blob: d7e50b4cf8346e933ecfded03f099ac8e93c82e4 [file] [log] [blame]
/* Copyright (c) 2010 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*
* Functions for verifying a verified boot firmware image.
* (Firmware Portion)
*/
#include "firmware_image_fw.h"
#include "cryptolib.h"
#include "rollback_index.h"
#include "tss_constants.h"
#include "utility.h"
/* Macro to determine the size of a field structure in the FirmwareImage
* structure. */
#define FIELD_LEN(field) (sizeof(((FirmwareImage*)0)->field))
char* kVerifyFirmwareErrors[VERIFY_FIRMWARE_MAX] = {
"Success.",
"Invalid Image.",
"Root Key Signature Failed.",
"Invalid Verification Algorithm.",
"Preamble Signature Failed.",
"Firmware Signature Failed.",
"Wrong Firmware Magic.",
"Invalid Firmware Header Checksum.",
"Firmware Signing Key Rollback.",
"Firmware Version Rollback."
};
uint64_t GetFirmwarePreambleLen(int algorithm) {
return (FIELD_LEN(firmware_version) +
FIELD_LEN(firmware_len) +
FIELD_LEN(kernel_subkey_sign_algorithm) +
RSAProcessedKeySize(algorithm) +
FIELD_LEN(preamble));
}
int VerifyFirmwareHeader(const uint8_t* root_key_blob,
const uint8_t* header_blob,
int* algorithm,
int* header_len) {
int firmware_sign_key_len;
int root_key_len;
uint16_t hlen, algo;
uint8_t* header_checksum = NULL;
/* Base Offset for the header_checksum field. Actual offset is
* this + firmware_sign_key_len. */
int base_header_checksum_offset = (FIELD_LEN(header_len) +
FIELD_LEN(firmware_sign_algorithm) +
FIELD_LEN(firmware_key_version));
root_key_len = RSAProcessedKeySize(ROOT_SIGNATURE_ALGORITHM);
Memcpy(&hlen, header_blob, sizeof(hlen));
Memcpy(&algo,
header_blob + FIELD_LEN(firmware_sign_algorithm),
sizeof(algo));
if (algo >= kNumAlgorithms)
return VERIFY_FIRMWARE_INVALID_ALGORITHM;
*algorithm = (int) algo;
firmware_sign_key_len = RSAProcessedKeySize(*algorithm);
/* Verify that header len is correct. */
if (hlen != (base_header_checksum_offset +
firmware_sign_key_len +
FIELD_LEN(header_checksum)))
return VERIFY_FIRMWARE_INVALID_IMAGE;
*header_len = (int) hlen;
/* Verify if the hash of the header is correct. */
header_checksum = DigestBuf(header_blob,
*header_len - FIELD_LEN(header_checksum),
SHA512_DIGEST_ALGORITHM);
if (SafeMemcmp(header_checksum,
header_blob + (base_header_checksum_offset +
firmware_sign_key_len),
FIELD_LEN(header_checksum))) {
Free(header_checksum);
return VERIFY_FIRMWARE_WRONG_HEADER_CHECKSUM;
}
Free(header_checksum);
/* Root key signature on the firmware signing key is always checked
* irrespective of dev mode. */
if (!RSAVerifyBinary_f(root_key_blob, NULL, /* Key to use */
header_blob, /* Data to verify */
*header_len, /* Length of data */
header_blob + *header_len, /* Expected Signature */
ROOT_SIGNATURE_ALGORITHM))
return VERIFY_FIRMWARE_ROOT_SIGNATURE_FAILED;
return 0;
}
int VerifyFirmwarePreamble(RSAPublicKey* firmware_sign_key,
const uint8_t* preamble_blob,
int firmware_sign_algorithm,
uint64_t* firmware_len) {
uint64_t len;
int preamble_len;
uint16_t firmware_version;
uint16_t kernel_subkey_sign_algorithm;
Memcpy(&firmware_version, preamble_blob, sizeof(firmware_version));
Memcpy(&kernel_subkey_sign_algorithm,
preamble_blob + (FIELD_LEN(firmware_version) +
FIELD_LEN(firmware_len)),
FIELD_LEN(kernel_subkey_sign_algorithm));
if (kernel_subkey_sign_algorithm >= kNumAlgorithms)
return VERIFY_FIRMWARE_INVALID_ALGORITHM;
preamble_len = GetFirmwarePreambleLen(kernel_subkey_sign_algorithm);
if (!RSAVerifyBinary_f(NULL, firmware_sign_key, /* Key to use */
preamble_blob, /* Data to verify */
preamble_len, /* Length of data */
preamble_blob + preamble_len, /* Expected Signature */
firmware_sign_algorithm))
return VERIFY_FIRMWARE_PREAMBLE_SIGNATURE_FAILED;
Memcpy(&len, preamble_blob + FIELD_LEN(firmware_version),
sizeof(len));
*firmware_len = len;
return 0;
}
int VerifyFirmwareData(RSAPublicKey* firmware_sign_key,
const uint8_t* preamble_start,
const uint8_t* firmware_data,
uint64_t firmware_len,
int firmware_sign_algorithm) {
int signature_len = siglen_map[firmware_sign_algorithm];
int preamble_len;
uint16_t kernel_subkey_sign_algorithm;
uint8_t* digest = NULL;
const uint8_t* firmware_signature = NULL;
DigestContext ctx;
Memcpy(&kernel_subkey_sign_algorithm,
preamble_start + (FIELD_LEN(firmware_version) +
FIELD_LEN(firmware_len)),
FIELD_LEN(kernel_subkey_sign_algorithm));
if (kernel_subkey_sign_algorithm >= kNumAlgorithms)
return VERIFY_FIRMWARE_INVALID_ALGORITHM;
preamble_len = GetFirmwarePreambleLen(kernel_subkey_sign_algorithm);
/* Since the firmware signature is over the preamble and the firmware data,
* which does not form a contiguous region of memory, we calculate the
* message digest ourselves. */
DigestInit(&ctx, firmware_sign_algorithm);
DigestUpdate(&ctx, preamble_start, preamble_len);
DigestUpdate(&ctx, firmware_data, firmware_len);
digest = DigestFinal(&ctx);
/* Firmware signature is at the end of preamble and preamble signature. */
firmware_signature = preamble_start + preamble_len + signature_len;
if (!RSAVerifyBinaryWithDigest_f(
NULL, firmware_sign_key, /* Key to use. */
digest, /* Digest of the data to verify. */
firmware_signature, /* Expected Signature */
firmware_sign_algorithm)) {
Free(digest);
return VERIFY_FIRMWARE_SIGNATURE_FAILED;
}
Free(digest);
return 0;
}
int VerifyFirmware(const uint8_t* root_key_blob,
const uint8_t* verification_header_blob,
const uint8_t* firmware_blob) {
int error_code = 0;
int firmware_sign_algorithm; /* Signing key algorithm. */
RSAPublicKey* firmware_sign_key = NULL;
int firmware_sign_key_len, signature_len, header_len;
uint64_t firmware_len;
const uint8_t* header_ptr = NULL; /* Pointer to header. */
const uint8_t* firmware_sign_key_ptr = NULL; /* Pointer to signing key. */
const uint8_t* preamble_ptr = NULL; /* Pointer to preamble block. */
/* Note: All the offset calculations are based on struct FirmwareImage which
* is defined in include/firmware_image_fw.h. */
/* Compare magic bytes. */
if (SafeMemcmp(verification_header_blob, FIRMWARE_MAGIC,
FIRMWARE_MAGIC_SIZE)) {
debug("Wrong Firmware Magic.\n");
return VERIFY_FIRMWARE_WRONG_MAGIC;
}
header_ptr = verification_header_blob + FIRMWARE_MAGIC_SIZE;
/* Only continue if header verification succeeds. */
if ((error_code = VerifyFirmwareHeader(root_key_blob, header_ptr,
&firmware_sign_algorithm,
&header_len))) {
debug("Couldn't verify Firmware header.\n");
return error_code; /* AKA jump to revovery. */
}
/* Parse signing key into RSAPublicKey structure since it is required multiple
* times. */
firmware_sign_key_len = RSAProcessedKeySize(firmware_sign_algorithm);
firmware_sign_key_ptr = header_ptr + (FIELD_LEN(header_len) +
FIELD_LEN(firmware_sign_algorithm) +
FIELD_LEN(firmware_key_version));
firmware_sign_key = RSAPublicKeyFromBuf(firmware_sign_key_ptr,
firmware_sign_key_len);
signature_len = siglen_map[firmware_sign_algorithm];
/* Only continue if preamble verification succeeds. */
preamble_ptr = (header_ptr + header_len +
FIELD_LEN(firmware_key_signature));
if ((error_code = VerifyFirmwarePreamble(firmware_sign_key, preamble_ptr,
firmware_sign_algorithm,
&firmware_len))) {
RSAPublicKeyFree(firmware_sign_key);
debug("Couldn't verify Firmware preamble.\n");
return error_code; /* AKA jump to recovery. */
}
if ((error_code = VerifyFirmwareData(firmware_sign_key, preamble_ptr,
firmware_blob,
firmware_len,
firmware_sign_algorithm))) {
RSAPublicKeyFree(firmware_sign_key);
debug("Couldn't verify Firmware data.\n");
return error_code; /* AKA jump to recovery. */
}
RSAPublicKeyFree(firmware_sign_key);
return VERIFY_FIRMWARE_SUCCESS; /* Success! */
}
uint32_t GetLogicalFirmwareVersion(uint8_t* verification_header_blob) {
uint16_t firmware_key_version;
uint16_t firmware_version;
uint16_t firmware_sign_algorithm;
int firmware_sign_key_len;
Memcpy(&firmware_sign_algorithm,
verification_header_blob + (FIELD_LEN(magic) + /* Offset to field. */
FIELD_LEN(header_len)),
sizeof(firmware_sign_algorithm));
Memcpy(&firmware_key_version,
verification_header_blob + (FIELD_LEN(magic) + /* Offset to field. */
FIELD_LEN(header_len) +
FIELD_LEN(firmware_sign_algorithm)),
sizeof(firmware_key_version));
if (firmware_sign_algorithm >= kNumAlgorithms)
return 0;
firmware_sign_key_len = RSAProcessedKeySize(firmware_sign_algorithm);
Memcpy(&firmware_version,
verification_header_blob + (FIELD_LEN(magic) + /* Offset to field. */
FIELD_LEN(header_len) +
FIELD_LEN(firmware_sign_algorithm) +
FIELD_LEN(firmware_key_version) +
firmware_sign_key_len +
FIELD_LEN(header_checksum) +
FIELD_LEN(firmware_key_signature)),
sizeof(firmware_version));
return CombineUint16Pair(firmware_key_version, firmware_version);
}
int VerifyFirmwareDriver_f(uint8_t* root_key_blob,
uint8_t* verification_headerA,
uint8_t* firmwareA,
uint8_t* verification_headerB,
uint8_t* firmwareB) {
/* Contains the logical firmware version (32-bit) which is calculated as
* (firmware_key_version << 16 | firmware_version) where
* [firmware_key_version] [firmware_version] are both 16-bit.
*/
uint32_t firmwareA_lversion, firmwareB_lversion;
uint8_t firmwareA_is_verified = 0; /* Whether firmwareA verify succeeded. */
uint32_t min_lversion; /* Minimum of firmware A and firmware lversion. */
uint32_t stored_lversion; /* Stored logical version in the TPM. */
uint16_t version, key_version; /* Temporary variables */
/* Initialize the TPM since we'll be reading the rollback indices. */
SetupTPM(0, 0);
/* We get the key versions by reading directly from the image blobs without
* any additional (expensive) sanity checking on the blob since it's faster to
* outright reject a firmware with an older firmware key version. A malformed
* or corrupted firmware blob will still fail when VerifyFirmware() is called
* on it.
*/
firmwareA_lversion = GetLogicalFirmwareVersion(verification_headerA);
firmwareB_lversion = GetLogicalFirmwareVersion(verification_headerB);
min_lversion = Min(firmwareA_lversion, firmwareB_lversion);
GetStoredVersions(FIRMWARE_VERSIONS, &key_version, &version);
stored_lversion = CombineUint16Pair(key_version, version);
/* Always try FirmwareA first. */
if (VERIFY_FIRMWARE_SUCCESS == VerifyFirmware(root_key_blob,
verification_headerA,
firmwareA))
firmwareA_is_verified = 1;
if (firmwareA_is_verified && (stored_lversion < firmwareA_lversion)) {
/* Stored version may need to be updated but only if FirmwareB
* is successfully verified and has a logical version greater than
* the stored logical version. */
if (stored_lversion < firmwareB_lversion) {
if (VERIFY_FIRMWARE_SUCCESS == VerifyFirmware(root_key_blob,
verification_headerB,
firmwareB)) {
WriteStoredVersions(FIRMWARE_VERSIONS,
(uint16_t) (min_lversion >> 16),
(uint16_t) (min_lversion & 0xFFFF));
stored_lversion = min_lversion; /* Update stored version as it's used
* later. */
}
}
}
/* Lock Firmware TPM rollback indices from further writes. In this design,
* this is done by setting the globalLock bit, which is cleared only by
* TPM_Init at reboot.
*/
if (TPM_SUCCESS != LockFirmwareVersions()) {
return VERIFY_FIRMWARE_TPM_ERROR;
}
/* Determine which firmware (if any) to jump to.
*
* We always attempt to jump to FirmwareA first. If verification of FirmwareA
* fails, we try FirmwareB. In all cases, if the firmware successfully
* verified but is a rollback, we jump to recovery.
*
* Note: This means that if FirmwareA verified successfully and is a
* rollback, then no attempt is made to check FirmwareB. We still jump to
* recovery. FirmwareB is only used as a backup in case FirmwareA gets
* corrupted. Since newer firmware updates are always written to A,
* the case where firmware A is verified but a rollback should not occur in
* normal operation.
*/
if (firmwareA_is_verified) {
if (stored_lversion <= firmwareA_lversion)
return BOOT_FIRMWARE_A_CONTINUE;
} else {
/* If FirmwareA was not valid, then we skipped over the
* check to update the rollback indices and a Verify of FirmwareB wasn't
* attempted.
* If FirmwareB is not a rollback, then we attempt to do the verification.
*/
if (stored_lversion <= firmwareB_lversion &&
(VERIFY_FIRMWARE_SUCCESS == VerifyFirmware(root_key_blob,
verification_headerB,
firmwareB)))
return BOOT_FIRMWARE_B_CONTINUE;
}
/* D'oh: No bootable firmware. */
return BOOT_FIRMWARE_RECOVERY_CONTINUE;
}