| //--------------------------------------------------------------------*/ |
| //--- Massif: a heap profiling tool. ms_main.c ---*/ |
| //--------------------------------------------------------------------*/ |
| |
| /* |
| This file is part of Massif, a Valgrind tool for profiling memory |
| usage of programs. |
| |
| Copyright (C) 2003-2008 Nicholas Nethercote |
| njn@valgrind.org |
| |
| This program is free software; you can redistribute it and/or |
| modify it under the terms of the GNU General Public License as |
| published by the Free Software Foundation; either version 2 of the |
| License, or (at your option) any later version. |
| |
| This program is distributed in the hope that it will be useful, but |
| WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with this program; if not, write to the Free Software |
| Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA |
| 02111-1307, USA. |
| |
| The GNU General Public License is contained in the file COPYING. |
| */ |
| |
| //--------------------------------------------------------------------------- |
| // XXX: |
| //--------------------------------------------------------------------------- |
| // Todo -- nice, but less critical: |
| // - do a graph-drawing test |
| // - make file format more generic. Obstacles: |
| // - unit prefixes are not generic |
| // - preset column widths for stats are not generic |
| // - preset column headers are not generic |
| // - "Massif arguments:" line is not generic |
| // - do snapshots on client requests |
| // - (Michael Meeks): have an interactive way to request a dump |
| // (callgrind_control-style) |
| // - "profile now" |
| // - "show me the extra allocations since the last snapshot" |
| // - "start/stop logging" (eg. quickly skip boring bits) |
| // - Add ability to draw multiple graphs, eg. heap-only, stack-only, total. |
| // Give each graph a title. (try to do it generically!) |
| // - allow truncation of long fnnames if the exact line number is |
| // identified? [hmm, could make getting the name of alloc-fns more |
| // difficult] [could dump full names to file, truncate in ms_print] |
| // - make --show-below-main=no work |
| // - Options like --alloc-fn='operator new(unsigned, std::nothrow_t const&)' |
| // don't work in a .valgrindrc file or in $VALGRIND_OPTS. |
| // m_commandline.c:add_args_from_string() needs to respect single quotes. |
| // - With --stack=yes, want to add a stack trace for detailed snapshots so |
| // it's clear where/why the peak is occurring. (Mattieu Castet) Also, |
| // possibly useful even with --stack=no? (Andi Yin) |
| // |
| // Performance: |
| // - To run the benchmarks: |
| // |
| // perl perf/vg_perf --tools=massif --reps=3 perf/{heap,tinycc} massif |
| // time valgrind --tool=massif --depth=100 konqueror |
| // |
| // The other benchmarks don't do much allocation, and so give similar speeds |
| // to Nulgrind. |
| // |
| // Timing results on 'nevermore' (njn's machine) as of r7013: |
| // |
| // heap 0.53s ma:12.4s (23.5x, -----) |
| // tinycc 0.46s ma: 4.9s (10.7x, -----) |
| // many-xpts 0.08s ma: 2.0s (25.0x, -----) |
| // konqueror 29.6s real 0:21.0s user |
| // |
| // [Introduction of --time-unit=i as the default slowed things down by |
| // roughly 0--20%.] |
| // |
| // - get_XCon accounts for about 9% of konqueror startup time. Try |
| // keeping XPt children sorted by 'ip' and use binary search in get_XCon. |
| // Requires factoring out binary search code from various places into a |
| // VG_(bsearch) function. |
| // |
| // Todo -- low priority: |
| // - In each XPt, record both bytes and the number of allocations, and |
| // possibly the global number of allocations. |
| // - (Andy Lin) Give a stack trace on detailed snapshots? |
| // - (Artur Wisz) add a feature to Massif to ignore any heap blocks larger |
| // than a certain size! Because: "linux's malloc allows to set a |
| // MMAP_THRESHOLD value, so we set it to 4096 - all blocks above that will |
| // be handled directly by the kernel, and are guaranteed to be returned to |
| // the system when freed. So we needed to profile only blocks below this |
| // limit." |
| // |
| // File format working notes: |
| |
| #if 0 |
| desc: --heap-admin=foo |
| cmd: date |
| time_unit: ms |
| #----------- |
| snapshot=0 |
| #----------- |
| time=0 |
| mem_heap_B=0 |
| mem_heap_admin_B=0 |
| mem_stacks_B=0 |
| heap_tree=empty |
| #----------- |
| snapshot=1 |
| #----------- |
| time=353 |
| mem_heap_B=5 |
| mem_heap_admin_B=0 |
| mem_stacks_B=0 |
| heap_tree=detailed |
| n1: 5 (heap allocation functions) malloc/new/new[], --alloc-fns, etc. |
| n1: 5 0x27F6E0: _nl_normalize_codeset (in /lib/libc-2.3.5.so) |
| n1: 5 0x279DE6: _nl_load_locale_from_archive (in /lib/libc-2.3.5.so) |
| n1: 5 0x278E97: _nl_find_locale (in /lib/libc-2.3.5.so) |
| n1: 5 0x278871: setlocale (in /lib/libc-2.3.5.so) |
| n1: 5 0x8049821: (within /bin/date) |
| n0: 5 0x26ED5E: (below main) (in /lib/libc-2.3.5.so) |
| |
| |
| n_events: n time(ms) total(B) useful-heap(B) admin-heap(B) stacks(B) |
| t_events: B |
| n 0 0 0 0 0 |
| n 0 0 0 0 0 |
| t1: 5 <string...> |
| t1: 6 <string...> |
| |
| Ideas: |
| - each snapshot specifies an x-axis value and one or more y-axis values. |
| - can display the y-axis values separately if you like |
| - can completely separate connection between snapshots and trees. |
| |
| Challenges: |
| - how to specify and scale/abbreviate units on axes? |
| - how to combine multiple values into the y-axis? |
| |
| --------------------------------------------------------------------------------Command: date |
| Massif arguments: --heap-admin=foo |
| ms_print arguments: massif.out |
| -------------------------------------------------------------------------------- |
| KB |
| 6.472^ :# |
| | :# :: . . |
| ... |
| | ::@ :@ :@ :@:::# :: : :::: |
| 0 +-----------------------------------@---@---@-----@--@---#-------------->ms 0 713 |
| |
| Number of snapshots: 50 |
| Detailed snapshots: [2, 11, 13, 19, 25, 32 (peak)] |
| -------------------------------------------------------------------------------- n time(ms) total(B) useful-heap(B) admin-heap(B) stacks(B) |
| -------------------------------------------------------------------------------- 0 0 0 0 0 0 |
| 1 345 5 5 0 0 |
| 2 353 5 5 0 0 |
| 100.00% (5B) (heap allocation functions) malloc/new/new[], --alloc-fns, etc. |
| ->100.00% (5B) 0x27F6E0: _nl_normalize_codeset (in /lib/libc-2.3.5.so) |
| #endif |
| |
| //--------------------------------------------------------------------------- |
| |
| #include "pub_tool_basics.h" |
| #include "pub_tool_vki.h" |
| #include "pub_tool_aspacemgr.h" |
| #include "pub_tool_debuginfo.h" |
| #include "pub_tool_hashtable.h" |
| #include "pub_tool_libcbase.h" |
| #include "pub_tool_libcassert.h" |
| #include "pub_tool_libcfile.h" |
| #include "pub_tool_libcprint.h" |
| #include "pub_tool_libcproc.h" |
| #include "pub_tool_machine.h" |
| #include "pub_tool_mallocfree.h" |
| #include "pub_tool_options.h" |
| #include "pub_tool_replacemalloc.h" |
| #include "pub_tool_stacktrace.h" |
| #include "pub_tool_tooliface.h" |
| #include "pub_tool_xarray.h" |
| #include "pub_tool_clientstate.h" |
| |
| #include "valgrind.h" // For {MALLOC,FREE}LIKE_BLOCK |
| |
| //------------------------------------------------------------*/ |
| //--- Overview of operation ---*/ |
| //------------------------------------------------------------*/ |
| |
| // The size of the stacks and heap is tracked. The heap is tracked in a lot |
| // of detail, enough to tell how many bytes each line of code is responsible |
| // for, more or less. The main data structure is a tree representing the |
| // call tree beneath all the allocation functions like malloc(). |
| // |
| // "Snapshots" are recordings of the memory usage. There are two basic |
| // kinds: |
| // - Normal: these record the current time, total memory size, total heap |
| // size, heap admin size and stack size. |
| // - Detailed: these record those things in a normal snapshot, plus a very |
| // detailed XTree (see below) indicating how the heap is structured. |
| // |
| // Snapshots are taken every so often. There are two storage classes of |
| // snapshots: |
| // - Temporary: Massif does a temporary snapshot every so often. The idea |
| // is to always have a certain number of temporary snapshots around. So |
| // we take them frequently to begin with, but decreasingly often as the |
| // program continues to run. Also, we remove some old ones after a while. |
| // Overall it's a kind of exponential decay thing. Most of these are |
| // normal snapshots, a small fraction are detailed snapshots. |
| // - Permanent: Massif takes a permanent (detailed) snapshot in some |
| // circumstances. They are: |
| // - Peak snapshot: When the memory usage peak is reached, it takes a |
| // snapshot. It keeps this, unless the peak is subsequently exceeded, |
| // in which case it will overwrite the peak snapshot. |
| // - User-requested snapshots: These are done in response to client |
| // requests. They are always kept. |
| |
| // Used for printing things when clo_verbosity > 1. |
| #define VERB(verb, format, args...) \ |
| if (VG_(clo_verbosity) > verb) { \ |
| VG_(message)(Vg_DebugMsg, "Massif: " format, ##args); \ |
| } |
| |
| |
| |
| //------------------------------------------------------------// |
| //--- Statistics ---// |
| //------------------------------------------------------------// |
| |
| // Konqueror startup, to give an idea of the numbers involved with a biggish |
| // program, with default depth: |
| // |
| // depth=3 depth=40 |
| // - 310,000 allocations |
| // - 300,000 frees |
| // - 15,000 XPts 800,000 XPts |
| // - 1,800 top-XPts |
| |
| static UInt n_heap_allocs = 0; |
| static UInt n_heap_reallocs = 0; |
| static UInt n_heap_frees = 0; |
| static UInt n_stack_allocs = 0; |
| static UInt n_stack_frees = 0; |
| static UInt n_xpts = 0; |
| static UInt n_xpt_init_expansions = 0; |
| static UInt n_xpt_later_expansions = 0; |
| static UInt n_sxpt_allocs = 0; |
| static UInt n_sxpt_frees = 0; |
| static UInt n_skipped_snapshots = 0; |
| static UInt n_real_snapshots = 0; |
| static UInt n_detailed_snapshots = 0; |
| static UInt n_peak_snapshots = 0; |
| static UInt n_cullings = 0; |
| static UInt n_XCon_redos = 0; |
| |
| //------------------------------------------------------------// |
| //--- Globals ---// |
| //------------------------------------------------------------// |
| |
| // Number of guest instructions executed so far. Only used with |
| // --time-unit=i. |
| static Long guest_instrs_executed = 0; |
| |
| static SizeT heap_szB = 0; // Live heap size |
| static SizeT heap_extra_szB = 0; // Live heap extra size -- slop + admin bytes |
| static SizeT stacks_szB = 0; // Live stacks size |
| |
| // This is the total size from the current peak snapshot, or 0 if no peak |
| // snapshot has been taken yet. |
| static SizeT peak_snapshot_total_szB = 0; |
| |
| // Incremented every time memory is allocated/deallocated, by the |
| // allocated/deallocated amount; includes heap, heap-admin and stack |
| // memory. An alternative to milliseconds as a unit of program "time". |
| static ULong total_allocs_deallocs_szB = 0; |
| |
| // We don't start taking snapshots until the first basic block is executed, |
| // rather than doing it in ms_post_clo_init (which is the obvious spot), for |
| // two reasons. |
| // - It lets us ignore stack events prior to that, because they're not |
| // really proper ones and just would screw things up. |
| // - Because there's still some core initialisation to do, and so there |
| // would be an artificial time gap between the first and second snapshots. |
| // |
| static Bool have_started_executing_code = False; |
| |
| //------------------------------------------------------------// |
| //--- Alloc fns ---// |
| //------------------------------------------------------------// |
| |
| static XArray* alloc_fns; |
| |
| static void init_alloc_fns(void) |
| { |
| // Create the list, and add the default elements. |
| alloc_fns = VG_(newXA)(VG_(malloc), VG_(free), sizeof(Char*)); |
| #define DO(x) { Char* s = x; VG_(addToXA)(alloc_fns, &s); } |
| |
| // Ordered according to (presumed) frequency. |
| // Nb: The C++ "operator new*" ones are overloadable. We include them |
| // always anyway, because even if they're overloaded, it would be a |
| // prodigiously stupid overloading that caused them to not allocate |
| // memory. |
| DO("malloc" ); |
| DO("__builtin_new" ); |
| DO("operator new(unsigned)" ); |
| DO("operator new(unsigned long)" ); |
| DO("__builtin_vec_new" ); |
| DO("operator new[](unsigned)" ); |
| DO("operator new[](unsigned long)" ); |
| DO("calloc" ); |
| DO("realloc" ); |
| DO("memalign" ); |
| DO("operator new(unsigned, std::nothrow_t const&)" ); |
| DO("operator new[](unsigned, std::nothrow_t const&)" ); |
| DO("operator new(unsigned long, std::nothrow_t const&)" ); |
| DO("operator new[](unsigned long, std::nothrow_t const&)"); |
| } |
| |
| static Bool is_alloc_fn(Char* fnname) |
| { |
| Char** alloc_fn_ptr; |
| Int i; |
| |
| // Nb: It's a linear search through the list, because we're comparing |
| // strings rather than pointers to strings. |
| // Nb: This gets called a lot. It was an OSet, but they're quite slow to |
| // iterate through so it wasn't a good choice. |
| for (i = 0; i < VG_(sizeXA)(alloc_fns); i++) { |
| alloc_fn_ptr = VG_(indexXA)(alloc_fns, i); |
| if (VG_STREQ(fnname, *alloc_fn_ptr)) |
| return True; |
| } |
| return False; |
| } |
| |
| |
| //------------------------------------------------------------// |
| //--- Command line args ---// |
| //------------------------------------------------------------// |
| |
| #define MAX_DEPTH 200 |
| |
| typedef enum { TimeI, TimeMS, TimeB } TimeUnit; |
| |
| static Char* TimeUnit_to_string(TimeUnit time_unit) |
| { |
| switch (time_unit) { |
| case TimeI: return "i"; |
| case TimeMS: return "ms"; |
| case TimeB: return "B"; |
| default: tl_assert2(0, "TimeUnit_to_string: unrecognised TimeUnit"); |
| } |
| } |
| |
| static Bool clo_heap = True; |
| // clo_heap_admin is deliberately a word-sized type. At one point it was |
| // a UInt, but this caused problems on 64-bit machines when it was |
| // multiplied by a small negative number and then promoted to a |
| // word-sized type -- it ended up with a value of 4.2 billion. Sigh. |
| static SizeT clo_heap_admin = 8; |
| static Bool clo_stacks = False; |
| static UInt clo_depth = 30; |
| static double clo_threshold = 1.0; // percentage |
| static double clo_peak_inaccuracy = 1.0; // percentage |
| static UInt clo_time_unit = TimeI; |
| static UInt clo_detailed_freq = 10; |
| static UInt clo_max_snapshots = 100; |
| static Char* clo_massif_out_file = "massif.out.%p"; |
| |
| static XArray* args_for_massif; |
| |
| static Bool ms_process_cmd_line_option(Char* arg) |
| { |
| // Remember the arg for later use. |
| VG_(addToXA)(args_for_massif, &arg); |
| |
| VG_BOOL_CLO(arg, "--heap", clo_heap) |
| else VG_BOOL_CLO(arg, "--stacks", clo_stacks) |
| |
| else VG_NUM_CLO(arg, "--heap-admin", clo_heap_admin) |
| else VG_NUM_CLO(arg, "--depth", clo_depth) |
| |
| else VG_DBL_CLO(arg, "--threshold", clo_threshold) |
| |
| else VG_DBL_CLO(arg, "--peak-inaccuracy", clo_peak_inaccuracy) |
| |
| else VG_NUM_CLO(arg, "--detailed-freq", clo_detailed_freq) |
| else VG_NUM_CLO(arg, "--max-snapshots", clo_max_snapshots) |
| |
| else if (VG_CLO_STREQ(arg, "--time-unit=i")) clo_time_unit = TimeI; |
| else if (VG_CLO_STREQ(arg, "--time-unit=ms")) clo_time_unit = TimeMS; |
| else if (VG_CLO_STREQ(arg, "--time-unit=B")) clo_time_unit = TimeB; |
| |
| else if (VG_CLO_STREQN(11, arg, "--alloc-fn=")) { |
| Char* alloc_fn = &arg[11]; |
| VG_(addToXA)(alloc_fns, &alloc_fn); |
| } |
| |
| else if (VG_CLO_STREQN(14, arg, "--massif-out-file=")) { |
| clo_massif_out_file = &arg[18]; |
| } |
| |
| else |
| return VG_(replacement_malloc_process_cmd_line_option)(arg); |
| |
| return True; |
| } |
| |
| static void ms_print_usage(void) |
| { |
| VG_(printf)( |
| " --heap=no|yes profile heap blocks [yes]\n" |
| " --heap-admin=<number> average admin bytes per heap block;\n" |
| " ignored if --heap=no [8]\n" |
| " --stacks=no|yes profile stack(s) [no]\n" |
| " --depth=<number> depth of contexts [30]\n" |
| " --alloc-fn=<name> specify <fn> as an alloc function [empty]\n" |
| " --threshold=<m.n> significance threshold, as a percentage [1.0]\n" |
| " --peak-inaccuracy=<m.n> maximum peak inaccuracy, as a percentage [1.0]\n" |
| " --time-unit=i|ms|B time unit: instructions executed, milliseconds\n" |
| " or heap bytes alloc'd/dealloc'd [i]\n" |
| " --detailed-freq=<N> every Nth snapshot should be detailed [10]\n" |
| " --max-snapshots=<N> maximum number of snapshots recorded [100]\n" |
| " --massif-out-file=<file> output file name [massif.out.%%p]\n" |
| ); |
| VG_(replacement_malloc_print_usage)(); |
| } |
| |
| static void ms_print_debug_usage(void) |
| { |
| VG_(replacement_malloc_print_debug_usage)(); |
| } |
| |
| |
| //------------------------------------------------------------// |
| //--- XPts, XTrees and XCons ---// |
| //------------------------------------------------------------// |
| |
| // An XPt represents an "execution point", ie. a code address. Each XPt is |
| // part of a tree of XPts (an "execution tree", or "XTree"). The details of |
| // the heap are represented by a single XTree. |
| // |
| // The root of the tree is 'alloc_xpt', which represents all allocation |
| // functions, eg: |
| // - malloc/calloc/realloc/memalign/new/new[]; |
| // - user-specified allocation functions (using --alloc-fn); |
| // - custom allocation (MALLOCLIKE) points |
| // It's a bit of a fake XPt (ie. its 'ip' is zero), and is only used because |
| // it makes the code simpler. |
| // |
| // Any child of 'alloc_xpt' is called a "top-XPt". The XPts at the bottom |
| // of an XTree (leaf nodes) are "bottom-XPTs". |
| // |
| // Each path from a top-XPt to a bottom-XPt through an XTree gives an |
| // execution context ("XCon"), ie. a stack trace. (And sub-paths represent |
| // stack sub-traces.) The number of XCons in an XTree is equal to the |
| // number of bottom-XPTs in that XTree. |
| // |
| // alloc_xpt XTrees are bi-directional. |
| // | ^ |
| // v | |
| // > parent < Example: if child1() calls parent() and child2() |
| // / | \ also calls parent(), and parent() calls malloc(), |
| // | / \ | the XTree will look like this. |
| // | v v | |
| // child1 child2 |
| // |
| // (Note that malformed stack traces can lead to difficulties. See the |
| // comment at the bottom of get_XCon.) |
| // |
| // XTrees and XPts are mirrored by SXTrees and SXPts, where the 'S' is short |
| // for "saved". When the XTree is duplicated for a snapshot, we duplicate |
| // it as an SXTree, which is similar but omits some things it does not need, |
| // and aggregates up insignificant nodes. This is important as an SXTree is |
| // typically much smaller than an XTree. |
| |
| // XXX: make XPt and SXPt extensible arrays, to avoid having to do two |
| // allocations per Pt. |
| |
| typedef struct _XPt XPt; |
| struct _XPt { |
| Addr ip; // code address |
| |
| // Bottom-XPts: space for the precise context. |
| // Other XPts: space of all the descendent bottom-XPts. |
| // Nb: this value goes up and down as the program executes. |
| SizeT szB; |
| |
| XPt* parent; // pointer to parent XPt |
| |
| // Children. |
| // n_children and max_children are 32-bit integers. 16-bit integers |
| // are too small -- a very big program might have more than 65536 |
| // allocation points (ie. top-XPts) -- Konqueror starting up has 1800. |
| UInt n_children; // number of children |
| UInt max_children; // capacity of children array |
| XPt** children; // pointers to children XPts |
| }; |
| |
| typedef |
| enum { |
| SigSXPt, |
| InsigSXPt |
| } |
| SXPtTag; |
| |
| typedef struct _SXPt SXPt; |
| struct _SXPt { |
| SXPtTag tag; |
| SizeT szB; // memory size for the node, be it Sig or Insig |
| union { |
| // An SXPt representing a single significant code location. Much like |
| // an XPt, minus the fields that aren't necessary. |
| struct { |
| Addr ip; |
| UInt n_children; |
| SXPt** children; |
| } |
| Sig; |
| |
| // An SXPt representing one or more code locations, all below the |
| // significance threshold. |
| struct { |
| Int n_xpts; // number of aggregated XPts |
| } |
| Insig; |
| }; |
| }; |
| |
| // Fake XPt representing all allocation functions like malloc(). Acts as |
| // parent node to all top-XPts. |
| static XPt* alloc_xpt; |
| |
| // Cheap allocation for blocks that never need to be freed. Saves about 10% |
| // for Konqueror startup with --depth=40. |
| static void* perm_malloc(SizeT n_bytes) |
| { |
| static Addr hp = 0; // current heap pointer |
| static Addr hp_lim = 0; // maximum usable byte in current block |
| |
| #define SUPERBLOCK_SIZE (1 << 20) // 1 MB |
| |
| if (hp + n_bytes > hp_lim) { |
| hp = (Addr)VG_(am_shadow_alloc)(SUPERBLOCK_SIZE); |
| if (hp == 0) |
| VG_(out_of_memory_NORETURN)( "massif:perm_malloc", |
| SUPERBLOCK_SIZE); |
| hp_lim = hp + SUPERBLOCK_SIZE - 1; |
| } |
| |
| hp += n_bytes; |
| |
| return (void*)(hp - n_bytes); |
| } |
| |
| static XPt* new_XPt(Addr ip, XPt* parent) |
| { |
| // XPts are never freed, so we can use perm_malloc to allocate them. |
| // Note that we cannot use perm_malloc for the 'children' array, because |
| // that needs to be resizable. |
| XPt* xpt = perm_malloc(sizeof(XPt)); |
| xpt->ip = ip; |
| xpt->szB = 0; |
| xpt->parent = parent; |
| |
| // We don't initially allocate any space for children. We let that |
| // happen on demand. Many XPts (ie. all the bottom-XPts) don't have any |
| // children anyway. |
| xpt->n_children = 0; |
| xpt->max_children = 0; |
| xpt->children = NULL; |
| |
| // Update statistics |
| n_xpts++; |
| |
| return xpt; |
| } |
| |
| static void add_child_xpt(XPt* parent, XPt* child) |
| { |
| // Expand 'children' if necessary. |
| tl_assert(parent->n_children <= parent->max_children); |
| if (parent->n_children == parent->max_children) { |
| if (parent->max_children == 0) { |
| parent->max_children = 4; |
| parent->children = VG_(malloc)( parent->max_children * sizeof(XPt*) ); |
| n_xpt_init_expansions++; |
| } else { |
| parent->max_children *= 2; // Double size |
| parent->children = VG_(realloc)( parent->children, |
| parent->max_children * sizeof(XPt*) ); |
| n_xpt_later_expansions++; |
| } |
| } |
| |
| // Insert new child XPt in parent's children list. |
| parent->children[ parent->n_children++ ] = child; |
| } |
| |
| // Reverse comparison for a reverse sort -- biggest to smallest. |
| static Int SXPt_revcmp_szB(void* n1, void* n2) |
| { |
| SXPt* sxpt1 = *(SXPt**)n1; |
| SXPt* sxpt2 = *(SXPt**)n2; |
| return ( sxpt1->szB < sxpt2->szB ? 1 |
| : sxpt1->szB > sxpt2->szB ? -1 |
| : 0); |
| } |
| |
| //------------------------------------------------------------// |
| //--- XTree Operations ---// |
| //------------------------------------------------------------// |
| |
| // Duplicates an XTree as an SXTree. |
| static SXPt* dup_XTree(XPt* xpt, SizeT total_szB) |
| { |
| Int i, n_sig_children, n_insig_children, n_child_sxpts; |
| SizeT sig_child_threshold_szB; |
| SXPt* sxpt; |
| |
| // Number of XPt children Action for SXPT |
| // ------------------ --------------- |
| // 0 sig, 0 insig alloc 0 children |
| // N sig, 0 insig alloc N children, dup all |
| // N sig, M insig alloc N+1, dup first N, aggregate remaining M |
| // 0 sig, M insig alloc 1, aggregate M |
| |
| // Work out how big a child must be to be significant. If the current |
| // total_szB is zero, then we set it to 1, which means everything will be |
| // judged insignificant -- this is sensible, as there's no point showing |
| // any detail for this case. Unless they used --threshold=0, in which |
| // case we show them everything because that's what they asked for. |
| // |
| // Nb: We do this once now, rather than once per child, because if we do |
| // that the cost of all the divisions adds up to something significant. |
| if (total_szB == 0 && clo_threshold != 0) { |
| sig_child_threshold_szB = 1; |
| } else { |
| sig_child_threshold_szB = (SizeT)((total_szB * clo_threshold) / 100); |
| } |
| |
| // How many children are significant? And do we need an aggregate SXPt? |
| n_sig_children = 0; |
| for (i = 0; i < xpt->n_children; i++) { |
| if (xpt->children[i]->szB >= sig_child_threshold_szB) { |
| n_sig_children++; |
| } |
| } |
| n_insig_children = xpt->n_children - n_sig_children; |
| n_child_sxpts = n_sig_children + ( n_insig_children > 0 ? 1 : 0 ); |
| |
| // Duplicate the XPt. |
| sxpt = VG_(malloc)(sizeof(SXPt)); |
| n_sxpt_allocs++; |
| sxpt->tag = SigSXPt; |
| sxpt->szB = xpt->szB; |
| sxpt->Sig.ip = xpt->ip; |
| sxpt->Sig.n_children = n_child_sxpts; |
| |
| // Create the SXPt's children. |
| if (n_child_sxpts > 0) { |
| Int j; |
| SizeT sig_children_szB = 0, insig_children_szB = 0; |
| sxpt->Sig.children = VG_(malloc)(n_child_sxpts * sizeof(SXPt*)); |
| |
| // Duplicate the significant children. (Nb: sig_children_szB + |
| // insig_children_szB doesn't necessarily equal xpt->szB.) |
| j = 0; |
| for (i = 0; i < xpt->n_children; i++) { |
| if (xpt->children[i]->szB >= sig_child_threshold_szB) { |
| sxpt->Sig.children[j++] = dup_XTree(xpt->children[i], total_szB); |
| sig_children_szB += xpt->children[i]->szB; |
| } else { |
| insig_children_szB += xpt->children[i]->szB; |
| } |
| } |
| |
| // Create the SXPt for the insignificant children, if any, and put it |
| // in the last child entry. |
| if (n_insig_children > 0) { |
| // Nb: We 'n_sxpt_allocs' here because creating an Insig SXPt |
| // doesn't involve a call to dup_XTree(). |
| SXPt* insig_sxpt = VG_(malloc)(sizeof(SXPt)); |
| n_sxpt_allocs++; |
| insig_sxpt->tag = InsigSXPt; |
| insig_sxpt->szB = insig_children_szB; |
| insig_sxpt->Insig.n_xpts = n_insig_children; |
| sxpt->Sig.children[n_sig_children] = insig_sxpt; |
| } |
| } else { |
| sxpt->Sig.children = NULL; |
| } |
| |
| return sxpt; |
| } |
| |
| static void free_SXTree(SXPt* sxpt) |
| { |
| Int i; |
| tl_assert(sxpt != NULL); |
| |
| switch (sxpt->tag) { |
| case SigSXPt: |
| // Free all children SXPts, then the children array. |
| for (i = 0; i < sxpt->Sig.n_children; i++) { |
| free_SXTree(sxpt->Sig.children[i]); |
| sxpt->Sig.children[i] = NULL; |
| } |
| VG_(free)(sxpt->Sig.children); sxpt->Sig.children = NULL; |
| break; |
| |
| case InsigSXPt: |
| break; |
| |
| default: tl_assert2(0, "free_SXTree: unknown SXPt tag"); |
| } |
| |
| // Free the SXPt itself. |
| VG_(free)(sxpt); sxpt = NULL; |
| n_sxpt_frees++; |
| } |
| |
| // Sanity checking: we periodically check the heap XTree with |
| // ms_expensive_sanity_check. |
| static void sanity_check_XTree(XPt* xpt, XPt* parent) |
| { |
| tl_assert(xpt != NULL); |
| |
| // Check back-pointer. |
| tl_assert2(xpt->parent == parent, |
| "xpt->parent = %p, parent = %p\n", xpt->parent, parent); |
| |
| // Check children counts look sane. |
| tl_assert(xpt->n_children <= xpt->max_children); |
| |
| // Unfortunately, xpt's size is not necessarily equal to the sum of xpt's |
| // children's sizes. See comment at the bottom of get_XCon. |
| } |
| |
| // Sanity checking: we check SXTrees (which are in snapshots) after |
| // snapshots are created, before they are deleted, and before they are |
| // printed. |
| static void sanity_check_SXTree(SXPt* sxpt) |
| { |
| Int i; |
| |
| tl_assert(sxpt != NULL); |
| |
| // Check the sum of any children szBs equals the SXPt's szB. Check the |
| // children at the same time. |
| switch (sxpt->tag) { |
| case SigSXPt: { |
| if (sxpt->Sig.n_children > 0) { |
| for (i = 0; i < sxpt->Sig.n_children; i++) { |
| sanity_check_SXTree(sxpt->Sig.children[i]); |
| } |
| } |
| break; |
| } |
| case InsigSXPt: |
| break; // do nothing |
| |
| default: tl_assert2(0, "sanity_check_SXTree: unknown SXPt tag"); |
| } |
| } |
| |
| |
| //------------------------------------------------------------// |
| //--- XCon Operations ---// |
| //------------------------------------------------------------// |
| |
| // This is the limit on the number of removed alloc-fns that can be in a |
| // single XCon. |
| #define MAX_OVERESTIMATE 50 |
| #define MAX_IPS (MAX_DEPTH + MAX_OVERESTIMATE) |
| |
| // This is used for various buffers which can hold function names/IP |
| // description. Some C++ names can get really long so 1024 isn't big |
| // enough. |
| #define BUF_LEN 2048 |
| |
| // Get the stack trace for an XCon, filtering out uninteresting entries: |
| // alloc-fns and entries above alloc-fns, and entries below main-or-below-main. |
| // Eg: alloc-fn1 / alloc-fn2 / a / b / main / (below main) / c |
| // becomes: a / b / main |
| // Nb: it's possible to end up with an empty trace, eg. if 'main' is marked |
| // as an alloc-fn. This is ok. |
| static |
| Int get_IPs( ThreadId tid, Bool is_custom_alloc, Addr ips[]) |
| { |
| Char buf[BUF_LEN]; |
| Int n_ips, i, n_alloc_fns_removed; |
| Int overestimate; |
| Bool redo; |
| |
| // We ask for a few more IPs than clo_depth suggests we need. Then we |
| // remove every entry that is an alloc-fn. Depending on the |
| // circumstances, we may need to redo it all, asking for more IPs. |
| // Details: |
| // - If the original stack trace is smaller than asked-for, redo=False |
| // - Else if after filtering we have >= clo_depth IPs, redo=False |
| // - Else redo=True |
| // In other words, to redo, we'd have to get a stack trace as big as we |
| // asked for and remove more than 'overestimate' alloc-fns. |
| |
| // Main loop. |
| redo = True; // Assume this to begin with. |
| for (overestimate = 3; redo; overestimate += 6) { |
| // This should never happen -- would require MAX_OVERESTIMATE |
| // alloc-fns to be removed from the stack trace. |
| if (overestimate > MAX_OVERESTIMATE) |
| VG_(tool_panic)("get_IPs: ips[] too small, inc. MAX_OVERESTIMATE?"); |
| |
| // Ask for more IPs than clo_depth suggests we need. |
| n_ips = VG_(get_StackTrace)( tid, ips, clo_depth + overestimate, |
| NULL/*array to dump SP values in*/, |
| NULL/*array to dump FP values in*/, |
| 0/*first_ip_delta*/ ); |
| tl_assert(n_ips > 0); |
| |
| // If the original stack trace is smaller than asked-for, redo=False. |
| if (n_ips < clo_depth + overestimate) { redo = False; } |
| |
| // If it's a non-custom block, we will always remove the first stack |
| // trace entry (which will be one of malloc, __builtin_new, etc). |
| n_alloc_fns_removed = ( is_custom_alloc ? 0 : 1 ); |
| |
| // Filter out alloc fns. If it's a non-custom block, we remove the |
| // first entry (which will be one of malloc, __builtin_new, etc) |
| // without looking at it, because VG_(get_fnname) is expensive (it |
| // involves calls to VG_(malloc)/VG_(free)). |
| for (i = n_alloc_fns_removed; i < n_ips; i++) { |
| if (VG_(get_fnname)(ips[i], buf, BUF_LEN)) { |
| if (is_alloc_fn(buf)) { |
| n_alloc_fns_removed++; |
| } else { |
| break; |
| } |
| } |
| } |
| // Remove the alloc fns by shuffling the rest down over them. |
| n_ips -= n_alloc_fns_removed; |
| for (i = 0; i < n_ips; i++) { |
| ips[i] = ips[i + n_alloc_fns_removed]; |
| } |
| |
| // If after filtering we have >= clo_depth IPs, redo=False |
| if (n_ips >= clo_depth) { |
| redo = False; |
| n_ips = clo_depth; // Ignore any IPs below --depth. |
| } |
| |
| if (redo) { |
| n_XCon_redos++; |
| } |
| } |
| return n_ips; |
| } |
| |
| // Gets an XCon and puts it in the tree. Returns the XCon's bottom-XPt. |
| static XPt* get_XCon( ThreadId tid, Bool is_custom_alloc ) |
| { |
| Addr ips[MAX_IPS]; |
| Int i; |
| XPt* xpt = alloc_xpt; |
| |
| // After this call, the IPs we want are in ips[0]..ips[n_ips-1]. |
| Int n_ips = get_IPs(tid, is_custom_alloc, ips); |
| |
| // Now do the search/insertion of the XCon. |
| for (i = 0; i < n_ips; i++) { |
| Addr ip = ips[i]; |
| Int ch; |
| // Look for IP in xpt's children. |
| // Linear search, ugh -- about 10% of time for konqueror startup tried |
| // caching last result, only hit about 4% for konqueror. |
| // Nb: this search hits about 98% of the time for konqueror |
| for (ch = 0; True; ch++) { |
| if (ch == xpt->n_children) { |
| // IP not found in the children. |
| // Create and add new child XPt, then stop. |
| XPt* new_child_xpt = new_XPt(ip, xpt); |
| add_child_xpt(xpt, new_child_xpt); |
| xpt = new_child_xpt; |
| break; |
| |
| } else if (ip == xpt->children[ch]->ip) { |
| // Found the IP in the children, stop. |
| xpt = xpt->children[ch]; |
| break; |
| } |
| } |
| } |
| |
| // [Note: several comments refer to this comment. Do not delete it |
| // without updating them.] |
| // |
| // A complication... If all stack traces were well-formed, then the |
| // returned xpt would always be a bottom-XPt. As a consequence, an XPt's |
| // size would always be equal to the sum of its children's sizes, which |
| // is an excellent sanity check. |
| // |
| // Unfortunately, stack traces occasionally are malformed, ie. truncated. |
| // This allows a stack trace to be a sub-trace of another, eg. a/b/c is a |
| // sub-trace of a/b/c/d. So we can't assume this xpt is a bottom-XPt; |
| // nor can we do sanity check an XPt's size against its children's sizes. |
| // This is annoying, but must be dealt with. (Older versions of Massif |
| // had this assertion in, and it was reported to fail by real users a |
| // couple of times.) Even more annoyingly, I can't come up with a simple |
| // test case that exhibit such a malformed stack trace, so I can't |
| // regression test it. Sigh. |
| // |
| // However, we can print a warning, so that if it happens (unexpectedly) |
| // in existing regression tests we'll know. Also, it warns users that |
| // the output snapshots may not add up the way they might expect. |
| // |
| //tl_assert(0 == xpt->n_children); // Must be bottom-XPt |
| if (0 != xpt->n_children) { |
| static Int n_moans = 0; |
| if (n_moans < 3) { |
| VG_(message)(Vg_UserMsg, |
| "Warning: Malformed stack trace detected. In Massif's output,"); |
| VG_(message)(Vg_UserMsg, |
| " the size of an entry's child entries may not sum up"); |
| VG_(message)(Vg_UserMsg, |
| " to the entry's size as they normally do."); |
| n_moans++; |
| if (3 == n_moans) |
| VG_(message)(Vg_UserMsg, |
| " (And Massif now won't warn about this again.)"); |
| } |
| } |
| return xpt; |
| } |
| |
| // Update 'szB' of every XPt in the XCon, by percolating upwards. |
| static void update_XCon(XPt* xpt, SSizeT space_delta) |
| { |
| tl_assert(True == clo_heap); |
| tl_assert(NULL != xpt); |
| |
| if (0 == space_delta) |
| return; |
| |
| while (xpt != alloc_xpt) { |
| if (space_delta < 0) tl_assert(xpt->szB >= -space_delta); |
| xpt->szB += space_delta; |
| xpt = xpt->parent; |
| } |
| if (space_delta < 0) tl_assert(alloc_xpt->szB >= -space_delta); |
| alloc_xpt->szB += space_delta; |
| } |
| |
| |
| //------------------------------------------------------------// |
| //--- Snapshots ---// |
| //------------------------------------------------------------// |
| |
| // Snapshots are done in a way so that we always have a reasonable number of |
| // them. We start by taking them quickly. Once we hit our limit, we cull |
| // some (eg. half), and start taking them more slowly. Once we hit the |
| // limit again, we again cull and then take them even more slowly, and so |
| // on. |
| |
| // Time is measured either in i or ms or bytes, depending on the --time-unit |
| // option. It's a Long because it can exceed 32-bits reasonably easily, and |
| // because we need to allow negative values to represent unset times. |
| typedef Long Time; |
| |
| #define UNUSED_SNAPSHOT_TIME -333 // A conspicuous negative number. |
| |
| typedef |
| enum { |
| Normal = 77, |
| Peak, |
| Unused |
| } |
| SnapshotKind; |
| |
| typedef |
| struct { |
| SnapshotKind kind; |
| Time time; |
| SizeT heap_szB; |
| SizeT heap_extra_szB;// Heap slop + admin bytes. |
| SizeT stacks_szB; |
| SXPt* alloc_sxpt; // Heap XTree root, if a detailed snapshot, |
| } // otherwise NULL. |
| Snapshot; |
| |
| static UInt next_snapshot_i = 0; // Index of where next snapshot will go. |
| static Snapshot* snapshots; // Array of snapshots. |
| |
| static Bool is_snapshot_in_use(Snapshot* snapshot) |
| { |
| if (Unused == snapshot->kind) { |
| // If snapshot is unused, check all the fields are unset. |
| tl_assert(snapshot->time == UNUSED_SNAPSHOT_TIME); |
| tl_assert(snapshot->heap_extra_szB == 0); |
| tl_assert(snapshot->heap_szB == 0); |
| tl_assert(snapshot->stacks_szB == 0); |
| tl_assert(snapshot->alloc_sxpt == NULL); |
| return False; |
| } else { |
| tl_assert(snapshot->time != UNUSED_SNAPSHOT_TIME); |
| return True; |
| } |
| } |
| |
| static Bool is_detailed_snapshot(Snapshot* snapshot) |
| { |
| return (snapshot->alloc_sxpt ? True : False); |
| } |
| |
| static Bool is_uncullable_snapshot(Snapshot* snapshot) |
| { |
| return &snapshots[0] == snapshot // First snapshot |
| || &snapshots[next_snapshot_i-1] == snapshot // Last snapshot |
| || snapshot->kind == Peak; // Peak snapshot |
| } |
| |
| static void sanity_check_snapshot(Snapshot* snapshot) |
| { |
| if (snapshot->alloc_sxpt) { |
| sanity_check_SXTree(snapshot->alloc_sxpt); |
| } |
| } |
| |
| // All the used entries should look used, all the unused ones should be clear. |
| static void sanity_check_snapshots_array(void) |
| { |
| Int i; |
| for (i = 0; i < next_snapshot_i; i++) { |
| tl_assert( is_snapshot_in_use( & snapshots[i] )); |
| } |
| for ( ; i < clo_max_snapshots; i++) { |
| tl_assert(!is_snapshot_in_use( & snapshots[i] )); |
| } |
| } |
| |
| // This zeroes all the fields in the snapshot, but does not free the heap |
| // XTree if present. It also does a sanity check unless asked not to; we |
| // can't sanity check at startup when clearing the initial snapshots because |
| // they're full of junk. |
| static void clear_snapshot(Snapshot* snapshot, Bool do_sanity_check) |
| { |
| if (do_sanity_check) sanity_check_snapshot(snapshot); |
| snapshot->kind = Unused; |
| snapshot->time = UNUSED_SNAPSHOT_TIME; |
| snapshot->heap_extra_szB = 0; |
| snapshot->heap_szB = 0; |
| snapshot->stacks_szB = 0; |
| snapshot->alloc_sxpt = NULL; |
| } |
| |
| // This zeroes all the fields in the snapshot, and frees the heap XTree if |
| // present. |
| static void delete_snapshot(Snapshot* snapshot) |
| { |
| // Nb: if there's an XTree, we free it after calling clear_snapshot, |
| // because clear_snapshot does a sanity check which includes checking the |
| // XTree. |
| SXPt* tmp_sxpt = snapshot->alloc_sxpt; |
| clear_snapshot(snapshot, /*do_sanity_check*/True); |
| if (tmp_sxpt) { |
| free_SXTree(tmp_sxpt); |
| } |
| } |
| |
| static void VERB_snapshot(Int verbosity, Char* prefix, Int i) |
| { |
| Snapshot* snapshot = &snapshots[i]; |
| Char* suffix; |
| switch (snapshot->kind) { |
| case Peak: suffix = "p"; break; |
| case Normal: suffix = ( is_detailed_snapshot(snapshot) ? "d" : "." ); break; |
| case Unused: suffix = "u"; break; |
| default: |
| tl_assert2(0, "VERB_snapshot: unknown snapshot kind: %d", snapshot->kind); |
| } |
| VERB(verbosity, "%s S%s%3d (t:%lld, hp:%ld, ex:%ld, st:%ld)", |
| prefix, suffix, i, |
| snapshot->time, |
| snapshot->heap_szB, |
| snapshot->heap_extra_szB, |
| snapshot->stacks_szB |
| ); |
| } |
| |
| // Cull half the snapshots; we choose those that represent the smallest |
| // time-spans, because that gives us the most even distribution of snapshots |
| // over time. (It's possible to lose interesting spikes, however.) |
| // |
| // Algorithm for N snapshots: We find the snapshot representing the smallest |
| // timeframe, and remove it. We repeat this until (N/2) snapshots are gone. |
| // We have to do this one snapshot at a time, rather than finding the (N/2) |
| // smallest snapshots in one hit, because when a snapshot is removed, its |
| // neighbours immediately cover greater timespans. So it's O(N^2), but N is |
| // small, and it's not done very often. |
| // |
| // Once we're done, we return the new smallest interval between snapshots. |
| // That becomes our minimum time interval. |
| static UInt cull_snapshots(void) |
| { |
| Int i, jp, j, jn, min_timespan_i; |
| Int n_deleted = 0; |
| Time min_timespan; |
| |
| n_cullings++; |
| |
| // Sets j to the index of the first not-yet-removed snapshot at or after i |
| #define FIND_SNAPSHOT(i, j) \ |
| for (j = i; \ |
| j < clo_max_snapshots && !is_snapshot_in_use(&snapshots[j]); \ |
| j++) { } |
| |
| VERB(2, "Culling..."); |
| |
| // First we remove enough snapshots by clearing them in-place. Once |
| // that's done, we can slide the remaining ones down. |
| for (i = 0; i < clo_max_snapshots/2; i++) { |
| // Find the snapshot representing the smallest timespan. The timespan |
| // for snapshot n = d(N-1,N)+d(N,N+1), where d(A,B) is the time between |
| // snapshot A and B. We don't consider the first and last snapshots for |
| // removal. |
| Snapshot* min_snapshot; |
| Int min_j; |
| |
| // Initial triple: (prev, curr, next) == (jp, j, jn) |
| // Initial min_timespan is the first one. |
| jp = 0; |
| FIND_SNAPSHOT(1, j); |
| FIND_SNAPSHOT(j+1, jn); |
| min_timespan = 0x7fffffffffffffffLL; |
| min_j = -1; |
| while (jn < clo_max_snapshots) { |
| Time timespan = snapshots[jn].time - snapshots[jp].time; |
| tl_assert(timespan >= 0); |
| // Nb: We never cull the peak snapshot. |
| if (Peak != snapshots[j].kind && timespan < min_timespan) { |
| min_timespan = timespan; |
| min_j = j; |
| } |
| // Move on to next triple |
| jp = j; |
| j = jn; |
| FIND_SNAPSHOT(jn+1, jn); |
| } |
| // We've found the least important snapshot, now delete it. First |
| // print it if necessary. |
| tl_assert(-1 != min_j); // Check we found a minimum. |
| min_snapshot = & snapshots[ min_j ]; |
| if (VG_(clo_verbosity) > 1) { |
| Char buf[64]; |
| VG_(snprintf)(buf, 64, " %3d (t-span = %lld)", i, min_timespan); |
| VERB_snapshot(2, buf, min_j); |
| } |
| delete_snapshot(min_snapshot); |
| n_deleted++; |
| } |
| |
| // Slide down the remaining snapshots over the removed ones. First set i |
| // to point to the first empty slot, and j to the first full slot after |
| // i. Then slide everything down. |
| for (i = 0; is_snapshot_in_use( &snapshots[i] ); i++) { } |
| for (j = i; !is_snapshot_in_use( &snapshots[j] ); j++) { } |
| for ( ; j < clo_max_snapshots; j++) { |
| if (is_snapshot_in_use( &snapshots[j] )) { |
| snapshots[i++] = snapshots[j]; |
| clear_snapshot(&snapshots[j], /*do_sanity_check*/True); |
| } |
| } |
| next_snapshot_i = i; |
| |
| // Check snapshots array looks ok after changes. |
| sanity_check_snapshots_array(); |
| |
| // Find the minimum timespan remaining; that will be our new minimum |
| // time interval. Note that above we were finding timespans by measuring |
| // two intervals around a snapshot that was under consideration for |
| // deletion. Here we only measure single intervals because all the |
| // deletions have occurred. |
| // |
| // But we have to be careful -- some snapshots (eg. snapshot 0, and the |
| // peak snapshot) are uncullable. If two uncullable snapshots end up |
| // next to each other, they'll never be culled (assuming the peak doesn't |
| // change), and the time gap between them will not change. However, the |
| // time between the remaining cullable snapshots will grow ever larger. |
| // This means that the min_timespan found will always be that between the |
| // two uncullable snapshots, and it will be much smaller than it should |
| // be. To avoid this problem, when computing the minimum timespan, we |
| // ignore any timespans between two uncullable snapshots. |
| tl_assert(next_snapshot_i > 1); |
| min_timespan = 0x7fffffffffffffffLL; |
| min_timespan_i = -1; |
| for (i = 1; i < next_snapshot_i; i++) { |
| if (is_uncullable_snapshot(&snapshots[i]) && |
| is_uncullable_snapshot(&snapshots[i-1])) |
| { |
| VERB(2, "(Ignoring interval %d--%d when computing minimum)", i-1, i); |
| } else { |
| Time timespan = snapshots[i].time - snapshots[i-1].time; |
| tl_assert(timespan >= 0); |
| if (timespan < min_timespan) { |
| min_timespan = timespan; |
| min_timespan_i = i; |
| } |
| } |
| } |
| tl_assert(-1 != min_timespan_i); // Check we found a minimum. |
| |
| // Print remaining snapshots, if necessary. |
| if (VG_(clo_verbosity) > 1) { |
| VERB(2, "Finished culling (%3d of %3d deleted)", |
| n_deleted, clo_max_snapshots); |
| for (i = 0; i < next_snapshot_i; i++) { |
| VERB_snapshot(2, " post-cull", i); |
| } |
| VERB(2, "New time interval = %lld (between snapshots %d and %d)", |
| min_timespan, min_timespan_i-1, min_timespan_i); |
| } |
| |
| return min_timespan; |
| } |
| |
| static Time get_time(void) |
| { |
| // Get current time, in whatever time unit we're using. |
| if (clo_time_unit == TimeI) { |
| return guest_instrs_executed; |
| } else if (clo_time_unit == TimeMS) { |
| // Some stuff happens between the millisecond timer being initialised |
| // to zero and us taking our first snapshot. We determine that time |
| // gap so we can subtract it from all subsequent times so that our |
| // first snapshot is considered to be at t = 0ms. Unfortunately, a |
| // bunch of symbols get read after the first snapshot is taken but |
| // before the second one (which is triggered by the first allocation), |
| // so when the time-unit is 'ms' we always have a big gap between the |
| // first two snapshots. But at least users won't have to wonder why |
| // the first snapshot isn't at t=0. |
| static Bool is_first_get_time = True; |
| static Time start_time_ms; |
| if (is_first_get_time) { |
| start_time_ms = VG_(read_millisecond_timer)(); |
| is_first_get_time = False; |
| return 0; |
| } else { |
| return VG_(read_millisecond_timer)() - start_time_ms; |
| } |
| } else if (clo_time_unit == TimeB) { |
| return total_allocs_deallocs_szB; |
| } else { |
| tl_assert2(0, "bad --time-unit value"); |
| } |
| } |
| |
| // Take a snapshot, and only that -- decisions on whether to take a |
| // snapshot, or what kind of snapshot, are made elsewhere. |
| static void |
| take_snapshot(Snapshot* snapshot, SnapshotKind kind, Time time, |
| Bool is_detailed, Char* what) |
| { |
| tl_assert(!is_snapshot_in_use(snapshot)); |
| tl_assert(have_started_executing_code); |
| |
| // Heap and heap admin. |
| if (clo_heap) { |
| snapshot->heap_szB = heap_szB; |
| if (is_detailed) { |
| SizeT total_szB = heap_szB + heap_extra_szB + stacks_szB; |
| snapshot->alloc_sxpt = dup_XTree(alloc_xpt, total_szB); |
| tl_assert( alloc_xpt->szB == heap_szB); |
| tl_assert(snapshot->alloc_sxpt->szB == heap_szB); |
| } |
| snapshot->heap_extra_szB = heap_extra_szB; |
| } |
| |
| // Stack(s). |
| if (clo_stacks) { |
| snapshot->stacks_szB = stacks_szB; |
| } |
| |
| // Rest of snapshot. |
| snapshot->kind = kind; |
| snapshot->time = time; |
| sanity_check_snapshot(snapshot); |
| |
| // Update stats. |
| if (Peak == kind) n_peak_snapshots++; |
| if (is_detailed) n_detailed_snapshots++; |
| n_real_snapshots++; |
| } |
| |
| |
| // Take a snapshot, if it's time, or if we've hit a peak. |
| static void |
| maybe_take_snapshot(SnapshotKind kind, Char* what) |
| { |
| // 'min_time_interval' is the minimum time interval between snapshots. |
| // If we try to take a snapshot and less than this much time has passed, |
| // we don't take it. It gets larger as the program runs longer. It's |
| // initialised to zero so that we begin by taking snapshots as quickly as |
| // possible. |
| static Time min_time_interval = 0; |
| // Zero allows startup snapshot. |
| static Time earliest_possible_time_of_next_snapshot = 0; |
| static Int n_snapshots_since_last_detailed = 0; |
| static Int n_skipped_snapshots_since_last_snapshot = 0; |
| |
| Snapshot* snapshot; |
| Bool is_detailed; |
| Time time = get_time(); |
| |
| switch (kind) { |
| case Normal: |
| // Only do a snapshot if it's time. |
| if (time < earliest_possible_time_of_next_snapshot) { |
| n_skipped_snapshots++; |
| n_skipped_snapshots_since_last_snapshot++; |
| return; |
| } |
| is_detailed = (clo_detailed_freq-1 == n_snapshots_since_last_detailed); |
| break; |
| |
| case Peak: { |
| // Because we're about to do a deallocation, we're coming down from a |
| // local peak. If it is (a) actually a global peak, and (b) a certain |
| // amount bigger than the previous peak, then we take a peak snapshot. |
| // By not taking a snapshot for every peak, we save a lot of effort -- |
| // because many peaks remain peak only for a short time. |
| SizeT total_szB = heap_szB + heap_extra_szB + stacks_szB; |
| SizeT excess_szB_for_new_peak = |
| (SizeT)((peak_snapshot_total_szB * clo_peak_inaccuracy) / 100); |
| if (total_szB <= peak_snapshot_total_szB + excess_szB_for_new_peak) { |
| return; |
| } |
| is_detailed = True; |
| break; |
| } |
| |
| default: |
| tl_assert2(0, "maybe_take_snapshot: unrecognised snapshot kind"); |
| } |
| |
| // Take the snapshot. |
| snapshot = & snapshots[next_snapshot_i]; |
| take_snapshot(snapshot, kind, time, is_detailed, what); |
| |
| // Record if it was detailed. |
| if (is_detailed) { |
| n_snapshots_since_last_detailed = 0; |
| } else { |
| n_snapshots_since_last_detailed++; |
| } |
| |
| // Update peak data, if it's a Peak snapshot. |
| if (Peak == kind) { |
| Int i, number_of_peaks_snapshots_found = 0; |
| |
| // Sanity check the size, then update our recorded peak. |
| SizeT snapshot_total_szB = |
| snapshot->heap_szB + snapshot->heap_extra_szB + snapshot->stacks_szB; |
| tl_assert2(snapshot_total_szB > peak_snapshot_total_szB, |
| "%ld, %ld\n", snapshot_total_szB, peak_snapshot_total_szB); |
| peak_snapshot_total_szB = snapshot_total_szB; |
| |
| // Find the old peak snapshot, if it exists, and mark it as normal. |
| for (i = 0; i < next_snapshot_i; i++) { |
| if (Peak == snapshots[i].kind) { |
| snapshots[i].kind = Normal; |
| number_of_peaks_snapshots_found++; |
| } |
| } |
| tl_assert(number_of_peaks_snapshots_found <= 1); |
| } |
| |
| // Finish up verbosity and stats stuff. |
| if (n_skipped_snapshots_since_last_snapshot > 0) { |
| VERB(2, " (skipped %d snapshot%s)", |
| n_skipped_snapshots_since_last_snapshot, |
| ( n_skipped_snapshots_since_last_snapshot == 1 ? "" : "s") ); |
| } |
| VERB_snapshot(2, what, next_snapshot_i); |
| n_skipped_snapshots_since_last_snapshot = 0; |
| |
| // Cull the entries, if our snapshot table is full. |
| next_snapshot_i++; |
| if (clo_max_snapshots == next_snapshot_i) { |
| min_time_interval = cull_snapshots(); |
| } |
| |
| // Work out the earliest time when the next snapshot can happen. |
| earliest_possible_time_of_next_snapshot = time + min_time_interval; |
| } |
| |
| |
| //------------------------------------------------------------// |
| //--- Sanity checking ---// |
| //------------------------------------------------------------// |
| |
| static Bool ms_cheap_sanity_check ( void ) |
| { |
| return True; // Nothing useful we can cheaply check. |
| } |
| |
| static Bool ms_expensive_sanity_check ( void ) |
| { |
| sanity_check_XTree(alloc_xpt, /*parent*/NULL); |
| sanity_check_snapshots_array(); |
| return True; |
| } |
| |
| |
| //------------------------------------------------------------// |
| //--- Heap management ---// |
| //------------------------------------------------------------// |
| |
| // Metadata for heap blocks. Each one contains a pointer to a bottom-XPt, |
| // which is a foothold into the XCon at which it was allocated. From |
| // HP_Chunks, XPt 'space' fields are incremented (at allocation) and |
| // decremented (at deallocation). |
| // |
| // Nb: first two fields must match core's VgHashNode. |
| typedef |
| struct _HP_Chunk { |
| struct _HP_Chunk* next; |
| Addr data; // Ptr to actual block |
| SizeT req_szB; // Size requested |
| SizeT slop_szB; // Extra bytes given above those requested |
| XPt* where; // Where allocated; bottom-XPt |
| } |
| HP_Chunk; |
| |
| static VgHashTable malloc_list = NULL; // HP_Chunks |
| |
| static void update_alloc_stats(SSizeT szB_delta) |
| { |
| // Update total_allocs_deallocs_szB. |
| if (szB_delta < 0) szB_delta = -szB_delta; |
| total_allocs_deallocs_szB += szB_delta; |
| } |
| |
| static void update_heap_stats(SSizeT heap_szB_delta, Int heap_extra_szB_delta) |
| { |
| if (heap_szB_delta < 0) |
| tl_assert(heap_szB >= -heap_szB_delta); |
| if (heap_extra_szB_delta < 0) |
| tl_assert(heap_extra_szB >= -heap_extra_szB_delta); |
| |
| heap_extra_szB += heap_extra_szB_delta; |
| heap_szB += heap_szB_delta; |
| |
| update_alloc_stats(heap_szB_delta + heap_extra_szB_delta); |
| } |
| |
| static |
| void* new_block ( ThreadId tid, void* p, SizeT req_szB, SizeT req_alignB, |
| Bool is_zeroed ) |
| { |
| HP_Chunk* hc; |
| Bool is_custom_alloc = (NULL != p); |
| SizeT actual_szB, slop_szB; |
| |
| if (req_szB < 0) return NULL; |
| |
| // Allocate and zero if necessary |
| if (!p) { |
| p = VG_(cli_malloc)( req_alignB, req_szB ); |
| if (!p) { |
| return NULL; |
| } |
| if (is_zeroed) VG_(memset)(p, 0, req_szB); |
| actual_szB = VG_(malloc_usable_size)(p); |
| tl_assert(actual_szB >= req_szB); |
| slop_szB = actual_szB - req_szB; |
| } else { |
| slop_szB = 0; |
| } |
| |
| // Make new HP_Chunk node, add to malloc_list |
| hc = VG_(malloc)(sizeof(HP_Chunk)); |
| hc->req_szB = req_szB; |
| hc->slop_szB = slop_szB; |
| hc->data = (Addr)p; |
| hc->where = NULL; |
| VG_(HT_add_node)(malloc_list, hc); |
| |
| if (clo_heap) { |
| VERB(3, "<<< new_mem_heap (%lu, %lu)", req_szB, slop_szB); |
| |
| // Update statistics. |
| n_heap_allocs++; |
| |
| // Update heap stats. |
| update_heap_stats(req_szB, clo_heap_admin + slop_szB); |
| |
| // Update XTree. |
| hc->where = get_XCon( tid, is_custom_alloc ); |
| update_XCon(hc->where, req_szB); |
| |
| // Maybe take a snapshot. |
| maybe_take_snapshot(Normal, " alloc"); |
| |
| VERB(3, ">>>"); |
| } |
| |
| return p; |
| } |
| |
| static __inline__ |
| void die_block ( void* p, Bool custom_free ) |
| { |
| HP_Chunk* hc; |
| |
| // Remove HP_Chunk from malloc_list |
| hc = VG_(HT_remove)(malloc_list, (UWord)p); |
| if (NULL == hc) { |
| return; // must have been a bogus free() |
| } |
| |
| if (clo_heap) { |
| VERB(3, "<<< die_mem_heap"); |
| |
| // Update statistics |
| n_heap_frees++; |
| |
| // Maybe take a peak snapshot, since it's a deallocation. |
| maybe_take_snapshot(Peak, "de-PEAK"); |
| |
| // Update heap stats. |
| update_heap_stats(-hc->req_szB, -clo_heap_admin - hc->slop_szB); |
| |
| // Update XTree. |
| update_XCon(hc->where, -hc->req_szB); |
| |
| // Maybe take a snapshot. |
| maybe_take_snapshot(Normal, "dealloc"); |
| |
| VERB(3, ">>> (-%lu, -%lu)", hc->req_szB, hc->slop_szB); |
| } |
| |
| // Actually free the chunk, and the heap block (if necessary) |
| VG_(free)( hc ); hc = NULL; |
| if (!custom_free) |
| VG_(cli_free)( p ); |
| } |
| |
| static __inline__ |
| void* renew_block ( ThreadId tid, void* p_old, SizeT new_req_szB ) |
| { |
| HP_Chunk* hc; |
| void* p_new; |
| SizeT old_req_szB, old_slop_szB, new_slop_szB, new_actual_szB; |
| XPt *old_where, *new_where; |
| |
| // Remove the old block |
| hc = VG_(HT_remove)(malloc_list, (UWord)p_old); |
| if (hc == NULL) { |
| return NULL; // must have been a bogus realloc() |
| } |
| |
| old_req_szB = hc->req_szB; |
| old_slop_szB = hc->slop_szB; |
| |
| if (clo_heap) { |
| VERB(3, "<<< renew_mem_heap (%lu)", new_req_szB); |
| |
| // Update statistics |
| n_heap_reallocs++; |
| |
| // Maybe take a peak snapshot, if it's (effectively) a deallocation. |
| if (new_req_szB < old_req_szB) { |
| maybe_take_snapshot(Peak, "re-PEAK"); |
| } |
| } |
| |
| // Actually do the allocation, if necessary. |
| if (new_req_szB <= old_req_szB + old_slop_szB) { |
| // New size is smaller or same; block not moved. |
| p_new = p_old; |
| new_slop_szB = old_slop_szB + (old_req_szB - new_req_szB); |
| |
| } else { |
| // New size is bigger; make new block, copy shared contents, free old. |
| p_new = VG_(cli_malloc)(VG_(clo_alignment), new_req_szB); |
| if (!p_new) { |
| // Nb: if realloc fails, NULL is returned but the old block is not |
| // touched. What an awful function. |
| return NULL; |
| } |
| VG_(memcpy)(p_new, p_old, old_req_szB); |
| VG_(cli_free)(p_old); |
| new_actual_szB = VG_(malloc_usable_size)(p_new); |
| tl_assert(new_actual_szB >= new_req_szB); |
| new_slop_szB = new_actual_szB - new_req_szB; |
| } |
| |
| if (p_new) { |
| // Update HP_Chunk. |
| hc->data = (Addr)p_new; |
| hc->req_szB = new_req_szB; |
| hc->slop_szB = new_slop_szB; |
| old_where = hc->where; |
| hc->where = NULL; |
| |
| // Update XTree. |
| if (clo_heap) { |
| new_where = get_XCon( tid, /*custom_malloc*/False); |
| hc->where = new_where; |
| update_XCon(old_where, -old_req_szB); |
| update_XCon(new_where, new_req_szB); |
| } |
| } |
| |
| // Now insert the new hc (with a possibly new 'data' field) into |
| // malloc_list. If this realloc() did not increase the memory size, we |
| // will have removed and then re-added hc unnecessarily. But that's ok |
| // because shrinking a block with realloc() is (presumably) much rarer |
| // than growing it, and this way simplifies the growing case. |
| VG_(HT_add_node)(malloc_list, hc); |
| |
| if (clo_heap) { |
| // Update heap stats. |
| update_heap_stats(new_req_szB - old_req_szB, new_slop_szB - old_slop_szB); |
| |
| // Maybe take a snapshot. |
| maybe_take_snapshot(Normal, "realloc"); |
| |
| VERB(3, ">>> (%ld, %ld)", |
| new_req_szB - old_req_szB, new_slop_szB - old_slop_szB); |
| } |
| |
| return p_new; |
| } |
| |
| |
| //------------------------------------------------------------// |
| //--- malloc() et al replacement wrappers ---// |
| //------------------------------------------------------------// |
| |
| static void* ms_malloc ( ThreadId tid, SizeT szB ) |
| { |
| return new_block( tid, NULL, szB, VG_(clo_alignment), /*is_zeroed*/False ); |
| } |
| |
| static void* ms___builtin_new ( ThreadId tid, SizeT szB ) |
| { |
| return new_block( tid, NULL, szB, VG_(clo_alignment), /*is_zeroed*/False ); |
| } |
| |
| static void* ms___builtin_vec_new ( ThreadId tid, SizeT szB ) |
| { |
| return new_block( tid, NULL, szB, VG_(clo_alignment), /*is_zeroed*/False ); |
| } |
| |
| static void* ms_calloc ( ThreadId tid, SizeT m, SizeT szB ) |
| { |
| return new_block( tid, NULL, m*szB, VG_(clo_alignment), /*is_zeroed*/True ); |
| } |
| |
| static void *ms_memalign ( ThreadId tid, SizeT alignB, SizeT szB ) |
| { |
| return new_block( tid, NULL, szB, alignB, False ); |
| } |
| |
| static void ms_free ( ThreadId tid, void* p ) |
| { |
| die_block( p, /*custom_free*/False ); |
| } |
| |
| static void ms___builtin_delete ( ThreadId tid, void* p ) |
| { |
| die_block( p, /*custom_free*/False); |
| } |
| |
| static void ms___builtin_vec_delete ( ThreadId tid, void* p ) |
| { |
| die_block( p, /*custom_free*/False ); |
| } |
| |
| static void* ms_realloc ( ThreadId tid, void* p_old, SizeT new_szB ) |
| { |
| return renew_block(tid, p_old, new_szB); |
| } |
| |
| |
| //------------------------------------------------------------// |
| //--- Stacks ---// |
| //------------------------------------------------------------// |
| |
| // We really want the inlining to occur... |
| #define INLINE inline __attribute__((always_inline)) |
| |
| static void update_stack_stats(SSizeT stack_szB_delta) |
| { |
| if (stack_szB_delta < 0) tl_assert(stacks_szB >= -stack_szB_delta); |
| stacks_szB += stack_szB_delta; |
| |
| update_alloc_stats(stack_szB_delta); |
| } |
| |
| static INLINE void new_mem_stack_2(Addr a, SizeT len, Char* what) |
| { |
| if (have_started_executing_code) { |
| VERB(3, "<<< new_mem_stack (%ld)", len); |
| n_stack_allocs++; |
| update_stack_stats(len); |
| maybe_take_snapshot(Normal, what); |
| VERB(3, ">>>"); |
| } |
| } |
| |
| static INLINE void die_mem_stack_2(Addr a, SizeT len, Char* what) |
| { |
| if (have_started_executing_code) { |
| VERB(3, "<<< die_mem_stack (%ld)", -len); |
| n_stack_frees++; |
| maybe_take_snapshot(Peak, "stkPEAK"); |
| update_stack_stats(-len); |
| maybe_take_snapshot(Normal, what); |
| VERB(3, ">>>"); |
| } |
| } |
| |
| static void new_mem_stack(Addr a, SizeT len) |
| { |
| new_mem_stack_2(a, len, "stk-new"); |
| } |
| |
| static void die_mem_stack(Addr a, SizeT len) |
| { |
| die_mem_stack_2(a, len, "stk-die"); |
| } |
| |
| static void new_mem_stack_signal(Addr a, SizeT len) |
| { |
| new_mem_stack_2(a, len, "sig-new"); |
| } |
| |
| static void die_mem_stack_signal(Addr a, SizeT len) |
| { |
| die_mem_stack_2(a, len, "sig-die"); |
| } |
| |
| |
| //------------------------------------------------------------// |
| //--- Client Requests ---// |
| //------------------------------------------------------------// |
| |
| static Bool ms_handle_client_request ( ThreadId tid, UWord* argv, UWord* ret ) |
| { |
| switch (argv[0]) { |
| case VG_USERREQ__MALLOCLIKE_BLOCK: { |
| void* res; |
| void* p = (void*)argv[1]; |
| SizeT szB = argv[2]; |
| res = new_block( tid, p, szB, /*alignB--ignored*/0, /*is_zeroed*/False ); |
| tl_assert(res == p); |
| *ret = 0; |
| return True; |
| } |
| case VG_USERREQ__FREELIKE_BLOCK: { |
| void* p = (void*)argv[1]; |
| die_block( p, /*custom_free*/True ); |
| *ret = 0; |
| return True; |
| } |
| default: |
| *ret = 0; |
| return False; |
| } |
| } |
| |
| //------------------------------------------------------------// |
| //--- Instrumentation ---// |
| //------------------------------------------------------------// |
| |
| static void add_counter_update(IRSB* sbOut, Int n) |
| { |
| #if defined(VG_BIGENDIAN) |
| # define END Iend_BE |
| #elif defined(VG_LITTLEENDIAN) |
| # define END Iend_LE |
| #else |
| # error "Unknown endianness" |
| #endif |
| // Add code to increment 'guest_instrs_executed' by 'n', like this: |
| // WrTmp(t1, Load64(&guest_instrs_executed)) |
| // WrTmp(t2, Add64(RdTmp(t1), Const(n))) |
| // Store(&guest_instrs_executed, t2) |
| IRTemp t1 = newIRTemp(sbOut->tyenv, Ity_I64); |
| IRTemp t2 = newIRTemp(sbOut->tyenv, Ity_I64); |
| IRExpr* counter_addr = mkIRExpr_HWord( (HWord)&guest_instrs_executed ); |
| |
| IRStmt* st1 = IRStmt_WrTmp(t1, IRExpr_Load(END, Ity_I64, counter_addr)); |
| IRStmt* st2 = |
| IRStmt_WrTmp(t2, |
| IRExpr_Binop(Iop_Add64, IRExpr_RdTmp(t1), |
| IRExpr_Const(IRConst_U64(n)))); |
| IRStmt* st3 = IRStmt_Store(END, counter_addr, IRExpr_RdTmp(t2)); |
| |
| addStmtToIRSB( sbOut, st1 ); |
| addStmtToIRSB( sbOut, st2 ); |
| addStmtToIRSB( sbOut, st3 ); |
| } |
| |
| static IRSB* ms_instrument2( IRSB* sbIn ) |
| { |
| Int i, n = 0; |
| IRSB* sbOut; |
| |
| // We increment the instruction count in two places: |
| // - just before any Ist_Exit statements; |
| // - just before the IRSB's end. |
| // In the former case, we zero 'n' and then continue instrumenting. |
| |
| sbOut = deepCopyIRSBExceptStmts(sbIn); |
| |
| for (i = 0; i < sbIn->stmts_used; i++) { |
| IRStmt* st = sbIn->stmts[i]; |
| |
| if (!st || st->tag == Ist_NoOp) continue; |
| |
| if (st->tag == Ist_IMark) { |
| n++; |
| } else if (st->tag == Ist_Exit) { |
| if (n > 0) { |
| // Add an increment before the Exit statement, then reset 'n'. |
| add_counter_update(sbOut, n); |
| n = 0; |
| } |
| } |
| addStmtToIRSB( sbOut, st ); |
| } |
| |
| if (n > 0) { |
| // Add an increment before the SB end. |
| add_counter_update(sbOut, n); |
| } |
| return sbOut; |
| } |
| |
| static |
| IRSB* ms_instrument ( VgCallbackClosure* closure, |
| IRSB* sbIn, |
| VexGuestLayout* layout, |
| VexGuestExtents* vge, |
| IRType gWordTy, IRType hWordTy ) |
| { |
| if (! have_started_executing_code) { |
| // Do an initial sample to guarantee that we have at least one. |
| // We use 'maybe_take_snapshot' instead of 'take_snapshot' to ensure |
| // 'maybe_take_snapshot's internal static variables are initialised. |
| have_started_executing_code = True; |
| maybe_take_snapshot(Normal, "startup"); |
| } |
| |
| if (clo_time_unit == TimeI) { return ms_instrument2(sbIn); } |
| else if (clo_time_unit == TimeMS) { return sbIn; } |
| else if (clo_time_unit == TimeB) { return sbIn; } |
| else { tl_assert2(0, "bad --time-unit value"); } |
| } |
| |
| |
| //------------------------------------------------------------// |
| //--- Writing snapshots ---// |
| //------------------------------------------------------------// |
| |
| // The output file name. Controlled by --massif-out-file. |
| static Char* massif_out_file = NULL; |
| |
| Char FP_buf[BUF_LEN]; |
| |
| // XXX: implement f{,n}printf in m_libcprint.c eventually, and use it here. |
| // Then change Cachegrind to use it too. |
| #define FP(format, args...) ({ \ |
| VG_(snprintf)(FP_buf, BUF_LEN, format, ##args); \ |
| FP_buf[BUF_LEN-1] = '\0'; /* Make sure the string is terminated. */ \ |
| VG_(write)(fd, (void*)FP_buf, VG_(strlen)(FP_buf)); \ |
| }) |
| |
| // Same as FP, but guarantees a '\n' at the end. (At one point we were |
| // truncating without adding the '\n', which caused bug #155929.) |
| #define FPn(format, args...) ({ \ |
| VG_(snprintf)(FP_buf, BUF_LEN, format, ##args); \ |
| FP_buf[BUF_LEN-5] = '.'; /* "..." at the end make the truncation */ \ |
| FP_buf[BUF_LEN-4] = '.'; /* more obvious */ \ |
| FP_buf[BUF_LEN-3] = '.'; \ |
| FP_buf[BUF_LEN-2] = '\n'; /* Make sure the last char is a newline. */ \ |
| FP_buf[BUF_LEN-1] = '\0'; /* Make sure the string is terminated. */ \ |
| VG_(write)(fd, (void*)FP_buf, VG_(strlen)(FP_buf)); \ |
| }) |
| |
| // Nb: uses a static buffer, each call trashes the last string returned. |
| static Char* make_perc(ULong x, ULong y) |
| { |
| static Char mbuf[32]; |
| |
| // tl_assert(x <= y); XXX; put back in later... |
| |
| // XXX: I'm not confident that VG_(percentify) works as it should... |
| VG_(percentify)(x, y, 2, 6, mbuf); |
| // XXX: this is bogus if the denominator was zero -- resulting string is |
| // something like "0 --%") |
| if (' ' == mbuf[0]) mbuf[0] = '0'; |
| return mbuf; |
| } |
| |
| static void pp_snapshot_SXPt(Int fd, SXPt* sxpt, Int depth, Char* depth_str, |
| Int depth_str_len, |
| SizeT snapshot_heap_szB, SizeT snapshot_total_szB) |
| { |
| Int i, n_insig_children_sxpts; |
| Char* perc; |
| Char ip_desc_array[BUF_LEN]; |
| Char* ip_desc = ip_desc_array; |
| SXPt* pred = NULL; |
| SXPt* child = NULL; |
| |
| switch (sxpt->tag) { |
| case SigSXPt: |
| // Print the SXPt itself. |
| if (sxpt->Sig.ip == 0) { |
| ip_desc = |
| "(heap allocation functions) malloc/new/new[], --alloc-fns, etc."; |
| } else { |
| // If it's main-or-below-main, we (if appropriate) ignore everything |
| // below it by pretending it has no children. |
| // XXX: get this properly. Also, don't hard-code "(below main)" |
| // here -- look at the "(below main)"/"__libc_start_main" mess |
| // (m_stacktrace.c and m_demangle.c). |
| // [Nb: Josef wants --show-below-main to work for his fn entry/exit |
| // tracing] |
| Bool should_hide_below_main = /*!VG_(clo_show_below_main)*/True; |
| if (should_hide_below_main && |
| VG_(get_fnname)(sxpt->Sig.ip, ip_desc, BUF_LEN) && |
| (VG_STREQ(ip_desc, "main") || VG_STREQ(ip_desc, "(below main)"))) |
| { |
| sxpt->Sig.n_children = 0; |
| } |
| // We need the -1 to get the line number right, But I'm not sure why. |
| ip_desc = VG_(describe_IP)(sxpt->Sig.ip-1, ip_desc, BUF_LEN); |
| } |
| perc = make_perc(sxpt->szB, snapshot_total_szB); |
| // Nb: we deliberately use 'FPn', not 'FP'. So if the ip_desc is |
| // too long (eg. due to a long C++ function name), it'll get |
| // truncated, but the '\n' is still there so its a valid file. |
| FPn("%sn%d: %lu %s\n", |
| depth_str, sxpt->Sig.n_children, sxpt->szB, ip_desc); |
| |
| // Indent. |
| tl_assert(depth+1 < depth_str_len-1); // -1 for end NUL char |
| depth_str[depth+0] = ' '; |
| depth_str[depth+1] = '\0'; |
| |
| // Sort SXPt's children by szB (reverse order: biggest to smallest). |
| // Nb: we sort them here, rather than earlier (eg. in dup_XTree), for |
| // two reasons. First, if we do it during dup_XTree, it can get |
| // expensive (eg. 15% of execution time for konqueror |
| // startup/shutdown). Second, this way we get the Insig SXPt (if one |
| // is present) in its sorted position, not at the end. |
| VG_(ssort)(sxpt->Sig.children, sxpt->Sig.n_children, sizeof(SXPt*), |
| SXPt_revcmp_szB); |
| |
| // Print the SXPt's children. They should already be in sorted order. |
| n_insig_children_sxpts = 0; |
| for (i = 0; i < sxpt->Sig.n_children; i++) { |
| pred = child; |
| child = sxpt->Sig.children[i]; |
| |
| if (InsigSXPt == child->tag) |
| n_insig_children_sxpts++; |
| |
| // Ok, print the child. |
| pp_snapshot_SXPt(fd, child, depth+1, depth_str, depth_str_len, |
| snapshot_heap_szB, snapshot_total_szB); |
| } |
| |
| // Unindent. |
| depth_str[depth+0] = '\0'; |
| depth_str[depth+1] = '\0'; |
| |
| // There should be 0 or 1 Insig children SXPts. |
| tl_assert(n_insig_children_sxpts <= 1); |
| break; |
| |
| case InsigSXPt: { |
| Char* s = ( sxpt->Insig.n_xpts == 1 ? "," : "s, all" ); |
| perc = make_perc(sxpt->szB, snapshot_total_szB); |
| FP("%sn0: %lu in %d place%s below massif's threshold (%s)\n", |
| depth_str, sxpt->szB, sxpt->Insig.n_xpts, s, |
| make_perc((ULong)clo_threshold, 100)); |
| break; |
| } |
| |
| default: |
| tl_assert2(0, "pp_snapshot_SXPt: unrecognised SXPt tag"); |
| } |
| } |
| |
| static void pp_snapshot(Int fd, Snapshot* snapshot, Int snapshot_n) |
| { |
| sanity_check_snapshot(snapshot); |
| |
| FP("#-----------\n"); |
| FP("snapshot=%d\n", snapshot_n); |
| FP("#-----------\n"); |
| FP("time=%lld\n", snapshot->time); |
| FP("mem_heap_B=%lu\n", snapshot->heap_szB); |
| FP("mem_heap_extra_B=%lu\n", snapshot->heap_extra_szB); |
| FP("mem_stacks_B=%lu\n", snapshot->stacks_szB); |
| |
| if (is_detailed_snapshot(snapshot)) { |
| // Detailed snapshot -- print heap tree. |
| Int depth_str_len = clo_depth + 3; |
| Char* depth_str = VG_(malloc)(sizeof(Char) * depth_str_len); |
| SizeT snapshot_total_szB = |
| snapshot->heap_szB + snapshot->heap_extra_szB + snapshot->stacks_szB; |
| depth_str[0] = '\0'; // Initialise depth_str to "". |
| |
| FP("heap_tree=%s\n", ( Peak == snapshot->kind ? "peak" : "detailed" )); |
| pp_snapshot_SXPt(fd, snapshot->alloc_sxpt, 0, depth_str, |
| depth_str_len, snapshot->heap_szB, |
| snapshot_total_szB); |
| |
| VG_(free)(depth_str); |
| |
| } else { |
| FP("heap_tree=empty\n"); |
| } |
| } |
| |
| static void write_snapshots_to_file(void) |
| { |
| Int i, fd; |
| SysRes sres; |
| |
| sres = VG_(open)(massif_out_file, VKI_O_CREAT|VKI_O_TRUNC|VKI_O_WRONLY, |
| VKI_S_IRUSR|VKI_S_IWUSR); |
| if (sres.isError) { |
| // If the file can't be opened for whatever reason (conflict |
| // between multiple cachegrinded processes?), give up now. |
| VG_(message)(Vg_UserMsg, |
| "error: can't open output file '%s'", massif_out_file ); |
| VG_(message)(Vg_UserMsg, |
| " ... so profiling results will be missing."); |
| return; |
| } else { |
| fd = sres.res; |
| } |
| |
| // Print massif-specific options that were used. |
| // XXX: is it worth having a "desc:" line? Could just call it "options:" |
| // -- this file format isn't as generic as Cachegrind's, so the |
| // implied genericity of "desc:" is bogus. |
| FP("desc:"); |
| for (i = 0; i < VG_(sizeXA)(args_for_massif); i++) { |
| Char* arg = *(Char**)VG_(indexXA)(args_for_massif, i); |
| FP(" %s", arg); |
| } |
| if (0 == i) FP(" (none)"); |
| FP("\n"); |
| |
| // Print "cmd:" line. |
| FP("cmd: "); |
| if (VG_(args_the_exename)) { |
| FP("%s", VG_(args_the_exename)); |
| for (i = 0; i < VG_(sizeXA)( VG_(args_for_client) ); i++) { |
| HChar* arg = * (HChar**) VG_(indexXA)( VG_(args_for_client), i ); |
| if (arg) |
| FP(" %s", arg); |
| } |
| } else { |
| FP(" ???"); |
| } |
| FP("\n"); |
| |
| FP("time_unit: %s\n", TimeUnit_to_string(clo_time_unit)); |
| |
| for (i = 0; i < next_snapshot_i; i++) { |
| Snapshot* snapshot = & snapshots[i]; |
| pp_snapshot(fd, snapshot, i); // Detailed snapshot! |
| } |
| } |
| |
| |
| //------------------------------------------------------------// |
| //--- Finalisation ---// |
| //------------------------------------------------------------// |
| |
| static void ms_fini(Int exit_status) |
| { |
| // Output. |
| write_snapshots_to_file(); |
| |
| // Stats |
| tl_assert(n_xpts > 0); // always have alloc_xpt |
| VERB(1, "heap allocs: %u", n_heap_allocs); |
| VERB(1, "heap reallocs: %u", n_heap_reallocs); |
| VERB(1, "heap frees: %u", n_heap_frees); |
| VERB(1, "stack allocs: %u", n_stack_allocs); |
| VERB(1, "stack frees: %u", n_stack_frees); |
| VERB(1, "XPts: %u", n_xpts); |
| VERB(1, "top-XPts: %u (%d%%)", |
| alloc_xpt->n_children, |
| ( n_xpts ? alloc_xpt->n_children * 100 / n_xpts : 0)); |
| VERB(1, "XPt init expansions: %u", n_xpt_init_expansions); |
| VERB(1, "XPt later expansions: %u", n_xpt_later_expansions); |
| VERB(1, "SXPt allocs: %u", n_sxpt_allocs); |
| VERB(1, "SXPt frees: %u", n_sxpt_frees); |
| VERB(1, "skipped snapshots: %u", n_skipped_snapshots); |
| VERB(1, "real snapshots: %u", n_real_snapshots); |
| VERB(1, "detailed snapshots: %u", n_detailed_snapshots); |
| VERB(1, "peak snapshots: %u", n_peak_snapshots); |
| VERB(1, "cullings: %u", n_cullings); |
| VERB(1, "XCon redos: %u", n_XCon_redos); |
| } |
| |
| |
| //------------------------------------------------------------// |
| //--- Initialisation ---// |
| //------------------------------------------------------------// |
| |
| static void ms_post_clo_init(void) |
| { |
| Int i; |
| |
| // Check options. |
| if (clo_heap_admin < 0 || clo_heap_admin > 1024) { |
| VG_(message)(Vg_UserMsg, "--heap-admin must be between 0 and 1024"); |
| VG_(err_bad_option)("--heap-admin"); |
| } |
| if (clo_depth < 1 || clo_depth > MAX_DEPTH) { |
| VG_(message)(Vg_UserMsg, "--depth must be between 1 and %d", MAX_DEPTH); |
| VG_(err_bad_option)("--depth"); |
| } |
| if (clo_threshold < 0 || clo_threshold > 100) { |
| VG_(message)(Vg_UserMsg, "--threshold must be between 0.0 and 100.0"); |
| VG_(err_bad_option)("--threshold"); |
| } |
| if (clo_detailed_freq < 1 || clo_detailed_freq > 10000) { |
| VG_(message)(Vg_UserMsg, "--detailed-freq must be between 1 and 10000"); |
| VG_(err_bad_option)("--detailed-freq"); |
| } |
| if (clo_max_snapshots < 10 || clo_max_snapshots > 1000) { |
| VG_(message)(Vg_UserMsg, "--max-snapshots must be between 10 and 1000"); |
| VG_(err_bad_option)("--max-snapshots"); |
| } |
| |
| // If we have --heap=no, set --heap-admin to zero, just to make sure we |
| // don't accidentally use a non-zero heap-admin size somewhere. |
| if (!clo_heap) { |
| clo_heap_admin = 0; |
| } |
| |
| // Print alloc-fns, if necessary. |
| if (VG_(clo_verbosity) > 1) { |
| VERB(1, "alloc-fns:"); |
| for (i = 0; i < VG_(sizeXA)(alloc_fns); i++) { |
| Char** alloc_fn_ptr = VG_(indexXA)(alloc_fns, i); |
| VERB(1, " %d: %s", i, *alloc_fn_ptr); |
| } |
| } |
| |
| // Events to track. |
| if (clo_stacks) { |
| VG_(track_new_mem_stack) ( new_mem_stack ); |
| VG_(track_die_mem_stack) ( die_mem_stack ); |
| VG_(track_new_mem_stack_signal) ( new_mem_stack_signal ); |
| VG_(track_die_mem_stack_signal) ( die_mem_stack_signal ); |
| } |
| |
| // Initialise snapshot array, and sanity-check it. |
| snapshots = VG_(malloc)(sizeof(Snapshot) * clo_max_snapshots); |
| // We don't want to do snapshot sanity checks here, because they're |
| // currently uninitialised. |
| for (i = 0; i < clo_max_snapshots; i++) { |
| clear_snapshot( & snapshots[i], /*do_sanity_check*/False ); |
| } |
| sanity_check_snapshots_array(); |
| |
| // Setup output filename. |
| massif_out_file = |
| VG_(expand_file_name)("--massif-out-file", clo_massif_out_file); |
| } |
| |
| static void ms_pre_clo_init(void) |
| { |
| VG_(details_name) ("Massif"); |
| VG_(details_version) (NULL); |
| VG_(details_description) ("a heap profiler"); |
| VG_(details_copyright_author)( |
| "Copyright (C) 2003-2008, and GNU GPL'd, by Nicholas Nethercote"); |
| VG_(details_bug_reports_to) (VG_BUGS_TO); |
| |
| // Basic functions |
| VG_(basic_tool_funcs) (ms_post_clo_init, |
| ms_instrument, |
| ms_fini); |
| |
| // Needs |
| VG_(needs_libc_freeres)(); |
| VG_(needs_command_line_options)(ms_process_cmd_line_option, |
| ms_print_usage, |
| ms_print_debug_usage); |
| VG_(needs_client_requests) (ms_handle_client_request); |
| VG_(needs_sanity_checks) (ms_cheap_sanity_check, |
| ms_expensive_sanity_check); |
| VG_(needs_malloc_replacement) (ms_malloc, |
| ms___builtin_new, |
| ms___builtin_vec_new, |
| ms_memalign, |
| ms_calloc, |
| ms_free, |
| ms___builtin_delete, |
| ms___builtin_vec_delete, |
| ms_realloc, |
| 0 ); |
| |
| // HP_Chunks |
| malloc_list = VG_(HT_construct)( "Massif's malloc list" ); |
| |
| // Dummy node at top of the context structure. |
| alloc_xpt = new_XPt(/*ip*/0, /*parent*/NULL); |
| |
| // Initialise alloc_fns. |
| init_alloc_fns(); |
| |
| // Initialise args_for_massif. |
| args_for_massif = VG_(newXA)(VG_(malloc), VG_(free), sizeof(HChar*)); |
| } |
| |
| VG_DETERMINE_INTERFACE_VERSION(ms_pre_clo_init) |
| |
| //--------------------------------------------------------------------// |
| //--- end ---// |
| //--------------------------------------------------------------------// |