sewardj | 024598e | 2008-09-18 14:43:05 +0000 | [diff] [blame] | 1 | |
| 2 | /*--------------------------------------------------------------------*/ |
| 3 | /*--- Ptrcheck: a pointer-use checker. ---*/ |
| 4 | /*--- This file checks heap accesses. ---*/ |
| 5 | /*--- h_main.c ---*/ |
| 6 | /*--------------------------------------------------------------------*/ |
| 7 | |
| 8 | /* |
| 9 | This file is part of Ptrcheck, a Valgrind tool for checking pointer |
| 10 | use in programs. |
| 11 | |
| 12 | Initial version (Annelid): |
| 13 | |
| 14 | Copyright (C) 2003-2008 Nicholas Nethercote |
| 15 | njn@valgrind.org |
| 16 | |
| 17 | Valgrind-3.X port: |
| 18 | |
| 19 | Copyright (C) 2008-2008 OpenWorks Ltd |
| 20 | info@open-works.co.uk |
| 21 | |
| 22 | This program is free software; you can redistribute it and/or |
| 23 | modify it under the terms of the GNU General Public License as |
| 24 | published by the Free Software Foundation; either version 2 of the |
| 25 | License, or (at your option) any later version. |
| 26 | |
| 27 | This program is distributed in the hope that it will be useful, but |
| 28 | WITHOUT ANY WARRANTY; without even the implied warranty of |
| 29 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 30 | General Public License for more details. |
| 31 | |
| 32 | You should have received a copy of the GNU General Public License |
| 33 | along with this program; if not, write to the Free Software |
| 34 | Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA |
| 35 | 02111-1307, USA. |
| 36 | |
| 37 | The GNU General Public License is contained in the file COPYING. |
| 38 | */ |
| 39 | |
| 40 | // FIXME: 64-bit cleanness, check the following |
| 41 | // struct _ISNode.ownerCount is 32-bit |
| 42 | // struct _ISNode.topLevel is 32-bit |
| 43 | // or is that not really right now? add assertion checks about |
| 44 | // the max size of a node |
| 45 | |
| 46 | // FIXME: should we shadow %RIP? Maybe not. |
| 47 | |
| 48 | // FIXME: shadows of temporaries created in preamble, a la memcheck? |
| 49 | |
| 50 | // FIXME: result of add_new_segment is always ignored |
| 51 | |
| 52 | // FIXME: the mechanism involving last_seg_added is really ugly. |
| 53 | // Do something cleaner. |
| 54 | |
| 55 | // FIXME: post_reg_write_clientcall: check function pointer comparisons |
| 56 | // are safe on toc-afflicted platforms |
| 57 | |
| 58 | // FIXME: tidy up findShadowTmp |
| 59 | |
| 60 | // FIXME: post_reg_write_demux(Vg_CoreSysCall) is redundant w.r.t. |
| 61 | // the default 'NONPTR' behaviour of post_syscall. post_reg_write_demux |
| 62 | // is called first, then post_syscall. |
| 63 | |
| 64 | // FIXME: check nothing is mapped in the lowest 1M of memory at |
| 65 | // startup, or quit (to do with nonptr_or_unknown, also sync 1M |
| 66 | // magic value with PIE default load address in m_ume.c. |
| 67 | |
| 68 | // FIXME: consider whether we could paint memory acquired from |
| 69 | // sys_read etc as NONPTR rather than UNKNOWN. |
| 70 | |
| 71 | // XXX: recycle freed segments |
| 72 | |
| 73 | //-------------------------------------------------------------- |
| 74 | // Metadata: |
| 75 | // HeapBlock.id :: Seg (stored as heap shadowchunk; always non-zero) |
| 76 | // MemLoc.aseg :: Seg (implicitly stored) |
| 77 | // MemLoc.vseg :: Seg (explicitly stored as the shadow memory) |
| 78 | // RegLoc.vseg :: Seg (explicitly stored as shadow registers) |
| 79 | // |
| 80 | // A Seg is made when new memory is created, eg. with malloc() or mmap(). |
| 81 | // There are two other Segs: |
| 82 | // - NONPTR: for something that's definitely not a pointer |
| 83 | // - UNKNOWN: for something that could be a pointer |
| 84 | // - BOTTOM: used with pointer differences (see below) |
| 85 | // |
| 86 | // MemLoc.vseg is done at word granularity. If a pointer is written |
| 87 | // to memory misaligned, the information about it will be lost -- it's |
| 88 | // treated as two sub-word writes to two adjacent words. This avoids |
| 89 | // certain nasty cases that could arise if we tried to track unaligned |
| 90 | // pointers. Fortunately, misalignment is rare so we don't lose much |
| 91 | // information this way. |
| 92 | // |
| 93 | // MemLoc.aseg is done at byte granularity, and *implicitly* -- ie. not |
| 94 | // directly accessible like MemLoc.vseg, but only by searching through all |
| 95 | // the segments. Fortunately, it's mostly checked at LOADs/STOREs; at that |
| 96 | // point we have a pointer p to the MemLoc m as the other arg of the |
| 97 | // LOAD/STORE, so we can check to see if the p.vseg's range includes m. If |
| 98 | // not, it's an error and we have to search through all segments to find out |
| 99 | // what m.aseg really is. That's still pretty fast though, thanks to the |
| 100 | // interval skip-list used. With syscalls we must also do the skip-list |
| 101 | // search, but only on the first and last bytes touched. |
| 102 | //-------------------------------------------------------------- |
| 103 | |
| 104 | //-------------------------------------------------------------- |
| 105 | // Assumptions, etc: |
| 106 | // - see comment at top of SK_(instrument)() for how sub-word ops are |
| 107 | // handled. |
| 108 | // |
| 109 | // - ioctl(), socketcall() (and ipc() will be) assumed to return non-pointers |
| 110 | // |
| 111 | // - FPU_W is assumed to never write pointers. |
| 112 | // |
| 113 | // - Assuming none of the post_mem_writes create segments worth tracking. |
| 114 | // |
| 115 | // - Treating mmap'd segments (all! including code) like heap segments. But |
| 116 | // their ranges can change, new ones can be created by unmapping parts of |
| 117 | // old segments, etc. But this nasty behaviour seems to never happen -- |
| 118 | // there are assertions checking it. |
| 119 | //-------------------------------------------------------------- |
| 120 | |
| 121 | //-------------------------------------------------------------- |
| 122 | // What I am checking: |
| 123 | // - Type errors: |
| 124 | // * ADD, OR, LEA2: error if two pointer inputs. |
| 125 | // * ADC, SBB: error if one or two pointer inputs. |
| 126 | // * AND, OR: error if two unequal pointer inputs. |
| 127 | // * NEG: error if pointer input. |
| 128 | // * {,i}mul_32_64 if either input is a pointer. |
| 129 | // * shldl/shrdl, bsf/bsr if any inputs are pointers. |
| 130 | // |
| 131 | // - LOAD, STORE: |
| 132 | // * ptr.vseg must match ptee.aseg. |
| 133 | // * ptee.aseg must not be a freed segment. |
| 134 | // |
| 135 | // - syscalls: for those accessing memory, look at first and last bytes: |
| 136 | // * check first.aseg == last.aseg |
| 137 | // * check first.aseg and last.aseg are not freed segments. |
| 138 | // |
| 139 | // What I am not checking, that I expected to when I started: |
| 140 | // - AND, XOR: allowing two pointers to be used if both from the same segment, |
| 141 | // because "xor %r,%r" is commonly used to zero %r, and "test %r,%r" |
| 142 | // (which is translated with an AND) is common too. |
| 143 | // |
| 144 | // - div_64_32/idiv_64_32 can take pointer inputs for the dividend; |
| 145 | // division doesn't make sense, but modulo does, and they're done with the |
| 146 | // same instruction. (Could try to be super-clever and watch the outputs |
| 147 | // to see if the quotient is used, but not worth it.) |
| 148 | // |
| 149 | // - mul_64_32/imul_64_32 can take pointers inputs for one arg or the |
| 150 | // other, but not both. This is because some programs (eg. Mozilla |
| 151 | // Firebird) multiply pointers in hash routines. |
| 152 | // |
| 153 | // - NEG: can take a pointer. It happens in glibc in a few places. I've |
| 154 | // seen the code, didn't understand it, but it's done deliberately. |
| 155 | // |
| 156 | // What I am not checking/doing, but could, but it would require more |
| 157 | // instrumentation and/or slow things down a bit: |
| 158 | // - SUB: when differencing two pointers, result is BOTTOM, ie. "don't |
| 159 | // check". Could link segments instead, slower but a bit more accurate. |
| 160 | // Also use BOTTOM when doing (ptr - unknown), which could be a pointer |
| 161 | // difference with a stack/static pointer. |
| 162 | // |
| 163 | // - PUTF: input should be non-pointer |
| 164 | // |
| 165 | // - arithmetic error messages: eg. for adding two pointers, just giving the |
| 166 | // segments, not the actual pointers. |
| 167 | // |
| 168 | // What I am not checking, and would be difficult: |
| 169 | // - mmap(...MAP_FIXED...) is not handled specially. It might be used in |
| 170 | // ways that fool Ptrcheck into giving false positives. |
| 171 | // |
| 172 | // - syscalls: for those accessing memory, not checking that the asegs of the |
| 173 | // accessed words match the vseg of the accessing pointer, because the |
| 174 | // vseg is not easily accessible at the required time (would required |
| 175 | // knowing for every syscall which register each arg came in, and looking |
| 176 | // there). |
| 177 | // |
| 178 | // What I am not checking, and would be difficult, but doesn't matter: |
| 179 | // - free(p): similar to syscalls, not checking that the p.vseg matches the |
| 180 | // aseg of the first byte in the block. However, Memcheck does an |
| 181 | // equivalent "bad free" check using shadow_chunks; indeed, Ptrcheck could |
| 182 | // do the same check, but there's no point duplicating functionality. So |
| 183 | // no loss, really. |
| 184 | // |
| 185 | // Other: |
| 186 | // - not doing anything with mprotect(); probably not worth the effort. |
| 187 | //-------------------------------------------------------------- |
| 188 | |
| 189 | //-------------------------------------------------------------- |
| 190 | // Todo: |
| 191 | // - Segments for stack frames. Would detect (some, large) stack |
| 192 | // over/under-runs, dangling pointers. |
| 193 | // |
| 194 | // - Segments for static data. Would detect over/under-runs. Requires |
| 195 | // reading debug info. |
| 196 | //-------------------------------------------------------------- |
| 197 | |
| 198 | //-------------------------------------------------------------- |
| 199 | // Some profiling results: |
| 200 | // twolf konq date sz |
| 201 | // 1. started 35.0s 14.7 |
| 202 | // 2. introduced GETV/PUTV 30.2s 10.1 |
| 203 | // 3. inlined check_load_or_store 5.6s 27.5s 10.1 |
| 204 | // 4. (made check_load, check_store4 regparm(0)) (27.9s) (11.0) |
| 205 | // 5. um, not sure 5.3s 27.3s 10.6 |
| 206 | // ... |
| 207 | // 6. after big changes, corrections 11.2s 32.8s 14.0 |
| 208 | // 7. removed link-segment chasing in check/L/S 8.9s 30.8s 14.0 |
| 209 | // 8. avoiding do_lea1 if k is a nonptr 8.0s 28.0s 12.9 |
| 210 | //-------------------------------------------------------------- |
| 211 | |
| 212 | //#include "vg_skin.h" |
| 213 | |
| 214 | #include "pub_tool_basics.h" |
| 215 | #include "pub_tool_libcbase.h" |
| 216 | #include "pub_tool_libcprint.h" |
| 217 | #include "pub_tool_libcassert.h" |
| 218 | #include "pub_tool_mallocfree.h" |
| 219 | #include "pub_tool_execontext.h" |
| 220 | #include "pub_tool_hashtable.h" |
| 221 | #include "pub_tool_tooliface.h" |
| 222 | #include "pub_tool_replacemalloc.h" |
| 223 | #include "pub_tool_options.h" |
| 224 | #include "pub_tool_execontext.h" |
| 225 | #include "pub_tool_aspacemgr.h" // VG_(am_shadow_malloc) |
| 226 | #include "pub_tool_vki.h" // VKI_MAX_PAGE_SIZE |
| 227 | #include "pub_tool_machine.h" // VG_({get,set}_shadow_regs_area) et al |
| 228 | #include "pub_tool_debuginfo.h" // VG_(get_fnname) |
| 229 | #include "pub_tool_threadstate.h" // VG_(get_running_tid) |
| 230 | #include "pub_tool_oset.h" |
| 231 | #include "pub_tool_vkiscnums.h" |
| 232 | #include "pub_tool_machine.h" |
| 233 | #include "pub_tool_wordfm.h" |
| 234 | #include "pub_tool_xarray.h" |
| 235 | |
| 236 | #include "pc_common.h" |
| 237 | |
| 238 | //#include "h_list.h" |
| 239 | #include "h_main.h" |
| 240 | |
| 241 | #include "sg_main.h" // sg_instrument_*, and struct _SGEnv |
| 242 | |
| 243 | |
| 244 | |
| 245 | /*------------------------------------------------------------*/ |
| 246 | /*--- Debug/trace options ---*/ |
| 247 | /*------------------------------------------------------------*/ |
| 248 | |
| 249 | /* Set to 1 to do sanity checks on Seg values in many places, which |
| 250 | checks if bogus Segs are in circulation. Quite expensive from a |
| 251 | performance point of view. */ |
| 252 | #define SC_SEGS 0 |
| 253 | |
| 254 | static ULong stats__client_mallocs = 0; |
| 255 | static ULong stats__client_frees = 0; |
| 256 | static ULong stats__segs_allocd = 0; |
| 257 | static ULong stats__segs_recycled = 0; |
sewardj | 024598e | 2008-09-18 14:43:05 +0000 | [diff] [blame] | 258 | |
| 259 | |
| 260 | ////////////////////////////////////////////////////////////// |
| 261 | // // |
| 262 | // Segments low level storage // |
| 263 | // // |
| 264 | ////////////////////////////////////////////////////////////// |
| 265 | |
| 266 | // NONPTR, UNKNOWN, BOTTOM defined in h_main.h since |
| 267 | // pc_common.c needs to see them, for error processing |
| 268 | |
| 269 | // we only start recycling segs when this many exist |
| 270 | #define N_FREED_SEGS (1 * 1000 * 1000) |
| 271 | |
| 272 | struct _Seg { |
| 273 | Addr addr; |
| 274 | SizeT szB; /* may be zero */ |
| 275 | ExeContext* ec; /* where malloc'd or freed */ |
| 276 | /* When 1, indicates block is in use. Otherwise, used to form a |
| 277 | linked list of freed blocks, running from oldest freed block to |
| 278 | the most recently freed block. */ |
| 279 | struct _Seg* nextfree; |
| 280 | }; |
| 281 | |
| 282 | // Determines if 'a' is before, within, or after seg's range. Sets 'cmp' to |
| 283 | // -1/0/1 accordingly. Sets 'n' to the number of bytes before/within/after. |
| 284 | void Seg__cmp(Seg* seg, Addr a, Int* cmp, UWord* n) |
| 285 | { |
| 286 | if (a < seg->addr) { |
| 287 | *cmp = -1; |
| 288 | *n = seg->addr - a; |
| 289 | } else if (a < seg->addr + seg->szB && seg->szB > 0) { |
| 290 | *cmp = 0; |
| 291 | *n = a - seg->addr; |
| 292 | } else { |
| 293 | *cmp = 1; |
| 294 | *n = a - (seg->addr + seg->szB); |
| 295 | } |
| 296 | } |
| 297 | |
| 298 | inline Bool Seg__is_freed(Seg* seg) |
| 299 | { |
| 300 | if (!is_known_segment(seg)) |
| 301 | return False; |
| 302 | else |
| 303 | return seg->nextfree != (Seg*)1; |
| 304 | } |
| 305 | |
| 306 | ExeContext* Seg__where(Seg* seg) |
| 307 | { |
| 308 | tl_assert(is_known_segment(seg)); |
| 309 | return seg->ec; |
| 310 | } |
| 311 | |
| 312 | SizeT Seg__size(Seg* seg) |
| 313 | { |
| 314 | tl_assert(is_known_segment(seg)); |
| 315 | return seg->szB; |
| 316 | } |
| 317 | |
| 318 | Addr Seg__addr(Seg* seg) |
| 319 | { |
| 320 | tl_assert(is_known_segment(seg)); |
| 321 | return seg->addr; |
| 322 | } |
| 323 | |
| 324 | |
| 325 | #define N_SEGS_PER_GROUP 10000 |
| 326 | |
| 327 | typedef |
| 328 | struct _SegGroup { |
| 329 | struct _SegGroup* admin; |
| 330 | UWord nextfree; /* 0 .. N_SEGS_PER_GROUP */ |
| 331 | Seg segs[N_SEGS_PER_GROUP]; |
| 332 | } |
| 333 | SegGroup; |
| 334 | |
| 335 | static SegGroup* group_list = NULL; |
| 336 | static UWord nFreeSegs = 0; |
| 337 | static Seg* freesegs_youngest = NULL; |
| 338 | static Seg* freesegs_oldest = NULL; |
| 339 | |
| 340 | |
| 341 | static SegGroup* new_SegGroup ( void ) { |
| 342 | SegGroup* g = VG_(malloc)("pc.h_main.nTG.1", sizeof(SegGroup)); |
| 343 | VG_(memset)(g, 0, sizeof(*g)); |
| 344 | return g; |
| 345 | } |
| 346 | |
| 347 | /* Get a completely new Seg */ |
| 348 | static Seg* new_Seg ( void ) |
| 349 | { |
| 350 | Seg* teg; |
| 351 | SegGroup* g; |
| 352 | if (group_list == NULL) { |
| 353 | g = new_SegGroup(); |
| 354 | g->admin = NULL; |
| 355 | group_list = g; |
| 356 | } |
| 357 | tl_assert(group_list->nextfree <= N_SEGS_PER_GROUP); |
| 358 | if (group_list->nextfree == N_SEGS_PER_GROUP) { |
| 359 | g = new_SegGroup(); |
| 360 | g->admin = group_list; |
| 361 | group_list = g; |
| 362 | } |
| 363 | tl_assert(group_list->nextfree < N_SEGS_PER_GROUP); |
| 364 | teg = &group_list->segs[ group_list->nextfree ]; |
| 365 | group_list->nextfree++; |
| 366 | stats__segs_allocd++; |
| 367 | return teg; |
| 368 | } |
| 369 | |
| 370 | static Seg* get_Seg_for_malloc ( void ) |
| 371 | { |
| 372 | Seg* seg; |
| 373 | if (nFreeSegs < N_FREED_SEGS) { |
| 374 | seg = new_Seg(); |
| 375 | seg->nextfree = (Seg*)1; |
| 376 | return seg; |
| 377 | } |
| 378 | /* else recycle the oldest Seg in the free list */ |
| 379 | tl_assert(freesegs_youngest); |
| 380 | tl_assert(freesegs_oldest); |
| 381 | tl_assert(freesegs_youngest != freesegs_oldest); |
| 382 | seg = freesegs_oldest; |
| 383 | freesegs_oldest = seg->nextfree; |
| 384 | nFreeSegs--; |
| 385 | seg->nextfree = (Seg*)1; |
| 386 | stats__segs_recycled++; |
| 387 | return seg; |
| 388 | } |
| 389 | |
| 390 | static void set_Seg_freed ( Seg* seg ) |
| 391 | { |
| 392 | tl_assert(seg); |
| 393 | tl_assert(!Seg__is_freed(seg)); |
| 394 | if (nFreeSegs == 0) { |
| 395 | tl_assert(freesegs_oldest == NULL); |
| 396 | tl_assert(freesegs_youngest == NULL); |
| 397 | seg->nextfree = NULL; |
| 398 | freesegs_youngest = seg; |
| 399 | freesegs_oldest = seg; |
| 400 | nFreeSegs++; |
| 401 | } else { |
| 402 | tl_assert(freesegs_youngest); |
| 403 | tl_assert(freesegs_oldest); |
| 404 | if (nFreeSegs == 1) { |
| 405 | tl_assert(freesegs_youngest == freesegs_oldest); |
| 406 | } else { |
| 407 | tl_assert(freesegs_youngest != freesegs_oldest); |
| 408 | } |
| 409 | tl_assert(freesegs_youngest->nextfree == NULL); |
| 410 | tl_assert(seg != freesegs_youngest && seg != freesegs_oldest); |
| 411 | seg->nextfree = NULL; |
| 412 | freesegs_youngest->nextfree = seg; |
| 413 | freesegs_youngest = seg; |
| 414 | nFreeSegs++; |
| 415 | } |
| 416 | } |
| 417 | |
sewardj | 9520845 | 2008-10-18 19:55:31 +0000 | [diff] [blame] | 418 | static WordFM* addr_to_seg_map = NULL; /* GuestAddr -> Seg* */ |
sewardj | 024598e | 2008-09-18 14:43:05 +0000 | [diff] [blame] | 419 | |
| 420 | static void addr_to_seg_map_ENSURE_INIT ( void ) |
| 421 | { |
| 422 | if (UNLIKELY(addr_to_seg_map == NULL)) { |
| 423 | addr_to_seg_map = VG_(newFM)( VG_(malloc), "pc.h_main.attmEI.1", |
sewardj | 9520845 | 2008-10-18 19:55:31 +0000 | [diff] [blame] | 424 | VG_(free), NULL/*unboxedcmp*/ ); |
sewardj | 024598e | 2008-09-18 14:43:05 +0000 | [diff] [blame] | 425 | } |
| 426 | } |
| 427 | |
| 428 | static Seg* find_Seg_by_addr ( Addr ga ) |
| 429 | { |
| 430 | UWord keyW, valW; |
| 431 | addr_to_seg_map_ENSURE_INIT(); |
| 432 | if (VG_(lookupFM)( addr_to_seg_map, &keyW, &valW, (UWord)ga )) { |
| 433 | tl_assert(keyW == ga); |
| 434 | return (Seg*)valW; |
| 435 | } else { |
| 436 | return NULL; |
| 437 | } |
| 438 | } |
| 439 | |
| 440 | static void bind_addr_to_Seg ( Addr ga, Seg* seg ) |
| 441 | { |
| 442 | Bool b; |
| 443 | addr_to_seg_map_ENSURE_INIT(); |
| 444 | b = VG_(addToFM)( addr_to_seg_map, (UWord)ga, (UWord)seg ); |
| 445 | tl_assert(!b); /* else ga is already bound */ |
| 446 | } |
| 447 | |
| 448 | static void unbind_addr_from_Seg ( Addr ga ) |
| 449 | { |
| 450 | Bool b; |
| 451 | UWord keyW, valW; |
| 452 | addr_to_seg_map_ENSURE_INIT(); |
| 453 | b = VG_(delFromFM)( addr_to_seg_map, &keyW, &valW, (UWord)ga ); |
| 454 | tl_assert(b); /* else ga was not already bound */ |
| 455 | tl_assert(keyW == ga); |
| 456 | tl_assert(valW != 0); |
| 457 | } |
| 458 | |
| 459 | |
| 460 | ////////////////////////////////////////////////////////////// |
| 461 | ////////////////////////////////////////////////////////////// |
| 462 | ////////////////////////////////////////////////////////////// |
| 463 | |
| 464 | // So that post_reg_write_clientcall knows the segment just allocated. |
| 465 | static Seg* last_seg_added = NULL; |
| 466 | |
| 467 | // Returns the added heap segment |
| 468 | static Seg* add_new_segment ( ThreadId tid, Addr p, SizeT size ) |
| 469 | { |
| 470 | Seg* seg = get_Seg_for_malloc(); |
| 471 | tl_assert(seg != (Seg*)1); /* since we're using 1 as a special value */ |
| 472 | seg->addr = p; |
| 473 | seg->szB = size; |
| 474 | seg->ec = VG_(record_ExeContext)( tid, 0/*first_ip_delta*/ ); |
| 475 | tl_assert(!Seg__is_freed(seg)); |
| 476 | |
| 477 | bind_addr_to_Seg(p, seg); |
| 478 | |
| 479 | last_seg_added = seg; |
| 480 | |
| 481 | return seg; |
| 482 | } |
| 483 | |
| 484 | // Forward declarations |
| 485 | static void copy_mem( Addr from, Addr to, SizeT len ); |
| 486 | static void set_mem_unknown ( Addr a, SizeT len ); |
| 487 | |
| 488 | static inline VG_REGPARM(1) Seg* nonptr_or_unknown(UWord x); /*fwds*/ |
| 489 | |
| 490 | static |
| 491 | void* alloc_and_new_mem_heap ( ThreadId tid, |
| 492 | SizeT size, SizeT alignment, Bool is_zeroed ) |
| 493 | { |
| 494 | Addr p; |
| 495 | |
| 496 | if ( ((SSizeT)size) < 0) return NULL; |
| 497 | |
| 498 | p = (Addr)VG_(cli_malloc)(alignment, size); |
| 499 | if (is_zeroed) VG_(memset)((void*)p, 0, size); |
| 500 | |
| 501 | set_mem_unknown( p, size ); |
| 502 | add_new_segment( tid, p, size ); |
| 503 | |
| 504 | stats__client_mallocs++; |
| 505 | return (void*)p; |
| 506 | } |
| 507 | |
| 508 | static void die_and_free_mem_heap ( ThreadId tid, Seg* seg ) |
| 509 | { |
| 510 | // Empty and free the actual block |
| 511 | tl_assert(!Seg__is_freed(seg)); |
| 512 | set_mem_unknown( seg->addr, seg->szB ); |
| 513 | |
| 514 | VG_(cli_free)( (void*)seg->addr ); |
| 515 | |
| 516 | // Remember where freed |
| 517 | seg->ec = VG_(record_ExeContext)( tid, 0/*first_ip_delta*/ ); |
| 518 | |
| 519 | set_Seg_freed(seg); |
| 520 | unbind_addr_from_Seg( seg->addr ); |
| 521 | |
| 522 | stats__client_frees++; |
| 523 | } |
| 524 | |
| 525 | static void handle_free_heap( ThreadId tid, void* p ) |
| 526 | { |
| 527 | Seg* seg = find_Seg_by_addr( (Addr)p ); |
| 528 | if (!seg) { |
| 529 | /* freeing a block that wasn't malloc'd. Ignore. */ |
| 530 | return; |
| 531 | } |
| 532 | die_and_free_mem_heap( tid, seg ); |
| 533 | } |
| 534 | |
| 535 | |
| 536 | /*------------------------------------------------------------*/ |
| 537 | /*--- Shadow memory ---*/ |
| 538 | /*------------------------------------------------------------*/ |
| 539 | |
| 540 | /* Shadow memory holds one Seg for each naturally aligned (guest) |
| 541 | word. For a 32 bit target (assuming host word size == guest word |
| 542 | size) that means one Seg per 4 bytes, and each Seg occupies 4 |
| 543 | bytes. For a 64 bit target that means one Seg per 8 bytes, and |
| 544 | each Seg occupies 8 bytes. Hence in each case the overall space |
| 545 | overhead for shadow memory is 1:1. |
| 546 | |
| 547 | This does however make it a bit tricky to size SecMap.vseg[], simce |
| 548 | it needs to hold 16384 entries for 32 bit targets but only 8192 |
| 549 | entries for 64 bit targets. */ |
| 550 | |
| 551 | #if 0 |
| 552 | __attribute__((unused)) |
| 553 | static void pp_curr_ExeContext(void) |
| 554 | { |
| 555 | VG_(pp_ExeContext)( |
| 556 | VG_(get_ExeContext)( |
| 557 | VG_(get_current_or_recent_tid)() ) ); |
| 558 | VG_(message)(Vg_UserMsg, ""); |
| 559 | } |
| 560 | #endif |
| 561 | |
| 562 | #if defined(VGA_x86) || defined(VGA_ppc32) |
| 563 | # define SHMEM_SECMAP_MASK 0xFFFC |
| 564 | # define SHMEM_SECMAP_SHIFT 2 |
| 565 | # define SHMEM_IS_WORD_ALIGNED(_a) VG_IS_4_ALIGNED(_a) |
| 566 | # define SEC_MAP_WORDS (0x10000UL / 4UL) /* 16k */ |
| 567 | #elif defined(VGA_amd64) || defined(VGA_ppc64) |
| 568 | # define SHMEM_SECMAP_MASK 0xFFF8 |
| 569 | # define SHMEM_SECMAP_SHIFT 3 |
| 570 | # define SHMEM_IS_WORD_ALIGNED(_a) VG_IS_8_ALIGNED(_a) |
| 571 | # define SEC_MAP_WORDS (0x10000UL / 8UL) /* 8k */ |
| 572 | #else |
| 573 | # error "Unknown arch" |
| 574 | #endif |
| 575 | |
| 576 | typedef |
| 577 | struct { |
| 578 | Seg* vseg[SEC_MAP_WORDS]; |
| 579 | } |
| 580 | SecMap; |
| 581 | |
| 582 | static SecMap distinguished_secondary_map; |
| 583 | |
| 584 | /* An entry in the primary map. base must be a 64k-aligned value, and |
| 585 | sm points at the relevant secondary map. The secondary may be |
| 586 | either a real secondary, or the distinguished secondary. DO NOT |
| 587 | CHANGE THIS LAYOUT: the first word has to be the key for OSet fast |
| 588 | lookups. |
| 589 | */ |
| 590 | typedef |
| 591 | struct { |
| 592 | Addr base; |
| 593 | SecMap* sm; |
| 594 | } |
| 595 | PriMapEnt; |
| 596 | |
| 597 | /* Primary map is an OSet of PriMapEnt (primap_L2), "fronted" by a |
| 598 | cache (primap_L1). */ |
| 599 | |
| 600 | /* Tunable parameter: How big is the L1 queue? */ |
| 601 | #define N_PRIMAP_L1 24 |
| 602 | |
| 603 | /* Tunable parameter: How far along the L1 queue to insert |
| 604 | entries resulting from L2 lookups? */ |
| 605 | #define PRIMAP_L1_INSERT_IX 12 |
| 606 | |
| 607 | static struct { |
| 608 | Addr base; // must be 64k aligned |
| 609 | PriMapEnt* ent; // pointer to the matching primap_L2 node |
| 610 | } |
| 611 | primap_L1[N_PRIMAP_L1]; |
| 612 | |
| 613 | static OSet* primap_L2 = NULL; |
| 614 | |
| 615 | |
| 616 | /* # searches initiated in auxmap_L1, and # base cmps required */ |
| 617 | static ULong n_primap_L1_searches = 0; |
| 618 | static ULong n_primap_L1_cmps = 0; |
| 619 | /* # of searches that missed in auxmap_L1 and therefore had to |
| 620 | be handed to auxmap_L2. And the number of nodes inserted. */ |
| 621 | static ULong n_primap_L2_searches = 0; |
| 622 | static ULong n_primap_L2_nodes = 0; |
| 623 | |
| 624 | |
| 625 | static void init_shadow_memory ( void ) |
| 626 | { |
| 627 | Int i; |
| 628 | |
| 629 | for (i = 0; i < SEC_MAP_WORDS; i++) |
| 630 | distinguished_secondary_map.vseg[i] = NONPTR; |
| 631 | |
| 632 | for (i = 0; i < N_PRIMAP_L1; i++) { |
| 633 | primap_L1[i].base = 1; /* not 64k aligned, so doesn't match any |
| 634 | request ==> slot is empty */ |
| 635 | primap_L1[i].ent = NULL; |
| 636 | } |
| 637 | |
| 638 | tl_assert(0 == offsetof(PriMapEnt,base)); |
| 639 | tl_assert(sizeof(Addr) == sizeof(void*)); |
| 640 | primap_L2 = VG_(OSetGen_Create)( /*keyOff*/ offsetof(PriMapEnt,base), |
| 641 | /*fastCmp*/ NULL, |
| 642 | VG_(malloc), "pc.h_main.ism.1", |
| 643 | VG_(free) ); |
| 644 | tl_assert(primap_L2); |
| 645 | } |
| 646 | |
| 647 | static void insert_into_primap_L1_at ( Word rank, PriMapEnt* ent ) |
| 648 | { |
| 649 | Word i; |
| 650 | tl_assert(ent); |
| 651 | tl_assert(rank >= 0 && rank < N_PRIMAP_L1); |
| 652 | for (i = N_PRIMAP_L1-1; i > rank; i--) |
| 653 | primap_L1[i] = primap_L1[i-1]; |
| 654 | primap_L1[rank].base = ent->base; |
| 655 | primap_L1[rank].ent = ent; |
| 656 | } |
| 657 | |
| 658 | static inline PriMapEnt* maybe_find_in_primap ( Addr a ) |
| 659 | { |
| 660 | PriMapEnt key; |
| 661 | PriMapEnt* res; |
| 662 | Word i; |
| 663 | |
| 664 | a &= ~(Addr)0xFFFF; |
| 665 | |
| 666 | /* First search the front-cache, which is a self-organising |
| 667 | list containing the most popular entries. */ |
| 668 | |
| 669 | if (LIKELY(primap_L1[0].base == a)) |
| 670 | return primap_L1[0].ent; |
| 671 | if (LIKELY(primap_L1[1].base == a)) { |
| 672 | Addr t_base = primap_L1[0].base; |
| 673 | PriMapEnt* t_ent = primap_L1[0].ent; |
| 674 | primap_L1[0].base = primap_L1[1].base; |
| 675 | primap_L1[0].ent = primap_L1[1].ent; |
| 676 | primap_L1[1].base = t_base; |
| 677 | primap_L1[1].ent = t_ent; |
| 678 | return primap_L1[0].ent; |
| 679 | } |
| 680 | |
| 681 | n_primap_L1_searches++; |
| 682 | |
| 683 | for (i = 0; i < N_PRIMAP_L1; i++) { |
| 684 | if (primap_L1[i].base == a) { |
| 685 | break; |
| 686 | } |
| 687 | } |
| 688 | tl_assert(i >= 0 && i <= N_PRIMAP_L1); |
| 689 | |
| 690 | n_primap_L1_cmps += (ULong)(i+1); |
| 691 | |
| 692 | if (i < N_PRIMAP_L1) { |
| 693 | if (i > 0) { |
| 694 | Addr t_base = primap_L1[i-1].base; |
| 695 | PriMapEnt* t_ent = primap_L1[i-1].ent; |
| 696 | primap_L1[i-1].base = primap_L1[i-0].base; |
| 697 | primap_L1[i-1].ent = primap_L1[i-0].ent; |
| 698 | primap_L1[i-0].base = t_base; |
| 699 | primap_L1[i-0].ent = t_ent; |
| 700 | i--; |
| 701 | } |
| 702 | return primap_L1[i].ent; |
| 703 | } |
| 704 | |
| 705 | n_primap_L2_searches++; |
| 706 | |
| 707 | /* First see if we already have it. */ |
| 708 | key.base = a; |
| 709 | key.sm = 0; |
| 710 | |
| 711 | res = VG_(OSetGen_Lookup)(primap_L2, &key); |
| 712 | if (res) |
| 713 | insert_into_primap_L1_at( PRIMAP_L1_INSERT_IX, res ); |
| 714 | return res; |
| 715 | } |
| 716 | |
| 717 | static SecMap* alloc_secondary_map ( void ) |
| 718 | { |
| 719 | SecMap* map; |
| 720 | UInt i; |
| 721 | |
| 722 | // JRS 2008-June-25: what's the following assertion for? |
| 723 | tl_assert(0 == (sizeof(SecMap) % VKI_MAX_PAGE_SIZE)); |
| 724 | |
| 725 | map = VG_(am_shadow_alloc)( sizeof(SecMap) ); |
| 726 | if (map == NULL) |
| 727 | VG_(out_of_memory_NORETURN)( "annelid:allocate new SecMap", |
| 728 | sizeof(SecMap) ); |
| 729 | |
| 730 | for (i = 0; i < SEC_MAP_WORDS; i++) |
| 731 | map->vseg[i] = NONPTR; |
| 732 | if (0) VG_(printf)("XXX new secmap %p\n", map); |
| 733 | return map; |
| 734 | } |
| 735 | |
| 736 | static PriMapEnt* find_or_alloc_in_primap ( Addr a ) |
| 737 | { |
| 738 | PriMapEnt *nyu, *res; |
| 739 | |
| 740 | /* First see if we already have it. */ |
| 741 | res = maybe_find_in_primap( a ); |
| 742 | if (LIKELY(res)) |
| 743 | return res; |
| 744 | |
| 745 | /* Ok, there's no entry in the secondary map, so we'll have |
| 746 | to allocate one. */ |
| 747 | a &= ~(Addr)0xFFFF; |
| 748 | |
| 749 | nyu = (PriMapEnt*) VG_(OSetGen_AllocNode)( |
| 750 | primap_L2, sizeof(PriMapEnt) ); |
| 751 | tl_assert(nyu); |
| 752 | nyu->base = a; |
| 753 | nyu->sm = alloc_secondary_map(); |
| 754 | tl_assert(nyu->sm); |
| 755 | VG_(OSetGen_Insert)( primap_L2, nyu ); |
| 756 | insert_into_primap_L1_at( PRIMAP_L1_INSERT_IX, nyu ); |
| 757 | n_primap_L2_nodes++; |
| 758 | return nyu; |
| 759 | } |
| 760 | |
| 761 | ///////////////////////////////////////////////// |
| 762 | |
| 763 | // Nb: 'a' must be naturally word aligned for the host. |
| 764 | static inline Seg* get_mem_vseg ( Addr a ) |
| 765 | { |
| 766 | SecMap* sm = find_or_alloc_in_primap(a)->sm; |
| 767 | UWord sm_off = (a & SHMEM_SECMAP_MASK) >> SHMEM_SECMAP_SHIFT; |
| 768 | tl_assert(SHMEM_IS_WORD_ALIGNED(a)); |
| 769 | return sm->vseg[sm_off]; |
| 770 | } |
| 771 | |
| 772 | // Nb: 'a' must be naturally word aligned for the host. |
| 773 | static inline void set_mem_vseg ( Addr a, Seg* vseg ) |
| 774 | { |
| 775 | SecMap* sm = find_or_alloc_in_primap(a)->sm; |
| 776 | UWord sm_off = (a & SHMEM_SECMAP_MASK) >> SHMEM_SECMAP_SHIFT; |
| 777 | tl_assert(SHMEM_IS_WORD_ALIGNED(a)); |
| 778 | sm->vseg[sm_off] = vseg; |
| 779 | } |
| 780 | |
sewardj | 9520845 | 2008-10-18 19:55:31 +0000 | [diff] [blame] | 781 | // Find the Seg which contains the given address. |
sewardj | 024598e | 2008-09-18 14:43:05 +0000 | [diff] [blame] | 782 | // Returns UNKNOWN if no matches. Never returns BOTTOM or NONPTR. |
| 783 | // Also, only returns in-use segments, not freed ones. |
sewardj | 9520845 | 2008-10-18 19:55:31 +0000 | [diff] [blame] | 784 | /* Doing this fast is distinctly difficult when there are more than a |
| 785 | few heap allocated blocks live. Basically it is done by searching |
| 786 | addr_to_seg_map for 'a'. |
| 787 | |
| 788 | First, if 'a' is the start address of a segment, then we can detect |
| 789 | that by simply doing a VG_(lookupFM) of 'a', and we are done (nice |
| 790 | and easy). |
| 791 | |
| 792 | If 'a' is within some segment, but does not point to the start, it |
| 793 | is much more complex. We use VG_(findBoundsFM) to find the segment |
| 794 | with the largest .addr field which is <= a, and we then inspect the |
| 795 | segment to see if 'a' really falls inside it or not. This is all a |
| 796 | bit complex and fragile, and so there's a lot of assertery in the |
| 797 | code below. It has been crosschecked however against the trivial |
| 798 | _SLOW implementation shown after the end of this fn. |
| 799 | */ |
| 800 | static Seg* get_Seg_containing_addr( Addr a ) |
| 801 | { |
| 802 | UWord keyW, valW; |
| 803 | Seg* s2; |
| 804 | |
| 805 | /* Since we are going to poke around in it */ |
| 806 | addr_to_seg_map_ENSURE_INIT(); |
| 807 | |
| 808 | /* first, see if 'a' is at the start of a block. We do this both |
| 809 | because it's easy and more imporantly because VG_(findBoundsFM) |
| 810 | will fail in this case, so we need to exclude it first. */ |
| 811 | if (VG_(lookupFM)( addr_to_seg_map, &keyW, &valW, a )) { |
| 812 | tl_assert(keyW == a); |
| 813 | s2 = (Seg*)valW; |
| 814 | tl_assert(s2->addr == a); |
| 815 | } else { |
| 816 | Bool ok; |
| 817 | UWord kMin, vMin, kMax, vMax; |
| 818 | Seg minSeg; |
| 819 | Seg maxSeg; |
| 820 | UWord minAddr = 0; |
| 821 | UWord maxAddr = ~minAddr; |
| 822 | VG_(memset)(&minSeg, 0, sizeof(minSeg)); |
| 823 | VG_(memset)(&maxSeg, 0, sizeof(maxSeg)); |
| 824 | minSeg.addr = minAddr; |
| 825 | maxSeg.addr = maxAddr; |
| 826 | ok = VG_(findBoundsFM)( addr_to_seg_map, |
| 827 | &kMin, &vMin, &kMax, &vMax, |
| 828 | minAddr, (UWord)&minSeg, |
| 829 | maxAddr, (UWord)&maxSeg, a ); |
| 830 | tl_assert(ok); /* must be so, since False is only returned when |
| 831 | 'a' is directly present in the map, and we |
| 832 | just established that it isn't. */ |
| 833 | /* At this point, either vMin points at minSeg, or it points at a |
| 834 | real Seg. In the former case, there is no live heap-allocated |
| 835 | Seg which has a start address <= a, so a is not in any block. |
| 836 | In the latter case, the Seg vMin points at may or may not |
| 837 | actually contain 'a'; we can only tell that by inspecting the |
| 838 | Seg itself. */ |
| 839 | s2 = (Seg*)vMin; |
| 840 | tl_assert(kMin == s2->addr); |
| 841 | if (s2 == &minSeg) { |
| 842 | /* the former */ |
| 843 | s2 = UNKNOWN; |
| 844 | } else { |
| 845 | /* the latter */ |
| 846 | tl_assert(s2->addr <= a); |
| 847 | /* if s2 doesn't actually contain 'a', we must forget about it. */ |
| 848 | if (s2->szB == 0 /* a zero sized block can't contain anything */ |
| 849 | || s2->addr + s2->szB < a /* the usual range check */) |
| 850 | s2 = UNKNOWN; |
| 851 | } |
| 852 | /* while we're at it, do as much assertery as we can, since this |
| 853 | is all rather complex. Either vMax points at maxSeg, or it |
| 854 | points to a real block, which must have a start address |
| 855 | greater than a. */ |
| 856 | tl_assert(kMax == ((Seg*)vMax)->addr); |
| 857 | if (kMax == (UWord)&maxSeg) { |
| 858 | /* nothing we can check */ |
| 859 | } else { |
| 860 | tl_assert(a < kMax); /* hence also a < ((Seg*)vMax)->addr */ |
| 861 | } |
| 862 | } |
| 863 | |
| 864 | return s2; |
| 865 | } |
| 866 | |
| 867 | /* XXXX very slow reference implementation. Do not use. |
sewardj | 024598e | 2008-09-18 14:43:05 +0000 | [diff] [blame] | 868 | static Seg* get_Seg_containing_addr_SLOW( Addr a ) |
| 869 | { |
| 870 | SegGroup* group; |
| 871 | UWord i; |
| 872 | stats__slow_searches++; |
| 873 | for (group = group_list; group; group = group->admin) { |
| 874 | for (i = 0; i < group->nextfree; i++) { |
| 875 | stats__slow_totcmps++; |
| 876 | if (Seg__is_freed(&group->segs[i])) |
| 877 | continue; |
| 878 | if (group->segs[i].addr <= a |
| 879 | && a < group->segs[i].addr + group->segs[i].szB) |
| 880 | return &group->segs[i]; |
| 881 | } |
| 882 | } |
| 883 | return UNKNOWN; |
| 884 | } |
sewardj | 9520845 | 2008-10-18 19:55:31 +0000 | [diff] [blame] | 885 | */ |
| 886 | |
sewardj | 024598e | 2008-09-18 14:43:05 +0000 | [diff] [blame] | 887 | |
| 888 | |
| 889 | /*------------------------------------------------------------*/ |
| 890 | /*--- malloc() et al replacements ---*/ |
| 891 | /*------------------------------------------------------------*/ |
| 892 | |
| 893 | void* h_replace_malloc ( ThreadId tid, SizeT n ) |
| 894 | { |
| 895 | return alloc_and_new_mem_heap ( tid, n, VG_(clo_alignment), |
| 896 | /*is_zeroed*/False ); |
| 897 | } |
| 898 | |
| 899 | void* h_replace___builtin_new ( ThreadId tid, SizeT n ) |
| 900 | { |
| 901 | return alloc_and_new_mem_heap ( tid, n, VG_(clo_alignment), |
| 902 | /*is_zeroed*/False ); |
| 903 | } |
| 904 | |
| 905 | void* h_replace___builtin_vec_new ( ThreadId tid, SizeT n ) |
| 906 | { |
| 907 | return alloc_and_new_mem_heap ( tid, n, VG_(clo_alignment), |
| 908 | /*is_zeroed*/False ); |
| 909 | } |
| 910 | |
| 911 | void* h_replace_memalign ( ThreadId tid, SizeT align, SizeT n ) |
| 912 | { |
| 913 | return alloc_and_new_mem_heap ( tid, n, align, |
| 914 | /*is_zeroed*/False ); |
| 915 | } |
| 916 | |
| 917 | void* h_replace_calloc ( ThreadId tid, SizeT nmemb, SizeT size1 ) |
| 918 | { |
| 919 | return alloc_and_new_mem_heap ( tid, nmemb*size1, VG_(clo_alignment), |
| 920 | /*is_zeroed*/True ); |
| 921 | } |
| 922 | |
| 923 | void h_replace_free ( ThreadId tid, void* p ) |
| 924 | { |
| 925 | // Should arguably check here if p.vseg matches the segID of the |
| 926 | // pointed-to block... unfortunately, by this stage, we don't know what |
| 927 | // p.vseg is, because we don't know the address of p (the p here is a |
| 928 | // copy, and we've lost the address of its source). To do so would |
| 929 | // require passing &p in, which would require rewriting part of |
| 930 | // vg_replace_malloc.c... argh. |
| 931 | // |
| 932 | // However, Memcheck does free checking, and will catch almost all |
| 933 | // violations this checking would have caught. (Would only miss if we |
| 934 | // unluckily passed an unrelated pointer to the very start of a heap |
| 935 | // block that was unrelated to that block. This is very unlikely!) So |
| 936 | // we haven't lost much. |
| 937 | |
| 938 | handle_free_heap(tid, p); |
| 939 | } |
| 940 | |
| 941 | void h_replace___builtin_delete ( ThreadId tid, void* p ) |
| 942 | { |
| 943 | handle_free_heap(tid, p); |
| 944 | } |
| 945 | |
| 946 | void h_replace___builtin_vec_delete ( ThreadId tid, void* p ) |
| 947 | { |
| 948 | handle_free_heap(tid, p); |
| 949 | } |
| 950 | |
| 951 | void* h_replace_realloc ( ThreadId tid, void* p_old, SizeT new_size ) |
| 952 | { |
| 953 | Seg* seg; |
| 954 | |
| 955 | /* First try and find the block. */ |
| 956 | seg = find_Seg_by_addr( (Addr)p_old ); |
| 957 | if (!seg) |
| 958 | return NULL; |
| 959 | |
| 960 | tl_assert(seg->addr == (Addr)p_old); |
| 961 | |
| 962 | if (new_size <= seg->szB) { |
| 963 | /* new size is smaller: allocate, copy from old to new */ |
| 964 | Addr p_new = (Addr)VG_(cli_malloc)(VG_(clo_alignment), new_size); |
| 965 | VG_(memcpy)((void*)p_new, p_old, new_size); |
| 966 | |
| 967 | /* Notification: copy retained part */ |
| 968 | copy_mem ( (Addr)p_old, p_new, new_size ); |
| 969 | |
| 970 | /* Free old memory */ |
| 971 | die_and_free_mem_heap( tid, seg ); |
| 972 | |
| 973 | /* This has to be after die_and_free_mem_heap, otherwise the |
| 974 | former succeeds in shorting out the new block, not the |
| 975 | old, in the case when both are on the same list. */ |
| 976 | add_new_segment ( tid, p_new, new_size ); |
| 977 | |
| 978 | return (void*)p_new; |
| 979 | } else { |
| 980 | /* new size is bigger: allocate, copy from old to new */ |
| 981 | Addr p_new = (Addr)VG_(cli_malloc)(VG_(clo_alignment), new_size); |
| 982 | VG_(memcpy)((void*)p_new, p_old, seg->szB); |
| 983 | |
| 984 | /* Notification: first half kept and copied, second half new */ |
| 985 | copy_mem ( (Addr)p_old, p_new, seg->szB ); |
| 986 | set_mem_unknown( p_new + seg->szB, new_size - seg->szB ); |
| 987 | |
| 988 | /* Free old memory */ |
| 989 | die_and_free_mem_heap( tid, seg ); |
| 990 | |
| 991 | /* This has to be after die_and_free_mem_heap, otherwise the |
| 992 | former succeeds in shorting out the new block, not the old, |
| 993 | in the case when both are on the same list. NB jrs |
| 994 | 2008-Sept-11: not sure if this comment is valid/correct any |
| 995 | more -- I suspect not. */ |
| 996 | add_new_segment ( tid, p_new, new_size ); |
| 997 | |
| 998 | return (void*)p_new; |
| 999 | } |
| 1000 | } |
| 1001 | |
| 1002 | |
| 1003 | /*------------------------------------------------------------*/ |
| 1004 | /*--- Memory events ---*/ |
| 1005 | /*------------------------------------------------------------*/ |
| 1006 | |
| 1007 | static inline |
| 1008 | void set_mem ( Addr a, SizeT len, Seg* seg ) |
| 1009 | { |
| 1010 | Addr end; |
| 1011 | |
| 1012 | if (0 == len) |
| 1013 | return; |
| 1014 | |
| 1015 | if (len > 100 * 1000 * 1000) |
| 1016 | VG_(message)(Vg_UserMsg, |
| 1017 | "Warning: set address range state: large range %lu", len); |
| 1018 | |
| 1019 | a = VG_ROUNDDN(a, sizeof(UWord)); |
| 1020 | end = VG_ROUNDUP(a + len, sizeof(UWord)); |
| 1021 | for ( ; a < end; a += sizeof(UWord)) |
| 1022 | set_mem_vseg(a, seg); |
| 1023 | } |
| 1024 | |
| 1025 | static void set_mem_unknown( Addr a, SizeT len ) |
| 1026 | { |
| 1027 | set_mem( a, len, UNKNOWN ); |
| 1028 | } |
| 1029 | |
| 1030 | //zz static void set_mem_nonptr( Addr a, UInt len ) |
| 1031 | //zz { |
| 1032 | //zz set_mem( a, len, NONPTR ); |
| 1033 | //zz } |
| 1034 | |
| 1035 | void h_new_mem_startup( Addr a, SizeT len, |
| 1036 | Bool rr, Bool ww, Bool xx, ULong di_handle ) |
| 1037 | { |
| 1038 | if (0) VG_(printf)("new_mem_startup(%#lx,%lu)\n", a, len); |
| 1039 | set_mem_unknown( a, len ); |
| 1040 | //add_new_segment( VG_(get_running_tid)(), a, len, SegMmap ); |
| 1041 | } |
| 1042 | |
| 1043 | //zz // XXX: Currently not doing anything with brk() -- new segments, or not? |
| 1044 | //zz // Proper way to do it would be to grow/shrink a single, special brk segment. |
| 1045 | //zz // |
| 1046 | //zz // brk is difficult: it defines a single segment, of changeable size. |
| 1047 | //zz // It starts off with size zero, at the address given by brk(0). There are |
| 1048 | //zz // no pointers within the program to it. Any subsequent calls by the |
| 1049 | //zz // program to brk() (possibly growing or shrinking it) return pointers to |
| 1050 | //zz // the *end* of the segment (nb: this is the kernel brk(), which is |
| 1051 | //zz // different to the libc brk()). |
| 1052 | //zz // |
| 1053 | //zz // If fixing this, don't forget to update the brk case in SK_(post_syscall). |
| 1054 | //zz // |
| 1055 | //zz // Nb: not sure if the return value is the last byte addressible, or one |
| 1056 | //zz // past the end of the segment. |
| 1057 | //zz // |
| 1058 | //zz static void new_mem_brk( Addr a, UInt len ) |
| 1059 | //zz { |
| 1060 | //zz set_mem_unknown(a, len); |
| 1061 | //zz //VG_(skin_panic)("can't handle new_mem_brk"); |
| 1062 | //zz } |
| 1063 | |
| 1064 | // Not quite right: if you mmap a segment into a specified place, it could |
| 1065 | // be legitimate to do certain arithmetic with the pointer that it wouldn't |
| 1066 | // otherwise. Hopefully this is rare, though. |
| 1067 | void h_new_mem_mmap( Addr a, SizeT len, |
| 1068 | Bool rr, Bool ww, Bool xx, ULong di_handle ) |
| 1069 | { |
| 1070 | if (0) VG_(printf)("new_mem_mmap(%#lx,%lu)\n", a, len); |
| 1071 | //zz #if 0 |
| 1072 | //zz Seg seg = NULL; |
| 1073 | //zz |
| 1074 | //zz // Check for overlapping segments |
| 1075 | //zz #if 0 |
| 1076 | //zz is_overlapping_seg___a = a; // 'free' variable |
| 1077 | //zz is_overlapping_seg___len = len; // 'free' variable |
| 1078 | //zz seg = (Seg)VG_(HT_first_match) ( mlist, is_overlapping_seg ); |
| 1079 | //zz is_overlapping_seg___a = 0; // paranoia, reset |
| 1080 | //zz is_overlapping_seg___len = 0; // paranoia, reset |
| 1081 | //zz #endif |
| 1082 | //zz |
| 1083 | //zz // XXX: do this check properly with ISLists |
| 1084 | //zz |
| 1085 | //zz if ( ISList__findI( seglist, a, &seg )) { |
| 1086 | //zz sk_assert(SegMmap == seg->status || SegMmapFree == seg->status); |
| 1087 | //zz if (SegMmap == seg->status) |
| 1088 | //zz |
| 1089 | //zz } |
| 1090 | //zz |
| 1091 | //zz if (NULL != seg) { |
| 1092 | //zz // Right, we found an overlap |
| 1093 | //zz if (VG_(clo_verbosity) > 1) |
| 1094 | //zz VG_(message)(Vg_UserMsg, "mmap overlap: old: %#lx, %d; new: %#lx, %d", |
| 1095 | //zz seg->left, Seg__size(seg), a, len); |
| 1096 | //zz if (seg->left <= a && a <= seg->right) { |
| 1097 | //zz // New one truncates end of the old one. Nb: we don't adjust its |
| 1098 | //zz // size, because the first segment's pointer can be (and for |
| 1099 | //zz // Konqueror, is) legitimately used to access parts of the second |
| 1100 | //zz // segment. At least, I assume Konqueror is doing something legal. |
| 1101 | //zz // so that a size mismatch upon munmap isn't a problem. |
| 1102 | //zz // seg->size = a - seg->data; |
| 1103 | //zz // seg->is_truncated_map = True; |
| 1104 | //zz // if (VG_(clo_verbosity) > 1) |
| 1105 | //zz // VG_(message)(Vg_UserMsg, "old seg truncated to length %d", |
| 1106 | //zz // seg->size); |
| 1107 | //zz } else { |
| 1108 | //zz VG_(skin_panic)("Can't handle this mmap() overlap case"); |
| 1109 | //zz } |
| 1110 | //zz } |
| 1111 | set_mem_unknown( a, len ); |
| 1112 | //add_new_segment( VG_(get_running_tid)(), a, len, SegMmap ); |
| 1113 | //zz #endif |
| 1114 | } |
| 1115 | |
| 1116 | static void copy_mem( Addr from, Addr to, SizeT len ) |
| 1117 | { |
| 1118 | Addr fromend = from + len; |
| 1119 | |
| 1120 | // Must be aligned due to malloc always returning aligned objects. |
| 1121 | tl_assert(VG_IS_8_ALIGNED(from) && VG_IS_8_ALIGNED(to)); |
| 1122 | |
| 1123 | // Must only be called with positive len. |
| 1124 | if (0 == len) |
| 1125 | return; |
| 1126 | |
| 1127 | for ( ; from < fromend; from += sizeof(UWord), to += sizeof(UWord)) |
| 1128 | set_mem_vseg( to, get_mem_vseg(from) ); |
| 1129 | } |
| 1130 | |
| 1131 | //zz // Similar to SK_(realloc)() |
| 1132 | //zz static void copy_mem_remap( Addr from, Addr to, UInt len ) |
| 1133 | //zz { |
| 1134 | //zz VG_(skin_panic)("argh: copy_mem_remap"); |
| 1135 | //zz } |
| 1136 | //zz |
| 1137 | //zz static void die_mem_brk( Addr a, UInt len ) |
| 1138 | //zz { |
| 1139 | //zz set_mem_unknown(a, len); |
| 1140 | //zz // VG_(skin_panic)("can't handle die_mem_brk()"); |
| 1141 | //zz } |
| 1142 | |
| 1143 | void h_die_mem_munmap( Addr a, SizeT len ) |
| 1144 | { |
| 1145 | // handle_free_munmap( (void*)a, len ); |
| 1146 | } |
| 1147 | |
| 1148 | // Don't need to check all addresses within the block; in the absence of |
| 1149 | // discontiguous segments, the segments for the first and last bytes should |
| 1150 | // be the same. Can't easily check the pointer segment matches the block |
| 1151 | // segment, unfortunately, but the first/last check should catch most |
| 1152 | // errors. |
| 1153 | static void pre_mem_access2 ( CorePart part, ThreadId tid, Char* str, |
| 1154 | Addr s/*tart*/, Addr e/*nd*/ ) |
| 1155 | { |
| 1156 | Seg *seglo, *seghi; |
| 1157 | Bool s_in_seglo, s_in_seghi, e_in_seglo, e_in_seghi; |
| 1158 | |
| 1159 | // Don't check code being translated -- very slow, and not much point |
| 1160 | if (Vg_CoreTranslate == part) return; |
| 1161 | |
| 1162 | // Don't check the signal case -- only happens in core, no need to check |
| 1163 | if (Vg_CoreSignal == part) return; |
| 1164 | |
| 1165 | // Only expect syscalls after this point |
| 1166 | if (part != Vg_CoreSysCall) { |
| 1167 | VG_(printf)("part = %d\n", part); |
| 1168 | VG_(tool_panic)("unknown corepart in pre_mem_access2"); |
| 1169 | } |
| 1170 | |
| 1171 | // Check first and last bytes match |
sewardj | 9520845 | 2008-10-18 19:55:31 +0000 | [diff] [blame] | 1172 | seglo = get_Seg_containing_addr( s ); |
| 1173 | seghi = get_Seg_containing_addr( e ); |
sewardj | 024598e | 2008-09-18 14:43:05 +0000 | [diff] [blame] | 1174 | tl_assert( BOTTOM != seglo && NONPTR != seglo ); |
| 1175 | tl_assert( BOTTOM != seghi && NONPTR != seghi ); |
| 1176 | |
| 1177 | /* so seglo and seghi are either UNKNOWN or P(..) */ |
| 1178 | s_in_seglo |
| 1179 | = is_known_segment(seglo) |
| 1180 | && seglo->addr <= s && s < seglo->addr + seglo->szB; |
| 1181 | s_in_seghi |
| 1182 | = is_known_segment(seghi) |
| 1183 | && seghi->addr <= s && s < seghi->addr + seghi->szB; |
| 1184 | e_in_seglo |
| 1185 | = is_known_segment(seglo) |
| 1186 | && seglo->addr <= e && e < seglo->addr + seglo->szB; |
| 1187 | e_in_seghi |
| 1188 | = is_known_segment(seghi) |
| 1189 | && seghi->addr <= e && e < seghi->addr + seghi->szB; |
| 1190 | |
| 1191 | /* record an error if start and end are in different, but known |
| 1192 | segments */ |
| 1193 | if (is_known_segment(seglo) && is_known_segment(seghi) |
| 1194 | && seglo != seghi) { |
| 1195 | h_record_sysparam_error(tid, part, str, s, e, seglo, seghi); |
| 1196 | } |
| 1197 | else |
| 1198 | /* record an error if start is in a known segment but end isn't */ |
| 1199 | if (is_known_segment(seglo) && !is_known_segment(seghi)) { |
| 1200 | h_record_sysparam_error(tid, part, str, s, e, seglo, UNKNOWN); |
| 1201 | } |
| 1202 | else |
| 1203 | /* record an error if end is in a known segment but start isn't */ |
| 1204 | if (!is_known_segment(seglo) && is_known_segment(seghi)) { |
| 1205 | h_record_sysparam_error(tid, part, str, s, e, UNKNOWN, seghi); |
| 1206 | } |
| 1207 | } |
| 1208 | |
| 1209 | void h_pre_mem_access ( CorePart part, ThreadId tid, Char* s, |
| 1210 | Addr base, SizeT size ) |
| 1211 | { |
| 1212 | pre_mem_access2( part, tid, s, base, base + size - 1 ); |
| 1213 | } |
| 1214 | |
| 1215 | void h_pre_mem_read_asciiz ( CorePart part, ThreadId tid, |
| 1216 | Char* s, Addr lo ) |
| 1217 | { |
| 1218 | Addr hi = lo; |
| 1219 | |
| 1220 | // Nb: the '\0' must be included in the lo...hi range |
| 1221 | while ('\0' != *(Char*)hi) hi++; |
| 1222 | pre_mem_access2( part, tid, s, lo, hi ); |
| 1223 | } |
| 1224 | |
| 1225 | //zz static void post_mem_write(Addr a, UInt len) |
| 1226 | //zz { |
| 1227 | //zz set_mem_unknown(a, len); |
| 1228 | //zz } |
| 1229 | |
| 1230 | |
| 1231 | /*------------------------------------------------------------*/ |
| 1232 | /*--- Register event handlers ---*/ |
| 1233 | /*------------------------------------------------------------*/ |
| 1234 | |
| 1235 | //zz static void post_regs_write_init ( void ) |
| 1236 | //zz { |
| 1237 | //zz UInt i; |
| 1238 | //zz for (i = R_EAX; i <= R_EDI; i++) |
| 1239 | //zz VG_(set_shadow_archreg)( i, (UInt)UNKNOWN ); |
| 1240 | //zz |
| 1241 | //zz // Don't bother about eflags |
| 1242 | //zz } |
| 1243 | |
| 1244 | // BEGIN move this uglyness to pc_machine.c |
| 1245 | |
| 1246 | static inline Bool host_is_big_endian ( void ) { |
| 1247 | UInt x = 0x11223344; |
| 1248 | return 0x1122 == *(UShort*)(&x); |
| 1249 | } |
| 1250 | static inline Bool host_is_little_endian ( void ) { |
| 1251 | UInt x = 0x11223344; |
| 1252 | return 0x3344 == *(UShort*)(&x); |
| 1253 | } |
| 1254 | |
| 1255 | #define N_INTREGINFO_OFFSETS 4 |
| 1256 | |
| 1257 | /* Holds the result of a query to 'get_IntRegInfo'. Valid values for |
| 1258 | n_offsets are: |
| 1259 | |
| 1260 | -1: means the queried guest state slice exactly matches |
| 1261 | one integer register |
| 1262 | |
| 1263 | 0: means the queried guest state slice does not overlap any |
| 1264 | integer registers |
| 1265 | |
| 1266 | 1 .. N_INTREGINFO_OFFSETS: means the queried guest state offset |
| 1267 | overlaps n_offsets different integer registers, and their base |
| 1268 | offsets are placed in the offsets array. |
| 1269 | */ |
| 1270 | typedef |
| 1271 | struct { |
| 1272 | Int offsets[N_INTREGINFO_OFFSETS]; |
| 1273 | Int n_offsets; |
| 1274 | } |
| 1275 | IntRegInfo; |
| 1276 | |
| 1277 | |
| 1278 | #if defined(VGA_x86) |
| 1279 | # include "libvex_guest_x86.h" |
| 1280 | # define MC_SIZEOF_GUEST_STATE sizeof(VexGuestX86State) |
| 1281 | #endif |
| 1282 | |
| 1283 | #if defined(VGA_amd64) |
| 1284 | # include "libvex_guest_amd64.h" |
| 1285 | # define MC_SIZEOF_GUEST_STATE sizeof(VexGuestAMD64State) |
| 1286 | # define PC_OFF_FS_ZERO offsetof(VexGuestAMD64State,guest_FS_ZERO) |
| 1287 | # define PC_SZB_FS_ZERO sizeof( ((VexGuestAMD64State*)0)->guest_FS_ZERO) |
| 1288 | #endif |
| 1289 | |
| 1290 | #if defined(VGA_ppc32) |
| 1291 | # include "libvex_guest_ppc32.h" |
| 1292 | # define MC_SIZEOF_GUEST_STATE sizeof(VexGuestPPC32State) |
| 1293 | #endif |
| 1294 | |
| 1295 | #if defined(VGA_ppc64) |
| 1296 | # include "libvex_guest_ppc64.h" |
| 1297 | # define MC_SIZEOF_GUEST_STATE sizeof(VexGuestPPC64State) |
| 1298 | #endif |
| 1299 | |
| 1300 | |
| 1301 | /* See description on definition of type IntRegInfo. */ |
| 1302 | static void get_IntRegInfo ( /*OUT*/IntRegInfo* iii, Int offset, Int szB ) |
| 1303 | { |
| 1304 | /* --------------------- x86 --------------------- */ |
| 1305 | |
| 1306 | # if defined(VGA_x86) |
| 1307 | |
| 1308 | # define GOF(_fieldname) \ |
| 1309 | (offsetof(VexGuestX86State,guest_##_fieldname)) |
| 1310 | |
| 1311 | Int o = offset; |
| 1312 | Int sz = szB; |
| 1313 | Bool is4 = sz == 4; |
| 1314 | Bool is21 = sz == 2 || sz == 1; |
| 1315 | |
| 1316 | tl_assert(sz > 0); |
| 1317 | tl_assert(host_is_little_endian()); |
| 1318 | |
| 1319 | /* Set default state to "does not intersect any int register". */ |
| 1320 | VG_(memset)( iii, 0, sizeof(*iii) ); |
| 1321 | |
| 1322 | /* Exact accesses to integer registers */ |
| 1323 | if (o == GOF(EAX) && is4) goto exactly1; |
| 1324 | if (o == GOF(ECX) && is4) goto exactly1; |
| 1325 | if (o == GOF(EDX) && is4) goto exactly1; |
| 1326 | if (o == GOF(EBX) && is4) goto exactly1; |
| 1327 | if (o == GOF(ESP) && is4) goto exactly1; |
| 1328 | if (o == GOF(EBP) && is4) goto exactly1; |
| 1329 | if (o == GOF(ESI) && is4) goto exactly1; |
| 1330 | if (o == GOF(EDI) && is4) goto exactly1; |
| 1331 | if (o == GOF(EIP) && is4) goto none; |
| 1332 | if (o == GOF(CC_OP) && is4) goto none; |
| 1333 | if (o == GOF(CC_DEP1) && is4) goto none; |
| 1334 | if (o == GOF(CC_DEP2) && is4) goto none; |
| 1335 | if (o == GOF(CC_NDEP) && is4) goto none; |
| 1336 | if (o == GOF(DFLAG) && is4) goto none; |
| 1337 | if (o == GOF(IDFLAG) && is4) goto none; |
| 1338 | if (o == GOF(ACFLAG) && is4) goto none; |
| 1339 | |
| 1340 | /* Partial accesses to integer registers */ |
| 1341 | if (o == GOF(EAX) && is21) { o -= 0; goto contains_o; } |
| 1342 | if (o == GOF(EAX)+1 && is21) { o -= 1; o -= 0; goto contains_o; } |
| 1343 | if (o == GOF(ECX) && is21) { o -= 0; goto contains_o; } |
| 1344 | if (o == GOF(ECX)+1 && is21) { o -= 1; o -= 0; goto contains_o; } |
| 1345 | if (o == GOF(EBX) && is21) { o -= 0; goto contains_o; } |
sewardj | db44098 | 2008-10-11 10:18:16 +0000 | [diff] [blame] | 1346 | if (o == GOF(EBX)+1 && is21) { o -= 1; o -= 0; goto contains_o; } |
sewardj | 024598e | 2008-09-18 14:43:05 +0000 | [diff] [blame] | 1347 | if (o == GOF(EDX) && is21) { o -= 0; goto contains_o; } |
| 1348 | if (o == GOF(EDX)+1 && is21) { o -= 1; o -= 0; goto contains_o; } |
| 1349 | if (o == GOF(ESI) && is21) { o -= 0; goto contains_o; } |
| 1350 | if (o == GOF(EDI) && is21) { o -= 0; goto contains_o; } |
| 1351 | |
| 1352 | /* Segment related guff */ |
| 1353 | if (o == GOF(GS) && sz == 2) goto none; |
| 1354 | if (o == GOF(LDT) && is4) goto none; |
| 1355 | if (o == GOF(GDT) && is4) goto none; |
| 1356 | |
| 1357 | /* FP admin related */ |
| 1358 | if (o == GOF(SSEROUND) && is4) goto none; |
| 1359 | if (o == GOF(FPROUND) && is4) goto none; |
| 1360 | if (o == GOF(EMWARN) && is4) goto none; |
| 1361 | if (o == GOF(FTOP) && is4) goto none; |
| 1362 | if (o == GOF(FPTAG) && sz == 8) goto none; |
| 1363 | if (o == GOF(FC3210) && is4) goto none; |
| 1364 | |
| 1365 | /* xmm registers, including arbitrary sub-parts */ |
| 1366 | if (o >= GOF(XMM0) && o+sz <= GOF(XMM0)+16) goto none; |
| 1367 | if (o >= GOF(XMM1) && o+sz <= GOF(XMM1)+16) goto none; |
| 1368 | if (o >= GOF(XMM2) && o+sz <= GOF(XMM2)+16) goto none; |
| 1369 | if (o >= GOF(XMM3) && o+sz <= GOF(XMM3)+16) goto none; |
| 1370 | if (o >= GOF(XMM4) && o+sz <= GOF(XMM4)+16) goto none; |
| 1371 | if (o >= GOF(XMM5) && o+sz <= GOF(XMM5)+16) goto none; |
| 1372 | if (o >= GOF(XMM6) && o+sz <= GOF(XMM6)+16) goto none; |
| 1373 | if (o >= GOF(XMM7) && o+sz <= GOF(XMM7)+16) goto none; |
| 1374 | |
| 1375 | /* mmx/x87 registers (a bit of a kludge, since 'o' is not checked |
| 1376 | to be exactly equal to one of FPREG[0] .. FPREG[7]) */ |
| 1377 | if (o >= GOF(FPREG[0]) && o < GOF(FPREG[7])+8 && sz == 8) goto none; |
| 1378 | |
| 1379 | /* the entire mmx/x87 register bank in one big piece */ |
| 1380 | if (o == GOF(FPREG) && sz == 64) goto none; |
| 1381 | |
| 1382 | VG_(printf)("get_IntRegInfo(x86):failing on (%d,%d)\n", o, sz); |
| 1383 | tl_assert(0); |
| 1384 | # undef GOF |
| 1385 | |
| 1386 | /* -------------------- amd64 -------------------- */ |
| 1387 | |
| 1388 | # elif defined(VGA_amd64) |
| 1389 | |
| 1390 | # define GOF(_fieldname) \ |
| 1391 | (offsetof(VexGuestAMD64State,guest_##_fieldname)) |
| 1392 | |
| 1393 | Int o = offset; |
| 1394 | Int sz = szB; |
| 1395 | Bool is421 = sz == 4 || sz == 2 || sz == 1; |
| 1396 | Bool is8 = sz == 8; |
| 1397 | |
| 1398 | tl_assert(sz > 0); |
| 1399 | tl_assert(host_is_little_endian()); |
| 1400 | |
| 1401 | /* Set default state to "does not intersect any int register". */ |
| 1402 | VG_(memset)( iii, 0, sizeof(*iii) ); |
| 1403 | |
| 1404 | /* Exact accesses to integer registers */ |
| 1405 | if (o == GOF(RAX) && is8) goto exactly1; |
| 1406 | if (o == GOF(RCX) && is8) goto exactly1; |
| 1407 | if (o == GOF(RDX) && is8) goto exactly1; |
| 1408 | if (o == GOF(RBX) && is8) goto exactly1; |
| 1409 | if (o == GOF(RSP) && is8) goto exactly1; |
| 1410 | if (o == GOF(RBP) && is8) goto exactly1; |
| 1411 | if (o == GOF(RSI) && is8) goto exactly1; |
| 1412 | if (o == GOF(RDI) && is8) goto exactly1; |
| 1413 | if (o == GOF(R8) && is8) goto exactly1; |
| 1414 | if (o == GOF(R9) && is8) goto exactly1; |
| 1415 | if (o == GOF(R10) && is8) goto exactly1; |
| 1416 | if (o == GOF(R11) && is8) goto exactly1; |
| 1417 | if (o == GOF(R12) && is8) goto exactly1; |
| 1418 | if (o == GOF(R13) && is8) goto exactly1; |
| 1419 | if (o == GOF(R14) && is8) goto exactly1; |
| 1420 | if (o == GOF(R15) && is8) goto exactly1; |
| 1421 | if (o == GOF(RIP) && is8) goto exactly1; |
| 1422 | if (o == GOF(CC_OP) && is8) goto none; |
| 1423 | if (o == GOF(CC_DEP1) && is8) goto none; |
| 1424 | if (o == GOF(CC_DEP2) && is8) goto none; |
| 1425 | if (o == GOF(CC_NDEP) && is8) goto none; |
| 1426 | if (o == GOF(DFLAG) && is8) goto none; |
| 1427 | if (o == GOF(IDFLAG) && is8) goto none; |
| 1428 | |
| 1429 | /* Partial accesses to integer registers */ |
| 1430 | if (o == GOF(RAX) && is421) { o -= 0; goto contains_o; } |
| 1431 | if (o == GOF(RAX)+1 && is421) { o -= 1; o -= 0; goto contains_o; } |
| 1432 | if (o == GOF(RCX) && is421) { o -= 0; goto contains_o; } |
| 1433 | if (o == GOF(RCX)+1 && is421) { o -= 1; o -= 0; goto contains_o; } |
| 1434 | if (o == GOF(RDX) && is421) { o -= 0; goto contains_o; } |
| 1435 | if (o == GOF(RDX)+1 && is421) { o -= 1; o -= 0; goto contains_o; } |
| 1436 | if (o == GOF(RBX) && is421) { o -= 0; goto contains_o; } |
| 1437 | if (o == GOF(RBX)+1 && is421) { o -= 1; o -= 0; goto contains_o; } |
| 1438 | if (o == GOF(RBP) && is421) { o -= 0; goto contains_o; } |
| 1439 | if (o == GOF(RSI) && is421) { o -= 0; goto contains_o; } |
| 1440 | if (o == GOF(RDI) && is421) { o -= 0; goto contains_o; } |
| 1441 | if (o == GOF(R8) && is421) { o -= 0; goto contains_o; } |
| 1442 | if (o == GOF(R9) && is421) { o -= 0; goto contains_o; } |
| 1443 | if (o == GOF(R10) && is421) { o -= 0; goto contains_o; } |
| 1444 | if (o == GOF(R11) && is421) { o -= 0; goto contains_o; } |
| 1445 | if (o == GOF(R12) && is421) { o -= 0; goto contains_o; } |
| 1446 | if (o == GOF(R13) && is421) { o -= 0; goto contains_o; } |
| 1447 | if (o == GOF(R14) && is421) { o -= 0; goto contains_o; } |
| 1448 | if (o == GOF(R15) && is421) { o -= 0; goto contains_o; } |
| 1449 | |
| 1450 | /* Segment related guff */ |
| 1451 | if (o == GOF(FS_ZERO) && is8) goto exactly1; |
| 1452 | |
| 1453 | /* FP admin related */ |
| 1454 | if (o == GOF(SSEROUND) && is8) goto none; |
| 1455 | if (o == GOF(FPROUND) && is8) goto none; |
| 1456 | if (o == GOF(EMWARN) && sz == 4) goto none; |
| 1457 | if (o == GOF(FTOP) && sz == 4) goto none; |
| 1458 | if (o == GOF(FPTAG) && is8) goto none; |
| 1459 | if (o == GOF(FC3210) && is8) goto none; |
| 1460 | |
| 1461 | /* xmm registers, including arbitrary sub-parts */ |
| 1462 | if (o >= GOF(XMM0) && o+sz <= GOF(XMM0)+16) goto none; |
| 1463 | if (o >= GOF(XMM1) && o+sz <= GOF(XMM1)+16) goto none; |
| 1464 | if (o >= GOF(XMM2) && o+sz <= GOF(XMM2)+16) goto none; |
| 1465 | if (o >= GOF(XMM3) && o+sz <= GOF(XMM3)+16) goto none; |
| 1466 | if (o >= GOF(XMM4) && o+sz <= GOF(XMM4)+16) goto none; |
| 1467 | if (o >= GOF(XMM5) && o+sz <= GOF(XMM5)+16) goto none; |
| 1468 | if (o >= GOF(XMM6) && o+sz <= GOF(XMM6)+16) goto none; |
| 1469 | if (o >= GOF(XMM7) && o+sz <= GOF(XMM7)+16) goto none; |
| 1470 | if (o >= GOF(XMM8) && o+sz <= GOF(XMM8)+16) goto none; |
| 1471 | if (o >= GOF(XMM9) && o+sz <= GOF(XMM9)+16) goto none; |
| 1472 | if (o >= GOF(XMM10) && o+sz <= GOF(XMM10)+16) goto none; |
| 1473 | if (o >= GOF(XMM11) && o+sz <= GOF(XMM11)+16) goto none; |
| 1474 | if (o >= GOF(XMM12) && o+sz <= GOF(XMM12)+16) goto none; |
| 1475 | if (o >= GOF(XMM13) && o+sz <= GOF(XMM13)+16) goto none; |
| 1476 | if (o >= GOF(XMM14) && o+sz <= GOF(XMM14)+16) goto none; |
| 1477 | if (o >= GOF(XMM15) && o+sz <= GOF(XMM15)+16) goto none; |
| 1478 | |
| 1479 | /* mmx/x87 registers (a bit of a kludge, since 'o' is not checked |
| 1480 | to be exactly equal to one of FPREG[0] .. FPREG[7]) */ |
| 1481 | if (o >= GOF(FPREG[0]) && o < GOF(FPREG[7])+8 && sz == 8) goto none; |
| 1482 | |
| 1483 | VG_(printf)("get_IntRegInfo(amd64):failing on (%d,%d)\n", o, sz); |
| 1484 | tl_assert(0); |
| 1485 | # undef GOF |
| 1486 | |
| 1487 | /* -------------------- ppc32 -------------------- */ |
| 1488 | |
| 1489 | # elif defined(VGA_ppc32) |
| 1490 | |
| 1491 | # define GOF(_fieldname) \ |
| 1492 | (offsetof(VexGuestPPC32State,guest_##_fieldname)) |
| 1493 | |
| 1494 | Int o = offset; |
| 1495 | Int sz = szB; |
| 1496 | Bool is4 = sz == 4; |
| 1497 | Bool is8 = sz == 8; |
| 1498 | |
| 1499 | tl_assert(sz > 0); |
| 1500 | tl_assert(host_is_big_endian()); |
| 1501 | |
| 1502 | /* Set default state to "does not intersect any int register". */ |
| 1503 | VG_(memset)( iii, 0, sizeof(*iii) ); |
| 1504 | |
| 1505 | /* Exact accesses to integer registers */ |
| 1506 | if (o == GOF(GPR0) && is4) goto exactly1; |
| 1507 | if (o == GOF(GPR1) && is4) goto exactly1; |
| 1508 | if (o == GOF(GPR2) && is4) goto exactly1; |
| 1509 | if (o == GOF(GPR3) && is4) goto exactly1; |
| 1510 | if (o == GOF(GPR4) && is4) goto exactly1; |
| 1511 | if (o == GOF(GPR5) && is4) goto exactly1; |
| 1512 | if (o == GOF(GPR6) && is4) goto exactly1; |
| 1513 | if (o == GOF(GPR7) && is4) goto exactly1; |
| 1514 | if (o == GOF(GPR8) && is4) goto exactly1; |
| 1515 | if (o == GOF(GPR9) && is4) goto exactly1; |
| 1516 | if (o == GOF(GPR10) && is4) goto exactly1; |
| 1517 | if (o == GOF(GPR11) && is4) goto exactly1; |
| 1518 | if (o == GOF(GPR12) && is4) goto exactly1; |
| 1519 | if (o == GOF(GPR13) && is4) goto exactly1; |
| 1520 | if (o == GOF(GPR14) && is4) goto exactly1; |
| 1521 | if (o == GOF(GPR15) && is4) goto exactly1; |
| 1522 | if (o == GOF(GPR16) && is4) goto exactly1; |
| 1523 | if (o == GOF(GPR17) && is4) goto exactly1; |
| 1524 | if (o == GOF(GPR18) && is4) goto exactly1; |
| 1525 | if (o == GOF(GPR19) && is4) goto exactly1; |
| 1526 | if (o == GOF(GPR20) && is4) goto exactly1; |
| 1527 | if (o == GOF(GPR21) && is4) goto exactly1; |
| 1528 | if (o == GOF(GPR22) && is4) goto exactly1; |
| 1529 | if (o == GOF(GPR23) && is4) goto exactly1; |
| 1530 | if (o == GOF(GPR24) && is4) goto exactly1; |
| 1531 | if (o == GOF(GPR25) && is4) goto exactly1; |
| 1532 | if (o == GOF(GPR26) && is4) goto exactly1; |
| 1533 | if (o == GOF(GPR27) && is4) goto exactly1; |
| 1534 | if (o == GOF(GPR28) && is4) goto exactly1; |
| 1535 | if (o == GOF(GPR29) && is4) goto exactly1; |
| 1536 | if (o == GOF(GPR30) && is4) goto exactly1; |
| 1537 | if (o == GOF(GPR31) && is4) goto exactly1; |
| 1538 | |
| 1539 | /* Misc integer reg and condition code accesses */ |
| 1540 | if (o == GOF(LR) && is4) goto exactly1; |
| 1541 | if (o == GOF(CTR) && is4) goto exactly1; |
| 1542 | if (o == GOF(CIA) && is4) goto none; |
| 1543 | if (o == GOF(CIA_AT_SC) && is4) goto none; |
| 1544 | if (o == GOF(RESVN) && is4) goto none; |
| 1545 | if (o == GOF(TISTART) && is4) goto none; |
| 1546 | if (o == GOF(TILEN) && is4) goto none; |
| 1547 | if (o == GOF(REDIR_SP) && is4) goto none; |
| 1548 | |
| 1549 | if (sz == 1) { |
| 1550 | if (o == GOF(XER_SO)) goto none; |
| 1551 | if (o == GOF(XER_OV)) goto none; |
| 1552 | if (o == GOF(XER_CA)) goto none; |
| 1553 | if (o == GOF(XER_BC)) goto none; |
| 1554 | if (o == GOF(CR0_321)) goto none; |
| 1555 | if (o == GOF(CR0_0)) goto none; |
| 1556 | if (o == GOF(CR1_321)) goto none; |
| 1557 | if (o == GOF(CR1_0)) goto none; |
| 1558 | if (o == GOF(CR2_321)) goto none; |
| 1559 | if (o == GOF(CR2_0)) goto none; |
| 1560 | if (o == GOF(CR3_321)) goto none; |
| 1561 | if (o == GOF(CR3_0)) goto none; |
| 1562 | if (o == GOF(CR4_321)) goto none; |
| 1563 | if (o == GOF(CR4_0)) goto none; |
| 1564 | if (o == GOF(CR5_321)) goto none; |
| 1565 | if (o == GOF(CR5_0)) goto none; |
| 1566 | if (o == GOF(CR6_321)) goto none; |
| 1567 | if (o == GOF(CR6_0)) goto none; |
| 1568 | if (o == GOF(CR7_321)) goto none; |
| 1569 | if (o == GOF(CR7_0)) goto none; |
| 1570 | } |
| 1571 | |
| 1572 | /* Exact accesses to FP registers */ |
| 1573 | if (o == GOF(FPR0) && is8) goto none; |
| 1574 | if (o == GOF(FPR1) && is8) goto none; |
| 1575 | if (o == GOF(FPR2) && is8) goto none; |
| 1576 | if (o == GOF(FPR3) && is8) goto none; |
| 1577 | if (o == GOF(FPR4) && is8) goto none; |
| 1578 | if (o == GOF(FPR5) && is8) goto none; |
| 1579 | if (o == GOF(FPR6) && is8) goto none; |
| 1580 | if (o == GOF(FPR7) && is8) goto none; |
| 1581 | if (o == GOF(FPR8) && is8) goto none; |
| 1582 | if (o == GOF(FPR9) && is8) goto none; |
| 1583 | if (o == GOF(FPR10) && is8) goto none; |
| 1584 | if (o == GOF(FPR11) && is8) goto none; |
| 1585 | if (o == GOF(FPR12) && is8) goto none; |
| 1586 | if (o == GOF(FPR13) && is8) goto none; |
| 1587 | if (o == GOF(FPR14) && is8) goto none; |
| 1588 | if (o == GOF(FPR15) && is8) goto none; |
| 1589 | if (o == GOF(FPR16) && is8) goto none; |
| 1590 | if (o == GOF(FPR17) && is8) goto none; |
| 1591 | if (o == GOF(FPR18) && is8) goto none; |
| 1592 | if (o == GOF(FPR19) && is8) goto none; |
| 1593 | if (o == GOF(FPR20) && is8) goto none; |
| 1594 | if (o == GOF(FPR21) && is8) goto none; |
| 1595 | if (o == GOF(FPR22) && is8) goto none; |
| 1596 | if (o == GOF(FPR23) && is8) goto none; |
| 1597 | if (o == GOF(FPR24) && is8) goto none; |
| 1598 | if (o == GOF(FPR25) && is8) goto none; |
| 1599 | if (o == GOF(FPR26) && is8) goto none; |
| 1600 | if (o == GOF(FPR27) && is8) goto none; |
| 1601 | if (o == GOF(FPR28) && is8) goto none; |
| 1602 | if (o == GOF(FPR29) && is8) goto none; |
| 1603 | if (o == GOF(FPR30) && is8) goto none; |
| 1604 | if (o == GOF(FPR31) && is8) goto none; |
| 1605 | |
| 1606 | /* FP admin related */ |
| 1607 | if (o == GOF(FPROUND) && is4) goto none; |
| 1608 | if (o == GOF(EMWARN) && is4) goto none; |
| 1609 | |
| 1610 | /* Altivec registers */ |
| 1611 | if (o == GOF(VR0) && sz == 16) goto none; |
| 1612 | if (o == GOF(VR1) && sz == 16) goto none; |
| 1613 | if (o == GOF(VR2) && sz == 16) goto none; |
| 1614 | if (o == GOF(VR3) && sz == 16) goto none; |
| 1615 | if (o == GOF(VR4) && sz == 16) goto none; |
| 1616 | if (o == GOF(VR5) && sz == 16) goto none; |
| 1617 | if (o == GOF(VR6) && sz == 16) goto none; |
| 1618 | if (o == GOF(VR7) && sz == 16) goto none; |
| 1619 | if (o == GOF(VR8) && sz == 16) goto none; |
| 1620 | if (o == GOF(VR9) && sz == 16) goto none; |
| 1621 | if (o == GOF(VR10) && sz == 16) goto none; |
| 1622 | if (o == GOF(VR11) && sz == 16) goto none; |
| 1623 | if (o == GOF(VR12) && sz == 16) goto none; |
| 1624 | if (o == GOF(VR13) && sz == 16) goto none; |
| 1625 | if (o == GOF(VR14) && sz == 16) goto none; |
| 1626 | if (o == GOF(VR15) && sz == 16) goto none; |
| 1627 | if (o == GOF(VR16) && sz == 16) goto none; |
| 1628 | if (o == GOF(VR17) && sz == 16) goto none; |
| 1629 | if (o == GOF(VR18) && sz == 16) goto none; |
| 1630 | if (o == GOF(VR19) && sz == 16) goto none; |
| 1631 | if (o == GOF(VR20) && sz == 16) goto none; |
| 1632 | if (o == GOF(VR21) && sz == 16) goto none; |
| 1633 | if (o == GOF(VR22) && sz == 16) goto none; |
| 1634 | if (o == GOF(VR23) && sz == 16) goto none; |
| 1635 | if (o == GOF(VR24) && sz == 16) goto none; |
| 1636 | if (o == GOF(VR25) && sz == 16) goto none; |
| 1637 | if (o == GOF(VR26) && sz == 16) goto none; |
| 1638 | if (o == GOF(VR27) && sz == 16) goto none; |
| 1639 | if (o == GOF(VR28) && sz == 16) goto none; |
| 1640 | if (o == GOF(VR29) && sz == 16) goto none; |
| 1641 | if (o == GOF(VR30) && sz == 16) goto none; |
| 1642 | if (o == GOF(VR31) && sz == 16) goto none; |
| 1643 | |
sewardj | aae8208 | 2008-10-21 23:10:18 +0000 | [diff] [blame] | 1644 | /* Altivec admin related */ |
| 1645 | if (o == GOF(VRSAVE) && is4) goto none; |
| 1646 | |
sewardj | 024598e | 2008-09-18 14:43:05 +0000 | [diff] [blame] | 1647 | VG_(printf)("get_IntRegInfo(ppc32):failing on (%d,%d)\n", o, sz); |
| 1648 | tl_assert(0); |
| 1649 | # undef GOF |
| 1650 | |
| 1651 | /* -------------------- ppc64 -------------------- */ |
| 1652 | |
| 1653 | # elif defined(VGA_ppc64) |
| 1654 | |
| 1655 | # define GOF(_fieldname) \ |
| 1656 | (offsetof(VexGuestPPC64State,guest_##_fieldname)) |
| 1657 | |
| 1658 | Int o = offset; |
| 1659 | Int sz = szB; |
| 1660 | Bool is4 = sz == 4; |
| 1661 | Bool is8 = sz == 8; |
| 1662 | |
| 1663 | tl_assert(sz > 0); |
| 1664 | tl_assert(host_is_big_endian()); |
| 1665 | |
| 1666 | /* Set default state to "does not intersect any int register". */ |
| 1667 | VG_(memset)( iii, 0, sizeof(*iii) ); |
| 1668 | |
| 1669 | /* Exact accesses to integer registers */ |
| 1670 | if (o == GOF(GPR0) && is8) goto exactly1; |
| 1671 | if (o == GOF(GPR1) && is8) goto exactly1; |
| 1672 | if (o == GOF(GPR2) && is8) goto exactly1; |
| 1673 | if (o == GOF(GPR3) && is8) goto exactly1; |
| 1674 | if (o == GOF(GPR4) && is8) goto exactly1; |
| 1675 | if (o == GOF(GPR5) && is8) goto exactly1; |
| 1676 | if (o == GOF(GPR6) && is8) goto exactly1; |
| 1677 | if (o == GOF(GPR7) && is8) goto exactly1; |
| 1678 | if (o == GOF(GPR8) && is8) goto exactly1; |
| 1679 | if (o == GOF(GPR9) && is8) goto exactly1; |
| 1680 | if (o == GOF(GPR10) && is8) goto exactly1; |
| 1681 | if (o == GOF(GPR11) && is8) goto exactly1; |
| 1682 | if (o == GOF(GPR12) && is8) goto exactly1; |
| 1683 | if (o == GOF(GPR13) && is8) goto exactly1; |
| 1684 | if (o == GOF(GPR14) && is8) goto exactly1; |
| 1685 | if (o == GOF(GPR15) && is8) goto exactly1; |
| 1686 | if (o == GOF(GPR16) && is8) goto exactly1; |
| 1687 | if (o == GOF(GPR17) && is8) goto exactly1; |
| 1688 | if (o == GOF(GPR18) && is8) goto exactly1; |
| 1689 | if (o == GOF(GPR19) && is8) goto exactly1; |
| 1690 | if (o == GOF(GPR20) && is8) goto exactly1; |
| 1691 | if (o == GOF(GPR21) && is8) goto exactly1; |
| 1692 | if (o == GOF(GPR22) && is8) goto exactly1; |
| 1693 | if (o == GOF(GPR23) && is8) goto exactly1; |
| 1694 | if (o == GOF(GPR24) && is8) goto exactly1; |
| 1695 | if (o == GOF(GPR25) && is8) goto exactly1; |
| 1696 | if (o == GOF(GPR26) && is8) goto exactly1; |
| 1697 | if (o == GOF(GPR27) && is8) goto exactly1; |
| 1698 | if (o == GOF(GPR28) && is8) goto exactly1; |
| 1699 | if (o == GOF(GPR29) && is8) goto exactly1; |
| 1700 | if (o == GOF(GPR30) && is8) goto exactly1; |
| 1701 | if (o == GOF(GPR31) && is8) goto exactly1; |
| 1702 | |
| 1703 | /* Misc integer reg and condition code accesses */ |
| 1704 | if (o == GOF(LR) && is8) goto exactly1; |
| 1705 | if (o == GOF(CTR) && is8) goto exactly1; |
| 1706 | if (o == GOF(CIA) && is8) goto none; |
| 1707 | if (o == GOF(CIA_AT_SC) && is8) goto none; |
| 1708 | if (o == GOF(RESVN) && is8) goto none; |
| 1709 | if (o == GOF(TISTART) && is8) goto none; |
| 1710 | if (o == GOF(TILEN) && is8) goto none; |
| 1711 | if (o == GOF(REDIR_SP) && is8) goto none; |
| 1712 | |
| 1713 | if (sz == 1) { |
| 1714 | if (o == GOF(XER_SO)) goto none; |
| 1715 | if (o == GOF(XER_OV)) goto none; |
| 1716 | if (o == GOF(XER_CA)) goto none; |
| 1717 | if (o == GOF(XER_BC)) goto none; |
| 1718 | if (o == GOF(CR0_321)) goto none; |
| 1719 | if (o == GOF(CR0_0)) goto none; |
| 1720 | if (o == GOF(CR1_321)) goto none; |
| 1721 | if (o == GOF(CR1_0)) goto none; |
| 1722 | if (o == GOF(CR2_321)) goto none; |
| 1723 | if (o == GOF(CR2_0)) goto none; |
| 1724 | if (o == GOF(CR3_321)) goto none; |
| 1725 | if (o == GOF(CR3_0)) goto none; |
| 1726 | if (o == GOF(CR4_321)) goto none; |
| 1727 | if (o == GOF(CR4_0)) goto none; |
| 1728 | if (o == GOF(CR5_321)) goto none; |
| 1729 | if (o == GOF(CR5_0)) goto none; |
| 1730 | if (o == GOF(CR6_321)) goto none; |
| 1731 | if (o == GOF(CR6_0)) goto none; |
| 1732 | if (o == GOF(CR7_321)) goto none; |
| 1733 | if (o == GOF(CR7_0)) goto none; |
| 1734 | } |
| 1735 | |
| 1736 | /* Exact accesses to FP registers */ |
| 1737 | if (o == GOF(FPR0) && is8) goto none; |
| 1738 | if (o == GOF(FPR1) && is8) goto none; |
| 1739 | if (o == GOF(FPR2) && is8) goto none; |
| 1740 | if (o == GOF(FPR3) && is8) goto none; |
| 1741 | if (o == GOF(FPR4) && is8) goto none; |
| 1742 | if (o == GOF(FPR5) && is8) goto none; |
| 1743 | if (o == GOF(FPR6) && is8) goto none; |
| 1744 | if (o == GOF(FPR7) && is8) goto none; |
| 1745 | if (o == GOF(FPR8) && is8) goto none; |
| 1746 | if (o == GOF(FPR9) && is8) goto none; |
| 1747 | if (o == GOF(FPR10) && is8) goto none; |
| 1748 | if (o == GOF(FPR11) && is8) goto none; |
| 1749 | if (o == GOF(FPR12) && is8) goto none; |
| 1750 | if (o == GOF(FPR13) && is8) goto none; |
| 1751 | if (o == GOF(FPR14) && is8) goto none; |
| 1752 | if (o == GOF(FPR15) && is8) goto none; |
| 1753 | if (o == GOF(FPR16) && is8) goto none; |
| 1754 | if (o == GOF(FPR17) && is8) goto none; |
| 1755 | if (o == GOF(FPR18) && is8) goto none; |
| 1756 | if (o == GOF(FPR19) && is8) goto none; |
| 1757 | if (o == GOF(FPR20) && is8) goto none; |
| 1758 | if (o == GOF(FPR21) && is8) goto none; |
| 1759 | if (o == GOF(FPR22) && is8) goto none; |
| 1760 | if (o == GOF(FPR23) && is8) goto none; |
| 1761 | if (o == GOF(FPR24) && is8) goto none; |
| 1762 | if (o == GOF(FPR25) && is8) goto none; |
| 1763 | if (o == GOF(FPR26) && is8) goto none; |
| 1764 | if (o == GOF(FPR27) && is8) goto none; |
| 1765 | if (o == GOF(FPR28) && is8) goto none; |
| 1766 | if (o == GOF(FPR29) && is8) goto none; |
| 1767 | if (o == GOF(FPR30) && is8) goto none; |
| 1768 | if (o == GOF(FPR31) && is8) goto none; |
| 1769 | |
| 1770 | /* FP admin related */ |
| 1771 | if (o == GOF(FPROUND) && is4) goto none; |
| 1772 | if (o == GOF(EMWARN) && is4) goto none; |
| 1773 | |
| 1774 | /* Altivec registers */ |
| 1775 | if (o == GOF(VR0) && sz == 16) goto none; |
| 1776 | if (o == GOF(VR1) && sz == 16) goto none; |
| 1777 | if (o == GOF(VR2) && sz == 16) goto none; |
| 1778 | if (o == GOF(VR3) && sz == 16) goto none; |
| 1779 | if (o == GOF(VR4) && sz == 16) goto none; |
| 1780 | if (o == GOF(VR5) && sz == 16) goto none; |
| 1781 | if (o == GOF(VR6) && sz == 16) goto none; |
| 1782 | if (o == GOF(VR7) && sz == 16) goto none; |
| 1783 | if (o == GOF(VR8) && sz == 16) goto none; |
| 1784 | if (o == GOF(VR9) && sz == 16) goto none; |
| 1785 | if (o == GOF(VR10) && sz == 16) goto none; |
| 1786 | if (o == GOF(VR11) && sz == 16) goto none; |
| 1787 | if (o == GOF(VR12) && sz == 16) goto none; |
| 1788 | if (o == GOF(VR13) && sz == 16) goto none; |
| 1789 | if (o == GOF(VR14) && sz == 16) goto none; |
| 1790 | if (o == GOF(VR15) && sz == 16) goto none; |
| 1791 | if (o == GOF(VR16) && sz == 16) goto none; |
| 1792 | if (o == GOF(VR17) && sz == 16) goto none; |
| 1793 | if (o == GOF(VR18) && sz == 16) goto none; |
| 1794 | if (o == GOF(VR19) && sz == 16) goto none; |
| 1795 | if (o == GOF(VR20) && sz == 16) goto none; |
| 1796 | if (o == GOF(VR21) && sz == 16) goto none; |
| 1797 | if (o == GOF(VR22) && sz == 16) goto none; |
| 1798 | if (o == GOF(VR23) && sz == 16) goto none; |
| 1799 | if (o == GOF(VR24) && sz == 16) goto none; |
| 1800 | if (o == GOF(VR25) && sz == 16) goto none; |
| 1801 | if (o == GOF(VR26) && sz == 16) goto none; |
| 1802 | if (o == GOF(VR27) && sz == 16) goto none; |
| 1803 | if (o == GOF(VR28) && sz == 16) goto none; |
| 1804 | if (o == GOF(VR29) && sz == 16) goto none; |
| 1805 | if (o == GOF(VR30) && sz == 16) goto none; |
| 1806 | if (o == GOF(VR31) && sz == 16) goto none; |
| 1807 | |
sewardj | aae8208 | 2008-10-21 23:10:18 +0000 | [diff] [blame] | 1808 | /* Altivec admin related */ |
| 1809 | if (o == GOF(VRSAVE) && is4) goto none; |
| 1810 | |
sewardj | 024598e | 2008-09-18 14:43:05 +0000 | [diff] [blame] | 1811 | VG_(printf)("get_IntRegInfo(ppc64):failing on (%d,%d)\n", o, sz); |
| 1812 | tl_assert(0); |
| 1813 | # undef GOF |
| 1814 | |
| 1815 | |
| 1816 | # else |
| 1817 | # error "FIXME: not implemented for this architecture" |
| 1818 | # endif |
| 1819 | |
| 1820 | exactly1: |
| 1821 | iii->n_offsets = -1; |
| 1822 | return; |
| 1823 | none: |
| 1824 | iii->n_offsets = 0; |
| 1825 | return; |
| 1826 | contains_o: |
| 1827 | tl_assert(o >= 0 && 0 == (o % sizeof(UWord))); |
| 1828 | iii->n_offsets = 1; |
| 1829 | iii->offsets[0] = o; |
| 1830 | return; |
| 1831 | } |
| 1832 | |
| 1833 | |
| 1834 | /* Does 'arr' describe an indexed guest state section containing host |
| 1835 | words, that we want to shadow? */ |
| 1836 | |
| 1837 | static Bool is_integer_guest_reg_array ( IRRegArray* arr ) |
| 1838 | { |
| 1839 | /* --------------------- x86 --------------------- */ |
| 1840 | # if defined(VGA_x86) |
| 1841 | /* The x87 tag array. */ |
| 1842 | if (arr->base == offsetof(VexGuestX86State,guest_FPTAG[0]) |
| 1843 | && arr->elemTy == Ity_I8 && arr->nElems == 8) |
| 1844 | return False; |
| 1845 | /* The x87 register array. */ |
| 1846 | if (arr->base == offsetof(VexGuestX86State,guest_FPREG[0]) |
| 1847 | && arr->elemTy == Ity_F64 && arr->nElems == 8) |
| 1848 | return False; |
| 1849 | |
| 1850 | VG_(printf)("is_integer_guest_reg_array(x86): unhandled: "); |
| 1851 | ppIRRegArray(arr); |
| 1852 | VG_(printf)("\n"); |
| 1853 | tl_assert(0); |
| 1854 | |
| 1855 | /* -------------------- amd64 -------------------- */ |
| 1856 | # elif defined(VGA_amd64) |
| 1857 | /* The x87 tag array. */ |
| 1858 | if (arr->base == offsetof(VexGuestAMD64State,guest_FPTAG[0]) |
| 1859 | && arr->elemTy == Ity_I8 && arr->nElems == 8) |
| 1860 | return False; |
| 1861 | /* The x87 register array. */ |
| 1862 | if (arr->base == offsetof(VexGuestAMD64State,guest_FPREG[0]) |
| 1863 | && arr->elemTy == Ity_F64 && arr->nElems == 8) |
| 1864 | return False; |
| 1865 | |
| 1866 | VG_(printf)("is_integer_guest_reg_array(amd64): unhandled: "); |
| 1867 | ppIRRegArray(arr); |
| 1868 | VG_(printf)("\n"); |
| 1869 | tl_assert(0); |
| 1870 | |
| 1871 | /* -------------------- ppc32 -------------------- */ |
| 1872 | # elif defined(VGA_ppc32) |
| 1873 | /* The redir stack. */ |
| 1874 | if (arr->base == offsetof(VexGuestPPC32State,guest_REDIR_STACK[0]) |
| 1875 | && arr->elemTy == Ity_I32 |
| 1876 | && arr->nElems == VEX_GUEST_PPC32_REDIR_STACK_SIZE) |
| 1877 | return True; |
| 1878 | |
| 1879 | VG_(printf)("is_integer_guest_reg_array(ppc32): unhandled: "); |
| 1880 | ppIRRegArray(arr); |
| 1881 | VG_(printf)("\n"); |
| 1882 | tl_assert(0); |
| 1883 | |
| 1884 | /* -------------------- ppc64 -------------------- */ |
| 1885 | # elif defined(VGA_ppc64) |
| 1886 | /* The redir stack. */ |
| 1887 | if (arr->base == offsetof(VexGuestPPC64State,guest_REDIR_STACK[0]) |
| 1888 | && arr->elemTy == Ity_I64 |
| 1889 | && arr->nElems == VEX_GUEST_PPC64_REDIR_STACK_SIZE) |
| 1890 | return True; |
| 1891 | |
| 1892 | VG_(printf)("is_integer_guest_reg_array(ppc64): unhandled: "); |
| 1893 | ppIRRegArray(arr); |
| 1894 | VG_(printf)("\n"); |
| 1895 | tl_assert(0); |
| 1896 | |
| 1897 | # else |
| 1898 | # error "FIXME: not implemented for this architecture" |
| 1899 | # endif |
| 1900 | } |
| 1901 | |
| 1902 | |
| 1903 | // END move this uglyness to pc_machine.c |
| 1904 | |
| 1905 | /* returns True iff given slice exactly matches an int reg. Merely |
| 1906 | a convenience wrapper around get_IntRegInfo. */ |
| 1907 | static Bool is_integer_guest_reg ( Int offset, Int szB ) |
| 1908 | { |
| 1909 | IntRegInfo iii; |
| 1910 | get_IntRegInfo( &iii, offset, szB ); |
| 1911 | tl_assert(iii.n_offsets >= -1 && iii.n_offsets <= N_INTREGINFO_OFFSETS); |
| 1912 | return iii.n_offsets == -1; |
| 1913 | } |
| 1914 | |
| 1915 | /* these assume guest and host have the same endianness and |
| 1916 | word size (probably). */ |
| 1917 | static UWord get_guest_intreg ( ThreadId tid, Int shadowNo, |
njn | c4431bf | 2009-01-15 21:29:24 +0000 | [diff] [blame] | 1918 | PtrdiffT offset, SizeT size ) |
sewardj | 024598e | 2008-09-18 14:43:05 +0000 | [diff] [blame] | 1919 | { |
| 1920 | UChar tmp[ 2 + sizeof(UWord) ]; |
| 1921 | tl_assert(size == sizeof(UWord)); |
| 1922 | tl_assert(0 == (offset % sizeof(UWord))); |
| 1923 | VG_(memset)(tmp, 0, sizeof(tmp)); |
| 1924 | tmp[0] = 0x31; |
| 1925 | tmp[ sizeof(tmp)-1 ] = 0x27; |
| 1926 | VG_(get_shadow_regs_area)(tid, &tmp[1], shadowNo, offset, size); |
| 1927 | tl_assert(tmp[0] == 0x31); |
| 1928 | tl_assert(tmp[ sizeof(tmp)-1 ] == 0x27); |
| 1929 | return * ((UWord*) &tmp[1] ); /* MISALIGNED LOAD */ |
| 1930 | } |
| 1931 | static void put_guest_intreg ( ThreadId tid, Int shadowNo, |
njn | c4431bf | 2009-01-15 21:29:24 +0000 | [diff] [blame] | 1932 | PtrdiffT offset, SizeT size, UWord w ) |
sewardj | 024598e | 2008-09-18 14:43:05 +0000 | [diff] [blame] | 1933 | { |
| 1934 | tl_assert(size == sizeof(UWord)); |
| 1935 | tl_assert(0 == (offset % sizeof(UWord))); |
| 1936 | VG_(set_shadow_regs_area)(tid, shadowNo, offset, size, |
| 1937 | (const UChar*)&w); |
| 1938 | } |
| 1939 | |
| 1940 | /* Initialise the integer shadow registers to UNKNOWN. This is a bit |
| 1941 | of a nasty kludge, but it does mean we don't need to know which |
| 1942 | registers we really need to initialise -- simply assume that all |
| 1943 | integer registers will be naturally aligned w.r.t. the start of the |
| 1944 | guest state, and fill in all possible entries. */ |
| 1945 | static void init_shadow_registers ( ThreadId tid ) |
| 1946 | { |
| 1947 | Int i, wordSzB = sizeof(UWord); |
| 1948 | for (i = 0; i < MC_SIZEOF_GUEST_STATE-wordSzB; i += wordSzB) { |
| 1949 | put_guest_intreg( tid, 1, i, wordSzB, (UWord)UNKNOWN ); |
| 1950 | } |
| 1951 | } |
| 1952 | |
njn | c4431bf | 2009-01-15 21:29:24 +0000 | [diff] [blame] | 1953 | static void post_reg_write_nonptr ( ThreadId tid, PtrdiffT offset, SizeT size ) |
sewardj | 024598e | 2008-09-18 14:43:05 +0000 | [diff] [blame] | 1954 | { |
| 1955 | // syscall_return: Default is non-pointer. If it really is a pointer |
| 1956 | // (eg. for mmap()), SK_(post_syscall) sets it again afterwards. |
| 1957 | // |
| 1958 | // clientreq_return: All the global client requests return non-pointers |
| 1959 | // (except possibly CLIENT_CALL[0123], but they're handled by |
| 1960 | // post_reg_write_clientcall, not here). |
| 1961 | // |
| 1962 | if (is_integer_guest_reg( (Int)offset, (Int)size )) { |
| 1963 | put_guest_intreg( tid, 1, offset, size, (UWord)NONPTR ); |
| 1964 | } else { |
| 1965 | tl_assert(0); |
| 1966 | } |
| 1967 | // VG_(set_thread_shadow_archreg)( tid, reg, (UInt)NONPTR ); |
| 1968 | } |
| 1969 | |
| 1970 | static void post_reg_write_nonptr_or_unknown ( ThreadId tid, |
njn | c4431bf | 2009-01-15 21:29:24 +0000 | [diff] [blame] | 1971 | PtrdiffT offset, SizeT size ) |
sewardj | 024598e | 2008-09-18 14:43:05 +0000 | [diff] [blame] | 1972 | { |
| 1973 | // deliver_signal: called from two places; one sets the reg to zero, the |
| 1974 | // other sets the stack pointer. |
| 1975 | // |
| 1976 | if (is_integer_guest_reg( (Int)offset, (Int)size )) { |
| 1977 | put_guest_intreg( |
| 1978 | tid, 1/*shadowno*/, offset, size, |
| 1979 | (UWord)nonptr_or_unknown( |
| 1980 | get_guest_intreg( tid, 0/*shadowno*/, |
| 1981 | offset, size ))); |
| 1982 | } else { |
| 1983 | tl_assert(0); |
| 1984 | } |
| 1985 | } |
| 1986 | |
| 1987 | void h_post_reg_write_demux ( CorePart part, ThreadId tid, |
njn | c4431bf | 2009-01-15 21:29:24 +0000 | [diff] [blame] | 1988 | PtrdiffT guest_state_offset, SizeT size) |
sewardj | 024598e | 2008-09-18 14:43:05 +0000 | [diff] [blame] | 1989 | { |
| 1990 | if (0) |
| 1991 | VG_(printf)("post_reg_write_demux: tid %d part %d off %ld size %ld\n", |
| 1992 | (Int)tid, (Int)part, |
| 1993 | guest_state_offset, size); |
| 1994 | switch (part) { |
| 1995 | case Vg_CoreStartup: |
| 1996 | /* This is a bit of a kludge since for any Vg_CoreStartup |
| 1997 | event we overwrite the entire shadow register set. But |
| 1998 | that's ok - we're only called once with |
| 1999 | part==Vg_CoreStartup event, and in that case the supplied |
| 2000 | offset & size cover the entire guest state anyway. */ |
| 2001 | init_shadow_registers(tid); |
| 2002 | break; |
| 2003 | case Vg_CoreSysCall: |
| 2004 | if (0) VG_(printf)("ZZZZZZZ p_r_w -> NONPTR\n"); |
| 2005 | post_reg_write_nonptr( tid, guest_state_offset, size ); |
| 2006 | break; |
| 2007 | case Vg_CoreClientReq: |
| 2008 | post_reg_write_nonptr( tid, guest_state_offset, size ); |
| 2009 | break; |
| 2010 | case Vg_CoreSignal: |
| 2011 | post_reg_write_nonptr_or_unknown( tid, guest_state_offset, size ); |
| 2012 | break; |
| 2013 | default: |
| 2014 | tl_assert(0); |
| 2015 | } |
| 2016 | } |
| 2017 | |
njn | c4431bf | 2009-01-15 21:29:24 +0000 | [diff] [blame] | 2018 | void h_post_reg_write_clientcall(ThreadId tid, PtrdiffT guest_state_offset, |
sewardj | 024598e | 2008-09-18 14:43:05 +0000 | [diff] [blame] | 2019 | SizeT size, Addr f ) |
| 2020 | { |
| 2021 | UWord p; |
| 2022 | |
| 2023 | // Having to do this is a bit nasty... |
| 2024 | if (f == (Addr)h_replace_malloc |
| 2025 | || f == (Addr)h_replace___builtin_new |
| 2026 | || f == (Addr)h_replace___builtin_vec_new |
| 2027 | || f == (Addr)h_replace_calloc |
| 2028 | || f == (Addr)h_replace_memalign |
| 2029 | || f == (Addr)h_replace_realloc) |
| 2030 | { |
| 2031 | // We remembered the last added segment; make sure it's the right one. |
| 2032 | /* What's going on: at this point, the scheduler has just called |
| 2033 | 'f' -- one of our malloc replacement functions -- and it has |
| 2034 | returned. The return value has been written to the guest |
| 2035 | state of thread 'tid', offset 'guest_state_offset' length |
| 2036 | 'size'. We need to look at that return value and set the |
| 2037 | shadow return value accordingly. The shadow return value |
| 2038 | required is handed to us "under the counter" through the |
| 2039 | global variable 'last_seg_added'. This is all very ugly, not |
| 2040 | to mention, non-thread-safe should V ever become |
| 2041 | multithreaded. */ |
| 2042 | /* assert the place where the return value is is a legit int reg */ |
| 2043 | tl_assert(is_integer_guest_reg(guest_state_offset, size)); |
| 2044 | /* Now we need to look at the returned value, to see whether the |
| 2045 | malloc succeeded or not. */ |
| 2046 | p = get_guest_intreg(tid, 0/*non-shadow*/, guest_state_offset, size); |
| 2047 | if ((UWord)NULL == p) { |
| 2048 | // if alloc failed, eg. realloc on bogus pointer |
| 2049 | put_guest_intreg(tid, 1/*first-shadow*/, |
| 2050 | guest_state_offset, size, (UWord)NONPTR ); |
| 2051 | } else { |
| 2052 | // alloc didn't fail. Check we have the correct segment. |
| 2053 | tl_assert(p == last_seg_added->addr); |
| 2054 | put_guest_intreg(tid, 1/*first-shadow*/, |
| 2055 | guest_state_offset, size, (UWord)last_seg_added ); |
| 2056 | } |
| 2057 | } |
| 2058 | else if (f == (Addr)h_replace_free |
| 2059 | || f == (Addr)h_replace___builtin_delete |
| 2060 | || f == (Addr)h_replace___builtin_vec_delete |
| 2061 | // || f == (Addr)VG_(cli_block_size) |
| 2062 | || f == (Addr)VG_(message)) |
| 2063 | { |
| 2064 | // Probably best to set the (non-existent!) return value to |
| 2065 | // non-pointer. |
| 2066 | tl_assert(is_integer_guest_reg(guest_state_offset, size)); |
| 2067 | put_guest_intreg(tid, 1/*first-shadow*/, |
| 2068 | guest_state_offset, size, (UWord)NONPTR ); |
| 2069 | } |
| 2070 | else { |
| 2071 | // Anything else, probably best to set return value to non-pointer. |
| 2072 | //VG_(set_thread_shadow_archreg)(tid, reg, (UInt)UNKNOWN); |
| 2073 | Char fbuf[100]; |
| 2074 | VG_(printf)("f = %#lx\n", f); |
| 2075 | VG_(get_fnname)(f, fbuf, 100); |
| 2076 | VG_(printf)("name = %s\n", fbuf); |
| 2077 | VG_(tool_panic)("argh: clientcall"); |
| 2078 | } |
| 2079 | } |
| 2080 | |
| 2081 | |
| 2082 | //zz /*--------------------------------------------------------------------*/ |
| 2083 | //zz /*--- Sanity checking ---*/ |
| 2084 | //zz /*--------------------------------------------------------------------*/ |
| 2085 | //zz |
| 2086 | //zz /* Check that nobody has spuriously claimed that the first or last 16 |
| 2087 | //zz pages (64 KB) of address space have become accessible. Failure of |
| 2088 | //zz the following do not per se indicate an internal consistency |
| 2089 | //zz problem, but they are so likely to that we really want to know |
| 2090 | //zz about it if so. */ |
| 2091 | //zz Bool pc_replace_cheap_sanity_check) ( void ) |
| 2092 | //zz { |
| 2093 | //zz if (IS_DISTINGUISHED_SM(primary_map[0]) |
| 2094 | //zz /* kludge: kernel drops a page up at top of address range for |
| 2095 | //zz magic "optimized syscalls", so we can no longer check the |
| 2096 | //zz highest page */ |
| 2097 | //zz /* && IS_DISTINGUISHED_SM(primary_map[65535]) */ |
| 2098 | //zz ) |
| 2099 | //zz return True; |
| 2100 | //zz else |
| 2101 | //zz return False; |
| 2102 | //zz } |
| 2103 | //zz |
| 2104 | //zz Bool SK_(expensive_sanity_check) ( void ) |
| 2105 | //zz { |
| 2106 | //zz Int i; |
| 2107 | //zz |
| 2108 | //zz /* Make sure nobody changed the distinguished secondary. */ |
| 2109 | //zz for (i = 0; i < SEC_MAP_WORDS; i++) |
| 2110 | //zz if (distinguished_secondary_map.vseg[i] != UNKNOWN) |
| 2111 | //zz return False; |
| 2112 | //zz |
| 2113 | //zz return True; |
| 2114 | //zz } |
| 2115 | |
| 2116 | |
| 2117 | /*--------------------------------------------------------------------*/ |
| 2118 | /*--- System calls ---*/ |
| 2119 | /*--------------------------------------------------------------------*/ |
| 2120 | |
| 2121 | void h_pre_syscall ( ThreadId tid, UInt sysno ) |
| 2122 | { |
| 2123 | /* we don't do anything at the pre-syscall point */ |
| 2124 | } |
| 2125 | |
| 2126 | /* The post-syscall table is a table of pairs (number, flag). |
| 2127 | |
| 2128 | 'flag' is only ever zero or one. If it is zero, it indicates that |
| 2129 | default handling for that syscall is required -- namely that the |
| 2130 | syscall is deemed to return NONPTR. This is the case for the vast |
| 2131 | majority of syscalls. If it is one then some special |
| 2132 | syscall-specific handling is is required. No further details of it |
| 2133 | are stored in the table. |
| 2134 | |
| 2135 | On Linux, 'number' is a __NR_xxx constant. |
| 2136 | |
| 2137 | On AIX5, 'number' is an Int*, which points to the Int variable |
| 2138 | holding the currently assigned number for this syscall. |
| 2139 | |
| 2140 | When querying the table, we compare the supplied syscall number |
| 2141 | with the 'number' field (directly on Linux, after dereferencing on |
| 2142 | AIX5), to find the relevant entry. This requires a linear search |
| 2143 | of the table. To stop the costs getting too high, the table is |
| 2144 | incrementally rearranged after each search, to move commonly |
| 2145 | requested items a bit closer to the front. |
| 2146 | |
| 2147 | The table is built once, the first time it is used. After that we |
| 2148 | merely query it (and reorder the entries as a result). */ |
| 2149 | |
| 2150 | static XArray* /* of UWordPair */ post_syscall_table = NULL; |
| 2151 | |
| 2152 | static void setup_post_syscall_table ( void ) |
| 2153 | { |
| 2154 | tl_assert(!post_syscall_table); |
| 2155 | post_syscall_table = VG_(newXA)( VG_(malloc), "pc.h_main.spst.1", |
| 2156 | VG_(free), sizeof(UWordPair) ); |
| 2157 | tl_assert(post_syscall_table); |
| 2158 | |
| 2159 | /* --------------- LINUX --------------- */ |
| 2160 | |
| 2161 | # if defined(VGO_linux) |
| 2162 | |
| 2163 | # define ADD(_flag, _syscallname) \ |
| 2164 | do { UWordPair p; p.uw1 = (_syscallname); p.uw2 = (_flag); \ |
| 2165 | VG_(addToXA)( post_syscall_table, &p ); \ |
| 2166 | } while (0) |
| 2167 | |
| 2168 | /* These ones definitely don't return pointers. They're not |
| 2169 | particularly grammatical, either. */ |
| 2170 | |
| 2171 | # if defined(__NR__llseek) |
| 2172 | ADD(0, __NR__llseek); |
| 2173 | # endif |
| 2174 | ADD(0, __NR__sysctl); |
| 2175 | # if defined(__NR__newselect) |
| 2176 | ADD(0, __NR__newselect); |
| 2177 | # endif |
| 2178 | # if defined(__NR_accept) |
| 2179 | ADD(0, __NR_accept); |
| 2180 | # endif |
| 2181 | ADD(0, __NR_access); |
tom | 332ffec | 2009-01-05 12:16:21 +0000 | [diff] [blame] | 2182 | ADD(0, __NR_alarm); |
sewardj | 024598e | 2008-09-18 14:43:05 +0000 | [diff] [blame] | 2183 | # if defined(__NR_bind) |
| 2184 | ADD(0, __NR_bind); |
| 2185 | # endif |
| 2186 | # if defined(__NR_chdir) |
| 2187 | ADD(0, __NR_chdir); |
| 2188 | # endif |
| 2189 | ADD(0, __NR_chmod); |
| 2190 | ADD(0, __NR_chown); |
sewardj | 41d5dea | 2009-01-24 10:52:32 +0000 | [diff] [blame] | 2191 | # if defined(__NR_chown32) |
| 2192 | ADD(0, __NR_chown32); |
| 2193 | # endif |
sewardj | 024598e | 2008-09-18 14:43:05 +0000 | [diff] [blame] | 2194 | ADD(0, __NR_clock_getres); |
| 2195 | ADD(0, __NR_clock_gettime); |
| 2196 | ADD(0, __NR_clone); |
| 2197 | ADD(0, __NR_close); |
| 2198 | # if defined(__NR_connect) |
| 2199 | ADD(0, __NR_connect); |
| 2200 | # endif |
tom | 332ffec | 2009-01-05 12:16:21 +0000 | [diff] [blame] | 2201 | ADD(0, __NR_creat); |
sewardj | 024598e | 2008-09-18 14:43:05 +0000 | [diff] [blame] | 2202 | ADD(0, __NR_dup); |
| 2203 | ADD(0, __NR_dup2); |
| 2204 | ADD(0, __NR_execve); /* presumably we see this because the call failed? */ |
| 2205 | ADD(0, __NR_exit); /* hmm, why are we still alive? */ |
| 2206 | ADD(0, __NR_exit_group); |
| 2207 | ADD(0, __NR_fadvise64); |
| 2208 | ADD(0, __NR_fchmod); |
| 2209 | ADD(0, __NR_fchown); |
| 2210 | # if defined(__NR_fchown32) |
| 2211 | ADD(0, __NR_fchown32); |
| 2212 | # endif |
| 2213 | ADD(0, __NR_fcntl); |
| 2214 | # if defined(__NR_fcntl64) |
| 2215 | ADD(0, __NR_fcntl64); |
| 2216 | # endif |
| 2217 | ADD(0, __NR_fdatasync); |
sewardj | 33c57f2 | 2009-01-26 00:09:08 +0000 | [diff] [blame^] | 2218 | ADD(0, __NR_flock); |
sewardj | 024598e | 2008-09-18 14:43:05 +0000 | [diff] [blame] | 2219 | ADD(0, __NR_fstat); |
| 2220 | # if defined(__NR_fstat64) |
| 2221 | ADD(0, __NR_fstat64); |
| 2222 | # endif |
| 2223 | ADD(0, __NR_fstatfs); |
| 2224 | ADD(0, __NR_fsync); |
| 2225 | ADD(0, __NR_ftruncate); |
| 2226 | # if defined(__NR_ftruncate64) |
| 2227 | ADD(0, __NR_ftruncate64); |
| 2228 | # endif |
| 2229 | ADD(0, __NR_futex); |
| 2230 | ADD(0, __NR_getcwd); |
| 2231 | ADD(0, __NR_getdents); // something to do with teeth |
| 2232 | ADD(0, __NR_getdents64); |
| 2233 | ADD(0, __NR_getegid); |
| 2234 | # if defined(__NR_getegid32) |
| 2235 | ADD(0, __NR_getegid32); |
| 2236 | # endif |
| 2237 | ADD(0, __NR_geteuid); |
| 2238 | # if defined(__NR_geteuid32) |
| 2239 | ADD(0, __NR_geteuid32); |
| 2240 | # endif |
| 2241 | ADD(0, __NR_getgid); |
| 2242 | # if defined(__NR_getgid32) |
| 2243 | ADD(0, __NR_getgid32); |
| 2244 | # endif |
| 2245 | ADD(0, __NR_getitimer); |
| 2246 | # if defined(__NR_getpeername) |
| 2247 | ADD(0, __NR_getpeername); |
| 2248 | # endif |
| 2249 | ADD(0, __NR_getpid); |
sewardj | 7d76911 | 2008-10-30 01:44:03 +0000 | [diff] [blame] | 2250 | ADD(0, __NR_getpgrp); |
sewardj | 024598e | 2008-09-18 14:43:05 +0000 | [diff] [blame] | 2251 | ADD(0, __NR_getppid); |
| 2252 | ADD(0, __NR_getresgid); |
| 2253 | ADD(0, __NR_getresuid); |
| 2254 | ADD(0, __NR_getrlimit); |
tom | 332ffec | 2009-01-05 12:16:21 +0000 | [diff] [blame] | 2255 | ADD(0, __NR_getrusage); |
sewardj | 024598e | 2008-09-18 14:43:05 +0000 | [diff] [blame] | 2256 | # if defined(__NR_getsockname) |
| 2257 | ADD(0, __NR_getsockname); |
| 2258 | # endif |
| 2259 | # if defined(__NR_getsockopt) |
| 2260 | ADD(0, __NR_getsockopt); |
| 2261 | # endif |
sewardj | 41d5dea | 2009-01-24 10:52:32 +0000 | [diff] [blame] | 2262 | ADD(0, __NR_gettid); |
sewardj | 024598e | 2008-09-18 14:43:05 +0000 | [diff] [blame] | 2263 | ADD(0, __NR_gettimeofday); |
| 2264 | ADD(0, __NR_getuid); |
| 2265 | # if defined(__NR_getuid32) |
| 2266 | ADD(0, __NR_getuid32); |
| 2267 | # endif |
| 2268 | ADD(0, __NR_getxattr); |
sewardj | 738db7b | 2008-10-20 10:30:08 +0000 | [diff] [blame] | 2269 | ADD(0, __NR_inotify_add_watch); |
sewardj | 024598e | 2008-09-18 14:43:05 +0000 | [diff] [blame] | 2270 | ADD(0, __NR_inotify_init); |
sewardj | 738db7b | 2008-10-20 10:30:08 +0000 | [diff] [blame] | 2271 | ADD(0, __NR_inotify_rm_watch); |
sewardj | 024598e | 2008-09-18 14:43:05 +0000 | [diff] [blame] | 2272 | ADD(0, __NR_ioctl); // ioctl -- assuming no pointers returned |
sewardj | 33c57f2 | 2009-01-26 00:09:08 +0000 | [diff] [blame^] | 2273 | ADD(0, __NR_ioprio_get); |
sewardj | 024598e | 2008-09-18 14:43:05 +0000 | [diff] [blame] | 2274 | ADD(0, __NR_kill); |
| 2275 | ADD(0, __NR_link); |
| 2276 | # if defined(__NR_listen) |
| 2277 | ADD(0, __NR_listen); |
| 2278 | # endif |
| 2279 | ADD(0, __NR_lseek); |
| 2280 | ADD(0, __NR_lstat); |
| 2281 | # if defined(__NR_lstat64) |
| 2282 | ADD(0, __NR_lstat64); |
| 2283 | # endif |
| 2284 | ADD(0, __NR_madvise); |
| 2285 | ADD(0, __NR_mkdir); |
sewardj | 33c57f2 | 2009-01-26 00:09:08 +0000 | [diff] [blame^] | 2286 | ADD(0, __NR_mlock); |
sewardj | 024598e | 2008-09-18 14:43:05 +0000 | [diff] [blame] | 2287 | ADD(0, __NR_mprotect); |
| 2288 | ADD(0, __NR_munmap); // die_mem_munmap already called, segment remove); |
sewardj | 738db7b | 2008-10-20 10:30:08 +0000 | [diff] [blame] | 2289 | ADD(0, __NR_nanosleep); |
sewardj | 024598e | 2008-09-18 14:43:05 +0000 | [diff] [blame] | 2290 | ADD(0, __NR_open); |
| 2291 | ADD(0, __NR_pipe); |
| 2292 | ADD(0, __NR_poll); |
| 2293 | ADD(0, __NR_pread64); |
| 2294 | ADD(0, __NR_pwrite64); |
| 2295 | ADD(0, __NR_read); |
| 2296 | ADD(0, __NR_readlink); |
| 2297 | ADD(0, __NR_readv); |
| 2298 | # if defined(__NR_recvfrom) |
| 2299 | ADD(0, __NR_recvfrom); |
| 2300 | # endif |
| 2301 | # if defined(__NR_recvmsg) |
| 2302 | ADD(0, __NR_recvmsg); |
| 2303 | # endif |
| 2304 | ADD(0, __NR_rename); |
| 2305 | ADD(0, __NR_rmdir); |
| 2306 | ADD(0, __NR_rt_sigaction); |
| 2307 | ADD(0, __NR_rt_sigprocmask); |
| 2308 | ADD(0, __NR_rt_sigreturn); /* not sure if we should see this or not */ |
| 2309 | ADD(0, __NR_sched_get_priority_max); |
| 2310 | ADD(0, __NR_sched_get_priority_min); |
sewardj | 738db7b | 2008-10-20 10:30:08 +0000 | [diff] [blame] | 2311 | ADD(0, __NR_sched_getaffinity); |
sewardj | 024598e | 2008-09-18 14:43:05 +0000 | [diff] [blame] | 2312 | ADD(0, __NR_sched_getparam); |
| 2313 | ADD(0, __NR_sched_getscheduler); |
sewardj | 41d5dea | 2009-01-24 10:52:32 +0000 | [diff] [blame] | 2314 | ADD(0, __NR_sched_setaffinity); |
sewardj | 024598e | 2008-09-18 14:43:05 +0000 | [diff] [blame] | 2315 | ADD(0, __NR_sched_setscheduler); |
| 2316 | ADD(0, __NR_sched_yield); |
| 2317 | ADD(0, __NR_select); |
sewardj | 33c57f2 | 2009-01-26 00:09:08 +0000 | [diff] [blame^] | 2318 | # if defined(__NR_semctl) |
| 2319 | ADD(0, __NR_semctl); |
| 2320 | # endif |
| 2321 | # if defined(__NR_semget) |
| 2322 | ADD(0, __NR_semget); |
| 2323 | # endif |
| 2324 | # if defined(__NR_semop) |
| 2325 | ADD(0, __NR_semop); |
| 2326 | # endif |
sewardj | 024598e | 2008-09-18 14:43:05 +0000 | [diff] [blame] | 2327 | # if defined(__NR_sendto) |
| 2328 | ADD(0, __NR_sendto); |
| 2329 | # endif |
tom | 332ffec | 2009-01-05 12:16:21 +0000 | [diff] [blame] | 2330 | # if defined(__NR_sendmsg) |
| 2331 | ADD(0, __NR_sendmsg); |
| 2332 | # endif |
sewardj | 024598e | 2008-09-18 14:43:05 +0000 | [diff] [blame] | 2333 | ADD(0, __NR_set_robust_list); |
| 2334 | # if defined(__NR_set_thread_area) |
| 2335 | ADD(0, __NR_set_thread_area); |
| 2336 | # endif |
| 2337 | ADD(0, __NR_set_tid_address); |
| 2338 | ADD(0, __NR_setitimer); |
sewardj | 7d76911 | 2008-10-30 01:44:03 +0000 | [diff] [blame] | 2339 | ADD(0, __NR_setpgid); |
sewardj | 024598e | 2008-09-18 14:43:05 +0000 | [diff] [blame] | 2340 | ADD(0, __NR_setrlimit); |
| 2341 | ADD(0, __NR_setsid); |
| 2342 | # if defined(__NR_setsockopt) |
| 2343 | ADD(0, __NR_setsockopt); |
| 2344 | # endif |
| 2345 | # if defined(__NR_shmctl) |
| 2346 | ADD(0, __NR_shmctl); |
| 2347 | ADD(0, __NR_shmdt); |
| 2348 | # endif |
| 2349 | # if defined(__NR_shutdown) |
| 2350 | ADD(0, __NR_shutdown); |
| 2351 | # endif |
sewardj | 41d5dea | 2009-01-24 10:52:32 +0000 | [diff] [blame] | 2352 | ADD(0, __NR_sigaltstack); |
sewardj | 024598e | 2008-09-18 14:43:05 +0000 | [diff] [blame] | 2353 | # if defined(__NR_socket) |
| 2354 | ADD(0, __NR_socket); |
| 2355 | # endif |
| 2356 | # if defined(__NR_socketcall) |
| 2357 | ADD(0, __NR_socketcall); /* the nasty x86-linux socket multiplexor */ |
| 2358 | # endif |
sewardj | 23e8a29 | 2009-01-07 09:35:10 +0000 | [diff] [blame] | 2359 | # if defined(__NR_socketpair) |
| 2360 | ADD(0, __NR_socketpair); |
| 2361 | # endif |
sewardj | 024598e | 2008-09-18 14:43:05 +0000 | [diff] [blame] | 2362 | # if defined(__NR_statfs64) |
| 2363 | ADD(0, __NR_statfs64); |
| 2364 | # endif |
| 2365 | # if defined(__NR_sigreturn) |
| 2366 | ADD(0, __NR_sigreturn); /* not sure if we should see this or not */ |
| 2367 | # endif |
| 2368 | # if defined(__NR_stat64) |
| 2369 | ADD(0, __NR_stat64); |
| 2370 | # endif |
| 2371 | ADD(0, __NR_stat); |
| 2372 | ADD(0, __NR_statfs); |
| 2373 | ADD(0, __NR_symlink); |
| 2374 | ADD(0, __NR_sysinfo); |
| 2375 | ADD(0, __NR_tgkill); |
| 2376 | ADD(0, __NR_time); |
| 2377 | ADD(0, __NR_times); |
| 2378 | ADD(0, __NR_truncate); |
| 2379 | # if defined(__NR_truncate64) |
| 2380 | ADD(0, __NR_truncate64); |
| 2381 | # endif |
| 2382 | # if defined(__NR_ugetrlimit) |
| 2383 | ADD(0, __NR_ugetrlimit); |
| 2384 | # endif |
| 2385 | ADD(0, __NR_umask); |
| 2386 | ADD(0, __NR_uname); |
| 2387 | ADD(0, __NR_unlink); |
| 2388 | ADD(0, __NR_utime); |
| 2389 | # if defined(__NR_waitpid) |
| 2390 | ADD(0, __NR_waitpid); |
| 2391 | # endif |
| 2392 | ADD(0, __NR_wait4); |
| 2393 | ADD(0, __NR_write); |
| 2394 | ADD(0, __NR_writev); |
| 2395 | |
| 2396 | /* Whereas the following need special treatment */ |
| 2397 | # if defined(__NR_arch_prctl) |
| 2398 | ADD(1, __NR_arch_prctl); |
| 2399 | # endif |
| 2400 | ADD(1, __NR_brk); |
| 2401 | ADD(1, __NR_mmap); |
| 2402 | # if defined(__NR_mmap2) |
| 2403 | ADD(1, __NR_mmap2); |
| 2404 | # endif |
| 2405 | # if defined(__NR_shmat) |
| 2406 | ADD(1, __NR_shmat); |
| 2407 | # endif |
| 2408 | # if defined(__NR_shmget) |
| 2409 | ADD(1, __NR_shmget); |
| 2410 | # endif |
| 2411 | |
| 2412 | /* --------------- AIX5 --------------- */ |
| 2413 | |
| 2414 | # elif defined(VGO_aix5) |
| 2415 | |
| 2416 | # define ADD(_flag, _syscallname) \ |
| 2417 | do { \ |
| 2418 | UWordPair p; \ |
| 2419 | if ((_syscallname) != __NR_AIX5_UNKNOWN) { \ |
| 2420 | p.uw1 = (UWord)&(_syscallname); p.uw2 = (_flag); \ |
| 2421 | VG_(addToXA)( post_syscall_table, &p ); \ |
| 2422 | } \ |
| 2423 | } while (0) |
| 2424 | |
| 2425 | /* Just a minimal set of handlers, enough to make |
| 2426 | a 32- and 64-bit hello-world program run. */ |
| 2427 | ADD(1, __NR_AIX5___loadx); /* not sure what to do here */ |
| 2428 | ADD(0, __NR_AIX5__exit); |
| 2429 | ADD(0, __NR_AIX5_access); |
| 2430 | ADD(0, __NR_AIX5_getgidx); |
| 2431 | ADD(0, __NR_AIX5_getuidx); |
| 2432 | ADD(0, __NR_AIX5_kfcntl); |
| 2433 | ADD(0, __NR_AIX5_kioctl); |
| 2434 | ADD(1, __NR_AIX5_kload); /* not sure what to do here */ |
| 2435 | ADD(0, __NR_AIX5_kwrite); |
| 2436 | |
| 2437 | # else |
| 2438 | # error "Unsupported OS" |
| 2439 | # endif |
| 2440 | |
| 2441 | # undef ADD |
| 2442 | } |
| 2443 | |
| 2444 | |
| 2445 | void h_post_syscall ( ThreadId tid, UInt sysno, SysRes res ) |
| 2446 | { |
| 2447 | Word i, n; |
| 2448 | UWordPair* pair; |
| 2449 | |
| 2450 | if (!post_syscall_table) |
| 2451 | setup_post_syscall_table(); |
| 2452 | |
| 2453 | /* search for 'sysno' in the post_syscall_table */ |
| 2454 | n = VG_(sizeXA)( post_syscall_table ); |
| 2455 | for (i = 0; i < n; i++) { |
| 2456 | pair = VG_(indexXA)( post_syscall_table, i ); |
| 2457 | # if defined(VGO_linux) |
| 2458 | if (pair->uw1 == (UWord)sysno) |
| 2459 | break; |
| 2460 | # elif defined(VGO_aix5) |
| 2461 | if (*(Int*)(pair->uw1) == (Int)sysno) |
| 2462 | break; |
| 2463 | # else |
| 2464 | # error "Unsupported OS" |
| 2465 | # endif |
| 2466 | } |
| 2467 | |
| 2468 | tl_assert(i >= 0 && i <= n); |
| 2469 | |
| 2470 | if (i == n) { |
| 2471 | VG_(printf)("sysno == %u\n", sysno); |
| 2472 | # if defined(VGO_aix5) |
| 2473 | VG_(printf)("syscallnm == %s\n", |
| 2474 | VG_(aix5_sysno_to_sysname)(sysno)); |
| 2475 | # endif |
| 2476 | VG_(tool_panic)("unhandled syscall"); |
| 2477 | } |
| 2478 | |
| 2479 | /* So we found the relevant entry. Move it one step |
| 2480 | forward so as to speed future accesses to it. */ |
| 2481 | if (i > 0) { |
| 2482 | UWordPair tmp, *p, *q; |
| 2483 | p = VG_(indexXA)( post_syscall_table, i-1 ); |
| 2484 | q = VG_(indexXA)( post_syscall_table, i-0 ); |
| 2485 | tmp = *p; |
| 2486 | *p = *q; |
| 2487 | *q = tmp; |
| 2488 | i--; |
| 2489 | } |
| 2490 | |
| 2491 | /* Deal with the common case */ |
| 2492 | pair = VG_(indexXA)( post_syscall_table, i ); |
| 2493 | if (pair->uw2 == 0) { |
| 2494 | /* the common case */ |
| 2495 | VG_(set_syscall_return_shadows)( |
| 2496 | tid, /* retval */ (UWord)NONPTR, 0, |
| 2497 | /* error */ (UWord)NONPTR, 0 |
| 2498 | ); |
| 2499 | return; |
| 2500 | } |
| 2501 | |
| 2502 | /* Special handling for all remaining cases */ |
| 2503 | tl_assert(pair->uw2 == 1); |
| 2504 | |
| 2505 | # if defined(__NR_arch_prctl) |
| 2506 | if (sysno == __NR_arch_prctl) { |
| 2507 | /* This is nasty. On amd64-linux, arch_prctl may write a |
| 2508 | value to guest_FS_ZERO, and we need to shadow that value. |
| 2509 | Hence apply nonptr_or_unknown to it here, after the |
| 2510 | syscall completes. */ |
| 2511 | post_reg_write_nonptr_or_unknown( tid, PC_OFF_FS_ZERO, |
| 2512 | PC_SZB_FS_ZERO ); |
| 2513 | VG_(set_syscall_return_shadows)( |
| 2514 | tid, /* retval */ (UWord)NONPTR, 0, |
| 2515 | /* error */ (UWord)NONPTR, 0 |
| 2516 | ); |
| 2517 | return; |
| 2518 | } |
| 2519 | # endif |
| 2520 | |
| 2521 | # if defined(__NR_brk) |
| 2522 | // With brk(), result (of kernel syscall, not glibc wrapper) is a heap |
| 2523 | // pointer. Make the shadow UNKNOWN. |
| 2524 | if (sysno == __NR_brk) { |
| 2525 | VG_(set_syscall_return_shadows)( |
| 2526 | tid, /* retval */ (UWord)UNKNOWN, 0, |
| 2527 | /* error */ (UWord)NONPTR, 0 |
| 2528 | ); |
| 2529 | return; |
| 2530 | } |
| 2531 | # endif |
| 2532 | |
| 2533 | // With mmap, new_mem_mmap() has already been called and added the |
| 2534 | // segment (we did it there because we had the result address and size |
| 2535 | // handy). So just set the return value shadow. |
| 2536 | if (sysno == __NR_mmap |
| 2537 | # if defined(__NR_mmap2) |
| 2538 | || sysno == __NR_mmap2 |
| 2539 | # endif |
| 2540 | # if defined(__NR_AIX5___loadx) |
| 2541 | || (sysno == __NR_AIX5___loadx && __NR_AIX5___loadx != __NR_AIX5_UNKNOWN) |
| 2542 | # endif |
| 2543 | # if defined(__NR_AIX5_kload) |
| 2544 | || (sysno == __NR_AIX5_kload && __NR_AIX5_kload != __NR_AIX5_UNKNOWN) |
| 2545 | # endif |
| 2546 | ) { |
| 2547 | if (res.isError) { |
| 2548 | // mmap() had an error, return value is a small negative integer |
| 2549 | VG_(set_syscall_return_shadows)( tid, /*val*/ (UWord)NONPTR, 0, |
| 2550 | /*err*/ (UWord)NONPTR, 0 ); |
| 2551 | if (0) VG_(printf)("ZZZZZZZ mmap res -> NONPTR\n"); |
| 2552 | } else { |
| 2553 | VG_(set_syscall_return_shadows)( tid, /*val*/ (UWord)UNKNOWN, 0, |
| 2554 | /*err*/ (UWord)NONPTR, 0 ); |
| 2555 | if (0) VG_(printf)("ZZZZZZZ mmap res -> UNKNOWN\n"); |
| 2556 | } |
| 2557 | return; |
| 2558 | } |
| 2559 | |
| 2560 | // shmat uses the same scheme. We will just have had a |
| 2561 | // notification via new_mem_mmap. Just set the return value shadow. |
| 2562 | # if defined(__NR_shmat) |
| 2563 | if (sysno == __NR_shmat) { |
| 2564 | if (res.isError) { |
| 2565 | VG_(set_syscall_return_shadows)( tid, /*val*/ (UWord)NONPTR, 0, |
| 2566 | /*err*/ (UWord)NONPTR, 0 ); |
| 2567 | if (0) VG_(printf)("ZZZZZZZ shmat res -> NONPTR\n"); |
| 2568 | } else { |
| 2569 | VG_(set_syscall_return_shadows)( tid, /*val*/ (UWord)UNKNOWN, 0, |
| 2570 | /*err*/ (UWord)NONPTR, 0 ); |
| 2571 | if (0) VG_(printf)("ZZZZZZZ shmat res -> UNKNOWN\n"); |
| 2572 | } |
| 2573 | return; |
| 2574 | } |
| 2575 | # endif |
| 2576 | |
| 2577 | # if defined(__NR_shmget) |
| 2578 | if (sysno == __NR_shmget) { |
| 2579 | // FIXME: is this correct? |
| 2580 | VG_(set_syscall_return_shadows)( tid, /*val*/ (UWord)UNKNOWN, 0, |
| 2581 | /*err*/ (UWord)NONPTR, 0 ); |
| 2582 | return; |
| 2583 | } |
| 2584 | # endif |
| 2585 | |
| 2586 | /* If we get here, it implies the corresponding entry in |
| 2587 | post_syscall_table has .w2 == 1, which in turn implies there |
| 2588 | should be special-case code for it above. */ |
| 2589 | tl_assert(0); |
| 2590 | } |
| 2591 | |
| 2592 | |
| 2593 | /*--------------------------------------------------------------------*/ |
| 2594 | /*--- Functions called from generated code ---*/ |
| 2595 | /*--------------------------------------------------------------------*/ |
| 2596 | |
| 2597 | #if SC_SEGS |
| 2598 | static void checkSeg ( Seg vseg ) { |
| 2599 | tl_assert(vseg == UNKNOWN || vseg == NONPTR || vseg == BOTTOM |
| 2600 | || Seg__plausible(vseg) ); |
| 2601 | } |
| 2602 | #endif |
| 2603 | |
| 2604 | // XXX: could be more sophisticated -- actually track the lowest/highest |
| 2605 | // valid address used by the program, and then return False for anything |
| 2606 | // below that (using a suitable safety margin). Also, nothing above |
| 2607 | // 0xc0000000 is valid [unless you've changed that in your kernel] |
| 2608 | static inline Bool looks_like_a_pointer(Addr a) |
| 2609 | { |
| 2610 | # if defined(VGA_x86) || defined(VGA_ppc32) |
| 2611 | tl_assert(sizeof(UWord) == 4); |
| 2612 | return (a > 0x01000000UL && a < 0xFF000000UL); |
| 2613 | # elif defined(VGA_amd64) || defined(VGA_ppc64) |
| 2614 | tl_assert(sizeof(UWord) == 8); |
| 2615 | return (a >= 16 * 0x10000UL && a < 0xFF00000000000000UL); |
| 2616 | # else |
| 2617 | # error "Unsupported architecture" |
| 2618 | # endif |
| 2619 | } |
| 2620 | |
| 2621 | static inline VG_REGPARM(1) |
| 2622 | Seg* nonptr_or_unknown(UWord x) |
| 2623 | { |
| 2624 | Seg* res = looks_like_a_pointer(x) ? UNKNOWN : NONPTR; |
| 2625 | if (0) VG_(printf)("nonptr_or_unknown %s %#lx\n", |
| 2626 | res==UNKNOWN ? "UUU" : "nnn", x); |
| 2627 | return res; |
| 2628 | } |
| 2629 | |
| 2630 | //zz static __attribute__((regparm(1))) |
| 2631 | //zz void print_BB_entry(UInt bb) |
| 2632 | //zz { |
| 2633 | //zz VG_(printf)("%u =\n", bb); |
| 2634 | //zz } |
| 2635 | |
sewardj | 59347ff | 2008-12-23 02:31:22 +0000 | [diff] [blame] | 2636 | //static ULong stats__tot_mem_refs = 0; |
| 2637 | //static ULong stats__refs_in_a_seg = 0; |
| 2638 | //static ULong stats__refs_lost_seg = 0; |
sewardj | 024598e | 2008-09-18 14:43:05 +0000 | [diff] [blame] | 2639 | |
| 2640 | typedef |
| 2641 | struct { ExeContext* ec; UWord count; } |
| 2642 | Lossage; |
| 2643 | |
| 2644 | static OSet* lossage = NULL; |
| 2645 | |
sewardj | 59347ff | 2008-12-23 02:31:22 +0000 | [diff] [blame] | 2646 | //static void inc_lossage ( ExeContext* ec ) |
| 2647 | //{ |
| 2648 | // Lossage key, *res, *nyu; |
| 2649 | // key.ec = ec; |
| 2650 | // key.count = 0; /* frivolous */ |
| 2651 | // res = VG_(OSetGen_Lookup)(lossage, &key); |
| 2652 | // if (res) { |
| 2653 | // tl_assert(res->ec == ec); |
| 2654 | // res->count++; |
| 2655 | // } else { |
| 2656 | // nyu = (Lossage*)VG_(OSetGen_AllocNode)(lossage, sizeof(Lossage)); |
| 2657 | // tl_assert(nyu); |
| 2658 | // nyu->ec = ec; |
| 2659 | // nyu->count = 1; |
| 2660 | // VG_(OSetGen_Insert)( lossage, nyu ); |
| 2661 | // } |
| 2662 | //} |
sewardj | 024598e | 2008-09-18 14:43:05 +0000 | [diff] [blame] | 2663 | |
| 2664 | static void init_lossage ( void ) |
| 2665 | { |
| 2666 | lossage = VG_(OSetGen_Create)( /*keyOff*/ offsetof(Lossage,ec), |
| 2667 | /*fastCmp*/NULL, |
| 2668 | VG_(malloc), "pc.h_main.il.1", |
| 2669 | VG_(free) ); |
| 2670 | tl_assert(lossage); |
| 2671 | } |
| 2672 | |
sewardj | 59347ff | 2008-12-23 02:31:22 +0000 | [diff] [blame] | 2673 | //static void show_lossage ( void ) |
| 2674 | //{ |
| 2675 | // Lossage* elem; |
| 2676 | // VG_(OSetGen_ResetIter)( lossage ); |
| 2677 | // while ( (elem = VG_(OSetGen_Next)(lossage)) ) { |
| 2678 | // if (elem->count < 10) continue; |
| 2679 | // //Char buf[100]; |
| 2680 | // //(void)VG_(describe_IP)(elem->ec, buf, sizeof(buf)-1); |
| 2681 | // //buf[sizeof(buf)-1] = 0; |
| 2682 | // //VG_(printf)(" %,8lu %s\n", elem->count, buf); |
| 2683 | // VG_(message)(Vg_UserMsg, "Lossage count %'lu at", elem->count); |
| 2684 | // VG_(pp_ExeContext)(elem->ec); |
| 2685 | // } |
| 2686 | //} |
sewardj | 024598e | 2008-09-18 14:43:05 +0000 | [diff] [blame] | 2687 | |
| 2688 | // This function is called *a lot*; inlining it sped up Konqueror by 20%. |
| 2689 | static inline |
| 2690 | void check_load_or_store(Bool is_write, Addr m, UWord sz, Seg* mptr_vseg) |
| 2691 | { |
sewardj | 024598e | 2008-09-18 14:43:05 +0000 | [diff] [blame] | 2692 | #if 0 |
sewardj | 4815eb5 | 2008-10-20 23:33:49 +0000 | [diff] [blame] | 2693 | tl_assert(0); |
| 2694 | if (h_clo_lossage_check) { |
sewardj | 024598e | 2008-09-18 14:43:05 +0000 | [diff] [blame] | 2695 | Seg* seg; |
| 2696 | stats__tot_mem_refs++; |
| 2697 | if (ISList__findI0( seglist, (Addr)m, &seg )) { |
| 2698 | /* m falls inside 'seg' (that is, we are making a memory |
| 2699 | reference inside 'seg'). Now, really mptr_vseg should be |
| 2700 | a tracked segment of some description. Badness is when |
| 2701 | mptr_vseg is UNKNOWN, BOTTOM or NONPTR at this point, |
| 2702 | since that means we've lost the type of it somehow: it |
| 2703 | shoud say that m points into a real segment (preferable |
| 2704 | 'seg'), but it doesn't. */ |
| 2705 | if (Seg__status_is_SegHeap(seg)) { |
| 2706 | stats__refs_in_a_seg++; |
| 2707 | if (UNKNOWN == mptr_vseg |
| 2708 | || BOTTOM == mptr_vseg || NONPTR == mptr_vseg) { |
| 2709 | ExeContext* ec; |
| 2710 | Char buf[100]; |
| 2711 | static UWord xx = 0; |
| 2712 | stats__refs_lost_seg++; |
| 2713 | ec = VG_(record_ExeContext)( VG_(get_running_tid)(), 0 ); |
| 2714 | inc_lossage(ec); |
| 2715 | if (0) { |
| 2716 | VG_(message)(Vg_DebugMsg, ""); |
| 2717 | VG_(message)(Vg_DebugMsg, |
| 2718 | "Lossage %s %#lx sz %lu inside block alloc'd", |
| 2719 | is_write ? "wr" : "rd", m, (UWord)sz); |
| 2720 | VG_(pp_ExeContext)(Seg__where(seg)); |
| 2721 | } |
| 2722 | if (xx++ < 0) { |
| 2723 | Addr ip = VG_(get_IP)( VG_(get_running_tid)() ); |
| 2724 | (void)VG_(describe_IP)( ip, buf, sizeof(buf)-1); |
| 2725 | buf[sizeof(buf)-1] = 0; |
| 2726 | VG_(printf)("lossage at %p %s\n", ec, buf ); |
| 2727 | } |
| 2728 | } |
| 2729 | } |
| 2730 | } |
sewardj | 024598e | 2008-09-18 14:43:05 +0000 | [diff] [blame] | 2731 | } /* clo_lossage_check */ |
sewardj | 4815eb5 | 2008-10-20 23:33:49 +0000 | [diff] [blame] | 2732 | #endif |
sewardj | 024598e | 2008-09-18 14:43:05 +0000 | [diff] [blame] | 2733 | |
| 2734 | # if SC_SEGS |
| 2735 | checkSeg(mptr_vseg); |
| 2736 | # endif |
| 2737 | |
| 2738 | if (UNKNOWN == mptr_vseg) { |
| 2739 | // do nothing |
| 2740 | |
| 2741 | } else if (BOTTOM == mptr_vseg) { |
| 2742 | // do nothing |
| 2743 | |
| 2744 | } else if (NONPTR == mptr_vseg) { |
| 2745 | h_record_heap_error( m, sz, mptr_vseg, is_write ); |
| 2746 | |
| 2747 | } else { |
| 2748 | // check all segment ranges in the circle |
| 2749 | // if none match, warn about 1st seg |
| 2750 | // else, check matching one isn't freed |
| 2751 | Bool is_ok = False; |
| 2752 | Seg* curr = mptr_vseg; |
| 2753 | Addr mhi; |
| 2754 | |
| 2755 | // Accesses partly outside range are an error, unless it's an aligned |
| 2756 | // word-sized read, and --partial-loads-ok=yes. This is to cope with |
| 2757 | // gcc's/glibc's habits of doing word-sized accesses that read past |
| 2758 | // the ends of arrays/strings. |
| 2759 | // JRS 2008-sept-11: couldn't this be moved off the critical path? |
| 2760 | if (!is_write && sz == sizeof(UWord) |
| 2761 | && h_clo_partial_loads_ok && SHMEM_IS_WORD_ALIGNED(m)) { |
| 2762 | mhi = m; |
| 2763 | } else { |
| 2764 | mhi = m+sz-1; |
| 2765 | } |
| 2766 | |
| 2767 | if (0) VG_(printf)("calling seg_ci %p %#lx %#lx\n", curr,m,mhi); |
| 2768 | is_ok = curr->addr <= m && mhi < curr->addr + curr->szB; |
| 2769 | |
| 2770 | // If it's an overrun/underrun of a freed block, don't give both |
| 2771 | // warnings, since the first one mentions that the block has been |
| 2772 | // freed. |
| 2773 | if ( ! is_ok || Seg__is_freed(curr) ) |
| 2774 | h_record_heap_error( m, sz, mptr_vseg, is_write ); |
| 2775 | } |
| 2776 | } |
| 2777 | |
| 2778 | // ------------------ Load handlers ------------------ // |
| 2779 | |
| 2780 | /* On 32 bit targets, we will use: |
| 2781 | check_load1 check_load2 check_load4_P |
| 2782 | check_load4 (for 32-bit FP reads) |
| 2783 | check_load8 (for 64-bit FP reads) |
| 2784 | check_load16 (for xmm/altivec reads) |
| 2785 | On 64 bit targets, we will use: |
| 2786 | check_load1 check_load2 check_load4 check_load8_P |
| 2787 | check_load8 (for 64-bit FP reads) |
| 2788 | check_load16 (for xmm/altivec reads) |
| 2789 | |
| 2790 | A "_P" handler reads a pointer from memory, and so returns a value |
| 2791 | to the generated code -- the pointer's shadow value. That implies |
| 2792 | that check_load4_P is only to be called on a 32 bit host and |
| 2793 | check_load8_P is only to be called on a 64 bit host. For all other |
| 2794 | cases no shadow value is returned; we merely check that the pointer |
| 2795 | (m) matches the block described by its shadow value (mptr_vseg). |
| 2796 | */ |
| 2797 | |
| 2798 | // This handles 128 bit loads on both 32 bit and 64 bit targets. |
| 2799 | static VG_REGPARM(2) |
| 2800 | void check_load16(Addr m, Seg* mptr_vseg) |
| 2801 | { |
| 2802 | # if SC_SEGS |
| 2803 | checkSeg(mptr_vseg); |
| 2804 | # endif |
| 2805 | check_load_or_store(/*is_write*/False, m, 16, mptr_vseg); |
| 2806 | } |
| 2807 | |
| 2808 | // This handles 64 bit FP-or-otherwise-nonpointer loads on both |
| 2809 | // 32 bit and 64 bit targets. |
| 2810 | static VG_REGPARM(2) |
| 2811 | void check_load8(Addr m, Seg* mptr_vseg) |
| 2812 | { |
| 2813 | # if SC_SEGS |
| 2814 | checkSeg(mptr_vseg); |
| 2815 | # endif |
| 2816 | check_load_or_store(/*is_write*/False, m, 8, mptr_vseg); |
| 2817 | } |
| 2818 | |
| 2819 | // This handles 64 bit loads on 64 bit targets. It must |
| 2820 | // not be called on 32 bit targets. |
| 2821 | // return m.vseg |
| 2822 | static VG_REGPARM(2) |
| 2823 | Seg* check_load8_P(Addr m, Seg* mptr_vseg) |
| 2824 | { |
| 2825 | Seg* vseg; |
| 2826 | tl_assert(sizeof(UWord) == 8); /* DO NOT REMOVE */ |
| 2827 | # if SC_SEGS |
| 2828 | checkSeg(mptr_vseg); |
| 2829 | # endif |
| 2830 | check_load_or_store(/*is_write*/False, m, 8, mptr_vseg); |
| 2831 | if (VG_IS_8_ALIGNED(m)) { |
| 2832 | vseg = get_mem_vseg(m); |
| 2833 | } else { |
| 2834 | vseg = nonptr_or_unknown( *(ULong*)m ); |
| 2835 | } |
| 2836 | return vseg; |
| 2837 | } |
| 2838 | |
| 2839 | // This handles 32 bit loads on 32 bit targets. It must |
| 2840 | // not be called on 64 bit targets. |
| 2841 | // return m.vseg |
| 2842 | static VG_REGPARM(2) |
| 2843 | Seg* check_load4_P(Addr m, Seg* mptr_vseg) |
| 2844 | { |
| 2845 | Seg* vseg; |
| 2846 | tl_assert(sizeof(UWord) == 4); /* DO NOT REMOVE */ |
| 2847 | # if SC_SEGS |
| 2848 | checkSeg(mptr_vseg); |
| 2849 | # endif |
| 2850 | check_load_or_store(/*is_write*/False, m, 4, mptr_vseg); |
| 2851 | if (VG_IS_4_ALIGNED(m)) { |
| 2852 | vseg = get_mem_vseg(m); |
| 2853 | } else { |
| 2854 | vseg = nonptr_or_unknown( *(UInt*)m ); |
| 2855 | } |
| 2856 | return vseg; |
| 2857 | } |
| 2858 | |
| 2859 | // Used for both 32 bit and 64 bit targets. |
| 2860 | static VG_REGPARM(2) |
| 2861 | void check_load4(Addr m, Seg* mptr_vseg) |
| 2862 | { |
| 2863 | # if SC_SEGS |
| 2864 | checkSeg(mptr_vseg); |
| 2865 | # endif |
| 2866 | check_load_or_store(/*is_write*/False, m, 4, mptr_vseg); |
| 2867 | } |
| 2868 | |
| 2869 | // Used for both 32 bit and 64 bit targets. |
| 2870 | static VG_REGPARM(2) |
| 2871 | void check_load2(Addr m, Seg* mptr_vseg) |
| 2872 | { |
| 2873 | # if SC_SEGS |
| 2874 | checkSeg(mptr_vseg); |
| 2875 | # endif |
| 2876 | check_load_or_store(/*is_write*/False, m, 2, mptr_vseg); |
| 2877 | } |
| 2878 | |
| 2879 | // Used for both 32 bit and 64 bit targets. |
| 2880 | static VG_REGPARM(2) |
| 2881 | void check_load1(Addr m, Seg* mptr_vseg) |
| 2882 | { |
| 2883 | # if SC_SEGS |
| 2884 | checkSeg(mptr_vseg); |
| 2885 | # endif |
| 2886 | check_load_or_store(/*is_write*/False, m, 1, mptr_vseg); |
| 2887 | } |
| 2888 | |
| 2889 | // ------------------ Store handlers ------------------ // |
| 2890 | |
| 2891 | /* On 32 bit targets, we will use: |
| 2892 | check_store1 check_store2 check_store4_P |
| 2893 | check_store4 (for 32-bit nonpointer stores) |
| 2894 | check_store8_ms4B_ls4B (for 64-bit stores) |
| 2895 | check_store16_ms4B_4B_4B_ls4B (for xmm/altivec stores) |
| 2896 | |
| 2897 | On 64 bit targets, we will use: |
| 2898 | check_store1 check_store2 check_store4 check_store8_P |
| 2899 | check_store8_all8B (for 64-bit nonpointer stores) |
| 2900 | check_store16_ms8B_ls8B (for xmm/altivec stores) |
| 2901 | |
| 2902 | A "_P" handler writes a pointer to memory, and so has an extra |
| 2903 | argument -- the pointer's shadow value. That implies that |
| 2904 | check_store4_P is only to be called on a 32 bit host and |
| 2905 | check_store8_P is only to be called on a 64 bit host. For all |
| 2906 | other cases, and for the misaligned _P cases, the strategy is to |
| 2907 | let the store go through, and then snoop around with |
| 2908 | nonptr_or_unknown to fix up the shadow values of any affected |
| 2909 | words. */ |
| 2910 | |
| 2911 | /* Apply nonptr_or_unknown to all the words intersecting |
| 2912 | [a, a+len). */ |
| 2913 | static VG_REGPARM(2) |
| 2914 | void nonptr_or_unknown_range ( Addr a, SizeT len ) |
| 2915 | { |
| 2916 | const SizeT wszB = sizeof(UWord); |
| 2917 | Addr wfirst = VG_ROUNDDN(a, wszB); |
| 2918 | Addr wlast = VG_ROUNDDN(a+len-1, wszB); |
| 2919 | Addr a2; |
| 2920 | tl_assert(wfirst <= wlast); |
| 2921 | for (a2 = wfirst ; a2 <= wlast; a2 += wszB) { |
| 2922 | set_mem_vseg( a2, nonptr_or_unknown( *(UWord*)a2 )); |
| 2923 | } |
| 2924 | } |
| 2925 | |
| 2926 | // This handles 128 bit stores on 64 bit targets. The |
| 2927 | // store data is passed in 2 pieces, the most significant |
| 2928 | // bits first. |
| 2929 | static VG_REGPARM(3) |
| 2930 | void check_store16_ms8B_ls8B(Addr m, Seg* mptr_vseg, |
| 2931 | UWord ms8B, UWord ls8B) |
| 2932 | { |
| 2933 | tl_assert(sizeof(UWord) == 8); /* DO NOT REMOVE */ |
| 2934 | # if SC_SEGS |
| 2935 | checkSeg(mptr_vseg); |
| 2936 | # endif |
| 2937 | check_load_or_store(/*is_write*/True, m, 16, mptr_vseg); |
| 2938 | // Actually *do* the STORE here |
| 2939 | if (host_is_little_endian()) { |
| 2940 | // FIXME: aren't we really concerned whether the guest |
| 2941 | // is little endian, not whether the host is? |
| 2942 | *(ULong*)(m + 0) = ls8B; |
| 2943 | *(ULong*)(m + 8) = ms8B; |
| 2944 | } else { |
| 2945 | *(ULong*)(m + 0) = ms8B; |
| 2946 | *(ULong*)(m + 8) = ls8B; |
| 2947 | } |
| 2948 | nonptr_or_unknown_range(m, 16); |
| 2949 | } |
| 2950 | |
| 2951 | // This handles 128 bit stores on 64 bit targets. The |
| 2952 | // store data is passed in 2 pieces, the most significant |
| 2953 | // bits first. |
| 2954 | static VG_REGPARM(3) |
| 2955 | void check_store16_ms4B_4B_4B_ls4B(Addr m, Seg* mptr_vseg, |
| 2956 | UWord ms4B, UWord w2, |
| 2957 | UWord w1, UWord ls4B) |
| 2958 | { |
| 2959 | tl_assert(sizeof(UWord) == 4); /* DO NOT REMOVE */ |
| 2960 | # if SC_SEGS |
| 2961 | checkSeg(mptr_vseg); |
| 2962 | # endif |
| 2963 | check_load_or_store(/*is_write*/True, m, 16, mptr_vseg); |
| 2964 | // Actually *do* the STORE here |
| 2965 | if (host_is_little_endian()) { |
| 2966 | // FIXME: aren't we really concerned whether the guest |
| 2967 | // is little endian, not whether the host is? |
| 2968 | *(UInt*)(m + 0) = ls4B; |
| 2969 | *(UInt*)(m + 4) = w1; |
| 2970 | *(UInt*)(m + 8) = w2; |
| 2971 | *(UInt*)(m + 12) = ms4B; |
| 2972 | } else { |
| 2973 | *(UInt*)(m + 0) = ms4B; |
| 2974 | *(UInt*)(m + 4) = w2; |
| 2975 | *(UInt*)(m + 8) = w1; |
| 2976 | *(UInt*)(m + 12) = ls4B; |
| 2977 | } |
| 2978 | nonptr_or_unknown_range(m, 16); |
| 2979 | } |
| 2980 | |
| 2981 | // This handles 64 bit stores on 32 bit targets. The |
| 2982 | // store data is passed in 2 pieces, the most significant |
| 2983 | // bits first. |
| 2984 | static VG_REGPARM(3) |
| 2985 | void check_store8_ms4B_ls4B(Addr m, Seg* mptr_vseg, |
| 2986 | UWord ms4B, UWord ls4B) |
| 2987 | { |
| 2988 | tl_assert(sizeof(UWord) == 4); /* DO NOT REMOVE */ |
| 2989 | # if SC_SEGS |
| 2990 | checkSeg(mptr_vseg); |
| 2991 | # endif |
| 2992 | check_load_or_store(/*is_write*/True, m, 8, mptr_vseg); |
| 2993 | // Actually *do* the STORE here |
| 2994 | if (host_is_little_endian()) { |
| 2995 | // FIXME: aren't we really concerned whether the guest |
| 2996 | // is little endian, not whether the host is? |
| 2997 | *(UInt*)(m + 0) = ls4B; |
| 2998 | *(UInt*)(m + 4) = ms4B; |
| 2999 | } else { |
| 3000 | *(UInt*)(m + 0) = ms4B; |
| 3001 | *(UInt*)(m + 4) = ls4B; |
| 3002 | } |
| 3003 | nonptr_or_unknown_range(m, 8); |
| 3004 | } |
| 3005 | |
| 3006 | // This handles 64 bit non pointer stores on 64 bit targets. |
| 3007 | // It must not be called on 32 bit targets. |
| 3008 | static VG_REGPARM(3) |
| 3009 | void check_store8_all8B(Addr m, Seg* mptr_vseg, UWord all8B) |
| 3010 | { |
| 3011 | tl_assert(sizeof(UWord) == 8); /* DO NOT REMOVE */ |
| 3012 | # if SC_SEGS |
| 3013 | checkSeg(mptr_vseg); |
| 3014 | # endif |
| 3015 | check_load_or_store(/*is_write*/True, m, 8, mptr_vseg); |
| 3016 | // Actually *do* the STORE here |
| 3017 | *(ULong*)m = all8B; |
| 3018 | nonptr_or_unknown_range(m, 8); |
| 3019 | } |
| 3020 | |
| 3021 | // This handles 64 bit stores on 64 bit targets. It must |
| 3022 | // not be called on 32 bit targets. |
| 3023 | static VG_REGPARM(3) |
| 3024 | void check_store8_P(Addr m, Seg* mptr_vseg, UWord t, Seg* t_vseg) |
| 3025 | { |
| 3026 | tl_assert(sizeof(UWord) == 8); /* DO NOT REMOVE */ |
| 3027 | # if SC_SEGS |
| 3028 | checkSeg(t_vseg); |
| 3029 | checkSeg(mptr_vseg); |
| 3030 | # endif |
| 3031 | check_load_or_store(/*is_write*/True, m, 8, mptr_vseg); |
| 3032 | // Actually *do* the STORE here |
| 3033 | *(ULong*)m = t; |
| 3034 | if (VG_IS_8_ALIGNED(m)) { |
| 3035 | set_mem_vseg( m, t_vseg ); |
| 3036 | } else { |
| 3037 | // straddling two words |
| 3038 | nonptr_or_unknown_range(m, 8); |
| 3039 | } |
| 3040 | } |
| 3041 | |
| 3042 | // This handles 32 bit stores on 32 bit targets. It must |
| 3043 | // not be called on 64 bit targets. |
| 3044 | static VG_REGPARM(3) |
| 3045 | void check_store4_P(Addr m, Seg* mptr_vseg, UWord t, Seg* t_vseg) |
| 3046 | { |
| 3047 | tl_assert(sizeof(UWord) == 4); /* DO NOT REMOVE */ |
| 3048 | # if SC_SEGS |
| 3049 | checkSeg(t_vseg); |
| 3050 | checkSeg(mptr_vseg); |
| 3051 | # endif |
| 3052 | check_load_or_store(/*is_write*/True, m, 4, mptr_vseg); |
| 3053 | // Actually *do* the STORE here |
| 3054 | *(UInt*)m = t; |
| 3055 | if (VG_IS_4_ALIGNED(m)) { |
| 3056 | set_mem_vseg( m, t_vseg ); |
| 3057 | } else { |
| 3058 | // straddling two words |
| 3059 | nonptr_or_unknown_range(m, 4); |
| 3060 | } |
| 3061 | } |
| 3062 | |
| 3063 | // Used for both 32 bit and 64 bit targets. |
| 3064 | static VG_REGPARM(3) |
| 3065 | void check_store4(Addr m, Seg* mptr_vseg, UWord t) |
| 3066 | { |
| 3067 | # if SC_SEGS |
| 3068 | checkSeg(mptr_vseg); |
| 3069 | # endif |
| 3070 | check_load_or_store(/*is_write*/True, m, 4, mptr_vseg); |
| 3071 | // Actually *do* the STORE here (Nb: cast must be to 4-byte type!) |
| 3072 | *(UInt*)m = t; |
| 3073 | nonptr_or_unknown_range(m, 4); |
| 3074 | } |
| 3075 | |
| 3076 | // Used for both 32 bit and 64 bit targets. |
| 3077 | static VG_REGPARM(3) |
| 3078 | void check_store2(Addr m, Seg* mptr_vseg, UWord t) |
| 3079 | { |
| 3080 | # if SC_SEGS |
| 3081 | checkSeg(mptr_vseg); |
| 3082 | # endif |
| 3083 | check_load_or_store(/*is_write*/True, m, 2, mptr_vseg); |
| 3084 | // Actually *do* the STORE here (Nb: cast must be to 2-byte type!) |
| 3085 | *(UShort*)m = t; |
| 3086 | nonptr_or_unknown_range(m, 2); |
| 3087 | } |
| 3088 | |
| 3089 | // Used for both 32 bit and 64 bit targets. |
| 3090 | static VG_REGPARM(3) |
| 3091 | void check_store1(Addr m, Seg* mptr_vseg, UWord t) |
| 3092 | { |
| 3093 | # if SC_SEGS |
| 3094 | checkSeg(mptr_vseg); |
| 3095 | # endif |
| 3096 | check_load_or_store(/*is_write*/True, m, 1, mptr_vseg); |
| 3097 | // Actually *do* the STORE here (Nb: cast must be to 1-byte type!) |
| 3098 | *(UChar*)m = t; |
| 3099 | nonptr_or_unknown_range(m, 1); |
| 3100 | } |
| 3101 | |
| 3102 | |
| 3103 | // Nb: if the result is BOTTOM, return immedately -- don't let BOTTOM |
| 3104 | // be changed to NONPTR by a range check on the result. |
| 3105 | #define BINOP(bt, nn, nu, np, un, uu, up, pn, pu, pp) \ |
| 3106 | if (BOTTOM == seg1 || BOTTOM == seg2) { bt; \ |
| 3107 | } else if (NONPTR == seg1) { if (NONPTR == seg2) { nn; } \ |
| 3108 | else if (UNKNOWN == seg2) { nu; } \ |
| 3109 | else { np; } \ |
| 3110 | } else if (UNKNOWN == seg1) { if (NONPTR == seg2) { un; } \ |
| 3111 | else if (UNKNOWN == seg2) { uu; } \ |
| 3112 | else { up; } \ |
| 3113 | } else { if (NONPTR == seg2) { pn; } \ |
| 3114 | else if (UNKNOWN == seg2) { pu; } \ |
| 3115 | else { pp; } \ |
| 3116 | } |
| 3117 | |
| 3118 | #define BINERROR(opname) \ |
| 3119 | h_record_arith_error(seg1, seg2, opname); \ |
| 3120 | out = NONPTR |
| 3121 | |
| 3122 | |
| 3123 | // ------------- |
| 3124 | // + | n ? p |
| 3125 | // ------------- |
| 3126 | // n | n ? p |
| 3127 | // ? | ? ? ? |
| 3128 | // p | p ? e (all results become n if they look like a non-pointer) |
| 3129 | // ------------- |
| 3130 | static Seg* do_addW_result(Seg* seg1, Seg* seg2, UWord result, HChar* opname) |
| 3131 | { |
| 3132 | Seg* out; |
| 3133 | # if SC_SEGS |
| 3134 | checkSeg(seg1); |
| 3135 | checkSeg(seg2); |
| 3136 | # endif |
| 3137 | BINOP( |
| 3138 | return BOTTOM, |
| 3139 | out = NONPTR, out = UNKNOWN, out = seg2, |
| 3140 | out = UNKNOWN, out = UNKNOWN, out = UNKNOWN, |
| 3141 | out = seg1, out = UNKNOWN, BINERROR(opname) |
| 3142 | ); |
| 3143 | return ( looks_like_a_pointer(result) ? out : NONPTR ); |
| 3144 | } |
| 3145 | |
| 3146 | static VG_REGPARM(3) Seg* do_addW(Seg* seg1, Seg* seg2, UWord result) |
| 3147 | { |
| 3148 | Seg* out; |
| 3149 | # if SC_SEGS |
| 3150 | checkSeg(seg1); |
| 3151 | checkSeg(seg2); |
| 3152 | # endif |
| 3153 | out = do_addW_result(seg1, seg2, result, "Add32/Add64"); |
| 3154 | # if SC_SEGS |
| 3155 | checkSeg(out); |
| 3156 | # endif |
| 3157 | return out; |
| 3158 | } |
| 3159 | |
| 3160 | // ------------- |
| 3161 | // - | n ? p (Nb: operation is seg1 - seg2) |
| 3162 | // ------------- |
| 3163 | // n | n ? n+ (+) happens a lot due to "cmp", but result should never |
| 3164 | // ? | ? ? n/B be used, so give 'n' |
| 3165 | // p | p p? n*/B (*) and possibly link the segments |
| 3166 | // ------------- |
| 3167 | static VG_REGPARM(3) Seg* do_subW(Seg* seg1, Seg* seg2, UWord result) |
| 3168 | { |
| 3169 | Seg* out; |
| 3170 | # if SC_SEGS |
| 3171 | checkSeg(seg1); |
| 3172 | checkSeg(seg2); |
| 3173 | # endif |
| 3174 | // Nb: when returning BOTTOM, don't let it go through the range-check; |
| 3175 | // a segment linking offset can easily look like a nonptr. |
| 3176 | BINOP( |
| 3177 | return BOTTOM, |
| 3178 | out = NONPTR, out = UNKNOWN, out = NONPTR, |
| 3179 | out = UNKNOWN, out = UNKNOWN, return BOTTOM, |
| 3180 | out = seg1, out = seg1/*??*/, return BOTTOM |
| 3181 | ); |
| 3182 | #if 0 |
| 3183 | // This is for the p-p segment-linking case |
| 3184 | Seg end2 = seg2; |
| 3185 | while (end2->links != seg2) end2 = end2->links; |
| 3186 | end2->links = seg1->links; |
| 3187 | seg1->links = seg2; |
| 3188 | return NONPTR; |
| 3189 | #endif |
| 3190 | return ( looks_like_a_pointer(result) ? out : NONPTR ); |
| 3191 | } |
| 3192 | |
| 3193 | // ------------- |
| 3194 | // & | n ? p |
| 3195 | // ------------- |
| 3196 | // n | n ? p |
| 3197 | // ? | ? ? ? |
| 3198 | // p | p ? * (*) if p1==p2 then p else e (see comment) |
| 3199 | // ------------- |
| 3200 | /* Seems to be OK to And two pointers: |
| 3201 | testq %ptr1,%ptr2 |
| 3202 | jnz .. |
| 3203 | which possibly derives from |
| 3204 | if (ptr1 & ptr2) { A } else { B } |
| 3205 | not sure what that means |
| 3206 | */ |
| 3207 | static VG_REGPARM(3) Seg* do_andW(Seg* seg1, Seg* seg2, |
| 3208 | UWord result, UWord args_diff) |
| 3209 | { |
| 3210 | Seg* out; |
| 3211 | if (0 == args_diff) { |
| 3212 | // p1==p2 |
| 3213 | out = seg1; |
| 3214 | } else { |
| 3215 | BINOP( |
| 3216 | return BOTTOM, |
| 3217 | out = NONPTR, out = UNKNOWN, out = seg2, |
| 3218 | out = UNKNOWN, out = UNKNOWN, out = UNKNOWN, |
| 3219 | out = seg1, out = UNKNOWN, out = NONPTR |
| 3220 | /*BINERROR("And32/And64")*/ |
| 3221 | ); |
| 3222 | } |
| 3223 | out = ( looks_like_a_pointer(result) ? out : NONPTR ); |
| 3224 | return out; |
| 3225 | } |
| 3226 | |
| 3227 | // ------------- |
| 3228 | // `|`| n ? p |
| 3229 | // ------------- |
| 3230 | // n | n ? p |
| 3231 | // ? | ? ? ? |
| 3232 | // p | p ? n |
| 3233 | // ------------- |
| 3234 | /* It's OK to Or two pointers together, but the result definitely |
| 3235 | isn't a pointer. Why would you want to do that? Because of this: |
| 3236 | char* p1 = malloc(..); |
| 3237 | char* p2 = malloc(..); |
| 3238 | ... |
| 3239 | if (p1 || p2) { .. } |
| 3240 | In this case gcc on x86/amd64 quite literally or-s the two pointers |
| 3241 | together and throws away the result, the purpose of which is merely |
| 3242 | to sets %eflags.Z/%rflags.Z. So we have to allow it. |
| 3243 | */ |
| 3244 | static VG_REGPARM(3) Seg* do_orW(Seg* seg1, Seg* seg2, UWord result) |
| 3245 | { |
| 3246 | Seg* out; |
| 3247 | BINOP( |
| 3248 | return BOTTOM, |
| 3249 | out = NONPTR, out = UNKNOWN, out = seg2, |
| 3250 | out = UNKNOWN, out = UNKNOWN, out = UNKNOWN, |
| 3251 | out = seg1, out = UNKNOWN, out = NONPTR |
| 3252 | ); |
| 3253 | out = ( looks_like_a_pointer(result) ? out : NONPTR ); |
| 3254 | return out; |
| 3255 | } |
| 3256 | |
| 3257 | // ------------- |
| 3258 | // ~ | n ? p |
| 3259 | // ------------- |
| 3260 | // | n n n |
| 3261 | // ------------- |
| 3262 | static VG_REGPARM(2) Seg* do_notW(Seg* seg1, UWord result) |
| 3263 | { |
| 3264 | # if SC_SEGS |
| 3265 | checkSeg(seg1); |
| 3266 | # endif |
| 3267 | if (BOTTOM == seg1) return BOTTOM; |
| 3268 | return NONPTR; |
| 3269 | } |
| 3270 | |
| 3271 | // Pointers are rarely multiplied, but sometimes legitimately, eg. as hash |
| 3272 | // function inputs. But two pointers args --> error. |
| 3273 | // Pretend it always returns a nonptr. Maybe improve later. |
| 3274 | static VG_REGPARM(2) Seg* do_mulW(Seg* seg1, Seg* seg2) |
| 3275 | { |
| 3276 | # if SC_SEGS |
| 3277 | checkSeg(seg1); |
| 3278 | checkSeg(seg2); |
| 3279 | # endif |
| 3280 | if (is_known_segment(seg1) && is_known_segment(seg2)) |
| 3281 | h_record_arith_error(seg1, seg2, "Mul32/Mul64"); |
| 3282 | return NONPTR; |
| 3283 | } |
| 3284 | |
| 3285 | |
| 3286 | /*--------------------------------------------------------------------*/ |
| 3287 | /*--- Instrumentation ---*/ |
| 3288 | /*--------------------------------------------------------------------*/ |
| 3289 | |
| 3290 | /* The h_ instrumenter that follows is complex, since it deals with |
| 3291 | shadow value computation. |
| 3292 | |
| 3293 | It also needs to generate instrumentation for the sg_ side of |
| 3294 | things. That's relatively straightforward. However, rather than |
| 3295 | confuse the code herein any further, we simply delegate the problem |
| 3296 | to sg_main.c, by using the four functions |
| 3297 | sg_instrument_{init,fini,IRStmt,final_jump}. These four completely |
| 3298 | abstractify the sg_ instrumentation. See comments in sg_main.c's |
| 3299 | instrumentation section for further details. */ |
| 3300 | |
| 3301 | /* Carries around state during Ptrcheck instrumentation. */ |
| 3302 | typedef |
| 3303 | struct { |
| 3304 | /* MODIFIED: the superblock being constructed. IRStmts are |
| 3305 | added. */ |
| 3306 | IRSB* bb; |
| 3307 | Bool trace; |
| 3308 | |
| 3309 | /* MODIFIED: a table [0 .. #temps_in_original_bb-1] which maps |
| 3310 | original temps to their current their current shadow temp. |
| 3311 | Initially all entries are IRTemp_INVALID. Entries are added |
| 3312 | lazily since many original temps are not used due to |
| 3313 | optimisation prior to instrumentation. Note that only |
| 3314 | integer temps of the guest word size are shadowed, since it |
| 3315 | is impossible (or meaningless) to hold a pointer in any other |
| 3316 | type of temp. */ |
| 3317 | IRTemp* tmpMap; |
| 3318 | Int n_originalTmps; /* for range checking */ |
| 3319 | |
| 3320 | /* READONLY: the host word type. Needed for constructing |
| 3321 | arguments of type 'HWord' to be passed to helper functions. |
| 3322 | Ity_I32 or Ity_I64 only. */ |
| 3323 | IRType hWordTy; |
| 3324 | |
| 3325 | /* READONLY: the guest word type, Ity_I32 or Ity_I64 only. */ |
| 3326 | IRType gWordTy; |
| 3327 | |
| 3328 | /* READONLY: the guest state size, so we can generate shadow |
| 3329 | offsets correctly. */ |
| 3330 | Int guest_state_sizeB; |
| 3331 | } |
| 3332 | PCEnv; |
| 3333 | |
| 3334 | /* SHADOW TMP MANAGEMENT. Shadow tmps are allocated lazily (on |
| 3335 | demand), as they are encountered. This is for two reasons. |
| 3336 | |
| 3337 | (1) (less important reason): Many original tmps are unused due to |
| 3338 | initial IR optimisation, and we do not want to spaces in tables |
| 3339 | tracking them. |
| 3340 | |
| 3341 | Shadow IRTemps are therefore allocated on demand. pce.tmpMap is a |
| 3342 | table indexed [0 .. n_types-1], which gives the current shadow for |
| 3343 | each original tmp, or INVALID_IRTEMP if none is so far assigned. |
| 3344 | It is necessary to support making multiple assignments to a shadow |
| 3345 | -- specifically, after testing a shadow for definedness, it needs |
| 3346 | to be made defined. But IR's SSA property disallows this. |
| 3347 | |
| 3348 | (2) (more important reason): Therefore, when a shadow needs to get |
| 3349 | a new value, a new temporary is created, the value is assigned to |
| 3350 | that, and the tmpMap is updated to reflect the new binding. |
| 3351 | |
| 3352 | A corollary is that if the tmpMap maps a given tmp to |
| 3353 | IRTemp_INVALID and we are hoping to read that shadow tmp, it means |
| 3354 | there's a read-before-write error in the original tmps. The IR |
| 3355 | sanity checker should catch all such anomalies, however. |
| 3356 | */ |
| 3357 | |
| 3358 | /* Find the tmp currently shadowing the given original tmp. If none |
| 3359 | so far exists, allocate one. */ |
| 3360 | static IRTemp findShadowTmp ( PCEnv* pce, IRTemp orig ) |
| 3361 | { |
| 3362 | tl_assert(orig < pce->n_originalTmps); |
| 3363 | tl_assert(pce->bb->tyenv->types[orig] == pce->gWordTy); |
| 3364 | if (pce->tmpMap[orig] == IRTemp_INVALID) { |
| 3365 | tl_assert(0); |
| 3366 | pce->tmpMap[orig] |
| 3367 | = newIRTemp(pce->bb->tyenv, pce->gWordTy); |
| 3368 | } |
| 3369 | return pce->tmpMap[orig]; |
| 3370 | } |
| 3371 | |
| 3372 | /* Allocate a new shadow for the given original tmp. This means any |
| 3373 | previous shadow is abandoned. This is needed because it is |
| 3374 | necessary to give a new value to a shadow once it has been tested |
| 3375 | for undefinedness, but unfortunately IR's SSA property disallows |
| 3376 | this. Instead we must abandon the old shadow, allocate a new one |
| 3377 | and use that instead. */ |
| 3378 | __attribute__((noinline)) |
| 3379 | static IRTemp newShadowTmp ( PCEnv* pce, IRTemp orig ) |
| 3380 | { |
| 3381 | tl_assert(orig < pce->n_originalTmps); |
| 3382 | tl_assert(pce->bb->tyenv->types[orig] == pce->gWordTy); |
| 3383 | pce->tmpMap[orig] |
| 3384 | = newIRTemp(pce->bb->tyenv, pce->gWordTy); |
| 3385 | return pce->tmpMap[orig]; |
| 3386 | } |
| 3387 | |
| 3388 | |
| 3389 | /*------------------------------------------------------------*/ |
| 3390 | /*--- IRAtoms -- a subset of IRExprs ---*/ |
| 3391 | /*------------------------------------------------------------*/ |
| 3392 | |
| 3393 | /* An atom is either an IRExpr_Const or an IRExpr_Tmp, as defined by |
| 3394 | isIRAtom() in libvex_ir.h. Because this instrumenter expects flat |
| 3395 | input, most of this code deals in atoms. Usefully, a value atom |
| 3396 | always has a V-value which is also an atom: constants are shadowed |
| 3397 | by constants, and temps are shadowed by the corresponding shadow |
| 3398 | temporary. */ |
| 3399 | |
| 3400 | typedef IRExpr IRAtom; |
| 3401 | |
| 3402 | //zz /* (used for sanity checks only): is this an atom which looks |
| 3403 | //zz like it's from original code? */ |
| 3404 | //zz static Bool isOriginalAtom ( PCEnv* pce, IRAtom* a1 ) |
| 3405 | //zz { |
| 3406 | //zz if (a1->tag == Iex_Const) |
| 3407 | //zz return True; |
| 3408 | //zz if (a1->tag == Iex_RdTmp && a1->Iex.RdTmp.tmp < pce->n_originalTmps) |
| 3409 | //zz return True; |
| 3410 | //zz return False; |
| 3411 | //zz } |
| 3412 | //zz |
| 3413 | //zz /* (used for sanity checks only): is this an atom which looks |
| 3414 | //zz like it's from shadow code? */ |
| 3415 | //zz static Bool isShadowAtom ( PCEnv* pce, IRAtom* a1 ) |
| 3416 | //zz { |
| 3417 | //zz if (a1->tag == Iex_Const) |
| 3418 | //zz return True; |
| 3419 | //zz if (a1->tag == Iex_RdTmp && a1->Iex.RdTmp.tmp >= pce->n_originalTmps) |
| 3420 | //zz return True; |
| 3421 | //zz return False; |
| 3422 | //zz } |
| 3423 | //zz |
| 3424 | //zz /* (used for sanity checks only): check that both args are atoms and |
| 3425 | //zz are identically-kinded. */ |
| 3426 | //zz static Bool sameKindedAtoms ( IRAtom* a1, IRAtom* a2 ) |
| 3427 | //zz { |
| 3428 | //zz if (a1->tag == Iex_RdTmp && a2->tag == Iex_RdTmp) |
| 3429 | //zz return True; |
| 3430 | //zz if (a1->tag == Iex_Const && a2->tag == Iex_Const) |
| 3431 | //zz return True; |
| 3432 | //zz return False; |
| 3433 | //zz } |
| 3434 | |
| 3435 | |
| 3436 | /*------------------------------------------------------------*/ |
| 3437 | /*--- Constructing IR fragments ---*/ |
| 3438 | /*------------------------------------------------------------*/ |
| 3439 | |
| 3440 | /* add stmt to a bb */ |
| 3441 | static inline void stmt ( HChar cat, PCEnv* pce, IRStmt* st ) { |
| 3442 | if (pce->trace) { |
| 3443 | VG_(printf)(" %c: ", cat); |
| 3444 | ppIRStmt(st); |
| 3445 | VG_(printf)("\n"); |
| 3446 | } |
| 3447 | addStmtToIRSB(pce->bb, st); |
| 3448 | } |
| 3449 | |
| 3450 | /* assign value to tmp */ |
| 3451 | static inline |
| 3452 | void assign ( HChar cat, PCEnv* pce, IRTemp tmp, IRExpr* expr ) { |
| 3453 | stmt(cat, pce, IRStmt_WrTmp(tmp,expr)); |
| 3454 | } |
| 3455 | |
| 3456 | /* build various kinds of expressions */ |
| 3457 | #define binop(_op, _arg1, _arg2) IRExpr_Binop((_op),(_arg1),(_arg2)) |
| 3458 | #define unop(_op, _arg) IRExpr_Unop((_op),(_arg)) |
| 3459 | #define mkU8(_n) IRExpr_Const(IRConst_U8(_n)) |
| 3460 | #define mkU16(_n) IRExpr_Const(IRConst_U16(_n)) |
| 3461 | #define mkU32(_n) IRExpr_Const(IRConst_U32(_n)) |
| 3462 | #define mkU64(_n) IRExpr_Const(IRConst_U64(_n)) |
| 3463 | #define mkV128(_n) IRExpr_Const(IRConst_V128(_n)) |
| 3464 | #define mkexpr(_tmp) IRExpr_RdTmp((_tmp)) |
| 3465 | |
| 3466 | /* Bind the given expression to a new temporary, and return the |
| 3467 | temporary. This effectively converts an arbitrary expression into |
| 3468 | an atom. |
| 3469 | |
| 3470 | 'ty' is the type of 'e' and hence the type that the new temporary |
| 3471 | needs to be. But passing it is redundant, since we can deduce the |
| 3472 | type merely by inspecting 'e'. So at least that fact to assert |
| 3473 | that the two types agree. */ |
| 3474 | static IRAtom* assignNew ( HChar cat, PCEnv* pce, IRType ty, IRExpr* e ) { |
| 3475 | IRTemp t; |
| 3476 | IRType tyE = typeOfIRExpr(pce->bb->tyenv, e); |
| 3477 | tl_assert(tyE == ty); /* so 'ty' is redundant (!) */ |
| 3478 | t = newIRTemp(pce->bb->tyenv, ty); |
| 3479 | assign(cat, pce, t, e); |
| 3480 | return mkexpr(t); |
| 3481 | } |
| 3482 | |
| 3483 | |
| 3484 | |
| 3485 | //----------------------------------------------------------------------- |
| 3486 | // Approach taken for range-checking for NONPTR/UNKNOWN-ness as follows. |
| 3487 | // |
| 3488 | // Range check (NONPTR/seg): |
| 3489 | // - after modifying a word-sized value in/into a TempReg: |
| 3490 | // - {ADD, SUB, ADC, SBB, AND, OR, XOR, LEA, LEA2, NEG, NOT}L |
| 3491 | // - BSWAP |
| 3492 | // |
| 3493 | // Range check (NONPTR/UNKNOWN): |
| 3494 | // - when introducing a new word-sized value into a TempReg: |
| 3495 | // - MOVL l, t2 |
| 3496 | // |
| 3497 | // - when copying a word-sized value which lacks a corresponding segment |
| 3498 | // into a TempReg: |
| 3499 | // - straddled LDL |
| 3500 | // |
| 3501 | // - when a sub-word of a word (or two) is updated: |
| 3502 | // - SHROTL |
| 3503 | // - {ADD, SUB, ADC, SBB, AND, OR, XOR, SHROT, NEG, NOT}[WB] |
| 3504 | // - PUT[WB] |
| 3505 | // - straddled STL (2 range checks) |
| 3506 | // - straddled STW (2 range checks) |
| 3507 | // - unstraddled STW |
| 3508 | // - STB |
| 3509 | // |
| 3510 | // Just copy: |
| 3511 | // - when copying word-sized values: |
| 3512 | // - MOVL t1, t2 (--optimise=no only) |
| 3513 | // - CMOV |
| 3514 | // - GETL, PUTL |
| 3515 | // - unstraddled LDL, unstraddled STL |
| 3516 | // |
| 3517 | // - when barely changing |
| 3518 | // - INC[LWB]/DEC[LWB] |
| 3519 | // |
| 3520 | // Set to NONPTR: |
| 3521 | // - after copying a sub-word value into a TempReg: |
| 3522 | // - MOV[WB] l, t2 |
| 3523 | // - GET[WB] |
| 3524 | // - unstraddled LDW |
| 3525 | // - straddled LDW |
| 3526 | // - LDB |
| 3527 | // - POP[WB] |
| 3528 | // |
| 3529 | // - after copying an obvious non-ptr into a TempReg: |
| 3530 | // - GETF |
| 3531 | // - CC2VAL |
| 3532 | // - POPL |
| 3533 | // |
| 3534 | // - after copying an obvious non-ptr into a memory word: |
| 3535 | // - FPU_W |
| 3536 | // |
| 3537 | // Do nothing: |
| 3538 | // - LOCK, INCEIP |
| 3539 | // - WIDEN[WB] |
| 3540 | // - JMP, JIFZ |
| 3541 | // - CALLM_[SE], PUSHL, CALLM, CLEAR |
| 3542 | // - FPU, FPU_R (and similar MMX/SSE ones) |
| 3543 | // |
| 3544 | |
| 3545 | |
| 3546 | |
| 3547 | |
| 3548 | /* Call h_fn (name h_nm) with the given arg, and return a new IRTemp |
| 3549 | holding the result. The arg must be a word-typed atom. Callee |
| 3550 | must be a VG_REGPARM(1) function. */ |
| 3551 | __attribute__((noinline)) |
| 3552 | static IRTemp gen_dirty_W_W ( PCEnv* pce, void* h_fn, HChar* h_nm, |
| 3553 | IRExpr* a1 ) |
| 3554 | { |
| 3555 | IRTemp res; |
| 3556 | IRDirty* di; |
| 3557 | tl_assert(isIRAtom(a1)); |
| 3558 | tl_assert(typeOfIRExpr(pce->bb->tyenv, a1) == pce->gWordTy); |
| 3559 | res = newIRTemp(pce->bb->tyenv, pce->gWordTy); |
| 3560 | di = unsafeIRDirty_1_N( res, 1/*regparms*/, |
| 3561 | h_nm, VG_(fnptr_to_fnentry)( h_fn ), |
| 3562 | mkIRExprVec_1( a1 ) ); |
| 3563 | stmt( 'I', pce, IRStmt_Dirty(di) ); |
| 3564 | return res; |
| 3565 | } |
| 3566 | |
| 3567 | /* Two-arg version of gen_dirty_W_W. Callee must be a VG_REGPARM(2) |
| 3568 | function.*/ |
| 3569 | static IRTemp gen_dirty_W_WW ( PCEnv* pce, void* h_fn, HChar* h_nm, |
| 3570 | IRExpr* a1, IRExpr* a2 ) |
| 3571 | { |
| 3572 | IRTemp res; |
| 3573 | IRDirty* di; |
| 3574 | tl_assert(isIRAtom(a1)); |
| 3575 | tl_assert(isIRAtom(a2)); |
| 3576 | tl_assert(typeOfIRExpr(pce->bb->tyenv, a1) == pce->gWordTy); |
| 3577 | tl_assert(typeOfIRExpr(pce->bb->tyenv, a2) == pce->gWordTy); |
| 3578 | res = newIRTemp(pce->bb->tyenv, pce->gWordTy); |
| 3579 | di = unsafeIRDirty_1_N( res, 2/*regparms*/, |
| 3580 | h_nm, VG_(fnptr_to_fnentry)( h_fn ), |
| 3581 | mkIRExprVec_2( a1, a2 ) ); |
| 3582 | stmt( 'I', pce, IRStmt_Dirty(di) ); |
| 3583 | return res; |
| 3584 | } |
| 3585 | |
| 3586 | /* Three-arg version of gen_dirty_W_W. Callee must be a VG_REGPARM(3) |
| 3587 | function.*/ |
| 3588 | static IRTemp gen_dirty_W_WWW ( PCEnv* pce, void* h_fn, HChar* h_nm, |
| 3589 | IRExpr* a1, IRExpr* a2, IRExpr* a3 ) |
| 3590 | { |
| 3591 | IRTemp res; |
| 3592 | IRDirty* di; |
| 3593 | tl_assert(isIRAtom(a1)); |
| 3594 | tl_assert(isIRAtom(a2)); |
| 3595 | tl_assert(isIRAtom(a3)); |
| 3596 | tl_assert(typeOfIRExpr(pce->bb->tyenv, a1) == pce->gWordTy); |
| 3597 | tl_assert(typeOfIRExpr(pce->bb->tyenv, a2) == pce->gWordTy); |
| 3598 | tl_assert(typeOfIRExpr(pce->bb->tyenv, a3) == pce->gWordTy); |
| 3599 | res = newIRTemp(pce->bb->tyenv, pce->gWordTy); |
| 3600 | di = unsafeIRDirty_1_N( res, 3/*regparms*/, |
| 3601 | h_nm, VG_(fnptr_to_fnentry)( h_fn ), |
| 3602 | mkIRExprVec_3( a1, a2, a3 ) ); |
| 3603 | stmt( 'I', pce, IRStmt_Dirty(di) ); |
| 3604 | return res; |
| 3605 | } |
| 3606 | |
| 3607 | /* Four-arg version of gen_dirty_W_W. Callee must be a VG_REGPARM(3) |
| 3608 | function.*/ |
| 3609 | static IRTemp gen_dirty_W_WWWW ( PCEnv* pce, void* h_fn, HChar* h_nm, |
| 3610 | IRExpr* a1, IRExpr* a2, |
| 3611 | IRExpr* a3, IRExpr* a4 ) |
| 3612 | { |
| 3613 | IRTemp res; |
| 3614 | IRDirty* di; |
| 3615 | tl_assert(isIRAtom(a1)); |
| 3616 | tl_assert(isIRAtom(a2)); |
| 3617 | tl_assert(isIRAtom(a3)); |
| 3618 | tl_assert(isIRAtom(a4)); |
| 3619 | tl_assert(typeOfIRExpr(pce->bb->tyenv, a1) == pce->gWordTy); |
| 3620 | tl_assert(typeOfIRExpr(pce->bb->tyenv, a2) == pce->gWordTy); |
| 3621 | tl_assert(typeOfIRExpr(pce->bb->tyenv, a3) == pce->gWordTy); |
| 3622 | tl_assert(typeOfIRExpr(pce->bb->tyenv, a4) == pce->gWordTy); |
| 3623 | res = newIRTemp(pce->bb->tyenv, pce->gWordTy); |
| 3624 | di = unsafeIRDirty_1_N( res, 3/*regparms*/, |
| 3625 | h_nm, VG_(fnptr_to_fnentry)( h_fn ), |
| 3626 | mkIRExprVec_4( a1, a2, a3, a4 ) ); |
| 3627 | stmt( 'I', pce, IRStmt_Dirty(di) ); |
| 3628 | return res; |
| 3629 | } |
| 3630 | |
| 3631 | /* Version of gen_dirty_W_WW with no return value. Callee must be a |
| 3632 | VG_REGPARM(2) function.*/ |
| 3633 | static void gen_dirty_v_WW ( PCEnv* pce, void* h_fn, HChar* h_nm, |
| 3634 | IRExpr* a1, IRExpr* a2 ) |
| 3635 | { |
| 3636 | IRDirty* di; |
| 3637 | tl_assert(isIRAtom(a1)); |
| 3638 | tl_assert(isIRAtom(a2)); |
| 3639 | tl_assert(typeOfIRExpr(pce->bb->tyenv, a1) == pce->gWordTy); |
| 3640 | tl_assert(typeOfIRExpr(pce->bb->tyenv, a2) == pce->gWordTy); |
| 3641 | di = unsafeIRDirty_0_N( 2/*regparms*/, |
| 3642 | h_nm, VG_(fnptr_to_fnentry)( h_fn ), |
| 3643 | mkIRExprVec_2( a1, a2 ) ); |
| 3644 | stmt( 'I', pce, IRStmt_Dirty(di) ); |
| 3645 | } |
| 3646 | |
| 3647 | /* Version of gen_dirty_W_WWW with no return value. Callee must be a |
| 3648 | VG_REGPARM(3) function.*/ |
| 3649 | static void gen_dirty_v_WWW ( PCEnv* pce, void* h_fn, HChar* h_nm, |
| 3650 | IRExpr* a1, IRExpr* a2, IRExpr* a3 ) |
| 3651 | { |
| 3652 | IRDirty* di; |
| 3653 | tl_assert(isIRAtom(a1)); |
| 3654 | tl_assert(isIRAtom(a2)); |
| 3655 | tl_assert(isIRAtom(a3)); |
| 3656 | tl_assert(typeOfIRExpr(pce->bb->tyenv, a1) == pce->gWordTy); |
| 3657 | tl_assert(typeOfIRExpr(pce->bb->tyenv, a2) == pce->gWordTy); |
| 3658 | tl_assert(typeOfIRExpr(pce->bb->tyenv, a3) == pce->gWordTy); |
| 3659 | di = unsafeIRDirty_0_N( 3/*regparms*/, |
| 3660 | h_nm, VG_(fnptr_to_fnentry)( h_fn ), |
| 3661 | mkIRExprVec_3( a1, a2, a3 ) ); |
| 3662 | stmt( 'I', pce, IRStmt_Dirty(di) ); |
| 3663 | } |
| 3664 | |
| 3665 | /* Version of gen_dirty_v_WWW for 4 arguments. Callee must be a |
| 3666 | VG_REGPARM(3) function.*/ |
| 3667 | static void gen_dirty_v_WWWW ( PCEnv* pce, void* h_fn, HChar* h_nm, |
| 3668 | IRExpr* a1, IRExpr* a2, |
| 3669 | IRExpr* a3, IRExpr* a4 ) |
| 3670 | { |
| 3671 | IRDirty* di; |
| 3672 | tl_assert(isIRAtom(a1)); |
| 3673 | tl_assert(isIRAtom(a2)); |
| 3674 | tl_assert(isIRAtom(a3)); |
| 3675 | tl_assert(isIRAtom(a4)); |
| 3676 | tl_assert(typeOfIRExpr(pce->bb->tyenv, a1) == pce->gWordTy); |
| 3677 | tl_assert(typeOfIRExpr(pce->bb->tyenv, a2) == pce->gWordTy); |
| 3678 | tl_assert(typeOfIRExpr(pce->bb->tyenv, a3) == pce->gWordTy); |
| 3679 | tl_assert(typeOfIRExpr(pce->bb->tyenv, a4) == pce->gWordTy); |
| 3680 | di = unsafeIRDirty_0_N( 3/*regparms*/, |
| 3681 | h_nm, VG_(fnptr_to_fnentry)( h_fn ), |
| 3682 | mkIRExprVec_4( a1, a2, a3, a4 ) ); |
| 3683 | stmt( 'I', pce, IRStmt_Dirty(di) ); |
| 3684 | } |
| 3685 | |
| 3686 | /* Version of gen_dirty_v_WWW for 6 arguments. Callee must be a |
| 3687 | VG_REGPARM(3) function.*/ |
| 3688 | static void gen_dirty_v_6W ( PCEnv* pce, void* h_fn, HChar* h_nm, |
| 3689 | IRExpr* a1, IRExpr* a2, IRExpr* a3, |
| 3690 | IRExpr* a4, IRExpr* a5, IRExpr* a6 ) |
| 3691 | { |
| 3692 | IRDirty* di; |
| 3693 | tl_assert(isIRAtom(a1)); |
| 3694 | tl_assert(isIRAtom(a2)); |
| 3695 | tl_assert(isIRAtom(a3)); |
| 3696 | tl_assert(isIRAtom(a4)); |
| 3697 | tl_assert(isIRAtom(a5)); |
| 3698 | tl_assert(isIRAtom(a6)); |
| 3699 | tl_assert(typeOfIRExpr(pce->bb->tyenv, a1) == pce->gWordTy); |
| 3700 | tl_assert(typeOfIRExpr(pce->bb->tyenv, a2) == pce->gWordTy); |
| 3701 | tl_assert(typeOfIRExpr(pce->bb->tyenv, a3) == pce->gWordTy); |
| 3702 | tl_assert(typeOfIRExpr(pce->bb->tyenv, a4) == pce->gWordTy); |
| 3703 | tl_assert(typeOfIRExpr(pce->bb->tyenv, a5) == pce->gWordTy); |
| 3704 | tl_assert(typeOfIRExpr(pce->bb->tyenv, a6) == pce->gWordTy); |
| 3705 | di = unsafeIRDirty_0_N( 3/*regparms*/, |
| 3706 | h_nm, VG_(fnptr_to_fnentry)( h_fn ), |
| 3707 | mkIRExprVec_6( a1, a2, a3, a4, a5, a6 ) ); |
| 3708 | stmt( 'I', pce, IRStmt_Dirty(di) ); |
| 3709 | } |
| 3710 | |
| 3711 | static IRAtom* uwiden_to_host_word ( PCEnv* pce, IRAtom* a ) |
| 3712 | { |
| 3713 | IRType a_ty = typeOfIRExpr(pce->bb->tyenv, a); |
| 3714 | tl_assert(isIRAtom(a)); |
| 3715 | if (pce->hWordTy == Ity_I32) { |
| 3716 | switch (a_ty) { |
| 3717 | case Ity_I8: |
| 3718 | return assignNew( 'I', pce, Ity_I32, unop(Iop_8Uto32, a) ); |
| 3719 | case Ity_I16: |
| 3720 | return assignNew( 'I', pce, Ity_I32, unop(Iop_16Uto32, a) ); |
| 3721 | default: |
| 3722 | ppIRType(a_ty); |
| 3723 | tl_assert(0); |
| 3724 | } |
| 3725 | } else { |
| 3726 | tl_assert(pce->hWordTy == Ity_I64); |
| 3727 | switch (a_ty) { |
| 3728 | case Ity_I8: |
| 3729 | return assignNew( 'I', pce, Ity_I64, unop(Iop_8Uto64, a) ); |
| 3730 | case Ity_I16: |
| 3731 | return assignNew( 'I', pce, Ity_I64, unop(Iop_16Uto64, a) ); |
| 3732 | case Ity_I32: |
| 3733 | return assignNew( 'I', pce, Ity_I64, unop(Iop_32Uto64, a) ); |
| 3734 | default: |
| 3735 | ppIRType(a_ty); |
| 3736 | tl_assert(0); |
| 3737 | } |
| 3738 | } |
| 3739 | } |
| 3740 | |
| 3741 | /* 'e' is a word-sized atom. Call nonptr_or_unknown with it, bind the |
| 3742 | results to a new temporary, and return the temporary. Note this |
| 3743 | takes an original expression but returns a shadow value. */ |
| 3744 | static IRTemp gen_call_nonptr_or_unknown_w ( PCEnv* pce, IRExpr* e ) |
| 3745 | { |
| 3746 | return gen_dirty_W_W( pce, &nonptr_or_unknown, |
| 3747 | "nonptr_or_unknown", e ); |
| 3748 | } |
| 3749 | |
| 3750 | |
| 3751 | /* Generate the shadow value for an IRExpr which is an atom and |
| 3752 | guaranteed to be word-sized. */ |
| 3753 | static IRAtom* schemeEw_Atom ( PCEnv* pce, IRExpr* e ) |
| 3754 | { |
| 3755 | if (pce->gWordTy == Ity_I32) { |
| 3756 | if (e->tag == Iex_Const && e->Iex.Const.con->tag == Ico_U32) { |
| 3757 | IRTemp t; |
| 3758 | tl_assert(sizeof(UWord) == 4); |
| 3759 | t = gen_call_nonptr_or_unknown_w(pce, e); |
| 3760 | return mkexpr(t); |
| 3761 | } |
| 3762 | if (e->tag == Iex_RdTmp |
| 3763 | && typeOfIRExpr(pce->bb->tyenv, e) == Ity_I32) { |
| 3764 | return mkexpr( findShadowTmp(pce, e->Iex.RdTmp.tmp) ); |
| 3765 | } |
| 3766 | /* there are no other word-sized atom cases */ |
| 3767 | } else { |
| 3768 | if (e->tag == Iex_Const && e->Iex.Const.con->tag == Ico_U64) { |
| 3769 | IRTemp t; |
| 3770 | tl_assert(sizeof(UWord) == 8); |
| 3771 | //return mkU64( (ULong)(UWord)NONPTR ); |
| 3772 | t = gen_call_nonptr_or_unknown_w(pce, e); |
| 3773 | return mkexpr(t); |
| 3774 | } |
| 3775 | if (e->tag == Iex_RdTmp |
| 3776 | && typeOfIRExpr(pce->bb->tyenv, e) == Ity_I64) { |
| 3777 | return mkexpr( findShadowTmp(pce, e->Iex.RdTmp.tmp) ); |
| 3778 | } |
| 3779 | /* there are no other word-sized atom cases */ |
| 3780 | } |
| 3781 | ppIRExpr(e); |
| 3782 | tl_assert(0); |
| 3783 | } |
| 3784 | |
| 3785 | |
| 3786 | static |
| 3787 | void instrument_arithop ( PCEnv* pce, |
| 3788 | IRTemp dst, /* already holds result */ |
| 3789 | IRTemp dstv, /* generate an assignment to this */ |
| 3790 | IROp op, |
| 3791 | /* original args, guaranteed to be atoms */ |
| 3792 | IRExpr* a1, IRExpr* a2, IRExpr* a3, IRExpr* a4 ) |
| 3793 | { |
| 3794 | HChar* nm = NULL; |
| 3795 | void* fn = NULL; |
| 3796 | IRExpr* a1v = NULL; |
| 3797 | IRExpr* a2v = NULL; |
| 3798 | //IRExpr* a3v = NULL; |
| 3799 | //IRExpr* a4v = NULL; |
| 3800 | IRTemp res = IRTemp_INVALID; |
| 3801 | |
| 3802 | if (pce->gWordTy == Ity_I32) { |
| 3803 | |
| 3804 | tl_assert(pce->hWordTy == Ity_I32); |
| 3805 | switch (op) { |
| 3806 | |
| 3807 | /* For these cases, pass Segs for both arguments, and the |
| 3808 | result value. */ |
| 3809 | case Iop_Add32: nm = "do_addW"; fn = &do_addW; goto ssr32; |
| 3810 | case Iop_Sub32: nm = "do_subW"; fn = &do_subW; goto ssr32; |
| 3811 | case Iop_Or32: nm = "do_orW"; fn = &do_orW; goto ssr32; |
| 3812 | ssr32: |
| 3813 | a1v = schemeEw_Atom( pce, a1 ); |
| 3814 | a2v = schemeEw_Atom( pce, a2 ); |
| 3815 | res = gen_dirty_W_WWW( pce, fn, nm, a1v, a2v, mkexpr(dst) ); |
| 3816 | assign( 'I', pce, dstv, mkexpr(res) ); |
| 3817 | break; |
| 3818 | |
| 3819 | /* In this case, pass Segs for both arguments, the result |
| 3820 | value, and the difference between the (original) values of |
| 3821 | the arguments. */ |
| 3822 | case Iop_And32: |
| 3823 | nm = "do_andW"; fn = &do_andW; |
| 3824 | a1v = schemeEw_Atom( pce, a1 ); |
| 3825 | a2v = schemeEw_Atom( pce, a2 ); |
| 3826 | res = gen_dirty_W_WWWW( |
| 3827 | pce, fn, nm, a1v, a2v, mkexpr(dst), |
| 3828 | assignNew( 'I', pce, Ity_I32, |
| 3829 | binop(Iop_Sub32,a1,a2) ) ); |
| 3830 | assign( 'I', pce, dstv, mkexpr(res) ); |
| 3831 | break; |
| 3832 | |
| 3833 | /* Pass one shadow arg and the result to the helper. */ |
| 3834 | case Iop_Not32: nm = "do_notW"; fn = &do_notW; goto vr32; |
| 3835 | vr32: |
| 3836 | a1v = schemeEw_Atom( pce, a1 ); |
| 3837 | res = gen_dirty_W_WW( pce, fn, nm, a1v, mkexpr(dst) ); |
| 3838 | assign( 'I', pce, dstv, mkexpr(res) ); |
| 3839 | break; |
| 3840 | |
| 3841 | /* Pass two shadow args only to the helper. */ |
| 3842 | case Iop_Mul32: nm = "do_mulW"; fn = &do_mulW; goto vv32; |
| 3843 | vv32: |
| 3844 | a1v = schemeEw_Atom( pce, a1 ); |
| 3845 | a2v = schemeEw_Atom( pce, a2 ); |
| 3846 | res = gen_dirty_W_WW( pce, fn, nm, a1v, a2v ); |
| 3847 | assign( 'I', pce, dstv, mkexpr(res) ); |
| 3848 | break; |
| 3849 | |
| 3850 | /* We don't really know what the result could be; test at run |
| 3851 | time. */ |
| 3852 | case Iop_64HIto32: goto n_or_u_32; |
| 3853 | case Iop_64to32: goto n_or_u_32; |
| 3854 | case Iop_Xor32: goto n_or_u_32; |
| 3855 | n_or_u_32: |
| 3856 | assign( 'I', pce, dstv, |
| 3857 | mkexpr( |
| 3858 | gen_call_nonptr_or_unknown_w( pce, |
| 3859 | mkexpr(dst) ) ) ); |
| 3860 | break; |
| 3861 | |
| 3862 | /* Cases where it's very obvious that the result cannot be a |
| 3863 | pointer. Hence declare directly that it's NONPTR; don't |
| 3864 | bother with the overhead of calling nonptr_or_unknown. */ |
| 3865 | |
| 3866 | /* cases where it makes no sense for the result to be a ptr */ |
| 3867 | /* FIXME: for Shl/Shr/Sar, really should do a test on the 2nd |
| 3868 | arg, so that shift by zero preserves the original |
| 3869 | value. */ |
| 3870 | case Iop_Shl32: goto n32; |
| 3871 | case Iop_Sar32: goto n32; |
| 3872 | case Iop_Shr32: goto n32; |
| 3873 | case Iop_16Uto32: goto n32; |
| 3874 | case Iop_16Sto32: goto n32; |
| 3875 | case Iop_F64toI32: goto n32; |
| 3876 | case Iop_16HLto32: goto n32; |
| 3877 | case Iop_MullS16: goto n32; |
| 3878 | case Iop_MullU16: goto n32; |
| 3879 | case Iop_PRemC3210F64: goto n32; |
| 3880 | case Iop_DivU32: goto n32; |
| 3881 | case Iop_DivS32: goto n32; |
| 3882 | case Iop_V128to32: goto n32; |
| 3883 | |
| 3884 | /* cases where result range is very limited and clearly cannot |
| 3885 | be a pointer */ |
| 3886 | case Iop_1Uto32: goto n32; |
| 3887 | case Iop_1Sto32: goto n32; |
| 3888 | case Iop_8Uto32: goto n32; |
| 3889 | case Iop_8Sto32: goto n32; |
| 3890 | case Iop_Clz32: goto n32; |
| 3891 | case Iop_Ctz32: goto n32; |
| 3892 | case Iop_CmpF64: goto n32; |
| 3893 | case Iop_CmpORD32S: goto n32; |
| 3894 | case Iop_CmpORD32U: goto n32; |
| 3895 | n32: |
| 3896 | assign( 'I', pce, dstv, mkU32( (UWord)NONPTR )); |
| 3897 | break; |
| 3898 | |
| 3899 | default: |
| 3900 | VG_(printf)("instrument_arithop(32-bit): unhandled: "); |
| 3901 | ppIROp(op); |
| 3902 | tl_assert(0); |
| 3903 | } |
| 3904 | |
| 3905 | } else { |
| 3906 | |
| 3907 | tl_assert(pce->gWordTy == Ity_I64); |
| 3908 | switch (op) { |
| 3909 | |
| 3910 | /* For these cases, pass Segs for both arguments, and the |
| 3911 | result value. */ |
| 3912 | case Iop_Add64: nm = "do_addW"; fn = &do_addW; goto ssr64; |
| 3913 | case Iop_Sub64: nm = "do_subW"; fn = &do_subW; goto ssr64; |
| 3914 | case Iop_Or64: nm = "do_orW"; fn = &do_orW; goto ssr64; |
| 3915 | ssr64: |
| 3916 | a1v = schemeEw_Atom( pce, a1 ); |
| 3917 | a2v = schemeEw_Atom( pce, a2 ); |
| 3918 | res = gen_dirty_W_WWW( pce, fn, nm, a1v, a2v, mkexpr(dst) ); |
| 3919 | assign( 'I', pce, dstv, mkexpr(res) ); |
| 3920 | break; |
| 3921 | |
| 3922 | /* In this case, pass Segs for both arguments, the result |
| 3923 | value, and the difference between the (original) values of |
| 3924 | the arguments. */ |
| 3925 | case Iop_And64: |
| 3926 | nm = "do_andW"; fn = &do_andW; |
| 3927 | a1v = schemeEw_Atom( pce, a1 ); |
| 3928 | a2v = schemeEw_Atom( pce, a2 ); |
| 3929 | res = gen_dirty_W_WWWW( |
| 3930 | pce, fn, nm, a1v, a2v, mkexpr(dst), |
| 3931 | assignNew( 'I', pce, Ity_I64, |
| 3932 | binop(Iop_Sub64,a1,a2) ) ); |
| 3933 | assign( 'I', pce, dstv, mkexpr(res) ); |
| 3934 | break; |
| 3935 | |
| 3936 | /* Pass one shadow arg and the result to the helper. */ |
| 3937 | case Iop_Not64: nm = "do_notW"; fn = &do_notW; goto vr64; |
| 3938 | vr64: |
| 3939 | a1v = schemeEw_Atom( pce, a1 ); |
| 3940 | res = gen_dirty_W_WW( pce, fn, nm, a1v, mkexpr(dst) ); |
| 3941 | assign( 'I', pce, dstv, mkexpr(res) ); |
| 3942 | break; |
| 3943 | |
| 3944 | /* Pass two shadow args only to the helper. */ |
| 3945 | case Iop_Mul64: nm = "do_mulW"; fn = &do_mulW; goto vv64; |
| 3946 | vv64: |
| 3947 | a1v = schemeEw_Atom( pce, a1 ); |
| 3948 | a2v = schemeEw_Atom( pce, a2 ); |
| 3949 | res = gen_dirty_W_WW( pce, fn, nm, a1v, a2v ); |
| 3950 | assign( 'I', pce, dstv, mkexpr(res) ); |
| 3951 | break; |
| 3952 | |
| 3953 | /* We don't really know what the result could be; test at run |
| 3954 | time. */ |
| 3955 | case Iop_Xor64: goto n_or_u_64; |
| 3956 | case Iop_128HIto64: goto n_or_u_64; |
| 3957 | case Iop_128to64: goto n_or_u_64; |
| 3958 | case Iop_V128HIto64: goto n_or_u_64; |
| 3959 | case Iop_V128to64: goto n_or_u_64; |
| 3960 | n_or_u_64: |
| 3961 | assign( 'I', pce, dstv, |
| 3962 | mkexpr( |
| 3963 | gen_call_nonptr_or_unknown_w( pce, |
| 3964 | mkexpr(dst) ) ) ); |
| 3965 | break; |
| 3966 | |
| 3967 | /* Cases where it's very obvious that the result cannot be a |
| 3968 | pointer. Hence declare directly that it's NONPTR; don't |
| 3969 | bother with the overhead of calling nonptr_or_unknown. */ |
| 3970 | |
| 3971 | /* cases where it makes no sense for the result to be a ptr */ |
| 3972 | /* FIXME: for Shl/Shr/Sar, really should do a test on the 2nd |
| 3973 | arg, so that shift by zero preserves the original |
| 3974 | value. */ |
| 3975 | case Iop_Shl64: goto n64; |
| 3976 | case Iop_Sar64: goto n64; |
| 3977 | case Iop_Shr64: goto n64; |
| 3978 | case Iop_32Uto64: goto n64; |
| 3979 | case Iop_32Sto64: goto n64; |
| 3980 | case Iop_16Uto64: goto n64; |
| 3981 | case Iop_16Sto64: goto n64; |
| 3982 | case Iop_32HLto64: goto n64; |
| 3983 | case Iop_DivModU64to32: goto n64; |
| 3984 | case Iop_DivModS64to32: goto n64; |
| 3985 | case Iop_F64toI64: goto n64; |
| 3986 | case Iop_MullS32: goto n64; |
| 3987 | case Iop_MullU32: goto n64; |
| 3988 | case Iop_DivU64: goto n64; |
| 3989 | case Iop_DivS64: goto n64; |
| 3990 | case Iop_ReinterpF64asI64: goto n64; |
| 3991 | |
| 3992 | /* cases where result range is very limited and clearly cannot |
| 3993 | be a pointer */ |
| 3994 | case Iop_1Uto64: goto n64; |
| 3995 | case Iop_8Uto64: goto n64; |
| 3996 | case Iop_8Sto64: goto n64; |
| 3997 | case Iop_Ctz64: goto n64; |
| 3998 | case Iop_Clz64: goto n64; |
| 3999 | case Iop_CmpORD64S: goto n64; |
| 4000 | case Iop_CmpORD64U: goto n64; |
| 4001 | /* 64-bit simd */ |
| 4002 | case Iop_Avg8Ux8: case Iop_Avg16Ux4: |
| 4003 | case Iop_Max16Sx4: case Iop_Max8Ux8: case Iop_Min16Sx4: |
| 4004 | case Iop_Min8Ux8: case Iop_MulHi16Ux4: |
| 4005 | case Iop_QNarrow32Sx2: case Iop_QNarrow16Sx4: |
| 4006 | case Iop_QNarrow16Ux4: case Iop_Add8x8: case Iop_Add32x2: |
| 4007 | case Iop_QAdd8Sx8: case Iop_QAdd16Sx4: case Iop_QAdd8Ux8: |
| 4008 | case Iop_QAdd16Ux4: case Iop_Add16x4: case Iop_CmpEQ8x8: |
| 4009 | case Iop_CmpEQ32x2: case Iop_CmpEQ16x4: case Iop_CmpGT8Sx8: |
| 4010 | case Iop_CmpGT32Sx2: case Iop_CmpGT16Sx4: case Iop_MulHi16Sx4: |
| 4011 | case Iop_Mul16x4: case Iop_ShlN32x2: case Iop_ShlN16x4: |
| 4012 | case Iop_SarN32x2: case Iop_SarN16x4: case Iop_ShrN32x2: |
| 4013 | case Iop_ShrN16x4: case Iop_Sub8x8: case Iop_Sub32x2: |
| 4014 | case Iop_QSub8Sx8: case Iop_QSub16Sx4: case Iop_QSub8Ux8: |
| 4015 | case Iop_QSub16Ux4: case Iop_Sub16x4: case Iop_InterleaveHI8x8: |
| 4016 | case Iop_InterleaveHI32x2: case Iop_InterleaveHI16x4: |
| 4017 | case Iop_InterleaveLO8x8: case Iop_InterleaveLO32x2: |
| 4018 | case Iop_InterleaveLO16x4: case Iop_SarN8x8: |
| 4019 | case Iop_Perm8x8: case Iop_ShlN8x8: case Iop_Mul32x2: |
| 4020 | case Iop_CatEvenLanes16x4: case Iop_CatOddLanes16x4: |
| 4021 | n64: |
| 4022 | assign( 'I', pce, dstv, mkU64( (UWord)NONPTR )); |
| 4023 | break; |
| 4024 | |
| 4025 | default: |
| 4026 | VG_(printf)("instrument_arithop(64-bit): unhandled: "); |
| 4027 | ppIROp(op); |
| 4028 | tl_assert(0); |
| 4029 | } |
| 4030 | } |
| 4031 | } |
| 4032 | |
| 4033 | static |
| 4034 | void gen_call_nonptr_or_unknown_range ( PCEnv* pce, |
| 4035 | IRAtom* addr, IRAtom* len ) |
| 4036 | { |
| 4037 | gen_dirty_v_WW( pce, |
| 4038 | &nonptr_or_unknown_range, |
| 4039 | "nonptr_or_unknown_range", |
| 4040 | addr, len ); |
| 4041 | } |
| 4042 | |
| 4043 | /* iii describes zero or more non-exact integer register updates. For |
| 4044 | each one, generate IR to get the containing register, apply |
| 4045 | nonptr_or_unknown to it, and write it back again. */ |
| 4046 | static void gen_nonptr_or_unknown_for_III( PCEnv* pce, IntRegInfo* iii ) |
| 4047 | { |
| 4048 | Int i; |
| 4049 | tl_assert(iii && iii->n_offsets >= 0); |
| 4050 | for (i = 0; i < iii->n_offsets; i++) { |
| 4051 | IRAtom* a1 = assignNew( 'I', pce, pce->gWordTy, |
| 4052 | IRExpr_Get( iii->offsets[i], pce->gWordTy )); |
| 4053 | IRTemp a2 = gen_call_nonptr_or_unknown_w( pce, a1 ); |
| 4054 | stmt( 'I', pce, IRStmt_Put( iii->offsets[i] |
| 4055 | + pce->guest_state_sizeB, |
| 4056 | mkexpr(a2) )); |
| 4057 | } |
| 4058 | } |
| 4059 | |
| 4060 | /* Generate into 'ane', instrumentation for 'st'. Also copy 'st' |
| 4061 | itself into 'ane' (the caller does not do so). This is somewhat |
| 4062 | complex and relies heavily on the assumption that the incoming IR |
| 4063 | is in flat form. |
| 4064 | |
| 4065 | Generally speaking, the instrumentation is placed after the |
| 4066 | original statement, so that results computed by the original can be |
| 4067 | used in the instrumentation. However, that isn't safe for memory |
| 4068 | references, since we need the instrumentation (hence bounds check |
| 4069 | and potential error message) to happen before the reference itself, |
| 4070 | as the latter could cause a fault. */ |
| 4071 | static void schemeS ( PCEnv* pce, IRStmt* st ) |
| 4072 | { |
| 4073 | tl_assert(st); |
| 4074 | tl_assert(isFlatIRStmt(st)); |
| 4075 | |
| 4076 | switch (st->tag) { |
| 4077 | |
| 4078 | case Ist_Dirty: { |
| 4079 | Int i; |
| 4080 | IRDirty* di; |
| 4081 | stmt( 'C', pce, st ); |
| 4082 | /* nasty. assumes that (1) all helpers are unconditional, |
| 4083 | and (2) all outputs are non-ptr */ |
| 4084 | di = st->Ist.Dirty.details; |
| 4085 | /* deal with the return tmp, if any */ |
| 4086 | if (di->tmp != IRTemp_INVALID |
| 4087 | && typeOfIRTemp(pce->bb->tyenv, di->tmp) == pce->gWordTy) { |
| 4088 | /* di->tmp is shadowed. Set it to NONPTR. */ |
| 4089 | IRTemp dstv = newShadowTmp( pce, di->tmp ); |
| 4090 | if (pce->gWordTy == Ity_I32) { |
| 4091 | assign( 'I', pce, dstv, mkU32( (UWord)NONPTR )); |
| 4092 | } else { |
| 4093 | assign( 'I', pce, dstv, mkU64( (UWord)NONPTR )); |
| 4094 | } |
| 4095 | } |
| 4096 | /* apply the nonptr_or_unknown technique to any parts of |
| 4097 | the guest state that happen to get written */ |
| 4098 | for (i = 0; i < di->nFxState; i++) { |
| 4099 | IntRegInfo iii; |
| 4100 | tl_assert(di->fxState[i].fx != Ifx_None); |
| 4101 | if (di->fxState[i].fx == Ifx_Read) |
| 4102 | continue; /* this bit is only read -- not interesting */ |
| 4103 | get_IntRegInfo( &iii, di->fxState[i].offset, |
| 4104 | di->fxState[i].size ); |
| 4105 | tl_assert(iii.n_offsets >= -1 |
| 4106 | && iii.n_offsets <= N_INTREGINFO_OFFSETS); |
| 4107 | /* Deal with 3 possible cases, same as with Ist_Put |
| 4108 | elsewhere in this function. */ |
| 4109 | if (iii.n_offsets == -1) { |
| 4110 | /* case (1): exact write of an integer register. */ |
| 4111 | IRAtom* a1 |
| 4112 | = assignNew( 'I', pce, pce->gWordTy, |
| 4113 | IRExpr_Get( iii.offsets[i], pce->gWordTy )); |
| 4114 | IRTemp a2 = gen_call_nonptr_or_unknown_w( pce, a1 ); |
| 4115 | stmt( 'I', pce, IRStmt_Put( iii.offsets[i] |
| 4116 | + pce->guest_state_sizeB, |
| 4117 | mkexpr(a2) )); |
| 4118 | } else { |
| 4119 | /* when == 0: case (3): no instrumentation needed */ |
| 4120 | /* when > 0: case (2) .. complex case. Fish out the |
| 4121 | stored value for the whole register, heave it |
| 4122 | through nonptr_or_unknown, and use that as the new |
| 4123 | shadow value. */ |
| 4124 | tl_assert(iii.n_offsets >= 0 |
| 4125 | && iii.n_offsets <= N_INTREGINFO_OFFSETS); |
| 4126 | gen_nonptr_or_unknown_for_III( pce, &iii ); |
| 4127 | } |
| 4128 | } /* for (i = 0; i < di->nFxState; i++) */ |
| 4129 | /* finally, deal with memory outputs */ |
| 4130 | if (di->mFx != Ifx_None) { |
| 4131 | tl_assert(di->mAddr && isIRAtom(di->mAddr)); |
| 4132 | tl_assert(di->mSize > 0); |
| 4133 | gen_call_nonptr_or_unknown_range( pce, di->mAddr, |
| 4134 | mkIRExpr_HWord(di->mSize)); |
| 4135 | } |
| 4136 | break; |
| 4137 | } |
| 4138 | |
| 4139 | case Ist_NoOp: |
| 4140 | break; |
| 4141 | |
| 4142 | /* nothing interesting in these; just copy them through */ |
| 4143 | case Ist_AbiHint: |
| 4144 | case Ist_MBE: |
| 4145 | case Ist_Exit: |
| 4146 | case Ist_IMark: |
| 4147 | stmt( 'C', pce, st ); |
| 4148 | break; |
| 4149 | |
| 4150 | case Ist_PutI: { |
| 4151 | IRRegArray* descr = st->Ist.PutI.descr; |
| 4152 | stmt( 'C', pce, st ); |
| 4153 | tl_assert(descr && descr->elemTy); |
| 4154 | if (is_integer_guest_reg_array(descr)) { |
| 4155 | /* if this fails, is_integer_guest_reg_array is returning |
| 4156 | bogus results */ |
| 4157 | tl_assert(descr->elemTy == pce->gWordTy); |
| 4158 | stmt( |
| 4159 | 'I', pce, |
| 4160 | IRStmt_PutI( |
| 4161 | mkIRRegArray(descr->base + pce->guest_state_sizeB, |
| 4162 | descr->elemTy, descr->nElems), |
| 4163 | st->Ist.PutI.ix, |
| 4164 | st->Ist.PutI.bias, |
| 4165 | schemeEw_Atom( pce, st->Ist.PutI.data) |
| 4166 | ) |
| 4167 | ); |
| 4168 | } |
| 4169 | break; |
| 4170 | } |
| 4171 | |
| 4172 | case Ist_Put: { |
| 4173 | /* PUT(offset) = atom */ |
| 4174 | /* 3 cases: |
| 4175 | 1. It's a complete write of an integer register. Get hold of |
| 4176 | 'atom's shadow value and write it in the shadow state. |
| 4177 | 2. It's a partial write of an integer register. Let the write |
| 4178 | happen, then fish out the complete register value and see if, |
| 4179 | via range checking, consultation of tea leaves, etc, its |
| 4180 | shadow value can be upgraded to anything useful. |
| 4181 | 3. It is none of the above. Generate no instrumentation. */ |
| 4182 | IntRegInfo iii; |
| 4183 | IRType ty; |
| 4184 | stmt( 'C', pce, st ); |
| 4185 | ty = typeOfIRExpr(pce->bb->tyenv, st->Ist.Put.data); |
| 4186 | get_IntRegInfo( &iii, st->Ist.Put.offset, |
| 4187 | sizeofIRType(ty) ); |
| 4188 | if (iii.n_offsets == -1) { |
| 4189 | /* case (1): exact write of an integer register. */ |
| 4190 | tl_assert(ty == pce->gWordTy); |
| 4191 | stmt( 'I', pce, |
| 4192 | IRStmt_Put( st->Ist.Put.offset |
| 4193 | + pce->guest_state_sizeB, |
| 4194 | schemeEw_Atom( pce, st->Ist.Put.data)) ); |
| 4195 | } else { |
| 4196 | /* when == 0: case (3): no instrumentation needed */ |
| 4197 | /* when > 0: case (2) .. complex case. Fish out the |
| 4198 | stored value for the whole register, heave it through |
| 4199 | nonptr_or_unknown, and use that as the new shadow |
| 4200 | value. */ |
| 4201 | tl_assert(iii.n_offsets >= 0 |
| 4202 | && iii.n_offsets <= N_INTREGINFO_OFFSETS); |
| 4203 | gen_nonptr_or_unknown_for_III( pce, &iii ); |
| 4204 | } |
| 4205 | break; |
| 4206 | } /* case Ist_Put */ |
| 4207 | |
| 4208 | case Ist_Store: { |
| 4209 | /* We have: STle(addr) = data |
| 4210 | if data is int-word sized, do |
| 4211 | check_store4(addr, addr#, data, data#) |
| 4212 | for all other stores |
| 4213 | check_store{1,2}(addr, addr#, data) |
| 4214 | |
| 4215 | The helper actually *does* the store, so that it can do |
| 4216 | the post-hoc ugly hack of inspecting and "improving" the |
| 4217 | shadow data after the store, in the case where it isn't an |
| 4218 | aligned word store. |
| 4219 | */ |
| 4220 | IRExpr* data = st->Ist.Store.data; |
| 4221 | IRExpr* addr = st->Ist.Store.addr; |
| 4222 | IRType d_ty = typeOfIRExpr(pce->bb->tyenv, data); |
| 4223 | IRExpr* addrv = schemeEw_Atom( pce, addr ); |
| 4224 | if (pce->gWordTy == Ity_I32) { |
| 4225 | /* ------ 32 bit host/guest (cough, cough) ------ */ |
| 4226 | switch (d_ty) { |
| 4227 | /* Integer word case */ |
| 4228 | case Ity_I32: { |
| 4229 | IRExpr* datav = schemeEw_Atom( pce, data ); |
| 4230 | gen_dirty_v_WWWW( pce, |
| 4231 | &check_store4_P, "check_store4_P", |
| 4232 | addr, addrv, data, datav ); |
| 4233 | break; |
| 4234 | } |
| 4235 | /* Integer subword cases */ |
| 4236 | case Ity_I16: |
| 4237 | gen_dirty_v_WWW( pce, |
| 4238 | &check_store2, "check_store2", |
| 4239 | addr, addrv, |
| 4240 | uwiden_to_host_word( pce, data )); |
| 4241 | break; |
| 4242 | case Ity_I8: |
| 4243 | gen_dirty_v_WWW( pce, |
| 4244 | &check_store1, "check_store1", |
| 4245 | addr, addrv, |
| 4246 | uwiden_to_host_word( pce, data )); |
| 4247 | break; |
| 4248 | /* 64-bit float. Pass store data in 2 32-bit pieces. */ |
| 4249 | case Ity_F64: { |
| 4250 | IRAtom* d64 = assignNew( 'I', pce, Ity_I64, |
| 4251 | unop(Iop_ReinterpF64asI64, data) ); |
| 4252 | IRAtom* dLo32 = assignNew( 'I', pce, Ity_I32, |
| 4253 | unop(Iop_64to32, d64) ); |
| 4254 | IRAtom* dHi32 = assignNew( 'I', pce, Ity_I32, |
| 4255 | unop(Iop_64HIto32, d64) ); |
| 4256 | gen_dirty_v_WWWW( pce, |
| 4257 | &check_store8_ms4B_ls4B, |
| 4258 | "check_store8_ms4B_ls4B", |
| 4259 | addr, addrv, dHi32, dLo32 ); |
| 4260 | break; |
| 4261 | } |
| 4262 | /* 32-bit float. We can just use _store4, but need |
| 4263 | to futz with the argument type. */ |
| 4264 | case Ity_F32: { |
| 4265 | IRAtom* i32 = assignNew( 'I', pce, Ity_I32, |
| 4266 | unop(Iop_ReinterpF32asI32, |
| 4267 | data ) ); |
| 4268 | gen_dirty_v_WWW( pce, |
| 4269 | &check_store4, |
| 4270 | "check_store4", |
| 4271 | addr, addrv, i32 ); |
| 4272 | break; |
| 4273 | } |
| 4274 | /* 64-bit int. Pass store data in 2 32-bit pieces. */ |
| 4275 | case Ity_I64: { |
| 4276 | IRAtom* dLo32 = assignNew( 'I', pce, Ity_I32, |
| 4277 | unop(Iop_64to32, data) ); |
| 4278 | IRAtom* dHi32 = assignNew( 'I', pce, Ity_I32, |
| 4279 | unop(Iop_64HIto32, data) ); |
| 4280 | gen_dirty_v_WWWW( pce, |
| 4281 | &check_store8_ms4B_ls4B, |
| 4282 | "check_store8_ms4B_ls4B", |
| 4283 | addr, addrv, dHi32, dLo32 ); |
| 4284 | break; |
| 4285 | } |
| 4286 | |
| 4287 | /* 128-bit vector. Pass store data in 4 32-bit pieces. |
| 4288 | This is all very ugly and inefficient, but it is |
| 4289 | hard to better without considerably complicating the |
| 4290 | store-handling schemes. */ |
| 4291 | case Ity_V128: { |
| 4292 | IRAtom* dHi64 = assignNew( 'I', pce, Ity_I64, |
| 4293 | unop(Iop_V128HIto64, data) ); |
| 4294 | IRAtom* dLo64 = assignNew( 'I', pce, Ity_I64, |
| 4295 | unop(Iop_V128to64, data) ); |
| 4296 | IRAtom* w3 = assignNew( 'I', pce, Ity_I32, |
| 4297 | unop(Iop_64HIto32, dHi64) ); |
| 4298 | IRAtom* w2 = assignNew( 'I', pce, Ity_I32, |
| 4299 | unop(Iop_64to32, dHi64) ); |
| 4300 | IRAtom* w1 = assignNew( 'I', pce, Ity_I32, |
| 4301 | unop(Iop_64HIto32, dLo64) ); |
| 4302 | IRAtom* w0 = assignNew( 'I', pce, Ity_I32, |
| 4303 | unop(Iop_64to32, dLo64) ); |
| 4304 | gen_dirty_v_6W( pce, |
| 4305 | &check_store16_ms4B_4B_4B_ls4B, |
| 4306 | "check_store16_ms4B_4B_4B_ls4B", |
| 4307 | addr, addrv, w3, w2, w1, w0 ); |
| 4308 | break; |
| 4309 | } |
| 4310 | |
| 4311 | |
| 4312 | default: |
| 4313 | ppIRType(d_ty); tl_assert(0); |
| 4314 | } |
| 4315 | } else { |
| 4316 | /* ------ 64 bit host/guest (cough, cough) ------ */ |
| 4317 | switch (d_ty) { |
| 4318 | /* Integer word case */ |
| 4319 | case Ity_I64: { |
| 4320 | IRExpr* datav = schemeEw_Atom( pce, data ); |
| 4321 | gen_dirty_v_WWWW( pce, |
| 4322 | &check_store8_P, "check_store8_P", |
| 4323 | addr, addrv, data, datav ); |
| 4324 | break; |
| 4325 | } |
| 4326 | /* Integer subword cases */ |
| 4327 | case Ity_I32: |
| 4328 | gen_dirty_v_WWW( pce, |
| 4329 | &check_store4, "check_store4", |
| 4330 | addr, addrv, |
| 4331 | uwiden_to_host_word( pce, data )); |
| 4332 | break; |
| 4333 | case Ity_I16: |
| 4334 | gen_dirty_v_WWW( pce, |
| 4335 | &check_store2, "check_store2", |
| 4336 | addr, addrv, |
| 4337 | uwiden_to_host_word( pce, data )); |
| 4338 | break; |
| 4339 | case Ity_I8: |
| 4340 | gen_dirty_v_WWW( pce, |
| 4341 | &check_store1, "check_store1", |
| 4342 | addr, addrv, |
| 4343 | uwiden_to_host_word( pce, data )); |
| 4344 | break; |
| 4345 | /* 128-bit vector. Pass store data in 2 64-bit pieces. */ |
| 4346 | case Ity_V128: { |
| 4347 | IRAtom* dHi64 = assignNew( 'I', pce, Ity_I64, |
| 4348 | unop(Iop_V128HIto64, data) ); |
| 4349 | IRAtom* dLo64 = assignNew( 'I', pce, Ity_I64, |
| 4350 | unop(Iop_V128to64, data) ); |
| 4351 | gen_dirty_v_WWWW( pce, |
| 4352 | &check_store16_ms8B_ls8B, |
| 4353 | "check_store16_ms8B_ls8B", |
| 4354 | addr, addrv, dHi64, dLo64 ); |
| 4355 | break; |
| 4356 | } |
| 4357 | /* 64-bit float. */ |
| 4358 | case Ity_F64: { |
| 4359 | IRAtom* dI = assignNew( 'I', pce, Ity_I64, |
| 4360 | unop(Iop_ReinterpF64asI64, |
| 4361 | data ) ); |
| 4362 | gen_dirty_v_WWW( pce, |
| 4363 | &check_store8_all8B, |
| 4364 | "check_store8_all8B", |
| 4365 | addr, addrv, dI ); |
| 4366 | break; |
| 4367 | } |
| 4368 | /* 32-bit float. We can just use _store4, but need |
| 4369 | to futz with the argument type. */ |
| 4370 | case Ity_F32: { |
| 4371 | IRAtom* i32 = assignNew( 'I', pce, Ity_I32, |
| 4372 | unop(Iop_ReinterpF32asI32, |
| 4373 | data ) ); |
| 4374 | IRAtom* i64 = assignNew( 'I', pce, Ity_I64, |
| 4375 | unop(Iop_32Uto64, |
| 4376 | i32 ) ); |
| 4377 | gen_dirty_v_WWW( pce, |
| 4378 | &check_store4, |
| 4379 | "check_store4", |
| 4380 | addr, addrv, i64 ); |
| 4381 | break; |
| 4382 | } |
| 4383 | default: |
| 4384 | ppIRType(d_ty); tl_assert(0); |
| 4385 | } |
| 4386 | } |
| 4387 | /* And don't copy the original, since the helper does the |
| 4388 | store. Ick. */ |
| 4389 | break; |
| 4390 | } /* case Ist_Store */ |
| 4391 | |
| 4392 | case Ist_WrTmp: { |
| 4393 | /* This is the only place we have to deal with the full |
| 4394 | IRExpr range. In all other places where an IRExpr could |
| 4395 | appear, we in fact only get an atom (Iex_RdTmp or |
| 4396 | Iex_Const). */ |
| 4397 | IRExpr* e = st->Ist.WrTmp.data; |
| 4398 | IRType e_ty = typeOfIRExpr( pce->bb->tyenv, e ); |
| 4399 | Bool isWord = e_ty == pce->gWordTy; |
| 4400 | IRTemp dst = st->Ist.WrTmp.tmp; |
| 4401 | IRTemp dstv = isWord ? newShadowTmp( pce, dst ) |
| 4402 | : IRTemp_INVALID; |
| 4403 | |
| 4404 | switch (e->tag) { |
| 4405 | |
| 4406 | case Iex_Const: { |
| 4407 | stmt( 'C', pce, st ); |
| 4408 | if (isWord) |
| 4409 | assign( 'I', pce, dstv, schemeEw_Atom( pce, e ) ); |
| 4410 | break; |
| 4411 | } |
| 4412 | |
| 4413 | case Iex_CCall: { |
| 4414 | stmt( 'C', pce, st ); |
| 4415 | if (isWord) |
| 4416 | assign( 'I', pce, dstv, |
| 4417 | mkexpr( gen_call_nonptr_or_unknown_w( |
| 4418 | pce, mkexpr(dst)))); |
| 4419 | break; |
| 4420 | } |
| 4421 | |
| 4422 | case Iex_Mux0X: { |
| 4423 | /* Just steer the shadow values in the same way as the |
| 4424 | originals. */ |
| 4425 | stmt( 'C', pce, st ); |
| 4426 | if (isWord) |
| 4427 | assign( 'I', pce, dstv, |
| 4428 | IRExpr_Mux0X( |
| 4429 | e->Iex.Mux0X.cond, |
| 4430 | schemeEw_Atom( pce, e->Iex.Mux0X.expr0 ), |
| 4431 | schemeEw_Atom( pce, e->Iex.Mux0X.exprX ) )); |
| 4432 | break; |
| 4433 | } |
| 4434 | |
| 4435 | case Iex_RdTmp: { |
| 4436 | stmt( 'C', pce, st ); |
| 4437 | if (isWord) |
| 4438 | assign( 'I', pce, dstv, schemeEw_Atom( pce, e )); |
| 4439 | break; |
| 4440 | } |
| 4441 | |
| 4442 | case Iex_Load: { |
| 4443 | IRExpr* addr = e->Iex.Load.addr; |
| 4444 | HChar* h_nm = NULL; |
| 4445 | void* h_fn = NULL; |
| 4446 | IRExpr* addrv = NULL; |
| 4447 | if (pce->gWordTy == Ity_I32) { |
| 4448 | /* 32 bit host/guest (cough, cough) */ |
| 4449 | switch (e_ty) { |
| 4450 | /* Ity_I32: helper returns shadow value. */ |
| 4451 | case Ity_I32: h_fn = &check_load4_P; |
| 4452 | h_nm = "check_load4_P"; break; |
| 4453 | /* all others: helper does not return a shadow |
| 4454 | value. */ |
| 4455 | case Ity_V128: h_fn = &check_load16; |
| 4456 | h_nm = "check_load16"; break; |
| 4457 | case Ity_I64: |
| 4458 | case Ity_F64: h_fn = &check_load8; |
| 4459 | h_nm = "check_load8"; break; |
| 4460 | case Ity_F32: h_fn = &check_load4; |
| 4461 | h_nm = "check_load4"; break; |
| 4462 | case Ity_I16: h_fn = &check_load2; |
| 4463 | h_nm = "check_load2"; break; |
| 4464 | case Ity_I8: h_fn = &check_load1; |
| 4465 | h_nm = "check_load1"; break; |
| 4466 | default: ppIRType(e_ty); tl_assert(0); |
| 4467 | } |
| 4468 | addrv = schemeEw_Atom( pce, addr ); |
| 4469 | if (e_ty == Ity_I32) { |
| 4470 | assign( 'I', pce, dstv, |
| 4471 | mkexpr( gen_dirty_W_WW( pce, h_fn, h_nm, |
| 4472 | addr, addrv )) ); |
| 4473 | } else { |
| 4474 | gen_dirty_v_WW( pce, h_fn, h_nm, addr, addrv ); |
| 4475 | } |
| 4476 | } else { |
| 4477 | /* 64 bit host/guest (cough, cough) */ |
| 4478 | switch (e_ty) { |
| 4479 | /* Ity_I64: helper returns shadow value. */ |
| 4480 | case Ity_I64: h_fn = &check_load8_P; |
| 4481 | h_nm = "check_load8_P"; break; |
| 4482 | /* all others: helper does not return a shadow |
| 4483 | value. */ |
| 4484 | case Ity_V128: h_fn = &check_load16; |
| 4485 | h_nm = "check_load16"; break; |
| 4486 | case Ity_F64: h_fn = &check_load8; |
| 4487 | h_nm = "check_load8"; break; |
| 4488 | case Ity_F32: |
| 4489 | case Ity_I32: h_fn = &check_load4; |
| 4490 | h_nm = "check_load4"; break; |
| 4491 | case Ity_I16: h_fn = &check_load2; |
| 4492 | h_nm = "check_load2"; break; |
| 4493 | case Ity_I8: h_fn = &check_load1; |
| 4494 | h_nm = "check_load1"; break; |
| 4495 | default: ppIRType(e_ty); tl_assert(0); |
| 4496 | } |
| 4497 | addrv = schemeEw_Atom( pce, addr ); |
| 4498 | if (e_ty == Ity_I64) { |
| 4499 | assign( 'I', pce, dstv, |
| 4500 | mkexpr( gen_dirty_W_WW( pce, h_fn, h_nm, |
| 4501 | addr, addrv )) ); |
| 4502 | } else { |
| 4503 | gen_dirty_v_WW( pce, h_fn, h_nm, addr, addrv ); |
| 4504 | } |
| 4505 | } |
| 4506 | /* copy the original -- must happen after the helper call */ |
| 4507 | stmt( 'C', pce, st ); |
| 4508 | break; |
| 4509 | } |
| 4510 | |
| 4511 | case Iex_GetI: { |
| 4512 | IRRegArray* descr = e->Iex.GetI.descr; |
| 4513 | stmt( 'C', pce, st ); |
| 4514 | tl_assert(descr && descr->elemTy); |
| 4515 | if (is_integer_guest_reg_array(descr)) { |
| 4516 | /* if this fails, is_integer_guest_reg_array is |
| 4517 | returning bogus results */ |
| 4518 | tl_assert(isWord); |
| 4519 | assign( |
| 4520 | 'I', pce, dstv, |
| 4521 | IRExpr_GetI( |
| 4522 | mkIRRegArray(descr->base + pce->guest_state_sizeB, |
| 4523 | descr->elemTy, descr->nElems), |
| 4524 | e->Iex.GetI.ix, |
| 4525 | e->Iex.GetI.bias |
| 4526 | ) |
| 4527 | ); |
| 4528 | } |
| 4529 | break; |
| 4530 | } |
| 4531 | |
| 4532 | case Iex_Get: { |
| 4533 | stmt( 'C', pce, st ); |
| 4534 | if (isWord) { |
| 4535 | /* guest-word-typed tmp assignment, so it will have a |
| 4536 | shadow tmp, and we must make an assignment to |
| 4537 | that */ |
| 4538 | if (is_integer_guest_reg(e->Iex.Get.offset, |
| 4539 | sizeofIRType(e->Iex.Get.ty))) { |
| 4540 | assign( 'I', pce, dstv, |
| 4541 | IRExpr_Get( e->Iex.Get.offset |
| 4542 | + pce->guest_state_sizeB, |
| 4543 | e->Iex.Get.ty) ); |
| 4544 | } else { |
| 4545 | if (pce->hWordTy == Ity_I32) { |
| 4546 | assign( 'I', pce, dstv, mkU32( (UWord)NONPTR )); |
| 4547 | } else { |
| 4548 | assign( 'I', pce, dstv, mkU64( (UWord)NONPTR )); |
| 4549 | } |
| 4550 | } |
| 4551 | } else { |
| 4552 | /* tmp isn't guest-word-typed, so isn't shadowed, so |
| 4553 | generate no instrumentation */ |
| 4554 | } |
| 4555 | break; |
| 4556 | } |
| 4557 | |
| 4558 | case Iex_Unop: { |
| 4559 | stmt( 'C', pce, st ); |
| 4560 | tl_assert(isIRAtom(e->Iex.Unop.arg)); |
| 4561 | if (isWord) |
| 4562 | instrument_arithop( pce, dst, dstv, e->Iex.Unop.op, |
| 4563 | e->Iex.Unop.arg, |
| 4564 | NULL, NULL, NULL ); |
| 4565 | break; |
| 4566 | } |
| 4567 | |
| 4568 | case Iex_Binop: { |
| 4569 | stmt( 'C', pce, st ); |
| 4570 | tl_assert(isIRAtom(e->Iex.Binop.arg1)); |
| 4571 | tl_assert(isIRAtom(e->Iex.Binop.arg2)); |
| 4572 | if (isWord) |
| 4573 | instrument_arithop( pce, dst, dstv, e->Iex.Binop.op, |
| 4574 | e->Iex.Binop.arg1, e->Iex.Binop.arg2, |
| 4575 | NULL, NULL ); |
| 4576 | break; |
| 4577 | } |
| 4578 | |
| 4579 | case Iex_Triop: { |
| 4580 | stmt( 'C', pce, st ); |
| 4581 | tl_assert(isIRAtom(e->Iex.Triop.arg1)); |
| 4582 | tl_assert(isIRAtom(e->Iex.Triop.arg2)); |
| 4583 | tl_assert(isIRAtom(e->Iex.Triop.arg3)); |
| 4584 | if (isWord) |
| 4585 | instrument_arithop( pce, dst, dstv, e->Iex.Triop.op, |
| 4586 | e->Iex.Triop.arg1, e->Iex.Triop.arg2, |
| 4587 | e->Iex.Triop.arg3, NULL ); |
| 4588 | break; |
| 4589 | } |
| 4590 | |
| 4591 | case Iex_Qop: { |
| 4592 | stmt( 'C', pce, st ); |
| 4593 | tl_assert(isIRAtom(e->Iex.Qop.arg1)); |
| 4594 | tl_assert(isIRAtom(e->Iex.Qop.arg2)); |
| 4595 | tl_assert(isIRAtom(e->Iex.Qop.arg3)); |
| 4596 | tl_assert(isIRAtom(e->Iex.Qop.arg4)); |
| 4597 | if (isWord) |
| 4598 | instrument_arithop( pce, dst, dstv, e->Iex.Qop.op, |
| 4599 | e->Iex.Qop.arg1, e->Iex.Qop.arg2, |
| 4600 | e->Iex.Qop.arg3, e->Iex.Qop.arg4 ); |
| 4601 | break; |
| 4602 | } |
| 4603 | |
| 4604 | default: |
| 4605 | goto unhandled; |
| 4606 | } /* switch (e->tag) */ |
| 4607 | |
| 4608 | break; |
| 4609 | |
| 4610 | } /* case Ist_WrTmp */ |
| 4611 | |
| 4612 | default: |
| 4613 | unhandled: |
| 4614 | ppIRStmt(st); |
| 4615 | tl_assert(0); |
| 4616 | } |
| 4617 | } |
| 4618 | |
| 4619 | |
| 4620 | IRSB* h_instrument ( VgCallbackClosure* closure, |
| 4621 | IRSB* sbIn, |
| 4622 | VexGuestLayout* layout, |
| 4623 | VexGuestExtents* vge, |
| 4624 | IRType gWordTy, IRType hWordTy ) |
| 4625 | { |
| 4626 | Bool verboze = 0||False; |
| 4627 | Int i /*, j*/; |
| 4628 | PCEnv pce; |
| 4629 | struct _SGEnv* sgenv; |
| 4630 | |
| 4631 | if (gWordTy != hWordTy) { |
| 4632 | /* We don't currently support this case. */ |
| 4633 | VG_(tool_panic)("host/guest word size mismatch"); |
| 4634 | } |
| 4635 | |
| 4636 | /* Check we're not completely nuts */ |
| 4637 | tl_assert(sizeof(UWord) == sizeof(void*)); |
| 4638 | tl_assert(sizeof(Word) == sizeof(void*)); |
| 4639 | tl_assert(sizeof(Addr) == sizeof(void*)); |
| 4640 | tl_assert(sizeof(ULong) == 8); |
| 4641 | tl_assert(sizeof(Long) == 8); |
| 4642 | tl_assert(sizeof(Addr64) == 8); |
| 4643 | tl_assert(sizeof(UInt) == 4); |
| 4644 | tl_assert(sizeof(Int) == 4); |
| 4645 | |
| 4646 | /* Set up the running environment. Only .bb is modified as we go |
| 4647 | along. */ |
| 4648 | pce.bb = deepCopyIRSBExceptStmts(sbIn); |
| 4649 | pce.trace = verboze; |
| 4650 | pce.n_originalTmps = sbIn->tyenv->types_used; |
| 4651 | pce.hWordTy = hWordTy; |
| 4652 | pce.gWordTy = gWordTy; |
| 4653 | pce.guest_state_sizeB = layout->total_sizeB; |
| 4654 | pce.tmpMap = LibVEX_Alloc(pce.n_originalTmps * sizeof(IRTemp)); |
| 4655 | for (i = 0; i < pce.n_originalTmps; i++) |
| 4656 | pce.tmpMap[i] = IRTemp_INVALID; |
| 4657 | |
| 4658 | /* Also set up for the sg_ instrumenter. See comments |
| 4659 | at the top of this instrumentation section for details. */ |
| 4660 | sgenv = sg_instrument_init(); |
| 4661 | |
| 4662 | /* Stay sane. These two should agree! */ |
| 4663 | tl_assert(layout->total_sizeB == MC_SIZEOF_GUEST_STATE); |
| 4664 | |
| 4665 | /* Copy verbatim any IR preamble preceding the first IMark */ |
| 4666 | |
| 4667 | i = 0; |
| 4668 | while (i < sbIn->stmts_used && sbIn->stmts[i]->tag != Ist_IMark) { |
| 4669 | IRStmt* st = sbIn->stmts[i]; |
| 4670 | tl_assert(st); |
| 4671 | tl_assert(isFlatIRStmt(st)); |
| 4672 | stmt( 'C', &pce, sbIn->stmts[i] ); |
| 4673 | i++; |
| 4674 | } |
| 4675 | |
| 4676 | /* Nasty problem. IR optimisation of the pre-instrumented IR may |
| 4677 | cause the IR following the preamble to contain references to IR |
| 4678 | temporaries defined in the preamble. Because the preamble isn't |
| 4679 | instrumented, these temporaries don't have any shadows. |
| 4680 | Nevertheless uses of them following the preamble will cause |
| 4681 | memcheck to generate references to their shadows. End effect is |
| 4682 | to cause IR sanity check failures, due to references to |
| 4683 | non-existent shadows. This is only evident for the complex |
| 4684 | preambles used for function wrapping on TOC-afflicted platforms |
| 4685 | (ppc64-linux, ppc32-aix5, ppc64-aix5). |
| 4686 | |
| 4687 | The following loop therefore scans the preamble looking for |
| 4688 | assignments to temporaries. For each one found it creates an |
| 4689 | assignment to the corresponding shadow temp, marking it as |
| 4690 | 'defined'. This is the same resulting IR as if the main |
| 4691 | instrumentation loop before had been applied to the statement |
| 4692 | 'tmp = CONSTANT'. |
| 4693 | */ |
| 4694 | #if 0 |
| 4695 | // FIXME: this isn't exactly right; only needs to generate shadows |
| 4696 | // for guest-word-typed temps |
| 4697 | for (j = 0; j < i; j++) { |
| 4698 | if (sbIn->stmts[j]->tag == Ist_WrTmp) { |
| 4699 | /* findShadowTmpV checks its arg is an original tmp; |
| 4700 | no need to assert that here. */ |
| 4701 | IRTemp tmp_o = sbIn->stmts[j]->Ist.WrTmp.tmp; |
| 4702 | IRTemp tmp_s = findShadowTmp(&pce, tmp_o); |
| 4703 | IRType ty_s = typeOfIRTemp(sbIn->tyenv, tmp_s); |
| 4704 | assign( 'V', &pce, tmp_s, definedOfType( ty_s ) ); |
| 4705 | if (0) { |
| 4706 | VG_(printf)("create shadow tmp for preamble tmp [%d] ty ", j); |
| 4707 | ppIRType( ty_s ); |
| 4708 | VG_(printf)("\n"); |
| 4709 | } |
| 4710 | } |
| 4711 | } |
| 4712 | #endif |
| 4713 | |
| 4714 | /* Iterate over the remaining stmts to generate instrumentation. */ |
| 4715 | |
| 4716 | tl_assert(sbIn->stmts_used > 0); |
| 4717 | tl_assert(i >= 0); |
| 4718 | tl_assert(i < sbIn->stmts_used); |
| 4719 | tl_assert(sbIn->stmts[i]->tag == Ist_IMark); |
| 4720 | |
| 4721 | for (/*use current i*/; i < sbIn->stmts_used; i++) { |
| 4722 | /* generate sg_ instrumentation for this stmt */ |
| 4723 | sg_instrument_IRStmt( sgenv, pce.bb, sbIn->stmts[i], |
| 4724 | layout, gWordTy, hWordTy ); |
| 4725 | /* generate h_ instrumentation for this stmt */ |
| 4726 | schemeS( &pce, sbIn->stmts[i] ); |
| 4727 | } |
| 4728 | |
| 4729 | /* generate sg_ instrumentation for the final jump */ |
| 4730 | sg_instrument_final_jump( sgenv, pce.bb, sbIn->next, sbIn->jumpkind, |
| 4731 | layout, gWordTy, hWordTy ); |
| 4732 | |
| 4733 | /* and finalise .. */ |
| 4734 | sg_instrument_fini( sgenv ); |
| 4735 | |
| 4736 | return pce.bb; |
| 4737 | } |
| 4738 | |
| 4739 | |
| 4740 | /*--------------------------------------------------------------------*/ |
| 4741 | /*--- Initialisation ---*/ |
| 4742 | /*--------------------------------------------------------------------*/ |
| 4743 | |
| 4744 | void h_pre_clo_init ( void ) |
| 4745 | { |
| 4746 | // Other initialisation |
| 4747 | init_shadow_memory(); |
| 4748 | init_lossage(); |
| 4749 | } |
| 4750 | |
| 4751 | void h_post_clo_init ( void ) |
| 4752 | { |
| 4753 | } |
| 4754 | |
| 4755 | /*--------------------------------------------------------------------*/ |
| 4756 | /*--- Finalisation ---*/ |
| 4757 | /*--------------------------------------------------------------------*/ |
| 4758 | |
| 4759 | void h_fini ( Int exitcode ) |
| 4760 | { |
| 4761 | if (VG_(clo_verbosity) >= 2) { |
| 4762 | VG_(message)(Vg_DebugMsg, |
| 4763 | " h_: %'10llu client allocs, %'10llu client frees", |
| 4764 | stats__client_mallocs, stats__client_frees); |
| 4765 | VG_(message)(Vg_DebugMsg, |
| 4766 | " h_: %'10llu Segs allocd, %'10llu Segs recycled", |
| 4767 | stats__segs_allocd, stats__segs_recycled); |
sewardj | 024598e | 2008-09-18 14:43:05 +0000 | [diff] [blame] | 4768 | } |
| 4769 | |
sewardj | 4815eb5 | 2008-10-20 23:33:49 +0000 | [diff] [blame] | 4770 | #if 0 |
sewardj | 024598e | 2008-09-18 14:43:05 +0000 | [diff] [blame] | 4771 | if (h_clo_lossage_check) { |
| 4772 | VG_(message)(Vg_UserMsg, ""); |
| 4773 | VG_(message)(Vg_UserMsg, "%12lld total memory references", |
| 4774 | stats__tot_mem_refs); |
| 4775 | VG_(message)(Vg_UserMsg, "%12lld of which are in a known segment", |
| 4776 | stats__refs_in_a_seg); |
| 4777 | VG_(message)(Vg_UserMsg, "%12lld of which are 'lost' w.r.t the seg", |
| 4778 | stats__refs_lost_seg); |
| 4779 | VG_(message)(Vg_UserMsg, ""); |
| 4780 | show_lossage(); |
| 4781 | VG_(message)(Vg_UserMsg, ""); |
| 4782 | } else { |
| 4783 | tl_assert( 0 == VG_(OSetGen_Size)(lossage) ); |
| 4784 | } |
sewardj | 4815eb5 | 2008-10-20 23:33:49 +0000 | [diff] [blame] | 4785 | #endif |
sewardj | 024598e | 2008-09-18 14:43:05 +0000 | [diff] [blame] | 4786 | } |
| 4787 | |
| 4788 | |
| 4789 | /*--------------------------------------------------------------------*/ |
| 4790 | /*--- end h_main.c ---*/ |
| 4791 | /*--------------------------------------------------------------------*/ |