blob: 1cf794e2f612514e03b8ac312d70369d4eb2a38f [file] [log] [blame]
/*--------------------------------------------------------------------*/
/*--- MemCheck: Maintain bitmaps of memory, tracking the ---*/
/*--- accessibility (A) and validity (V) status of each byte. ---*/
/*--- mc_main.c ---*/
/*--------------------------------------------------------------------*/
/*
This file is part of MemCheck, a heavyweight Valgrind tool for
detecting memory errors.
Copyright (C) 2000-2005 Julian Seward
jseward@acm.org
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307, USA.
The GNU General Public License is contained in the file COPYING.
*/
/* TODO urgently
sanity check:
auxmap only covers address space that the primary doesn't
auxmap entries non-duplicated (expensive)
there are no secondary map leaks. this can easily be established
by counting the number of secmaps issued, and ensuring that
the same number of pointers-to-secmaps from the main/aux
primary map can be found
there is only one pointer to each non-distinguished secmap.
types of helper functions
set_address_range_perms to notice when a distinguished secondary
will work, and use that (viz, re-implement compression scheme)
profile
reinstate fast-path cases
*/
#include "mc_include.h"
#include "memcheck.h" /* for client requests */
//#include "vg_profile.c"
#define EXPECTED_TAKEN(cond) __builtin_expect((cond),1)
#define EXPECTED_NOT_TAKEN(cond) __builtin_expect((cond),0)
/* Define to debug the mem audit system. Set to:
0 no debugging, fast cases are used
1 some sanity checking, fast cases are used
2 max sanity checking, only slow cases are used
*/
#define VG_DEBUG_MEMORY 0
typedef enum {
MC_Ok = 5, MC_AddrErr = 6, MC_ValueErr = 7
} MC_ReadResult;
#define DEBUG(fmt, args...) //VG_(printf)(fmt, ## args)
/*------------------------------------------------------------*/
/*--- Basic A/V bitmap representation. ---*/
/*------------------------------------------------------------*/
/* --------------- Basic configuration --------------- */
/* The number of entries in the primary map can be altered. However
we hardwire the assumption that each secondary map covers precisely
64k of address space. */
#define SECONDARY_SIZE 65536 /* DO NOT CHANGE */
#define SECONDARY_MASK (SECONDARY_SIZE-1) /* DO NOT CHANGE */
/* Only change this. N_PRIMARY_MAP *must* be a power of 2. */
#define N_PRIMARY_BITS 16
/* Do not change this. */
#define N_PRIMARY_MAP (1 << N_PRIMARY_BITS)
/* Do not change this. */
#define MAX_PRIMARY_ADDRESS (Addr)((((Addr)65536) * N_PRIMARY_MAP)-1)
/* --------------- Stats maps --------------- */
static Int n_secmaps_issued = 0;
static ULong n_auxmap_searches = 0;
static ULong n_auxmap_cmps = 0;
static Int n_sanity_cheap = 0;
static Int n_sanity_expensive = 0;
/* --------------- Secondary maps --------------- */
typedef
struct {
UChar abits[8192];
UChar vbyte[65536];
}
SecMap;
/* 3 distinguished secondary maps, one for no-access, one for
accessible but undefined, and one for accessible and defined.
Distinguished secondaries may never be modified.
*/
#define SM_DIST_NOACCESS 0
#define SM_DIST_ACCESS_UNDEFINED 1
#define SM_DIST_ACCESS_DEFINED 2
static SecMap sm_distinguished[3];
static inline Bool is_distinguished_sm ( SecMap* sm ) {
return sm >= &sm_distinguished[0] && sm <= &sm_distinguished[2];
}
/* dist_sm points to one of our three distinguished secondaries. Make
a copy of it so that we can write to it.
*/
static SecMap* copy_for_writing ( SecMap* dist_sm )
{
SecMap* new_sm;
tl_assert(dist_sm == &sm_distinguished[0]
|| dist_sm == &sm_distinguished[1]
|| dist_sm == &sm_distinguished[2]);
new_sm = VG_(shadow_alloc)(sizeof(SecMap));
VG_(memcpy)(new_sm, dist_sm, sizeof(SecMap));
n_secmaps_issued++;
return new_sm;
}
/* --------------- Primary maps --------------- */
/* The main primary map. This covers some initial part of the address
space, addresses 0 .. (N_PRIMARY_MAP << 16)-1. The rest of it is
handled using the auxiliary primary map.
*/
static SecMap* primary_map[N_PRIMARY_MAP];
/* An entry in the auxiliary primary map. base must be a 64k-aligned
value, and sm points at the relevant secondary map. As with the
main primary map, the secondary may be either a real secondary, or
one of the three distinguished secondaries.
*/
typedef
struct {
Addr base;
SecMap* sm;
}
AuxMapEnt;
/* An expanding array of AuxMapEnts. */
#define N_AUXMAPS 500 /* HACK */
static AuxMapEnt hacky_auxmaps[N_AUXMAPS];
static Int auxmap_size = N_AUXMAPS;
static Int auxmap_used = 0;
static AuxMapEnt* auxmap = &hacky_auxmaps[0];
/* Find an entry in the auxiliary map. If an entry is found, move it
one step closer to the front of the array, then return its address.
If an entry is not found, allocate one. Note carefully that
because a each call potentially rearranges the entries, each call
to this function invalidates ALL AuxMapEnt*s previously obtained by
calling this fn.
*/
static AuxMapEnt* find_or_alloc_in_auxmap ( Addr a )
{
UWord i;
tl_assert(a > MAX_PRIMARY_ADDRESS);
a &= ~(Addr)0xFFFF;
/* Search .. */
n_auxmap_searches++;
for (i = 0; i < auxmap_used; i++) {
if (auxmap[i].base == a)
break;
}
n_auxmap_cmps += (ULong)(i+1);
if (i < auxmap_used) {
/* Found it. Nudge it a bit closer to the front. */
if (i > 0) {
AuxMapEnt tmp = auxmap[i-1];
auxmap[i-1] = auxmap[i];
auxmap[i] = tmp;
i--;
}
return &auxmap[i];
}
/* We didn't find it. Hmm. This is a new piece of address space.
We'll need to allocate a new AuxMap entry for it. */
if (auxmap_used >= auxmap_size) {
tl_assert(auxmap_used == auxmap_size);
/* Out of auxmap entries. */
tl_assert2(0, "failed to expand the auxmap table");
}
tl_assert(auxmap_used < auxmap_size);
auxmap[auxmap_used].base = a & ~(Addr)0xFFFF;
auxmap[auxmap_used].sm = &sm_distinguished[SM_DIST_NOACCESS];
if (0)
VG_(printf)("new auxmap, base = 0x%llx\n",
(ULong)auxmap[auxmap_used].base );
auxmap_used++;
return &auxmap[auxmap_used-1];
}
/* --------------- SecMap fundamentals --------------- */
/* Produce the secmap for 'a', either from the primary map or by
ensuring there is an entry for it in the aux primary map. The
secmap may be a distinguished one as the caller will only want to
be able to read it.
*/
static SecMap* get_secmap_readable ( Addr a )
{
if (a <= MAX_PRIMARY_ADDRESS) {
UWord pm_off = a >> 16;
return primary_map[ pm_off ];
} else {
AuxMapEnt* am = find_or_alloc_in_auxmap(a);
return am->sm;
}
}
/* Produce the secmap for 'a', either from the primary map or by
ensuring there is an entry for it in the aux primary map. The
secmap may not be a distinguished one, since the caller will want
to be able to write it. If it is a distinguished secondary, make a
writable copy of it, install it, and return the copy instead. (COW
semantics).
*/
static SecMap* get_secmap_writable ( Addr a )
{
if (a <= MAX_PRIMARY_ADDRESS) {
UWord pm_off = a >> 16;
if (is_distinguished_sm(primary_map[ pm_off ]))
primary_map[pm_off] = copy_for_writing(primary_map[pm_off]);
return primary_map[pm_off];
} else {
AuxMapEnt* am = find_or_alloc_in_auxmap(a);
if (is_distinguished_sm(am->sm))
am->sm = copy_for_writing(am->sm);
return am->sm;
}
}
/* --------------- Endianness helpers --------------- */
/* Returns the offset in memory of the byteno-th most significant byte
in a wordszB-sized word, given the specified endianness. */
static inline UWord byte_offset_w ( UWord wordszB, Bool bigendian,
UWord byteno ) {
return bigendian ? (wordszB-1-byteno) : byteno;
}
/* --------------- Fundamental functions --------------- */
static
void get_abit_and_vbyte ( /*OUT*/UWord* abit,
/*OUT*/UWord* vbyte,
Addr a )
{
SecMap* sm = get_secmap_readable(a);
*vbyte = 0xFF & sm->vbyte[a & 0xFFFF];
*abit = read_bit_array(sm->abits, a & 0xFFFF);
}
static
UWord get_abit ( Addr a )
{
SecMap* sm = get_secmap_readable(a);
return read_bit_array(sm->abits, a & 0xFFFF);
}
static
void set_abit_and_vbyte ( Addr a, UWord abit, UWord vbyte )
{
SecMap* sm = get_secmap_writable(a);
sm->vbyte[a & 0xFFFF] = 0xFF & vbyte;
write_bit_array(sm->abits, a & 0xFFFF, abit);
}
static
void set_vbyte ( Addr a, UWord vbyte )
{
SecMap* sm = get_secmap_writable(a);
sm->vbyte[a & 0xFFFF] = 0xFF & vbyte;
}
/* --------------- Load/store slow cases. --------------- */
static
ULong mc_LOADVn_slow ( Addr a, SizeT szB, Bool bigendian )
{
/* Make up a result V word, which contains the loaded data for
valid addresses and Defined for invalid addresses. Iterate over
the bytes in the word, from the most significant down to the
least. */
ULong vw = VGM_WORD64_INVALID;
SizeT i = szB-1;
SizeT n_addrs_bad = 0;
Addr ai;
Bool aok;
UWord abit, vbyte;
PROF_EVENT(30, "mc_LOADVn_slow");
tl_assert(szB == 8 || szB == 4 || szB == 2 || szB == 1);
while (True) {
PROF_EVENT(31, "mc_LOADVn_slow(loop)");
ai = a+byte_offset_w(szB,bigendian,i);
get_abit_and_vbyte(&abit, &vbyte, ai);
aok = abit == VGM_BIT_VALID;
if (!aok)
n_addrs_bad++;
vw <<= 8;
vw |= 0xFF & (aok ? vbyte : VGM_BYTE_VALID);
if (i == 0) break;
i--;
}
if (n_addrs_bad > 0)
MAC_(record_address_error)( VG_(get_running_tid)(), a, szB, False );
return vw;
}
static
void mc_STOREVn_slow ( Addr a, SizeT szB, UWord vbytes, Bool bigendian )
{
SizeT i;
SizeT n_addrs_bad = 0;
UWord abit;
Bool aok;
Addr ai;
PROF_EVENT(35, "mc_STOREVn_slow");
tl_assert(szB == 8 || szB == 4 || szB == 2 || szB == 1);
/* Dump vbytes in memory, iterating from least to most significant
byte. At the same time establish addressibility of the
location. */
for (i = 0; i < szB; i++) {
PROF_EVENT(36, "mc_STOREVn_slow(loop)");
ai = a+byte_offset_w(szB,bigendian,i);
abit = get_abit(ai);
aok = abit == VGM_BIT_VALID;
if (!aok)
n_addrs_bad++;
set_vbyte(ai, vbytes & 0xFF );
vbytes >>= 8;
}
/* If an address error has happened, report it. */
if (n_addrs_bad > 0)
MAC_(record_address_error)( VG_(get_running_tid)(), a, szB, True );
}
///////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////
//zz #if 0 /* this is the old implementation */
//zz
//zz
//zz
//zz /*------------------------------------------------------------*/
//zz /*--- Low-level support for memory checking. ---*/
//zz /*------------------------------------------------------------*/
//zz
//zz /* All reads and writes are checked against a memory map, which
//zz records the state of all memory in the process. The memory map is
//zz organised like this:
//zz
//zz The top 16 bits of an address are used to index into a top-level
//zz map table, containing 65536 entries. Each entry is a pointer to a
//zz second-level map, which records the accesibililty and validity
//zz permissions for the 65536 bytes indexed by the lower 16 bits of the
//zz address. Each byte is represented by nine bits, one indicating
//zz accessibility, the other eight validity. So each second-level map
//zz contains 73728 bytes. This two-level arrangement conveniently
//zz divides the 4G address space into 64k lumps, each size 64k bytes.
//zz
//zz All entries in the primary (top-level) map must point to a valid
//zz secondary (second-level) map. Since most of the 4G of address
//zz space will not be in use -- ie, not mapped at all -- there is a
//zz distinguished secondary map, which indicates `not addressible and
//zz not valid' writeable for all bytes. Entries in the primary map for
//zz which the entire 64k is not in use at all point at this
//zz distinguished map.
//zz
//zz There are actually 4 distinguished secondaries. These are used to
//zz represent a memory range which is either not addressable (validity
//zz doesn't matter), addressable+not valid, addressable+valid.
//zz
//zz [...] lots of stuff deleted due to out of date-ness
//zz
//zz As a final optimisation, the alignment and address checks for
//zz 4-byte loads and stores are combined in a neat way. The primary
//zz map is extended to have 262144 entries (2^18), rather than 2^16.
//zz The top 3/4 of these entries are permanently set to the
//zz distinguished secondary map. For a 4-byte load/store, the
//zz top-level map is indexed not with (addr >> 16) but instead f(addr),
//zz where
//zz
//zz f( XXXX XXXX XXXX XXXX ____ ____ ____ __YZ )
//zz = ____ ____ ____ __YZ XXXX XXXX XXXX XXXX or
//zz = ____ ____ ____ __ZY XXXX XXXX XXXX XXXX
//zz
//zz ie the lowest two bits are placed above the 16 high address bits.
//zz If either of these two bits are nonzero, the address is misaligned;
//zz this will select a secondary map from the upper 3/4 of the primary
//zz map. Because this is always the distinguished secondary map, a
//zz (bogus) address check failure will result. The failure handling
//zz code can then figure out whether this is a genuine addr check
//zz failure or whether it is a possibly-legitimate access at a
//zz misaligned address.
//zz */
//zz
//zz /*------------------------------------------------------------*/
//zz /*--- Function declarations. ---*/
//zz /*------------------------------------------------------------*/
//zz
//zz static ULong mc_rd_V8_SLOWLY ( Addr a );
//zz static UInt mc_rd_V4_SLOWLY ( Addr a );
//zz static UInt mc_rd_V2_SLOWLY ( Addr a );
//zz static UInt mc_rd_V1_SLOWLY ( Addr a );
//zz
//zz static void mc_wr_V8_SLOWLY ( Addr a, ULong vbytes );
//zz static void mc_wr_V4_SLOWLY ( Addr a, UInt vbytes );
//zz static void mc_wr_V2_SLOWLY ( Addr a, UInt vbytes );
//zz static void mc_wr_V1_SLOWLY ( Addr a, UInt vbytes );
//zz
//zz /*------------------------------------------------------------*/
//zz /*--- Data defns. ---*/
//zz /*------------------------------------------------------------*/
//zz
//zz typedef
//zz struct {
//zz UChar abits[SECONDARY_SIZE/8];
//zz UChar vbyte[SECONDARY_SIZE];
//zz }
//zz SecMap;
//zz
//zz
//zz static SecMap* primary_map[ /*PRIMARY_SIZE*/ PRIMARY_SIZE*4 ];
//zz
//zz #define DSM_IDX(a, v) ((((a)&1) << 1) + ((v)&1))
//zz
//zz /* 4 secondary maps, but one is redundant (because the !addressable &&
//zz valid state is meaningless) */
//zz static const SecMap distinguished_secondary_maps[4] = {
//zz #define INIT(a, v) \
//zz [ DSM_IDX(a, v) ] = { { [0 ... (SECONDARY_SIZE/8)-1] = BIT_EXPAND(a) }, \
//zz { [0 ... SECONDARY_SIZE-1] = BIT_EXPAND(a|v) } }
//zz INIT(VGM_BIT_VALID, VGM_BIT_VALID),
//zz INIT(VGM_BIT_VALID, VGM_BIT_INVALID),
//zz INIT(VGM_BIT_INVALID, VGM_BIT_VALID),
//zz INIT(VGM_BIT_INVALID, VGM_BIT_INVALID),
//zz #undef INIT
//zz };
//zz #define N_SECONDARY_MAPS (sizeof(distinguished_secondary_maps)/sizeof(*distinguished_secondary_maps))
//zz
//zz #define DSM(a,v) ((SecMap *)&distinguished_secondary_maps[DSM_IDX(a, v)])
//zz
//zz #define DSM_NOTADDR DSM(VGM_BIT_INVALID, VGM_BIT_INVALID)
//zz #define DSM_ADDR_NOTVALID DSM(VGM_BIT_VALID, VGM_BIT_INVALID)
//zz #define DSM_ADDR_VALID DSM(VGM_BIT_VALID, VGM_BIT_VALID)
static void init_shadow_memory ( void )
{
Int i;
SecMap* sm;
/* Build the 3 distinguished secondaries */
tl_assert(VGM_BIT_INVALID == 1);
tl_assert(VGM_BIT_VALID == 0);
tl_assert(VGM_BYTE_INVALID == 0xFF);
tl_assert(VGM_BYTE_VALID == 0);
/* Set A invalid, V invalid. */
sm = &sm_distinguished[SM_DIST_NOACCESS];
for (i = 0; i < 65536; i++)
sm->vbyte[i] = VGM_BYTE_INVALID;
for (i = 0; i < 8192; i++)
sm->abits[i] = VGM_BYTE_INVALID;
/* Set A valid, V invalid. */
sm = &sm_distinguished[SM_DIST_ACCESS_UNDEFINED];
for (i = 0; i < 65536; i++)
sm->vbyte[i] = VGM_BYTE_INVALID;
for (i = 0; i < 8192; i++)
sm->abits[i] = VGM_BYTE_VALID;
/* Set A valid, V valid. */
sm = &sm_distinguished[SM_DIST_ACCESS_DEFINED];
for (i = 0; i < 65536; i++)
sm->vbyte[i] = VGM_BYTE_VALID;
for (i = 0; i < 8192; i++)
sm->abits[i] = VGM_BYTE_VALID;
/* Set up the primary map. */
/* These entries gradually get overwritten as the used address
space expands. */
for (i = 0; i < N_PRIMARY_MAP; i++)
primary_map[i] = &sm_distinguished[SM_DIST_NOACCESS];
/* auxmap_size = auxmap_used = 0;
no ... these are statically initialised */
}
//zz /*------------------------------------------------------------*/
//zz /*--- Basic bitmap management, reading and writing. ---*/
//zz /*------------------------------------------------------------*/
//zz
//zz /* Allocate and initialise a secondary map. */
//zz
//zz static SecMap* alloc_secondary_map ( __attribute__ ((unused))
//zz Char* caller,
//zz const SecMap *prototype)
//zz {
//zz SecMap* map;
//zz PROF_EVENT(10);
//zz
//zz map = (SecMap *)VG_(shadow_alloc)(sizeof(SecMap));
//zz
//zz VG_(memcpy)(map, prototype, sizeof(*map));
//zz
//zz /* VG_(printf)("ALLOC_2MAP(%s)\n", caller ); */
//zz return map;
//zz }
//zz
//zz
//zz /* Basic reading/writing of the bitmaps, for byte-sized accesses. */
//zz
//zz static __inline__ UChar get_abit ( Addr a )
//zz {
//zz SecMap* sm = primary_map[PM_IDX(a)];
//zz UInt sm_off = SM_OFF(a);
//zz PROF_EVENT(20);
//zz # if 0
//zz if (IS_DISTINGUISHED_SM(sm))
//zz VG_(message)(Vg_DebugMsg,
//zz "accessed distinguished 2ndary (A)map! 0x%x\n", a);
//zz # endif
//zz return BITARR_TEST(sm->abits, sm_off)
//zz ? VGM_BIT_INVALID : VGM_BIT_VALID;
//zz }
//zz
//zz static __inline__ UChar get_vbyte ( Addr a )
//zz {
//zz SecMap* sm = primary_map[PM_IDX(a)];
//zz UInt sm_off = SM_OFF(a);
//zz PROF_EVENT(21);
//zz # if 0
//zz if (IS_DISTINGUISHED_SM(sm))
//zz VG_(message)(Vg_DebugMsg,
//zz "accessed distinguished 2ndary (V)map! 0x%x\n", a);
//zz # endif
//zz return sm->vbyte[sm_off];
//zz }
//zz
//zz static /* __inline__ */ void set_abit ( Addr a, UChar abit )
//zz {
//zz SecMap* sm;
//zz UInt sm_off;
//zz PROF_EVENT(22);
//zz ENSURE_MAPPABLE(a, "set_abit");
//zz sm = primary_map[PM_IDX(a)];
//zz sm_off = SM_OFF(a);
//zz if (abit)
//zz BITARR_SET(sm->abits, sm_off);
//zz else
//zz BITARR_CLEAR(sm->abits, sm_off);
//zz }
//zz
//zz static __inline__ void set_vbyte ( Addr a, UChar vbyte )
//zz {
//zz SecMap* sm;
//zz UInt sm_off;
//zz PROF_EVENT(23);
//zz ENSURE_MAPPABLE(a, "set_vbyte");
//zz sm = primary_map[PM_IDX(a)];
//zz sm_off = SM_OFF(a);
//zz sm->vbyte[sm_off] = vbyte;
//zz }
//zz
//zz
//zz /* Reading/writing of the bitmaps, for aligned word-sized accesses. */
//zz
//zz static __inline__ UChar get_abits4_ALIGNED ( Addr a )
//zz {
//zz SecMap* sm;
//zz UInt sm_off;
//zz UChar abits8;
//zz PROF_EVENT(24);
//zz # ifdef VG_DEBUG_MEMORY
//zz tl_assert(VG_IS_4_ALIGNED(a));
//zz # endif
//zz sm = primary_map[PM_IDX(a)];
//zz sm_off = SM_OFF(a);
//zz abits8 = sm->abits[sm_off >> 3];
//zz abits8 >>= (a & 4 /* 100b */); /* a & 4 is either 0 or 4 */
//zz abits8 &= 0x0F;
//zz return abits8;
//zz }
//zz
//zz static UInt __inline__ get_vbytes4_ALIGNED ( Addr a )
//zz {
//zz SecMap* sm = primary_map[PM_IDX(a)];
//zz UInt sm_off = SM_OFF(a);
//zz PROF_EVENT(25);
//zz # ifdef VG_DEBUG_MEMORY
//zz tl_assert(VG_IS_4_ALIGNED(a));
//zz # endif
//zz return ((UInt*)(sm->vbyte))[sm_off >> 2];
//zz }
//zz
//zz
//zz static void __inline__ set_vbytes4_ALIGNED ( Addr a, UInt vbytes )
//zz {
//zz SecMap* sm;
//zz UInt sm_off;
//zz ENSURE_MAPPABLE(a, "set_vbytes4_ALIGNED");
//zz sm = primary_map[PM_IDX(a)];
//zz sm_off = SM_OFF(a);
//zz PROF_EVENT(23);
//zz # ifdef VG_DEBUG_MEMORY
//zz tl_assert(VG_IS_4_ALIGNED(a));
//zz # endif
//zz ((UInt*)(sm->vbyte))[sm_off >> 2] = vbytes;
//zz }
/*------------------------------------------------------------*/
/*--- Setting permissions over address ranges. ---*/
/*------------------------------------------------------------*/
/* Given address 'a', find the place where the pointer to a's
secondary map lives. If a falls into the primary map, the returned
value points to one of the entries in primary_map[]. Otherwise,
the auxiliary primary map is searched for 'a', or an entry is
created for it; either way, the returned value points to the
relevant AuxMapEnt's .sm field.
The point of this is to enable set_address_range_perms to assign
secondary maps in a uniform way, without worrying about whether a
given secondary map is pointed to from the main or auxiliary
primary map.
*/
static SecMap** find_secmap_binder_for_addr ( Addr aA )
{
if (aA > MAX_PRIMARY_ADDRESS) {
AuxMapEnt* am = find_or_alloc_in_auxmap(aA);
return &am->sm;
} else {
UWord a = (UWord)aA;
UWord sec_no = (UWord)(a >> 16);
# if VG_DEBUG_MEMORY >= 1
tl_assert(sec_no < N_PRIMARY_MAP);
# endif
return &primary_map[sec_no];
}
}
static void set_address_range_perms ( Addr aA, SizeT len,
UWord example_a_bit,
UWord example_v_bit )
{
PROF_EVENT(150, "set_address_range_perms");
/* Check the permissions make sense. */
tl_assert(example_a_bit == VGM_BIT_VALID
|| example_a_bit == VGM_BIT_INVALID);
tl_assert(example_v_bit == VGM_BIT_VALID
|| example_v_bit == VGM_BIT_INVALID);
if (example_a_bit == VGM_BIT_INVALID)
tl_assert(example_v_bit == VGM_BIT_INVALID);
if (len == 0)
return;
if (VG_(clo_verbosity) > 0) {
if (len > 100 * 1000 * 1000) {
VG_(message)(Vg_UserMsg,
"Warning: set address range perms: "
"large range %u, a %d, v %d",
len, example_a_bit, example_v_bit );
}
}
UWord a = (UWord)aA;
# if VG_DEBUG_MEMORY >= 2
/*------------------ debug-only case ------------------ */
SizeT i;
UWord example_vbyte = BIT_TO_BYTE(example_v_bit);
tl_assert(sizeof(SizeT) == sizeof(Addr));
if (0 && len >= 4096)
VG_(printf)("s_a_r_p(0x%llx, %d, %d,%d)\n",
(ULong)a, len, example_a_bit, example_v_bit);
if (len == 0)
return;
for (i = 0; i < len; i++) {
set_abit_and_vbyte(a+i, example_a_bit, example_vbyte);
}
# else
/*------------------ standard handling ------------------ */
UWord vbits8, abits8, vbits32, v_off, a_off;
SecMap* sm;
SecMap** binder;
SecMap* example_dsm;
/* Decide on the distinguished secondary that we might want
to use (part of the space-compression scheme). */
if (example_a_bit == VGM_BIT_INVALID) {
example_dsm = &sm_distinguished[SM_DIST_NOACCESS];
} else {
if (example_v_bit == VGM_BIT_VALID) {
example_dsm = &sm_distinguished[SM_DIST_ACCESS_DEFINED];
} else {
example_dsm = &sm_distinguished[SM_DIST_ACCESS_UNDEFINED];
}
}
/* Make various wider versions of the A/V values to use. */
vbits8 = BIT_TO_BYTE(example_v_bit);
abits8 = BIT_TO_BYTE(example_a_bit);
vbits32 = (vbits8 << 24) | (vbits8 << 16) | (vbits8 << 8) | vbits8;
/* Slowly do parts preceding 8-byte alignment. */
while (True) {
if (len == 0) break;
PROF_EVENT(151, "set_address_range_perms-loop1-pre");
if (VG_IS_8_ALIGNED(a)) break;
set_abit_and_vbyte( a, example_a_bit, vbits8 );
a++;
len--;
}
if (len == 0)
return;
tl_assert(VG_IS_8_ALIGNED(a) && len > 0);
/* Now go in steps of 8 bytes. */
binder = find_secmap_binder_for_addr(a);
while (True) {
if (len < 8) break;
PROF_EVENT(152, "set_address_range_perms-loop8");
if ((a & SECONDARY_MASK) == 0) {
/* we just traversed a primary map boundary, so update the
binder. */
binder = find_secmap_binder_for_addr(a);
PROF_EVENT(153, "set_address_range_perms-update-binder");
/* Space-optimisation. If we are setting the entire
secondary map, just point this entry at one of our
distinguished secondaries. However, only do that if it
already points at a distinguished secondary, since doing
otherwise would leak the existing secondary. We could do
better and free up any pre-existing non-distinguished
secondary at this point, since we are guaranteed that each
non-dist secondary only has one pointer to it, and we have
that pointer right here. */
if (len >= SECONDARY_SIZE && is_distinguished_sm(*binder)) {
PROF_EVENT(154, "set_address_range_perms-entire-secmap");
*binder = example_dsm;
len -= SECONDARY_SIZE;
a += SECONDARY_SIZE;
continue;
}
}
/* If the primary is already pointing to a distinguished map
with the same properties as we're trying to set, then leave
it that way. */
if (*binder == example_dsm) {
a += 8;
len -= 8;
continue;
}
/* Make sure it's OK to write the secondary. */
if (is_distinguished_sm(*binder))
*binder = copy_for_writing(*binder);
sm = *binder;
v_off = a & 0xFFFF;
a_off = v_off >> 3;
sm->abits[a_off] = (UChar)abits8;
((UInt*)(sm->vbyte))[(v_off >> 2) + 0] = (UInt)vbits32;
((UInt*)(sm->vbyte))[(v_off >> 2) + 1] = (UInt)vbits32;
a += 8;
len -= 8;
}
if (len == 0)
return;
tl_assert(VG_IS_8_ALIGNED(a) && len > 0 && len < 8);
/* Finish the upper fragment. */
while (True) {
if (len == 0) break;
PROF_EVENT(155, "set_address_range_perms-loop1-post");
set_abit_and_vbyte ( a, example_a_bit, vbits8 );
a++;
len--;
}
# endif
}
/* Set permissions for address ranges ... */
static void mc_make_noaccess ( Addr a, SizeT len )
{
PROF_EVENT(40, "mc_make_noaccess");
DEBUG("mc_make_noaccess(%p, %llu)\n", a, (ULong)len);
set_address_range_perms ( a, len, VGM_BIT_INVALID, VGM_BIT_INVALID );
}
static void mc_make_writable ( Addr a, SizeT len )
{
PROF_EVENT(41, "mc_make_writable");
DEBUG("mc_make_writable(%p, %llu)\n", a, (ULong)len);
set_address_range_perms ( a, len, VGM_BIT_VALID, VGM_BIT_INVALID );
}
static void mc_make_readable ( Addr a, SizeT len )
{
PROF_EVENT(42, "mc_make_readable");
DEBUG("mc_make_readable(%p, %llu)\n", a, (ULong)len);
set_address_range_perms ( a, len, VGM_BIT_VALID, VGM_BIT_VALID );
}
static __inline__
void make_aligned_word32_writable ( Addr aA )
{
PROF_EVENT(300, "make_aligned_word32_writable");
# if VG_DEBUG_MEMORY >= 2
mc_make_writable(aA, 4);
# else
if (EXPECTED_NOT_TAKEN(aA > MAX_PRIMARY_ADDRESS)) {
PROF_EVENT(301, "make_aligned_word32_writable-slow1");
mc_make_writable(aA, 4);
return;
}
UWord a = (UWord)aA;
UWord sec_no = (UWord)(a >> 16);
# if VG_DEBUG_MEMORY >= 1
tl_assert(sec_no < N_PRIMARY_MAP);
# endif
if (EXPECTED_NOT_TAKEN(is_distinguished_sm(primary_map[sec_no])))
primary_map[sec_no] = copy_for_writing(primary_map[sec_no]);
SecMap* sm = primary_map[sec_no];
UWord v_off = a & 0xFFFF;
UWord a_off = v_off >> 3;
/* Paint the new area as uninitialised. */
((UInt*)(sm->vbyte))[v_off >> 2] = VGM_WORD32_INVALID;
UWord mask = 0x0F;
mask <<= (a & 4 /* 100b */); /* a & 4 is either 0 or 4 */
/* mask now contains 1s where we wish to make address bits valid
(0s). */
sm->abits[a_off] &= ~mask;
# endif
}
static __inline__
void make_aligned_word32_noaccess ( Addr aA )
{
PROF_EVENT(310, "make_aligned_word32_noaccess");
# if VG_DEBUG_MEMORY >= 2
mc_make_noaccess(aA, 4);
# else
if (EXPECTED_NOT_TAKEN(aA > MAX_PRIMARY_ADDRESS)) {
PROF_EVENT(311, "make_aligned_word32_noaccess-slow1");
mc_make_noaccess(aA, 4);
return;
}
UWord a = (UWord)aA;
UWord sec_no = (UWord)(a >> 16);
# if VG_DEBUG_MEMORY >= 1
tl_assert(sec_no < N_PRIMARY_MAP);
# endif
if (EXPECTED_NOT_TAKEN(is_distinguished_sm(primary_map[sec_no])))
primary_map[sec_no] = copy_for_writing(primary_map[sec_no]);
SecMap* sm = primary_map[sec_no];
UWord v_off = a & 0xFFFF;
UWord a_off = v_off >> 3;
/* Paint the abandoned data as uninitialised. Probably not
necessary, but still .. */
((UInt*)(sm->vbyte))[v_off >> 2] = VGM_WORD32_INVALID;
UWord mask = 0x0F;
mask <<= (a & 4 /* 100b */); /* a & 4 is either 0 or 4 */
/* mask now contains 1s where we wish to make address bits invalid
(1s). */
sm->abits[a_off] |= mask;
# endif
}
/* Nb: by "aligned" here we mean 8-byte aligned */
static __inline__
void make_aligned_word64_writable ( Addr aA )
{
PROF_EVENT(320, "make_aligned_word64_writable");
# if VG_DEBUG_MEMORY >= 2
mc_make_writable(aA, 8);
# else
if (EXPECTED_NOT_TAKEN(aA > MAX_PRIMARY_ADDRESS)) {
PROF_EVENT(321, "make_aligned_word64_writable-slow1");
mc_make_writable(aA, 8);
return;
}
UWord a = (UWord)aA;
UWord sec_no = (UWord)(a >> 16);
# if VG_DEBUG_MEMORY >= 1
tl_assert(sec_no < N_PRIMARY_MAP);
# endif
if (EXPECTED_NOT_TAKEN(is_distinguished_sm(primary_map[sec_no])))
primary_map[sec_no] = copy_for_writing(primary_map[sec_no]);
SecMap* sm = primary_map[sec_no];
UWord v_off = a & 0xFFFF;
UWord a_off = v_off >> 3;
/* Paint the new area as uninitialised. */
((ULong*)(sm->vbyte))[v_off >> 3] = VGM_WORD64_INVALID;
/* Make the relevant area accessible. */
sm->abits[a_off] = VGM_BYTE_VALID;
# endif
}
static __inline__
void make_aligned_word64_noaccess ( Addr aA )
{
PROF_EVENT(330, "make_aligned_word64_noaccess");
# if VG_DEBUG_MEMORY >= 2
mc_make_noaccess(aA, 8);
# else
if (EXPECTED_NOT_TAKEN(aA > MAX_PRIMARY_ADDRESS)) {
PROF_EVENT(331, "make_aligned_word64_noaccess-slow1");
mc_make_noaccess(aA, 8);
return;
}
UWord a = (UWord)aA;
UWord sec_no = (UWord)(a >> 16);
# if VG_DEBUG_MEMORY >= 1
tl_assert(sec_no < N_PRIMARY_MAP);
# endif
if (EXPECTED_NOT_TAKEN(is_distinguished_sm(primary_map[sec_no])))
primary_map[sec_no] = copy_for_writing(primary_map[sec_no]);
SecMap* sm = primary_map[sec_no];
UWord v_off = a & 0xFFFF;
UWord a_off = v_off >> 3;
/* Paint the abandoned data as uninitialised. Probably not
necessary, but still .. */
((ULong*)(sm->vbyte))[v_off >> 3] = VGM_WORD64_INVALID;
/* Make the abandoned area inaccessible. */
sm->abits[a_off] = VGM_BYTE_INVALID;
# endif
}
/* The stack-pointer update handling functions */
SP_UPDATE_HANDLERS ( make_aligned_word32_writable,
make_aligned_word32_noaccess,
make_aligned_word64_writable,
make_aligned_word64_noaccess,
mc_make_writable,
mc_make_noaccess
);
/* Block-copy permissions (needed for implementing realloc()). */
static void mc_copy_address_range_state ( Addr src, Addr dst, SizeT len )
{
SizeT i;
UWord abit, vbyte;
DEBUG("mc_copy_address_range_state\n");
PROF_EVENT(50, "mc_copy_address_range_state");
for (i = 0; i < len; i++) {
PROF_EVENT(51, "mc_copy_address_range_state(loop)");
get_abit_and_vbyte( &abit, &vbyte, src+i );
set_abit_and_vbyte( dst+i, abit, vbyte );
}
}
/*------------------------------------------------------------*/
/*--- Checking memory ---*/
/*------------------------------------------------------------*/
/* Check permissions for address range. If inadequate permissions
exist, *bad_addr is set to the offending address, so the caller can
know what it is. */
/* Returns True if [a .. a+len) is not addressible. Otherwise,
returns False, and if bad_addr is non-NULL, sets *bad_addr to
indicate the lowest failing address. Functions below are
similar. */
static Bool mc_check_noaccess ( Addr a, SizeT len, Addr* bad_addr )
{
SizeT i;
UWord abit;
PROF_EVENT(60, "mc_check_noaccess");
for (i = 0; i < len; i++) {
PROF_EVENT(61, "mc_check_noaccess(loop)");
abit = get_abit(a);
if (abit == VGM_BIT_VALID) {
if (bad_addr != NULL)
*bad_addr = a;
return False;
}
a++;
}
return True;
}
static Bool mc_check_writable ( Addr a, SizeT len, Addr* bad_addr )
{
SizeT i;
UWord abit;
PROF_EVENT(62, "mc_check_writable");
for (i = 0; i < len; i++) {
PROF_EVENT(63, "mc_check_writable(loop)");
abit = get_abit(a);
if (abit == VGM_BIT_INVALID) {
if (bad_addr != NULL) *bad_addr = a;
return False;
}
a++;
}
return True;
}
static MC_ReadResult mc_check_readable ( Addr a, SizeT len, Addr* bad_addr )
{
SizeT i;
UWord abit;
UWord vbyte;
PROF_EVENT(64, "mc_check_readable");
DEBUG("mc_check_readable\n");
for (i = 0; i < len; i++) {
PROF_EVENT(65, "mc_check_readable(loop)");
get_abit_and_vbyte(&abit, &vbyte, a);
// Report addressability errors in preference to definedness errors
// by checking the A bits first.
if (abit != VGM_BIT_VALID) {
if (bad_addr != NULL)
*bad_addr = a;
return MC_AddrErr;
}
if (vbyte != VGM_BYTE_VALID) {
if (bad_addr != NULL)
*bad_addr = a;
return MC_ValueErr;
}
a++;
}
return MC_Ok;
}
/* Check a zero-terminated ascii string. Tricky -- don't want to
examine the actual bytes, to find the end, until we're sure it is
safe to do so. */
static Bool mc_check_readable_asciiz ( Addr a, Addr* bad_addr )
{
UWord abit;
UWord vbyte;
PROF_EVENT(66, "mc_check_readable_asciiz");
DEBUG("mc_check_readable_asciiz\n");
while (True) {
PROF_EVENT(67, "mc_check_readable_asciiz(loop)");
get_abit_and_vbyte(&abit, &vbyte, a);
// As in mc_check_readable(), check A bits first
if (abit != VGM_BIT_VALID) {
if (bad_addr != NULL)
*bad_addr = a;
return MC_AddrErr;
}
if (vbyte != VGM_BYTE_VALID) {
if (bad_addr != NULL)
*bad_addr = a;
return MC_ValueErr;
}
/* Ok, a is safe to read. */
if (* ((UChar*)a) == 0)
return MC_Ok;
a++;
}
}
/*------------------------------------------------------------*/
/*--- Memory event handlers ---*/
/*------------------------------------------------------------*/
static
void mc_check_is_writable ( CorePart part, ThreadId tid, Char* s,
Addr base, SizeT size )
{
Bool ok;
Addr bad_addr;
VGP_PUSHCC(VgpCheckMem);
/* VG_(message)(Vg_DebugMsg,"check is writable: %x .. %x",
base,base+size-1); */
ok = mc_check_writable ( base, size, &bad_addr );
if (!ok) {
switch (part) {
case Vg_CoreSysCall:
MAC_(record_param_error) ( tid, bad_addr, /*isReg*/False,
/*isUnaddr*/True, s );
break;
case Vg_CorePThread:
case Vg_CoreSignal:
MAC_(record_core_mem_error)( tid, /*isUnaddr*/True, s );
break;
default:
VG_(tool_panic)("mc_check_is_writable: unexpected CorePart");
}
}
VGP_POPCC(VgpCheckMem);
}
static
void mc_check_is_readable ( CorePart part, ThreadId tid, Char* s,
Addr base, SizeT size )
{
Addr bad_addr;
MC_ReadResult res;
VGP_PUSHCC(VgpCheckMem);
/* VG_(message)(Vg_DebugMsg,"check is readable: %x .. %x",
base,base+size-1); */
res = mc_check_readable ( base, size, &bad_addr );
if (MC_Ok != res) {
Bool isUnaddr = ( MC_AddrErr == res ? True : False );
switch (part) {
case Vg_CoreSysCall:
MAC_(record_param_error) ( tid, bad_addr, /*isReg*/False,
isUnaddr, s );
break;
case Vg_CorePThread:
MAC_(record_core_mem_error)( tid, isUnaddr, s );
break;
/* If we're being asked to jump to a silly address, record an error
message before potentially crashing the entire system. */
case Vg_CoreTranslate:
MAC_(record_jump_error)( tid, bad_addr );
break;
default:
VG_(tool_panic)("mc_check_is_readable: unexpected CorePart");
}
}
VGP_POPCC(VgpCheckMem);
}
static
void mc_check_is_readable_asciiz ( CorePart part, ThreadId tid,
Char* s, Addr str )
{
MC_ReadResult res;
Addr bad_addr;
/* VG_(message)(Vg_DebugMsg,"check is readable asciiz: 0x%x",str); */
VGP_PUSHCC(VgpCheckMem);
tl_assert(part == Vg_CoreSysCall);
res = mc_check_readable_asciiz ( (Addr)str, &bad_addr );
if (MC_Ok != res) {
Bool isUnaddr = ( MC_AddrErr == res ? True : False );
MAC_(record_param_error) ( tid, bad_addr, /*isReg*/False, isUnaddr, s );
}
VGP_POPCC(VgpCheckMem);
}
static
void mc_new_mem_startup( Addr a, SizeT len, Bool rr, Bool ww, Bool xx )
{
/* Ignore the permissions, just make it readable. Seems to work... */
DEBUG("mc_new_mem_startup(%p, %llu, rr=%u, ww=%u, xx=%u)\n",
a,(ULong)len,rr,ww,xx);
mc_make_readable(a, len);
}
static
void mc_new_mem_heap ( Addr a, SizeT len, Bool is_inited )
{
if (is_inited) {
mc_make_readable(a, len);
} else {
mc_make_writable(a, len);
}
}
static
void mc_new_mem_mmap ( Addr a, SizeT len, Bool rr, Bool ww, Bool xx )
{
mc_make_readable(a, len);
}
static
void mc_post_mem_write(CorePart part, ThreadId tid, Addr a, SizeT len)
{
mc_make_readable(a, len);
}
/*------------------------------------------------------------*/
/*--- Register event handlers ---*/
/*------------------------------------------------------------*/
/* When some chunk of guest state is written, mark the corresponding
shadow area as valid. This is used to initialise arbitrarily large
chunks of guest state, hence the (somewhat arbitrary) 512 limit.
*/
static void mc_post_reg_write ( CorePart part, ThreadId tid,
OffT offset, SizeT size)
{
UChar area[1024];
tl_assert(size <= 1024);
VG_(memset)(area, VGM_BYTE_VALID, size);
VG_(set_shadow_regs_area)( tid, offset, size, area );
}
static
void mc_post_reg_write_clientcall ( ThreadId tid,
OffT offset, SizeT size,
Addr f)
{
mc_post_reg_write(/*dummy*/0, tid, offset, size);
}
/* Look at the definedness of the guest's shadow state for
[offset, offset+len). If any part of that is undefined, record
a parameter error.
*/
static void mc_pre_reg_read ( CorePart part, ThreadId tid, Char* s,
OffT offset, SizeT size)
{
Int i;
Bool bad;
UChar area[16];
tl_assert(size <= 16);
VG_(get_shadow_regs_area)( tid, offset, size, area );
bad = False;
for (i = 0; i < size; i++) {
if (area[i] != VGM_BYTE_VALID) {
bad = False;
break;
}
}
if (bad)
MAC_(record_param_error) ( tid, 0, /*isReg*/True, /*isUnaddr*/False, s );
}
/*------------------------------------------------------------*/
/*--- Functions called directly from generated code. ---*/
/*------------------------------------------------------------*/
/* Types: LOADV4, LOADV2, LOADV1 are:
UWord fn ( Addr a )
so they return 32-bits on 32-bit machines and 64-bits on
64-bit machines. Addr has the same size as a host word.
LOADV8 is always ULong fn ( Addr a )
Similarly for STOREV1, STOREV2, STOREV4, the supplied vbits
are a UWord, and for STOREV8 they are a ULong.
*/
//zz static __inline__ UInt rotateRight16 ( UInt x )
//zz {
//zz /* Amazingly, gcc turns this into a single rotate insn. */
//zz return (x >> 16) | (x << 16);
//zz }
//zz
//zz
//zz static __inline__ UInt shiftRight16 ( UInt x )
//zz {
//zz return x >> 16;
//zz }
//zz
//zz
//zz /* Read/write 1/2/4/8 sized V bytes, and emit an address error if
//zz needed. */
//zz
//zz /* MC_(helperc_{LD,ST}V{1,2,4,8}) handle the common case fast.
//zz Under all other circumstances, it defers to the relevant _SLOWLY
//zz function, which can handle all situations.
//zz */
/* ------------------------ Size = 8 ------------------------ */
VGA_REGPARM(1)
ULong MC_(helperc_LOADV8) ( Addr a )
{
PROF_EVENT(70, "helperc_LOADV8");
return mc_LOADVn_slow( a, 8, False/*littleendian*/ );
//zz # ifdef VG_DEBUG_MEMORY
//zz return mc_rd_V8_SLOWLY(a);
//zz # else
//zz if (VG_IS_8_ALIGNED(a)) {
//zz UInt sec_no = shiftRight16(a) & 0xFFFF;
//zz SecMap* sm = primary_map[sec_no];
//zz UInt a_off = (SM_OFF(a)) >> 3;
//zz UChar abits = sm->abits[a_off];
//zz if (abits == VGM_BYTE_VALID) {
//zz /* a is 8-aligned, mapped, and addressible. */
//zz UInt v_off = SM_OFF(a);
//zz /* LITTLE-ENDIAN */
//zz UInt vLo = ((UInt*)(sm->vbyte))[ (v_off >> 2) ];
//zz UInt vHi = ((UInt*)(sm->vbyte))[ (v_off >> 2) + 1 ];
//zz return ( ((ULong)vHi) << 32 ) | ((ULong)vLo);
//zz } else {
//zz return mc_rd_V8_SLOWLY(a);
//zz }
//zz }
//zz else
//zz if (VG_IS_4_ALIGNED(a)) {
//zz /* LITTLE-ENDIAN */
//zz UInt vLo = MC_(helperc_LOADV4)(a+0);
//zz UInt vHi = MC_(helperc_LOADV4)(a+4);
//zz return ( ((ULong)vHi) << 32 ) | ((ULong)vLo);
//zz }
//zz else
//zz return mc_rd_V8_SLOWLY(a);
//zz # endif
}
VGA_REGPARM(1)
void MC_(helperc_STOREV8) ( Addr a, ULong vbytes )
{
PROF_EVENT(71, "helperc_STOREV8");
mc_STOREVn_slow( a, 8, vbytes, False/*littleendian*/ );
//zz # ifdef VG_DEBUG_MEMORY
//zz mc_wr_V8_SLOWLY(a, vbytes);
//zz # else
//zz if (VG_IS_8_ALIGNED(a)) {
//zz UInt sec_no = shiftRight16(a) & 0xFFFF;
//zz SecMap* sm = primary_map[sec_no];
//zz UInt a_off = (SM_OFF(a)) >> 3;
//zz if (!IS_DISTINGUISHED_SM(sm) && sm->abits[a_off] == VGM_BYTE_VALID) {
//zz /* a is 8-aligned, mapped, and addressible. */
//zz UInt v_off = SM_OFF(a);
//zz UInt vHi = (UInt)(vbytes >> 32);
//zz UInt vLo = (UInt)vbytes;
//zz /* LITTLE-ENDIAN */
//zz ((UInt*)(sm->vbyte))[ (v_off >> 2) ] = vLo;
//zz ((UInt*)(sm->vbyte))[ (v_off >> 2) + 1 ] = vHi;
//zz } else {
//zz mc_wr_V8_SLOWLY(a, vbytes);
//zz }
//zz return;
//zz }
//zz else
//zz if (VG_IS_4_ALIGNED(a)) {
//zz UInt vHi = (UInt)(vbytes >> 32);
//zz UInt vLo = (UInt)vbytes;
//zz /* LITTLE-ENDIAN */
//zz MC_(helperc_STOREV4)(a+0, vLo);
//zz MC_(helperc_STOREV4)(a+4, vHi);
//zz return;
//zz }
//zz else
//zz mc_wr_V8_SLOWLY(a, vbytes);
//zz # endif
}
/* ------------------------ Size = 4 ------------------------ */
VGA_REGPARM(1)
UWord MC_(helperc_LOADV4) ( Addr aA )
{
PROF_EVENT(220, "helperc_LOADV4");
# if VG_DEBUG_MEMORY >= 2
return (UWord)mc_LOADVn_slow( aA, 4, False/*littleendian*/ );
# else
const UWord mask = ~((0x10000-4) | ((N_PRIMARY_MAP-1) << 16));
UWord a = (UWord)aA;
/* If any part of 'a' indicated by the mask is 1, either 'a' is not
naturally aligned, or 'a' exceeds the range covered by the
primary map. Either way we defer to the slow-path case. */
if (EXPECTED_NOT_TAKEN(a & mask)) {
PROF_EVENT(221, "helperc_LOADV4-slow1");
return (UWord)mc_LOADVn_slow( aA, 4, False/*littleendian*/ );
}
UWord sec_no = (UWord)(a >> 16);
# if VG_DEBUG_MEMORY >= 1
tl_assert(sec_no < N_PRIMARY_MAP);
# endif
SecMap* sm = primary_map[sec_no];
UWord v_off = a & 0xFFFF;
UWord a_off = v_off >> 3;
UWord abits = (UWord)(sm->abits[a_off]);
abits >>= (a & 4);
abits &= 15;
if (EXPECTED_TAKEN(abits == VGM_NIBBLE_VALID)) {
/* Handle common case quickly: a is suitably aligned, is mapped,
and is addressible. */
/* On a 32-bit platform, simply hoick the required 32 bits out of
the vbyte array. On a 64-bit platform, also set the upper 32
bits to 1 ("undefined"), just in case. This almost certainly
isn't necessary, but be paranoid. */
UWord ret = (UWord)0xFFFFFFFF00000000ULL;
ret |= (UWord)( ((UInt*)(sm->vbyte))[ v_off >> 2 ] );
return ret;
} else {
/* Slow but general case. */
PROF_EVENT(222, "helperc_LOADV4-slow2");
return (UWord)mc_LOADVn_slow( a, 4, False/*littleendian*/ );
}
# endif
}
VGA_REGPARM(2)
void MC_(helperc_STOREV4) ( Addr aA, UWord vbytes )
{
PROF_EVENT(230, "helperc_STOREV4");
# if VG_DEBUG_MEMORY >= 2
mc_STOREVn_slow( aA, 4, (ULong)vbytes, False/*littleendian*/ );
# else
const UWord mask = ~((0x10000-4) | ((N_PRIMARY_MAP-1) << 16));
UWord a = (UWord)aA;
/* If any part of 'a' indicated by the mask is 1, either 'a' is not
naturally aligned, or 'a' exceeds the range covered by the
primary map. Either way we defer to the slow-path case. */
if (EXPECTED_NOT_TAKEN(a & mask)) {
PROF_EVENT(231, "helperc_STOREV4-slow1");
mc_STOREVn_slow( aA, 4, (ULong)vbytes, False/*littleendian*/ );
return;
}
UWord sec_no = (UWord)(a >> 16);
# if VG_DEBUG_MEMORY >= 1
tl_assert(sec_no < N_PRIMARY_MAP);
# endif
SecMap* sm = primary_map[sec_no];
UWord v_off = a & 0xFFFF;
UWord a_off = v_off >> 3;
UWord abits = (UWord)(sm->abits[a_off]);
abits >>= (a & 4);
abits &= 15;
if (EXPECTED_TAKEN(!is_distinguished_sm(sm)
&& abits == VGM_NIBBLE_VALID)) {
/* Handle common case quickly: a is suitably aligned, is mapped,
and is addressible. */
((UInt*)(sm->vbyte))[ v_off >> 2 ] = (UInt)vbytes;
} else {
/* Slow but general case. */
PROF_EVENT(232, "helperc_STOREV4-slow2");
mc_STOREVn_slow( aA, 4, (ULong)vbytes, False/*littleendian*/ );
}
# endif
}
/* ------------------------ Size = 2 ------------------------ */
VGA_REGPARM(1)
UWord MC_(helperc_LOADV2) ( Addr aA )
{
PROF_EVENT(240, "helperc_LOADV2");
# if VG_DEBUG_MEMORY >= 2
return (UWord)mc_LOADVn_slow( aA, 2, False/*littleendian*/ );
# else
const UWord mask = ~((0x10000-2) | ((N_PRIMARY_MAP-1) << 16));
UWord a = (UWord)aA;
/* If any part of 'a' indicated by the mask is 1, either 'a' is not
naturally aligned, or 'a' exceeds the range covered by the
primary map. Either way we defer to the slow-path case. */
if (EXPECTED_NOT_TAKEN(a & mask)) {
PROF_EVENT(241, "helperc_LOADV2-slow1");
return (UWord)mc_LOADVn_slow( aA, 2, False/*littleendian*/ );
}
UWord sec_no = (UWord)(a >> 16);
# if VG_DEBUG_MEMORY >= 1
tl_assert(sec_no < N_PRIMARY_MAP);
# endif
SecMap* sm = primary_map[sec_no];
UWord v_off = a & 0xFFFF;
UWord a_off = v_off >> 3;
UWord abits = (UWord)(sm->abits[a_off]);
if (EXPECTED_TAKEN(abits == VGM_BYTE_VALID)) {
/* Handle common case quickly: a is mapped, and the entire
word32 it lives in is addressible. */
/* Set the upper 16/48 bits of the result to 1 ("undefined"),
just in case. This almost certainly isn't necessary, but be
paranoid. */
return (~(UWord)0xFFFF)
|
(UWord)( ((UShort*)(sm->vbyte))[ v_off >> 1 ] );
} else {
/* Slow but general case. */
PROF_EVENT(242, "helperc_LOADV2-slow2");
return (UWord)mc_LOADVn_slow( aA, 2, False/*littleendian*/ );
}
# endif
}
VGA_REGPARM(2)
void MC_(helperc_STOREV2) ( Addr aA, UWord vbytes )
{
PROF_EVENT(250, "helperc_STOREV2");
# if VG_DEBUG_MEMORY >= 2
mc_STOREVn_slow( aA, 2, (ULong)vbytes, False/*littleendian*/ );
# else
const UWord mask = ~((0x10000-2) | ((N_PRIMARY_MAP-1) << 16));
UWord a = (UWord)aA;
/* If any part of 'a' indicated by the mask is 1, either 'a' is not
naturally aligned, or 'a' exceeds the range covered by the
primary map. Either way we defer to the slow-path case. */
if (EXPECTED_NOT_TAKEN(a & mask)) {
PROF_EVENT(251, "helperc_STOREV2-slow1");
mc_STOREVn_slow( aA, 2, (ULong)vbytes, False/*littleendian*/ );
return;
}
UWord sec_no = (UWord)(a >> 16);
# if VG_DEBUG_MEMORY >= 1
tl_assert(sec_no < N_PRIMARY_MAP);
# endif
SecMap* sm = primary_map[sec_no];
UWord v_off = a & 0xFFFF;
UWord a_off = v_off >> 3;
UWord abits = (UWord)(sm->abits[a_off]);
if (EXPECTED_TAKEN(!is_distinguished_sm(sm)
&& abits == VGM_BYTE_VALID)) {
/* Handle common case quickly. */
((UShort*)(sm->vbyte))[ v_off >> 1 ] = (UShort)vbytes;
} else {
/* Slow but general case. */
PROF_EVENT(252, "helperc_STOREV2-slow2");
mc_STOREVn_slow( aA, 2, (ULong)vbytes, False/*littleendian*/ );
}
# endif
}
/* ------------------------ Size = 1 ------------------------ */
VGA_REGPARM(1)
UWord MC_(helperc_LOADV1) ( Addr aA )
{
PROF_EVENT(260, "helperc_LOADV1");
# if VG_DEBUG_MEMORY >= 2
return (UWord)mc_LOADVn_slow( aA, 1, False/*littleendian*/ );
# else
const UWord mask = ~((0x10000-1) | ((N_PRIMARY_MAP-1) << 16));
UWord a = (UWord)aA;
/* If any part of 'a' indicated by the mask is 1, it means 'a'
exceeds the range covered by the primary map. In which case we
defer to the slow-path case. */
if (EXPECTED_NOT_TAKEN(a & mask)) {
PROF_EVENT(261, "helperc_LOADV1-slow1");
return (UWord)mc_LOADVn_slow( aA, 1, False/*littleendian*/ );
}
UWord sec_no = (UWord)(a >> 16);
# if VG_DEBUG_MEMORY >= 1
tl_assert(sec_no < N_PRIMARY_MAP);
# endif
SecMap* sm = primary_map[sec_no];
UWord v_off = a & 0xFFFF;
UWord a_off = v_off >> 3;
UWord abits = (UWord)(sm->abits[a_off]);
if (EXPECTED_TAKEN(abits == VGM_BYTE_VALID)) {
/* Handle common case quickly: a is mapped, and the entire
word32 it lives in is addressible. */
/* Set the upper 24/56 bits of the result to 1 ("undefined"),
just in case. This almost certainly isn't necessary, but be
paranoid. */
return (~(UWord)0xFF)
|
(UWord)( ((UChar*)(sm->vbyte))[ v_off ] );
} else {
/* Slow but general case. */
PROF_EVENT(262, "helperc_LOADV1-slow2");
return (UWord)mc_LOADVn_slow( aA, 1, False/*littleendian*/ );
}
# endif
}
VGA_REGPARM(2)
void MC_(helperc_STOREV1) ( Addr aA, UWord vbyte )
{
PROF_EVENT(270, "helperc_STOREV1");
# if VG_DEBUG_MEMORY >= 2
mc_STOREVn_slow( aA, 1, (ULong)vbyte, False/*littleendian*/ );
# else
const UWord mask = ~((0x10000-1) | ((N_PRIMARY_MAP-1) << 16));
UWord a = (UWord)aA;
/* If any part of 'a' indicated by the mask is 1, it means 'a'
exceeds the range covered by the primary map. In which case we
defer to the slow-path case. */
if (EXPECTED_NOT_TAKEN(a & mask)) {
PROF_EVENT(271, "helperc_STOREV1-slow1");
mc_STOREVn_slow( aA, 1, (ULong)vbyte, False/*littleendian*/ );
return;
}
UWord sec_no = (UWord)(a >> 16);
# if VG_DEBUG_MEMORY >= 1
tl_assert(sec_no < N_PRIMARY_MAP);
# endif
SecMap* sm = primary_map[sec_no];
UWord v_off = a & 0xFFFF;
UWord a_off = v_off >> 3;
UWord abits = (UWord)(sm->abits[a_off]);
if (EXPECTED_TAKEN(!is_distinguished_sm(sm)
&& abits == VGM_BYTE_VALID)) {
/* Handle common case quickly: a is mapped, the entire word32 it
lives in is addressible. */
((UChar*)(sm->vbyte))[ v_off ] = (UChar)vbyte;
} else {
PROF_EVENT(272, "helperc_STOREV1-slow2");
mc_STOREVn_slow( aA, 1, (ULong)vbyte, False/*littleendian*/ );
}
# endif
}
//zz /*------------------------------------------------------------*/
//zz /*--- Fallback functions to handle cases that the above ---*/
//zz /*--- VG_(helperc_{LD,ST}V{1,2,4,8}) can't manage. ---*/
//zz /*------------------------------------------------------------*/
//zz
//zz /* ------------------------ Size = 8 ------------------------ */
//zz
//zz static ULong mc_rd_V8_SLOWLY ( Addr a )
//zz {
//zz Bool a0ok, a1ok, a2ok, a3ok, a4ok, a5ok, a6ok, a7ok;
//zz UInt vb0, vb1, vb2, vb3, vb4, vb5, vb6, vb7;
//zz
//zz PROF_EVENT(70);
//zz
//zz /* First establish independently the addressibility of the 4 bytes
//zz involved. */
//zz a0ok = get_abit(a+0) == VGM_BIT_VALID;
//zz a1ok = get_abit(a+1) == VGM_BIT_VALID;
//zz a2ok = get_abit(a+2) == VGM_BIT_VALID;
//zz a3ok = get_abit(a+3) == VGM_BIT_VALID;
//zz a4ok = get_abit(a+4) == VGM_BIT_VALID;
//zz a5ok = get_abit(a+5) == VGM_BIT_VALID;
//zz a6ok = get_abit(a+6) == VGM_BIT_VALID;
//zz a7ok = get_abit(a+7) == VGM_BIT_VALID;
//zz
//zz /* Also get the validity bytes for the address. */
//zz vb0 = (UInt)get_vbyte(a+0);
//zz vb1 = (UInt)get_vbyte(a+1);
//zz vb2 = (UInt)get_vbyte(a+2);
//zz vb3 = (UInt)get_vbyte(a+3);
//zz vb4 = (UInt)get_vbyte(a+4);
//zz vb5 = (UInt)get_vbyte(a+5);
//zz vb6 = (UInt)get_vbyte(a+6);
//zz vb7 = (UInt)get_vbyte(a+7);
//zz
//zz /* Now distinguish 3 cases */
//zz
//zz /* Case 1: the address is completely valid, so:
//zz - no addressing error
//zz - return V bytes as read from memory
//zz */
//zz if (a0ok && a1ok && a2ok && a3ok && a4ok && a5ok && a6ok && a7ok) {
//zz ULong vw = VGM_WORD64_INVALID;
//zz vw <<= 8; vw |= vb7;
//zz vw <<= 8; vw |= vb6;
//zz vw <<= 8; vw |= vb5;
//zz vw <<= 8; vw |= vb4;
//zz vw <<= 8; vw |= vb3;
//zz vw <<= 8; vw |= vb2;
//zz vw <<= 8; vw |= vb1;
//zz vw <<= 8; vw |= vb0;
//zz return vw;
//zz }
//zz
//zz /* Case 2: the address is completely invalid.
//zz - emit addressing error
//zz - return V word indicating validity.
//zz This sounds strange, but if we make loads from invalid addresses
//zz give invalid data, we also risk producing a number of confusing
//zz undefined-value errors later, which confuses the fact that the
//zz error arose in the first place from an invalid address.
//zz */
//zz /* VG_(printf)("%p (%d %d %d %d)\n", a, a0ok, a1ok, a2ok, a3ok); */
//zz if (!MAC_(clo_partial_loads_ok)
//zz || ((a & 7) != 0)
//zz || (!a0ok && !a1ok && !a2ok && !a3ok && !a4ok && !a5ok && !a6ok && !a7ok)) {
//zz MAC_(record_address_error)( VG_(get_running_tid)(), a, 8, False );
//zz return VGM_WORD64_VALID;
//zz }
//zz
//zz /* Case 3: the address is partially valid.
//zz - no addressing error
//zz - returned V word is invalid where the address is invalid,
//zz and contains V bytes from memory otherwise.
//zz Case 3 is only allowed if MC_(clo_partial_loads_ok) is True
//zz (which is the default), and the address is 4-aligned.
//zz If not, Case 2 will have applied.
//zz */
//zz tl_assert(MAC_(clo_partial_loads_ok));
//zz {
//zz ULong vw = VGM_WORD64_INVALID;
//zz vw <<= 8; vw |= (a7ok ? vb7 : VGM_BYTE_INVALID);
//zz vw <<= 8; vw |= (a6ok ? vb6 : VGM_BYTE_INVALID);
//zz vw <<= 8; vw |= (a5ok ? vb5 : VGM_BYTE_INVALID);
//zz vw <<= 8; vw |= (a4ok ? vb4 : VGM_BYTE_INVALID);
//zz vw <<= 8; vw |= (a3ok ? vb3 : VGM_BYTE_INVALID);
//zz vw <<= 8; vw |= (a2ok ? vb2 : VGM_BYTE_INVALID);
//zz vw <<= 8; vw |= (a1ok ? vb1 : VGM_BYTE_INVALID);
//zz vw <<= 8; vw |= (a0ok ? vb0 : VGM_BYTE_INVALID);
//zz return vw;
//zz }
//zz }
//zz
//zz static void mc_wr_V8_SLOWLY ( Addr a, ULong vbytes )
//zz {
//zz /* Check the address for validity. */
//zz Bool aerr = False;
//zz PROF_EVENT(71);
//zz
//zz if (get_abit(a+0) != VGM_BIT_VALID) aerr = True;
//zz if (get_abit(a+1) != VGM_BIT_VALID) aerr = True;
//zz if (get_abit(a+2) != VGM_BIT_VALID) aerr = True;
//zz if (get_abit(a+3) != VGM_BIT_VALID) aerr = True;
//zz if (get_abit(a+4) != VGM_BIT_VALID) aerr = True;
//zz if (get_abit(a+5) != VGM_BIT_VALID) aerr = True;
//zz if (get_abit(a+6) != VGM_BIT_VALID) aerr = True;
//zz if (get_abit(a+7) != VGM_BIT_VALID) aerr = True;
//zz
//zz /* Store the V bytes, remembering to do it little-endian-ly. */
//zz set_vbyte( a+0, vbytes & 0x000000FF ); vbytes >>= 8;
//zz set_vbyte( a+1, vbytes & 0x000000FF ); vbytes >>= 8;
//zz set_vbyte( a+2, vbytes & 0x000000FF ); vbytes >>= 8;
//zz set_vbyte( a+3, vbytes & 0x000000FF ); vbytes >>= 8;
//zz set_vbyte( a+4, vbytes & 0x000000FF ); vbytes >>= 8;
//zz set_vbyte( a+5, vbytes & 0x000000FF ); vbytes >>= 8;
//zz set_vbyte( a+6, vbytes & 0x000000FF ); vbytes >>= 8;
//zz set_vbyte( a+7, vbytes & 0x000000FF );
//zz
//zz /* If an address error has happened, report it. */
//zz if (aerr)
//zz MAC_(record_address_error)( VG_(get_running_tid)(), a, 8, True );
//zz }
//zz
//zz /* ------------------------ Size = 4 ------------------------ */
//zz
//zz static UInt mc_rd_V4_SLOWLY ( Addr a )
//zz {
//zz Bool a0ok, a1ok, a2ok, a3ok;
//zz UInt vb0, vb1, vb2, vb3;
//zz
//zz PROF_EVENT(70);
//zz
//zz /* First establish independently the addressibility of the 4 bytes
//zz involved. */
//zz a0ok = get_abit(a+0) == VGM_BIT_VALID;
//zz a1ok = get_abit(a+1) == VGM_BIT_VALID;
//zz a2ok = get_abit(a+2) == VGM_BIT_VALID;
//zz a3ok = get_abit(a+3) == VGM_BIT_VALID;
//zz
//zz /* Also get the validity bytes for the address. */
//zz vb0 = (UInt)get_vbyte(a+0);
//zz vb1 = (UInt)get_vbyte(a+1);
//zz vb2 = (UInt)get_vbyte(a+2);
//zz vb3 = (UInt)get_vbyte(a+3);
//zz
//zz /* Now distinguish 3 cases */
//zz
//zz /* Case 1: the address is completely valid, so:
//zz - no addressing error
//zz - return V bytes as read from memory
//zz */
//zz if (a0ok && a1ok && a2ok && a3ok) {
//zz UInt vw = VGM_WORD_INVALID;
//zz vw <<= 8; vw |= vb3;
//zz vw <<= 8; vw |= vb2;
//zz vw <<= 8; vw |= vb1;
//zz vw <<= 8; vw |= vb0;
//zz return vw;
//zz }
//zz
//zz /* Case 2: the address is completely invalid.
//zz - emit addressing error
//zz - return V word indicating validity.
//zz This sounds strange, but if we make loads from invalid addresses
//zz give invalid data, we also risk producing a number of confusing
//zz undefined-value errors later, which confuses the fact that the
//zz error arose in the first place from an invalid address.
//zz */
//zz /* VG_(printf)("%p (%d %d %d %d)\n", a, a0ok, a1ok, a2ok, a3ok); */
//zz if (!MAC_(clo_partial_loads_ok)
//zz || ((a & 3) != 0)
//zz || (!a0ok && !a1ok && !a2ok && !a3ok)) {
//zz MAC_(record_address_error)( VG_(get_running_tid)(), a, 4, False );
//zz return (VGM_BYTE_VALID << 24) | (VGM_BYTE_VALID << 16)
//zz | (VGM_BYTE_VALID << 8) | VGM_BYTE_VALID;
//zz }
//zz
//zz /* Case 3: the address is partially valid.
//zz - no addressing error
//zz - returned V word is invalid where the address is invalid,
//zz and contains V bytes from memory otherwise.
//zz Case 3 is only allowed if MC_(clo_partial_loads_ok) is True
//zz (which is the default), and the address is 4-aligned.
//zz If not, Case 2 will have applied.
//zz */
//zz tl_assert(MAC_(clo_partial_loads_ok));
//zz {
//zz UInt vw = VGM_WORD_INVALID;
//zz vw <<= 8; vw |= (a3ok ? vb3 : VGM_BYTE_INVALID);
//zz vw <<= 8; vw |= (a2ok ? vb2 : VGM_BYTE_INVALID);
//zz vw <<= 8; vw |= (a1ok ? vb1 : VGM_BYTE_INVALID);
//zz vw <<= 8; vw |= (a0ok ? vb0 : VGM_BYTE_INVALID);
//zz return vw;
//zz }
//zz }
//zz
//zz static void mc_wr_V4_SLOWLY ( Addr a, UInt vbytes )
//zz {
//zz /* Check the address for validity. */
//zz Bool aerr = False;
//zz PROF_EVENT(71);
//zz
//zz if (get_abit(a+0) != VGM_BIT_VALID) aerr = True;
//zz if (get_abit(a+1) != VGM_BIT_VALID) aerr = True;
//zz if (get_abit(a+2) != VGM_BIT_VALID) aerr = True;
//zz if (get_abit(a+3) != VGM_BIT_VALID) aerr = True;
//zz
//zz /* Store the V bytes, remembering to do it little-endian-ly. */
//zz set_vbyte( a+0, vbytes & 0x000000FF ); vbytes >>= 8;
//zz set_vbyte( a+1, vbytes & 0x000000FF ); vbytes >>= 8;
//zz set_vbyte( a+2, vbytes & 0x000000FF ); vbytes >>= 8;
//zz set_vbyte( a+3, vbytes & 0x000000FF );
//zz
//zz /* If an address error has happened, report it. */
//zz if (aerr)
//zz MAC_(record_address_error)( VG_(get_running_tid)(), a, 4, True );
//zz }
//zz
//zz /* ------------------------ Size = 2 ------------------------ */
//zz
//zz static UInt mc_rd_V2_SLOWLY ( Addr a )
//zz {
//zz /* Check the address for validity. */
//zz UInt vw = VGM_WORD_INVALID;
//zz Bool aerr = False;
//zz PROF_EVENT(72);
//zz
//zz if (get_abit(a+0) != VGM_BIT_VALID) aerr = True;
//zz if (get_abit(a+1) != VGM_BIT_VALID) aerr = True;
//zz
//zz /* Fetch the V bytes, remembering to do it little-endian-ly. */
//zz vw <<= 8; vw |= (UInt)get_vbyte(a+1);
//zz vw <<= 8; vw |= (UInt)get_vbyte(a+0);
//zz
//zz /* If an address error has happened, report it. */
//zz if (aerr) {
//zz MAC_(record_address_error)( VG_(get_running_tid)(), a, 2, False );
//zz vw = (VGM_BYTE_INVALID << 24) | (VGM_BYTE_INVALID << 16)
//zz | (VGM_BYTE_VALID << 8) | (VGM_BYTE_VALID);
//zz }
//zz return vw;
//zz }
//zz
//zz static void mc_wr_V2_SLOWLY ( Addr a, UInt vbytes )
//zz {
//zz /* Check the address for validity. */
//zz Bool aerr = False;
//zz PROF_EVENT(73);
//zz
//zz if (get_abit(a+0) != VGM_BIT_VALID) aerr = True;
//zz if (get_abit(a+1) != VGM_BIT_VALID) aerr = True;
//zz
//zz /* Store the V bytes, remembering to do it little-endian-ly. */
//zz set_vbyte( a+0, vbytes & 0x000000FF ); vbytes >>= 8;
//zz set_vbyte( a+1, vbytes & 0x000000FF );
//zz
//zz /* If an address error has happened, report it. */
//zz if (aerr)
//zz MAC_(record_address_error)( VG_(get_running_tid)(), a, 2, True );
//zz }
//zz
//zz /* ------------------------ Size = 1 ------------------------ */
//zz
//zz static UInt mc_rd_V1_SLOWLY ( Addr a )
//zz {
//zz /* Check the address for validity. */
//zz UInt vw = VGM_WORD_INVALID;
//zz Bool aerr = False;
//zz PROF_EVENT(74);
//zz
//zz if (get_abit(a+0) != VGM_BIT_VALID) aerr = True;
//zz
//zz /* Fetch the V byte. */
//zz vw <<= 8; vw |= (UInt)get_vbyte(a+0);
//zz
//zz /* If an address error has happened, report it. */
//zz if (aerr) {
//zz MAC_(record_address_error)( VG_(get_running_tid)(), a, 1, False );
//zz vw = (VGM_BYTE_INVALID << 24) | (VGM_BYTE_INVALID << 16)
//zz | (VGM_BYTE_INVALID << 8) | (VGM_BYTE_VALID);
//zz }
//zz return vw;
//zz }
//zz
//zz static void mc_wr_V1_SLOWLY ( Addr a, UInt vbytes )
//zz {
//zz /* Check the address for validity. */
//zz Bool aerr = False;
//zz PROF_EVENT(75);
//zz if (get_abit(a+0) != VGM_BIT_VALID) aerr = True;
//zz
//zz /* Store the V bytes, remembering to do it little-endian-ly. */
//zz set_vbyte( a+0, vbytes & 0x000000FF );
//zz
//zz /* If an address error has happened, report it. */
//zz if (aerr)
//zz MAC_(record_address_error)( VG_(get_running_tid)(), a, 1, True );
//zz }
/* ---------------------------------------------------------------------
Called from generated code, or from the assembly helpers.
Handlers for value check failures.
------------------------------------------------------------------ */
void MC_(helperc_value_check0_fail) ( void )
{
MC_(record_value_error) ( VG_(get_running_tid)(), 0 );
}
void MC_(helperc_value_check1_fail) ( void )
{
MC_(record_value_error) ( VG_(get_running_tid)(), 1 );
}
//zz void MC_(helperc_value_check2_fail) ( void )
//zz {
//zz MC_(record_value_error) ( VG_(get_running_tid)(), 2 );
//zz }
void MC_(helperc_value_check4_fail) ( void )
{
MC_(record_value_error) ( VG_(get_running_tid)(), 4 );
}
VGA_REGPARM(1) void MC_(helperc_complain_undef) ( HWord sz )
{
MC_(record_value_error) ( VG_(get_running_tid)(), (Int)sz );
}
//zz /*------------------------------------------------------------*/
//zz /*--- Metadata get/set functions, for client requests. ---*/
//zz /*------------------------------------------------------------*/
//zz
//zz /* Copy Vbits for src into vbits. Returns: 1 == OK, 2 == alignment
//zz error, 3 == addressing error. */
//zz static Int mc_get_or_set_vbits_for_client (
//zz ThreadId tid,
//zz Addr dataV,
//zz Addr vbitsV,
//zz SizeT size,
//zz Bool setting /* True <=> set vbits, False <=> get vbits */
//zz )
//zz {
//zz Bool addressibleD = True;
//zz Bool addressibleV = True;
//zz UInt* data = (UInt*)dataV;
//zz UInt* vbits = (UInt*)vbitsV;
//zz SizeT szW = size / 4; /* sigh */
//zz SizeT i;
//zz UInt* dataP = NULL; /* bogus init to keep gcc happy */
//zz UInt* vbitsP = NULL; /* ditto */
//zz
//zz /* Check alignment of args. */
//zz if (!(VG_IS_4_ALIGNED(data) && VG_IS_4_ALIGNED(vbits)))
//zz return 2;
//zz if ((size & 3) != 0)
//zz return 2;
//zz
//zz /* Check that arrays are addressible. */
//zz for (i = 0; i < szW; i++) {
//zz dataP = &data[i];
//zz vbitsP = &vbits[i];
//zz if (get_abits4_ALIGNED((Addr)dataP) != VGM_NIBBLE_VALID) {
//zz addressibleD = False;
//zz break;
//zz }
//zz if (get_abits4_ALIGNED((Addr)vbitsP) != VGM_NIBBLE_VALID) {
//zz addressibleV = False;
//zz break;
//zz }
//zz }
//zz if (!addressibleD) {
//zz MAC_(record_address_error)( tid, (Addr)dataP, 4,
//zz setting ? True : False );
//zz return 3;
//zz }
//zz if (!addressibleV) {
//zz MAC_(record_address_error)( tid, (Addr)vbitsP, 4,
//zz setting ? False : True );
//zz return 3;
//zz }
//zz
//zz /* Do the copy */
//zz if (setting) {
//zz /* setting */
//zz for (i = 0; i < szW; i++) {
//zz if (get_vbytes4_ALIGNED( (Addr)&vbits[i] ) != VGM_WORD_VALID)
//zz MC_(record_value_error)(tid, 4);
//zz set_vbytes4_ALIGNED( (Addr)&data[i], vbits[i] );
//zz }
//zz } else {
//zz /* getting */
//zz for (i = 0; i < szW; i++) {
//zz vbits[i] = get_vbytes4_ALIGNED( (Addr)&data[i] );
//zz set_vbytes4_ALIGNED( (Addr)&vbits[i], VGM_WORD_VALID );
//zz }
//zz }
//zz
//zz return 1;
//zz }
//zz
//zz
//zz /*------------------------------------------------------------*/
//zz /*--- Detecting leaked (unreachable) malloc'd blocks. ---*/
//zz /*------------------------------------------------------------*/
//zz
//zz /* For the memory leak detector, say whether an entire 64k chunk of
//zz address space is possibly in use, or not. If in doubt return
//zz True.
//zz */
//zz static
//zz Bool mc_is_valid_64k_chunk ( UInt chunk_number )
//zz {
//zz tl_assert(chunk_number >= 0 && chunk_number < PRIMARY_SIZE);
//zz if (primary_map[chunk_number] == DSM_NOTADDR) {
//zz /* Definitely not in use. */
//zz return False;
//zz } else {
//zz return True;
//zz }
//zz }
//zz
//zz
//zz /* For the memory leak detector, say whether or not a given word
//zz address is to be regarded as valid. */
//zz static
//zz Bool mc_is_valid_address ( Addr a )
//zz {
//zz UInt vbytes;
//zz UChar abits;
//zz tl_assert(VG_IS_4_ALIGNED(a));
//zz abits = get_abits4_ALIGNED(a);
//zz vbytes = get_vbytes4_ALIGNED(a);
//zz if (abits == VGM_NIBBLE_VALID && vbytes == VGM_WORD_VALID) {
//zz return True;
//zz } else {
//zz return False;
//zz }
//zz }
/* Leak detector for this tool. We don't actually do anything, merely
run the generic leak detector with suitable parameters for this
tool. */
static void mc_detect_memory_leaks ( ThreadId tid, LeakCheckMode mode )
{
VG_(printf)("memcheck: leak detection currently disabled\n");
// MAC_(do_detect_memory_leaks) (
// tid, mode, mc_is_valid_64k_chunk, mc_is_valid_address );
}
/* ---------------------------------------------------------------------
Sanity check machinery (permanently engaged).
------------------------------------------------------------------ */
Bool TL_(cheap_sanity_check) ( void )
{
/* nothing useful we can rapidly check */
n_sanity_cheap++;
PROF_EVENT(490, "cheap_sanity_check");
return True;
}
Bool TL_(expensive_sanity_check) ( void )
{
Int i, n_secmaps_found;
SecMap* sm;
Bool bad = False;
n_sanity_expensive++;
PROF_EVENT(491, "expensive_sanity_check");
/* Check that the 3 distinguished SMs are still as they should
be. */
/* Check A invalid, V invalid. */
sm = &sm_distinguished[SM_DIST_NOACCESS];
for (i = 0; i < 65536; i++)
if (!(sm->vbyte[i] == VGM_BYTE_INVALID))
bad = True;
for (i = 0; i < 8192; i++)
if (!(sm->abits[i] == VGM_BYTE_INVALID))
bad = True;
/* Check A valid, V invalid. */
sm = &sm_distinguished[SM_DIST_ACCESS_UNDEFINED];
for (i = 0; i < 65536; i++)
if (!(sm->vbyte[i] == VGM_BYTE_INVALID))
bad = True;
for (i = 0; i < 8192; i++)
if (!(sm->abits[i] == VGM_BYTE_VALID))
bad = True;
/* Check A valid, V valid. */
sm = &sm_distinguished[SM_DIST_ACCESS_DEFINED];
for (i = 0; i < 65536; i++)
if (!(sm->vbyte[i] == VGM_BYTE_VALID))
bad = True;
for (i = 0; i < 8192; i++)
if (!(sm->abits[i] == VGM_BYTE_VALID))
bad = True;
if (bad) {
VG_(printf)("memcheck expensive sanity: "
"distinguished_secondaries have changed\n");
return False;
}
/* check nonsensical auxmap sizing */
if (auxmap_used > auxmap_size)
bad = True;
if (bad) {
VG_(printf)("memcheck expensive sanity: "
"nonsensical auxmap sizing\n");
return False;
}
/* check that the number of secmaps issued matches the number that
are reachable (iow, no secmap leaks) */
n_secmaps_found = 0;
for (i = 0; i < N_PRIMARY_MAP; i++) {
if (primary_map[i] == NULL) {
bad = True;
} else {
if (!is_distinguished_sm(primary_map[i]))
n_secmaps_found++;
}
}
for (i = 0; i < auxmap_used; i++) {
if (auxmap[i].sm == NULL) {
bad = True;
} else {
if (!is_distinguished_sm(auxmap[i].sm))
n_secmaps_found++;
}
}
if (n_secmaps_found != n_secmaps_issued)
bad = True;
if (bad) {
VG_(printf)("memcheck expensive sanity: "
"apparent secmap leakage\n");
return False;
}
/* check that auxmap only covers address space that the primary
doesn't */
for (i = 0; i < auxmap_used; i++)
if (auxmap[i].base <= MAX_PRIMARY_ADDRESS)
bad = True;
if (bad) {
VG_(printf)("memcheck expensive sanity: "
"auxmap covers wrong address space\n");
return False;
}
/* there is only one pointer to each secmap (expensive) */
return True;
}
/////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////
/*------------------------------------------------------------*/
/*--- Command line args ---*/
/*------------------------------------------------------------*/
Bool MC_(clo_avoid_strlen_errors) = True;
Bool TL_(process_cmd_line_option)(Char* arg)
{
VG_BOOL_CLO(arg, "--avoid-strlen-errors", MC_(clo_avoid_strlen_errors))
else
return MAC_(process_common_cmd_line_option)(arg);
return True;
}
void TL_(print_usage)(void)
{
MAC_(print_common_usage)();
VG_(printf)(
" --avoid-strlen-errors=no|yes suppress errs from inlined strlen [yes]\n"
);
}
void TL_(print_debug_usage)(void)
{
MAC_(print_common_debug_usage)();
VG_(printf)(
" --cleanup=no|yes improve after instrumentation? [yes]\n"
);
}
/*------------------------------------------------------------*/
/*--- Client requests ---*/
/*------------------------------------------------------------*/
/* Client block management:
This is managed as an expanding array of client block descriptors.
Indices of live descriptors are issued to the client, so it can ask
to free them later. Therefore we cannot slide live entries down
over dead ones. Instead we must use free/inuse flags and scan for
an empty slot at allocation time. This in turn means allocation is
relatively expensive, so we hope this does not happen too often.
An unused block has start == size == 0
*/
typedef
struct {
Addr start;
SizeT size;
ExeContext* where;
Char* desc;
}
CGenBlock;
/* This subsystem is self-initialising. */
static UInt cgb_size = 0;
static UInt cgb_used = 0;
static CGenBlock* cgbs = NULL;
/* Stats for this subsystem. */
static UInt cgb_used_MAX = 0; /* Max in use. */
static UInt cgb_allocs = 0; /* Number of allocs. */
static UInt cgb_discards = 0; /* Number of discards. */
static UInt cgb_search = 0; /* Number of searches. */
static
Int alloc_client_block ( void )
{
UInt i, sz_new;
CGenBlock* cgbs_new;
cgb_allocs++;
for (i = 0; i < cgb_used; i++) {
cgb_search++;
if (cgbs[i].start == 0 && cgbs[i].size == 0)
return i;
}
/* Not found. Try to allocate one at the end. */
if (cgb_used < cgb_size) {
cgb_used++;
return cgb_used-1;
}
/* Ok, we have to allocate a new one. */
tl_assert(cgb_used == cgb_size);
sz_new = (cgbs == NULL) ? 10 : (2 * cgb_size);
cgbs_new = VG_(malloc)( sz_new * sizeof(CGenBlock) );
for (i = 0; i < cgb_used; i++)
cgbs_new[i] = cgbs[i];
if (cgbs != NULL)
VG_(free)( cgbs );
cgbs = cgbs_new;
cgb_size = sz_new;
cgb_used++;
if (cgb_used > cgb_used_MAX)
cgb_used_MAX = cgb_used;
return cgb_used-1;
}
static void show_client_block_stats ( void )
{
VG_(message)(Vg_DebugMsg,
"general CBs: %d allocs, %d discards, %d maxinuse, %d search",
cgb_allocs, cgb_discards, cgb_used_MAX, cgb_search
);
}
static Bool find_addr(VgHashNode* sh_ch, void* ap)
{
MAC_Chunk *m = (MAC_Chunk*)sh_ch;
Addr a = *(Addr*)ap;
return VG_(addr_is_in_block)(a, m->data, m->size);
}
static Bool client_perm_maybe_describe( Addr a, AddrInfo* ai )
{
UInt i;
/* VG_(printf)("try to identify %d\n", a); */
/* Perhaps it's a general block ? */
for (i = 0; i < cgb_used; i++) {
if (cgbs[i].start == 0 && cgbs[i].size == 0)
continue;
if (VG_(addr_is_in_block)(a, cgbs[i].start, cgbs[i].size)) {
MAC_Mempool **d, *mp;
/* OK - maybe it's a mempool, too? */
mp = (MAC_Mempool*)VG_(HT_get_node)(MAC_(mempool_list),
(UWord)cgbs[i].start,
(void*)&d);
if(mp != NULL) {
if(mp->chunks != NULL) {
MAC_Chunk *mc;
mc = (MAC_Chunk*)VG_(HT_first_match)(mp->chunks, find_addr, &a);
if(mc != NULL) {
ai->akind = UserG;
ai->blksize = mc->size;
ai->rwoffset = (Int)(a) - (Int)mc->data;
ai->lastchange = mc->where;
return True;
}
}
ai->akind = Mempool;
ai->blksize = cgbs[i].size;
ai->rwoffset = (Int)(a) - (Int)(cgbs[i].start);
ai->lastchange = cgbs[i].where;
return True;
}
ai->akind = UserG;
ai->blksize = cgbs[i].size;
ai->rwoffset = (Int)(a) - (Int)(cgbs[i].start);
ai->lastchange = cgbs[i].where;
ai->desc = cgbs[i].desc;
return True;
}
}
return False;
}
Bool TL_(handle_client_request) ( ThreadId tid, UWord* arg, UWord* ret )
{
Int i;
Bool ok;
Addr bad_addr;
if (!VG_IS_TOOL_USERREQ('M','C',arg[0])
&& VG_USERREQ__MALLOCLIKE_BLOCK != arg[0]
&& VG_USERREQ__FREELIKE_BLOCK != arg[0]
&& VG_USERREQ__CREATE_MEMPOOL != arg[0]
&& VG_USERREQ__DESTROY_MEMPOOL != arg[0]
&& VG_USERREQ__MEMPOOL_ALLOC != arg[0]
&& VG_USERREQ__MEMPOOL_FREE != arg[0])
return False;
switch (arg[0]) {
case VG_USERREQ__CHECK_WRITABLE: /* check writable */
ok = mc_check_writable ( arg[1], arg[2], &bad_addr );
if (!ok)
MC_(record_user_error) ( tid, bad_addr, /*isWrite*/True,
/*isUnaddr*/True );
*ret = ok ? (UWord)NULL : bad_addr;
break;
case VG_USERREQ__CHECK_READABLE: { /* check readable */
MC_ReadResult res;
res = mc_check_readable ( arg[1], arg[2], &bad_addr );
if (MC_AddrErr == res)
MC_(record_user_error) ( tid, bad_addr, /*isWrite*/False,
/*isUnaddr*/True );
else if (MC_ValueErr == res)
MC_(record_user_error) ( tid, bad_addr, /*isWrite*/False,
/*isUnaddr*/False );
*ret = ( res==MC_Ok ? (UWord)NULL : bad_addr );
break;
}
case VG_USERREQ__DO_LEAK_CHECK:
mc_detect_memory_leaks(tid, arg[1] ? LC_Summary : LC_Full);
*ret = 0; /* return value is meaningless */
break;
case VG_USERREQ__MAKE_NOACCESS: /* make no access */
mc_make_noaccess ( arg[1], arg[2] );
*ret = -1;
break;
case VG_USERREQ__MAKE_WRITABLE: /* make writable */
mc_make_writable ( arg[1], arg[2] );
*ret = -1;
break;
case VG_USERREQ__MAKE_READABLE: /* make readable */
mc_make_readable ( arg[1], arg[2] );
*ret = -1;
break;
case VG_USERREQ__CREATE_BLOCK: /* describe a block */
if (arg[1] != 0 && arg[2] != 0) {
i = alloc_client_block();
/* VG_(printf)("allocated %d %p\n", i, cgbs); */
cgbs[i].start = arg[1];
cgbs[i].size = arg[2];
cgbs[i].desc = VG_(strdup)((Char *)arg[3]);
cgbs[i].where = VG_(record_ExeContext) ( tid );
*ret = i;
} else
*ret = -1;
break;
case VG_USERREQ__DISCARD: /* discard */
if (cgbs == NULL
|| arg[2] >= cgb_used ||
(cgbs[arg[2]].start == 0 && cgbs[arg[2]].size == 0)) {
*ret = 1;
} else {
tl_assert(arg[2] >= 0 && arg[2] < cgb_used);
cgbs[arg[2]].start = cgbs[arg[2]].size = 0;
VG_(free)(cgbs[arg[2]].desc);
cgb_discards++;
*ret = 0;
}
break;
//zz case VG_USERREQ__GET_VBITS:
//zz /* Returns: 1 == OK, 2 == alignment error, 3 == addressing
//zz error. */
//zz /* VG_(printf)("get_vbits %p %p %d\n", arg[1], arg[2], arg[3] ); */
//zz *ret = mc_get_or_set_vbits_for_client
//zz ( tid, arg[1], arg[2], arg[3], False /* get them */ );
//zz break;
//zz
//zz case VG_USERREQ__SET_VBITS:
//zz /* Returns: 1 == OK, 2 == alignment error, 3 == addressing
//zz error. */
//zz /* VG_(printf)("set_vbits %p %p %d\n", arg[1], arg[2], arg[3] ); */
//zz *ret = mc_get_or_set_vbits_for_client
//zz ( tid, arg[1], arg[2], arg[3], True /* set them */ );
//zz break;
default:
if (MAC_(handle_common_client_requests)(tid, arg, ret )) {
return True;
} else {
VG_(message)(Vg_UserMsg,
"Warning: unknown memcheck client request code %llx",
(ULong)arg[0]);
return False;
}
}
return True;
}
/*------------------------------------------------------------*/
/*--- Setup ---*/
/*------------------------------------------------------------*/
void TL_(pre_clo_init)(void)
{
VG_(details_name) ("Memcheck");
VG_(details_version) (NULL);
VG_(details_description) ("a memory error detector");
VG_(details_copyright_author)(
"Copyright (C) 2002-2005, and GNU GPL'd, by Julian Seward et al.");
VG_(details_bug_reports_to) (VG_BUGS_TO);
VG_(details_avg_translation_sizeB) ( 370 );
VG_(basic_tool_funcs) (TL_(post_clo_init),
TL_(instrument),
TL_(fini));
VG_(needs_core_errors) ();
VG_(needs_tool_errors) (TL_(eq_Error),
TL_(pp_Error),
TL_(update_extra),
TL_(recognised_suppression),
TL_(read_extra_suppression_info),
TL_(error_matches_suppression),
TL_(get_error_name),
TL_(print_extra_suppression_info));
VG_(needs_libc_freeres) ();
VG_(needs_command_line_options)(TL_(process_cmd_line_option),
TL_(print_usage),
TL_(print_debug_usage));
VG_(needs_client_requests) (TL_(handle_client_request));
VG_(needs_sanity_checks) (TL_(cheap_sanity_check),
TL_(expensive_sanity_check));
VG_(needs_shadow_memory) ();
VG_(malloc_funcs) (TL_(malloc),
TL_(__builtin_new),
TL_(__builtin_vec_new),
TL_(memalign),
TL_(calloc),
TL_(free),
TL_(__builtin_delete),
TL_(__builtin_vec_delete),
TL_(realloc),
MALLOC_REDZONE_SZB );
MAC_( new_mem_heap) = & mc_new_mem_heap;
MAC_( ban_mem_heap) = & mc_make_noaccess;
MAC_(copy_mem_heap) = & mc_copy_address_range_state;
MAC_( die_mem_heap) = & mc_make_noaccess;
MAC_(check_noaccess) = & mc_check_noaccess;
VG_(init_new_mem_startup) ( & mc_new_mem_startup );
VG_(init_new_mem_stack_signal) ( & mc_make_writable );
VG_(init_new_mem_brk) ( & mc_make_writable );
VG_(init_new_mem_mmap) ( & mc_new_mem_mmap );
VG_(init_copy_mem_remap) ( & mc_copy_address_range_state );
VG_(init_die_mem_stack_signal) ( & mc_make_noaccess );
VG_(init_die_mem_brk) ( & mc_make_noaccess );
VG_(init_die_mem_munmap) ( & mc_make_noaccess );
VG_(init_new_mem_stack_4) ( & MAC_(new_mem_stack_4) );
VG_(init_new_mem_stack_8) ( & MAC_(new_mem_stack_8) );
VG_(init_new_mem_stack_12) ( & MAC_(new_mem_stack_12) );
VG_(init_new_mem_stack_16) ( & MAC_(new_mem_stack_16) );
VG_(init_new_mem_stack_32) ( & MAC_(new_mem_stack_32) );
VG_(init_new_mem_stack) ( & MAC_(new_mem_stack) );
VG_(init_die_mem_stack_4) ( & MAC_(die_mem_stack_4) );
VG_(init_die_mem_stack_8) ( & MAC_(die_mem_stack_8) );
VG_(init_die_mem_stack_12) ( & MAC_(die_mem_stack_12) );
VG_(init_die_mem_stack_16) ( & MAC_(die_mem_stack_16) );
VG_(init_die_mem_stack_32) ( & MAC_(die_mem_stack_32) );
VG_(init_die_mem_stack) ( & MAC_(die_mem_stack) );
VG_(init_ban_mem_stack) ( & mc_make_noaccess );
VG_(init_pre_mem_read) ( & mc_check_is_readable );
VG_(init_pre_mem_read_asciiz) ( & mc_check_is_readable_asciiz );
VG_(init_pre_mem_write) ( & mc_check_is_writable );
VG_(init_post_mem_write) ( & mc_post_mem_write );
VG_(init_pre_reg_read) ( & mc_pre_reg_read );
VG_(init_post_reg_write) ( & mc_post_reg_write );
VG_(init_post_reg_write_clientcall_return) ( & mc_post_reg_write_clientcall );
VG_(register_profile_event) ( VgpSetMem, "set-mem-perms" );
VG_(register_profile_event) ( VgpCheckMem, "check-mem-perms" );
VG_(register_profile_event) ( VgpESPAdj, "adjust-ESP" );
/* Additional block description for VG_(describe_addr)() */
MAC_(describe_addr_supp) = client_perm_maybe_describe;
init_shadow_memory();
MAC_(common_pre_clo_init)();
tl_assert( TL_(expensive_sanity_check)() );
}
void TL_(post_clo_init) ( void )
{
}
void TL_(fini) ( Int exitcode )
{
MAC_(common_fini)( mc_detect_memory_leaks );
Int i, n_accessible_dist;
SecMap* sm;
if (VG_(clo_verbosity) > 1) {
VG_(message)(Vg_DebugMsg,
" memcheck: sanity checks: %d cheap, %d expensive",
n_sanity_cheap, n_sanity_expensive );
VG_(message)(Vg_DebugMsg,
" memcheck: auxmaps: %d auxmap entries (%dk, %dM) in use",
auxmap_used,
auxmap_used * 64,
auxmap_used / 16 );
VG_(message)(Vg_DebugMsg,
" memcheck: auxmaps: %lld searches, %lld comparisons",
n_auxmap_searches, n_auxmap_cmps );
VG_(message)(Vg_DebugMsg,
" memcheck: secondaries: %d issued (%dk, %dM)",
n_secmaps_issued,
n_secmaps_issued * 64,
n_secmaps_issued / 16 );
n_accessible_dist = 0;
for (i = 0; i < N_PRIMARY_MAP; i++) {
sm = primary_map[i];
if (is_distinguished_sm(sm)
&& sm != &sm_distinguished[SM_DIST_NOACCESS])
n_accessible_dist ++;
}
for (i = 0; i < auxmap_used; i++) {
sm = auxmap[i].sm;
if (is_distinguished_sm(sm)
&& sm != &sm_distinguished[SM_DIST_NOACCESS])
n_accessible_dist ++;
}
VG_(message)(Vg_DebugMsg,
" memcheck: secondaries: %d accessible and distinguished (%dk, %dM)",
n_accessible_dist,
n_accessible_dist * 64,
n_accessible_dist / 16 );
}
if (0) {
VG_(message)(Vg_DebugMsg,
"------ Valgrind's client block stats follow ---------------" );
show_client_block_stats();
}
}
VG_DETERMINE_INTERFACE_VERSION(TL_(pre_clo_init), 9./8)
/*--------------------------------------------------------------------*/
/*--- end mc_main.c ---*/
/*--------------------------------------------------------------------*/