blob: 4106bb3ed14002f25fcf61f78a9021c54a31b031 [file] [log] [blame]
// VK tests
//
// Copyright (C) 2014 LunarG, Inc.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included
// in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
// THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
#include <iostream>
#include <string.h> // memset(), memcmp()
#include <assert.h>
#include "vktestbinding.h"
namespace {
#define DERIVED_OBJECT_TYPE_INIT(create_func, dev, vk_object_type, ...) \
do { \
obj_type obj; \
dev_ = &dev; \
if (EXPECT(create_func(dev.obj(), __VA_ARGS__, &obj) == VK_SUCCESS)) \
base_type::init(obj, vk_object_type); \
} while (0)
#define STRINGIFY(x) #x
#define EXPECT(expr) ((expr) ? true : expect_failure(STRINGIFY(expr), __FILE__, __LINE__, __FUNCTION__))
vk_testing::ErrorCallback error_callback;
bool expect_failure(const char *expr, const char *file, unsigned int line, const char *function)
{
if (error_callback) {
error_callback(expr, file, line, function);
} else {
std::cerr << file << ":" << line << ": " << function <<
": Expectation `" << expr << "' failed.\n";
}
return false;
}
template<class T, class S>
std::vector<T> make_objects(const std::vector<S> &v)
{
std::vector<T> objs;
objs.reserve(v.size());
for (typename std::vector<S>::const_iterator it = v.begin(); it != v.end(); it++)
objs.push_back((*it)->obj());
return objs;
}
template<typename T>
std::vector<T> get_info(VkPhysicalDevice gpu, VkPhysicalDeviceInfoType type, size_t min_elems)
{
std::vector<T> info;
size_t size;
if (EXPECT(vkGetPhysicalDeviceInfo(gpu, type, &size, NULL) == VK_SUCCESS && size % sizeof(T) == 0)) {
info.resize(size / sizeof(T));
if (!EXPECT(vkGetPhysicalDeviceInfo(gpu, type, &size, &info[0]) == VK_SUCCESS && size == info.size() * sizeof(T)))
info.clear();
}
if (info.size() < min_elems)
info.resize(min_elems);
return info;
}
template<typename T>
std::vector<T> get_info(VkDevice device, VkObjectType object_type, VkObject obj, VkObjectInfoType type, size_t min_elems)
{
std::vector<T> info;
size_t size;
if (EXPECT(vkGetObjectInfo(device, object_type, obj, type, &size, NULL) == VK_SUCCESS && size % sizeof(T) == 0)) {
info.resize(size / sizeof(T));
if (!EXPECT(vkGetObjectInfo(device, object_type, obj, type, &size, &info[0]) == VK_SUCCESS && size == info.size() * sizeof(T)))
info.clear();
}
if (info.size() < min_elems)
info.resize(min_elems);
return info;
}
} // namespace
namespace vk_testing {
void set_error_callback(ErrorCallback callback)
{
error_callback = callback;
}
VkPhysicalDeviceProperties PhysicalGpu::properties() const
{
return get_info<VkPhysicalDeviceProperties>(gpu_, VK_PHYSICAL_DEVICE_INFO_TYPE_PROPERTIES, 1)[0];
}
VkPhysicalDevicePerformance PhysicalGpu::performance() const
{
return get_info<VkPhysicalDevicePerformance>(gpu_, VK_PHYSICAL_DEVICE_INFO_TYPE_PERFORMANCE, 1)[0];
}
std::vector<VkPhysicalDeviceQueueProperties> PhysicalGpu::queue_properties() const
{
return get_info<VkPhysicalDeviceQueueProperties>(gpu_, VK_PHYSICAL_DEVICE_INFO_TYPE_QUEUE_PROPERTIES, 0);
}
VkPhysicalDeviceMemoryProperties PhysicalGpu::memory_properties() const
{
return get_info<VkPhysicalDeviceMemoryProperties>(gpu_, VK_PHYSICAL_DEVICE_INFO_TYPE_MEMORY_PROPERTIES, 1)[0];
}
std::vector<const char *> PhysicalGpu::layers(std::vector<char> &buf) const
{
const size_t max_layer_count = 16;
const size_t max_string_size = 256;
buf.resize(max_layer_count * max_string_size);
std::vector<const char *> layers;
layers.reserve(max_layer_count);
for (size_t i = 0; i < max_layer_count; i++)
layers.push_back(&buf[0] + max_string_size * i);
char * const *out = const_cast<char * const *>(&layers[0]);
size_t count = max_layer_count; /* allow up to 16 layer names to be returned */
if (!EXPECT(vkEnumerateLayers(gpu_, max_string_size, &count, out, NULL) == VK_SUCCESS))
count = 0;
layers.resize(count);
return layers;
}
std::vector<const char *> PhysicalGpu::extensions() const
{
// Extensions to enable
static const char *known_exts[] = {
"VK_WSI_LunarG",
};
std::vector<const char *> exts;
size_t extSize = sizeof(uint32_t);
uint32_t extCount = 0;
if (!EXPECT(vkGetGlobalExtensionInfo(VK_EXTENSION_INFO_TYPE_COUNT, 0, &extSize, &extCount) == VK_SUCCESS))
return exts;
VkExtensionProperties extProp;
extSize = sizeof(VkExtensionProperties);
// TODO : Need to update this if/when we have more than 1 extension to enable
for (uint32_t i = 0; i < extCount; i++) {
if (!EXPECT(vkGetGlobalExtensionInfo(VK_EXTENSION_INFO_TYPE_PROPERTIES, i, &extSize, &extProp) == VK_SUCCESS))
return exts;
if (!strcmp(known_exts[0], extProp.extName))
exts.push_back(known_exts[i]);
}
return exts;
}
VkPhysicalDeviceCompatibilityInfo PhysicalGpu::compatibility(const PhysicalGpu &other) const
{
VkPhysicalDeviceCompatibilityInfo data;
if (!EXPECT(vkGetMultiDeviceCompatibility(gpu_, other.gpu_, &data) == VK_SUCCESS))
memset(&data, 0, sizeof(data));
return data;
}
void BaseObject::init(VkObject obj, VkObjectType type, bool own)
{
EXPECT(!initialized());
reinit(obj, type, own);
}
void BaseObject::reinit(VkObject obj, VkObjectType type, bool own)
{
obj_ = obj;
object_type_ = type;
own_obj_ = own;
}
uint32_t Object::memory_allocation_count() const
{
return get_info<uint32_t>(dev_->obj(), type(), obj(), VK_OBJECT_INFO_TYPE_MEMORY_ALLOCATION_COUNT, 1)[0];
}
std::vector<VkMemoryRequirements> Object::memory_requirements() const
{
VkResult err;
uint32_t num_allocations = 0;
size_t num_alloc_size = sizeof(num_allocations);
err = vkGetObjectInfo(dev_->obj(), type(), obj(), VK_OBJECT_INFO_TYPE_MEMORY_ALLOCATION_COUNT,
&num_alloc_size, &num_allocations);
EXPECT(err == VK_SUCCESS && num_alloc_size == sizeof(num_allocations));
std::vector<VkMemoryRequirements> info =
get_info<VkMemoryRequirements>(dev_->obj(), type(), obj(), VK_OBJECT_INFO_TYPE_MEMORY_REQUIREMENTS, 0);
EXPECT(info.size() == num_allocations);
if (info.size() == 1 && !info[0].size)
info.clear();
return info;
}
void Object::init(VkObject obj, VkObjectType object_type, bool own)
{
BaseObject::init(obj, object_type, own);
mem_alloc_count_ = memory_allocation_count();
}
void Object::reinit(VkObject obj, VkObjectType object_type, bool own)
{
cleanup();
BaseObject::reinit(obj, object_type, own);
mem_alloc_count_ = memory_allocation_count();
}
void Object::cleanup()
{
if (!initialized())
return;
if(bound) {
unbind_memory();
}
if (internal_mems_) {
delete[] internal_mems_;
internal_mems_ = NULL;
primary_mem_ = NULL;
}
mem_alloc_count_ = 0;
if (own())
EXPECT(vkDestroyObject(dev_->obj(), type(), obj()) == VK_SUCCESS);
}
void Object::bind_memory(uint32_t alloc_idx, const GpuMemory &mem, VkDeviceSize mem_offset)
{
bound = true;
VkQueue queue = dev_->graphics_queues()[0]->obj();
EXPECT(vkQueueBindObjectMemory(queue, type(), obj(), alloc_idx, mem.obj(), mem_offset) == VK_SUCCESS);
}
void Object::bind_memory(uint32_t alloc_idx, VkDeviceSize offset, VkDeviceSize size,
const GpuMemory &mem, VkDeviceSize mem_offset)
{
bound = true;
VkQueue queue = dev_->graphics_queues()[0]->obj();
EXPECT(!alloc_idx && vkQueueBindObjectMemoryRange(queue, type(), obj(), 0, offset, size, mem.obj(), mem_offset) == VK_SUCCESS);
}
void Object::unbind_memory(uint32_t alloc_idx)
{
VkQueue queue = dev_->graphics_queues()[0]->obj();
EXPECT(vkQueueBindObjectMemory(queue, type(), obj(), alloc_idx, VK_NULL_HANDLE, 0) == VK_SUCCESS);
}
void Object::unbind_memory()
{
for (uint32_t i = 0; i < mem_alloc_count_; i++)
unbind_memory(i);
}
void Object::alloc_memory()
{
if (!EXPECT(!internal_mems_) || !mem_alloc_count_)
return;
internal_mems_ = new GpuMemory[mem_alloc_count_];
const std::vector<VkMemoryRequirements> mem_reqs = memory_requirements();
VkMemoryAllocInfo info, *next_info = NULL;
for (int i = 0; i < mem_reqs.size(); i++) {
info = GpuMemory::alloc_info(mem_reqs[i], next_info);
primary_mem_ = &internal_mems_[i];
internal_mems_[i].init(*dev_, info);
bind_memory(i, internal_mems_[i], 0);
}
}
void Object::alloc_memory(VkMemoryPropertyFlags &reqs)
{
if (!EXPECT(!internal_mems_) || !mem_alloc_count_)
return;
internal_mems_ = new GpuMemory[mem_alloc_count_];
std::vector<VkMemoryRequirements> mem_reqs = memory_requirements();
VkMemoryAllocInfo info, *next_info = NULL;
for (int i = 0; i < mem_reqs.size(); i++) {
mem_reqs[i].memPropsRequired |= reqs;
info = GpuMemory::alloc_info(mem_reqs[i], next_info);
primary_mem_ = &internal_mems_[i];
internal_mems_[i].init(*dev_, info);
bind_memory(i, internal_mems_[i], 0);
}
}
void Object::alloc_memory(const std::vector<VkDeviceMemory> &mems)
{
if (!EXPECT(!internal_mems_) || !mem_alloc_count_)
return;
internal_mems_ = new GpuMemory[mem_alloc_count_];
const std::vector<VkMemoryRequirements> mem_reqs = memory_requirements();
if (!EXPECT(mem_reqs.size() == mems.size()))
return;
for (int i = 0; i < mem_reqs.size(); i++) {
primary_mem_ = &internal_mems_[i];
internal_mems_[i].init(*dev_, mems[i]);
bind_memory(i, internal_mems_[i], 0);
}
}
std::vector<VkDeviceMemory> Object::memories() const
{
std::vector<VkDeviceMemory> mems;
if (internal_mems_) {
mems.reserve(mem_alloc_count_);
for (uint32_t i = 0; i < mem_alloc_count_; i++)
mems.push_back(internal_mems_[i].obj());
}
return mems;
}
Device::~Device()
{
if (!initialized())
return;
for (int i = 0; i < QUEUE_COUNT; i++) {
for (std::vector<Queue *>::iterator it = queues_[i].begin(); it != queues_[i].end(); it++)
delete *it;
queues_[i].clear();
}
EXPECT(vkDestroyDevice(obj()) == VK_SUCCESS);
}
void Device::init(bool enable_layers)
{
// request all queues
const std::vector<VkPhysicalDeviceQueueProperties> queue_props = gpu_.queue_properties();
std::vector<VkDeviceQueueCreateInfo> queue_info;
queue_info.reserve(queue_props.size());
for (int i = 0; i < queue_props.size(); i++) {
VkDeviceQueueCreateInfo qi = {};
qi.queueNodeIndex = i;
qi.queueCount = queue_props[i].queueCount;
if (queue_props[i].queueFlags & VK_QUEUE_GRAPHICS_BIT) {
graphics_queue_node_index_ = i;
}
queue_info.push_back(qi);
}
VkLayerCreateInfo layer_info = {};
layer_info.sType = VK_STRUCTURE_TYPE_LAYER_CREATE_INFO;
std::vector<const char *> layers;
std::vector<char> layer_buf;
// request all layers
if (enable_layers) {
layers = gpu_.layers(layer_buf);
layer_info.layerCount = layers.size();
layer_info.ppActiveLayerNames = &layers[0];
}
const std::vector<const char *> exts = gpu_.extensions();
VkDeviceCreateInfo dev_info = {};
dev_info.sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO;
dev_info.pNext = (enable_layers) ? static_cast<void *>(&layer_info) : NULL;
dev_info.queueRecordCount = queue_info.size();
dev_info.pRequestedQueues = &queue_info[0];
dev_info.extensionCount = exts.size();
dev_info.ppEnabledExtensionNames = &exts[0];
dev_info.flags = VK_DEVICE_CREATE_VALIDATION_BIT;
init(dev_info);
}
void Device::init(const VkDeviceCreateInfo &info)
{
VkDevice obj;
if (EXPECT(vkCreateDevice(gpu_.obj(), &info, &obj) == VK_SUCCESS)) {
base_type::init(obj, VK_OBJECT_TYPE_DEVICE);
}
init_queues();
init_formats();
}
void Device::init_queues()
{
VkResult err;
size_t data_size;
uint32_t queue_node_count;
err = vkGetPhysicalDeviceInfo(gpu_.obj(), VK_PHYSICAL_DEVICE_INFO_TYPE_QUEUE_PROPERTIES,
&data_size, NULL);
EXPECT(err == VK_SUCCESS);
queue_node_count = data_size / sizeof(VkPhysicalDeviceQueueProperties);
EXPECT(queue_node_count >= 1);
VkPhysicalDeviceQueueProperties queue_props[queue_node_count];
err = vkGetPhysicalDeviceInfo(gpu_.obj(), VK_PHYSICAL_DEVICE_INFO_TYPE_QUEUE_PROPERTIES,
&data_size, queue_props);
EXPECT(err == VK_SUCCESS);
for (int i = 0; i < queue_node_count; i++) {
VkQueue queue;
for (int j = 0; j < queue_props[i].queueCount; j++) {
// TODO: Need to add support for separate MEMMGR and work queues, including synchronization
err = vkGetDeviceQueue(obj(), i, j, &queue);
EXPECT(err == VK_SUCCESS);
if (queue_props[i].queueFlags & VK_QUEUE_GRAPHICS_BIT) {
queues_[GRAPHICS].push_back(new Queue(queue));
}
if (queue_props[i].queueFlags & VK_QUEUE_COMPUTE_BIT) {
queues_[COMPUTE].push_back(new Queue(queue));
}
if (queue_props[i].queueFlags & VK_QUEUE_DMA_BIT) {
queues_[DMA].push_back(new Queue(queue));
}
}
}
EXPECT(!queues_[GRAPHICS].empty() || !queues_[COMPUTE].empty());
}
void Device::init_formats()
{
for (int f = VK_FORMAT_BEGIN_RANGE; f <= VK_FORMAT_END_RANGE; f++) {
const VkFormat fmt = static_cast<VkFormat>(f);
const VkFormatProperties props = format_properties(fmt);
if (props.linearTilingFeatures) {
const Format tmp = { fmt, VK_IMAGE_TILING_LINEAR, props.linearTilingFeatures };
formats_.push_back(tmp);
}
if (props.optimalTilingFeatures) {
const Format tmp = { fmt, VK_IMAGE_TILING_OPTIMAL, props.optimalTilingFeatures };
formats_.push_back(tmp);
}
}
EXPECT(!formats_.empty());
}
VkFormatProperties Device::format_properties(VkFormat format)
{
const VkFormatInfoType type = VK_FORMAT_INFO_TYPE_PROPERTIES;
VkFormatProperties data;
size_t size = sizeof(data);
if (!EXPECT(vkGetFormatInfo(obj(), format, type, &size, &data) == VK_SUCCESS && size == sizeof(data)))
memset(&data, 0, sizeof(data));
return data;
}
void Device::wait()
{
EXPECT(vkDeviceWaitIdle(obj()) == VK_SUCCESS);
}
VkResult Device::wait(const std::vector<const Fence *> &fences, bool wait_all, uint64_t timeout)
{
const std::vector<VkFence> fence_objs = make_objects<VkFence>(fences);
VkResult err = vkWaitForFences(obj(), fence_objs.size(), &fence_objs[0], wait_all, timeout);
EXPECT(err == VK_SUCCESS || err == VK_TIMEOUT);
return err;
}
void Device::begin_descriptor_pool_update(VkDescriptorUpdateMode mode)
{
EXPECT(vkBeginDescriptorPoolUpdate(obj(), mode) == VK_SUCCESS);
}
void Device::end_descriptor_pool_update(CmdBuffer &cmd)
{
EXPECT(vkEndDescriptorPoolUpdate(obj(), cmd.obj()) == VK_SUCCESS);
}
void Queue::submit(const std::vector<const CmdBuffer *> &cmds, Fence &fence)
{
const std::vector<VkCmdBuffer> cmd_objs = make_objects<VkCmdBuffer>(cmds);
EXPECT(vkQueueSubmit(obj(), cmd_objs.size(), &cmd_objs[0], fence.obj()) == VK_SUCCESS);
}
void Queue::submit(const CmdBuffer &cmd, Fence &fence)
{
submit(std::vector<const CmdBuffer*>(1, &cmd), fence);
}
void Queue::submit(const CmdBuffer &cmd)
{
Fence fence;
submit(cmd, fence);
}
void Queue::wait()
{
EXPECT(vkQueueWaitIdle(obj()) == VK_SUCCESS);
}
void Queue::signal_semaphore(Semaphore &sem)
{
EXPECT(vkQueueSignalSemaphore(obj(), sem.obj()) == VK_SUCCESS);
}
void Queue::wait_semaphore(Semaphore &sem)
{
EXPECT(vkQueueWaitSemaphore(obj(), sem.obj()) == VK_SUCCESS);
}
GpuMemory::~GpuMemory()
{
if (initialized() && own())
EXPECT(vkFreeMemory(dev_->obj(), obj()) == VK_SUCCESS);
}
void GpuMemory::init(const Device &dev, const VkMemoryAllocInfo &info)
{
DERIVED_OBJECT_TYPE_INIT(vkAllocMemory, dev, VK_OBJECT_TYPE_DEVICE_MEMORY, &info);
}
void GpuMemory::init(const Device &dev, size_t size, const void *data)
{
DERIVED_OBJECT_TYPE_INIT(vkPinSystemMemory, dev, VK_OBJECT_TYPE_DEVICE_MEMORY, data, size);
}
void GpuMemory::init(const Device &dev, const VkMemoryOpenInfo &info)
{
DERIVED_OBJECT_TYPE_INIT(vkOpenSharedMemory, dev, VK_OBJECT_TYPE_DEVICE_MEMORY, &info);
}
void GpuMemory::init(const Device &dev, const VkPeerMemoryOpenInfo &info)
{
DERIVED_OBJECT_TYPE_INIT(vkOpenPeerMemory, dev, VK_OBJECT_TYPE_DEVICE_MEMORY, &info);
}
void GpuMemory::init(const Device &dev, VkDeviceMemory mem)
{
dev_ = &dev;
BaseObject::init(mem, VK_OBJECT_TYPE_DEVICE_MEMORY, false);
}
void GpuMemory::set_priority(VkMemoryPriority priority)
{
EXPECT(vkSetMemoryPriority(dev_->obj(), obj(), priority) == VK_SUCCESS);
}
const void *GpuMemory::map(VkFlags flags) const
{
void *data;
if (!EXPECT(vkMapMemory(dev_->obj(), obj(), 0 ,0, flags, &data) == VK_SUCCESS))
data = NULL;
return data;
}
void *GpuMemory::map(VkFlags flags)
{
void *data;
if (!EXPECT(vkMapMemory(dev_->obj(), obj(), 0, 0, flags, &data) == VK_SUCCESS))
data = NULL;
return data;
}
void GpuMemory::unmap() const
{
EXPECT(vkUnmapMemory(dev_->obj(), obj()) == VK_SUCCESS);
}
void Fence::init(const Device &dev, const VkFenceCreateInfo &info)
{
DERIVED_OBJECT_TYPE_INIT(vkCreateFence, dev, VK_OBJECT_TYPE_FENCE, &info);
alloc_memory();
}
void Semaphore::init(const Device &dev, const VkSemaphoreCreateInfo &info)
{
DERIVED_OBJECT_TYPE_INIT(vkCreateSemaphore, dev, VK_OBJECT_TYPE_SEMAPHORE, &info);
alloc_memory();
}
void Semaphore::init(const Device &dev, const VkSemaphoreOpenInfo &info)
{
DERIVED_OBJECT_TYPE_INIT(vkOpenSharedSemaphore, dev, VK_OBJECT_TYPE_SEMAPHORE, &info);
}
void Event::init(const Device &dev, const VkEventCreateInfo &info)
{
DERIVED_OBJECT_TYPE_INIT(vkCreateEvent, dev, VK_OBJECT_TYPE_EVENT, &info);
alloc_memory();
}
void Event::set()
{
EXPECT(vkSetEvent(dev_->obj(), obj()) == VK_SUCCESS);
}
void Event::reset()
{
EXPECT(vkResetEvent(dev_->obj(), obj()) == VK_SUCCESS);
}
void QueryPool::init(const Device &dev, const VkQueryPoolCreateInfo &info)
{
DERIVED_OBJECT_TYPE_INIT(vkCreateQueryPool, dev, VK_OBJECT_TYPE_QUERY_POOL, &info);
alloc_memory();
}
VkResult QueryPool::results(uint32_t start, uint32_t count, size_t size, void *data)
{
size_t tmp = size;
VkResult err = vkGetQueryPoolResults(dev_->obj(), obj(), start, count, &tmp, data, 0);
if (err == VK_SUCCESS) {
if (!EXPECT(tmp == size))
memset(data, 0, size);
} else {
EXPECT(err == VK_NOT_READY);
}
return err;
}
void Buffer::init(const Device &dev, const VkBufferCreateInfo &info)
{
init_no_mem(dev, info);
alloc_memory();
}
void Buffer::init(const Device &dev, const VkBufferCreateInfo &info, VkMemoryPropertyFlags &reqs)
{
init_no_mem(dev, info);
alloc_memory(reqs);
}
void Buffer::init_no_mem(const Device &dev, const VkBufferCreateInfo &info)
{
DERIVED_OBJECT_TYPE_INIT(vkCreateBuffer, dev, VK_OBJECT_TYPE_BUFFER, &info);
create_info_ = info;
}
void BufferView::init(const Device &dev, const VkBufferViewCreateInfo &info)
{
DERIVED_OBJECT_TYPE_INIT(vkCreateBufferView, dev, VK_OBJECT_TYPE_BUFFER_VIEW, &info);
alloc_memory();
}
void Image::init(const Device &dev, const VkImageCreateInfo &info)
{
init_no_mem(dev, info);
alloc_memory();
}
void Image::init(const Device &dev, const VkImageCreateInfo &info, VkMemoryPropertyFlags &reqs)
{
init_no_mem(dev, info);
alloc_memory(reqs);
}
void Image::init_no_mem(const Device &dev, const VkImageCreateInfo &info)
{
DERIVED_OBJECT_TYPE_INIT(vkCreateImage, dev, VK_OBJECT_TYPE_IMAGE, &info);
init_info(dev, info);
}
void Image::init(const Device &dev, const VkPeerImageOpenInfo &info, const VkImageCreateInfo &original_info)
{
VkImage img;
VkDeviceMemory mem;
dev_ = &dev;
EXPECT(vkOpenPeerImage(dev.obj(), &info, &img, &mem) == VK_SUCCESS);
Object::init(img, VK_OBJECT_TYPE_IMAGE);
init_info(dev, original_info);
alloc_memory(std::vector<VkDeviceMemory>(1, mem));
}
void Image::init_info(const Device &dev, const VkImageCreateInfo &info)
{
create_info_ = info;
for (std::vector<Device::Format>::const_iterator it = dev.formats().begin(); it != dev.formats().end(); it++) {
if (memcmp(&it->format, &create_info_.format, sizeof(it->format)) == 0 && it->tiling == create_info_.tiling) {
format_features_ = it->features;
break;
}
}
}
void Image::bind_memory(const Device &dev, uint32_t alloc_idx, const VkImageMemoryBindInfo &info,
const GpuMemory &mem, VkDeviceSize mem_offset)
{
VkQueue queue = dev.graphics_queues()[0]->obj();
EXPECT(!alloc_idx && vkQueueBindImageMemoryRange(queue, obj(), 0, &info, mem.obj(), mem_offset) == VK_SUCCESS);
}
VkSubresourceLayout Image::subresource_layout(const VkImageSubresource &subres) const
{
const VkSubresourceInfoType type = VK_SUBRESOURCE_INFO_TYPE_LAYOUT;
VkSubresourceLayout data;
size_t size = sizeof(data);
if (!EXPECT(vkGetImageSubresourceInfo(dev_->obj(), obj(), &subres, type, &size, &data) == VK_SUCCESS && size == sizeof(data)))
memset(&data, 0, sizeof(data));
return data;
}
bool Image::transparent() const
{
return (create_info_.tiling == VK_IMAGE_TILING_LINEAR &&
create_info_.samples == 1 &&
!(create_info_.usage & (VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT |
VK_IMAGE_USAGE_DEPTH_STENCIL_BIT)));
}
void ImageView::init(const Device &dev, const VkImageViewCreateInfo &info)
{
DERIVED_OBJECT_TYPE_INIT(vkCreateImageView, dev, VK_OBJECT_TYPE_IMAGE_VIEW, &info);
alloc_memory();
}
void ColorAttachmentView::init(const Device &dev, const VkColorAttachmentViewCreateInfo &info)
{
DERIVED_OBJECT_TYPE_INIT(vkCreateColorAttachmentView, dev, VK_OBJECT_TYPE_COLOR_ATTACHMENT_VIEW, &info);
alloc_memory();
}
void DepthStencilView::init(const Device &dev, const VkDepthStencilViewCreateInfo &info)
{
DERIVED_OBJECT_TYPE_INIT(vkCreateDepthStencilView, dev, VK_OBJECT_TYPE_DEPTH_STENCIL_VIEW, &info);
alloc_memory();
}
void Shader::init(const Device &dev, const VkShaderCreateInfo &info)
{
DERIVED_OBJECT_TYPE_INIT(vkCreateShader, dev, VK_OBJECT_TYPE_SHADER, &info);
}
VkResult Shader::init_try(const Device &dev, const VkShaderCreateInfo &info)
{
/*
* Note: Cannot use DERIVED_OBJECT_TYPE_INIT as we need the
* return code.
*/
VkShader sh;
dev_ = &dev;
VkResult err = vkCreateShader(dev.obj(), &info, &sh);
if (err == VK_SUCCESS)
Object::init(sh, VK_OBJECT_TYPE_SHADER);
return err;
}
void Pipeline::init(const Device &dev, const VkGraphicsPipelineCreateInfo &info)
{
DERIVED_OBJECT_TYPE_INIT(vkCreateGraphicsPipeline, dev, VK_OBJECT_TYPE_PIPELINE, &info);
alloc_memory();
}
void Pipeline::init(
const Device &dev,
const VkGraphicsPipelineCreateInfo &info,
const VkPipeline basePipeline)
{
DERIVED_OBJECT_TYPE_INIT(vkCreateGraphicsPipelineDerivative, dev, VK_OBJECT_TYPE_PIPELINE, &info, basePipeline);
alloc_memory();
}
void Pipeline::init(const Device &dev, const VkComputePipelineCreateInfo &info)
{
DERIVED_OBJECT_TYPE_INIT(vkCreateComputePipeline, dev, VK_OBJECT_TYPE_PIPELINE, &info);
alloc_memory();
}
void Pipeline::init(const Device&dev, size_t size, const void *data)
{
DERIVED_OBJECT_TYPE_INIT(vkLoadPipeline, dev, VK_OBJECT_TYPE_PIPELINE, size, data);
alloc_memory();
}
void Pipeline::init(
const Device&dev,
size_t size,
const void *data,
const VkPipeline basePipeline)
{
DERIVED_OBJECT_TYPE_INIT(vkLoadPipelineDerivative, dev, VK_OBJECT_TYPE_PIPELINE, size, data, basePipeline);
alloc_memory();
}
size_t Pipeline::store(size_t size, void *data)
{
if (!EXPECT(vkStorePipeline(dev_->obj(), obj(), &size, data) == VK_SUCCESS))
size = 0;
return size;
}
void Sampler::init(const Device &dev, const VkSamplerCreateInfo &info)
{
DERIVED_OBJECT_TYPE_INIT(vkCreateSampler, dev, VK_OBJECT_TYPE_SAMPLER, &info);
alloc_memory();
}
void DescriptorSetLayout::init(const Device &dev, const VkDescriptorSetLayoutCreateInfo &info)
{
DERIVED_OBJECT_TYPE_INIT(vkCreateDescriptorSetLayout, dev, VK_OBJECT_TYPE_DESCRIPTOR_SET_LAYOUT, &info);
alloc_memory();
}
void PipelineLayout::init(const Device &dev, VkPipelineLayoutCreateInfo &info, const std::vector<const DescriptorSetLayout *> &layouts)
{
const std::vector<VkDescriptorSetLayout> layout_objs = make_objects<VkDescriptorSetLayout>(layouts);
info.pSetLayouts = &layout_objs[0];
DERIVED_OBJECT_TYPE_INIT(vkCreatePipelineLayout, dev, VK_OBJECT_TYPE_PIPELINE_LAYOUT, &info);
alloc_memory();
}
void DescriptorPool::init(const Device &dev, VkDescriptorPoolUsage usage,
uint32_t max_sets, const VkDescriptorPoolCreateInfo &info)
{
DERIVED_OBJECT_TYPE_INIT(vkCreateDescriptorPool, dev, VK_OBJECT_TYPE_DESCRIPTOR_POOL, usage, max_sets, &info);
alloc_memory();
}
void DescriptorPool::reset()
{
EXPECT(vkResetDescriptorPool(dev_->obj(), obj()) == VK_SUCCESS);
}
std::vector<DescriptorSet *> DescriptorPool::alloc_sets(const Device &dev, VkDescriptorSetUsage usage, const std::vector<const DescriptorSetLayout *> &layouts)
{
const std::vector<VkDescriptorSetLayout> layout_objs = make_objects<VkDescriptorSetLayout>(layouts);
std::vector<VkDescriptorSet> set_objs;
set_objs.resize(layout_objs.size());
uint32_t set_count;
VkResult err = vkAllocDescriptorSets(dev_->obj(), obj(), usage, layout_objs.size(), &layout_objs[0], &set_objs[0], &set_count);
if (err == VK_SUCCESS)
EXPECT(set_count == set_objs.size());
set_objs.resize(set_count);
std::vector<DescriptorSet *> sets;
sets.reserve(set_count);
for (std::vector<VkDescriptorSet>::const_iterator it = set_objs.begin(); it != set_objs.end(); it++) {
// do descriptor sets need memories bound?
DescriptorSet *descriptorSet = new DescriptorSet(dev, *it);
sets.push_back(descriptorSet);
}
return sets;
}
std::vector<DescriptorSet *> DescriptorPool::alloc_sets(const Device &dev, VkDescriptorSetUsage usage, const DescriptorSetLayout &layout, uint32_t count)
{
return alloc_sets(dev, usage, std::vector<const DescriptorSetLayout *>(count, &layout));
}
DescriptorSet *DescriptorPool::alloc_sets(const Device &dev, VkDescriptorSetUsage usage, const DescriptorSetLayout &layout)
{
std::vector<DescriptorSet *> set = alloc_sets(dev, usage, layout, 1);
return (set.empty()) ? NULL : set[0];
}
void DescriptorPool::clear_sets(const std::vector<DescriptorSet *> &sets)
{
const std::vector<VkDescriptorSet> set_objs = make_objects<VkDescriptorSet>(sets);
vkClearDescriptorSets(dev_->obj(), obj(), set_objs.size(), &set_objs[0]);
}
void DescriptorSet::update(const std::vector<const void *> &update_array)
{
vkUpdateDescriptors(dev_->obj(), obj(), update_array.size(), const_cast<const void **>(&update_array[0]));
}
void DynamicVpStateObject::init(const Device &dev, const VkDynamicVpStateCreateInfo &info)
{
DERIVED_OBJECT_TYPE_INIT(vkCreateDynamicViewportState, dev, VK_OBJECT_TYPE_DYNAMIC_VP_STATE, &info);
alloc_memory();
}
void DynamicRsStateObject::init(const Device &dev, const VkDynamicRsStateCreateInfo &info)
{
DERIVED_OBJECT_TYPE_INIT(vkCreateDynamicRasterState, dev, VK_OBJECT_TYPE_DYNAMIC_RS_STATE, &info);
alloc_memory();
}
void DynamicCbStateObject::init(const Device &dev, const VkDynamicCbStateCreateInfo &info)
{
DERIVED_OBJECT_TYPE_INIT(vkCreateDynamicColorBlendState, dev, VK_OBJECT_TYPE_DYNAMIC_CB_STATE, &info);
alloc_memory();
}
void DynamicDsStateObject::init(const Device &dev, const VkDynamicDsStateCreateInfo &info)
{
DERIVED_OBJECT_TYPE_INIT(vkCreateDynamicDepthStencilState, dev, VK_OBJECT_TYPE_DYNAMIC_DS_STATE, &info);
alloc_memory();
}
void CmdBuffer::init(const Device &dev, const VkCmdBufferCreateInfo &info)
{
DERIVED_OBJECT_TYPE_INIT(vkCreateCommandBuffer, dev, VK_OBJECT_TYPE_COMMAND_BUFFER, &info);
}
void CmdBuffer::begin(const VkCmdBufferBeginInfo *info)
{
EXPECT(vkBeginCommandBuffer(obj(), info) == VK_SUCCESS);
}
void CmdBuffer::begin(VkRenderPass renderpass_obj, VkFramebuffer framebuffer_obj)
{
VkCmdBufferBeginInfo info = {};
VkCmdBufferGraphicsBeginInfo graphics_cmd_buf_info = {};
graphics_cmd_buf_info.sType = VK_STRUCTURE_TYPE_CMD_BUFFER_GRAPHICS_BEGIN_INFO;
graphics_cmd_buf_info.pNext = NULL;
graphics_cmd_buf_info.renderPassContinue.renderPass = renderpass_obj;
graphics_cmd_buf_info.renderPassContinue.framebuffer = framebuffer_obj;
info.flags = VK_CMD_BUFFER_OPTIMIZE_SMALL_BATCH_BIT |
VK_CMD_BUFFER_OPTIMIZE_ONE_TIME_SUBMIT_BIT;
info.sType = VK_STRUCTURE_TYPE_CMD_BUFFER_BEGIN_INFO;
info.pNext = &graphics_cmd_buf_info;
begin(&info);
}
void CmdBuffer::begin()
{
VkCmdBufferBeginInfo info = {};
info.flags = VK_CMD_BUFFER_OPTIMIZE_SMALL_BATCH_BIT |
VK_CMD_BUFFER_OPTIMIZE_ONE_TIME_SUBMIT_BIT;
info.sType = VK_STRUCTURE_TYPE_CMD_BUFFER_BEGIN_INFO;
begin(&info);
}
void CmdBuffer::end()
{
EXPECT(vkEndCommandBuffer(obj()) == VK_SUCCESS);
}
void CmdBuffer::reset()
{
EXPECT(vkResetCommandBuffer(obj()) == VK_SUCCESS);
}
}; // namespace vk_testing