blob: a94434fd7bd5955f8d2a1336f84e2f1948784f36 [file] [log] [blame]
sewardjabbf59d2005-06-25 14:42:34 +00001
2-- A program for extracting strongly connected components from a .dot
3-- file created by auxprogs/gen-mdg.
4
5-- How to use: one of the following:
6
7-- compile to an exe: ghc -o dottoscc DotToScc.hs
8-- and then ./dottoscc name_of_file.dot
9
10-- or interpret with runhugs:
11-- runhugs DotToScc.hs name_of_file.dot
12
13-- or run within hugs:
14-- hugs DotToScc.hs
15-- Main> imain "name_of_file.dot"
16
17
18module Main where
19
20import System
21import List ( sort, nub )
22
23usage :: IO ()
24usage = putStrLn "usage: dottoscc <name_of_file.dot>"
25
26main :: IO ()
27main = do args <- getArgs
28 if length args /= 1
29 then usage
30 else imain (head args)
31
32imain :: String -> IO ()
33imain dot_file_name
34 = do edges <- read_dot_file dot_file_name
35 let sccs = gen_sccs edges
36 let pretty = showPrettily sccs
37 putStrLn pretty
38 where
39 showPrettily :: [[String]] -> String
40 showPrettily = unlines . concatMap showScc
41
42 showScc elems
43 = let n = length elems
44 in
45 [""]
46 ++ (if n > 1 then [" -- "
47 ++ show n ++ " modules in cycle"]
48 else [])
49 ++ map (" " ++) elems
50
51
52-- Read a .dot file and return a list of edges
53read_dot_file :: String{-filename-} -> IO [(String,String)]
54read_dot_file dot_file_name
55 = do bytes <- readFile dot_file_name
56 let linez = lines bytes
57 let edges = [(s,d) | Just (s,d) <- map maybe_mk_edge linez]
58 return edges
59 where
60 -- identify lines of the form "text1 -> text2" and return
61 -- text1 and text2
62 maybe_mk_edge :: String -> Maybe (String, String)
63 maybe_mk_edge str
64 = case words str of
65 [text1, "->", text2] -> Just (text1, text2)
66 other -> Nothing
67
68
69-- Take the list of edges and return a topologically sorted list of
70-- sccs
71gen_sccs :: [(String,String)] -> [[String]]
72gen_sccs raw_edges
73 = let clean_edges = sort (nub raw_edges)
74 nodes = nub (concatMap (\(s,d) -> [s,d]) clean_edges)
75 ins v = [u | (u,w) <- clean_edges, v==w]
76 outs v = [w | (u,w) <- clean_edges, v==u]
77 components = map (sort.utSetToList) (deScc ins outs nodes)
78 in
79 components
80
81
82--------------------------------------------------------------------
83--------------------------------------------------------------------
84--------------------------------------------------------------------
85
86-- Graph-theoretic stuff that does the interesting stuff.
87
88-- ==========================================================--
89--
90deScc :: (Ord a) =>
91 (a -> [a]) -> -- The "ins" map
92 (a -> [a]) -> -- The "outs" map
93 [a] -> -- The root vertices
94 [Set a] -- The topologically sorted components
95
96deScc ins outs
97 = spanning . depthFirst
98 where depthFirst = snd . deDepthFirstSearch outs (utSetEmpty, [])
99 spanning = snd . deSpanningSearch ins (utSetEmpty, [])
100
101
102-- =========================================================--
103--
104deDepthFirstSearch :: (Ord a) =>
105 (a -> [a]) -> -- The map,
106 (Set a, [a]) -> -- state: visited set,
107 -- current sequence of vertices
108 [a] -> -- input vertices sequence
109 (Set a, [a]) -- final state
110
111deDepthFirstSearch
112 = foldl . search
113 where
114 search relation (visited, sequence) vertex
115 | utSetElementOf vertex visited = (visited, sequence )
116 | otherwise = (visited', vertex: sequence')
117 where
118 (visited', sequence')
119 = deDepthFirstSearch relation
120 (utSetUnion visited (utSetSingleton vertex), sequence)
121 (relation vertex)
122
123
124-- ==========================================================--
125--
126deSpanningSearch :: (Ord a) =>
127 (a -> [a]) -> -- The map
128 (Set a, [Set a]) -> -- Current state: visited set,
129 -- current sequence of vertice sets
130 [a] -> -- Input sequence of vertices
131 (Set a, [Set a]) -- Final state
132
133deSpanningSearch
134 = foldl . search
135 where
136 search relation (visited, utSetSequence) vertex
137 | utSetElementOf vertex visited = (visited, utSetSequence )
138 | otherwise = (visited', utSetFromList (vertex: sequence): utSetSequence)
139 where
140 (visited', sequence)
141 = deDepthFirstSearch relation
142 (utSetUnion visited (utSetSingleton vertex), [])
143 (relation vertex)
144
145
146
147
148
149--------------------------------------------------------------------
150--------------------------------------------------------------------
151--------------------------------------------------------------------
152-- Most of this set stuff isn't needed.
153
154
155-- ====================================--
156-- === set ===--
157-- ====================================--
158
159data Set e = MkSet [e]
160
161-- ==========================================================--
162--
163unMkSet :: (Ord a) => Set a -> [a]
164
165unMkSet (MkSet s) = s
166
167
168-- ==========================================================--
169--
170utSetEmpty :: (Ord a) => Set a
171
172utSetEmpty = MkSet []
173
174
175-- ==========================================================--
176--
177utSetIsEmpty :: (Ord a) => Set a -> Bool
178
179utSetIsEmpty (MkSet s) = s == []
180
181
182-- ==========================================================--
183--
184utSetSingleton :: (Ord a) => a -> Set a
185
186utSetSingleton x = MkSet [x]
187
188
189-- ==========================================================--
190--
191utSetFromList :: (Ord a) => [a] -> Set a
192
193utSetFromList x = (MkSet . rmdup . sort) x
194 where rmdup [] = []
195 rmdup [x] = [x]
196 rmdup (x:y:xs) | x==y = rmdup (y:xs)
197 | otherwise = x: rmdup (y:xs)
198
199
200-- ==========================================================--
201--
202utSetToList :: (Ord a) => Set a -> [a]
203
204utSetToList (MkSet xs) = xs
205
206
207
208-- ==========================================================--
209--
210utSetUnion :: (Ord a) => Set a -> Set a -> Set a
211
212utSetUnion (MkSet []) (MkSet []) = (MkSet [])
213utSetUnion (MkSet []) (MkSet (b:bs)) = (MkSet (b:bs))
214utSetUnion (MkSet (a:as)) (MkSet []) = (MkSet (a:as))
215utSetUnion (MkSet (a:as)) (MkSet (b:bs))
216 | a < b = MkSet (a: (unMkSet (utSetUnion (MkSet as) (MkSet (b:bs)))))
217 | a == b = MkSet (a: (unMkSet (utSetUnion (MkSet as) (MkSet bs))))
218 | a > b = MkSet (b: (unMkSet (utSetUnion (MkSet (a:as)) (MkSet bs))))
219
220
221-- ==========================================================--
222--
223utSetIntersection :: (Ord a) => Set a -> Set a -> Set a
224
225utSetIntersection (MkSet []) (MkSet []) = (MkSet [])
226utSetIntersection (MkSet []) (MkSet (b:bs)) = (MkSet [])
227utSetIntersection (MkSet (a:as)) (MkSet []) = (MkSet [])
228utSetIntersection (MkSet (a:as)) (MkSet (b:bs))
229 | a < b = utSetIntersection (MkSet as) (MkSet (b:bs))
230 | a == b = MkSet (a: (unMkSet (utSetIntersection (MkSet as) (MkSet bs))))
231 | a > b = utSetIntersection (MkSet (a:as)) (MkSet bs)
232
233
234-- ==========================================================--
235--
236utSetSubtraction :: (Ord a) => Set a -> Set a -> Set a
237
238utSetSubtraction (MkSet []) (MkSet []) = (MkSet [])
239utSetSubtraction (MkSet []) (MkSet (b:bs)) = (MkSet [])
240utSetSubtraction (MkSet (a:as)) (MkSet []) = (MkSet (a:as))
241utSetSubtraction (MkSet (a:as)) (MkSet (b:bs))
242 | a < b = MkSet (a: (unMkSet (utSetSubtraction (MkSet as) (MkSet (b:bs)))))
243 | a == b = utSetSubtraction (MkSet as) (MkSet bs)
244 | a > b = utSetSubtraction (MkSet (a:as)) (MkSet bs)
245
246
247-- ==========================================================--
248--
249utSetElementOf :: (Ord a) => a -> Set a -> Bool
250
251utSetElementOf x (MkSet []) = False
252utSetElementOf x (MkSet (y:ys)) = x==y || (x>y && utSetElementOf x (MkSet ys))
253
254
255
256-- ==========================================================--
257--
258utSetSubsetOf :: (Ord a) => Set a -> Set a -> Bool
259
260utSetSubsetOf (MkSet []) (MkSet bs) = True
261utSetSubsetOf (MkSet (a:as)) (MkSet bs)
262 = utSetElementOf a (MkSet bs) && utSetSubsetOf (MkSet as) (MkSet bs)
263
264
265-- ==========================================================--
266--
267utSetUnionList :: (Ord a) => [Set a] -> Set a
268
269utSetUnionList setList = foldl utSetUnion utSetEmpty setList
270
271