blob: 8d344a055af8dcea6c55b62e5ac8b6432c1a1356 [file] [log] [blame]
/*
*
* Copyright (C) 2015 Google, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*
* Author: Tobin Ehlis <tobine@google.com>
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <inttypes.h>
#include "vulkan/vulkan.h"
#include "vk_loader_platform.h"
#include <vector>
#include <unordered_map>
#include "vulkan/vk_layer.h"
#include "vk_layer_config.h"
#include "vk_layer_table.h"
#include "vk_layer_data.h"
#include "vk_layer_logging.h"
#include "vk_layer_extension_utils.h"
struct layer_data {
bool wsi_enabled;
layer_data() :
wsi_enabled(false)
{};
};
struct instExts {
bool wsi_enabled;
bool xlib_enabled;
bool xcb_enabled;
bool wayland_enabled;
bool mir_enabled;
bool android_enabled;
bool win32_enabled;
};
static std::unordered_map<void*, struct instExts> instanceExtMap;
static std::unordered_map<void*, layer_data *> layer_data_map;
static device_table_map unique_objects_device_table_map;
static instance_table_map unique_objects_instance_table_map;
// Structure to wrap returned non-dispatchable objects to guarantee they have unique handles
// address of struct will be used as the unique handle
struct VkUniqueObject
{
uint64_t actualObject;
};
// Handle CreateInstance
static void createInstanceRegisterExtensions(const VkInstanceCreateInfo* pCreateInfo, VkInstance instance)
{
uint32_t i;
VkLayerInstanceDispatchTable *pDisp = get_dispatch_table(unique_objects_instance_table_map, instance);
PFN_vkGetInstanceProcAddr gpa = pDisp->GetInstanceProcAddr;
pDisp->GetPhysicalDeviceSurfaceSupportKHR = (PFN_vkGetPhysicalDeviceSurfaceSupportKHR) gpa(instance, "vkGetPhysicalDeviceSurfaceSupportKHR");
pDisp->GetPhysicalDeviceSurfaceCapabilitiesKHR = (PFN_vkGetPhysicalDeviceSurfaceCapabilitiesKHR) gpa(instance, "vkGetPhysicalDeviceSurfaceCapabilitiesKHR");
pDisp->GetPhysicalDeviceSurfaceFormatsKHR = (PFN_vkGetPhysicalDeviceSurfaceFormatsKHR) gpa(instance, "vkGetPhysicalDeviceSurfaceFormatsKHR");
pDisp->GetPhysicalDeviceSurfacePresentModesKHR = (PFN_vkGetPhysicalDeviceSurfacePresentModesKHR) gpa(instance, "vkGetPhysicalDeviceSurfacePresentModesKHR");
#ifdef VK_USE_PLATFORM_WIN32_KHR
pDisp->CreateWin32SurfaceKHR = (PFN_vkCreateWin32SurfaceKHR) gpa(instance, "vkCreateWin32SurfaceKHR");
pDisp->GetPhysicalDeviceWin32PresentationSupportKHR = (PFN_vkGetPhysicalDeviceWin32PresentationSupportKHR) gpa(instance, "vkGetPhysicalDeviceWin32PresentationSupportKHR");
#endif // VK_USE_PLATFORM_WIN32_KHR
#ifdef VK_USE_PLATFORM_XCB_KHR
pDisp->CreateXcbSurfaceKHR = (PFN_vkCreateXcbSurfaceKHR) gpa(instance, "vkCreateXcbSurfaceKHR");
pDisp->GetPhysicalDeviceXcbPresentationSupportKHR = (PFN_vkGetPhysicalDeviceXcbPresentationSupportKHR) gpa(instance, "vkGetPhysicalDeviceXcbPresentationSupportKHR");
#endif // VK_USE_PLATFORM_XCB_KHR
#ifdef VK_USE_PLATFORM_XLIB_KHR
pDisp->CreateXlibSurfaceKHR = (PFN_vkCreateXlibSurfaceKHR) gpa(instance, "vkCreateXlibSurfaceKHR");
pDisp->GetPhysicalDeviceXlibPresentationSupportKHR = (PFN_vkGetPhysicalDeviceXlibPresentationSupportKHR) gpa(instance, "vkGetPhysicalDeviceXlibPresentationSupportKHR");
#endif // VK_USE_PLATFORM_XLIB_KHR
#ifdef VK_USE_PLATFORM_MIR_KHR
pDisp->CreateMirSurfaceKHR = (PFN_vkCreateMirSurfaceKHR) gpa(instance, "vkCreateMirSurfaceKHR");
pDisp->GetPhysicalDeviceMirPresentationSupportKHR = (PFN_vkGetPhysicalDeviceMirPresentationSupportKHR) gpa(instance, "vkGetPhysicalDeviceMirPresentationSupportKHR");
#endif // VK_USE_PLATFORM_MIR_KHR
#ifdef VK_USE_PLATFORM_WAYLAND_KHR
pDisp->CreateWaylandSurfaceKHR = (PFN_vkCreateWaylandSurfaceKHR) gpa(instance, "vkCreateWaylandSurfaceKHR");
pDisp->GetPhysicalDeviceWaylandPresentationSupportKHR = (PFN_vkGetPhysicalDeviceWaylandPresentationSupportKHR) gpa(instance, "vkGetPhysicalDeviceWaylandPresentationSupportKHR");
#endif // VK_USE_PLATFORM_WAYLAND_KHR
#ifdef VK_USE_PLATFORM_ANDROID_KHR
pDisp->CreateAndroidSurfaceKHR = (PFN_vkCreateAndroidSurfaceKHR) gpa(instance, "vkCreateAndroidSurfaceKHR");
#endif // VK_USE_PLATFORM_ANDROID_KHR
instanceExtMap[pDisp] = {};
for (i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
if (strcmp(pCreateInfo->ppEnabledExtensionNames[i], VK_KHR_SURFACE_EXTENSION_NAME) == 0)
instanceExtMap[pDisp].wsi_enabled = true;
#ifdef VK_USE_PLATFORM_XLIB_KHR
if (strcmp(pCreateInfo->ppEnabledExtensionNames[i], VK_KHR_XLIB_SURFACE_EXTENSION_NAME) == 0)
instanceExtMap[pDisp].xlib_enabled = true;
#endif
#ifdef VK_USE_PLATFORM_XCB_KHR
if (strcmp(pCreateInfo->ppEnabledExtensionNames[i], VK_KHR_XCB_SURFACE_EXTENSION_NAME) == 0)
instanceExtMap[pDisp].xcb_enabled = true;
#endif
#ifdef VK_USE_PLATFORM_WAYLAND_KHR
if (strcmp(pCreateInfo->ppEnabledExtensionNames[i], VK_KHR_WAYLAND_SURFACE_EXTENSION_NAME) == 0)
instanceExtMap[pDisp].wayland_enabled = true;
#endif
#ifdef VK_USE_PLATFORM_MIR_KHR
if (strcmp(pCreateInfo->ppEnabledExtensionNames[i], VK_KHR_MIR_SURFACE_EXTENSION_NAME) == 0)
instanceExtMap[pDisp].mir_enabled = true;
#endif
#ifdef VK_USE_PLATFORM_ANDROID_KHR
if (strcmp(pCreateInfo->ppEnabledExtensionNames[i], VK_KHR_ANDROID_SURFACE_EXTENSION_NAME) == 0)
instanceExtMap[pDisp].android_enabled = true;
#endif
#ifdef VK_USE_PLATFORM_WIN32_KHR
if (strcmp(pCreateInfo->ppEnabledExtensionNames[i], VK_KHR_WIN32_SURFACE_EXTENSION_NAME) == 0)
instanceExtMap[pDisp].win32_enabled = true;
#endif
}
}
VkResult
explicit_CreateInstance(
const VkInstanceCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator,
VkInstance *pInstance)
{
VkLayerInstanceCreateInfo *chain_info = get_chain_info(pCreateInfo, VK_LAYER_LINK_INFO);
assert(chain_info->u.pLayerInfo);
PFN_vkGetInstanceProcAddr fpGetInstanceProcAddr = chain_info->u.pLayerInfo->pfnNextGetInstanceProcAddr;
PFN_vkCreateInstance fpCreateInstance = (PFN_vkCreateInstance) fpGetInstanceProcAddr(NULL, "vkCreateInstance");
if (fpCreateInstance == NULL) {
return VK_ERROR_INITIALIZATION_FAILED;
}
// Advance the link info for the next element on the chain
chain_info->u.pLayerInfo = chain_info->u.pLayerInfo->pNext;
VkResult result = fpCreateInstance(pCreateInfo, pAllocator, pInstance);
if (result != VK_SUCCESS) {
return result;
}
initInstanceTable(*pInstance, fpGetInstanceProcAddr, unique_objects_instance_table_map);
createInstanceRegisterExtensions(pCreateInfo, *pInstance);
return result;
}
// Handle CreateDevice
static void createDeviceRegisterExtensions(const VkDeviceCreateInfo* pCreateInfo, VkDevice device)
{
layer_data *my_device_data = get_my_data_ptr(get_dispatch_key(device), layer_data_map);
VkLayerDispatchTable *pDisp = get_dispatch_table(unique_objects_device_table_map, device);
PFN_vkGetDeviceProcAddr gpa = pDisp->GetDeviceProcAddr;
pDisp->CreateSwapchainKHR = (PFN_vkCreateSwapchainKHR) gpa(device, "vkCreateSwapchainKHR");
pDisp->DestroySwapchainKHR = (PFN_vkDestroySwapchainKHR) gpa(device, "vkDestroySwapchainKHR");
pDisp->GetSwapchainImagesKHR = (PFN_vkGetSwapchainImagesKHR) gpa(device, "vkGetSwapchainImagesKHR");
pDisp->AcquireNextImageKHR = (PFN_vkAcquireNextImageKHR) gpa(device, "vkAcquireNextImageKHR");
pDisp->QueuePresentKHR = (PFN_vkQueuePresentKHR) gpa(device, "vkQueuePresentKHR");
my_device_data->wsi_enabled = false;
for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
if (strcmp(pCreateInfo->ppEnabledExtensionNames[i], VK_KHR_SWAPCHAIN_EXTENSION_NAME) == 0)
my_device_data->wsi_enabled = true;
}
}
VkResult
explicit_CreateDevice(
VkPhysicalDevice gpu,
const VkDeviceCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator,
VkDevice *pDevice)
{
VkLayerDeviceCreateInfo *chain_info = get_chain_info(pCreateInfo, VK_LAYER_LINK_INFO);
assert(chain_info->u.pLayerInfo);
PFN_vkGetInstanceProcAddr fpGetInstanceProcAddr = chain_info->u.pLayerInfo->pfnNextGetInstanceProcAddr;
PFN_vkGetDeviceProcAddr fpGetDeviceProcAddr = chain_info->u.pLayerInfo->pfnNextGetDeviceProcAddr;
PFN_vkCreateDevice fpCreateDevice = (PFN_vkCreateDevice) fpGetInstanceProcAddr(NULL, "vkCreateDevice");
if (fpCreateDevice == NULL) {
return VK_ERROR_INITIALIZATION_FAILED;
}
// Advance the link info for the next element on the chain
chain_info->u.pLayerInfo = chain_info->u.pLayerInfo->pNext;
VkResult result = fpCreateDevice(gpu, pCreateInfo, pAllocator, pDevice);
if (result != VK_SUCCESS) {
return result;
}
// Setup layer's device dispatch table
initDeviceTable(*pDevice, fpGetDeviceProcAddr, unique_objects_device_table_map);
createDeviceRegisterExtensions(pCreateInfo, *pDevice);
return result;
}
VkResult explicit_QueueSubmit(VkQueue queue, uint32_t submitCount, const VkSubmitInfo* pSubmits, VkFence fence)
{
// UNWRAP USES:
// 0 : fence,VkFence
if (VK_NULL_HANDLE != fence) {
fence = (VkFence)((VkUniqueObject*)fence)->actualObject;
}
// waitSemaphoreCount : pSubmits[submitCount]->pWaitSemaphores,VkSemaphore
std::vector<VkSemaphore> original_pWaitSemaphores = {};
// signalSemaphoreCount : pSubmits[submitCount]->pSignalSemaphores,VkSemaphore
std::vector<VkSemaphore> original_pSignalSemaphores = {};
if (pSubmits) {
for (uint32_t index0=0; index0<submitCount; ++index0) {
if (pSubmits[index0].pWaitSemaphores) {
for (uint32_t index1=0; index1<pSubmits[index0].waitSemaphoreCount; ++index1) {
VkSemaphore** ppSemaphore = (VkSemaphore**)&(pSubmits[index0].pWaitSemaphores);
original_pWaitSemaphores.push_back(pSubmits[index0].pWaitSemaphores[index1]);
*(ppSemaphore[index1]) = (VkSemaphore)((VkUniqueObject*)pSubmits[index0].pWaitSemaphores[index1])->actualObject;
}
}
if (pSubmits[index0].pSignalSemaphores) {
for (uint32_t index1=0; index1<pSubmits[index0].signalSemaphoreCount; ++index1) {
VkSemaphore** ppSemaphore = (VkSemaphore**)&(pSubmits[index0].pSignalSemaphores);
original_pSignalSemaphores.push_back(pSubmits[index0].pSignalSemaphores[index1]);
*(ppSemaphore[index1]) = (VkSemaphore)((VkUniqueObject*)pSubmits[index0].pSignalSemaphores[index1])->actualObject;
}
}
}
}
VkResult result = get_dispatch_table(unique_objects_device_table_map, queue)->QueueSubmit(queue, submitCount, pSubmits, fence);
if (pSubmits) {
for (uint32_t index0=0; index0<submitCount; ++index0) {
if (pSubmits[index0].pWaitSemaphores) {
for (uint32_t index1=0; index1<pSubmits[index0].waitSemaphoreCount; ++index1) {
VkSemaphore** ppSemaphore = (VkSemaphore**)&(pSubmits[index0].pWaitSemaphores);
*(ppSemaphore[index1]) = original_pWaitSemaphores[index1];
}
}
if (pSubmits[index0].pSignalSemaphores) {
for (uint32_t index1=0; index1<pSubmits[index0].signalSemaphoreCount; ++index1) {
VkSemaphore** ppSemaphore = (VkSemaphore**)&(pSubmits[index0].pSignalSemaphores);
*(ppSemaphore[index1]) = original_pSignalSemaphores[index1];
}
}
}
}
return result;
}
VkResult explicit_QueueBindSparse(VkQueue queue, uint32_t bindInfoCount, const VkBindSparseInfo* pBindInfo, VkFence fence)
{
// UNWRAP USES:
// 0 : pBindInfo[bindInfoCount]->pBufferBinds[bufferBindCount]->buffer,VkBuffer, pBindInfo[bindInfoCount]->pBufferBinds[bufferBindCount]->pBinds[bindCount]->memory,VkDeviceMemory, pBindInfo[bindInfoCount]->pImageOpaqueBinds[imageOpaqueBindCount]->image,VkImage, pBindInfo[bindInfoCount]->pImageOpaqueBinds[imageOpaqueBindCount]->pBinds[bindCount]->memory,VkDeviceMemory, pBindInfo[bindInfoCount]->pImageBinds[imageBindCount]->image,VkImage, pBindInfo[bindInfoCount]->pImageBinds[imageBindCount]->pBinds[bindCount]->memory,VkDeviceMemory
std::vector<VkBuffer> original_buffer = {};
std::vector<VkDeviceMemory> original_memory1 = {};
std::vector<VkImage> original_image1 = {};
std::vector<VkDeviceMemory> original_memory2 = {};
std::vector<VkImage> original_image2 = {};
std::vector<VkDeviceMemory> original_memory3 = {};
std::vector<VkSemaphore> original_pWaitSemaphores = {};
std::vector<VkSemaphore> original_pSignalSemaphores = {};
if (pBindInfo) {
for (uint32_t index0=0; index0<bindInfoCount; ++index0) {
if (pBindInfo[index0].pBufferBinds) {
for (uint32_t index1=0; index1<pBindInfo[index0].bufferBindCount; ++index1) {
if (pBindInfo[index0].pBufferBinds[index1].buffer) {
VkBuffer* pBuffer = (VkBuffer*)&(pBindInfo[index0].pBufferBinds[index1].buffer);
original_buffer.push_back(pBindInfo[index0].pBufferBinds[index1].buffer);
*(pBuffer) = (VkBuffer)((VkUniqueObject*)pBindInfo[index0].pBufferBinds[index1].buffer)->actualObject;
}
if (pBindInfo[index0].pBufferBinds[index1].pBinds) {
for (uint32_t index2=0; index2<pBindInfo[index0].pBufferBinds[index1].bindCount; ++index2) {
if (pBindInfo[index0].pBufferBinds[index1].pBinds[index2].memory) {
VkDeviceMemory* pDeviceMemory = (VkDeviceMemory*)&(pBindInfo[index0].pBufferBinds[index1].pBinds[index2].memory);
original_memory1.push_back(pBindInfo[index0].pBufferBinds[index1].pBinds[index2].memory);
*(pDeviceMemory) = (VkDeviceMemory)((VkUniqueObject*)pBindInfo[index0].pBufferBinds[index1].pBinds[index2].memory)->actualObject;
}
}
}
}
}
if (pBindInfo[index0].pImageOpaqueBinds) {
for (uint32_t index1=0; index1<pBindInfo[index0].imageOpaqueBindCount; ++index1) {
if (pBindInfo[index0].pImageOpaqueBinds[index1].image) {
VkImage* pImage = (VkImage*)&(pBindInfo[index0].pImageOpaqueBinds[index1].image);
original_image1.push_back(pBindInfo[index0].pImageOpaqueBinds[index1].image);
*(pImage) = (VkImage)((VkUniqueObject*)pBindInfo[index0].pImageOpaqueBinds[index1].image)->actualObject;
}
if (pBindInfo[index0].pImageOpaqueBinds[index1].pBinds) {
for (uint32_t index2=0; index2<pBindInfo[index0].pImageOpaqueBinds[index1].bindCount; ++index2) {
if (pBindInfo[index0].pImageOpaqueBinds[index1].pBinds[index2].memory) {
VkDeviceMemory* pDeviceMemory = (VkDeviceMemory*)&(pBindInfo[index0].pImageOpaqueBinds[index1].pBinds[index2].memory);
original_memory2.push_back(pBindInfo[index0].pImageOpaqueBinds[index1].pBinds[index2].memory);
*(pDeviceMemory) = (VkDeviceMemory)((VkUniqueObject*)pBindInfo[index0].pImageOpaqueBinds[index1].pBinds[index2].memory)->actualObject;
}
}
}
}
}
if (pBindInfo[index0].pImageBinds) {
for (uint32_t index1=0; index1<pBindInfo[index0].imageBindCount; ++index1) {
if (pBindInfo[index0].pImageBinds[index1].image) {
VkImage* pImage = (VkImage*)&(pBindInfo[index0].pImageBinds[index1].image);
original_image2.push_back(pBindInfo[index0].pImageBinds[index1].image);
*(pImage) = (VkImage)((VkUniqueObject*)pBindInfo[index0].pImageBinds[index1].image)->actualObject;
}
if (pBindInfo[index0].pImageBinds[index1].pBinds) {
for (uint32_t index2=0; index2<pBindInfo[index0].pImageBinds[index1].bindCount; ++index2) {
if (pBindInfo[index0].pImageBinds[index1].pBinds[index2].memory) {
VkDeviceMemory* pDeviceMemory = (VkDeviceMemory*)&(pBindInfo[index0].pImageBinds[index1].pBinds[index2].memory);
original_memory3.push_back(pBindInfo[index0].pImageBinds[index1].pBinds[index2].memory);
*(pDeviceMemory) = (VkDeviceMemory)((VkUniqueObject*)pBindInfo[index0].pImageBinds[index1].pBinds[index2].memory)->actualObject;
}
}
}
}
}
if (pBindInfo[index0].pWaitSemaphores) {
for (uint32_t index1=0; index1<pBindInfo[index0].waitSemaphoreCount; ++index1) {
VkSemaphore** ppSemaphore = (VkSemaphore**)&(pBindInfo[index0].pWaitSemaphores);
original_pWaitSemaphores.push_back(pBindInfo[index0].pWaitSemaphores[index1]);
*(ppSemaphore[index1]) = (VkSemaphore)((VkUniqueObject*)pBindInfo[index0].pWaitSemaphores[index1])->actualObject;
}
}
if (pBindInfo[index0].pSignalSemaphores) {
for (uint32_t index1=0; index1<pBindInfo[index0].signalSemaphoreCount; ++index1) {
VkSemaphore** ppSemaphore = (VkSemaphore**)&(pBindInfo[index0].pSignalSemaphores);
original_pSignalSemaphores.push_back(pBindInfo[index0].pSignalSemaphores[index1]);
*(ppSemaphore[index1]) = (VkSemaphore)((VkUniqueObject*)pBindInfo[index0].pSignalSemaphores[index1])->actualObject;
}
}
}
}
if (VK_NULL_HANDLE != fence) {
fence = (VkFence)((VkUniqueObject*)fence)->actualObject;
}
VkResult result = get_dispatch_table(unique_objects_device_table_map, queue)->QueueBindSparse(queue, bindInfoCount, pBindInfo, fence);
if (pBindInfo) {
for (uint32_t index0=0; index0<bindInfoCount; ++index0) {
if (pBindInfo[index0].pBufferBinds) {
for (uint32_t index1=0; index1<pBindInfo[index0].bufferBindCount; ++index1) {
if (pBindInfo[index0].pBufferBinds[index1].buffer) {
VkBuffer* pBuffer = (VkBuffer*)&(pBindInfo[index0].pBufferBinds[index1].buffer);
*(pBuffer) = original_buffer[index1];
}
if (pBindInfo[index0].pBufferBinds[index1].pBinds) {
for (uint32_t index2=0; index2<pBindInfo[index0].pBufferBinds[index1].bindCount; ++index2) {
if (pBindInfo[index0].pBufferBinds[index1].pBinds[index2].memory) {
VkDeviceMemory* pDeviceMemory = (VkDeviceMemory*)&(pBindInfo[index0].pBufferBinds[index1].pBinds[index2].memory);
*(pDeviceMemory) = original_memory1[index2];
}
}
}
}
}
if (pBindInfo[index0].pImageOpaqueBinds) {
for (uint32_t index1=0; index1<pBindInfo[index0].imageOpaqueBindCount; ++index1) {
if (pBindInfo[index0].pImageOpaqueBinds[index1].image) {
VkImage* pImage = (VkImage*)&(pBindInfo[index0].pImageOpaqueBinds[index1].image);
*(pImage) = original_image1[index1];
}
if (pBindInfo[index0].pImageOpaqueBinds[index1].pBinds) {
for (uint32_t index2=0; index2<pBindInfo[index0].pImageOpaqueBinds[index1].bindCount; ++index2) {
if (pBindInfo[index0].pImageOpaqueBinds[index1].pBinds[index2].memory) {
VkDeviceMemory* pDeviceMemory = (VkDeviceMemory*)&(pBindInfo[index0].pImageOpaqueBinds[index1].pBinds[index2].memory);
*(pDeviceMemory) = original_memory2[index2];
}
}
}
}
}
if (pBindInfo[index0].pImageBinds) {
for (uint32_t index1=0; index1<pBindInfo[index0].imageBindCount; ++index1) {
if (pBindInfo[index0].pImageBinds[index1].image) {
VkImage* pImage = (VkImage*)&(pBindInfo[index0].pImageBinds[index1].image);
*(pImage) = original_image2[index1];
}
if (pBindInfo[index0].pImageBinds[index1].pBinds) {
for (uint32_t index2=0; index2<pBindInfo[index0].pImageBinds[index1].bindCount; ++index2) {
if (pBindInfo[index0].pImageBinds[index1].pBinds[index2].memory) {
VkDeviceMemory* pDeviceMemory = (VkDeviceMemory*)&(pBindInfo[index0].pImageBinds[index1].pBinds[index2].memory);
*(pDeviceMemory) = original_memory3[index2];
}
}
}
}
}
if (pBindInfo[index0].pWaitSemaphores) {
for (uint32_t index1=0; index1<pBindInfo[index0].waitSemaphoreCount; ++index1) {
VkSemaphore** ppSemaphore = (VkSemaphore**)&(pBindInfo[index0].pWaitSemaphores);
*(ppSemaphore[index1]) = original_pWaitSemaphores[index1];
}
}
if (pBindInfo[index0].pSignalSemaphores) {
for (uint32_t index1=0; index1<pBindInfo[index0].signalSemaphoreCount; ++index1) {
VkSemaphore** ppSemaphore = (VkSemaphore**)&(pBindInfo[index0].pSignalSemaphores);
*(ppSemaphore[index1]) = original_pSignalSemaphores[index1];
}
}
}
}
return result;
}
VkResult explicit_CreateComputePipelines(VkDevice device, VkPipelineCache pipelineCache, uint32_t createInfoCount, const VkComputePipelineCreateInfo* pCreateInfos, const VkAllocationCallbacks* pAllocator, VkPipeline* pPipelines)
{
// UNWRAP USES:
// 0 : pipelineCache,VkPipelineCache, pCreateInfos[createInfoCount]->stage[0]->module,VkShaderModule, pCreateInfos[createInfoCount]->layout,VkPipelineLayout, pCreateInfos[createInfoCount]->basePipelineHandle,VkPipeline
if (VK_NULL_HANDLE != pipelineCache) {
pipelineCache = (VkPipelineCache)((VkUniqueObject*)pipelineCache)->actualObject;
}
std::vector<VkShaderModule> original_module = {};
std::vector<VkPipelineLayout> original_layout = {};
std::vector<VkPipeline> original_basePipelineHandle = {};
if (pCreateInfos) {
for (uint32_t index0=0; index0<createInfoCount; ++index0) {
if (pCreateInfos[index0].stage.module) {
VkShaderModule* pShaderModule = (VkShaderModule*)&(pCreateInfos[index0].stage.module);
original_module.push_back(pCreateInfos[index0].stage.module);
*(pShaderModule) = (VkShaderModule)((VkUniqueObject*)pCreateInfos[index0].stage.module)->actualObject;
}
if (pCreateInfos[index0].layout) {
VkPipelineLayout* pPipelineLayout = (VkPipelineLayout*)&(pCreateInfos[index0].layout);
original_layout.push_back(pCreateInfos[index0].layout);
*(pPipelineLayout) = (VkPipelineLayout)((VkUniqueObject*)pCreateInfos[index0].layout)->actualObject;
}
if (pCreateInfos[index0].basePipelineHandle) {
VkPipeline* pPipeline = (VkPipeline*)&(pCreateInfos[index0].basePipelineHandle);
original_basePipelineHandle.push_back(pCreateInfos[index0].basePipelineHandle);
*(pPipeline) = (VkPipeline)((VkUniqueObject*)pCreateInfos[index0].basePipelineHandle)->actualObject;
}
}
}
VkResult result = get_dispatch_table(unique_objects_device_table_map, device)->CreateComputePipelines(device, pipelineCache, createInfoCount, pCreateInfos, pAllocator, pPipelines);
if (pCreateInfos) {
for (uint32_t index0=0; index0<createInfoCount; ++index0) {
if (pCreateInfos[index0].stage.module) {
VkShaderModule* pShaderModule = (VkShaderModule*)&(pCreateInfos[index0].stage.module);
*(pShaderModule) = original_module[index0];
}
if (pCreateInfos[index0].layout) {
VkPipelineLayout* pPipelineLayout = (VkPipelineLayout*)&(pCreateInfos[index0].layout);
*(pPipelineLayout) = original_layout[index0];
}
if (pCreateInfos[index0].basePipelineHandle) {
VkPipeline* pPipeline = (VkPipeline*)&(pCreateInfos[index0].basePipelineHandle);
*(pPipeline) = original_basePipelineHandle[index0];
}
}
}
if (VK_SUCCESS == result) {
VkUniqueObject* pUO = NULL;
for (uint32_t i=0; i<createInfoCount; ++i) {
pUO = new VkUniqueObject();
pUO->actualObject = (uint64_t)pPipelines[i];
pPipelines[i] = (VkPipeline)pUO;
}
}
return result;
}
VkResult explicit_CreateGraphicsPipelines(VkDevice device, VkPipelineCache pipelineCache, uint32_t createInfoCount, const VkGraphicsPipelineCreateInfo* pCreateInfos, const VkAllocationCallbacks* pAllocator, VkPipeline* pPipelines)
{
// UNWRAP USES:
// 0 : pipelineCache,VkPipelineCache, pCreateInfos[createInfoCount]->pStages[stageCount]->module,VkShaderModule, pCreateInfos[createInfoCount]->layout,VkPipelineLayout, pCreateInfos[createInfoCount]->renderPass,VkRenderPass, pCreateInfos[createInfoCount]->basePipelineHandle,VkPipeline
if (VK_NULL_HANDLE != pipelineCache) {
pipelineCache = (VkPipelineCache)((VkUniqueObject*)pipelineCache)->actualObject;
}
std::vector<VkShaderModule> original_module = {};
std::vector<VkPipelineLayout> original_layout = {};
std::vector<VkRenderPass> original_renderPass = {};
std::vector<VkPipeline> original_basePipelineHandle = {};
if (pCreateInfos) {
for (uint32_t index0=0; index0<createInfoCount; ++index0) {
if (pCreateInfos[index0].pStages) {
for (uint32_t index1=0; index1<pCreateInfos[index0].stageCount; ++index1) {
if (pCreateInfos[index0].pStages[index1].module) {
VkShaderModule* pShaderModule = (VkShaderModule*)&(pCreateInfos[index0].pStages[index1].module);
original_module.push_back(pCreateInfos[index0].pStages[index1].module);
*(pShaderModule) = (VkShaderModule)((VkUniqueObject*)pCreateInfos[index0].pStages[index1].module)->actualObject;
}
}
}
if (pCreateInfos[index0].layout) {
VkPipelineLayout* pPipelineLayout = (VkPipelineLayout*)&(pCreateInfos[index0].layout);
original_layout.push_back(pCreateInfos[index0].layout);
*(pPipelineLayout) = (VkPipelineLayout)((VkUniqueObject*)pCreateInfos[index0].layout)->actualObject;
}
if (pCreateInfos[index0].renderPass) {
VkRenderPass* pRenderPass = (VkRenderPass*)&(pCreateInfos[index0].renderPass);
original_renderPass.push_back(pCreateInfos[index0].renderPass);
*(pRenderPass) = (VkRenderPass)((VkUniqueObject*)pCreateInfos[index0].renderPass)->actualObject;
}
if (pCreateInfos[index0].basePipelineHandle) {
VkPipeline* pPipeline = (VkPipeline*)&(pCreateInfos[index0].basePipelineHandle);
original_basePipelineHandle.push_back(pCreateInfos[index0].basePipelineHandle);
*(pPipeline) = (VkPipeline)((VkUniqueObject*)pCreateInfos[index0].basePipelineHandle)->actualObject;
}
}
}
VkResult result = get_dispatch_table(unique_objects_device_table_map, device)->CreateGraphicsPipelines(device, pipelineCache, createInfoCount, pCreateInfos, pAllocator, pPipelines);
if (pCreateInfos) {
for (uint32_t index0=0; index0<createInfoCount; ++index0) {
if (pCreateInfos[index0].pStages) {
for (uint32_t index1=0; index1<pCreateInfos[index0].stageCount; ++index1) {
if (pCreateInfos[index0].pStages[index1].module) {
VkShaderModule* pShaderModule = (VkShaderModule*)&(pCreateInfos[index0].pStages[index1].module);
*(pShaderModule) = original_module[index1];
}
}
}
if (pCreateInfos[index0].layout) {
VkPipelineLayout* pPipelineLayout = (VkPipelineLayout*)&(pCreateInfos[index0].layout);
*(pPipelineLayout) = original_layout[index0];
}
if (pCreateInfos[index0].renderPass) {
VkRenderPass* pRenderPass = (VkRenderPass*)&(pCreateInfos[index0].renderPass);
*(pRenderPass) = original_renderPass[index0];
}
if (pCreateInfos[index0].basePipelineHandle) {
VkPipeline* pPipeline = (VkPipeline*)&(pCreateInfos[index0].basePipelineHandle);
*(pPipeline) = original_basePipelineHandle[index0];
}
}
}
if (VK_SUCCESS == result) {
VkUniqueObject* pUO = NULL;
for (uint32_t i=0; i<createInfoCount; ++i) {
pUO = new VkUniqueObject();
pUO->actualObject = (uint64_t)pPipelines[i];
pPipelines[i] = (VkPipeline)pUO;
}
}
return result;
}
VkResult explicit_GetSwapchainImagesKHR(VkDevice device, VkSwapchainKHR swapchain, uint32_t* pSwapchainImageCount, VkImage* pSwapchainImages)
{
// UNWRAP USES:
// 0 : swapchain,VkSwapchainKHR, pSwapchainImages,VkImage
if (VK_NULL_HANDLE != swapchain) {
swapchain = (VkSwapchainKHR)((VkUniqueObject*)swapchain)->actualObject;
}
VkResult result = get_dispatch_table(unique_objects_device_table_map, device)->GetSwapchainImagesKHR(device, swapchain, pSwapchainImageCount, pSwapchainImages);
// TODO : Need to add corresponding code to delete these images
if (VK_SUCCESS == result) {
if ((*pSwapchainImageCount > 0) && pSwapchainImages) {
std::vector<VkUniqueObject*> uniqueImages = {};
for (uint32_t i=0; i<*pSwapchainImageCount; ++i) {
uniqueImages.push_back(new VkUniqueObject());
uniqueImages[i]->actualObject = (uint64_t)pSwapchainImages[i];
pSwapchainImages[i] = (VkImage)uniqueImages[i];
}
}
}
return result;
}