blob: ed6021757f3c86809282429783afed9f15b4bac9 [file] [log] [blame]
njn3e986b22004-11-30 10:43:45 +00001<?xml version="1.0"?> <!-- -*- sgml -*- -->
2<!DOCTYPE chapter PUBLIC "-//OASIS//DTD DocBook XML V4.2//EN"
sewardj7aeb10f2006-12-10 02:59:16 +00003 "http://www.oasis-open.org/docbook/xml/4.2/docbookx.dtd"
4[ <!ENTITY % vg-entities SYSTEM "../../docs/xml/vg-entities.xml"> %vg-entities; ]>
njn3e986b22004-11-30 10:43:45 +00005
de03e0e7c2005-12-03 23:02:33 +00006
njn05a89172009-07-29 02:36:21 +00007<chapter id="cg-manual" xreflabel="Cachegrind: a cache and branch-prediction profiler">
8<title>Cachegrind: a cache and branch-prediction profiler</title>
njn3e986b22004-11-30 10:43:45 +00009
10<para>To use this tool, you must specify
njn7e5d4ed2009-07-30 02:57:52 +000011<option>--tool=cachegrind</option> on the
njn3e986b22004-11-30 10:43:45 +000012Valgrind command line.</para>
13
njn05a89172009-07-29 02:36:21 +000014<sect1 id="cg-manual.overview" xreflabel="Overview">
15<title>Overview</title>
16
17<para>Cachegrind simulates how your program interacts with a machine's cache
njn3da81962009-08-07 00:18:25 +000018hierarchy and (optionally) branch predictor. It simulates a machine with
19independent first level instruction and data caches (I1 and D1), backed by a
20unified second level cache (L2). This configuration is used by almost all
21modern machines.</para>
22
23<para>
24It gathers the following statistics (abbreviations used for each statistic
25is given in parentheses):</para>
njn3e986b22004-11-30 10:43:45 +000026<itemizedlist>
27 <listitem>
njn3da81962009-08-07 00:18:25 +000028 <para>I cache reads (<computeroutput>Ir</computeroutput>,
29 which equals the number of instructions executed),
30 I1 cache read misses (<computeroutput>I1mr</computeroutput>) and
31 L2 cache instruction read misses (<computeroutput>I1mr</computeroutput>).
32 </para>
njn3e986b22004-11-30 10:43:45 +000033 </listitem>
34 <listitem>
njn3da81962009-08-07 00:18:25 +000035 <para>D cache reads (<computeroutput>Dr</computeroutput>, which
36 equals the number of memory reads),
37 D1 cache read misses (<computeroutput>D1mr</computeroutput>), and
38 L2 cache data read misses (<computeroutput>D2mr</computeroutput>).
39 </para>
njn3e986b22004-11-30 10:43:45 +000040 </listitem>
41 <listitem>
njn3da81962009-08-07 00:18:25 +000042 <para>D cache writes (<computeroutput>Dw</computeroutput>, which equals
43 the number of memory writes),
44 D1 cache write misses (<computeroutput>D1mw</computeroutput>), and
45 L2 cache data write misses (<computeroutput>D2mw</computeroutput>).
46 </para>
njn3e986b22004-11-30 10:43:45 +000047 </listitem>
sewardj8badbaa2007-05-08 09:20:25 +000048 <listitem>
njn3da81962009-08-07 00:18:25 +000049 <para>Conditional branches executed (<computeroutput>Bc</computeroutput>) and
50 conditional branches mispredicted (<computeroutput>Bcm</computeroutput>).
51 </para>
sewardj8badbaa2007-05-08 09:20:25 +000052 </listitem>
53 <listitem>
njn3da81962009-08-07 00:18:25 +000054 <para>Indirect branches executed (<computeroutput>Bi</computeroutput>) and
55 indirect branches mispredicted (<computeroutput>Bim</computeroutput>).
56 </para>
sewardj8badbaa2007-05-08 09:20:25 +000057 </listitem>
njn3e986b22004-11-30 10:43:45 +000058</itemizedlist>
59
njn3da81962009-08-07 00:18:25 +000060<para>Note that D1 total accesses is given by
61<computeroutput>D1mr</computeroutput> +
62<computeroutput>D1mw</computeroutput>, and that L2 total
63accesses is given by <computeroutput>I2mr</computeroutput> +
64<computeroutput>D2mr</computeroutput> +
65<computeroutput>D2mw</computeroutput>.
66</para>
67
njn05a89172009-07-29 02:36:21 +000068<para>These statistics are presented for the entire program and for each
69function in the program. You can also annotate each line of source code in
70the program with the counts that were caused directly by it.</para>
71
njnc8cccb12005-07-25 23:30:24 +000072<para>On a modern machine, an L1 miss will typically cost
sewardj8badbaa2007-05-08 09:20:25 +000073around 10 cycles, an L2 miss can cost as much as 200
74cycles, and a mispredicted branch costs in the region of 10
75to 30 cycles. Detailed cache and branch profiling can be very useful
njn05a89172009-07-29 02:36:21 +000076for understanding how your program interacts with the machine and thus how
77to make it faster.</para>
njn3e986b22004-11-30 10:43:45 +000078
79<para>Also, since one instruction cache read is performed per
80instruction executed, you can find out how many instructions are
njn05a89172009-07-29 02:36:21 +000081executed per line, which can be useful for traditional profiling.</para>
njn3e986b22004-11-30 10:43:45 +000082
njn3e986b22004-11-30 10:43:45 +000083</sect1>
84
85
86
njn3da81962009-08-07 00:18:25 +000087<sect1 id="cg-manual.profile"
88 xreflabel="Using Cachegrind, cg_annotate and cg_merge">
89<title>Using Cachegrind, cg_annotate and cg_merge</title>
njn3e986b22004-11-30 10:43:45 +000090
njn3da81962009-08-07 00:18:25 +000091<para>First off, as for normal Valgrind use, you probably want to
92compile with debugging info (the
njna3311642009-08-10 01:29:14 +000093<option>-g</option> option). But by contrast with
njn3da81962009-08-07 00:18:25 +000094normal Valgrind use, you probably do want to turn
95optimisation on, since you should profile your program as it will
96be normally run.</para>
njn3e986b22004-11-30 10:43:45 +000097
njn3da81962009-08-07 00:18:25 +000098<para>Then, you need to run Cachegrind itself to gather the profiling
99information, and then run cg_annotate to get a detailed presentation of that
100information. As an optional intermediate step, you can use cg_merge to sum
101together the outputs of multiple Cachegrind runs, into a single file which
102you then use as the input for cg_annotate.</para>
103
104
105<sect2 id="cg-manual.running-cachegrind" xreflabel="Running Cachegrind">
106<title>Running Cachegrind</title>
107
108<para>To run Cachegrind on a program <filename>prog</filename>, run:</para>
109<screen><![CDATA[
110valgrind --tool=cachegrind prog
111]]></screen>
njn3e986b22004-11-30 10:43:45 +0000112
113<para>The program will execute (slowly). Upon completion,
114summary statistics that look like this will be printed:</para>
115
116<programlisting><![CDATA[
117==31751== I refs: 27,742,716
118==31751== I1 misses: 276
njn3da81962009-08-07 00:18:25 +0000119==31751== L2i misses: 275
njn3e986b22004-11-30 10:43:45 +0000120==31751== I1 miss rate: 0.0%
121==31751== L2i miss rate: 0.0%
122==31751==
123==31751== D refs: 15,430,290 (10,955,517 rd + 4,474,773 wr)
124==31751== D1 misses: 41,185 ( 21,905 rd + 19,280 wr)
njn3da81962009-08-07 00:18:25 +0000125==31751== L2d misses: 23,085 ( 3,987 rd + 19,098 wr)
njn3e986b22004-11-30 10:43:45 +0000126==31751== D1 miss rate: 0.2% ( 0.1% + 0.4%)
127==31751== L2d miss rate: 0.1% ( 0.0% + 0.4%)
128==31751==
129==31751== L2 misses: 23,360 ( 4,262 rd + 19,098 wr)
130==31751== L2 miss rate: 0.0% ( 0.0% + 0.4%)]]></programlisting>
131
132<para>Cache accesses for instruction fetches are summarised
133first, giving the number of fetches made (this is the number of
134instructions executed, which can be useful to know in its own
135right), the number of I1 misses, and the number of L2 instruction
136(<computeroutput>L2i</computeroutput>) misses.</para>
137
138<para>Cache accesses for data follow. The information is similar
139to that of the instruction fetches, except that the values are
140also shown split between reads and writes (note each row's
141<computeroutput>rd</computeroutput> and
142<computeroutput>wr</computeroutput> values add up to the row's
143total).</para>
144
145<para>Combined instruction and data figures for the L2 cache
njn3da81962009-08-07 00:18:25 +0000146follow that. Note that the L2 miss rate is computed relative to the total
147number of memory accesses, not the number of L1 misses. I.e. it is
148<computeroutput>(I2mr + D2mr + D2mw) / (Ir + Dr + Dw)</computeroutput>
149not
150<computeroutput>(I2mr + D2mr + D2mw) / (I1mr + D1mr + D1mw)</computeroutput>
151</para>
152
153<para>Branch prediction statistics are not collected by default.
njna3311642009-08-10 01:29:14 +0000154To do so, add the option <option>--branch-sim=yes</option>.</para>
njn3da81962009-08-07 00:18:25 +0000155
156</sect2>
njn3e986b22004-11-30 10:43:45 +0000157
158
njn3da81962009-08-07 00:18:25 +0000159<sect2 id="cg-manual.outputfile" xreflabel="Output File">
160<title>Output File</title>
njn3e986b22004-11-30 10:43:45 +0000161
njn3da81962009-08-07 00:18:25 +0000162<para>As well as printing summary information, Cachegrind also writes
163more detailed profiling information to a file. By default this file is named
164<filename>cachegrind.out.&lt;pid&gt;</filename> (where
165<filename>&lt;pid&gt;</filename> is the program's process ID), but its name
166can be changed with the <option>--cachegrind-out-file</option> option. This
167file is human-readable, but is intended to be interpreted by the
168accompanying program cg_annotate, described in the next section.</para>
njn3e986b22004-11-30 10:43:45 +0000169
njn374a36d2007-11-23 01:41:32 +0000170<para>The default <computeroutput>.&lt;pid&gt;</computeroutput> suffix
de7e109d12005-11-18 22:09:58 +0000171on the output file name serves two purposes. Firstly, it means you
172don't have to rename old log files that you don't want to overwrite.
173Secondly, and more importantly, it allows correct profiling with the
njn7e5d4ed2009-07-30 02:57:52 +0000174<option>--trace-children=yes</option> option of
njn3e986b22004-11-30 10:43:45 +0000175programs that spawn child processes.</para>
176
njn3da81962009-08-07 00:18:25 +0000177<para>The output file can be big, many megabytes for large applications
178built with full debugging information.</para>
njn3e986b22004-11-30 10:43:45 +0000179
180</sect2>
181
182
183
njn3da81962009-08-07 00:18:25 +0000184<sect2 id="cg-manual.running-cg_annotate" xreflabel="Running cg_annotate">
185<title>Running cg_annotate</title>
njn3e986b22004-11-30 10:43:45 +0000186
njn374a36d2007-11-23 01:41:32 +0000187<para>Before using cg_annotate,
njn3e986b22004-11-30 10:43:45 +0000188it is worth widening your window to be at least 120-characters
189wide if possible, as the output lines can be quite long.</para>
190
njn3da81962009-08-07 00:18:25 +0000191<para>To get a function-by-function summary, run:</para>
njn3e986b22004-11-30 10:43:45 +0000192
njn3da81962009-08-07 00:18:25 +0000193<screen>cg_annotate &lt;filename&gt;</screen>
194
195<para>on a Cachegrind output file.</para>
196
197</sect2>
198
199
200<sect2 id="cg-manual.the-output-preamble" xreflabel="The Output Preamble">
201<title>The Output Preamble</title>
202
203<para>The first part of the output looks like this:</para>
njn3e986b22004-11-30 10:43:45 +0000204
205<programlisting><![CDATA[
206--------------------------------------------------------------------------------
207I1 cache: 65536 B, 64 B, 2-way associative
208D1 cache: 65536 B, 64 B, 2-way associative
209L2 cache: 262144 B, 64 B, 8-way associative
210Command: concord vg_to_ucode.c
211Events recorded: Ir I1mr I2mr Dr D1mr D2mr Dw D1mw D2mw
212Events shown: Ir I1mr I2mr Dr D1mr D2mr Dw D1mw D2mw
213Event sort order: Ir I1mr I2mr Dr D1mr D2mr Dw D1mw D2mw
214Threshold: 99%
215Chosen for annotation:
njn3da81962009-08-07 00:18:25 +0000216Auto-annotation: off
217]]></programlisting>
njn3e986b22004-11-30 10:43:45 +0000218
219
njn3da81962009-08-07 00:18:25 +0000220<para>This is a summary of the annotation options:</para>
njn3e986b22004-11-30 10:43:45 +0000221
222<itemizedlist>
223
224 <listitem>
225 <para>I1 cache, D1 cache, L2 cache: cache configuration. So
226 you know the configuration with which these results were
227 obtained.</para>
228 </listitem>
229
230 <listitem>
231 <para>Command: the command line invocation of the program
232 under examination.</para>
233 </listitem>
234
235 <listitem>
njn3da81962009-08-07 00:18:25 +0000236 <para>Events recorded: which events were recorded.</para>
njn3e986b22004-11-30 10:43:45 +0000237 <itemizedlist>
njn3e986b22004-11-30 10:43:45 +0000238 </itemizedlist>
239
njn3e986b22004-11-30 10:43:45 +0000240 </listitem>
241
242 <listitem>
sewardj08e31e22007-05-23 21:58:33 +0000243 <para>Events shown: the events shown, which is a subset of the events
244 gathered. This can be adjusted with the
njn7e5d4ed2009-07-30 02:57:52 +0000245 <option>--show</option> option.</para>
njn3e986b22004-11-30 10:43:45 +0000246 </listitem>
247
248 <listitem>
249 <para>Event sort order: the sort order in which functions are
250 shown. For example, in this case the functions are sorted
251 from highest <computeroutput>Ir</computeroutput> counts to
252 lowest. If two functions have identical
253 <computeroutput>Ir</computeroutput> counts, they will then be
254 sorted by <computeroutput>I1mr</computeroutput> counts, and
255 so on. This order can be adjusted with the
njn7e5d4ed2009-07-30 02:57:52 +0000256 <option>--sort</option> option.</para>
njn3e986b22004-11-30 10:43:45 +0000257
258 <para>Note that this dictates the order the functions appear.
njn3da81962009-08-07 00:18:25 +0000259 It is <emphasis>not</emphasis> the order in which the columns
njn3e986b22004-11-30 10:43:45 +0000260 appear; that is dictated by the "events shown" line (and can
njn7e5d4ed2009-07-30 02:57:52 +0000261 be changed with the <option>--show</option>
njn3e986b22004-11-30 10:43:45 +0000262 option).</para>
263 </listitem>
264
265 <listitem>
njn374a36d2007-11-23 01:41:32 +0000266 <para>Threshold: cg_annotate
sewardj08e31e22007-05-23 21:58:33 +0000267 by default omits functions that cause very low counts
268 to avoid drowning you in information. In this case,
njn3e986b22004-11-30 10:43:45 +0000269 cg_annotate shows summaries the functions that account for
270 99% of the <computeroutput>Ir</computeroutput> counts;
271 <computeroutput>Ir</computeroutput> is chosen as the
272 threshold event since it is the primary sort event. The
273 threshold can be adjusted with the
njn7e5d4ed2009-07-30 02:57:52 +0000274 <option>--threshold</option>
njn3e986b22004-11-30 10:43:45 +0000275 option.</para>
276 </listitem>
277
278 <listitem>
279 <para>Chosen for annotation: names of files specified
280 manually for annotation; in this case none.</para>
281 </listitem>
282
283 <listitem>
284 <para>Auto-annotation: whether auto-annotation was requested
njn7e5d4ed2009-07-30 02:57:52 +0000285 via the <option>--auto=yes</option>
njn3e986b22004-11-30 10:43:45 +0000286 option. In this case no.</para>
287 </listitem>
288
289</itemizedlist>
290
njn3da81962009-08-07 00:18:25 +0000291</sect2>
292
293
294<sect2 id="cg-manual.the-global"
295 xreflabel="The Global and Function-level Counts">
296<title>The Global and Function-level Counts</title>
297
njn3e986b22004-11-30 10:43:45 +0000298<para>Then follows summary statistics for the whole
njn3da81962009-08-07 00:18:25 +0000299program:</para>
njn3e986b22004-11-30 10:43:45 +0000300
njn3da81962009-08-07 00:18:25 +0000301<programlisting><![CDATA[
302--------------------------------------------------------------------------------
303Ir I1mr I2mr Dr D1mr D2mr Dw D1mw D2mw
304--------------------------------------------------------------------------------
30527,742,716 276 275 10,955,517 21,905 3,987 4,474,773 19,280 19,098 PROGRAM TOTALS]]></programlisting>
306
307<para>
308These are similar to the summary provided when Cachegrind finishes running.
309</para>
310
311<para>Then comes function-by-function statistics:</para>
312
313<programlisting><![CDATA[
314--------------------------------------------------------------------------------
315Ir I1mr I2mr Dr D1mr D2mr Dw D1mw D2mw file:function
316--------------------------------------------------------------------------------
3178,821,482 5 5 2,242,702 1,621 73 1,794,230 0 0 getc.c:_IO_getc
3185,222,023 4 4 2,276,334 16 12 875,959 1 1 concord.c:get_word
3192,649,248 2 2 1,344,810 7,326 1,385 . . . vg_main.c:strcmp
3202,521,927 2 2 591,215 0 0 179,398 0 0 concord.c:hash
3212,242,740 2 2 1,046,612 568 22 448,548 0 0 ctype.c:tolower
3221,496,937 4 4 630,874 9,000 1,400 279,388 0 0 concord.c:insert
323 897,991 51 51 897,831 95 30 62 1 1 ???:???
324 598,068 1 1 299,034 0 0 149,517 0 0 ../sysdeps/generic/lockfile.c:__flockfile
325 598,068 0 0 299,034 0 0 149,517 0 0 ../sysdeps/generic/lockfile.c:__funlockfile
326 598,024 4 4 213,580 35 16 149,506 0 0 vg_clientmalloc.c:malloc
327 446,587 1 1 215,973 2,167 430 129,948 14,057 13,957 concord.c:add_existing
328 341,760 2 2 128,160 0 0 128,160 0 0 vg_clientmalloc.c:vg_trap_here_WRAPPER
329 320,782 4 4 150,711 276 0 56,027 53 53 concord.c:init_hash_table
330 298,998 1 1 106,785 0 0 64,071 1 1 concord.c:create
331 149,518 0 0 149,516 0 0 1 0 0 ???:tolower@@GLIBC_2.0
332 149,518 0 0 149,516 0 0 1 0 0 ???:fgetc@@GLIBC_2.0
333 95,983 4 4 38,031 0 0 34,409 3,152 3,150 concord.c:new_word_node
334 85,440 0 0 42,720 0 0 21,360 0 0 vg_clientmalloc.c:vg_bogus_epilogue]]></programlisting>
335
336<para>Each function
njn3e986b22004-11-30 10:43:45 +0000337is identified by a
338<computeroutput>file_name:function_name</computeroutput> pair. If
339a column contains only a dot it means the function never performs
njn3da81962009-08-07 00:18:25 +0000340that event (e.g. the third row shows that
njn3e986b22004-11-30 10:43:45 +0000341<computeroutput>strcmp()</computeroutput> contains no
342instructions that write to memory). The name
343<computeroutput>???</computeroutput> is used if the the file name
344and/or function name could not be determined from debugging
345information. If most of the entries have the form
346<computeroutput>???:???</computeroutput> the program probably
njn3da81962009-08-07 00:18:25 +0000347wasn't compiled with <option>-g</option>.</para>
njn3e986b22004-11-30 10:43:45 +0000348
sewardj08e31e22007-05-23 21:58:33 +0000349<para>It is worth noting that functions will come both from
njn3da81962009-08-07 00:18:25 +0000350the profiled program (e.g. <filename>concord.c</filename>)
351and from libraries (e.g. <filename>getc.c</filename>)</para>
njn3e986b22004-11-30 10:43:45 +0000352
njn3da81962009-08-07 00:18:25 +0000353</sect2>
354
355
356<sect2 id="cg-manual.line-by-line" xreflabel="Line-by-line Counts">
357<title>Line-by-line Counts</title>
358
359<para>There are two ways to annotate source files -- by specifying them
360manually as arguments to cg_annotate, or with the
361<option>--auto=yes</option> option. For example, the output from running
362<filename>cg_annotate &lt;filename&gt; concord.c</filename> for our example
363produces the same output as above followed by an annotated version of
364<filename>concord.c</filename>, a section of which looks like:</para>
njn3e986b22004-11-30 10:43:45 +0000365
366<programlisting><![CDATA[
367--------------------------------------------------------------------------------
368-- User-annotated source: concord.c
369--------------------------------------------------------------------------------
370Ir I1mr I2mr Dr D1mr D2mr Dw D1mw D2mw
371
njn3e986b22004-11-30 10:43:45 +0000372 . . . . . . . . . void init_hash_table(char *file_name, Word_Node *table[])
373 3 1 1 . . . 1 0 0 {
374 . . . . . . . . . FILE *file_ptr;
375 . . . . . . . . . Word_Info *data;
376 1 0 0 . . . 1 1 1 int line = 1, i;
377 . . . . . . . . .
378 5 0 0 . . . 3 0 0 data = (Word_Info *) create(sizeof(Word_Info));
379 . . . . . . . . .
380 4,991 0 0 1,995 0 0 998 0 0 for (i = 0; i < TABLE_SIZE; i++)
381 3,988 1 1 1,994 0 0 997 53 52 table[i] = NULL;
382 . . . . . . . . .
383 . . . . . . . . . /* Open file, check it. */
384 6 0 0 1 0 0 4 0 0 file_ptr = fopen(file_name, "r");
385 2 0 0 1 0 0 . . . if (!(file_ptr)) {
386 . . . . . . . . . fprintf(stderr, "Couldn't open '%s'.\n", file_name);
387 1 1 1 . . . . . . exit(EXIT_FAILURE);
388 . . . . . . . . . }
389 . . . . . . . . .
390 165,062 1 1 73,360 0 0 91,700 0 0 while ((line = get_word(data, line, file_ptr)) != EOF)
391 146,712 0 0 73,356 0 0 73,356 0 0 insert(data->;word, data->line, table);
392 . . . . . . . . .
393 4 0 0 1 0 0 2 0 0 free(data);
394 4 0 0 1 0 0 2 0 0 fclose(file_ptr);
395 3 0 0 2 0 0 . . . }]]></programlisting>
396
397<para>(Although column widths are automatically minimised, a wide
398terminal is clearly useful.)</para>
399
400<para>Each source file is clearly marked
401(<computeroutput>User-annotated source</computeroutput>) as
402having been chosen manually for annotation. If the file was
403found in one of the directories specified with the
njn7e5d4ed2009-07-30 02:57:52 +0000404<option>-I</option>/<option>--include</option> option, the directory
njn3e986b22004-11-30 10:43:45 +0000405and file are both given.</para>
406
407<para>Each line is annotated with its event counts. Events not
sewardj08e31e22007-05-23 21:58:33 +0000408applicable for a line are represented by a dot. This is useful
njn3e986b22004-11-30 10:43:45 +0000409for distinguishing between an event which cannot happen, and one
410which can but did not.</para>
411
412<para>Sometimes only a small section of a source file is
sewardj8d9fec52005-11-15 20:56:23 +0000413executed. To minimise uninteresting output, Cachegrind only shows
njn3e986b22004-11-30 10:43:45 +0000414annotated lines and lines within a small distance of annotated
415lines. Gaps are marked with the line numbers so you know which
416part of a file the shown code comes from, eg:</para>
417
418<programlisting><![CDATA[
419(figures and code for line 704)
420-- line 704 ----------------------------------------
421-- line 878 ----------------------------------------
422(figures and code for line 878)]]></programlisting>
423
424<para>The amount of context to show around annotated lines is
njn7e5d4ed2009-07-30 02:57:52 +0000425controlled by the <option>--context</option>
njn3e986b22004-11-30 10:43:45 +0000426option.</para>
427
njn3da81962009-08-07 00:18:25 +0000428<para>To get automatic annotation, use the <option>--auto=yes</option> option.
njn3e986b22004-11-30 10:43:45 +0000429cg_annotate will automatically annotate every source file it can
430find that is mentioned in the function-by-function summary.
431Therefore, the files chosen for auto-annotation are affected by
njn7e5d4ed2009-07-30 02:57:52 +0000432the <option>--sort</option> and
433<option>--threshold</option> options. Each
njn3e986b22004-11-30 10:43:45 +0000434source file is clearly marked (<computeroutput>Auto-annotated
435source</computeroutput>) as being chosen automatically. Any
436files that could not be found are mentioned at the end of the
437output, eg:</para>
438
439<programlisting><![CDATA[
440------------------------------------------------------------------
441The following files chosen for auto-annotation could not be found:
442------------------------------------------------------------------
443 getc.c
444 ctype.c
445 ../sysdeps/generic/lockfile.c]]></programlisting>
446
447<para>This is quite common for library files, since libraries are
448usually compiled with debugging information, but the source files
449are often not present on a system. If a file is chosen for
njn3da81962009-08-07 00:18:25 +0000450annotation both manually and automatically, it
njn3e986b22004-11-30 10:43:45 +0000451is marked as <computeroutput>User-annotated
njn7e5d4ed2009-07-30 02:57:52 +0000452source</computeroutput>. Use the
453<option>-I</option>/<option>--include</option> option to tell Valgrind where
454to look for source files if the filenames found from the debugging
njn3e986b22004-11-30 10:43:45 +0000455information aren't specific enough.</para>
456
457<para>Beware that cg_annotate can take some time to digest large
njn3da81962009-08-07 00:18:25 +0000458<filename>cachegrind.out.&lt;pid&gt;</filename> files,
njn3e986b22004-11-30 10:43:45 +0000459e.g. 30 seconds or more. Also beware that auto-annotation can
460produce a lot of output if your program is large!</para>
461
462</sect2>
463
464
njn3da81962009-08-07 00:18:25 +0000465<sect2 id="cg-manual.assembler" xreflabel="Annotating Assembly Code Programs">
466<title>Annotating Assembly Code Programs</title>
njn3e986b22004-11-30 10:43:45 +0000467
njn374a36d2007-11-23 01:41:32 +0000468<para>Valgrind can annotate assembly code programs too, or annotate
469the assembly code generated for your C program. Sometimes this is
njn3e986b22004-11-30 10:43:45 +0000470useful for understanding what is really happening when an
471interesting line of C code is translated into multiple
472instructions.</para>
473
474<para>To do this, you just need to assemble your
njn85a38bc2008-10-30 02:41:13 +0000475<computeroutput>.s</computeroutput> files with assembly-level debug
njn7316df22009-08-04 01:16:01 +0000476information. You can use compile with the <option>-S</option> to compile C/C++
477programs to assembly code, and then assemble the assembly code files with
478<option>-g</option> to achieve this. You can then profile and annotate the
479assembly code source files in the same way as C/C++ source files.</para>
njn3e986b22004-11-30 10:43:45 +0000480
481</sect2>
482
njn7064fb22008-05-29 23:09:52 +0000483<sect2 id="ms-manual.forkingprograms" xreflabel="Forking Programs">
484<title>Forking Programs</title>
485<para>If your program forks, the child will inherit all the profiling data that
486has been gathered for the parent.</para>
487
488<para>If the output file format string (controlled by
489<option>--cachegrind-out-file</option>) does not contain <option>%p</option>,
490then the outputs from the parent and child will be intermingled in a single
491output file, which will almost certainly make it unreadable by
492cg_annotate.</para>
493</sect2>
494
495
njn3da81962009-08-07 00:18:25 +0000496<sect2 id="cg-manual.annopts.warnings" xreflabel="cg_annotate Warnings">
497<title>cg_annotate Warnings</title>
njn3e986b22004-11-30 10:43:45 +0000498
499<para>There are a couple of situations in which
njn374a36d2007-11-23 01:41:32 +0000500cg_annotate issues warnings.</para>
njn3e986b22004-11-30 10:43:45 +0000501
502<itemizedlist>
503 <listitem>
504 <para>If a source file is more recent than the
njn3da81962009-08-07 00:18:25 +0000505 <filename>cachegrind.out.&lt;pid&gt;</filename> file.
njn3e986b22004-11-30 10:43:45 +0000506 This is because the information in
njn3da81962009-08-07 00:18:25 +0000507 <filename>cachegrind.out.&lt;pid&gt;</filename> is only
njn3e986b22004-11-30 10:43:45 +0000508 recorded with line numbers, so if the line numbers change at
njn3da81962009-08-07 00:18:25 +0000509 all in the source (e.g. lines added, deleted, swapped), any
njn3e986b22004-11-30 10:43:45 +0000510 annotations will be incorrect.</para>
511 </listitem>
512 <listitem>
513 <para>If information is recorded about line numbers past the
514 end of a file. This can be caused by the above problem,
njn3da81962009-08-07 00:18:25 +0000515 i.e. shortening the source file while using an old
516 <filename>cachegrind.out.&lt;pid&gt;</filename> file. If
njn3e986b22004-11-30 10:43:45 +0000517 this happens, the figures for the bogus lines are printed
518 anyway (clearly marked as bogus) in case they are
519 important.</para>
520 </listitem>
521</itemizedlist>
522
523</sect2>
524
525
526
sewardj778d7832007-11-22 01:21:56 +0000527<sect2 id="cg-manual.annopts.things-to-watch-out-for"
njn3da81962009-08-07 00:18:25 +0000528 xreflabel="Unusual Annotation Cases">
529<title>Unusual Annotation Cases</title>
njn3e986b22004-11-30 10:43:45 +0000530
531<para>Some odd things that can occur during annotation:</para>
532
533<itemizedlist>
534 <listitem>
535 <para>If annotating at the assembler level, you might see
536 something like this:</para>
537<programlisting><![CDATA[
538 1 0 0 . . . . . . leal -12(%ebp),%eax
539 1 0 0 . . . 1 0 0 movl %eax,84(%ebx)
540 2 0 0 0 0 0 1 0 0 movl $1,-20(%ebp)
541 . . . . . . . . . .align 4,0x90
542 1 0 0 . . . . . . movl $.LnrB,%eax
543 1 0 0 . . . 1 0 0 movl %eax,-16(%ebp)]]></programlisting>
544
545 <para>How can the third instruction be executed twice when
546 the others are executed only once? As it turns out, it
547 isn't. Here's a dump of the executable, using
548 <computeroutput>objdump -d</computeroutput>:</para>
549<programlisting><![CDATA[
550 8048f25: 8d 45 f4 lea 0xfffffff4(%ebp),%eax
551 8048f28: 89 43 54 mov %eax,0x54(%ebx)
552 8048f2b: c7 45 ec 01 00 00 00 movl $0x1,0xffffffec(%ebp)
553 8048f32: 89 f6 mov %esi,%esi
554 8048f34: b8 08 8b 07 08 mov $0x8078b08,%eax
555 8048f39: 89 45 f0 mov %eax,0xfffffff0(%ebp)]]></programlisting>
556
557 <para>Notice the extra <computeroutput>mov
558 %esi,%esi</computeroutput> instruction. Where did this come
559 from? The GNU assembler inserted it to serve as the two
560 bytes of padding needed to align the <computeroutput>movl
561 $.LnrB,%eax</computeroutput> instruction on a four-byte
562 boundary, but pretended it didn't exist when adding debug
563 information. Thus when Valgrind reads the debug info it
564 thinks that the <computeroutput>movl
565 $0x1,0xffffffec(%ebp)</computeroutput> instruction covers the
566 address range 0x8048f2b--0x804833 by itself, and attributes
567 the counts for the <computeroutput>mov
568 %esi,%esi</computeroutput> to it.</para>
569 </listitem>
570
njn3da81962009-08-07 00:18:25 +0000571 <!--
572 I think this isn't true any more, not since cost centres were moved from
573 being associated with instruction addresses to being associated with
574 source line numbers.
njn3e986b22004-11-30 10:43:45 +0000575 <listitem>
576 <para>Inlined functions can cause strange results in the
577 function-by-function summary. If a function
578 <computeroutput>inline_me()</computeroutput> is defined in
579 <filename>foo.h</filename> and inlined in the functions
580 <computeroutput>f1()</computeroutput>,
581 <computeroutput>f2()</computeroutput> and
582 <computeroutput>f3()</computeroutput> in
583 <filename>bar.c</filename>, there will not be a
584 <computeroutput>foo.h:inline_me()</computeroutput> function
585 entry. Instead, there will be separate function entries for
njn3da81962009-08-07 00:18:25 +0000586 each inlining site, i.e.
njn3e986b22004-11-30 10:43:45 +0000587 <computeroutput>foo.h:f1()</computeroutput>,
588 <computeroutput>foo.h:f2()</computeroutput> and
589 <computeroutput>foo.h:f3()</computeroutput>. To find the
590 total counts for
591 <computeroutput>foo.h:inline_me()</computeroutput>, add up
592 the counts from each entry.</para>
593
594 <para>The reason for this is that although the debug info
njn7316df22009-08-04 01:16:01 +0000595 output by GCC indicates the switch from
njn3e986b22004-11-30 10:43:45 +0000596 <filename>bar.c</filename> to <filename>foo.h</filename>, it
597 doesn't indicate the name of the function in
598 <filename>foo.h</filename>, so Valgrind keeps using the old
599 one.</para>
600 </listitem>
njn3da81962009-08-07 00:18:25 +0000601 -->
njn3e986b22004-11-30 10:43:45 +0000602
603 <listitem>
604 <para>Sometimes, the same filename might be represented with
605 a relative name and with an absolute name in different parts
606 of the debug info, eg:
607 <filename>/home/user/proj/proj.h</filename> and
608 <filename>../proj.h</filename>. In this case, if you use
609 auto-annotation, the file will be annotated twice with the
610 counts split between the two.</para>
611 </listitem>
612
613 <listitem>
614 <para>Files with more than 65,535 lines cause difficulties
sewardj08e31e22007-05-23 21:58:33 +0000615 for the Stabs-format debug info reader. This is because the line
njn3e986b22004-11-30 10:43:45 +0000616 number in the <computeroutput>struct nlist</computeroutput>
617 defined in <filename>a.out.h</filename> under Linux is only a
618 16-bit value. Valgrind can handle some files with more than
619 65,535 lines correctly by making some guesses to identify
620 line number overflows. But some cases are beyond it, in
621 which case you'll get a warning message explaining that
622 annotations for the file might be incorrect.</para>
sewardj08e31e22007-05-23 21:58:33 +0000623
njn7316df22009-08-04 01:16:01 +0000624 <para>If you are using GCC 3.1 or later, this is most likely
625 irrelevant, since GCC switched to using the more modern DWARF2
sewardj08e31e22007-05-23 21:58:33 +0000626 format by default at version 3.1. DWARF2 does not have any such
627 limitations on line numbers.</para>
njn3e986b22004-11-30 10:43:45 +0000628 </listitem>
629
630 <listitem>
631 <para>If you compile some files with
njn7e5d4ed2009-07-30 02:57:52 +0000632 <option>-g</option> and some without, some
njn3e986b22004-11-30 10:43:45 +0000633 events that take place in a file without debug info could be
634 attributed to the last line of a file with debug info
635 (whichever one gets placed before the non-debug-info file in
636 the executable).</para>
637 </listitem>
638
639</itemizedlist>
640
641<para>This list looks long, but these cases should be fairly
642rare.</para>
643
njn3e986b22004-11-30 10:43:45 +0000644</sect2>
645
646
njn3da81962009-08-07 00:18:25 +0000647<sect2 id="cg-manual.cg_merge" xreflabel="cg_merge">
648<title>Merging Profiles with cg_merge</title>
sewardj94dc5082007-02-08 11:31:03 +0000649
650<para>
njn374a36d2007-11-23 01:41:32 +0000651cg_merge is a simple program which
njn3da81962009-08-07 00:18:25 +0000652reads multiple profile files, as created by Cachegrind, merges them
sewardj94dc5082007-02-08 11:31:03 +0000653together, and writes the results into another file in the same format.
654You can then examine the merged results using
njn374a36d2007-11-23 01:41:32 +0000655<computeroutput>cg_annotate &lt;filename&gt;</computeroutput>, as
sewardj94dc5082007-02-08 11:31:03 +0000656described above. The merging functionality might be useful if you
657want to aggregate costs over multiple runs of the same program, or
658from a single parallel run with multiple instances of the same
659program.</para>
660
661<para>
njn374a36d2007-11-23 01:41:32 +0000662cg_merge is invoked as follows:
sewardj94dc5082007-02-08 11:31:03 +0000663</para>
664
665<programlisting><![CDATA[
666cg_merge -o outputfile file1 file2 file3 ...]]></programlisting>
667
668<para>
669It reads and checks <computeroutput>file1</computeroutput>, then read
670and checks <computeroutput>file2</computeroutput> and merges it into
671the running totals, then the same with
672<computeroutput>file3</computeroutput>, etc. The final results are
673written to <computeroutput>outputfile</computeroutput>, or to standard
674out if no output file is specified.</para>
675
676<para>
677Costs are summed on a per-function, per-line and per-instruction
678basis. Because of this, the order in which the input files does not
679matter, although you should take care to only mention each file once,
680since any file mentioned twice will be added in twice.</para>
681
682<para>
njn374a36d2007-11-23 01:41:32 +0000683cg_merge does not attempt to check
sewardj94dc5082007-02-08 11:31:03 +0000684that the input files come from runs of the same executable. It will
685happily merge together profile files from completely unrelated
686programs. It does however check that the
687<computeroutput>Events:</computeroutput> lines of all the inputs are
688identical, so as to ensure that the addition of costs makes sense.
689For example, it would be nonsensical for it to add a number indicating
690D1 read references to a number from a different file indicating L2
691write misses.</para>
692
693<para>
694A number of other syntax and sanity checks are done whilst reading the
njn374a36d2007-11-23 01:41:32 +0000695inputs. cg_merge will stop and
sewardj94dc5082007-02-08 11:31:03 +0000696attempt to print a helpful error message if any of the input files
697fail these checks.</para>
698
njn3da81962009-08-07 00:18:25 +0000699</sect2>
700
701
sewardj94dc5082007-02-08 11:31:03 +0000702</sect1>
703
704
njn3da81962009-08-07 00:18:25 +0000705
njna3311642009-08-10 01:29:14 +0000706<sect1 id="cg-manual.cgopts" xreflabel="Cachegrind Command-line Options">
707<title>Cachegrind Command-line Options</title>
njn3da81962009-08-07 00:18:25 +0000708
709<!-- start of xi:include in the manpage -->
710<para>Cachegrind-specific options are:</para>
711
712<variablelist id="cg.opts.list">
713
714 <varlistentry id="opt.I1" xreflabel="--I1">
715 <term>
716 <option><![CDATA[--I1=<size>,<associativity>,<line size> ]]></option>
717 </term>
718 <listitem>
719 <para>Specify the size, associativity and line size of the level 1
720 instruction cache. </para>
721 </listitem>
722 </varlistentry>
723
724 <varlistentry id="opt.D1" xreflabel="--D1">
725 <term>
726 <option><![CDATA[--D1=<size>,<associativity>,<line size> ]]></option>
727 </term>
728 <listitem>
729 <para>Specify the size, associativity and line size of the level 1
730 data cache.</para>
731 </listitem>
732 </varlistentry>
733
734 <varlistentry id="opt.L2" xreflabel="--L2">
735 <term>
736 <option><![CDATA[--L2=<size>,<associativity>,<line size> ]]></option>
737 </term>
738 <listitem>
739 <para>Specify the size, associativity and line size of the level 2
740 cache.</para>
741 </listitem>
742 </varlistentry>
743
744 <varlistentry id="opt.cache-sim" xreflabel="--cache-sim">
745 <term>
746 <option><![CDATA[--cache-sim=no|yes [yes] ]]></option>
747 </term>
748 <listitem>
749 <para>Enables or disables collection of cache access and miss
750 counts.</para>
751 </listitem>
752 </varlistentry>
753
754 <varlistentry id="opt.branch-sim" xreflabel="--branch-sim">
755 <term>
756 <option><![CDATA[--branch-sim=no|yes [no] ]]></option>
757 </term>
758 <listitem>
759 <para>Enables or disables collection of branch instruction and
760 misprediction counts. By default this is disabled as it
761 slows Cachegrind down by approximately 25%. Note that you
762 cannot specify <option>--cache-sim=no</option>
763 and <option>--branch-sim=no</option>
764 together, as that would leave Cachegrind with no
765 information to collect.</para>
766 </listitem>
767 </varlistentry>
768
769 <varlistentry id="opt.cachegrind-out-file" xreflabel="--cachegrind-out-file">
770 <term>
771 <option><![CDATA[--cachegrind-out-file=<file> ]]></option>
772 </term>
773 <listitem>
774 <para>Write the profile data to
775 <computeroutput>file</computeroutput> rather than to the default
776 output file,
777 <filename>cachegrind.out.&lt;pid&gt;</filename>. The
778 <option>%p</option> and <option>%q</option> format specifiers
779 can be used to embed the process ID and/or the contents of an
780 environment variable in the name, as is the case for the core
781 option <option><xref linkend="opt.log-file"/></option>.
782 </para>
783 </listitem>
784 </varlistentry>
785
786</variablelist>
787<!-- end of xi:include in the manpage -->
788
789</sect1>
790
791
792
njna3311642009-08-10 01:29:14 +0000793<sect1 id="cg-manual.annopts" xreflabel="cg_annotate Command-line Options">
794<title>cg_annotate Command-line Options</title>
njn3da81962009-08-07 00:18:25 +0000795
njnc206a812009-08-07 07:56:20 +0000796<!-- start of xi:include in the manpage -->
797<variablelist id="cg_annotate.opts.list">
njn3da81962009-08-07 00:18:25 +0000798
799 <varlistentry>
800 <term>
801 <option><![CDATA[-h --help ]]></option>
802 </term>
803 <listitem>
804 <para>Show the help message.</para>
805 </listitem>
806 </varlistentry>
807
808 <varlistentry>
809 <term>
810 <option><![CDATA[--version ]]></option>
811 </term>
812 <listitem>
813 <para>Show the version number.</para>
814 </listitem>
815 </varlistentry>
816
817 <varlistentry>
818 <term>
819 <option><![CDATA[--show=A,B,C [default: all, using order in
820 cachegrind.out.<pid>] ]]></option>
821 </term>
822 <listitem>
823 <para>Specifies which events to show (and the column
824 order). Default is to use all present in the
825 <filename>cachegrind.out.&lt;pid&gt;</filename> file (and
826 use the order in the file). Useful if you want to concentrate on, for
827 example, I cache misses (<option>--show=I1mr,I2mr</option>), or data
828 read misses (<option>--show=D1mr,D2mr</option>), or L2 data misses
829 (<option>--show=D2mr,D2mw</option>). Best used in conjunction with
830 <option>--sort</option>.</para>
831 </listitem>
832 </varlistentry>
833
834 <varlistentry>
835 <term>
836 <option><![CDATA[--sort=A,B,C [default: order in
837 cachegrind.out.<pid>] ]]></option>
838 </term>
839 <listitem>
840 <para>Specifies the events upon which the sorting of the
841 function-by-function entries will be based.</para>
842 </listitem>
843 </varlistentry>
844
845 <varlistentry>
846 <term>
847 <option><![CDATA[--threshold=X [default: 99%] ]]></option>
848 </term>
849 <listitem>
850 <para>Sets the threshold for the function-by-function
851 summary. Functions are shown that account for more than X%
852 of the primary sort event. If auto-annotating, also affects
853 which files are annotated.</para>
854
855 <para>Note: thresholds can be set for more than one of the
856 events by appending any events for the
857 <option>--sort</option> option with a colon
858 and a number (no spaces, though). E.g. if you want to see
859 the functions that cover 99% of L2 read misses and 99% of L2
860 write misses, use this option:</para>
861 <para><option>--sort=D2mr:99,D2mw:99</option></para>
862 </listitem>
863 </varlistentry>
864
865 <varlistentry>
866 <term>
867 <option><![CDATA[--auto=<no|yes> [default: no] ]]></option>
868 </term>
869 <listitem>
870 <para>When enabled, automatically annotates every file that
871 is mentioned in the function-by-function summary that can be
872 found. Also gives a list of those that couldn't be found.</para>
873 </listitem>
874 </varlistentry>
875
876 <varlistentry>
877 <term>
878 <option><![CDATA[--context=N [default: 8] ]]></option>
879 </term>
880 <listitem>
881 <para>Print N lines of context before and after each
882 annotated line. Avoids printing large sections of source
883 files that were not executed. Use a large number
884 (e.g. 100000) to show all source lines.</para>
885 </listitem>
886 </varlistentry>
887
888 <varlistentry>
889 <term>
890 <option><![CDATA[-I<dir> --include=<dir> [default: none] ]]></option>
891 </term>
892 <listitem>
893 <para>Adds a directory to the list in which to search for
894 files. Multiple <option>-I</option>/<option>--include</option>
895 options can be given to add multiple directories.</para>
896 </listitem>
897 </varlistentry>
898
899</variablelist>
njnc206a812009-08-07 07:56:20 +0000900<!-- end of xi:include in the manpage -->
njn3da81962009-08-07 00:18:25 +0000901
902</sect1>
903
904
905
sewardj778d7832007-11-22 01:21:56 +0000906<sect1 id="cg-manual.acting-on"
njn3da81962009-08-07 00:18:25 +0000907 xreflabel="Acting on Cachegrind's Information">
908<title>Acting on Cachegrind's Information</title>
njn3a9d5dc2007-09-17 22:19:01 +0000909<para>
njna31dac22009-07-30 03:21:42 +0000910Cachegrind gives you lots of information, but acting on that information
911isn't always easy. Here are some rules of thumb that we have found to be
njn07f96562007-09-17 22:28:21 +0000912useful.</para>
njn3a9d5dc2007-09-17 22:19:01 +0000913
914<para>
njn3da81962009-08-07 00:18:25 +0000915First of all, the global hit/miss counts and miss rates are not that useful.
916If you have multiple programs or multiple runs of a program, comparing the
917numbers might identify if any are outliers and worthy of closer
918investigation. Otherwise, they're not enough to act on.</para>
njn3a9d5dc2007-09-17 22:19:01 +0000919
920<para>
njna31dac22009-07-30 03:21:42 +0000921The function-by-function counts are more useful to look at, as they pinpoint
922which functions are causing large numbers of counts. However, beware that
923inlining can make these counts misleading. If a function
924<function>f</function> is always inlined, counts will be attributed to the
925functions it is inlined into, rather than itself. However, if you look at
926the line-by-line annotations for <function>f</function> you'll see the
927counts that belong to <function>f</function>. (This is hard to avoid, it's
928how the debug info is structured.) So it's worth looking for large numbers
929in the line-by-line annotations.</para>
930
931<para>
njn07f96562007-09-17 22:28:21 +0000932The line-by-line source code annotations are much more useful. In our
933experience, the best place to start is by looking at the
934<computeroutput>Ir</computeroutput> numbers. They simply measure how many
935instructions were executed for each line, and don't include any cache
936information, but they can still be very useful for identifying
937bottlenecks.</para>
njn3a9d5dc2007-09-17 22:19:01 +0000938
939<para>
940After that, we have found that L2 misses are typically a much bigger source
941of slow-downs than L1 misses. So it's worth looking for any snippets of
njna31dac22009-07-30 03:21:42 +0000942code with high <computeroutput>D2mr</computeroutput> or
943<computeroutput>D2mw</computeroutput> counts. (You can use
944<option>--show=D2mr
945--sort=D2mr</option> with cg_annotate to focus just on
946<literal>D2mr</literal> counts, for example.) If you find any, it's still
947not always easy to work out how to improve things. You need to have a
njn07f96562007-09-17 22:28:21 +0000948reasonable understanding of how caches work, the principles of locality, and
949your program's data access patterns. Improving things may require
950redesigning a data structure, for example.</para>
njn3a9d5dc2007-09-17 22:19:01 +0000951
952<para>
njna31dac22009-07-30 03:21:42 +0000953Looking at the <computeroutput>Bcm</computeroutput> and
954<computeroutput>Bim</computeroutput> misses can also be helpful.
955In particular, <computeroutput>Bim</computeroutput> misses are often caused
956by <literal>switch</literal> statements, and in some cases these
957<literal>switch</literal> statements can be replaced with table-driven code.
958For example, you might replace code like this:</para>
959
960<programlisting><![CDATA[
961enum E { A, B, C };
962enum E e;
963int i;
964...
965switch (e)
966{
967 case A: i += 1;
968 case B: i += 2;
969 case C: i += 3;
970}
971]]></programlisting>
972
973<para>with code like this:</para>
974
975<programlisting><![CDATA[
976enum E { A, B, C };
977enum E e;
978enum E table[] = { 1, 2, 3 };
979int i;
980...
981i += table[e];
982]]></programlisting>
983
984<para>
985This is obviously a contrived example, but the basic principle applies in a
986wide variety of situations.</para>
987
988<para>
njn3a9d5dc2007-09-17 22:19:01 +0000989In short, Cachegrind can tell you where some of the bottlenecks in your code
990are, but it can't tell you how to fix them. You have to work that out for
991yourself. But at least you have the information!
992</para>
993
994</sect1>
sewardj94dc5082007-02-08 11:31:03 +0000995
njn3da81962009-08-07 00:18:25 +0000996
997<sect1 id="cg-manual.sim-details"
998 xreflabel="Simulation Details">
999<title>Simulation Details</title>
1000<para>
1001This section talks about details you don't need to know about in order to
1002use Cachegrind, but may be of interest to some people.
1003</para>
1004
1005<sect2 id="cache-sim" xreflabel="Cache Simulation Specifics">
1006<title>Cache Simulation Specifics</title>
1007
1008<para>Specific characteristics of the cache simulation are as
1009follows:</para>
1010
1011<itemizedlist>
1012
1013 <listitem>
1014 <para>Write-allocate: when a write miss occurs, the block
1015 written to is brought into the D1 cache. Most modern caches
1016 have this property.</para>
1017 </listitem>
1018
1019 <listitem>
1020 <para>Bit-selection hash function: the set of line(s) in the cache
1021 to which a memory block maps is chosen by the middle bits
1022 M--(M+N-1) of the byte address, where:</para>
1023 <itemizedlist>
1024 <listitem>
1025 <para>line size = 2^M bytes</para>
1026 </listitem>
1027 <listitem>
1028 <para>(cache size / line size / associativity) = 2^N bytes</para>
1029 </listitem>
1030 </itemizedlist>
1031 </listitem>
1032
1033 <listitem>
1034 <para>Inclusive L2 cache: the L2 cache typically replicates all
1035 the entries of the L1 caches, because fetching into L1 involves
1036 fetching into L2 first (this does not guarantee strict inclusiveness,
1037 as lines evicted from L2 still could reside in L1). This is
1038 standard on Pentium chips, but AMD Opterons, Athlons and Durons
1039 use an exclusive L2 cache that only holds
1040 blocks evicted from L1. Ditto most modern VIA CPUs.</para>
1041 </listitem>
1042
1043</itemizedlist>
1044
1045<para>The cache configuration simulated (cache size,
1046associativity and line size) is determined automatically using
1047the x86 CPUID instruction. If you have a machine that (a)
1048doesn't support the CPUID instruction, or (b) supports it in an
1049early incarnation that doesn't give any cache information, then
1050Cachegrind will fall back to using a default configuration (that
1051of a model 3/4 Athlon). Cachegrind will tell you if this
1052happens. You can manually specify one, two or all three levels
1053(I1/D1/L2) of the cache from the command line using the
1054<option>--I1</option>,
1055<option>--D1</option> and
1056<option>--L2</option> options.
1057For cache parameters to be valid for simulation, the number
1058of sets (with associativity being the number of cache lines in
1059each set) has to be a power of two.</para>
1060
1061<para>On PowerPC platforms
1062Cachegrind cannot automatically
1063determine the cache configuration, so you will
1064need to specify it with the
1065<option>--I1</option>,
1066<option>--D1</option> and
1067<option>--L2</option> options.</para>
1068
1069
1070<para>Other noteworthy behaviour:</para>
1071
1072<itemizedlist>
1073 <listitem>
1074 <para>References that straddle two cache lines are treated as
1075 follows:</para>
1076 <itemizedlist>
1077 <listitem>
1078 <para>If both blocks hit --&gt; counted as one hit</para>
1079 </listitem>
1080 <listitem>
1081 <para>If one block hits, the other misses --&gt; counted
1082 as one miss.</para>
1083 </listitem>
1084 <listitem>
1085 <para>If both blocks miss --&gt; counted as one miss (not
1086 two)</para>
1087 </listitem>
1088 </itemizedlist>
1089 </listitem>
1090
1091 <listitem>
1092 <para>Instructions that modify a memory location
1093 (e.g. <computeroutput>inc</computeroutput> and
1094 <computeroutput>dec</computeroutput>) are counted as doing
1095 just a read, i.e. a single data reference. This may seem
1096 strange, but since the write can never cause a miss (the read
1097 guarantees the block is in the cache) it's not very
1098 interesting.</para>
1099
1100 <para>Thus it measures not the number of times the data cache
1101 is accessed, but the number of times a data cache miss could
1102 occur.</para>
1103 </listitem>
1104
1105</itemizedlist>
1106
1107<para>If you are interested in simulating a cache with different
1108properties, it is not particularly hard to write your own cache
1109simulator, or to modify the existing ones in
1110<computeroutput>cg_sim.c</computeroutput>. We'd be
1111interested to hear from anyone who does.</para>
1112
1113</sect2>
1114
1115
1116<sect2 id="branch-sim" xreflabel="Branch Simulation Specifics">
1117<title>Branch Simulation Specifics</title>
1118
1119<para>Cachegrind simulates branch predictors intended to be
1120typical of mainstream desktop/server processors of around 2004.</para>
1121
1122<para>Conditional branches are predicted using an array of 16384 2-bit
1123saturating counters. The array index used for a branch instruction is
1124computed partly from the low-order bits of the branch instruction's
1125address and partly using the taken/not-taken behaviour of the last few
1126conditional branches. As a result the predictions for any specific
1127branch depend both on its own history and the behaviour of previous
1128branches. This is a standard technique for improving prediction
1129accuracy.</para>
1130
1131<para>For indirect branches (that is, jumps to unknown destinations)
1132Cachegrind uses a simple branch target address predictor. Targets are
1133predicted using an array of 512 entries indexed by the low order 9
1134bits of the branch instruction's address. Each branch is predicted to
1135jump to the same address it did last time. Any other behaviour causes
1136a mispredict.</para>
1137
1138<para>More recent processors have better branch predictors, in
1139particular better indirect branch predictors. Cachegrind's predictor
1140design is deliberately conservative so as to be representative of the
1141large installed base of processors which pre-date widespread
1142deployment of more sophisticated indirect branch predictors. In
1143particular, late model Pentium 4s (Prescott), Pentium M, Core and Core
11442 have more sophisticated indirect branch predictors than modelled by
1145Cachegrind. </para>
1146
1147<para>Cachegrind does not simulate a return stack predictor. It
1148assumes that processors perfectly predict function return addresses,
1149an assumption which is probably close to being true.</para>
1150
1151<para>See Hennessy and Patterson's classic text "Computer
1152Architecture: A Quantitative Approach", 4th edition (2007), Section
11532.3 (pages 80-89) for background on modern branch predictors.</para>
1154
1155</sect2>
1156
1157<sect2 id="cg-manual.annopts.accuracy" xreflabel="Accuracy">
1158<title>Accuracy</title>
1159
1160<para>Valgrind's cache profiling has a number of
1161shortcomings:</para>
1162
1163<itemizedlist>
1164 <listitem>
1165 <para>It doesn't account for kernel activity -- the effect of system
1166 calls on the cache and branch predictor contents is ignored.</para>
1167 </listitem>
1168
1169 <listitem>
1170 <para>It doesn't account for other process activity.
1171 This is probably desirable when considering a single
1172 program.</para>
1173 </listitem>
1174
1175 <listitem>
1176 <para>It doesn't account for virtual-to-physical address
1177 mappings. Hence the simulation is not a true
1178 representation of what's happening in the
1179 cache. Most caches and branch predictors are physically indexed, but
1180 Cachegrind simulates caches using virtual addresses.</para>
1181 </listitem>
1182
1183 <listitem>
1184 <para>It doesn't account for cache misses not visible at the
1185 instruction level, e.g. those arising from TLB misses, or
1186 speculative execution.</para>
1187 </listitem>
1188
1189 <listitem>
1190 <para>Valgrind will schedule
1191 threads differently from how they would be when running natively.
1192 This could warp the results for threaded programs.</para>
1193 </listitem>
1194
1195 <listitem>
1196 <para>The x86/amd64 instructions <computeroutput>bts</computeroutput>,
1197 <computeroutput>btr</computeroutput> and
1198 <computeroutput>btc</computeroutput> will incorrectly be
1199 counted as doing a data read if both the arguments are
1200 registers, eg:</para>
1201<programlisting><![CDATA[
1202 btsl %eax, %edx]]></programlisting>
1203
1204 <para>This should only happen rarely.</para>
1205 </listitem>
1206
1207 <listitem>
1208 <para>x86/amd64 FPU instructions with data sizes of 28 and 108 bytes
1209 (e.g. <computeroutput>fsave</computeroutput>) are treated as
1210 though they only access 16 bytes. These instructions seem to
1211 be rare so hopefully this won't affect accuracy much.</para>
1212 </listitem>
1213
1214</itemizedlist>
1215
1216<para>Another thing worth noting is that results are very sensitive.
1217Changing the size of the the executable being profiled, or the sizes
1218of any of the shared libraries it uses, or even the length of their
1219file names, can perturb the results. Variations will be small, but
1220don't expect perfectly repeatable results if your program changes at
1221all.</para>
1222
1223<para>More recent GNU/Linux distributions do address space
1224randomisation, in which identical runs of the same program have their
1225shared libraries loaded at different locations, as a security measure.
1226This also perturbs the results.</para>
1227
1228<para>While these factors mean you shouldn't trust the results to
1229be super-accurate, they should be close enough to be useful.</para>
1230
1231</sect2>
1232
1233</sect1>
1234
1235
1236
sewardj778d7832007-11-22 01:21:56 +00001237<sect1 id="cg-manual.impl-details"
njn3da81962009-08-07 00:18:25 +00001238 xreflabel="Implementation Details">
1239<title>Implementation Details</title>
njn3a9d5dc2007-09-17 22:19:01 +00001240<para>
njn534f7812006-10-21 22:22:59 +00001241This section talks about details you don't need to know about in order to
1242use Cachegrind, but may be of interest to some people.
njn3a9d5dc2007-09-17 22:19:01 +00001243</para>
njn3e986b22004-11-30 10:43:45 +00001244
sewardj778d7832007-11-22 01:21:56 +00001245<sect2 id="cg-manual.impl-details.how-cg-works"
njn3da81962009-08-07 00:18:25 +00001246 xreflabel="How Cachegrind Works">
1247<title>How Cachegrind Works</title>
njn534f7812006-10-21 22:22:59 +00001248<para>The best reference for understanding how Cachegrind works is chapter 3 of
1249"Dynamic Binary Analysis and Instrumentation", by Nicholas Nethercote. It
njn25ac3842009-08-07 02:58:11 +00001250is available on the <ulink url="&vg-pubs-url;">Valgrind publications
njn011215f2006-10-21 23:00:59 +00001251page</ulink>.</para>
njn534f7812006-10-21 22:22:59 +00001252</sect2>
njn3e986b22004-11-30 10:43:45 +00001253
sewardj778d7832007-11-22 01:21:56 +00001254<sect2 id="cg-manual.impl-details.file-format"
njn3da81962009-08-07 00:18:25 +00001255 xreflabel="Cachegrind Output File Format">
1256<title>Cachegrind Output File Format</title>
njn534f7812006-10-21 22:22:59 +00001257<para>The file format is fairly straightforward, basically giving the
1258cost centre for every line, grouped by files and
njn3da81962009-08-07 00:18:25 +00001259functions. It's also totally generic and self-describing, in the sense that
1260it can be used for any events that can be counted on a line-by-line basis,
1261not just cache and branch predictor events. For example, earlier versions
1262of Cachegrind didn't have a branch predictor simulation. When this was
1263added, the file format didn't need to change at all. So the format (and
1264consequently, cg_annotate) could be used by other tools.</para>
njn534f7812006-10-21 22:22:59 +00001265
1266<para>The file format:</para>
1267<programlisting><![CDATA[
1268file ::= desc_line* cmd_line events_line data_line+ summary_line
1269desc_line ::= "desc:" ws? non_nl_string
1270cmd_line ::= "cmd:" ws? cmd
1271events_line ::= "events:" ws? (event ws)+
1272data_line ::= file_line | fn_line | count_line
1273file_line ::= "fl=" filename
1274fn_line ::= "fn=" fn_name
1275count_line ::= line_num ws? (count ws)+
1276summary_line ::= "summary:" ws? (count ws)+
1277count ::= num | "."]]></programlisting>
1278
1279<para>Where:</para>
njn3e986b22004-11-30 10:43:45 +00001280<itemizedlist>
1281 <listitem>
njn534f7812006-10-21 22:22:59 +00001282 <para><computeroutput>non_nl_string</computeroutput> is any
1283 string not containing a newline.</para>
njn3e986b22004-11-30 10:43:45 +00001284 </listitem>
njn534f7812006-10-21 22:22:59 +00001285 <listitem>
1286 <para><computeroutput>cmd</computeroutput> is a string holding the
1287 command line of the profiled program.</para>
1288 </listitem>
1289 <listitem>
njn26242122007-01-22 03:21:27 +00001290 <para><computeroutput>event</computeroutput> is a string containing
1291 no whitespace.</para>
1292 </listitem>
1293 <listitem>
njn534f7812006-10-21 22:22:59 +00001294 <para><computeroutput>filename</computeroutput> and
1295 <computeroutput>fn_name</computeroutput> are strings.</para>
1296 </listitem>
1297 <listitem>
1298 <para><computeroutput>num</computeroutput> and
1299 <computeroutput>line_num</computeroutput> are decimal
1300 numbers.</para>
1301 </listitem>
1302 <listitem>
1303 <para><computeroutput>ws</computeroutput> is whitespace.</para>
1304 </listitem>
1305</itemizedlist>
1306
1307<para>The contents of the "desc:" lines are printed out at the top
1308of the summary. This is a generic way of providing simulation
njn3da81962009-08-07 00:18:25 +00001309specific information, e.g. for giving the cache configuration for
njn534f7812006-10-21 22:22:59 +00001310cache simulation.</para>
1311
1312<para>More than one line of info can be presented for each file/fn/line number.
1313In such cases, the counts for the named events will be accumulated.</para>
1314
njn3a9d5dc2007-09-17 22:19:01 +00001315<para>Counts can be "." to represent zero. This makes the files easier for
1316humans to read.</para>
njn534f7812006-10-21 22:22:59 +00001317
1318<para>The number of counts in each
1319<computeroutput>line</computeroutput> and the
1320<computeroutput>summary_line</computeroutput> should not exceed
1321the number of events in the
1322<computeroutput>event_line</computeroutput>. If the number in
1323each <computeroutput>line</computeroutput> is less, cg_annotate
njn3a9d5dc2007-09-17 22:19:01 +00001324treats those missing as though they were a "." entry. This saves space.
1325</para>
njn534f7812006-10-21 22:22:59 +00001326
1327<para>A <computeroutput>file_line</computeroutput> changes the
1328current file name. A <computeroutput>fn_line</computeroutput>
1329changes the current function name. A
1330<computeroutput>count_line</computeroutput> contains counts that
1331pertain to the current filename/fn_name. A "fn="
1332<computeroutput>file_line</computeroutput> and a
1333<computeroutput>fn_line</computeroutput> must appear before any
1334<computeroutput>count_line</computeroutput>s to give the context
1335of the first <computeroutput>count_line</computeroutput>s.</para>
1336
1337<para>Each <computeroutput>file_line</computeroutput> will normally be
1338immediately followed by a <computeroutput>fn_line</computeroutput>. But it
1339doesn't have to be.</para>
1340
njn3da81962009-08-07 00:18:25 +00001341<para>The summary line is redundant, because it just holds the total counts
1342for each event. But this serves as a useful sanity check of the data; if
1343the totals for each event don't match the summary line, something has gone
1344wrong.</para>
njn3e986b22004-11-30 10:43:45 +00001345
1346</sect2>
1347
1348</sect1>
1349</chapter>