnCC* fns[N_FN_ENTRIES];
};
// Top level of CC table. Auto-zeroed.
static fileCC *CC_table[N_FILE_ENTRIES];
//------------------------------------------------------------
// Primary data structre #2: Instr-info table
// - Holds the cached info about each instr that is used for simulation.
// - table(BB_start_addr, list(instr_info))
// - For each BB, each instr_info in the list holds info about the
// instruction (instr_size, instr_addr, etc), plus a pointer to its line
// CC. This node is what's passed to the simulation function.
// - When BBs are discarded the relevant list(instr_details) is freed.
typedef struct _instr_info instr_info;
struct _instr_info {
Addr instr_addr;
UChar instr_size;
UChar data_size;
lineCC* parent; // parent line-CC
};
typedef struct _BB_info BB_info;
struct _BB_info {
BB_info* next; // next field
Addr BB_addr; // key
Int n_instrs;
instr_info instrs[0];
};
VgHashTable instr_info_table; // hash(Addr, BB_info)
//------------------------------------------------------------
// Stats
static Int distinct_files = 0;
static Int distinct_fns = 0;
static Int distinct_lines = 0;
static Int distinct_instrs = 0;
static Int full_debug_BBs = 0;
static Int file_line_debug_BBs = 0;
static Int fn_debug_BBs = 0;
static Int no_debug_BBs = 0;
static Int BB_retranslations = 0;
/*------------------------------------------------------------*/
/*--- CC table operations ---*/
/*------------------------------------------------------------*/
static void get_debug_info(Addr instr_addr, Char file[FILE_LEN],
Char fn[FN_LEN], Int* line)
{
Bool found_file_line = VG_(get_filename_linenum)(instr_addr, file,
FILE_LEN, line);
Bool found_fn = VG_(get_fnname)(instr_addr, fn, FN_LEN);
if (!found_file_line) {
VG_(strcpy)(file, "???");
*line = 0;
}
if (!found_fn) {
VG_(strcpy)(fn, "???");
}
if (found_file_line) {
if (found_fn) full_debug_BBs++;
else file_line_debug_BBs++;
} else {
if (found_fn) fn_debug_BBs++;
else no_debug_BBs++;
}
}
static UInt hash(Char *s, UInt table_size)
{
const int hash_constant = 256;
int hash_value = 0;
for ( ; *s; s++)
hash_value = (hash_constant * hash_value + *s) % table_size;
return hash_value;
}
static __inline__
fileCC* new_fileCC(Char filename[], fileCC* next)
{
// Using calloc() zeroes the fns[] array
fileCC* cc = VG_(calloc)(1, sizeof(fileCC));
cc->file = VG_(strdup)(filename);
cc->next = next;
return cc;
}
static __inline__
fnCC* new_fnCC(Char fn[], fnCC* next)
{
// Using calloc() zeroes the lines[] array
fnCC* cc = VG_(calloc)(1, sizeof(fnCC));
cc->fn = VG_(strdup)(fn);
cc->next = next;
return cc;
}
static __inline__
lineCC* new_lineCC(Int line, lineCC* next)
{
// Using calloc() zeroes the Ir/Dr/Dw CCs and the instrs[] array
lineCC* cc = VG_(calloc)(1, sizeof(lineCC));
cc->line = line;
cc->next = next;
return cc;
}
static __inline__
instr_info* new_instr_info(Addr instr_addr, lineCC* parent, instr_info* next)
{
// Using calloc() zeroes instr_size and data_size
instr_info* ii = VG_(calloc)(1, sizeof(instr_info));
ii->instr_addr = instr_addr;
ii->parent = parent;
return ii;
}
// Do a three step traversal: by file, then fn, then line.
// In all cases prepends new nodes to their chain. Returns a pointer to the
// line node, creates a new one if necessary.
static lineCC* get_lineCC(Addr orig_addr)
{
fileCC *curr_fileCC;
fnCC *curr_fnCC;
lineCC *curr_lineCC;
Char file[FILE_LEN], fn[FN_LEN];
Int line;
UInt file_hash, fn_hash, line_hash;
get_debug_info(orig_addr, file, fn, &line);
VGP_PUSHCC(VgpGetLineCC);
// level 1
file_hash = hash(file, N_FILE_ENTRIES);
curr_fileCC = CC_table[file_hash];
while (NULL != curr_fileCC && !VG_STREQ(file, curr_fileCC->file)) {
curr_fileCC = curr_fileCC->next;
}
if (NULL == curr_fileCC) {
CC_table[file_hash] = curr_fileCC =
new_fileCC(file, CC_table[file_hash]);
distinct_files++;
}
// level 2
fn_hash = hash(fn, N_FN_ENTRIES);
curr_fnCC = curr_fileCC->fns[fn_hash];
while (NULL != curr_fnCC && !VG_STREQ(fn, curr_fnCC->fn)) {
curr_fnCC = curr_fnCC->next;
}
if (NULL == curr_fnCC) {
curr_fileCC->fns[fn_hash] = curr_fnCC =
new_fnCC(fn, curr_fileCC->fns[fn_hash]);
distinct_fns++;
}
// level 3
line_hash = line % N_LINE_ENTRIES;
curr_lineCC = curr_fnCC->lines[line_hash];
while (NULL != curr_lineCC && line != curr_lineCC->line) {
curr_lineCC = curr_lineCC->next;
}
if (NULL == curr_lineCC) {
curr_fnCC->lines[line_hash] = curr_lineCC =
new_lineCC(line, curr_fnCC->lines[line_hash]);
distinct_lines++;
}
VGP_POPCC(VgpGetLineCC);
return curr_lineCC;
}
/*------------------------------------------------------------*/
/*--- Cache simulation functions ---*/
/*------------------------------------------------------------*/
static REGPARM(1)
void log_1I_0D_cache_access(instr_info* n)
{
//VG_(printf)("1I_0D: CCaddr=0x%x, iaddr=0x%x, isize=%u\n",
// n, n->instr_addr, n->instr_size)
VGP_PUSHCC(VgpCacheSimulate);
cachesim_I1_doref(n->instr_addr, n->instr_size,
&n->parent->Ir.m1, &n->parent->Ir.m2);
n->parent->Ir.a++;
VGP_POPCC(VgpCacheSimulate);
}
static REGPARM(2)
void log_1I_1Dr_cache_access(instr_info* n, Addr data_addr)
{
//VG_(printf)("1I_1Dr: CCaddr=%p, iaddr=%p, isize=%u, daddr=%p, dsize=%u\n",
// n, n->instr_addr, n->instr_size, data_addr, n->data_size)
VGP_PUSHCC(VgpCacheSimulate);
cachesim_I1_doref(n->instr_addr, n->instr_size,
&n->parent->Ir.m1, &n->parent->Ir.m2);
n->parent->Ir.a++;
cachesim_D1_doref(data_addr, n->data_size,
&n->parent->Dr.m1, &n->parent->Dr.m2);
n->parent->Dr.a++;
VGP_POPCC(VgpCacheSimulate);
}
static REGPARM(2)
void log_1I_1Dw_cache_access(instr_info* n, Addr data_addr)
{
//VG_(printf)("1I_1Dw: CCaddr=%p, iaddr=%p, isize=%u, daddr=%p, dsize=%u\n",
// n, n->instr_addr, n->instr_size, data_addr, n->data_size)
VGP_PUSHCC(VgpCacheSimulate);
cachesim_I1_doref(n->instr_addr, n->instr_size,
&n->parent->Ir.m1, &n->parent->Ir.m2);
n->parent->Ir.a++;
cachesim_D1_doref(data_addr, n->data_size,
&n->parent->Dw.m1, &n->parent->Dw.m2);
n->parent->Dw.a++;
VGP_POPCC(VgpCacheSimulate);
}
static REGPARM(3)
void log_1I_2D_cache_access(instr_info* n, Addr data_addr1, Addr data_addr2)
{
//VG_(printf)("1I_2D: CCaddr=%p, iaddr=%p, isize=%u, daddr1=%p, daddr2=%p, dsize=%u\n",
// n, n->instr_addr, n->instr_size, data_addr1, data_addr2, n->data_size)
VGP_PUSHCC(VgpCacheSimulate);
cachesim_I1_doref(n->instr_addr, n->instr_size,
&n->parent->Ir.m1, &n->parent->Ir.m2);
n->parent->Ir.a++;
cachesim_D1_doref(data_addr1, n->data_size,
&n->parent->Dr.m1, &n->parent->Dr.m2);
n->parent->Dr.a++;
cachesim_D1_doref(data_addr2, n->data_size,
&n->parent->Dw.m1, &n->parent->Dw.m2);
n->parent->Dw.a++;
VGP_POPCC(VgpCacheSimulate);
}
/*------------------------------------------------------------*/
/*--- Instrumentation ---*/
/*------------------------------------------------------------*/
static
BB_info* get_BB_info(UCodeBlock* cb_in, Addr orig_addr, Bool* bb_seen_before)
{
Int i, n_instrs;
UInstr* u_in;
BB_info* bb_info;
VgHashNode** dummy;
// Count number of x86 instrs in BB
n_instrs = 1; // start at 1 because last x86 instr has no INCEIP
for (i = 0; i < VG_(get_num_instrs)(cb_in); i++) {
u_in = VG_(get_instr)(cb_in, i);
if (INCEIP == u_in->opcode) n_instrs++;
}
// Get the BB_info
bb_info = (BB_info*)VG_(HT_get_node)(instr_info_table, orig_addr, &dummy);
*bb_seen_before = ( NULL == bb_info ? False : True );
if (*bb_seen_before) {
// BB must have been translated before, but flushed from the TT
sk_assert(bb_info->n_instrs == n_instrs );
BB_retranslations++;
} else {
// BB never translated before (at this address, at least; could have
// been unloaded and then reloaded elsewhere in memory)
bb_info =
VG_(calloc)(1, sizeof(BB_info) + n_instrs*sizeof(instr_info));
bb_info->BB_addr = orig_addr;
bb_info->n_instrs = n_instrs;
VG_(HT_add_node)( instr_info_table, (VgHashNode*)bb_info );
distinct_instrs++;
}
return bb_info;
}
static
void do_details( instr_info* n, Bool bb_seen_before,
Addr instr_addr, Int instr_size, Int data_size )
{
lineCC* parent = get_lineCC(instr_addr);
if (bb_seen_before) {
sk_assert( n->instr_addr == instr_addr );
sk_assert( n->instr_size == instr_size );
sk_assert( n->data_size == data_size );
// Don't assert that (n->parent == parent)... it's conceivable that
// the debug info might change; the other asserts should be enough to
// detect anything strange.
} else {
n->instr_addr = instr_addr;
n->instr_size = instr_size;
n->data_size = data_size;
n->parent = parent;
}
}
static Bool is_valid_data_size(Int data_size)
{
return (4 == data_size || 2 == data_size || 1 == data_size ||
8 == data_size || 10 == data_size || MIN_LINE_SIZE == data_size);
}
// Instrumentation for the end of each x86 instruction.
static
void end_of_x86_instr(UCodeBlock* cb, instr_info* i_node, Bool bb_seen_before,
UInt instr_addr, UInt instr_size, UInt data_size,
Int t_read, Int t_read_addr,
Int t_write, Int t_write_addr)
{
Addr helper;
Int argc;
Int t_CC_addr,
t_data_addr1 = INVALID_TEMPREG,
t_data_addr2 = INVALID_TEMPREG;
sk_assert(instr_size >= 1 &&
instr_size <= MAX_x86_INSTR_SIZE);
#define IS_(X) (INVALID_TEMPREG != t_##X##_addr)
#define INV(qqt) (INVALID_TEMPREG == (qqt))
// Work out what kind of x86 instruction it is
if (!IS_(read) && !IS_(write)) {
sk_assert( 0 == data_size );
sk_assert(INV(t_read) && INV(t_write));
helper = (Addr) & log_1I_0D_cache_access;
argc = 1;
} else if (IS_(read) && !IS_(write)) {
sk_assert( is_valid_data_size(data_size) );
sk_assert(!INV(t_read) && INV(t_write));
helper = (Addr) & log_1I_1Dr_cache_access;
argc = 2;
t_data_addr1 = t_read_addr;
} else if (!IS_(read) && IS_(write)) {
sk_assert( is_valid_data_size(data_size) );
sk_assert(INV(t_read) && !INV(t_write));
helper = (Addr) & log_1I_1Dw_cache_access;
argc = 2;
t_data_addr1 = t_write_addr;
} else {
sk_assert(IS_(read) && IS_(write));
sk_assert( is_valid_data_size(data_size) );
sk_assert(!INV(t_read) && !INV(t_write));
if (t_read == t_write) {
helper = (Addr) & log_1I_1Dr_cache_access;
argc = 2;
t_data_addr1 = t_read_addr;
} else {
helper = (Addr) & log_1I_2D_cache_access;
argc = 3;
t_data_addr1 = t_read_addr;
t_data_addr2 = t_write_addr;
}
}
#undef IS_
#undef INV
// Setup 1st arg: CC addr
do_details( i_node, bb_seen_before, instr_addr, instr_size, data_size );
t_CC_addr = newTemp(cb);
uInstr2(cb, MOV, 4, Literal, 0, TempReg, t_CC_addr);
uLiteral(cb, (Addr)i_node);
// Call the helper
if (1 == argc)
uInstr1(cb, CCALL, 0, TempReg, t_CC_addr);
else if (2 == argc)
uInstr2(cb, CCALL, 0, TempReg, t_CC_addr,
TempReg, t_data_addr1);
else if (3 == argc)
uInstr3(cb, CCALL, 0, TempReg, t_CC_addr,
TempReg, t_data_addr1,
TempReg, t_data_addr2);
else
VG_(skin_panic)("argc... not 1 or 2 or 3?");
uCCall(cb, helper, argc, argc, False);
}
UCodeBlock* SK_(instrument)(UCodeBlock* cb_in, Addr orig_addr)
{
UCodeBlock* cb;
UInstr* u_in;
Int i, bb_info_i;
BB_info* bb_info;
Bool bb_seen_before = False;
Int t_read_addr, t_write_addr, t_read, t_write;
Addr x86_instr_addr = orig_addr;
UInt x86_instr_size, data_size = 0;
Bool instrumented_Jcc = False;
bb_info = get_BB_info(cb_in, orig_addr, &bb_seen_before);
bb_info_i = 0;
cb = VG_(setup_UCodeBlock)(cb_in);
t_read_addr = t_write_addr = t_read = t_write = INVALID_TEMPREG;
for (i = 0; i < VG_(get_num_instrs)(cb_in); i++) {
u_in = VG_(get_instr)(cb_in, i);
// We want to instrument each x86 instruction with a call to the
// appropriate simulation function, which depends on whether the
// instruction does memory data reads/writes. x86 instructions can
// end in three ways, and this is how they are instrumented:
//
// 1. UCode, INCEIP --> UCode, Instrumentation, INCEIP
// 2. UCode, JMP --> UCode, Instrumentation, JMP
// 3. UCode, Jcc, JMP --> UCode, Instrumentation, Jcc, JMP
//
// The last UInstr in a BB is always a JMP. Jccs, when they appear,
// are always second last. This is checked with assertions.
// Instrumentation must go before any jumps. (JIFZ is the exception;
// if a JIFZ succeeds, no simulation is done for the instruction.)
//
// x86 instruction sizes are obtained from INCEIPs (for case 1) or
// from .extra4b field of the final JMP (for case 2 & 3).
if (instrumented_Jcc) sk_assert(u_in->opcode == JMP);
switch (u_in->opcode) {
// For memory-ref instrs, copy the data_addr into a temporary to be
// passed to the cachesim_* helper at the end of the instruction.
case LOAD:
case SSE3ag_MemRd_RegWr:
t_read = u_in->val1;
t_read_addr = newTemp(cb);
uInstr2(cb, MOV, 4, TempReg, u_in->val1, TempReg, t_read_addr);
data_size = u_in->size;
VG_(copy_UInstr)(cb, u_in);
break;
case FPU_R:
case MMX2_MemRd:
t_read = u_in->val2;
t_read_addr = newTemp(cb);
uInstr2(cb, MOV, 4, TempReg, u_in->val2, TempReg, t_read_addr);
data_size = u_in->size;
VG_(copy_UInstr)(cb, u_in);
break;
break;
case MMX2a1_MemRd:
case SSE2a_MemRd:
case SSE2a1_MemRd:
case SSE3a_MemRd:
case SSE3a1_MemRd:
t_read = u_in->val3;
t_read_addr = newTemp(cb);
uInstr2(cb, MOV, 4, TempReg, u_in->val3, TempReg, t_read_addr);
data_size = u_in->size;
VG_(copy_UInstr)(cb, u_in);
break;
// Note that we must set t_write_addr even for mod instructions;
// That's how the code above determines whether it does a write.
// Without it, it would think a mod instruction is a read.
// As for the MOV, if it's a mod instruction it's redundant, but it's
// not expensive and mod instructions are rare anyway. */
case STORE:
case FPU_W:
case MMX2_MemWr:
t_write = u_in->val2;
t_write_addr = newTemp(cb);
uInstr2(cb, MOV, 4, TempReg, u_in->val2, TempReg, t_write_addr);
data_size = u_in->size;
VG_(copy_UInstr)(cb, u_in);
break;
case SSE2a_MemWr:
case SSE3a_MemWr:
t_write = u_in->val3;
t_write_addr = newTemp(cb);
uInstr2(cb, MOV, 4, TempReg, u_in->val3, TempReg, t_write_addr);
data_size = u_in->size;
VG_(copy_UInstr)(cb, u_in);
break;
// INCEIP: insert instrumentation
case INCEIP:
x86_instr_size = u_in->val1;
goto instrument_x86_instr;
// JMP: insert instrumentation if the first JMP
case JMP:
if (instrumented_Jcc) {
sk_assert(CondAlways == u_in->cond);
sk_assert(i+1 == VG_(get_num_instrs)(cb_in));
VG_(copy_UInstr)(cb, u_in);
instrumented_Jcc = False; // rest
break;
} else {
// The first JMP... instrument.
if (CondAlways != u_in->cond) {
sk_assert(i+2 == VG_(get_num_instrs)(cb_in));
instrumented_Jcc = True;
} else {
sk_assert(i+1 == VG_(get_num_instrs)(cb_in));
}
// Get x86 instr size from final JMP.
x86_instr_size = VG_(get_last_instr)(cb_in)->extra4b;
goto instrument_x86_instr;
}
// Code executed at the end of each x86 instruction.
instrument_x86_instr:
// Large (eg. 28B, 108B, 512B) data-sized instructions will be
// done inaccurately but they're very rare and this avoids
// errors from hitting more than two cache lines in the
// simulation.
if (data_size > MIN_LINE_SIZE) data_size = MIN_LINE_SIZE;
end_of_x86_instr(cb, &bb_info->instrs[ bb_info_i ], bb_seen_before,
x86_instr_addr, x86_instr_size, data_size,
t_read, t_read_addr, t_write, t_write_addr);
// Copy original UInstr (INCEIP or JMP)
VG_(copy_UInstr)(cb, u_in);
// Update loop state for next x86 instr
bb_info_i++;
x86_instr_addr += x86_instr_size;
t_read_addr = t_write_addr = t_read = t_write = INVALID_TEMPREG;
data_size = 0;
break;
default:
VG_(copy_UInstr)(cb, u_in);
break;
}
}
// BB address should be the same as the first instruction's address.
sk_assert(bb_info->BB_addr == bb_info->instrs[0].instr_addr );
sk_assert(bb_info_i == bb_info->n_instrs);
VG_(free_UCodeBlock)(cb_in);
return cb;
#undef INVALID_DATA_SIZE
}
/*------------------------------------------------------------*/
/*--- Automagic cache initialisation stuff ---*/
/*------------------------------------------------------------*/
#define UNDEFINED_CACHE ((cache_t) { -1, -1, -1 })
static cache_t clo_I1_cache = UNDEFINED_CACHE;
static cache_t clo_D1_cache = UNDEFINED_CACHE;
static cache_t clo_L2_cache = UNDEFINED_CACHE;
// All CPUID info taken from sandpile.org/a32/cpuid.htm */
// Probably only works for Intel and AMD chips, and probably only for some of
// them.
static void micro_ops_warn(Int actual_size, Int used_size, Int line_size)
{
VG_(message)(Vg_DebugMsg,
"warning: Pentium with %d K micro-op instruction trace cache",
actual_size);
VG_(message)(Vg_DebugMsg,
" Simulating a %d KB cache with %d B lines",
used_size, line_size);
}
/* Intel method is truly wretched. We have to do an insane indexing into an
* array of pre-defined configurations for various parts of the memory
* hierarchy.
*/
static
Int Intel_cache_info(Int level, cache_t* I1c, cache_t* D1c, cache_t* L2c)
{
UChar info[16];
Int i, trials;
Bool L2_found = False;
if (level < 2) {
VG_(message)(Vg_DebugMsg,
"warning: CPUID level < 2 for Intel processor (%d)",
level);
return -1;
}
VG_(cpuid)(2, (Int*)&info[0], (Int*)&info[4],
(Int*)&info[8], (Int*)&info[12]);
trials = info[0] - 1; /* AL register - bits 0..7 of %eax */
info[0] = 0x0; /* reset AL */
if (0 != trials) {
VG_(message)(Vg_DebugMsg,
"warning: non-zero CPUID trials for Intel processor (%d)",
trials);
return -1;
}
for (i = 0; i < 16; i++) {
switch (info[i]) {
case 0x0: /* ignore zeros */
break;
/* TLB info, ignore */
case 0x01: case 0x02: case 0x03: case 0x04:
case 0x50: case 0x51: case 0x52: case 0x5b: case 0x5c: case 0x5d:
case 0xb0: case 0xb3:
break;
case 0x06: *I1c = (cache_t) { 8, 4, 32 }; break;
case 0x08: *I1c = (cache_t) { 16, 4, 32 }; break;
case 0x30: *I1c = (cache_t) { 32, 8, 64 }; break;
case 0x0a: *D1c = (cache_t) { 8, 2, 32 }; break;
case 0x0c: *D1c = (cache_t) { 16, 4, 32 }; break;
case 0x2c: *D1c = (cache_t) { 32, 8, 64 }; break;
/* IA-64 info -- panic! */
case 0x10: case 0x15: case 0x1a:
case 0x88: case 0x89: case 0x8a: case 0x8d:
case 0x90: case 0x96: case 0x9b:
VG_(skin_panic)("IA-64 cache detected?!");
case 0x22: case 0x23: case 0x25: case 0x29:
VG_(message)(Vg_DebugMsg,
"warning: L3 cache detected but ignored\n");
break;
/* These are sectored, whatever that means */
case 0x39: *L2c = (cache_t) { 128, 4, 64 }; L2_found = True; break;
case 0x3c: *L2c = (cache_t) { 256, 4, 64 }; L2_found = True; break;
/* If a P6 core, this means "no L2 cache".
If a P4 core, this means "no L3 cache".
We don't know what core it is, so don't issue a warning. To detect
a missing L2 cache, we use 'L2_found'. */
case 0x40:
break;
case 0x41: *L2c = (cache_t) { 128, 4, 32 }; L2_found = True; break;
case 0x42: *L2c = (cache_t) { 256, 4, 32 }; L2_found = True; break;
case 0x43: *L2c = (cache_t) { 512, 4, 32 }; L2_found = True; break;
case 0x44: *L2c = (cache_t) { 1024, 4, 32 }; L2_found = True; break;
case 0x45: *L2c = (cache_t) { 2048, 4, 32 }; L2_found = True; break;
/* These are sectored, whatever that means */
case 0x66: *D1c = (cache_t) { 8, 4, 64 }; break; /* sectored */
case 0x67: *D1c = (cache_t) { 16, 4, 64 }; break; /* sectored */
case 0x68: *D1c = (cache_t) { 32, 4, 64 }; break; /* sectored */
/* HACK ALERT: Instruction trace cache -- capacity is micro-ops based.
* conversion to byte size is a total guess; treat the 12K and 16K
* cases the same since the cache byte size must be a power of two for
* everything to work!. Also guessing 32 bytes for the line size...
*/
case 0x70: /* 12K micro-ops, 8-way */
*I1c = (cache_t) { 16, 8, 32 };
micro_ops_warn(12, 16, 32);
break;
case 0x71: /* 16K micro-ops, 8-way */
*I1c = (cache_t) { 16, 8, 32 };
micro_ops_warn(16, 16, 32);
break;
case 0x72: /* 32K micro-ops, 8-way */
*I1c = (cache_t) { 32, 8, 32 };
micro_ops_warn(32, 32, 32);
break;
/* These are sectored, whatever that means */
case 0x79: *L2c = (cache_t) { 128, 8, 64 }; L2_found = True; break;
case 0x7a: *L2c = (cache_t) { 256, 8, 64 }; L2_found = True; break;
case 0x7b: *L2c = (cache_t) { 512, 8, 64 }; L2_found = True; break;
case 0x7c: *L2c = (cache_t) { 1024, 8, 64 }; L2_found = True; break;
case 0x7e: *L2c = (cache_t) { 256, 8, 128 }; L2_found = True; break;
case 0x81: *L2c = (cache_t) { 128, 8, 32 }; L2_found = True; break;
case 0x82: *L2c = (cache_t) { 256, 8, 32 }; L2_found = True; break;
case 0x83: *L2c = (cache_t) { 512, 8, 32 }; L2_found = True; break;
case 0x84: *L2c = (cache_t) { 1024, 8, 32 }; L2_found = True; break;
case 0x85: *L2c = (cache_t) { 2048, 8, 32 }; L2_found = True; break;
case 0x86: *L2c = (cache_t) { 512, 4, 64 }; L2_found = True; break;
case 0x87: *L2c = (cache_t) { 1024, 8, 64 }; L2_found = True; break;
default:
VG_(message)(Vg_DebugMsg,
"warning: Unknown Intel cache config value "
"(0x%x), ignoring", info[i]);
break;
}
}
if (!L2_found)
VG_(message)(Vg_DebugMsg,
"warning: L2 cache not installed, ignore L2 results.");
return 0;
}
/* AMD method is straightforward, just extract appropriate bits from the
* result registers.
*
* Bits, for D1 and I1:
* 31..24 data L1 cache size in KBs
* 23..16 data L1 cache associativity (FFh=full)
* 15.. 8 data L1 cache lines per tag
* 7.. 0 data L1 cache line size in bytes
*
* Bits, for L2:
* 31..16 unified L2 cache size in KBs
* 15..12 unified L2 cache associativity (0=off, FFh=full)
* 11.. 8 unified L2 cache lines per tag
* 7.. 0 unified L2 cache line size in bytes
*
* #3 The AMD K7 processor's L2 cache must be configured prior to relying
* upon this information. (Whatever that means -- njn)
*
* Also, according to Cyrille Chepelov, Duron stepping A0 processors (model
* 0x630) have a bug and misreport their L2 size as 1KB (it's really 64KB),
* so we detect that.
*
* Returns 0 on success, non-zero on failure.
*/
static
Int AMD_cache_info(cache_t* I1c, cache_t* D1c, cache_t* L2c)
{
UInt ext_level;
UInt dummy, model;
UInt I1i, D1i, L2i;
VG_(cpuid)(0x80000000, &ext_level, &dummy, &dummy, &dummy);
if (0 == (ext_level & 0x80000000) || ext_level < 0x80000006) {
VG_(message)(Vg_UserMsg,
"warning: ext_level < 0x80000006 for AMD processor (0x%x)",
ext_level);
return -1;
}
VG_(cpuid)(0x80000005, &dummy, &dummy, &D1i, &I1i);
VG_(cpuid)(0x80000006, &dummy, &dummy, &L2i, &dummy);
VG_(cpuid)(0x1, &model, &dummy, &dummy, &dummy);
/* Check for Duron bug */
if (model == 0x630) {
VG_(message)(Vg_UserMsg,
"Buggy Duron stepping A0. Assuming L2 size=65536 bytes");
L2i = (64 << 16) | (L2i & 0xffff);
}
D1c->size = (D1i >> 24) & 0xff;
D1c->assoc = (D1i >> 16) & 0xff;
D1c->line_size = (D1i >> 0) & 0xff;
I1c->size = (I1i >> 24) & 0xff;
I1c->assoc = (I1i >> 16) & 0xff;
I1c->line_size = (I1i >> 0) & 0xff;
L2c->size = (L2i >> 16) & 0xffff; /* Nb: different bits used for L2 */
L2c->assoc = (L2i >> 12) & 0xf;
L2c->line_size = (L2i >> 0) & 0xff;
return 0;
}
static jmp_buf cpuid_jmpbuf;
static
void cpuid_SIGILL_handler(int signum)
{
__builtin_longjmp(cpuid_jmpbuf, 1);
}
static
Int get_caches_from_CPUID(cache_t* I1c, cache_t* D1c, cache_t* L2c)
{
Int level, res, ret;
Char vendor_id[13];
vki_ksigaction sigill_new, sigill_saved;
/* Install own SIGILL handler */
sigill_new.ksa_handler = cpuid_SIGILL_handler;
sigill_new.ksa_flags = 0;
sigill_new.ksa_restorer = NULL;
res = VG_(ksigemptyset)( &sigill_new.ksa_mask );
sk_assert(res == 0);
res = VG_(ksigaction)( VKI_SIGILL, &sigill_new, &sigill_saved );
sk_assert(res == 0);
/* Trap for illegal instruction, in case it's a really old processor that
* doesn't support CPUID. */
if (__builtin_setjmp(cpuid_jmpbuf) == 0) {
VG_(cpuid)(0, &level, (int*)&vendor_id[0],
(int*)&vendor_id[8], (int*)&vendor_id[4]);
vendor_id[12] = '\0';
/* Restore old SIGILL handler */
res = VG_(ksigaction)( VKI_SIGILL, &sigill_saved, NULL );
sk_assert(res == 0);
} else {
VG_(message)(Vg_DebugMsg, "CPUID instruction not supported");
/* Restore old SIGILL handler */
res = VG_(ksigaction)( VKI_SIGILL, &sigill_saved, NULL );
sk_assert(res == 0);
return -1;
}
if (0 == level) {
VG_(message)(Vg_DebugMsg, "CPUID level is 0, early Pentium?\n");
return -1;
}
/* Only handling Intel and AMD chips... no Cyrix, Transmeta, etc */
if (0 == VG_(strcmp)(vendor_id, "GenuineIntel")) {
ret = Intel_cache_info(level, I1c, D1c, L2c);
} else if (0 == VG_(strcmp)(vendor_id, "AuthenticAMD")) {
ret = AMD_cache_info(I1c, D1c, L2c);
} else if (0 == VG_(strcmp)(vendor_id, "CentaurHauls")) {
/* Total kludge. Pretend to be a VIA Nehemiah. */
D1c->size = 64;
D1c->assoc = 16;
D1c->line_size = 16;
I1c->size = 64;
I1c->assoc = 4;
I1c->line_size = 16;
L2c->size = 64;
L2c->assoc = 16;
L2c->line_size = 16;
ret = 0;
} else {
VG_(message)(Vg_DebugMsg, "CPU vendor ID not recognised (%s)",
vendor_id);
return -1;
}
/* Successful! Convert sizes from KB to bytes */
I1c->size *= 1024;
D1c->size *= 1024;
L2c->size *= 1024;
return ret;
}
/* Checks cache config is ok; makes it so if not. */
static
void check_cache(cache_t* cache, cache_t* dflt, Char *name)
{
/* First check they're all powers of two */
if (-1 == VG_(log2)(cache->size)) {
VG_(message)(Vg_UserMsg,
"warning: %s size of %dB not a power of two; "
"defaulting to %dB", name, cache->size, dflt->size);
cache->size = dflt->size;
}
if (-1 == VG_(log2)(cache->assoc)) {
VG_(message)(Vg_UserMsg,
"warning: %s associativity of %d not a power of two; "
"defaulting to %d-way", name, cache->assoc, dflt->assoc);
cache->assoc = dflt->assoc;
}
if (-1 == VG_(log2)(cache->line_size)) {
VG_(message)(Vg_UserMsg,
"warning: %s line size of %dB not a power of two; "
"defaulting to %dB",
name, cache->line_size, dflt->line_size);
cache->line_size = dflt->line_size;
}
/* Then check line size >= 16 -- any smaller and a single instruction could
* straddle three cache lines, which breaks a simulation assertion and is
* stupid anyway. */
if (cache->line_size < MIN_LINE_SIZE) {
VG_(message)(Vg_UserMsg,
"warning: %s line size of %dB too small; "
"increasing to %dB", name, cache->line_size, MIN_LINE_SIZE);
cache->line_size = MIN_LINE_SIZE;
}
/* Then check cache size > line size (causes seg faults if not). */
if (cache->size <= cache->line_size) {
VG_(message)(Vg_UserMsg,
"warning: %s cache size of %dB <= line size of %dB; "
"increasing to %dB", name, cache->size, cache->line_size,
cache->line_size * 2);
cache->size = cache->line_size * 2;
}
/* Then check assoc <= (size / line size) (seg faults otherwise). */
if (cache->assoc > (cache->size / cache->line_size)) {
VG_(message)(Vg_UserMsg,
"warning: %s associativity > (size / line size); "
"increasing size to %dB",
name, cache->assoc * cache->line_size);
cache->size = cache->assoc * cache->line_size;
}
}
static
void get_caches(cache_t* I1c, cache_t* D1c, cache_t* L2c)
{
#define DEFINED(L) (-1 != L.size || -1 != L.assoc || -1 != L.line_size)
Int res, n_clos = 0;
// Defaults are for a model 3 or 4 Athlon
cache_t I1_dflt = (cache_t) { 65536, 2, 64 };
cache_t D1_dflt = (cache_t) { 65536, 2, 64 };
cache_t L2_dflt = (cache_t) { 262144, 8, 64 };
// Set caches to default.
*I1c = I1_dflt;
*D1c = D1_dflt;
*L2c = L2_dflt;
// Then replace with any info we can get from CPUID.
res = get_caches_from_CPUID(I1c, D1c, L2c);
// Then replace with any defined on the command line.
if (DEFINED(clo_I1_cache)) { *I1c = clo_I1_cache; n_clos++; }
if (DEFINED(clo_D1_cache)) { *D1c = clo_D1_cache; n_clos++; }
if (DEFINED(clo_L2_cache)) { *L2c = clo_L2_cache; n_clos++; }
// Warn if CPUID failed and config not completely specified from cmd line.
if (res != 0 && n_clos < 3) {
VG_(message)(Vg_DebugMsg,
"Warning: Couldn't detect cache config, using one "
"or more defaults ");
}
// Then check values and fix if not acceptable.
check_cache(I1c, &I1_dflt, "I1");
check_cache(D1c, &D1_dflt, "D1");
check_cache(L2c, &L2_dflt, "L2");
if (VG_(clo_verbosity) > 1) {
VG_(message)(Vg_UserMsg, "Cache configuration used:");
VG_(message)(Vg_UserMsg, " I1: %dB, %d-way, %dB lines",
I1c->size, I1c->assoc, I1c->line_size);
VG_(message)(Vg_UserMsg, " D1: %dB, %d-way, %dB lines",
D1c->size, D1c->assoc, D1c->line_size);
VG_(message)(Vg_UserMsg, " L2: %dB, %d-way, %dB lines",
L2c->size, L2c->assoc, L2c->line_size);
}
#undef CMD_LINE_DEFINED
}
/*------------------------------------------------------------*/
/*--- SK_(fini)() and related function ---*/
/*------------------------------------------------------------*/
// Total reads/writes/misses. Calculated during CC traversal at the end.
// All auto-zeroed.
static CC Ir_total;
static CC Dr_total;
static CC Dw_total;
static Char* cachegrind_out_file;
static void file_err ( void )
{
VG_(message)(Vg_UserMsg,
"error: can't open cache simulation output file `%s'",
cachegrind_out_file );
VG_(message)(Vg_UserMsg,
" ... so simulation results will be missing.");
}
static void fprint_lineCC(Int fd, lineCC* n)
{
Char buf[512];
VG_(sprintf)(buf, "%u %llu %llu %llu %llu %llu %llu %llu %llu %llu\n",
n->line,
n->Ir.a, n->Ir.m1, n->Ir.m2,
n->Dr.a, n->Dr.m1, n->Dr.m2,
n->Dw.a, n->Dw.m1, n->Dw.m2);
VG_(write)(fd, (void*)buf, VG_(strlen)(buf));
Ir_total.a += n->Ir.a; Ir_total.m1 += n->Ir.m1; Ir_total.m2 += n->Ir.m2;
Dr_total.a += n->Dr.a; Dr_total.m1 += n->Dr.m1; Dr_total.m2 += n->Dr.m2;
Dw_total.a += n->Dw.a; Dw_total.m1 += n->Dw.m1; Dw_total.m2 += n->Dw.m2;
}
static void fprint_CC_table_and_calc_totals(void)
{
Int fd;
Char buf[512];
fileCC *curr_fileCC;
fnCC *curr_fnCC;
lineCC *curr_lineCC;
Int i, j, k;
VGP_PUSHCC(VgpCacheResults);
fd = VG_(open)(cachegrind_out_file, VKI_O_CREAT|VKI_O_TRUNC|VKI_O_WRONLY,
VKI_S_IRUSR|VKI_S_IWUSR);
if (fd < 0) {
// If the file can't be opened for whatever reason (conflict
// between multiple cachegrinded processes?), give up now.
file_err();
return;
}
// "desc:" lines (giving I1/D1/L2 cache configuration). The spaces after
// the 2nd colon makes cg_annotate's output look nicer.
VG_(sprintf)(buf, "desc: I1 cache: %s\n"
"desc: D1 cache: %s\n"
"desc: L2 cache: %s\n",
I1.desc_line, D1.desc_line, L2.desc_line);
VG_(write)(fd, (void*)buf, VG_(strlen)(buf));
// "cmd:" line
VG_(strcpy)(buf, "cmd:");
VG_(write)(fd, (void*)buf, VG_(strlen)(buf));
for (i = 0; i < VG_(client_argc); i++) {
VG_(sprintf)(buf, " %s", VG_(client_argv)[i]);
VG_(write)(fd, (void*)buf, VG_(strlen)(buf));
}
// "events:" line
VG_(sprintf)(buf, "\nevents: Ir I1mr I2mr Dr D1mr D2mr Dw D1mw D2mw\n");
VG_(write)(fd, (void*)buf, VG_(strlen)(buf));
// Six loops here: three for the hash table arrays, and three for the
// chains hanging off the hash table arrays.
for (i = 0; i < N_FILE_ENTRIES; i++) {
curr_fileCC = CC_table[i];
while (curr_fileCC != NULL) {
VG_(sprintf)(buf, "fl=%s\n", curr_fileCC->file);
VG_(write)(fd, (void*)buf, VG_(strlen)(buf));
for (j = 0; j < N_FN_ENTRIES; j++) {
curr_fnCC = curr_fileCC->fns[j];
while (curr_fnCC != NULL) {
VG_(sprintf)(buf, "fn=%s\n", curr_fnCC->fn);
VG_(write)(fd, (void*)buf, VG_(strlen)(buf));
for (k = 0; k < N_LINE_ENTRIES; k++) {
curr_lineCC = curr_fnCC->lines[k];
while (curr_lineCC != NULL) {
fprint_lineCC(fd, curr_lineCC);
curr_lineCC = curr_lineCC->next;
}
}
curr_fnCC = curr_fnCC->next;
}
}
curr_fileCC = curr_fileCC->next;
}
}
// Summary stats must come after rest of table, since we calculate them
// during traversal. */
VG_(sprintf)(buf, "summary: "
"%llu %llu %llu %llu %llu %llu %llu %llu %llu\n",
Ir_total.a, Ir_total.m1, Ir_total.m2,
Dr_total.a, Dr_total.m1, Dr_total.m2,
Dw_total.a, Dw_total.m1, Dw_total.m2);
VG_(write)(fd, (void*)buf, VG_(strlen)(buf));
VG_(close)(fd);
}
static UInt ULong_width(ULong n)
{
UInt w = 0;
while (n > 0) {
n = n / 10;
w++;
}
return w + (w-1)/3; // add space for commas
}
static
void percentify(Int n, Int ex, Int field_width, char buf[])
{
int i, len, space;
VG_(sprintf)(buf, "%d.%d%%", n / ex, n % ex);
len = VG_(strlen)(buf);
space = field_width - len;
if (space < 0) space = 0; /* Allow for v. small field_width */
i = len;
/* Right justify in field */
for ( ; i >= 0; i--) buf[i + space] = buf[i];
for (i = 0; i < space; i++) buf[i] = ' ';
}
void SK_(fini)(Int exitcode)
{
static char buf1[128], buf2[128], buf3[128], fmt [128];
CC D_total;
ULong L2_total_m, L2_total_mr, L2_total_mw,
L2_total, L2_total_r, L2_total_w;
Int l1, l2, l3;
Int p;
fprint_CC_table_and_calc_totals();
if (VG_(clo_verbosity) == 0)
return;
/* I cache results. Use the I_refs value to determine the first column
* width. */
l1 = ULong_width(Ir_total.a);
l2 = ULong_width(Dr_total.a);
l3 = ULong_width(Dw_total.a);
/* Make format string, getting width right for numbers */
VG_(sprintf)(fmt, "%%s %%,%dld", l1);
VG_(message)(Vg_UserMsg, fmt, "I refs: ", Ir_total.a);
VG_(message)(Vg_UserMsg, fmt, "I1 misses: ", Ir_total.m1);
VG_(message)(Vg_UserMsg, fmt, "L2i misses: ", Ir_total.m2);
p = 100;
if (0 == Ir_total.a) Ir_total.a = 1;
percentify(Ir_total.m1 * 100 * p / Ir_total.a, p, l1+1, buf1);
VG_(message)(Vg_UserMsg, "I1 miss rate: %s", buf1);
percentify(Ir_total.m2 * 100 * p / Ir_total.a, p, l1+1, buf1);
VG_(message)(Vg_UserMsg, "L2i miss rate: %s", buf1);
VG_(message)(Vg_UserMsg, "");
/* D cache results. Use the D_refs.rd and D_refs.wr values to determine the
* width of columns 2 & 3. */
D_total.a = Dr_total.a + Dw_total.a;
D_total.m1 = Dr_total.m1 + Dw_total.m1;
D_total.m2 = Dr_total.m2 + Dw_total.m2;
/* Make format string, getting width right for numbers */
VG_(sprintf)(fmt, "%%s %%,%dld (%%,%dld rd + %%,%dld wr)", l1, l2, l3);
VG_(message)(Vg_UserMsg, fmt, "D refs: ",
D_total.a, Dr_total.a, Dw_total.a);
VG_(message)(Vg_UserMsg, fmt, "D1 misses: ",
D_total.m1, Dr_total.m1, Dw_total.m1);
VG_(message)(Vg_UserMsg, fmt, "L2d misses: ",
D_total.m2, Dr_total.m2, Dw_total.m2);
p = 10;
if (0 == D_total.a) D_total.a = 1;
if (0 == Dr_total.a) Dr_total.a = 1;
if (0 == Dw_total.a) Dw_total.a = 1;
percentify( D_total.m1 * 100 * p / D_total.a, p, l1+1, buf1);
percentify(Dr_total.m1 * 100 * p / Dr_total.a, p, l2+1, buf2);
percentify(Dw_total.m1 * 100 * p / Dw_total.a, p, l3+1, buf3);
VG_(message)(Vg_UserMsg, "D1 miss rate: %s (%s + %s )", buf1, buf2,buf3);
percentify( D_total.m2 * 100 * p / D_total.a, p, l1+1, buf1);
percentify(Dr_total.m2 * 100 * p / Dr_total.a, p, l2+1, buf2);
percentify(Dw_total.m2 * 100 * p / Dw_total.a, p, l3+1, buf3);
VG_(message)(Vg_UserMsg, "L2d miss rate: %s (%s + %s )", buf1, buf2,buf3);
VG_(message)(Vg_UserMsg, "");
/* L2 overall results */
L2_total = Dr_total.m1 + Dw_total.m1 + Ir_total.m1;
L2_total_r = Dr_total.m1 + Ir_total.m1;
L2_total_w = Dw_total.m1;
VG_(message)(Vg_UserMsg, fmt, "L2 refs: ",
L2_total, L2_total_r, L2_total_w);
L2_total_m = Dr_total.m2 + Dw_total.m2 + Ir_total.m2;
L2_total_mr = Dr_total.m2 + Ir_total.m2;
L2_total_mw = Dw_total.m2;
VG_(message)(Vg_UserMsg, fmt, "L2 misses: ",
L2_total_m, L2_total_mr, L2_total_mw);
percentify(L2_total_m * 100 * p / (Ir_total.a + D_total.a), p, l1+1, buf1);
percentify(L2_total_mr * 100 * p / (Ir_total.a + Dr_total.a), p, l2+1, buf2);
percentify(L2_total_mw * 100 * p / Dw_total.a, p, l3+1, buf3);
VG_(message)(Vg_UserMsg, "L2 miss rate: %s (%s + %s )", buf1, buf2,buf3);
// Various stats
if (VG_(clo_verbosity) > 1) {
int BB_lookups = full_debug_BBs + fn_debug_BBs +
file_line_debug_BBs + no_debug_BBs;
VG_(message)(Vg_DebugMsg, "");
VG_(message)(Vg_DebugMsg, "Distinct files: %d", distinct_files);
VG_(message)(Vg_DebugMsg, "Distinct fns: %d", distinct_fns);
VG_(message)(Vg_DebugMsg, "Distinct lines: %d", distinct_lines);
VG_(message)(Vg_DebugMsg, "Distinct instrs: %d", distinct_instrs);
VG_(message)(Vg_DebugMsg, "BB lookups: %d", BB_lookups);
VG_(message)(Vg_DebugMsg, "With full debug info:%3d%% (%d)",
full_debug_BBs * 100 / BB_lookups,
full_debug_BBs);
VG_(message)(Vg_DebugMsg, "With file/line debug info:%3d%% (%d)",
file_line_debug_BBs * 100 / BB_lookups,
file_line_debug_BBs);
VG_(message)(Vg_DebugMsg, "With fn name debug info:%3d%% (%d)",
fn_debug_BBs * 100 / BB_lookups,
fn_debug_BBs);
VG_(message)(Vg_DebugMsg, "With no debug info:%3d%% (%d)",
no_debug_BBs * 100 / BB_lookups,
no_debug_BBs);
VG_(message)(Vg_DebugMsg, "BBs Retranslated: %d", BB_retranslations);
}
VGP_POPCC(VgpCacheResults);
}
/*--------------------------------------------------------------------*/
/*--- Discarding BB info ---*/
/*--------------------------------------------------------------------*/
// Called when a translation is invalidated due to code unloading.
void SK_(discard_basic_block_info) ( Addr a, UInt size )
{
VgHashNode** prev_next_ptr;
VgHashNode* bb_info;
if (0) VG_(printf)( "discard_basic_block_info: %p, %u\n", a, size);
// Get BB info, remove from table, free BB info. Simple!
bb_info = VG_(HT_get_node)(instr_info_table, a, &prev_next_ptr);
sk_assert(NULL != bb_info);
*prev_next_ptr = bb_info->next;
VG_(free)(bb_info);
}
/*--------------------------------------------------------------------*/
/*--- Command line processing ---*/
/*--------------------------------------------------------------------*/
static void parse_cache_opt ( cache_t* cache, char* opt )
{
int i = 0, i2, i3;
// Option argument looks like "65536,2,64".
// Find commas, replace with NULs to make three independent
// strings, then extract numbers, put NULs back. Yuck.
while (VG_(isdigit)(opt[i])) i++;
if (',' == opt[i]) {
opt[i++] = '\0';
i2 = i;
} else goto bad;
while (VG_(isdigit)(opt[i])) i++;
if (',' == opt[i]) {
opt[i++] = '\0';
i3 = i;
} else goto bad;
while (VG_(isdigit)(opt[i])) i++;
if ('\0' != opt[i]) goto bad;
cache->size = (Int)VG_(atoll)(opt);
cache->assoc = (Int)VG_(atoll)(opt + i2);
cache->line_size = (Int)VG_(atoll)(opt + i3);
opt[i2-1] = ',';
opt[i3-1] = ',';
return;
bad:
VG_(bad_option)(opt);
}
Bool SK_(process_cmd_line_option)(Char* arg)
{
// 5 is length of "--I1="
if (VG_CLO_STREQN(5, arg, "--I1="))
parse_cache_opt(&clo_I1_cache, &arg[5]);
else if (VG_CLO_STREQN(5, arg, "--D1="))
parse_cache_opt(&clo_D1_cache, &arg[5]);
else if (VG_CLO_STREQN(5, arg, "--L2="))
parse_cache_opt(&clo_L2_cache, &arg[5]);
else
return False;
return True;
}
void SK_(print_usage)(void)
{
VG_(printf)(
" --I1=<size>,<assoc>,<line_size> set I1 cache manually\n"
" --D1=<size>,<assoc>,<line_size> set D1 cache manually\n"
" --L2=<size>,<assoc>,<line_size> set L2 cache manually\n"
);
}
void SK_(print_debug_usage)(void)
{
VG_(printf)(
" (none)\n"
);
}
/*--------------------------------------------------------------------*/
/*--- Setup ---*/
/*--------------------------------------------------------------------*/
void SK_(pre_clo_init)(void)
{
Char* base_dir = NULL;
VG_(details_name) ("Cachegrind");
VG_(details_version) (NULL);
VG_(details_description) ("an I1/D1/L2 cache profiler");
VG_(details_copyright_author)(
"Copyright (C) 2002-2004, and GNU GPL'd, by Nicholas Nethercote et al.");
VG_(details_bug_reports_to) (VG_BUGS_TO);
VG_(details_avg_translation_sizeB) ( 155 );
VG_(needs_basic_block_discards)();
VG_(needs_command_line_options)();
VG_(register_compact_helper)((Addr) & log_1I_0D_cache_access);
VG_(register_compact_helper)((Addr) & log_1I_1Dr_cache_access);
VG_(register_compact_helper)((Addr) & log_1I_1Dw_cache_access);
VG_(register_compact_helper)((Addr) & log_1I_2D_cache_access);
/* Get working directory */
sk_assert( VG_(getcwd_alloc)(&base_dir) );
/* Block is big enough for dir name + cachegrind.out.<pid> */
cachegrind_out_file = VG_(malloc)((VG_(strlen)(base_dir) + 32)*sizeof(Char));
VG_(sprintf)(cachegrind_out_file, "%s/cachegrind.out.%d",
base_dir, VG_(getpid)());
VG_(free)(base_dir);
instr_info_table = VG_(HT_construct)();
}
void SK_(post_clo_init)(void)
{
cache_t I1c, D1c, L2c;
get_caches(&I1c, &D1c, &L2c);
cachesim_I1_initcache(I1c);
cachesim_D1_initcache(D1c);
cachesim_L2_initcache(L2c);
VGP_(register_profile_event)(VgpGetLineCC, "get-lineCC");
VGP_(register_profile_event)(VgpCacheSimulate, "cache-simulate");
VGP_(register_profile_event)(VgpCacheResults, "cache-results");
}
VG_DETERMINE_INTERFACE_VERSION(SK_(pre_clo_init), 0)
/*--------------------------------------------------------------------*/
/*--- end cg_main.c ---*/
/*--------------------------------------------------------------------*/