bart | 25de616 | 2008-03-09 13:41:26 +0000 | [diff] [blame] | 1 | /** Compute the matrix inverse via Gauss-Jordan elimination. |
| 2 | * This program uses OpenMP separate computation steps but no |
| 3 | * mutexes. It is an example of a race-free program on which no data races |
| 4 | * are reported by the happens-before algorithm (drd), but a lot of data races |
| 5 | * (all false positives) are reported by the Eraser-algorithm (helgrind). |
| 6 | */ |
| 7 | |
| 8 | |
| 9 | #define _GNU_SOURCE |
| 10 | |
| 11 | /***********************/ |
| 12 | /* Include directives. */ |
| 13 | /***********************/ |
| 14 | |
| 15 | #include <assert.h> |
| 16 | #include <math.h> |
bart | b6c2ff4 | 2008-03-10 19:17:46 +0000 | [diff] [blame] | 17 | #include <omp.h> |
bart | 25de616 | 2008-03-09 13:41:26 +0000 | [diff] [blame] | 18 | #include <stdio.h> |
bart | b6c2ff4 | 2008-03-10 19:17:46 +0000 | [diff] [blame] | 19 | #include <stdlib.h> |
bart | 25de616 | 2008-03-09 13:41:26 +0000 | [diff] [blame] | 20 | |
| 21 | |
| 22 | /*********************/ |
| 23 | /* Type definitions. */ |
| 24 | /*********************/ |
| 25 | |
| 26 | typedef double elem_t; |
| 27 | |
| 28 | |
bart | d552649 | 2008-03-11 20:06:04 +0000 | [diff] [blame^] | 29 | /********************/ |
| 30 | /* Local variables. */ |
| 31 | /********************/ |
| 32 | |
| 33 | static int s_trigger_race; |
| 34 | |
| 35 | |
bart | 25de616 | 2008-03-09 13:41:26 +0000 | [diff] [blame] | 36 | /*************************/ |
| 37 | /* Function definitions. */ |
| 38 | /*************************/ |
| 39 | |
| 40 | /** Allocate memory for a matrix with the specified number of rows and |
| 41 | * columns. |
| 42 | */ |
| 43 | static elem_t* new_matrix(const int rows, const int cols) |
| 44 | { |
| 45 | assert(rows > 0); |
| 46 | assert(cols > 0); |
| 47 | return malloc(rows * cols * sizeof(elem_t)); |
| 48 | } |
| 49 | |
| 50 | /** Free the memory that was allocated for a matrix. */ |
| 51 | static void delete_matrix(elem_t* const a) |
| 52 | { |
| 53 | free(a); |
| 54 | } |
| 55 | |
| 56 | /** Fill in some numbers in a matrix. |
| 57 | * @note It is important not to call srand() in this program, such that |
| 58 | * the results of a run are reproducible. |
| 59 | */ |
| 60 | static void init_matrix(elem_t* const a, const int rows, const int cols) |
| 61 | { |
| 62 | int i, j; |
| 63 | for (i = 0; i < rows; i++) |
| 64 | { |
| 65 | for (j = 0; j < rows; j++) |
| 66 | { |
| 67 | a[i * cols + j] = rand() * 1.0 / RAND_MAX; |
| 68 | } |
| 69 | } |
| 70 | } |
| 71 | |
| 72 | /** Print all elements of a matrix. */ |
| 73 | void print_matrix(const char* const label, |
| 74 | const elem_t* const a, const int rows, const int cols) |
| 75 | { |
| 76 | int i, j; |
| 77 | printf("%s:\n", label); |
| 78 | for (i = 0; i < rows; i++) |
| 79 | { |
| 80 | for (j = 0; j < cols; j++) |
| 81 | { |
| 82 | printf("%g ", a[i * cols + j]); |
| 83 | } |
| 84 | printf("\n"); |
| 85 | } |
| 86 | } |
| 87 | |
| 88 | /** Copy a subset of the elements of a matrix into another matrix. */ |
| 89 | static void copy_matrix(const elem_t* const from, |
| 90 | const int from_rows, |
| 91 | const int from_cols, |
| 92 | const int from_row_first, |
| 93 | const int from_row_last, |
| 94 | const int from_col_first, |
| 95 | const int from_col_last, |
| 96 | elem_t* const to, |
| 97 | const int to_rows, |
| 98 | const int to_cols, |
| 99 | const int to_row_first, |
| 100 | const int to_row_last, |
| 101 | const int to_col_first, |
| 102 | const int to_col_last) |
| 103 | { |
| 104 | int i, j; |
| 105 | |
| 106 | assert(from_row_last - from_row_first == to_row_last - to_row_first); |
| 107 | assert(from_col_last - from_col_first == to_col_last - to_col_first); |
| 108 | |
| 109 | for (i = from_row_first; i < from_row_last; i++) |
| 110 | { |
| 111 | assert(i < from_rows); |
| 112 | assert(i - from_row_first + to_row_first < to_rows); |
| 113 | for (j = from_col_first; j < from_col_last; j++) |
| 114 | { |
| 115 | assert(j < from_cols); |
| 116 | assert(j - from_col_first + to_col_first < to_cols); |
| 117 | to[(i - from_row_first + to_col_first) * to_cols |
| 118 | + (j - from_col_first + to_col_first)] |
| 119 | = from[i * from_cols + j]; |
| 120 | } |
| 121 | } |
| 122 | } |
| 123 | |
| 124 | /** Compute the matrix product of a1 and a2. */ |
| 125 | static elem_t* multiply_matrices(const elem_t* const a1, |
| 126 | const int rows1, |
| 127 | const int cols1, |
| 128 | const elem_t* const a2, |
| 129 | const int rows2, |
| 130 | const int cols2) |
| 131 | { |
| 132 | int i, j, k; |
| 133 | elem_t* prod; |
| 134 | |
| 135 | assert(cols1 == rows2); |
| 136 | |
| 137 | prod = new_matrix(rows1, cols2); |
| 138 | for (i = 0; i < rows1; i++) |
| 139 | { |
| 140 | for (j = 0; j < cols2; j++) |
| 141 | { |
| 142 | prod[i * cols2 + j] = 0; |
| 143 | for (k = 0; k < cols1; k++) |
| 144 | { |
| 145 | prod[i * cols2 + j] += a1[i * cols1 + k] * a2[k * cols2 + j]; |
| 146 | } |
| 147 | } |
| 148 | } |
| 149 | return prod; |
| 150 | } |
| 151 | |
| 152 | /** Apply the Gauss-Jordan elimination algorithm on the matrix p->a starting |
| 153 | * at row r0 and up to but not including row r1. It is assumed that as many |
| 154 | * threads execute this function concurrently as the count barrier p->b was |
| 155 | * initialized with. If the matrix p->a is nonsingular, and if matrix p->a |
| 156 | * has at least as many columns as rows, the result of this algorithm is that |
| 157 | * submatrix p->a[0..p->rows-1,0..p->rows-1] is the identity matrix. |
| 158 | * @see http://en.wikipedia.org/wiki/Gauss-Jordan_elimination |
| 159 | */ |
| 160 | static void gj(elem_t* const a, const int rows, const int cols) |
| 161 | { |
| 162 | int i, j, k; |
| 163 | |
| 164 | for (i = 0; i < rows; i++) |
| 165 | { |
| 166 | { |
| 167 | // Pivoting. |
| 168 | j = i; |
| 169 | for (k = i + 1; k < rows; k++) |
| 170 | { |
| 171 | if (a[k * cols + i] > a[j * cols + i]) |
| 172 | { |
| 173 | j = k; |
| 174 | } |
| 175 | } |
| 176 | if (j != i) |
| 177 | { |
| 178 | for (k = 0; k < cols; k++) |
| 179 | { |
| 180 | const elem_t t = a[i * cols + k]; |
| 181 | a[i * cols + k] = a[j * cols + k]; |
| 182 | a[j * cols + k] = t; |
| 183 | } |
| 184 | } |
| 185 | // Normalize row i. |
| 186 | if (a[i * cols + i] != 0) |
| 187 | { |
| 188 | for (k = cols - 1; k >= 0; k--) |
| 189 | { |
| 190 | a[i * cols + k] /= a[i * cols + i]; |
| 191 | } |
| 192 | } |
| 193 | } |
| 194 | |
| 195 | // Reduce all rows j != i. |
bart | d552649 | 2008-03-11 20:06:04 +0000 | [diff] [blame^] | 196 | |
| 197 | if (s_trigger_race) |
bart | 25de616 | 2008-03-09 13:41:26 +0000 | [diff] [blame] | 198 | { |
bart | d552649 | 2008-03-11 20:06:04 +0000 | [diff] [blame^] | 199 | # pragma omp parallel for |
| 200 | for (j = 0; j < rows; j++) |
bart | 25de616 | 2008-03-09 13:41:26 +0000 | [diff] [blame] | 201 | { |
bart | d552649 | 2008-03-11 20:06:04 +0000 | [diff] [blame^] | 202 | if (i != j) |
bart | 25de616 | 2008-03-09 13:41:26 +0000 | [diff] [blame] | 203 | { |
bart | d552649 | 2008-03-11 20:06:04 +0000 | [diff] [blame^] | 204 | const elem_t factor = a[j * cols + i]; |
| 205 | for (k = 0; k < cols; k++) |
| 206 | { |
| 207 | a[j * cols + k] -= a[i * cols + k] * factor; |
| 208 | } |
| 209 | } |
| 210 | } |
| 211 | } |
| 212 | else |
| 213 | { |
| 214 | # pragma omp parallel for private(j, k) |
| 215 | for (j = 0; j < rows; j++) |
| 216 | { |
| 217 | if (i != j) |
| 218 | { |
| 219 | const elem_t factor = a[j * cols + i]; |
| 220 | for (k = 0; k < cols; k++) |
| 221 | { |
| 222 | a[j * cols + k] -= a[i * cols + k] * factor; |
| 223 | } |
bart | 25de616 | 2008-03-09 13:41:26 +0000 | [diff] [blame] | 224 | } |
| 225 | } |
| 226 | } |
| 227 | } |
| 228 | } |
| 229 | |
| 230 | /** Matrix inversion via the Gauss-Jordan algorithm. */ |
| 231 | static elem_t* invert_matrix(const elem_t* const a, const int n) |
| 232 | { |
| 233 | int i, j; |
| 234 | elem_t* const inv = new_matrix(n, n); |
| 235 | elem_t* const tmp = new_matrix(n, 2*n); |
| 236 | copy_matrix(a, n, n, 0, n, 0, n, tmp, n, 2 * n, 0, n, 0, n); |
| 237 | for (i = 0; i < n; i++) |
| 238 | for (j = 0; j < n; j++) |
| 239 | tmp[i * 2 * n + n + j] = (i == j); |
| 240 | gj(tmp, n, 2*n); |
| 241 | copy_matrix(tmp, n, 2*n, 0, n, n, 2*n, inv, n, n, 0, n, 0, n); |
| 242 | delete_matrix(tmp); |
| 243 | return inv; |
| 244 | } |
| 245 | |
| 246 | /** Compute the average square error between the identity matrix and the |
| 247 | * product of matrix a with its inverse matrix. |
| 248 | */ |
| 249 | static double identity_error(const elem_t* const a, const int n) |
| 250 | { |
| 251 | int i, j; |
| 252 | elem_t e = 0; |
| 253 | for (i = 0; i < n; i++) |
| 254 | { |
| 255 | for (j = 0; j < n; j++) |
| 256 | { |
| 257 | const elem_t d = a[i * n + j] - (i == j); |
| 258 | e += d * d; |
| 259 | } |
| 260 | } |
| 261 | return sqrt(e / (n * n)); |
| 262 | } |
| 263 | |
| 264 | /** Compute epsilon for the numeric type elem_t. Epsilon is defined as the |
| 265 | * smallest number for which the sum of one and that number is different of |
| 266 | * one. It is assumed that the underlying representation of elem_t uses |
| 267 | * base two. |
| 268 | */ |
| 269 | static elem_t epsilon() |
| 270 | { |
| 271 | elem_t eps; |
| 272 | for (eps = 1; 1 + eps != 1; eps /= 2) |
| 273 | ; |
| 274 | return 2 * eps; |
| 275 | } |
| 276 | |
| 277 | int main(int argc, char** argv) |
| 278 | { |
| 279 | int matrix_size; |
bart | b6c2ff4 | 2008-03-10 19:17:46 +0000 | [diff] [blame] | 280 | int nthread; |
bart | 25de616 | 2008-03-09 13:41:26 +0000 | [diff] [blame] | 281 | int silent; |
| 282 | elem_t *a, *inv, *prod; |
| 283 | elem_t eps; |
| 284 | double error; |
| 285 | double ratio; |
| 286 | |
bart | d552649 | 2008-03-11 20:06:04 +0000 | [diff] [blame^] | 287 | matrix_size = (argc > 1) ? atoi(argv[1]) : 3; |
| 288 | nthread = (argc > 2) ? atoi(argv[2]) : 3; |
| 289 | silent = (argc > 3) ? atoi(argv[3]) : 0; |
| 290 | s_trigger_race = (argc > 4) ? atoi(argv[4]) : 0; |
bart | b6c2ff4 | 2008-03-10 19:17:46 +0000 | [diff] [blame] | 291 | |
| 292 | omp_set_num_threads(nthread); |
| 293 | omp_set_dynamic(0); |
bart | 25de616 | 2008-03-09 13:41:26 +0000 | [diff] [blame] | 294 | |
| 295 | eps = epsilon(); |
| 296 | a = new_matrix(matrix_size, matrix_size); |
| 297 | init_matrix(a, matrix_size, matrix_size); |
| 298 | inv = invert_matrix(a, matrix_size); |
| 299 | prod = multiply_matrices(a, matrix_size, matrix_size, |
| 300 | inv, matrix_size, matrix_size); |
| 301 | error = identity_error(prod, matrix_size); |
| 302 | ratio = error / (eps * matrix_size); |
| 303 | if (! silent) |
| 304 | { |
| 305 | printf("error = %g; epsilon = %g; error / (epsilon * n) = %g\n", |
| 306 | error, eps, ratio); |
| 307 | } |
bart | 5e1952a | 2008-03-09 20:04:31 +0000 | [diff] [blame] | 308 | if (isfinite(ratio) && ratio < 100) |
bart | 25de616 | 2008-03-09 13:41:26 +0000 | [diff] [blame] | 309 | printf("Error within bounds.\n"); |
| 310 | else |
| 311 | printf("Error out of bounds.\n"); |
| 312 | delete_matrix(prod); |
| 313 | delete_matrix(inv); |
| 314 | delete_matrix(a); |
| 315 | |
| 316 | return 0; |
| 317 | } |