blob: ff0936a99a960001336655ed76135cdfbe555c5d [file] [log] [blame]
/* Copyright (c) 2010 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*
* Functions for generating and manipulating a verified boot kernel image.
* (Userland portion)
*/
#include "kernel_image.h"
#include <fcntl.h>
#include <stddef.h>
#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>
#include "cryptolib.h"
#include "file_keys.h"
#include "kernel_blob.h"
#include "rollback_index.h"
#include "signature_digest.h"
#include "stateful_util.h"
/* Macro to determine the size of a field structure in the KernelImage
* structure. */
#define FIELD_LEN(field) (sizeof(((KernelImage*)0)->field))
KernelImage* KernelImageNew(void) {
KernelImage* image = (KernelImage*) Malloc(sizeof(KernelImage));
if (image) {
image->kernel_sign_key = NULL;
image->kernel_key_signature = NULL;
image->preamble_signature = NULL;
image->kernel_signature = NULL;
image->kernel_data = NULL;
image->padded_header_size = 0x4000;
}
return image;
}
void KernelImageFree(KernelImage* image) {
if (image) {
Free(image->kernel_sign_key);
Free(image->kernel_key_signature);
Free(image->preamble_signature);
Free(image->kernel_signature);
Free(image->kernel_data);
Free(image);
}
}
uint64_t GetHeaderSizeOnDisk(const KernelImage* image) {
uint64_t kernel_signature_len = siglen_map[image->kernel_sign_algorithm];
uint64_t kernel_key_signature_len =
siglen_map[image->firmware_sign_algorithm];
return FIELD_LEN(magic) +
GetKernelHeaderLen(image) +
kernel_key_signature_len +
GetKernelPreambleLen(image->kernel_sign_algorithm) +
kernel_signature_len;
}
KernelImage* ReadKernelImage(const char* input_file) {
uint64_t file_size;
uint64_t on_disk_header_size;
uint64_t on_disk_padding;
int header_len = 0;
int firmware_sign_key_len;
int kernel_key_signature_len;
int kernel_sign_key_len;
int kernel_signature_len;
uint8_t* kernel_buf;
uint8_t header_checksum[FIELD_LEN(header_checksum)];
MemcpyState st;
KernelImage* image = KernelImageNew();
if (!image)
return NULL;
kernel_buf = BufferFromFile(input_file, &file_size);
st.remaining_len = file_size;
st.remaining_buf = kernel_buf;
st.overrun = 0;
/* Read and compare magic bytes. */
StatefulMemcpy(&st, &image->magic, KERNEL_MAGIC_SIZE);
if (SafeMemcmp(image->magic, KERNEL_MAGIC, KERNEL_MAGIC_SIZE)) {
debug("Wrong Kernel Magic.\n");
Free(kernel_buf);
return NULL;
}
StatefulMemcpy(&st, &image->header_version, FIELD_LEN(header_version));
StatefulMemcpy(&st, &image->header_len, FIELD_LEN(header_len));
StatefulMemcpy(&st, &image->firmware_sign_algorithm,
FIELD_LEN(firmware_sign_algorithm));
StatefulMemcpy(&st, &image->kernel_sign_algorithm,
FIELD_LEN(kernel_sign_algorithm));
/* Valid Kernel Key signing algorithm. */
if (image->firmware_sign_algorithm >= kNumAlgorithms) {
Free(kernel_buf);
return NULL;
}
/* Valid Kernel Signing Algorithm? */
if (image->kernel_sign_algorithm >= kNumAlgorithms) {
Free(kernel_buf);
return NULL;
}
/* Compute size of pre-processed RSA public keys and signatures. */
firmware_sign_key_len = RSAProcessedKeySize(image->firmware_sign_algorithm);
kernel_key_signature_len = siglen_map[image->firmware_sign_algorithm];
kernel_sign_key_len = RSAProcessedKeySize(image->kernel_sign_algorithm);
kernel_signature_len = siglen_map[image->kernel_sign_algorithm];
/* Check whether key header length is correct. */
header_len = GetKernelHeaderLen(image);
if (header_len != image->header_len) {
debug("Header length mismatch. Got: %d, Expected: %d\n",
image->header_len, header_len);
Free(kernel_buf);
return NULL;
}
/* Read pre-processed public half of the kernel signing key. */
StatefulMemcpy(&st, &image->kernel_key_version,
FIELD_LEN(kernel_key_version));
image->kernel_sign_key = (uint8_t*) Malloc(kernel_sign_key_len);
StatefulMemcpy(&st, image->kernel_sign_key, kernel_sign_key_len);
StatefulMemcpy(&st, image->header_checksum, FIELD_LEN(header_checksum));
/* Check whether the header checksum matches. */
CalculateKernelHeaderChecksum(image, header_checksum);
if (SafeMemcmp(header_checksum, image->header_checksum,
FIELD_LEN(header_checksum))) {
debug("Invalid kernel header checksum!\n");
Free(kernel_buf);
return NULL;
}
/* Read key signature. */
image->kernel_key_signature = (uint8_t*) Malloc(kernel_key_signature_len);
StatefulMemcpy(&st, image->kernel_key_signature,
kernel_key_signature_len);
/* Read the kernel preamble. */
StatefulMemcpy(&st, &image->kernel_version, FIELD_LEN(kernel_version));
StatefulMemcpy(&st, &image->kernel_len, FIELD_LEN(kernel_len));
StatefulMemcpy(&st, &image->bootloader_offset, FIELD_LEN(bootloader_offset));
StatefulMemcpy(&st, &image->bootloader_size, FIELD_LEN(bootloader_size));
StatefulMemcpy(&st, &image->padded_header_size,
FIELD_LEN(padded_header_size));
/* Read preamble and kernel signatures. */
image->kernel_signature = (uint8_t*) Malloc(kernel_signature_len);
StatefulMemcpy(&st, image->kernel_signature, kernel_signature_len);
image->preamble_signature = (uint8_t*) Malloc(kernel_signature_len);
StatefulMemcpy(&st, image->preamble_signature, kernel_signature_len);
/* Skip over the rest of the padded header, unless we're already past it. */
on_disk_header_size = file_size - st.remaining_len;
if (image->padded_header_size > on_disk_header_size) {
on_disk_padding = image->padded_header_size - on_disk_header_size;
if (st.remaining_len < on_disk_padding)
st.overrun = -1;
st.remaining_buf += on_disk_padding;
st.remaining_len -= on_disk_padding;
}
/* Read kernel image data. */
image->kernel_data = (uint8_t*) Malloc(image->kernel_len);
StatefulMemcpy(&st, image->kernel_data, image->kernel_len);
if(st.overrun) {
Free(kernel_buf);
return NULL;
}
Free(kernel_buf);
return image;
}
int GetKernelHeaderLen(const KernelImage* image) {
return (FIELD_LEN(header_version) + FIELD_LEN(header_len) +
FIELD_LEN(firmware_sign_algorithm) +
FIELD_LEN(kernel_sign_algorithm) + FIELD_LEN(kernel_key_version) +
RSAProcessedKeySize(image->kernel_sign_algorithm) +
FIELD_LEN(header_checksum));
}
void CalculateKernelHeaderChecksum(const KernelImage* image,
uint8_t* header_checksum) {
uint8_t* checksum;
DigestContext ctx;
DigestInit(&ctx, SHA512_DIGEST_ALGORITHM);
DigestUpdate(&ctx, (uint8_t*) &image->header_version,
sizeof(image->header_version));
DigestUpdate(&ctx, (uint8_t*) &image->header_len,
sizeof(image->header_len));
DigestUpdate(&ctx, (uint8_t*) &image->firmware_sign_algorithm,
sizeof(image->firmware_sign_algorithm));
DigestUpdate(&ctx, (uint8_t*) &image->kernel_sign_algorithm,
sizeof(image->kernel_sign_algorithm));
DigestUpdate(&ctx, (uint8_t*) &image->kernel_key_version,
sizeof(image->kernel_key_version));
DigestUpdate(&ctx, image->kernel_sign_key,
RSAProcessedKeySize(image->kernel_sign_algorithm));
checksum = DigestFinal(&ctx);
Memcpy(header_checksum, checksum, FIELD_LEN(header_checksum));
Free(checksum);
return;
}
uint8_t* GetKernelHeaderBlob(const KernelImage* image) {
uint8_t* header_blob = NULL;
MemcpyState st;
header_blob = (uint8_t*) Malloc(GetKernelHeaderLen(image));
st.remaining_len = GetKernelHeaderLen(image);
st.remaining_buf = header_blob;
st.overrun = 0;
StatefulMemcpy_r(&st, &image->header_version, FIELD_LEN(header_version));
StatefulMemcpy_r(&st, &image->header_len, FIELD_LEN(header_len));
StatefulMemcpy_r(&st, &image->firmware_sign_algorithm,
FIELD_LEN(firmware_sign_algorithm));
StatefulMemcpy_r(&st, &image->kernel_sign_algorithm,
FIELD_LEN(kernel_sign_algorithm));
StatefulMemcpy_r(&st, &image->kernel_key_version,
FIELD_LEN(kernel_key_version));
StatefulMemcpy_r(&st, image->kernel_sign_key,
RSAProcessedKeySize(image->kernel_sign_algorithm));
StatefulMemcpy_r(&st, &image->header_checksum, FIELD_LEN(header_checksum));
if (st.overrun || st.remaining_len != 0) { /* Underrun or Overrun. */
Free(header_blob);
return NULL;
}
return header_blob;
}
uint8_t* GetKernelPreambleBlob(const KernelImage* image) {
uint8_t* preamble_blob = NULL;
MemcpyState st;
preamble_blob = (uint8_t*) Malloc(
GetKernelPreambleLen(image->kernel_sign_algorithm));
st.remaining_len = GetKernelPreambleLen(image->kernel_sign_algorithm);
st.remaining_buf = preamble_blob;
st.overrun = 0;
StatefulMemcpy_r(&st, &image->kernel_version, FIELD_LEN(kernel_version));
StatefulMemcpy_r(&st, &image->kernel_len, FIELD_LEN(kernel_len));
StatefulMemcpy_r(&st, &image->bootloader_offset, FIELD_LEN(bootloader_offset));
StatefulMemcpy_r(&st, &image->bootloader_size, FIELD_LEN(bootloader_size));
StatefulMemcpy_r(&st, &image->padded_header_size,
FIELD_LEN(padded_header_size));
StatefulMemcpy_r(&st, image->kernel_signature,
siglen_map[image->kernel_sign_algorithm]);
if (st.overrun || st.remaining_len != 0) { /* Overrun or Underrun. */
Free(preamble_blob);
return NULL;
}
return preamble_blob;
}
uint8_t* GetKernelBlob(const KernelImage* image, uint64_t* blob_len) {
int kernel_key_signature_len;
int kernel_signature_len;
uint8_t* kernel_blob = NULL;
uint8_t* header_blob = NULL;
MemcpyState st;
uint64_t on_disk_header_size;
uint64_t on_disk_padding = 0;
if (!image)
return NULL;
kernel_key_signature_len = siglen_map[image->firmware_sign_algorithm];
kernel_signature_len = siglen_map[image->kernel_sign_algorithm];
on_disk_header_size = GetHeaderSizeOnDisk(image);
if (image->padded_header_size > on_disk_header_size)
on_disk_padding = image->padded_header_size - on_disk_header_size;
*blob_len = on_disk_header_size + on_disk_padding + image->kernel_len;
kernel_blob = (uint8_t*) Malloc(*blob_len);
st.remaining_len = *blob_len;
st.remaining_buf = kernel_blob;
st.overrun = 0;
header_blob = GetKernelHeaderBlob(image);
StatefulMemcpy_r(&st, image->magic, FIELD_LEN(magic));
StatefulMemcpy_r(&st, header_blob, GetKernelHeaderLen(image));
StatefulMemcpy_r(&st, image->kernel_key_signature, kernel_key_signature_len);
/* Copy over kernel preamble blob (including signatures.) */
StatefulMemcpy_r(&st, &image->kernel_version, FIELD_LEN(kernel_version));
StatefulMemcpy_r(&st, &image->kernel_len, FIELD_LEN(kernel_len));
StatefulMemcpy_r(&st, &image->bootloader_offset,
FIELD_LEN(bootloader_offset));
StatefulMemcpy_r(&st, &image->bootloader_size, FIELD_LEN(bootloader_size));
StatefulMemcpy_r(&st, &image->padded_header_size,
FIELD_LEN(padded_header_size));
StatefulMemcpy_r(&st, image->kernel_signature, kernel_signature_len);
StatefulMemcpy_r(&st, image->preamble_signature, kernel_signature_len);
/* Copy a bunch of zeros to pad out the header */
if (on_disk_padding)
StatefulMemset_r(&st, 0, on_disk_padding);
StatefulMemcpy_r(&st, image->kernel_data, image->kernel_len);
Free(header_blob);
if (st.overrun || st.remaining_len != 0) { /* Underrun or Overrun. */
debug("GetKernelBlob() failed.\n");
Free(kernel_blob);
return NULL;
}
return kernel_blob;
}
int WriteKernelImage(const char* output_file,
const KernelImage* image,
int is_only_vblock,
int is_subkey_out) {
int fd;
int success = 1;
uint8_t* kernel_blob = NULL;
uint8_t* subkey_out_buf = NULL;
uint8_t* subkey_header = NULL;
uint64_t blob_len;
if (!image)
return 0;
if (-1 == (fd = creat(output_file, 0666))) {
debug("Couldn't open file for writing kernel image: %s\n",
output_file);
return 0;
}
if (is_subkey_out) {
blob_len = GetKernelHeaderLen(image) +
siglen_map[image->firmware_sign_algorithm];
subkey_out_buf = (uint8_t*) Malloc(blob_len);
subkey_header = GetKernelHeaderBlob(image);
Memcpy(subkey_out_buf, subkey_header, GetKernelHeaderLen(image));
Memcpy(subkey_out_buf + GetKernelHeaderLen(image),
image->kernel_key_signature,
siglen_map[image->firmware_sign_algorithm]);
if (blob_len != write(fd, subkey_out_buf, blob_len)) {
debug("Couldn't write Kernel Subkey header to file: %s\n",
output_file);
success = 0;
}
Free(subkey_header);
Free(subkey_out_buf);
close(fd);
return success;
}
kernel_blob = GetKernelBlob(image, &blob_len);
if (!kernel_blob) {
debug("Couldn't create kernel blob from KernelImage.\n");
return 0;
}
if (!is_only_vblock) {
if (blob_len != write(fd, kernel_blob, blob_len)) {
debug("Couldn't write Kernel Image to file: %s\n",
output_file);
success = 0;
}
} else {
/* Exclude kernel_data. */
int vblock_len = blob_len - (image->kernel_len);
if (vblock_len != write(fd, kernel_blob, vblock_len)) {
debug("Couldn't write Kernel Image Verification block to file: %s\n",
output_file);
success = 0;
}
}
Free(kernel_blob);
close(fd);
return success;
}
void PrintKernelImage(const KernelImage* image) {
uint64_t header_size;
if (!image)
return;
header_size = GetHeaderSizeOnDisk(image);
if (image->padded_header_size > header_size)
header_size = image->padded_header_size;
/* Print header. */
printf("Header Version = %d\n"
"Header Length = %d\n"
"Kernel Key Signature Algorithm = %s\n"
"Kernel Signature Algorithm = %s\n"
"Kernel Key Version = %d\n\n",
image->header_version,
image->header_len,
algo_strings[image->firmware_sign_algorithm],
algo_strings[image->kernel_sign_algorithm],
image->kernel_key_version);
/* TODO(gauravsh): Output hash and key signature here? */
/* Print preamble. */
printf("Kernel Version = %d\n"
"kernel Length = %" PRId64 " (0x%" PRIx64 ")\n"
"Bootloader Offset = %" PRId64 " (0x%" PRIx64 ")\n"
"Bootloader Size = %" PRId64 " (0x%" PRIx64 ")\n"
"Padded Header Size = %" PRId64 " (0x%" PRIx64 ")\n\n"
"Actual Header Size on disk = %" PRIu64 " (0x%" PRIx64 ")\n",
image->kernel_version,
image->kernel_len, image->kernel_len,
image->bootloader_offset, image->bootloader_offset,
image->bootloader_size, image->bootloader_size,
image->padded_header_size, image->padded_header_size,
header_size, header_size);
/* TODO(gauravsh): Output kernel signature here? */
}
int VerifyKernelImage(const RSAPublicKey* firmware_key,
const KernelImage* image,
const int dev_mode) {
RSAPublicKey* kernel_sign_key = NULL;
uint8_t* header_digest = NULL;
uint8_t* preamble_digest = NULL;
uint8_t* kernel_digest = NULL;
int kernel_sign_key_size;
int kernel_signature_size;
int error_code = 0;
DigestContext ctx;
if (!image)
return VERIFY_KERNEL_INVALID_IMAGE;
/* Verify kernel key signature on the key header if we
* are not in dev mode.
*
* TODO(gauravsh): Add additional sanity checks here for:
* 1) verifying the header length is correct.
* 2) header_checksum is correct.
*/
if (image->firmware_sign_algorithm >= kNumAlgorithms)
return VERIFY_KERNEL_INVALID_ALGORITHM;
if (image->kernel_sign_algorithm >= kNumAlgorithms)
return VERIFY_KERNEL_INVALID_ALGORITHM;
if (!dev_mode) {
DigestInit(&ctx, image->firmware_sign_algorithm);
DigestUpdate(&ctx, (uint8_t*) &image->header_version,
FIELD_LEN(header_version));
DigestUpdate(&ctx, (uint8_t*) &image->header_len,
FIELD_LEN(header_len));
DigestUpdate(&ctx, (uint8_t*) &image->firmware_sign_algorithm,
FIELD_LEN(firmware_sign_algorithm));
DigestUpdate(&ctx, (uint8_t*) &image->kernel_sign_algorithm,
FIELD_LEN(kernel_sign_algorithm));
DigestUpdate(&ctx, (uint8_t*) &image->kernel_key_version,
FIELD_LEN(kernel_key_version));
DigestUpdate(&ctx, image->kernel_sign_key,
RSAProcessedKeySize(image->kernel_sign_algorithm));
DigestUpdate(&ctx, image->header_checksum,
FIELD_LEN(header_checksum));
header_digest = DigestFinal(&ctx);
if (!RSAVerify(firmware_key, image->kernel_key_signature,
siglen_map[image->firmware_sign_algorithm],
image->firmware_sign_algorithm,
header_digest)) {
debug("VerifyKernelImage(): Key signature check failed.\n");
error_code = VERIFY_KERNEL_KEY_SIGNATURE_FAILED;
goto verify_failure;
}
}
/* Get kernel signing key to verify the rest of the kernel. */
kernel_sign_key_size = RSAProcessedKeySize(image->kernel_sign_algorithm);
kernel_sign_key = RSAPublicKeyFromBuf(image->kernel_sign_key,
kernel_sign_key_size);
kernel_signature_size = siglen_map[image->kernel_sign_algorithm];
/* Verify kernel preamble signature. */
DigestInit(&ctx, image->kernel_sign_algorithm);
DigestUpdate(&ctx, (uint8_t*) &image->kernel_version,
FIELD_LEN(kernel_version));
DigestUpdate(&ctx, (uint8_t*) &image->kernel_len,
FIELD_LEN(kernel_len));
DigestUpdate(&ctx, (uint8_t*) &image->bootloader_offset,
FIELD_LEN(bootloader_offset));
DigestUpdate(&ctx, (uint8_t*) &image->bootloader_size,
FIELD_LEN(bootloader_size));
DigestUpdate(&ctx, (uint8_t*) &image->padded_header_size,
FIELD_LEN(padded_header_size));
DigestUpdate(&ctx, (uint8_t*) image->kernel_signature,
kernel_signature_size);
preamble_digest = DigestFinal(&ctx);
if (!RSAVerify(kernel_sign_key, image->preamble_signature,
kernel_signature_size, image->kernel_sign_algorithm,
preamble_digest)) {
error_code = VERIFY_KERNEL_PREAMBLE_SIGNATURE_FAILED;
goto verify_failure;
}
/* Verify kernel signature - kernel signature is computed on the contents
* of kernel_data.
* Association between the kernel_data and preamble is maintained by making
* the kernel signature a part of the preamble and verifying it as part
* of preamble signature checking. */
kernel_digest = DigestBuf(image->kernel_data,
image->kernel_len,
image->kernel_sign_algorithm);
if (!RSAVerify(kernel_sign_key, image->kernel_signature,
kernel_signature_size, image->kernel_sign_algorithm,
kernel_digest)) {
error_code = VERIFY_KERNEL_SIGNATURE_FAILED;
goto verify_failure;
}
verify_failure:
RSAPublicKeyFree(kernel_sign_key);
Free(kernel_digest);
Free(preamble_digest);
Free(header_digest);
return error_code;
}
const char* VerifyKernelErrorString(int error) {
return kVerifyKernelErrors[error];
}
int AddKernelKeySignature(KernelImage* image, const char* firmware_key_file) {
uint8_t* header_blob = NULL;
uint8_t* signature = NULL;
int signature_len = siglen_map[image->firmware_sign_algorithm];
if (!image || !firmware_key_file)
return 0;
header_blob = GetKernelHeaderBlob(image);
if (!header_blob)
return 0;
if (!(signature = SignatureBuf(header_blob,
GetKernelHeaderLen(image),
firmware_key_file,
image->firmware_sign_algorithm))) {
Free(header_blob);
return 0;
}
image->kernel_key_signature = Malloc(signature_len);
Memcpy(image->kernel_key_signature, signature, signature_len);
Free(signature);
Free(header_blob);
return 1;
}
int AddKernelSignature(KernelImage* image,
const char* kernel_signing_key_file) {
uint8_t* preamble_blob = NULL;
uint8_t* preamble_signature = NULL;
uint8_t* kernel_signature = NULL;
uint8_t* kernel_buf;
int algorithm = image->kernel_sign_algorithm;
int signature_len = siglen_map[algorithm];
/* Kernel signature must be calculated first as its used for computing the
* preamble signature. */
kernel_buf = (uint8_t*) Malloc(image->kernel_len);
Memcpy(kernel_buf, image->kernel_data, image->kernel_len);
if (!(kernel_signature = SignatureBuf(kernel_buf,
image->kernel_len,
kernel_signing_key_file,
algorithm))) {
Free(preamble_blob);
Free(kernel_buf);
debug("Could not compute signature on the kernel.\n");
return 0;
}
image->kernel_signature = (uint8_t*) Malloc(signature_len);
Memcpy(image->kernel_signature, kernel_signature, signature_len);
preamble_blob = GetKernelPreambleBlob(image);
if (!(preamble_signature = SignatureBuf(preamble_blob,
GetKernelPreambleLen(algorithm),
kernel_signing_key_file,
algorithm))) {
debug("Could not compute signature on the kernel preamble.\n");
Free(preamble_blob);
return 0;
}
image->preamble_signature = (uint8_t*) Malloc(signature_len);
Memcpy(image->preamble_signature, preamble_signature, signature_len);
Free(preamble_signature);
Free(preamble_blob);
Free(kernel_signature);
Free(kernel_buf);
return 1;
}
void PrintKernelEntry(kernel_entry* entry) {
debug("Boot Priority = %d\n", entry->boot_priority);
debug("Boot Tries Remaining = %d\n", entry->boot_tries_remaining);
debug("Boot Success Flag = %d\n", entry->boot_success_flag);
}
// Return the smallest integral multiple of [alignment] that is equal to or
// greater than [val]. Used to determine the number of
// pages/sectors/blocks/whatever needed to contain [val] items/bytes/etc.
static uint64_t roundup(uint64_t val, uint64_t alignment) {
uint64_t rem = val % alignment;
if ( rem )
return val + (alignment - rem);
return val;
}
// Match regexp /\b--\b/ to delimit the start of the kernel commandline. If we
// don't find one, we'll use the whole thing.
static unsigned int find_cmdline_start(char *input, unsigned int max_len) {
int start = 0;
int i;
for(i = 0; i < max_len-1 && input[i]; i++) {
if (input[i] == '-' && input[i+1] == '-') { // found a "--"
if ((i == 0 || input[i-1] == ' ') && // nothing before it
(i+2 >= max_len || input[i+2] == ' ')) { // nothing after it
start = i+2; // note: hope there's a trailing '\0'
break;
}
}
}
while(input[start] == ' ') // skip leading spaces
start++;
return start;
}
uint8_t* GenerateKernelBlob(const char* kernel_file,
const char* config_file,
const char* bootloader_file,
uint64_t* ret_blob_len,
uint64_t* ret_bootloader_offset,
uint64_t* ret_bootloader_size) {
uint8_t* kernel_buf;
uint8_t* config_buf;
uint8_t* bootloader_buf;
uint8_t* blob = 0;
uint64_t kernel_size;
uint64_t config_size;
uint64_t bootloader_size;
uint64_t blob_size;
uint64_t kernel32_start = 0;
uint64_t kernel32_size = 0;
uint64_t bootloader_mem_start;
uint64_t bootloader_mem_size;
uint64_t now;
struct linux_kernel_header *lh = 0;
struct linux_kernel_params *params = 0;
uint32_t cmdline_addr;
uint64_t i;
// Read the input files.
kernel_buf = BufferFromFile(kernel_file, &kernel_size);
if (!kernel_buf)
goto done0;
config_buf = BufferFromFile(config_file, &config_size);
if (!config_buf)
goto done1;
if (config_size >= CROS_CONFIG_SIZE) { // need room for trailing '\0'
error("config file %s is too large (>= %d bytes)\n",
config_file, CROS_CONFIG_SIZE);
goto done1;
}
// Replace any newlines with spaces in the config file.
for (i=0; i < config_size; i++)
if (config_buf[i] == '\n')
config_buf[i] = ' ';
bootloader_buf = BufferFromFile(bootloader_file, &bootloader_size);
if (!bootloader_buf)
goto done2;
// The first part of vmlinuz is a header, followed by a real-mode boot stub.
// We only want the 32-bit part.
if (kernel_size) {
lh = (struct linux_kernel_header *)kernel_buf;
kernel32_start = (lh->setup_sects+1) << 9;
kernel32_size = kernel_size - kernel32_start;
}
// Allocate and zero the blob we need.
blob_size = roundup(kernel32_size, CROS_ALIGN) +
CROS_CONFIG_SIZE +
CROS_PARAMS_SIZE +
roundup(bootloader_size, CROS_ALIGN);
blob = (uint8_t *)Malloc(blob_size);
if (!blob) {
error("Couldn't allocate %ld bytes.\n", blob_size);
goto done3;
}
Memset(blob, 0, blob_size);
now = 0;
// Copy the 32-bit kernel.
if (kernel32_size)
Memcpy(blob + now, kernel_buf + kernel32_start, kernel32_size);
now += roundup(now + kernel32_size, CROS_ALIGN);
// Find the load address of the commandline. We'll need it later.
cmdline_addr = CROS_32BIT_ENTRY_ADDR + now
+ find_cmdline_start((char *)config_buf, config_size);
// Copy the config.
if (config_size)
Memcpy(blob + now, config_buf, config_size);
now += CROS_CONFIG_SIZE;
// The zeropage data is next. Overlay the linux_kernel_header onto it, and
// tweak a few fields.
params = (struct linux_kernel_params *)(blob + now);
if (kernel_size)
Memcpy(&(params->setup_sects), &(lh->setup_sects),
sizeof(*lh) - offsetof(struct linux_kernel_header, setup_sects));
params->boot_flag = 0;
params->ramdisk_image = 0; // we don't support initrd
params->ramdisk_size = 0;
params->type_of_loader = 0xff;
params->cmd_line_ptr = cmdline_addr;
now += CROS_PARAMS_SIZE;
// Finally, append the bootloader. Remember where it will load in memory, too.
bootloader_mem_start = CROS_32BIT_ENTRY_ADDR + now;
bootloader_mem_size = roundup(bootloader_size, CROS_ALIGN);
if (bootloader_size)
Memcpy(blob + now, bootloader_buf, bootloader_size);
now += bootloader_mem_size;
// Pass back some info.
if (ret_blob_len)
*ret_blob_len = blob_size;
if (ret_bootloader_offset)
*ret_bootloader_offset = bootloader_mem_start;
if (ret_bootloader_size)
*ret_bootloader_size = bootloader_mem_size;
// Clean up and return the blob.
done3:
Free(bootloader_buf);
done2:
Free(config_buf);
done1:
Free(kernel_buf);
done0:
return blob;
}