blob: 7692dacea46098f45da3eca377bb3fa2f6ff9d8c [file] [log] [blame]
barte3e54df2008-06-12 15:20:42 +00001<?xml version="1.0"?> <!-- -*- sgml -*- -->
2<!DOCTYPE chapter PUBLIC "-//OASIS//DTD DocBook XML V4.2//EN"
3 "http://www.oasis-open.org/docbook/xml/4.2/docbookx.dtd"
4[ <!ENTITY % vg-entities SYSTEM "../../docs/xml/vg-entities.xml"> %vg-entities; ]>
5
6
7<chapter id="drd-manual" xreflabel="DRD: a thread error detector">
8 <title>DRD: a thread error detector</title>
9
10<para>To use this tool, you must specify
njn7e5d4ed2009-07-30 02:57:52 +000011<option>--tool=drd</option>
barte3e54df2008-06-12 15:20:42 +000012on the Valgrind command line.</para>
13
bart68bac812008-06-27 14:56:06 +000014
barte3e54df2008-06-12 15:20:42 +000015<sect1 id="drd-manual.overview" xreflabel="Overview">
njn05a89172009-07-29 02:36:21 +000016<title>Overview</title>
barte3e54df2008-06-12 15:20:42 +000017
18<para>
19DRD is a Valgrind tool for detecting errors in multithreaded C and C++
bartdd742f22009-07-19 19:50:54 +000020programs. The tool works for any program that uses the POSIX threading
21primitives or that uses threading concepts built on top of the POSIX threading
22primitives.
barte3e54df2008-06-12 15:20:42 +000023</para>
24
bart68bac812008-06-27 14:56:06 +000025<sect2 id="drd-manual.mt-progr-models" xreflabel="MT-progr-models">
bart5a5fe0c2008-06-15 12:22:37 +000026<title>Multithreaded Programming Paradigms</title>
barte3e54df2008-06-12 15:20:42 +000027
bart5a5fe0c2008-06-15 12:22:37 +000028<para>
bartdd742f22009-07-19 19:50:54 +000029There are two possible reasons for using multithreading in a program:
bart5a5fe0c2008-06-15 12:22:37 +000030<itemizedlist>
31 <listitem>
32 <para>
bartdd742f22009-07-19 19:50:54 +000033 To model concurrent activities. Assigning one thread to each activity
34 can be a great simplification compared to multiplexing the states of
35 multiple activities in a single thread. This is why most server software
36 and embedded software is multithreaded.
bart5a5fe0c2008-06-15 12:22:37 +000037 </para>
38 </listitem>
39 <listitem>
40 <para>
bartdd742f22009-07-19 19:50:54 +000041 To use multiple CPU cores simultaneously for speeding up
42 computations. This is why many High Performance Computing (HPC)
43 applications are multithreaded.
bart5a5fe0c2008-06-15 12:22:37 +000044 </para>
45 </listitem>
46</itemizedlist>
47</para>
barte3e54df2008-06-12 15:20:42 +000048
bart5a5fe0c2008-06-15 12:22:37 +000049<para>
bartdd742f22009-07-19 19:50:54 +000050Multithreaded programs can use one or more of the following programming
njn2d6d5032009-08-07 05:23:31 +000051paradigms. Which paradigm is appropriate depends e.g. on the application type.
bart4ac853b2009-01-02 13:29:32 +000052Some examples of multithreaded programming paradigms are:
bart5a5fe0c2008-06-15 12:22:37 +000053<itemizedlist>
54 <listitem>
55 <para>
bartdd742f22009-07-19 19:50:54 +000056 Locking. Data that is shared over threads is protected from concurrent
njn2d6d5032009-08-07 05:23:31 +000057 accesses via locking. E.g. the POSIX threads library, the Qt library
bartdd742f22009-07-19 19:50:54 +000058 and the Boost.Thread library support this paradigm directly.
bart5a5fe0c2008-06-15 12:22:37 +000059 </para>
60 </listitem>
61 <listitem>
62 <para>
bartdd742f22009-07-19 19:50:54 +000063 Message passing. No data is shared between threads, but threads exchange
64 data by passing messages to each other. Examples of implementations of
65 the message passing paradigm are MPI and CORBA.
bart5a5fe0c2008-06-15 12:22:37 +000066 </para>
67 </listitem>
68 <listitem>
69 <para>
bartdd742f22009-07-19 19:50:54 +000070 Automatic parallelization. A compiler converts a sequential program into
71 a multithreaded program. The original program may or may not contain
72 parallelization hints. One example of such parallelization hints is the
73 OpenMP standard. In this standard a set of directives are defined which
74 tell a compiler how to parallelize a C, C++ or Fortran program. OpenMP
75 is well suited for computational intensive applications. As an example,
76 an open source image processing software package is using OpenMP to
77 maximize performance on systems with multiple CPU
njn7316df22009-08-04 01:16:01 +000078 cores. GCC supports the
bartdd742f22009-07-19 19:50:54 +000079 OpenMP standard from version 4.2.0 on.
bart4ac853b2009-01-02 13:29:32 +000080 </para>
81 </listitem>
82 <listitem>
83 <para>
bartdd742f22009-07-19 19:50:54 +000084 Software Transactional Memory (STM). Any data that is shared between
85 threads is updated via transactions. After each transaction it is
86 verified whether there were any conflicting transactions. If there were
87 conflicts, the transaction is aborted, otherwise it is committed. This
njn2d6d5032009-08-07 05:23:31 +000088 is a so-called optimistic approach. There is a prototype of the Intel C++
89 Compiler available that supports STM. Research about the addition of
90 STM support to GCC is ongoing.
bart5a5fe0c2008-06-15 12:22:37 +000091 </para>
92 </listitem>
bart5a5fe0c2008-06-15 12:22:37 +000093</itemizedlist>
94</para>
barte3e54df2008-06-12 15:20:42 +000095
bart5a5fe0c2008-06-15 12:22:37 +000096<para>
bart68bac812008-06-27 14:56:06 +000097DRD supports any combination of multithreaded programming paradigms as
98long as the implementation of these paradigms is based on the POSIX
99threads primitives. DRD however does not support programs that use
100e.g. Linux' futexes directly. Attempts to analyze such programs with
bart4ac853b2009-01-02 13:29:32 +0000101DRD will cause DRD to report many false positives.
bart68bac812008-06-27 14:56:06 +0000102</para>
103
104</sect2>
105
106
107<sect2 id="drd-manual.pthreads-model" xreflabel="Pthreads-model">
108<title>POSIX Threads Programming Model</title>
109
110<para>
111POSIX threads, also known as Pthreads, is the most widely available
112threading library on Unix systems.
bart5a5fe0c2008-06-15 12:22:37 +0000113</para>
barte3e54df2008-06-12 15:20:42 +0000114
bart5a5fe0c2008-06-15 12:22:37 +0000115<para>
bart68bac812008-06-27 14:56:06 +0000116The POSIX threads programming model is based on the following abstractions:
117<itemizedlist>
118 <listitem>
119 <para>
120 A shared address space. All threads running within the same
121 process share the same address space. All data, whether shared or
122 not, is identified by its address.
123 </para>
124 </listitem>
125 <listitem>
126 <para>
127 Regular load and store operations, which allow to read values
128 from or to write values to the memory shared by all threads
129 running in the same process.
130 </para>
131 </listitem>
132 <listitem>
133 <para>
bart4ac853b2009-01-02 13:29:32 +0000134 Atomic store and load-modify-store operations. While these are
135 not mentioned in the POSIX threads standard, most
bartdd742f22009-07-19 19:50:54 +0000136 microprocessors support atomic memory operations.
bart68bac812008-06-27 14:56:06 +0000137 </para>
138 </listitem>
139 <listitem>
140 <para>
141 Threads. Each thread represents a concurrent activity.
142 </para>
143 </listitem>
144 <listitem>
145 <para>
146 Synchronization objects and operations on these synchronization
bartdd742f22009-07-19 19:50:54 +0000147 objects. The following types of synchronization objects have been
148 defined in the POSIX threads standard: mutexes, condition variables,
barta617d112009-07-27 17:43:39 +0000149 semaphores, reader-writer synchronization objects, barriers and
150 spinlocks.
bart68bac812008-06-27 14:56:06 +0000151 </para>
152 </listitem>
153</itemizedlist>
bart5a5fe0c2008-06-15 12:22:37 +0000154</para>
155
bart68bac812008-06-27 14:56:06 +0000156<para>
157Which source code statements generate which memory accesses depends on
bartdd742f22009-07-19 19:50:54 +0000158the <emphasis>memory model</emphasis> of the programming language being
159used. There is not yet a definitive memory model for the C and C++
160languages. For a draft memory model, see also the document
161<ulink url="http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2338.html">
162WG21/N2338: Concurrency memory model compiler consequences</ulink>.
bart68bac812008-06-27 14:56:06 +0000163</para>
164
165<para>
166For more information about POSIX threads, see also the Single UNIX
167Specification version 3, also known as
bartdd742f22009-07-19 19:50:54 +0000168<ulink url="http://www.opengroup.org/onlinepubs/000095399/idx/threads.html">
bart68bac812008-06-27 14:56:06 +0000169IEEE Std 1003.1</ulink>.
170</para>
171
172</sect2>
173
174
175<sect2 id="drd-manual.mt-problems" xreflabel="MT-Problems">
176<title>Multithreaded Programming Problems</title>
177
178<para>
bart4ac853b2009-01-02 13:29:32 +0000179Depending on which multithreading paradigm is being used in a program,
180one or more of the following problems can occur:
bart68bac812008-06-27 14:56:06 +0000181<itemizedlist>
182 <listitem>
183 <para>
bartdd742f22009-07-19 19:50:54 +0000184 Data races. One or more threads access the same memory location without
185 sufficient locking. Most but not all data races are programming errors
186 and are the cause of subtle and hard-to-find bugs.
bart68bac812008-06-27 14:56:06 +0000187 </para>
188 </listitem>
189 <listitem>
190 <para>
191 Lock contention. One thread blocks the progress of one or more other
192 threads by holding a lock too long.
193 </para>
194 </listitem>
195 <listitem>
196 <para>
bartdd742f22009-07-19 19:50:54 +0000197 Improper use of the POSIX threads API. Most implementations of the POSIX
198 threads API have been optimized for runtime speed. Such implementations
199 will not complain on certain errors, e.g. when a mutex is being unlocked
200 by another thread than the thread that obtained a lock on the mutex.
bart68bac812008-06-27 14:56:06 +0000201 </para>
202 </listitem>
203 <listitem>
204 <para>
205 Deadlock. A deadlock occurs when two or more threads wait for
206 each other indefinitely.
207 </para>
208 </listitem>
209 <listitem>
210 <para>
211 False sharing. If threads that run on different processor cores
212 access different variables located in the same cache line
213 frequently, this will slow down the involved threads a lot due
214 to frequent exchange of cache lines.
215 </para>
216 </listitem>
217</itemizedlist>
218</para>
219
220<para>
221Although the likelihood of the occurrence of data races can be reduced
bart4ac853b2009-01-02 13:29:32 +0000222through a disciplined programming style, a tool for automatic
223detection of data races is a necessity when developing multithreaded
224software. DRD can detect these, as well as lock contention and
225improper use of the POSIX threads API.
bart68bac812008-06-27 14:56:06 +0000226</para>
227
228</sect2>
229
230
barte8cdb362008-12-22 07:10:44 +0000231<sect2 id="drd-manual.data-race-detection" xreflabel="data-race-detection">
232<title>Data Race Detection</title>
bart68bac812008-06-27 14:56:06 +0000233
234<para>
bartdd742f22009-07-19 19:50:54 +0000235The result of load and store operations performed by a multithreaded program
236depends on the order in which memory operations are performed. This order is
237determined by:
238<orderedlist>
239 <listitem>
240 <para>
241 All memory operations performed by the same thread are performed in
242 <emphasis>program order</emphasis>, that is, the order determined by the
243 program source code and the results of previous load operations.
244 </para>
245 </listitem>
246 <listitem>
247 <para>
248 Synchronization operations determine certain ordering constraints on
249 memory operations performed by different threads. These ordering
250 constraints are called the <emphasis>synchronization order</emphasis>.
251 </para>
252 </listitem>
253</orderedlist>
254The combination of program order and synchronization order is called the
255<emphasis>happens-before relationship</emphasis>. This concept was first
njn2d6d5032009-08-07 05:23:31 +0000256defined by S. Adve et al in the paper <emphasis>Detecting data races on weak
bartdd742f22009-07-19 19:50:54 +0000257memory systems</emphasis>, ACM SIGARCH Computer Architecture News, v.19 n.3,
258p.234-243, May 1991.
bart68bac812008-06-27 14:56:06 +0000259</para>
260
261<para>
bartdd742f22009-07-19 19:50:54 +0000262Two memory operations <emphasis>conflict</emphasis> if both operations are
263performed by different threads, refer to the same memory location and at least
264one of them is a store operation.
265</para>
266
267<para>
268A multithreaded program is <emphasis>data-race free</emphasis> if all
269conflicting memory accesses are ordered by synchronization
270operations.
bart68bac812008-06-27 14:56:06 +0000271</para>
272
273<para>
274A well known way to ensure that a multithreaded program is data-race
275free is to ensure that a locking discipline is followed. It is e.g.
276possible to associate a mutex with each shared data item, and to hold
277a lock on the associated mutex while the shared data is accessed.
278</para>
279
280<para>
bartdd742f22009-07-19 19:50:54 +0000281All programs that follow a locking discipline are data-race free, but not all
282data-race free programs follow a locking discipline. There exist multithreaded
283programs where access to shared data is arbitrated via condition variables,
284semaphores or barriers. As an example, a certain class of HPC applications
285consists of a sequence of computation steps separated in time by barriers, and
286where these barriers are the only means of synchronization. Although there are
287many conflicting memory accesses in such applications and although such
288applications do not make use mutexes, most of these applications do not
289contain data races.
bart68bac812008-06-27 14:56:06 +0000290</para>
291
292<para>
bartdd742f22009-07-19 19:50:54 +0000293There exist two different approaches for verifying the correctness of
294multithreaded programs at runtime. The approach of the so-called Eraser
295algorithm is to verify whether all shared memory accesses follow a consistent
296locking strategy. And the happens-before data race detectors verify directly
297whether all interthread memory accesses are ordered by synchronization
298operations. While the last approach is more complex to implement, and while it
299is more sensitive to OS scheduling, it is a general approach that works for
300all classes of multithreaded programs. An important advantage of
301happens-before data race detectors is that these do not report any false
302positives.
bart68bac812008-06-27 14:56:06 +0000303</para>
304
305<para>
barte8cdb362008-12-22 07:10:44 +0000306DRD is based on the happens-before algorithm.
bart68bac812008-06-27 14:56:06 +0000307</para>
308
309</sect2>
310
311
barte3e54df2008-06-12 15:20:42 +0000312</sect1>
313
314
bart68bac812008-06-27 14:56:06 +0000315<sect1 id="drd-manual.using-drd" xreflabel="Using DRD">
316<title>Using DRD</title>
317
njna3311642009-08-10 01:29:14 +0000318<sect2 id="drd-manual.options" xreflabel="DRD Command-line Options">
319<title>DRD Command-line Options</title>
barte3e54df2008-06-12 15:20:42 +0000320
bart68bac812008-06-27 14:56:06 +0000321<para>The following command-line options are available for controlling the
322behavior of the DRD tool itself:</para>
barte3e54df2008-06-12 15:20:42 +0000323
324<!-- start of xi:include in the manpage -->
325<variablelist id="drd.opts.list">
bart68bac812008-06-27 14:56:06 +0000326 <varlistentry>
327 <term>
328 <option><![CDATA[--check-stack-var=<yes|no> [default: no]]]></option>
329 </term>
330 <listitem>
331 <para>
njn2d6d5032009-08-07 05:23:31 +0000332 Controls whether DRD detects data races on stack
bartdd742f22009-07-19 19:50:54 +0000333 variables. Verifying stack variables is disabled by default because
334 most programs do not share stack variables over threads.
bart68bac812008-06-27 14:56:06 +0000335 </para>
336 </listitem>
337 </varlistentry>
338 <varlistentry>
339 <term>
340 <option><![CDATA[--exclusive-threshold=<n> [default: off]]]></option>
341 </term>
342 <listitem>
343 <para>
bart4ac853b2009-01-02 13:29:32 +0000344 Print an error message if any mutex or writer lock has been
bartdd742f22009-07-19 19:50:54 +0000345 held longer than the time specified in milliseconds. This
346 option enables the detection of lock contention.
347 </para>
348 </listitem>
349 </varlistentry>
350 <varlistentry>
351 <term>
bart282e3372011-10-13 18:50:15 +0000352 <option><![CDATA[--join-list-vol=<n> [default: 10]]]></option>
353 </term>
354 <listitem>
355 <para>
356 Data races that occur between a statement at the end of one thread
357 and another thread can be missed if memory access information is
358 discarded immediately after a thread has been joined. This option
359 allows to specify for how many joined threads memory access information
360 should be retained.
361 </para>
362 </listitem>
363 </varlistentry>
364 <varlistentry>
365 <term>
bartdd742f22009-07-19 19:50:54 +0000366 <option>
367 <![CDATA[--first-race-only=<yes|no> [default: no]]]>
368 </option>
369 </term>
370 <listitem>
371 <para>
372 Whether to report only the first data race that has been detected on a
373 memory location or all data races that have been detected on a memory
374 location.
bart68bac812008-06-27 14:56:06 +0000375 </para>
376 </listitem>
377 </varlistentry>
378 <varlistentry>
379 <term>
bart8f0b0d72008-06-28 16:47:22 +0000380 <option>
bart639d0ad2011-03-12 14:26:01 +0000381 <![CDATA[--free-is-write=<yes|no> [default: no]]]>
382 </option>
383 </term>
384 <listitem>
385 <para>
386 Whether to report races between accessing memory and freeing
387 memory. Enabling this option may cause DRD to run slightly
philippee52e4452013-12-12 23:19:13 +0000388 slower. Notes:</para>
389 <itemizedlist>
390 <listitem>
391 <para>
392 Don't enable this option when using custom memory allocators
393 that use
394 the <computeroutput>VG_USERREQ__MALLOCLIKE_BLOCK</computeroutput>
395 and <computeroutput>VG_USERREQ__FREELIKE_BLOCK</computeroutput>
396 because that would result in false positives.
397 </para>
398 </listitem>
399 <listitem>
400 <para>Don't enable this option when using reference-counted
401 objects because that will result in false positives, even when
402 that code has been annotated properly with
403 <computeroutput>ANNOTATE_HAPPENS_BEFORE</computeroutput>
404 and <computeroutput>ANNOTATE_HAPPENS_AFTER</computeroutput>. See
405 e.g. the output of the following command for an example:
406 <computeroutput>valgrind --tool=drd --free-is-write=yes
407 drd/tests/annotate_smart_pointer</computeroutput>.
408 </para>
409 </listitem>
410 </itemizedlist>
bart639d0ad2011-03-12 14:26:01 +0000411 </listitem>
412 </varlistentry>
413 <varlistentry>
414 <term>
415 <option>
bart8f0b0d72008-06-28 16:47:22 +0000416 <![CDATA[--report-signal-unlocked=<yes|no> [default: yes]]]>
417 </option>
418 </term>
419 <listitem>
420 <para>
421 Whether to report calls to
njn2d6d5032009-08-07 05:23:31 +0000422 <function>pthread_cond_signal</function> and
423 <function>pthread_cond_broadcast</function> where the mutex
bart4ac853b2009-01-02 13:29:32 +0000424 associated with the signal through
njn2d6d5032009-08-07 05:23:31 +0000425 <function>pthread_cond_wait</function> or
426 <function>pthread_cond_timed_wait</function>is not locked at
bart8f0b0d72008-06-28 16:47:22 +0000427 the time the signal is sent. Sending a signal without holding
428 a lock on the associated mutex is a common programming error
429 which can cause subtle race conditions and unpredictable
430 behavior. There exist some uncommon synchronization patterns
431 however where it is safe to send a signal without holding a
432 lock on the associated mutex.
433 </para>
434 </listitem>
435 </varlistentry>
436 <varlistentry>
437 <term>
bart68bac812008-06-27 14:56:06 +0000438 <option><![CDATA[--segment-merging=<yes|no> [default: yes]]]></option>
439 </term>
440 <listitem>
441 <para>
442 Controls segment merging. Segment merging is an algorithm to
443 limit memory usage of the data race detection
444 algorithm. Disabling segment merging may improve the accuracy
445 of the so-called 'other segments' displayed in race reports
446 but can also trigger an out of memory error.
447 </para>
448 </listitem>
449 </varlistentry>
450 <varlistentry>
451 <term>
bartdd742f22009-07-19 19:50:54 +0000452 <option><![CDATA[--segment-merging-interval=<n> [default: 10]]]></option>
453 </term>
454 <listitem>
455 <para>
456 Perform segment merging only after the specified number of new
457 segments have been created. This is an advanced configuration option
458 that allows to choose whether to minimize DRD's memory usage by
459 choosing a low value or to let DRD run faster by choosing a slightly
460 higher value. The optimal value for this parameter depends on the
461 program being analyzed. The default value works well for most programs.
462 </para>
463 </listitem>
464 </varlistentry>
465 <varlistentry>
466 <term>
bart68bac812008-06-27 14:56:06 +0000467 <option><![CDATA[--shared-threshold=<n> [default: off]]]></option>
468 </term>
469 <listitem>
470 <para>
bart4ac853b2009-01-02 13:29:32 +0000471 Print an error message if a reader lock has been held longer
472 than the specified time (in milliseconds). This option enables
bartdd742f22009-07-19 19:50:54 +0000473 the detection of lock contention.
bart68bac812008-06-27 14:56:06 +0000474 </para>
475 </listitem>
476 </varlistentry>
477 <varlistentry>
478 <term>
479 <option><![CDATA[--show-confl-seg=<yes|no> [default: yes]]]></option>
480 </term>
481 <listitem>
482 <para>
483 Show conflicting segments in race reports. Since this
484 information can help to find the cause of a data race, this
485 option is enabled by default. Disabling this option makes the
486 output of DRD more compact.
487 </para>
488 </listitem>
489 </varlistentry>
490 <varlistentry>
491 <term>
492 <option><![CDATA[--show-stack-usage=<yes|no> [default: no]]]></option>
493 </term>
494 <listitem>
495 <para>
bartdd742f22009-07-19 19:50:54 +0000496 Print stack usage at thread exit time. When a program creates a large
497 number of threads it becomes important to limit the amount of virtual
498 memory allocated for thread stacks. This option makes it possible to
mjw2be51222013-04-05 13:19:12 +0000499 observe how much stack memory has been used by each thread of the
bartdd742f22009-07-19 19:50:54 +0000500 client program. Note: the DRD tool itself allocates some temporary
501 data on the client thread stack. The space necessary for this
502 temporary data must be allocated by the client program when it
503 allocates stack memory, but is not included in stack usage reported by
504 DRD.
bart68bac812008-06-27 14:56:06 +0000505 </para>
506 </listitem>
507 </varlistentry>
sewardj8eb8bab2015-07-21 14:44:28 +0000508 <varlistentry>
509 <term>
510 <option><![CDATA[--ignore-thread-creation=<yes|no> [default: no]]]></option>
511 </term>
512 <listitem>
513 <para>
514 Controls whether all activities during thread creation should be
515 ignored. By default enabled only on Solaris.
516 Solaris provides higher throughput, parallelism and scalability than
517 other operating systems, at the cost of more fine-grained locking
518 activity. This means for example that when a thread is created under
519 glibc, just one big lock is used for all thread setup. Solaris libc
520 uses several fine-grained locks and the creator thread resumes its
521 activities as soon as possible, leaving for example stack and TLS setup
522 sequence to the created thread.
523 This situation confuses DRD as it assumes there is some false ordering
524 in place between creator and created thread; and therefore many types
525 of race conditions in the application would not be reported. To prevent
526 such false ordering, this command line option is set to
527 <computeroutput>yes</computeroutput> by default on Solaris.
528 All activity (loads, stores, client requests) is therefore ignored
529 during:</para>
530 <itemizedlist>
531 <listitem>
532 <para>
533 pthread_create() call in the creator thread
534 </para>
535 </listitem>
536 <listitem>
537 <para>
538 thread creation phase (stack and TLS setup) in the created thread
539 </para>
540 </listitem>
541 </itemizedlist>
542 </listitem>
543 </varlistentry>
barte3e54df2008-06-12 15:20:42 +0000544</variablelist>
545<!-- end of xi:include in the manpage -->
546
547<!-- start of xi:include in the manpage -->
bart68bac812008-06-27 14:56:06 +0000548<para>
549The following options are available for monitoring the behavior of the
bart4ac853b2009-01-02 13:29:32 +0000550client program:
bart68bac812008-06-27 14:56:06 +0000551</para>
552
barte3e54df2008-06-12 15:20:42 +0000553<variablelist id="drd.debugopts.list">
bart68bac812008-06-27 14:56:06 +0000554 <varlistentry>
555 <term>
556 <option><![CDATA[--trace-addr=<address> [default: none]]]></option>
557 </term>
558 <listitem>
559 <para>
560 Trace all load and store activity for the specified
561 address. This option may be specified more than once.
562 </para>
563 </listitem>
564 </varlistentry>
565 <varlistentry>
566 <term>
bart858c2d72012-06-16 18:51:16 +0000567 <option><![CDATA[--ptrace-addr=<address> [default: none]]]></option>
568 </term>
569 <listitem>
570 <para>
571 Trace all load and store activity for the specified address and keep
572 doing that even after the memory at that address has been freed and
573 reallocated.
574 </para>
575 </listitem>
576 </varlistentry>
577 <varlistentry>
578 <term>
bartf9427fd2010-08-29 09:19:07 +0000579 <option><![CDATA[--trace-alloc=<yes|no> [default: no]]]></option>
580 </term>
581 <listitem>
582 <para>
583 Trace all memory allocations and deallocations. May produce a huge
584 amount of output.
585 </para>
586 </listitem>
587 </varlistentry>
588 <varlistentry>
589 <term>
bart68bac812008-06-27 14:56:06 +0000590 <option><![CDATA[--trace-barrier=<yes|no> [default: no]]]></option>
591 </term>
592 <listitem>
593 <para>
594 Trace all barrier activity.
595 </para>
596 </listitem>
597 </varlistentry>
598 <varlistentry>
599 <term>
600 <option><![CDATA[--trace-cond=<yes|no> [default: no]]]></option>
601 </term>
602 <listitem>
603 <para>
604 Trace all condition variable activity.
605 </para>
606 </listitem>
607 </varlistentry>
608 <varlistentry>
609 <term>
610 <option><![CDATA[--trace-fork-join=<yes|no> [default: no]]]></option>
611 </term>
612 <listitem>
613 <para>
614 Trace all thread creation and all thread termination events.
615 </para>
616 </listitem>
617 </varlistentry>
618 <varlistentry>
619 <term>
bart282e3372011-10-13 18:50:15 +0000620 <option><![CDATA[--trace-hb=<yes|no> [default: no]]]></option>
621 </term>
622 <listitem>
623 <para>
624 Trace execution of the <literal>ANNOTATE_HAPPENS_BEFORE()</literal>,
625 <literal>ANNOTATE_HAPPENS_AFTER()</literal> and
626 <literal>ANNOTATE_HAPPENS_DONE()</literal> client requests.
627 </para>
628 </listitem>
629 </varlistentry>
630 <varlistentry>
631 <term>
bart68bac812008-06-27 14:56:06 +0000632 <option><![CDATA[--trace-mutex=<yes|no> [default: no]]]></option>
633 </term>
634 <listitem>
635 <para>
636 Trace all mutex activity.
637 </para>
638 </listitem>
639 </varlistentry>
640 <varlistentry>
641 <term>
642 <option><![CDATA[--trace-rwlock=<yes|no> [default: no]]]></option>
643 </term>
644 <listitem>
645 <para>
646 Trace all reader-writer lock activity.
647 </para>
648 </listitem>
649 </varlistentry>
650 <varlistentry>
651 <term>
652 <option><![CDATA[--trace-semaphore=<yes|no> [default: no]]]></option>
653 </term>
654 <listitem>
655 <para>
656 Trace all semaphore activity.
657 </para>
658 </listitem>
659 </varlistentry>
barte3e54df2008-06-12 15:20:42 +0000660</variablelist>
661<!-- end of xi:include in the manpage -->
662
bart68bac812008-06-27 14:56:06 +0000663</sect2>
barte3e54df2008-06-12 15:20:42 +0000664
bart5a5fe0c2008-06-15 12:22:37 +0000665
bart68bac812008-06-27 14:56:06 +0000666<sect2 id="drd-manual.data-races" xreflabel="Data Races">
bart88f11412008-07-03 07:08:04 +0000667<title>Detected Errors: Data Races</title>
bart8f0b0d72008-06-28 16:47:22 +0000668
669<para>
bart4ac853b2009-01-02 13:29:32 +0000670DRD prints a message every time it detects a data race. Please keep
671the following in mind when interpreting DRD's output:
bart8f0b0d72008-06-28 16:47:22 +0000672<itemizedlist>
673 <listitem>
674 <para>
bartdd742f22009-07-19 19:50:54 +0000675 Every thread is assigned a <emphasis>thread ID</emphasis> by the DRD
676 tool. A thread ID is a number. Thread ID's start at one and are never
677 recycled.
bart8f0b0d72008-06-28 16:47:22 +0000678 </para>
679 </listitem>
680 <listitem>
681 <para>
682 The term <emphasis>segment</emphasis> refers to a consecutive
683 sequence of load, store and synchronization operations, all
684 issued by the same thread. A segment always starts and ends at a
685 synchronization operation. Data race analysis is performed
686 between segments instead of between individual load and store
687 operations because of performance reasons.
688 </para>
689 </listitem>
690 <listitem>
691 <para>
692 There are always at least two memory accesses involved in a data
693 race. Memory accesses involved in a data race are called
694 <emphasis>conflicting memory accesses</emphasis>. DRD prints a
695 report for each memory access that conflicts with a past memory
696 access.
697 </para>
698 </listitem>
699</itemizedlist>
700</para>
701
702<para>
703Below you can find an example of a message printed by DRD when it
704detects a data race:
705</para>
706<programlisting><![CDATA[
barte2b98232009-07-22 18:13:21 +0000707$ valgrind --tool=drd --read-var-info=yes drd/tests/rwlock_race
bart8f0b0d72008-06-28 16:47:22 +0000708...
709==9466== Thread 3:
bartdd742f22009-07-19 19:50:54 +0000710==9466== Conflicting load by thread 3 at 0x006020b8 size 4
bart8f0b0d72008-06-28 16:47:22 +0000711==9466== at 0x400B6C: thread_func (rwlock_race.c:29)
712==9466== by 0x4C291DF: vg_thread_wrapper (drd_pthread_intercepts.c:186)
713==9466== by 0x4E3403F: start_thread (in /lib64/libpthread-2.8.so)
714==9466== by 0x53250CC: clone (in /lib64/libc-2.8.so)
715==9466== Location 0x6020b8 is 0 bytes inside local var "s_racy"
716==9466== declared at rwlock_race.c:18, in frame #0 of thread 3
bartdd742f22009-07-19 19:50:54 +0000717==9466== Other segment start (thread 2)
bart8f0b0d72008-06-28 16:47:22 +0000718==9466== at 0x4C2847D: pthread_rwlock_rdlock* (drd_pthread_intercepts.c:813)
719==9466== by 0x400B6B: thread_func (rwlock_race.c:28)
720==9466== by 0x4C291DF: vg_thread_wrapper (drd_pthread_intercepts.c:186)
721==9466== by 0x4E3403F: start_thread (in /lib64/libpthread-2.8.so)
722==9466== by 0x53250CC: clone (in /lib64/libc-2.8.so)
bartdd742f22009-07-19 19:50:54 +0000723==9466== Other segment end (thread 2)
bart8f0b0d72008-06-28 16:47:22 +0000724==9466== at 0x4C28B54: pthread_rwlock_unlock* (drd_pthread_intercepts.c:912)
725==9466== by 0x400B84: thread_func (rwlock_race.c:30)
726==9466== by 0x4C291DF: vg_thread_wrapper (drd_pthread_intercepts.c:186)
727==9466== by 0x4E3403F: start_thread (in /lib64/libpthread-2.8.so)
728==9466== by 0x53250CC: clone (in /lib64/libc-2.8.so)
729...
730]]></programlisting>
731
732<para>
733The above report has the following meaning:
734<itemizedlist>
735 <listitem>
736 <para>
737 The number in the column on the left is the process ID of the
738 process being analyzed by DRD.
739 </para>
740 </listitem>
741 <listitem>
742 <para>
bartdd742f22009-07-19 19:50:54 +0000743 The first line ("Thread 3") tells you the thread ID for
744 the thread in which context the data race has been detected.
bart8f0b0d72008-06-28 16:47:22 +0000745 </para>
746 </listitem>
747 <listitem>
748 <para>
bartdd742f22009-07-19 19:50:54 +0000749 The next line tells which kind of operation was performed (load or
750 store) and by which thread. On the same line the start address and the
751 number of bytes involved in the conflicting access are also displayed.
bart8f0b0d72008-06-28 16:47:22 +0000752 </para>
753 </listitem>
754 <listitem>
755 <para>
756 Next, the call stack of the conflicting access is displayed. If
njn2d6d5032009-08-07 05:23:31 +0000757 your program has been compiled with debug information
758 (<option>-g</option>), this call stack will include file names and
759 line numbers. The two
bart8f0b0d72008-06-28 16:47:22 +0000760 bottommost frames in this call stack (<function>clone</function>
bart4ac853b2009-01-02 13:29:32 +0000761 and <function>start_thread</function>) show how the NPTL starts
762 a thread. The third frame
763 (<function>vg_thread_wrapper</function>) is added by DRD. The
764 fourth frame (<function>thread_func</function>) is the first
765 interesting line because it shows the thread entry point, that
766 is the function that has been passed as the third argument to
njn2d6d5032009-08-07 05:23:31 +0000767 <function>pthread_create</function>.
bart8f0b0d72008-06-28 16:47:22 +0000768 </para>
769 </listitem>
770 <listitem>
771 <para>
772 Next, the allocation context for the conflicting address is
bart4ac853b2009-01-02 13:29:32 +0000773 displayed. For dynamically allocated data the allocation call
774 stack is shown. For static variables and stack variables the
775 allocation context is only shown when the option
njn7e5d4ed2009-07-30 02:57:52 +0000776 <option>--read-var-info=yes</option> has been
bart8f0b0d72008-06-28 16:47:22 +0000777 specified. Otherwise DRD will print <computeroutput>Allocation
bart4ac853b2009-01-02 13:29:32 +0000778 context: unknown</computeroutput>.
bart8f0b0d72008-06-28 16:47:22 +0000779 </para>
780 </listitem>
781 <listitem>
782 <para>
783 A conflicting access involves at least two memory accesses. For
784 one of these accesses an exact call stack is displayed, and for
785 the other accesses an approximate call stack is displayed,
786 namely the start and the end of the segments of the other
787 accesses. This information can be interpreted as follows:
788 <orderedlist>
789 <listitem>
790 <para>
791 Start at the bottom of both call stacks, and count the
792 number stack frames with identical function name, file
793 name and line number. In the above example the three
794 bottommost frames are identical
795 (<function>clone</function>,
796 <function>start_thread</function> and
797 <function>vg_thread_wrapper</function>).
798 </para>
799 </listitem>
800 <listitem>
801 <para>
802 The next higher stack frame in both call stacks now tells
803 you between in which source code region the other memory
804 access happened. The above output tells that the other
805 memory access involved in the data race happened between
806 source code lines 28 and 30 in file
807 <computeroutput>rwlock_race.c</computeroutput>.
808 </para>
809 </listitem>
810 </orderedlist>
811 </para>
812 </listitem>
813</itemizedlist>
814</para>
815
bart68bac812008-06-27 14:56:06 +0000816</sect2>
bart5a5fe0c2008-06-15 12:22:37 +0000817
818
bart68bac812008-06-27 14:56:06 +0000819<sect2 id="drd-manual.lock-contention" xreflabel="Lock Contention">
bart88f11412008-07-03 07:08:04 +0000820<title>Detected Errors: Lock Contention</title>
bart8f0b0d72008-06-28 16:47:22 +0000821
822<para>
barta617d112009-07-27 17:43:39 +0000823Threads must be able to make progress without being blocked for too long by
824other threads. Sometimes a thread has to wait until a mutex or reader-writer
825synchronization object is unlocked by another thread. This is called
bart4ac853b2009-01-02 13:29:32 +0000826<emphasis>lock contention</emphasis>.
bart8f0b0d72008-06-28 16:47:22 +0000827</para>
828
829<para>
bart4ac853b2009-01-02 13:29:32 +0000830Lock contention causes delays. Such delays should be as short as
831possible. The two command line options
bart8f0b0d72008-06-28 16:47:22 +0000832<literal>--exclusive-threshold=&lt;n&gt;</literal> and
833<literal>--shared-threshold=&lt;n&gt;</literal> make it possible to
bart4ac853b2009-01-02 13:29:32 +0000834detect excessive lock contention by making DRD report any lock that
835has been held longer than the specified threshold. An example:
bart8f0b0d72008-06-28 16:47:22 +0000836</para>
837<programlisting><![CDATA[
bartef1b9722008-07-04 15:34:23 +0000838$ valgrind --tool=drd --exclusive-threshold=10 drd/tests/hold_lock -i 500
bart8f0b0d72008-06-28 16:47:22 +0000839...
840==10668== Acquired at:
841==10668== at 0x4C267C8: pthread_mutex_lock (drd_pthread_intercepts.c:395)
842==10668== by 0x400D92: main (hold_lock.c:51)
843==10668== Lock on mutex 0x7fefffd50 was held during 503 ms (threshold: 10 ms).
844==10668== at 0x4C26ADA: pthread_mutex_unlock (drd_pthread_intercepts.c:441)
845==10668== by 0x400DB5: main (hold_lock.c:55)
846...
847]]></programlisting>
848
849<para>
850The <literal>hold_lock</literal> test program holds a lock as long as
851specified by the <literal>-i</literal> (interval) argument. The DRD
852output reports that the lock acquired at line 51 in source file
853<literal>hold_lock.c</literal> and released at line 55 was held during
854503 ms, while a threshold of 10 ms was specified to DRD.
855</para>
856
bart68bac812008-06-27 14:56:06 +0000857</sect2>
bart5a5fe0c2008-06-15 12:22:37 +0000858
859
bart68bac812008-06-27 14:56:06 +0000860<sect2 id="drd-manual.api-checks" xreflabel="API Checks">
bart88f11412008-07-03 07:08:04 +0000861<title>Detected Errors: Misuse of the POSIX threads API</title>
bart8f0b0d72008-06-28 16:47:22 +0000862
863<para>
864 DRD is able to detect and report the following misuses of the POSIX
865 threads API:
866 <itemizedlist>
867 <listitem>
868 <para>
869 Passing the address of one type of synchronization object
870 (e.g. a mutex) to a POSIX API call that expects a pointer to
871 another type of synchronization object (e.g. a condition
872 variable).
873 </para>
874 </listitem>
875 <listitem>
876 <para>
bart4ac853b2009-01-02 13:29:32 +0000877 Attempts to unlock a mutex that has not been locked.
bart8f0b0d72008-06-28 16:47:22 +0000878 </para>
879 </listitem>
880 <listitem>
881 <para>
bart4ac853b2009-01-02 13:29:32 +0000882 Attempts to unlock a mutex that was locked by another thread.
bart8f0b0d72008-06-28 16:47:22 +0000883 </para>
884 </listitem>
885 <listitem>
886 <para>
bart4ac853b2009-01-02 13:29:32 +0000887 Attempts to lock a mutex of type
bart8f0b0d72008-06-28 16:47:22 +0000888 <literal>PTHREAD_MUTEX_NORMAL</literal> or a spinlock
889 recursively.
890 </para>
891 </listitem>
892 <listitem>
893 <para>
894 Destruction or deallocation of a locked mutex.
895 </para>
896 </listitem>
897 <listitem>
898 <para>
899 Sending a signal to a condition variable while no lock is held
bartdd742f22009-07-19 19:50:54 +0000900 on the mutex associated with the condition variable.
bart8f0b0d72008-06-28 16:47:22 +0000901 </para>
902 </listitem>
903 <listitem>
904 <para>
njn2d6d5032009-08-07 05:23:31 +0000905 Calling <function>pthread_cond_wait</function> on a mutex
bart8f0b0d72008-06-28 16:47:22 +0000906 that is not locked, that is locked by another thread or that
907 has been locked recursively.
908 </para>
909 </listitem>
910 <listitem>
911 <para>
912 Associating two different mutexes with a condition variable
njn2d6d5032009-08-07 05:23:31 +0000913 through <function>pthread_cond_wait</function>.
bart8f0b0d72008-06-28 16:47:22 +0000914 </para>
915 </listitem>
916 <listitem>
917 <para>
918 Destruction or deallocation of a condition variable that is
919 being waited upon.
920 </para>
921 </listitem>
922 <listitem>
923 <para>
barta617d112009-07-27 17:43:39 +0000924 Destruction or deallocation of a locked reader-writer synchronization
925 object.
bart8f0b0d72008-06-28 16:47:22 +0000926 </para>
927 </listitem>
928 <listitem>
929 <para>
barta617d112009-07-27 17:43:39 +0000930 Attempts to unlock a reader-writer synchronization object that was not
931 locked by the calling thread.
bart8f0b0d72008-06-28 16:47:22 +0000932 </para>
933 </listitem>
934 <listitem>
935 <para>
barta617d112009-07-27 17:43:39 +0000936 Attempts to recursively lock a reader-writer synchronization object
937 exclusively.
938 </para>
939 </listitem>
940 <listitem>
941 <para>
942 Attempts to pass the address of a user-defined reader-writer
943 synchronization object to a POSIX threads function.
944 </para>
945 </listitem>
946 <listitem>
947 <para>
948 Attempts to pass the address of a POSIX reader-writer synchronization
949 object to one of the annotations for user-defined reader-writer
950 synchronization objects.
bart8f0b0d72008-06-28 16:47:22 +0000951 </para>
952 </listitem>
953 <listitem>
954 <para>
955 Reinitialization of a mutex, condition variable, reader-writer
956 lock, semaphore or barrier.
957 </para>
958 </listitem>
959 <listitem>
960 <para>
961 Destruction or deallocation of a semaphore or barrier that is
962 being waited upon.
963 </para>
964 </listitem>
965 <listitem>
966 <para>
bart776a91e2009-02-22 09:29:07 +0000967 Missing synchronization between barrier wait and barrier destruction.
968 </para>
969 </listitem>
970 <listitem>
971 <para>
barta617d112009-07-27 17:43:39 +0000972 Exiting a thread without first unlocking the spinlocks, mutexes or
973 reader-writer synchronization objects that were locked by that thread.
bart8f0b0d72008-06-28 16:47:22 +0000974 </para>
975 </listitem>
bart291bb5e2009-08-15 13:31:41 +0000976 <listitem>
977 <para>
978 Passing an invalid thread ID to <function>pthread_join</function>
979 or <function>pthread_cancel</function>.
980 </para>
981 </listitem>
bart8f0b0d72008-06-28 16:47:22 +0000982 </itemizedlist>
983</para>
984
bart68bac812008-06-27 14:56:06 +0000985</sect2>
bart5a5fe0c2008-06-15 12:22:37 +0000986
987
bart68bac812008-06-27 14:56:06 +0000988<sect2 id="drd-manual.clientreqs" xreflabel="Client requests">
bart5a5fe0c2008-06-15 12:22:37 +0000989<title>Client Requests</title>
990
991<para>
bartdd742f22009-07-19 19:50:54 +0000992Just as for other Valgrind tools it is possible to let a client program
993interact with the DRD tool through client requests. In addition to the
njn2d6d5032009-08-07 05:23:31 +0000994client requests several macros have been defined that allow to use the
bartdd742f22009-07-19 19:50:54 +0000995client requests in a convenient way.
bart1e7f2782008-07-01 13:43:44 +0000996</para>
997
998<para>
999The interface between client programs and the DRD tool is defined in
1000the header file <literal>&lt;valgrind/drd.h&gt;</literal>. The
njn2d6d5032009-08-07 05:23:31 +00001001available macros and client requests are:
bart1e7f2782008-07-01 13:43:44 +00001002<itemizedlist>
1003 <listitem>
1004 <para>
bartdd742f22009-07-19 19:50:54 +00001005 The macro <literal>DRD_GET_VALGRIND_THREADID</literal> and the
1006 corresponding client
1007 request <varname>VG_USERREQ__DRD_GET_VALGRIND_THREAD_ID</varname>.
1008 Query the thread ID that has been assigned by the Valgrind core to the
1009 thread executing this client request. Valgrind's thread ID's start at
1010 one and are recycled in case a thread stops.
bart1e7f2782008-07-01 13:43:44 +00001011 </para>
1012 </listitem>
1013 <listitem>
1014 <para>
bartdd742f22009-07-19 19:50:54 +00001015 The macro <literal>DRD_GET_DRD_THREADID</literal> and the corresponding
1016 client request <varname>VG_USERREQ__DRD_GET_DRD_THREAD_ID</varname>.
1017 Query the thread ID that has been assigned by DRD to the thread
1018 executing this client request. These are the thread ID's reported by DRD
1019 in data race reports and in trace messages. DRD's thread ID's start at
1020 one and are never recycled.
bart1e7f2782008-07-01 13:43:44 +00001021 </para>
1022 </listitem>
1023 <listitem>
1024 <para>
njn2d6d5032009-08-07 05:23:31 +00001025 The macros <literal>DRD_IGNORE_VAR(x)</literal>,
bartdd742f22009-07-19 19:50:54 +00001026 <literal>ANNOTATE_TRACE_MEMORY(&amp;x)</literal> and the corresponding
1027 client request <varname>VG_USERREQ__DRD_START_SUPPRESSION</varname>. Some
1028 applications contain intentional races. There exist e.g. applications
1029 where the same value is assigned to a shared variable from two different
1030 threads. It may be more convenient to suppress such races than to solve
1031 these. This client request allows to suppress such races.
bart1e7f2782008-07-01 13:43:44 +00001032 </para>
1033 </listitem>
1034 <listitem>
1035 <para>
bart07ec5932009-07-26 15:58:25 +00001036 The macro <literal>DRD_STOP_IGNORING_VAR(x)</literal> and the
1037 corresponding client request
1038 <varname>VG_USERREQ__DRD_FINISH_SUPPRESSION</varname>. Tell DRD
bartdd742f22009-07-19 19:50:54 +00001039 to no longer ignore data races for the address range that was suppressed
bart07ec5932009-07-26 15:58:25 +00001040 either via the macro <literal>DRD_IGNORE_VAR(x)</literal> or via the
1041 client request <varname>VG_USERREQ__DRD_START_SUPPRESSION</varname>.
bart1e7f2782008-07-01 13:43:44 +00001042 </para>
1043 </listitem>
1044 <listitem>
1045 <para>
bart3f27c8c2009-12-10 17:58:46 +00001046 The macro <literal>DRD_TRACE_VAR(x)</literal>. Trace all load and store
1047 activity for the address range starting at <literal>&amp;x</literal> and
1048 occupying <literal>sizeof(x)</literal> bytes. When DRD reports a data
1049 race on a specified variable, and it's not immediately clear which
1050 source code statements triggered the conflicting accesses, it can be
1051 very helpful to trace all activity on the offending memory location.
1052 </para>
1053 </listitem>
1054 <listitem>
1055 <para>
bart858c2d72012-06-16 18:51:16 +00001056 The macro <literal>DRD_STOP_TRACING_VAR(x)</literal>. Stop tracing load
1057 and store activity for the address range starting
1058 at <literal>&amp;x</literal> and occupying <literal>sizeof(x)</literal>
1059 bytes.
1060 </para>
1061 </listitem>
1062 <listitem>
1063 <para>
bart3f27c8c2009-12-10 17:58:46 +00001064 The macro <literal>ANNOTATE_TRACE_MEMORY(&amp;x)</literal>. Trace all
1065 load and store activity that touches at least the single byte at the
1066 address <literal>&amp;x</literal>.
1067 </para>
1068 </listitem>
1069 <listitem>
1070 <para>
1071 The client request <varname>VG_USERREQ__DRD_START_TRACE_ADDR</varname>,
1072 which allows to trace all load and store activity for the specified
1073 address range.
bart1e7f2782008-07-01 13:43:44 +00001074 </para>
1075 </listitem>
1076 <listitem>
1077 <para>
bartdd742f22009-07-19 19:50:54 +00001078 The client
1079 request <varname>VG_USERREQ__DRD_STOP_TRACE_ADDR</varname>. Do no longer
bart1e7f2782008-07-01 13:43:44 +00001080 trace load and store activity for the specified address range.
bart1e7f2782008-07-01 13:43:44 +00001081 </para>
1082 </listitem>
bartdd742f22009-07-19 19:50:54 +00001083 <listitem>
1084 <para>
1085 The macro <literal>ANNOTATE_HAPPENS_BEFORE(addr)</literal> tells DRD to
1086 insert a mark. Insert this macro just after an access to the variable at
1087 the specified address has been performed.
1088 </para>
1089 </listitem>
1090 <listitem>
1091 <para>
1092 The macro <literal>ANNOTATE_HAPPENS_AFTER(addr)</literal> tells DRD that
1093 the next access to the variable at the specified address should be
1094 considered to have happened after the access just before the latest
1095 <literal>ANNOTATE_HAPPENS_BEFORE(addr)</literal> annotation that
bart18f734b2010-10-10 18:57:53 +00001096 references the same variable. The purpose of these two macros is to tell
1097 DRD about the order of inter-thread memory accesses implemented via
1098 atomic memory operations. See
1099 also <literal>drd/tests/annotate_smart_pointer.cpp</literal> for an
1100 example.
bartdd742f22009-07-19 19:50:54 +00001101 </para>
1102 </listitem>
1103 <listitem>
1104 <para>
1105 The macro <literal>ANNOTATE_RWLOCK_CREATE(rwlock)</literal> tells DRD
1106 that the object at address <literal>rwlock</literal> is a
1107 reader-writer synchronization object that is not a
bart18f734b2010-10-10 18:57:53 +00001108 <literal>pthread_rwlock_t</literal> synchronization object. See
1109 also <literal>drd/tests/annotate_rwlock.c</literal> for an example.
bartdd742f22009-07-19 19:50:54 +00001110 </para>
1111 </listitem>
1112 <listitem>
1113 <para>
1114 The macro <literal>ANNOTATE_RWLOCK_DESTROY(rwlock)</literal> tells DRD
1115 that the reader-writer synchronization object at
1116 address <literal>rwlock</literal> has been destroyed.
1117 </para>
1118 </listitem>
1119 <listitem>
1120 <para>
1121 The macro <literal>ANNOTATE_WRITERLOCK_ACQUIRED(rwlock)</literal> tells
1122 DRD that a writer lock has been acquired on the reader-writer
1123 synchronization object at address <literal>rwlock</literal>.
1124 </para>
1125 </listitem>
1126 <listitem>
1127 <para>
1128 The macro <literal>ANNOTATE_READERLOCK_ACQUIRED(rwlock)</literal> tells
1129 DRD that a reader lock has been acquired on the reader-writer
1130 synchronization object at address <literal>rwlock</literal>.
1131 </para>
1132 </listitem>
1133 <listitem>
1134 <para>
1135 The macro <literal>ANNOTATE_RWLOCK_ACQUIRED(rwlock, is_w)</literal>
1136 tells DRD that a writer lock (when <literal>is_w != 0</literal>) or that
1137 a reader lock (when <literal>is_w == 0</literal>) has been acquired on
1138 the reader-writer synchronization object at
1139 address <literal>rwlock</literal>.
1140 </para>
1141 </listitem>
1142 <listitem>
1143 <para>
1144 The macro <literal>ANNOTATE_WRITERLOCK_RELEASED(rwlock)</literal> tells
1145 DRD that a writer lock has been released on the reader-writer
1146 synchronization object at address <literal>rwlock</literal>.
1147 </para>
1148 </listitem>
1149 <listitem>
1150 <para>
1151 The macro <literal>ANNOTATE_READERLOCK_RELEASED(rwlock)</literal> tells
1152 DRD that a reader lock has been released on the reader-writer
1153 synchronization object at address <literal>rwlock</literal>.
1154 </para>
1155 </listitem>
1156 <listitem>
1157 <para>
1158 The macro <literal>ANNOTATE_RWLOCK_RELEASED(rwlock, is_w)</literal>
1159 tells DRD that a writer lock (when <literal>is_w != 0</literal>) or that
1160 a reader lock (when <literal>is_w == 0</literal>) has been released on
1161 the reader-writer synchronization object at
1162 address <literal>rwlock</literal>.
1163 </para>
1164 </listitem>
1165 <listitem>
1166 <para>
bart18f734b2010-10-10 18:57:53 +00001167 The macro <literal>ANNOTATE_BARRIER_INIT(barrier, count,
1168 reinitialization_allowed)</literal> tells DRD that a new barrier object
1169 at the address <literal>barrier</literal> has been initialized,
1170 that <literal>count</literal> threads participate in each barrier and
1171 also whether or not barrier reinitialization without intervening
1172 destruction should be reported as an error. See
1173 also <literal>drd/tests/annotate_barrier.c</literal> for an example.
1174 </para>
1175 </listitem>
1176 <listitem>
1177 <para>
1178 The macro <literal>ANNOTATE_BARRIER_DESTROY(barrier)</literal>
1179 tells DRD that a barrier object is about to be destroyed.
1180 </para>
1181 </listitem>
1182 <listitem>
1183 <para>
1184 The macro <literal>ANNOTATE_BARRIER_WAIT_BEFORE(barrier)</literal>
1185 tells DRD that waiting for a barrier will start.
1186 </para>
1187 </listitem>
1188 <listitem>
1189 <para>
1190 The macro <literal>ANNOTATE_BARRIER_WAIT_AFTER(barrier)</literal>
1191 tells DRD that waiting for a barrier has finished.
1192 </para>
1193 </listitem>
1194 <listitem>
1195 <para>
1196 The macro <literal>ANNOTATE_BENIGN_RACE_SIZED(addr, size,
1197 descr)</literal> tells DRD that any races detected on the specified
1198 address are benign and hence should not be
1199 reported. The <literal>descr</literal> argument is ignored but can be
1200 used to document why data races on <literal>addr</literal> are benign.
1201 </para>
1202 </listitem>
1203 <listitem>
1204 <para>
1205 The macro <literal>ANNOTATE_BENIGN_RACE_STATIC(var, descr)</literal>
1206 tells DRD that any races detected on the specified static variable are
1207 benign and hence should not be reported. The <literal>descr</literal>
1208 argument is ignored but can be used to document why data races
1209 on <literal>var</literal> are benign. Note: this macro can only be
1210 used in C++ programs and not in C programs.
bartdd742f22009-07-19 19:50:54 +00001211 </para>
1212 </listitem>
1213 <listitem>
1214 <para>
1215 The macro <literal>ANNOTATE_IGNORE_READS_BEGIN</literal> tells
1216 DRD to ignore all memory loads performed by the current thread.
1217 </para>
1218 </listitem>
1219 <listitem>
1220 <para>
1221 The macro <literal>ANNOTATE_IGNORE_READS_END</literal> tells
1222 DRD to stop ignoring the memory loads performed by the current thread.
1223 </para>
1224 </listitem>
1225 <listitem>
1226 <para>
1227 The macro <literal>ANNOTATE_IGNORE_WRITES_BEGIN</literal> tells
1228 DRD to ignore all memory stores performed by the current thread.
1229 </para>
1230 </listitem>
1231 <listitem>
1232 <para>
1233 The macro <literal>ANNOTATE_IGNORE_WRITES_END</literal> tells
1234 DRD to stop ignoring the memory stores performed by the current thread.
1235 </para>
1236 </listitem>
1237 <listitem>
1238 <para>
1239 The macro <literal>ANNOTATE_IGNORE_READS_AND_WRITES_BEGIN</literal> tells
1240 DRD to ignore all memory accesses performed by the current thread.
1241 </para>
1242 </listitem>
1243 <listitem>
1244 <para>
1245 The macro <literal>ANNOTATE_IGNORE_READS_AND_WRITES_END</literal> tells
1246 DRD to stop ignoring the memory accesses performed by the current thread.
1247 </para>
1248 </listitem>
1249 <listitem>
1250 <para>
1251 The macro <literal>ANNOTATE_NEW_MEMORY(addr, size)</literal> tells
1252 DRD that the specified memory range has been allocated by a custom
1253 memory allocator in the client program and that the client program
1254 will start using this memory range.
1255 </para>
1256 </listitem>
1257 <listitem>
1258 <para>
1259 The macro <literal>ANNOTATE_THREAD_NAME(name)</literal> tells DRD to
1260 associate the specified name with the current thread and to include this
1261 name in the error messages printed by DRD.
1262 </para>
1263 </listitem>
njnf0f90372009-08-10 01:34:27 +00001264 <listitem>
1265 <para>
1266 The macros <literal>VALGRIND_MALLOCLIKE_BLOCK</literal> and
1267 <literal>VALGRIND_FREELIKE_BLOCK</literal> from the Valgrind core are
1268 implemented; they are described in
1269 <xref linkend="manual-core-adv.clientreq"/>.
1270 </para>
1271 </listitem>
bart1e7f2782008-07-01 13:43:44 +00001272</itemizedlist>
1273</para>
1274
1275<para>
1276Note: if you compiled Valgrind yourself, the header file
1277<literal>&lt;valgrind/drd.h&gt;</literal> will have been installed in
1278the directory <literal>/usr/include</literal> by the command
1279<literal>make install</literal>. If you obtained Valgrind by
1280installing it as a package however, you will probably have to install
1281another package with a name like <literal>valgrind-devel</literal>
bartdd742f22009-07-19 19:50:54 +00001282before Valgrind's header files are available.
bart5a5fe0c2008-06-15 12:22:37 +00001283</para>
1284
bart68bac812008-06-27 14:56:06 +00001285</sect2>
bart5a5fe0c2008-06-15 12:22:37 +00001286
1287
bart8bad1f32014-06-06 07:23:06 +00001288<sect2 id="drd-manual.C++11" xreflabel="C++11">
1289<title>Debugging C++11 Programs</title>
1290
bart5a3b2a42014-06-07 13:16:24 +00001291<para>If you want to use the C++11 class std::thread you will need to do the
1292 following to annotate the std::shared_ptr&lt;&gt; objects used in the
1293 implementation of that class:
1294<itemizedlist>
1295 <listitem>
1296 <para>Add the following code at the start of a common header or at the
1297 start of each source file, before any C++ header files are included:</para>
1298 <programlisting>
bart8bad1f32014-06-06 07:23:06 +00001299#include &lt;valgrind/drd.h&gt;
1300#define _GLIBCXX_SYNCHRONIZATION_HAPPENS_BEFORE(addr) ANNOTATE_HAPPENS_BEFORE(addr)
1301#define _GLIBCXX_SYNCHRONIZATION_HAPPENS_AFTER(addr) ANNOTATE_HAPPENS_AFTER(addr)
bart8bad1f32014-06-06 07:23:06 +00001302</programlisting>
bart5a3b2a42014-06-07 13:16:24 +00001303 </listitem>
1304 <listitem>
1305 <para>Download the gcc source code and from source file
1306 libstdc++-v3/src/c++11/thread.cc copy the implementation of the
1307 <computeroutput>execute_native_thread_routine()</computeroutput>
1308 and <computeroutput>std::thread::_M_start_thread()</computeroutput>
1309 functions into a source file that is linked with your application. Make
1310 sure that also in this source file the
1311 _GLIBCXX_SYNCHRONIZATION_HAPPENS_*() macros are defined properly.</para>
1312 </listitem>
1313</itemizedlist>
1314</para>
1315<para>For more information, see also <emphasis>The
bart8bad1f32014-06-06 07:23:06 +00001316GNU C++ Library Manual, Debugging Support</emphasis>
bartde9b4852014-09-06 06:23:15 +00001317(<ulink url="http://gcc.gnu.org/onlinedocs/libstdc++/manual/debug.html">http://gcc.gnu.org/onlinedocs/libstdc++/manual/debug.html</ulink>).</para>
bart8bad1f32014-06-06 07:23:06 +00001318
1319</sect2>
1320
1321
bart9ab8cac2008-07-07 18:38:17 +00001322<sect2 id="drd-manual.gnome" xreflabel="GNOME">
bart76ca62c2008-12-17 19:10:06 +00001323<title>Debugging GNOME Programs</title>
bart9ab8cac2008-07-07 18:38:17 +00001324
1325<para>
1326GNOME applications use the threading primitives provided by the
barte2624a92008-07-28 14:55:38 +00001327<computeroutput>glib</computeroutput> and
1328<computeroutput>gthread</computeroutput> libraries. These libraries
1329are built on top of POSIX threads, and hence are directly supported by
1330DRD. Please keep in mind that you have to call
njn2d6d5032009-08-07 05:23:31 +00001331<function>g_thread_init</function> before creating any threads, or
barte2624a92008-07-28 14:55:38 +00001332DRD will report several data races on glib functions. See also the
1333<ulink
1334url="http://library.gnome.org/devel/glib/stable/glib-Threads.html">GLib
1335Reference Manual</ulink> for more information about
njn2d6d5032009-08-07 05:23:31 +00001336<function>g_thread_init</function>.
bart9ab8cac2008-07-07 18:38:17 +00001337</para>
1338
bart39cf2682008-07-10 06:27:52 +00001339<para>
1340One of the many facilities provided by the <literal>glib</literal>
1341library is a block allocator, called <literal>g_slice</literal>. You
1342have to disable this block allocator when using DRD by adding the
1343following to the shell environment variables:
1344<literal>G_SLICE=always-malloc</literal>. See also the <ulink
1345url="http://library.gnome.org/devel/glib/stable/glib-Memory-Slices.html">GLib
1346Reference Manual</ulink> for more information.
1347</para>
1348
bart9ab8cac2008-07-07 18:38:17 +00001349</sect2>
1350
1351
bart76ca62c2008-12-17 19:10:06 +00001352<sect2 id="drd-manual.boost.thread" xreflabel="Boost.Thread">
1353<title>Debugging Boost.Thread Programs</title>
1354
1355<para>
bartc57312c2008-12-17 19:15:58 +00001356The Boost.Thread library is the threading library included with the
1357cross-platform Boost Libraries. This threading library is an early
1358implementation of the upcoming C++0x threading library.
1359</para>
1360
1361<para>
1362Applications that use the Boost.Thread library should run fine under DRD.
bart76ca62c2008-12-17 19:10:06 +00001363</para>
1364
1365<para>
1366More information about Boost.Thread can be found here:
1367<itemizedlist>
1368 <listitem>
1369 <para>
1370 Anthony Williams, <ulink
1371 url="http://www.boost.org/doc/libs/1_37_0/doc/html/thread.html">Boost.Thread</ulink>
1372 Library Documentation, Boost website, 2007.
1373 </para>
1374 </listitem>
1375 <listitem>
1376 <para>
1377 Anthony Williams, <ulink
1378 url="http://www.ddj.com/cpp/211600441">What's New in Boost
1379 Threads?</ulink>, Recent changes to the Boost Thread library,
1380 Dr. Dobbs Magazine, October 2008.
1381 </para>
1382 </listitem>
1383</itemizedlist>
1384</para>
1385
1386</sect2>
1387
1388
bart68bac812008-06-27 14:56:06 +00001389<sect2 id="drd-manual.openmp" xreflabel="OpenMP">
bart76ca62c2008-12-17 19:10:06 +00001390<title>Debugging OpenMP Programs</title>
bart5a5fe0c2008-06-15 12:22:37 +00001391
1392<para>
bartdd742f22009-07-19 19:50:54 +00001393OpenMP stands for <emphasis>Open Multi-Processing</emphasis>. The OpenMP
1394standard consists of a set of compiler directives for C, C++ and Fortran
1395programs that allows a compiler to transform a sequential program into a
1396parallel program. OpenMP is well suited for HPC applications and allows to
1397work at a higher level compared to direct use of the POSIX threads API. While
1398OpenMP ensures that the POSIX API is used correctly, OpenMP programs can still
1399contain data races. So it definitely makes sense to verify OpenMP programs
1400with a thread checking tool.
bart1e7f2782008-07-01 13:43:44 +00001401</para>
1402
1403<para>
njn7316df22009-08-04 01:16:01 +00001404DRD supports OpenMP shared-memory programs generated by GCC. GCC
1405supports OpenMP since version 4.2.0. GCC's runtime support
bart1e7f2782008-07-01 13:43:44 +00001406for OpenMP programs is provided by a library called
bartdd742f22009-07-19 19:50:54 +00001407<literal>libgomp</literal>. The synchronization primitives implemented
bart1e7f2782008-07-01 13:43:44 +00001408in this library use Linux' futex system call directly, unless the
1409library has been configured with the
njna3311642009-08-10 01:29:14 +00001410<literal>--disable-linux-futex</literal> option. DRD only supports
1411libgomp libraries that have been configured with this option and in
bart1e7f2782008-07-01 13:43:44 +00001412which symbol information is present. For most Linux distributions this
njn7316df22009-08-04 01:16:01 +00001413means that you will have to recompile GCC. See also the script
bartef1b9722008-07-04 15:34:23 +00001414<literal>drd/scripts/download-and-build-gcc</literal> in the
njn7316df22009-08-04 01:16:01 +00001415Valgrind source tree for an example of how to compile GCC. You will
bart1e7f2782008-07-01 13:43:44 +00001416also have to make sure that the newly compiled
1417<literal>libgomp.so</literal> library is loaded when OpenMP programs
1418are started. This is possible by adding a line similar to the
1419following to your shell startup script:
1420</para>
1421<programlisting><![CDATA[
bartdd742f22009-07-19 19:50:54 +00001422export LD_LIBRARY_PATH=~/gcc-4.4.0/lib64:~/gcc-4.4.0/lib:
bart1e7f2782008-07-01 13:43:44 +00001423]]></programlisting>
1424
1425<para>
1426As an example, the test OpenMP test program
bart66ba8c02008-10-11 18:28:12 +00001427<literal>drd/tests/omp_matinv</literal> triggers a data race
bart1e7f2782008-07-01 13:43:44 +00001428when the option -r has been specified on the command line. The data
1429race is triggered by the following code:
1430</para>
1431<programlisting><![CDATA[
1432#pragma omp parallel for private(j)
1433for (j = 0; j < rows; j++)
1434{
1435 if (i != j)
1436 {
1437 const elem_t factor = a[j * cols + i];
1438 for (k = 0; k < cols; k++)
1439 {
1440 a[j * cols + k] -= a[i * cols + k] * factor;
1441 }
1442 }
1443}
1444]]></programlisting>
1445
1446<para>
1447The above code is racy because the variable <literal>k</literal> has
1448not been declared private. DRD will print the following error message
1449for the above code:
1450</para>
1451<programlisting><![CDATA[
barte2b98232009-07-22 18:13:21 +00001452$ valgrind --tool=drd --check-stack-var=yes --read-var-info=yes drd/tests/omp_matinv 3 -t 2 -r
bart1e7f2782008-07-01 13:43:44 +00001453...
1454Conflicting store by thread 1/1 at 0x7fefffbc4 size 4
1455 at 0x4014A0: gj.omp_fn.0 (omp_matinv.c:203)
1456 by 0x401211: gj (omp_matinv.c:159)
1457 by 0x40166A: invert_matrix (omp_matinv.c:238)
1458 by 0x4019B4: main (omp_matinv.c:316)
bartdd742f22009-07-19 19:50:54 +00001459Location 0x7fefffbc4 is 0 bytes inside local var "k"
1460declared at omp_matinv.c:160, in frame #0 of thread 1
bart1e7f2782008-07-01 13:43:44 +00001461...
1462]]></programlisting>
1463<para>
1464In the above output the function name <function>gj.omp_fn.0</function>
njn7316df22009-08-04 01:16:01 +00001465has been generated by GCC from the function name
bartdd742f22009-07-19 19:50:54 +00001466<function>gj</function>. The allocation context information shows that the
1467data race has been caused by modifying the variable <literal>k</literal>.
bart1e7f2782008-07-01 13:43:44 +00001468</para>
1469
1470<para>
njn7316df22009-08-04 01:16:01 +00001471Note: for GCC versions before 4.4.0, no allocation context information is
1472shown. With these GCC versions the most usable information in the above output
bartdd742f22009-07-19 19:50:54 +00001473is the source file name and the line number where the data race has been
1474detected (<literal>omp_matinv.c:203</literal>).
bart243ad392008-07-02 11:50:37 +00001475</para>
1476
1477<para>
bart68bac812008-06-27 14:56:06 +00001478For more information about OpenMP, see also
1479<ulink url="http://openmp.org/">openmp.org</ulink>.
1480</para>
1481
1482</sect2>
1483
1484
bart88f11412008-07-03 07:08:04 +00001485<sect2 id="drd-manual.cust-mem-alloc" xreflabel="Custom Memory Allocators">
1486<title>DRD and Custom Memory Allocators</title>
1487
1488<para>
bartdd742f22009-07-19 19:50:54 +00001489DRD tracks all memory allocation events that happen via the
bart88f11412008-07-03 07:08:04 +00001490standard memory allocation and deallocation functions
1491(<function>malloc</function>, <function>free</function>,
bartdd742f22009-07-19 19:50:54 +00001492<function>new</function> and <function>delete</function>), via entry
1493and exit of stack frames or that have been annotated with Valgrind's
1494memory pool client requests. DRD uses memory allocation and deallocation
bart88f11412008-07-03 07:08:04 +00001495information for two purposes:
1496<itemizedlist>
1497 <listitem>
1498 <para>
1499 To know where the scope ends of POSIX objects that have not been
1500 destroyed explicitly. It is e.g. not required by the POSIX
1501 threads standard to call
njn2d6d5032009-08-07 05:23:31 +00001502 <function>pthread_mutex_destroy</function> before freeing the
bart88f11412008-07-03 07:08:04 +00001503 memory in which a mutex object resides.
1504 </para>
1505 </listitem>
1506 <listitem>
1507 <para>
1508 To know where the scope of variables ends. If e.g. heap memory
1509 has been used by one thread, that thread frees that memory, and
1510 another thread allocates and starts using that memory, no data
1511 races must be reported for that memory.
1512 </para>
1513 </listitem>
1514</itemizedlist>
1515</para>
1516
1517<para>
1518It is essential for correct operation of DRD that the tool knows about
bartdd742f22009-07-19 19:50:54 +00001519memory allocation and deallocation events. When analyzing a client program
1520with DRD that uses a custom memory allocator, either instrument the custom
njn2d6d5032009-08-07 05:23:31 +00001521memory allocator with the <literal>VALGRIND_MALLOCLIKE_BLOCK</literal>
1522and <literal>VALGRIND_FREELIKE_BLOCK</literal> macros or disable the
bartdd742f22009-07-19 19:50:54 +00001523custom memory allocator.
1524</para>
1525
1526<para>
1527As an example, the GNU libstdc++ library can be configured
bart88f11412008-07-03 07:08:04 +00001528to use standard memory allocation functions instead of memory pools by
1529setting the environment variable
1530<literal>GLIBCXX_FORCE_NEW</literal>. For more information, see also
1531the <ulink
1532url="http://gcc.gnu.org/onlinedocs/libstdc++/manual/bk01pt04ch11.html">libstdc++
1533manual</ulink>.
1534</para>
1535
1536</sect2>
1537
1538
1539<sect2 id="drd-manual.drd-versus-memcheck" xreflabel="DRD Versus Memcheck">
1540<title>DRD Versus Memcheck</title>
1541
1542<para>
1543It is essential for correct operation of DRD that there are no memory
bart4ac853b2009-01-02 13:29:32 +00001544errors such as dangling pointers in the client program. Which means that
njn2d6d5032009-08-07 05:23:31 +00001545it is a good idea to make sure that your program is Memcheck-clean
bart88f11412008-07-03 07:08:04 +00001546before you analyze it with DRD. It is possible however that some of
njn2d6d5032009-08-07 05:23:31 +00001547the Memcheck reports are caused by data races. In this case it makes
1548sense to run DRD before Memcheck.
bart88f11412008-07-03 07:08:04 +00001549</para>
1550
1551<para>
njn2d6d5032009-08-07 05:23:31 +00001552So which tool should be run first? In case both DRD and Memcheck
bart88f11412008-07-03 07:08:04 +00001553complain about a program, a possible approach is to run both tools
1554alternatingly and to fix as many errors as possible after each run of
1555each tool until none of the two tools prints any more error messages.
1556</para>
1557
1558</sect2>
1559
1560
bart3d986d62008-07-05 14:25:09 +00001561<sect2 id="drd-manual.resource-requirements" xreflabel="Resource Requirements">
bart88f11412008-07-03 07:08:04 +00001562<title>Resource Requirements</title>
1563
1564<para>
1565The requirements of DRD with regard to heap and stack memory and the
1566effect on the execution time of client programs are as follows:
1567<itemizedlist>
1568 <listitem>
1569 <para>
1570 When running a program under DRD with default DRD options,
1571 between 1.1 and 3.6 times more memory will be needed compared to
1572 a native run of the client program. More memory will be needed
1573 if loading debug information has been enabled
barte2b98232009-07-22 18:13:21 +00001574 (<literal>--read-var-info=yes</literal>).
bart88f11412008-07-03 07:08:04 +00001575 </para>
1576 </listitem>
1577 <listitem>
1578 <para>
1579 DRD allocates some of its temporary data structures on the stack
1580 of the client program threads. This amount of data is limited to
1581 1 - 2 KB. Make sure that thread stacks are sufficiently large.
1582 </para>
1583 </listitem>
1584 <listitem>
1585 <para>
1586 Most applications will run between 20 and 50 times slower under
bartdd742f22009-07-19 19:50:54 +00001587 DRD than a native single-threaded run. The slowdown will be most
njn2d6d5032009-08-07 05:23:31 +00001588 noticeable for applications which perform frequent mutex lock /
bartdd742f22009-07-19 19:50:54 +00001589 unlock operations.
bart88f11412008-07-03 07:08:04 +00001590 </para>
1591 </listitem>
1592</itemizedlist>
1593</para>
1594
1595</sect2>
1596
1597
bart3d986d62008-07-05 14:25:09 +00001598<sect2 id="drd-manual.effective-use" xreflabel="Effective Use">
1599<title>Hints and Tips for Effective Use of DRD</title>
1600
1601<para>
1602The following information may be helpful when using DRD:
1603<itemizedlist>
1604 <listitem>
1605 <para>
1606 Make sure that debug information is present in the executable
bartdd742f22009-07-19 19:50:54 +00001607 being analyzed, such that DRD can print function name and line
bart3d986d62008-07-05 14:25:09 +00001608 number information in stack traces. Most compilers can be told
1609 to include debug information via compiler option
1610 <option>-g</option>.
1611 </para>
1612 </listitem>
1613 <listitem>
1614 <para>
njna3311642009-08-10 01:29:14 +00001615 Compile with option <option>-O1</option> instead of
bart3d986d62008-07-05 14:25:09 +00001616 <option>-O0</option>. This will reduce the amount of generated
1617 code, may reduce the amount of debug info and will speed up
1618 DRD's processing of the client program. For more information,
1619 see also <xref linkend="manual-core.started"/>.
1620 </para>
1621 </listitem>
1622 <listitem>
1623 <para>
1624 If DRD reports any errors on libraries that are part of your
1625 Linux distribution like e.g. <literal>libc.so</literal> or
1626 <literal>libstdc++.so</literal>, installing the debug packages
1627 for these libraries will make the output of DRD a lot more
1628 detailed.
1629 </para>
1630 </listitem>
1631 <listitem>
1632 <para>
1633 When using C++, do not send output from more than one thread to
1634 <literal>std::cout</literal>. Doing so would not only
1635 generate multiple data race reports, it could also result in
1636 output from several threads getting mixed up. Either use
njn2d6d5032009-08-07 05:23:31 +00001637 <function>printf</function> or do the following:
bart3d986d62008-07-05 14:25:09 +00001638 <orderedlist>
1639 <listitem>
1640 <para>Derive a class from <literal>std::ostreambuf</literal>
1641 and let that class send output line by line to
1642 <literal>stdout</literal>. This will avoid that individual
1643 lines of text produced by different threads get mixed
1644 up.</para>
1645 </listitem>
1646 <listitem>
1647 <para>Create one instance of <literal>std::ostream</literal>
1648 for each thread. This makes stream formatting settings
1649 thread-local. Pass a per-thread instance of the class
1650 derived from <literal>std::ostreambuf</literal> to the
1651 constructor of each instance. </para>
1652 </listitem>
1653 <listitem>
1654 <para>Let each thread send its output to its own instance of
1655 <literal>std::ostream</literal> instead of
1656 <literal>std::cout</literal>.</para>
1657 </listitem>
1658 </orderedlist>
1659 </para>
1660 </listitem>
1661</itemizedlist>
1662</para>
1663
1664</sect2>
1665
1666
bart5a5fe0c2008-06-15 12:22:37 +00001667</sect1>
1668
1669
bart66ba8c02008-10-11 18:28:12 +00001670<sect1 id="drd-manual.Pthreads" xreflabel="Pthreads">
1671<title>Using the POSIX Threads API Effectively</title>
1672
1673<sect2 id="drd-manual.mutex-types" xreflabel="mutex-types">
1674<title>Mutex types</title>
1675
1676<para>
1677The Single UNIX Specification version two defines the following four
1678mutex types (see also the documentation of <ulink
njn2d6d5032009-08-07 05:23:31 +00001679url="http://www.opengroup.org/onlinepubs/007908799/xsh/pthread_mutexattr_settype.html"><function>pthread_mutexattr_settype</function></ulink>):
bart66ba8c02008-10-11 18:28:12 +00001680<itemizedlist>
1681 <listitem>
1682 <para>
1683 <emphasis>normal</emphasis>, which means that no error checking
1684 is performed, and that the mutex is non-recursive.
1685 </para>
1686 </listitem>
1687 <listitem>
1688 <para>
1689 <emphasis>error checking</emphasis>, which means that the mutex
1690 is non-recursive and that error checking is performed.
1691 </para>
1692 </listitem>
1693 <listitem>
1694 <para>
1695 <emphasis>recursive</emphasis>, which means that a mutex may be
1696 locked recursively.
1697 </para>
1698 </listitem>
1699 <listitem>
1700 <para>
1701 <emphasis>default</emphasis>, which means that error checking
1702 behavior is undefined, and that the behavior for recursive
1703 locking is also undefined. Or: portable code must neither
1704 trigger error conditions through the Pthreads API nor attempt to
1705 lock a mutex of default type recursively.
1706 </para>
1707 </listitem>
1708</itemizedlist>
1709</para>
1710
1711<para>
1712In complex applications it is not always clear from beforehand which
1713mutex will be locked recursively and which mutex will not be locked
1714recursively. Attempts lock a non-recursive mutex recursively will
1715result in race conditions that are very hard to find without a thread
1716checking tool. So either use the error checking mutex type and
1717consistently check the return value of Pthread API mutex calls, or use
1718the recursive mutex type.
1719</para>
1720
1721</sect2>
1722
1723<sect2 id="drd-manual.condvar" xreflabel="condition-variables">
1724<title>Condition variables</title>
1725
1726<para>
1727A condition variable allows one thread to wake up one or more other
bart4ac853b2009-01-02 13:29:32 +00001728threads. Condition variables are often used to notify one or more
bart66ba8c02008-10-11 18:28:12 +00001729threads about state changes of shared data. Unfortunately it is very
1730easy to introduce race conditions by using condition variables as the
1731only means of state information propagation. A better approach is to
1732let threads poll for changes of a state variable that is protected by
1733a mutex, and to use condition variables only as a thread wakeup
1734mechanism. See also the source file
1735<computeroutput>drd/tests/monitor_example.cpp</computeroutput> for an
1736example of how to implement this concept in C++. The monitor concept
bart4ac853b2009-01-02 13:29:32 +00001737used in this example is a well known and very useful concept -- see
1738also Wikipedia for more information about the <ulink
bart66ba8c02008-10-11 18:28:12 +00001739url="http://en.wikipedia.org/wiki/Monitor_(synchronization)">monitor</ulink>
1740concept.
1741</para>
1742
1743</sect2>
1744
1745<sect2 id="drd-manual.pctw" xreflabel="pthread_cond_timedwait">
sewardj1160e812010-09-10 14:56:18 +00001746<title>pthread_cond_timedwait and timeouts</title>
bart66ba8c02008-10-11 18:28:12 +00001747
1748<para>
1749Historically the function
njn2d6d5032009-08-07 05:23:31 +00001750<function>pthread_cond_timedwait</function> only allowed the
bart66ba8c02008-10-11 18:28:12 +00001751specification of an absolute timeout, that is a timeout independent of
1752the time when this function was called. However, almost every call to
1753this function expresses a relative timeout. This typically happens by
1754passing the sum of
1755<computeroutput>clock_gettime(CLOCK_REALTIME)</computeroutput> and a
1756relative timeout as the third argument. This approach is incorrect
1757since forward or backward clock adjustments by e.g. ntpd will affect
1758the timeout. A more reliable approach is as follows:
1759<itemizedlist>
1760 <listitem>
1761 <para>
1762 When initializing a condition variable through
njn2d6d5032009-08-07 05:23:31 +00001763 <function>pthread_cond_init</function>, specify that the timeout of
1764 <function>pthread_cond_timedwait</function> will use the clock
bart66ba8c02008-10-11 18:28:12 +00001765 <literal>CLOCK_MONOTONIC</literal> instead of
1766 <literal>CLOCK_REALTIME</literal>. You can do this via
1767 <computeroutput>pthread_condattr_setclock(...,
bart4ac853b2009-01-02 13:29:32 +00001768 CLOCK_MONOTONIC)</computeroutput>.
bart66ba8c02008-10-11 18:28:12 +00001769 </para>
1770 </listitem>
1771 <listitem>
1772 <para>
njn2d6d5032009-08-07 05:23:31 +00001773 When calling <function>pthread_cond_timedwait</function>, pass
bart66ba8c02008-10-11 18:28:12 +00001774 the sum of
1775 <computeroutput>clock_gettime(CLOCK_MONOTONIC)</computeroutput>
1776 and a relative timeout as the third argument.
1777 </para>
1778 </listitem>
1779</itemizedlist>
bart4ac853b2009-01-02 13:29:32 +00001780See also
1781<computeroutput>drd/tests/monitor_example.cpp</computeroutput> for an
1782example.
bart66ba8c02008-10-11 18:28:12 +00001783</para>
1784
1785</sect2>
1786
bart66ba8c02008-10-11 18:28:12 +00001787</sect1>
1788
1789
barte3e54df2008-06-12 15:20:42 +00001790<sect1 id="drd-manual.limitations" xreflabel="Limitations">
bart5a5fe0c2008-06-15 12:22:37 +00001791<title>Limitations</title>
barte3e54df2008-06-12 15:20:42 +00001792
1793<para>DRD currently has the following limitations:</para>
1794
1795<itemizedlist>
bart68bac812008-06-27 14:56:06 +00001796 <listitem>
1797 <para>
njn2d6d5032009-08-07 05:23:31 +00001798 DRD, just like Memcheck, will refuse to start on Linux
bart68bac812008-06-27 14:56:06 +00001799 distributions where all symbol information has been removed from
njn2d6d5032009-08-07 05:23:31 +00001800 <filename>ld.so</filename>. This is e.g. the case for the PPC editions
1801 of openSUSE and Gentoo. You will have to install the glibc debuginfo
1802 package on these platforms before you can use DRD. See also openSUSE
1803 bug <ulink url="http://bugzilla.novell.com/show_bug.cgi?id=396197">
bart68bac812008-06-27 14:56:06 +00001804 396197</ulink> and Gentoo bug <ulink
1805 url="http://bugs.gentoo.org/214065">214065</ulink>.
1806 </para>
1807 </listitem>
1808 <listitem>
1809 <para>
bart18f734b2010-10-10 18:57:53 +00001810 With gcc 4.4.3 and before, DRD may report data races on the C++
1811 class <literal>std::string</literal> in a multithreaded program. This is
1812 a know <literal>libstdc++</literal> issue -- see also GCC bug
1813 <ulink url="http://gcc.gnu.org/bugzilla/show_bug.cgi?id=40518">40518</ulink>
1814 for more information.
1815 </para>
1816 </listitem>
1817 <listitem>
1818 <para>
njn7316df22009-08-04 01:16:01 +00001819 If you compile the DRD source code yourself, you need GCC 3.0 or
1820 later. GCC 2.95 is not supported.
bart68bac812008-06-27 14:56:06 +00001821 </para>
barte3e54df2008-06-12 15:20:42 +00001822 </listitem>
bart18f734b2010-10-10 18:57:53 +00001823 <listitem>
1824 <para>
1825 Of the two POSIX threads implementations for Linux, only the
1826 NPTL (Native POSIX Thread Library) is supported. The older
1827 LinuxThreads library is not supported.
1828 </para>
1829 </listitem>
barte3e54df2008-06-12 15:20:42 +00001830</itemizedlist>
1831
1832</sect1>
1833
bart68bac812008-06-27 14:56:06 +00001834
1835<sect1 id="drd-manual.feedback" xreflabel="Feedback">
1836<title>Feedback</title>
1837
1838<para>
1839If you have any comments, suggestions, feedback or bug reports about
1840DRD, feel free to either post a message on the Valgrind users mailing
1841list or to file a bug report. See also <ulink
bart4ac853b2009-01-02 13:29:32 +00001842url="&vg-url;">&vg-url;</ulink> for more information.
bart68bac812008-06-27 14:56:06 +00001843</para>
1844
1845</sect1>
1846
1847
barte3e54df2008-06-12 15:20:42 +00001848</chapter>