blob: 1fed860f101492ee20183c6aed384062adb5edb3 [file] [log] [blame]
/* Copyright (c) 2010 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*
* Functions for querying, manipulating and locking rollback indices
* stored in the TPM NVRAM.
*/
#include "rollback_index.h"
#include <stdint.h>
#include "utility.h"
#include "tlcl.h"
#include "tss_constants.h"
uint16_t g_firmware_key_version = 0;
uint16_t g_firmware_version = 0;
uint16_t g_kernel_key_version = 0;
uint16_t g_kernel_version = 0;
#define RETURN_ON_FAILURE(tpm_command) do { \
uint32_t result; \
if ((result = (tpm_command)) != TPM_SUCCESS) { \
return result; \
} \
} while (0)
static uint32_t InitializeKernelVersionsSpaces(void) {
RETURN_ON_FAILURE(TlclDefineSpace(KERNEL_VERSIONS_NV_INDEX,
TPM_NV_PER_PPWRITE, KERNEL_SPACE_SIZE));
RETURN_ON_FAILURE(TlclWrite(KERNEL_VERSIONS_NV_INDEX, KERNEL_SPACE_INIT_DATA,
KERNEL_SPACE_SIZE));
return TPM_SUCCESS;
}
/* When the return value is TPM_SUCCESS, this function sets *|initialized| to 1
* if the spaces have been fully initialized, to 0 if not. Otherwise
* *|initialized| is not changed.
*/
static uint32_t GetSpacesInitialized(int* initialized) {
uint32_t space_holder;
uint32_t result;
result = TlclRead(TPM_IS_INITIALIZED_NV_INDEX,
(uint8_t*) &space_holder, sizeof(space_holder));
switch (result) {
case TPM_SUCCESS:
*initialized = 1;
break;
case TPM_E_BADINDEX:
*initialized = 0;
result = TPM_SUCCESS;
break;
}
return result;
}
/* Creates the NVRAM spaces, and sets their initial values as needed.
*/
static uint32_t InitializeSpaces(void) {
uint32_t zero = 0;
uint32_t firmware_perm = TPM_NV_PER_GLOBALLOCK | TPM_NV_PER_PPWRITE;
debug("Initializing spaces\n");
RETURN_ON_FAILURE(TlclSetNvLocked());
RETURN_ON_FAILURE(TlclDefineSpace(FIRMWARE_VERSIONS_NV_INDEX,
firmware_perm, sizeof(uint32_t)));
RETURN_ON_FAILURE(TlclWrite(FIRMWARE_VERSIONS_NV_INDEX,
(uint8_t*) &zero, sizeof(uint32_t)));
RETURN_ON_FAILURE(InitializeKernelVersionsSpaces());
/* The space KERNEL_VERSIONS_BACKUP_NV_INDEX is used to protect the kernel
* versions. The content of space KERNEL_MUST_USE_BACKUP determines whether
* only the backup value should be trusted.
*/
RETURN_ON_FAILURE(TlclDefineSpace(KERNEL_VERSIONS_BACKUP_NV_INDEX,
firmware_perm, sizeof(uint32_t)));
RETURN_ON_FAILURE(TlclWrite(KERNEL_VERSIONS_BACKUP_NV_INDEX,
(uint8_t*) &zero, sizeof(uint32_t)));
RETURN_ON_FAILURE(TlclDefineSpace(KERNEL_MUST_USE_BACKUP_NV_INDEX,
firmware_perm, sizeof(uint32_t)));
RETURN_ON_FAILURE(TlclWrite(KERNEL_MUST_USE_BACKUP_NV_INDEX,
(uint8_t*) &zero, sizeof(uint32_t)));
RETURN_ON_FAILURE(TlclDefineSpace(DEVELOPER_MODE_NV_INDEX,
firmware_perm, sizeof(uint32_t)));
RETURN_ON_FAILURE(TlclWrite(DEVELOPER_MODE_NV_INDEX,
(uint8_t*) &zero, sizeof(uint32_t)));
/* The space TPM_IS_INITIALIZED_NV_INDEX is used to indicate that the TPM
* initialization has completed. Without it we cannot be sure that the last
* space to be created was also initialized (power could have been lost right
* after its creation).
*/
RETURN_ON_FAILURE(TlclDefineSpace(TPM_IS_INITIALIZED_NV_INDEX,
firmware_perm, sizeof(uint32_t)));
return TPM_SUCCESS;
}
static uint32_t SetDistrustKernelSpaceAtNextBoot(uint32_t distrust) {
uint32_t must_use_backup;
RETURN_ON_FAILURE(TlclRead(KERNEL_MUST_USE_BACKUP_NV_INDEX,
(uint8_t*) &must_use_backup, sizeof(uint32_t)));
if (must_use_backup != distrust) {
RETURN_ON_FAILURE(TlclWrite(KERNEL_MUST_USE_BACKUP_NV_INDEX,
(uint8_t*) &distrust, sizeof(uint32_t)));
}
return TPM_SUCCESS;
}
static uint32_t GetTPMRollbackIndices(int type) {
uint32_t firmware_versions;
uint32_t kernel_versions;
/* We perform the reads, making sure they succeed. A failure means that the
* rollback index locations are missing or somehow messed up. We let the
* caller deal with that.
*/
switch (type) {
case FIRMWARE_VERSIONS:
RETURN_ON_FAILURE(TlclRead(FIRMWARE_VERSIONS_NV_INDEX,
(uint8_t*) &firmware_versions,
sizeof(firmware_versions)));
g_firmware_key_version = firmware_versions >> 16;
g_firmware_version = firmware_versions && 0xffff;
break;
case KERNEL_VERSIONS:
RETURN_ON_FAILURE(TlclRead(KERNEL_VERSIONS_NV_INDEX,
(uint8_t*) &kernel_versions,
sizeof(kernel_versions)));
g_kernel_key_version = kernel_versions >> 16;
g_kernel_version = kernel_versions && 0xffff;
break;
}
return TPM_SUCCESS;
}
/* Checks if the kernel version space has been mucked with. If it has,
* reconstructs it using the backup value.
*/
uint32_t RecoverKernelSpace(void) {
uint32_t perms = 0;
uint8_t buffer[KERNEL_SPACE_SIZE];
int read_OK = 0;
int perms_OK = 0;
uint32_t backup_combined_versions;
uint32_t must_use_backup;
RETURN_ON_FAILURE(TlclRead(KERNEL_MUST_USE_BACKUP_NV_INDEX,
(uint8_t*) &must_use_backup, sizeof(uint32_t)));
/* must_use_backup is true if the previous boot entered recovery mode. */
read_OK = TlclRead(KERNEL_VERSIONS_NV_INDEX, (uint8_t*) &buffer,
KERNEL_SPACE_SIZE) == TPM_SUCCESS;
if (read_OK) {
RETURN_ON_FAILURE(TlclGetPermissions(KERNEL_VERSIONS_NV_INDEX, &perms));
perms_OK = perms == TPM_NV_PER_PPWRITE;
}
if (!must_use_backup && read_OK && perms_OK &&
!Memcmp(buffer + sizeof(uint32_t), KERNEL_SPACE_UID,
KERNEL_SPACE_UID_SIZE)) {
/* Everything is fine. This is the normal, frequent path. */
return TPM_SUCCESS;
}
/* Either we detected that something went wrong, or we cannot trust the
* PP-protected kernel space. Attempts to fix. It is not always necessary
* to redefine the space, but we might as well, since this path should be
* taken quite seldom (after recovery mode and after an attack).
*/
RETURN_ON_FAILURE(InitializeKernelVersionsSpaces());
RETURN_ON_FAILURE(TlclRead(KERNEL_VERSIONS_BACKUP_NV_INDEX,
(uint8_t*) &backup_combined_versions,
sizeof(uint32_t)));
RETURN_ON_FAILURE(TlclWrite(KERNEL_VERSIONS_NV_INDEX,
(uint8_t*) &backup_combined_versions,
sizeof(uint32_t)));
if (must_use_backup) {
uint32_t zero = 0;
RETURN_ON_FAILURE(TlclWrite(KERNEL_MUST_USE_BACKUP_NV_INDEX,
(uint8_t*) &zero, 0));
}
return TPM_SUCCESS;
}
static uint32_t BackupKernelSpace(void) {
uint32_t kernel_versions;
uint32_t backup_versions;
RETURN_ON_FAILURE(TlclRead(KERNEL_VERSIONS_NV_INDEX,
(uint8_t*) &kernel_versions, sizeof(uint32_t)));
RETURN_ON_FAILURE(TlclRead(KERNEL_VERSIONS_BACKUP_NV_INDEX,
(uint8_t*) &backup_versions, sizeof(uint32_t)));
if (kernel_versions == backup_versions) {
return TPM_SUCCESS;
} else if (kernel_versions < backup_versions) {
/* This cannot happen. We're screwed. */
return TPM_E_INTERNAL_INCONSISTENCY;
}
RETURN_ON_FAILURE(TlclWrite(KERNEL_VERSIONS_BACKUP_NV_INDEX,
(uint8_t*) &kernel_versions, sizeof(uint32_t)));
return TPM_SUCCESS;
}
/* Checks for transitions between protected mode to developer mode. When going
* into developer mode, clear the TPM.
*/
static uint32_t CheckDeveloperModeTransition(uint32_t current_developer) {
uint32_t past_developer;
int must_clear;
RETURN_ON_FAILURE(TlclRead(DEVELOPER_MODE_NV_INDEX,
(uint8_t*) &past_developer,
sizeof(past_developer)));
must_clear = current_developer != past_developer;
if (must_clear) {
RETURN_ON_FAILURE(TlclForceClear());
}
if (past_developer != current_developer) {
/* (Unauthorized) writes to the TPM succeed even when the TPM is disabled
* and deactivated.
*/
RETURN_ON_FAILURE(TlclWrite(DEVELOPER_MODE_NV_INDEX,
(uint8_t*) &current_developer,
sizeof(current_developer)));
}
return must_clear ? TPM_E_MUST_REBOOT : TPM_SUCCESS;
}
static uint32_t SetupTPM_(int mode, int developer_flag) {
uint8_t disable;
uint8_t deactivated;
TlclLibInit();
RETURN_ON_FAILURE(TlclStartup());
RETURN_ON_FAILURE(TlclContinueSelfTest());
RETURN_ON_FAILURE(TlclAssertPhysicalPresence());
/* Checks that the TPM is enabled and activated. */
RETURN_ON_FAILURE(TlclGetFlags(&disable, &deactivated));
if (disable || deactivated) {
RETURN_ON_FAILURE(TlclSetEnable());
RETURN_ON_FAILURE(TlclSetDeactivated(0));
return TPM_E_MUST_REBOOT;
}
/* We expect this to fail the first time we run on a device, because the TPM
* has not been initialized yet.
*/
if (RecoverKernelSpace() != TPM_SUCCESS) {
int initialized = 0;
RETURN_ON_FAILURE(GetSpacesInitialized(&initialized));
if (initialized) {
return TPM_E_ALREADY_INITIALIZED;
} else {
RETURN_ON_FAILURE(InitializeSpaces());
RETURN_ON_FAILURE(RecoverKernelSpace());
}
}
RETURN_ON_FAILURE(BackupKernelSpace());
RETURN_ON_FAILURE(SetDistrustKernelSpaceAtNextBoot(mode == RO_RECOVERY_MODE));
RETURN_ON_FAILURE(GetTPMRollbackIndices(FIRMWARE_VERSIONS));
RETURN_ON_FAILURE(GetTPMRollbackIndices(KERNEL_VERSIONS));
RETURN_ON_FAILURE(CheckDeveloperModeTransition(developer_flag));
/* As a courtesy (I hope) to the caller, lock the firmware versions if we are
* in recovery mode. The normal mode may need to update the firmware
* versions, so they cannot be locked here.
*/
if (mode == RO_RECOVERY_MODE) {
RETURN_ON_FAILURE(LockFirmwareVersions());
}
return TPM_SUCCESS;
}
/* SetupTPM starts the TPM and establishes the root of trust for the
* anti-rollback mechanism. SetupTPM can fail for three reasons. 1 A bug. 2 a
* TPM hardware failure. 3 An unexpected TPM state due to some attack. In
* general we cannot easily distinguish the kind of failure, so our strategy is
* to reboot in recovery mode in all cases. The recovery mode calls SetupTPM
* again, which executes (almost) the same sequence of operations. There is a
* good chance that, if recovery mode was entered because of a TPM failure, the
* failure will repeat itself. (In general this is impossible to guarantee
* because we have no way of creating the exact TPM initial state at the
* previous boot.) In recovery mode, we ignore the failure and continue, thus
* giving the recovery kernel a chance to fix things (that's why we don't set
* bGlobalLock). The choice is between a knowingly insecure device and a
* bricked device.
*
* As a side note, observe that we go through considerable hoops to avoid using
* the STCLEAR permissions for the index spaces. We do this to avoid writing
* to the TPM flashram at every reboot or wake-up, because of concerns about
* the durability of the NVRAM.
*/
uint32_t SetupTPM(int mode, int developer_flag) {
switch (mode) {
case RO_RECOVERY_MODE:
case RO_NORMAL_MODE: {
uint32_t result = SetupTPM_(mode, developer_flag);
if (result == TPM_E_MAXNVWRITES) {
/* ForceClears and reboots */
RETURN_ON_FAILURE(TlclForceClear());
return TPM_E_MUST_REBOOT;
} else if (mode == RO_NORMAL_MODE) {
return result;
} else {
/* In recovery mode we want to keep going even if there are errors. */
return TPM_SUCCESS;
}
}
case RW_NORMAL_MODE:
/* There are no TPM writes here, so no need to check for write limit errors.
*/
RETURN_ON_FAILURE(GetTPMRollbackIndices(KERNEL_VERSIONS));
default:
return TPM_E_INTERNAL_INCONSISTENCY;
}
}
uint32_t GetStoredVersions(int type, uint16_t* key_version, uint16_t* version) {
/* TODO: should verify that SetupTPM() has been called.
*
* Note that SetupTPM() does hardware setup AND sets global variables. When
* we get down into kernel verification, the hardware setup persists, but we
* lose the global variables.
*/
switch (type) {
case FIRMWARE_VERSIONS:
*key_version = g_firmware_key_version;
*version = g_firmware_version;
break;
case KERNEL_VERSIONS:
*key_version = g_kernel_key_version;
*version = g_kernel_version;
break;
}
return TPM_SUCCESS;
}
uint32_t WriteStoredVersions(int type, uint16_t key_version, uint16_t version) {
uint32_t combined_version = (key_version << 16) & version;
switch (type) {
case FIRMWARE_VERSIONS:
RETURN_ON_FAILURE(TlclWrite(FIRMWARE_VERSIONS_NV_INDEX,
(uint8_t*) &combined_version,
sizeof(uint32_t)));
break;
case KERNEL_VERSIONS:
RETURN_ON_FAILURE(TlclWrite(KERNEL_VERSIONS_NV_INDEX,
(uint8_t*) &combined_version,
sizeof(uint32_t)));
}
return TPM_SUCCESS;
}
uint32_t LockFirmwareVersions() {
return TlclSetGlobalLock();
}
uint32_t LockKernelVersionsByLockingPP() {
return TlclLockPhysicalPresence();
}