blob: 75b537aa0c7e966a5b2d3e91ee4e2621487b7a40 [file] [log] [blame]
#define _GNU_SOURCE
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdbool.h>
#include <assert.h>
#ifdef _WIN32
#pragma comment(linker, "/subsystem:windows")
#include <windows.h>
#define APP_NAME_STR_LEN 80
#else // _WIN32
#include <xcb/xcb.h>
#endif // _WIN32
#include <vulkan.h>
#include <vkDbg.h>
#include <vk_wsi_lunarg.h>
#include "icd-spv.h"
#include "linmath.h"
#include <png.h>
#define DEMO_BUFFER_COUNT 2
#define DEMO_TEXTURE_COUNT 1
/*
* structure to track all objects related to a texture.
*/
struct texture_object {
VkSampler sampler;
VkImage image;
VkImageLayout imageLayout;
uint32_t num_mem;
VkDeviceMemory *mem;
VkImageView view;
int32_t tex_width, tex_height;
};
static char *tex_files[] = {
"lunarg-logo-256x256-solid.png"
};
struct vkcube_vs_uniform {
// Must start with MVP
float mvp[4][4];
float position[12*3][4];
float color[12*3][4];
};
struct vktexcube_vs_uniform {
// Must start with MVP
float mvp[4][4];
float position[12*3][4];
float attr[12*3][4];
};
//--------------------------------------------------------------------------------------
// Mesh and VertexFormat Data
//--------------------------------------------------------------------------------------
struct Vertex
{
float posX, posY, posZ, posW; // Position data
float r, g, b, a; // Color
};
struct VertexPosTex
{
float posX, posY, posZ, posW; // Position data
float u, v, s, t; // Texcoord
};
#define XYZ1(_x_, _y_, _z_) (_x_), (_y_), (_z_), 1.f
#define UV(_u_, _v_) (_u_), (_v_), 0.f, 1.f
static const float g_vertex_buffer_data[] = {
-1.0f,-1.0f,-1.0f, // Vertex 0
-1.0f,-1.0f, 1.0f,
-1.0f, 1.0f, 1.0f,
-1.0f, 1.0f, 1.0f, // Vertex 1
-1.0f, 1.0f,-1.0f,
-1.0f,-1.0f,-1.0f,
-1.0f,-1.0f,-1.0f, // Vertex 2
1.0f, 1.0f,-1.0f,
1.0f,-1.0f,-1.0f,
-1.0f,-1.0f,-1.0f, // Vertex 3
-1.0f, 1.0f,-1.0f,
1.0f, 1.0f,-1.0f,
-1.0f,-1.0f,-1.0f, // Vertex 4
1.0f,-1.0f,-1.0f,
1.0f,-1.0f, 1.0f,
-1.0f,-1.0f,-1.0f, // Vertex 5
1.0f,-1.0f, 1.0f,
-1.0f,-1.0f, 1.0f,
-1.0f, 1.0f,-1.0f, // Vertex 6
-1.0f, 1.0f, 1.0f,
1.0f, 1.0f, 1.0f,
-1.0f, 1.0f,-1.0f, // Vertex 7
1.0f, 1.0f, 1.0f,
1.0f, 1.0f,-1.0f,
1.0f, 1.0f,-1.0f, // Vertex 8
1.0f, 1.0f, 1.0f,
1.0f,-1.0f, 1.0f,
1.0f,-1.0f, 1.0f, // Vertex 9
1.0f,-1.0f,-1.0f,
1.0f, 1.0f,-1.0f,
-1.0f, 1.0f, 1.0f, // Vertex 10
-1.0f,-1.0f, 1.0f,
1.0f, 1.0f, 1.0f,
-1.0f,-1.0f, 1.0f, // Vertex 11
1.0f,-1.0f, 1.0f,
1.0f, 1.0f, 1.0f,
};
static const float g_uv_buffer_data[] = {
1.0f, 0.0f, // Vertex 0
0.0f, 0.0f,
0.0f, 1.0f,
0.0f, 1.0f, // Vertex 1
1.0f, 1.0f,
1.0f, 0.0f,
// 0.0f, 1.0f, // Vertex 2
// 1.0f, 0.0f,
// 0.0f, 0.0f,
// 0.0f, 1.0f, // Vertex 3
// 1.0f, 0.0f,
// 1.0f, 1.0f,
0.0f, 0.0f, // Vertex 2
1.0f, 1.0f,
1.0f, 0.0f,
0.0f, 0.0f, // Vertex 3
0.0f, 1.0f,
1.0f, 1.0f,
0.0f, 1.0f, // Vertex 4
0.0f, 0.0f,
1.0f, 0.0f,
0.0f, 1.0f, // Vertex 5
1.0f, 0.0f,
1.0f, 1.0f,
0.0f, 1.0f, // Vertex 6
1.0f, 1.0f,
1.0f, 0.0f,
0.0f, 1.0f, // Vertex 7
1.0f, 0.0f,
0.0f, 0.0f,
0.0f, 1.0f, // Vertex 8
1.0f, 1.0f,
1.0f, 0.0f,
1.0f, 0.0f, // Vertex 9
0.0f, 0.0f,
0.0f, 1.0f,
1.0f, 1.0f, // Vertex 10
1.0f, 0.0f,
0.0f, 1.0f,
1.0f, 0.0f, // Vertex 11
0.0f, 0.0f,
0.0f, 1.0f,
};
void dumpMatrix(const char *note, mat4x4 MVP)
{
int i;
printf("%s: \n", note);
for (i=0; i<4; i++) {
printf("%f, %f, %f, %f\n", MVP[i][0], MVP[i][1], MVP[i][2], MVP[i][3]);
}
printf("\n");
fflush(stdout);
}
void dumpVec4(const char *note, vec4 vector)
{
printf("%s: \n", note);
printf("%f, %f, %f, %f\n", vector[0], vector[1], vector[2], vector[3]);
printf("\n");
fflush(stdout);
}
struct demo {
#ifdef _WIN32
#define APP_NAME_STR_LEN 80
HINSTANCE connection; // hInstance - Windows Instance
char name[APP_NAME_STR_LEN]; // Name to put on the window/icon
HWND window; // hWnd - window handle
#else // _WIN32
xcb_connection_t *connection;
xcb_screen_t *screen;
xcb_window_t window;
xcb_intern_atom_reply_t *atom_wm_delete_window;
#endif // _WIN32
bool use_staging_buffer;
VkInstance inst;
VkPhysicalDevice gpu;
VkDevice device;
VkQueue queue;
uint32_t graphics_queue_node_index;
VkPhysicalDeviceProperties *gpu_props;
VkPhysicalDeviceQueueProperties *queue_props;
VkFramebuffer framebuffer;
int width, height;
VkFormat format;
VkSwapChainWSI swap_chain;
struct {
VkImage image;
VkDeviceMemory mem;
VkCmdBuffer cmd;
VkColorAttachmentView view;
} buffers[DEMO_BUFFER_COUNT];
struct {
VkFormat format;
VkImage image;
uint32_t num_mem;
VkDeviceMemory *mem;
VkDepthStencilView view;
} depth;
struct texture_object textures[DEMO_TEXTURE_COUNT];
struct {
VkBuffer buf;
uint32_t num_mem;
VkDeviceMemory *mem;
VkBufferView view;
VkBufferViewAttachInfo attach;
} uniform_data;
VkCmdBuffer cmd; // Buffer for initialization commands
VkPipelineLayout pipeline_layout;
VkDescriptorSetLayout desc_layout;
VkPipeline pipeline;
VkDynamicVpState viewport;
VkDynamicRsState raster;
VkDynamicCbState color_blend;
VkDynamicDsState depth_stencil;
mat4x4 projection_matrix;
mat4x4 view_matrix;
mat4x4 model_matrix;
float spin_angle;
float spin_increment;
bool pause;
VkDescriptorPool desc_pool;
VkDescriptorSet desc_set;
bool quit;
uint32_t current_buffer;
};
static void demo_flush_init_cmd(struct demo *demo)
{
VkResult err;
if (demo->cmd == VK_NULL_HANDLE)
return;
err = vkEndCommandBuffer(demo->cmd);
assert(!err);
const VkCmdBuffer cmd_bufs[] = { demo->cmd };
err = vkQueueSubmit(demo->queue, 1, cmd_bufs, VK_NULL_HANDLE);
assert(!err);
err = vkQueueWaitIdle(demo->queue);
assert(!err);
vkDestroyObject(demo->device, VK_OBJECT_TYPE_COMMAND_BUFFER, demo->cmd);
demo->cmd = VK_NULL_HANDLE;
}
static void demo_add_mem_refs(
struct demo *demo,
int num_refs, VkDeviceMemory *mem)
{
vkQueueAddMemReferences(demo->queue, num_refs, mem);
}
static void demo_remove_mem_refs(
struct demo *demo,
int num_refs, VkDeviceMemory *mem)
{
vkQueueRemoveMemReferences(demo->queue, num_refs, mem);
}
static void demo_set_image_layout(
struct demo *demo,
VkImage image,
VkImageLayout old_image_layout,
VkImageLayout new_image_layout)
{
VkResult err;
if (demo->cmd == VK_NULL_HANDLE) {
const VkCmdBufferCreateInfo cmd = {
.sType = VK_STRUCTURE_TYPE_CMD_BUFFER_CREATE_INFO,
.pNext = NULL,
.queueNodeIndex = demo->graphics_queue_node_index,
.flags = 0,
};
err = vkCreateCommandBuffer(demo->device, &cmd, &demo->cmd);
assert(!err);
VkCmdBufferBeginInfo cmd_buf_info = {
.sType = VK_STRUCTURE_TYPE_CMD_BUFFER_BEGIN_INFO,
.pNext = NULL,
.flags = VK_CMD_BUFFER_OPTIMIZE_SMALL_BATCH_BIT |
VK_CMD_BUFFER_OPTIMIZE_ONE_TIME_SUBMIT_BIT,
};
err = vkBeginCommandBuffer(demo->cmd, &cmd_buf_info);
}
VkImageMemoryBarrier image_memory_barrier = {
.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER,
.pNext = NULL,
.outputMask = 0,
.inputMask = 0,
.oldLayout = old_image_layout,
.newLayout = new_image_layout,
.image = image,
.subresourceRange = { VK_IMAGE_ASPECT_COLOR, 0, 1, 0, 0 }
};
if (new_image_layout == VK_IMAGE_LAYOUT_TRANSFER_DESTINATION_OPTIMAL) {
/* Make sure anything that was copying from this image has completed */
image_memory_barrier.inputMask = VK_MEMORY_INPUT_TRANSFER_BIT;
}
if (new_image_layout == VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL) {
/* Make sure any Copy or CPU writes to image are flushed */
image_memory_barrier.outputMask = VK_MEMORY_OUTPUT_CPU_WRITE_BIT | VK_MEMORY_OUTPUT_TRANSFER_BIT;
}
VkImageMemoryBarrier *pmemory_barrier = &image_memory_barrier;
VkPipeEvent set_events[] = { VK_PIPE_EVENT_TOP_OF_PIPE };
vkCmdPipelineBarrier(demo->cmd, VK_WAIT_EVENT_TOP_OF_PIPE, 1, set_events, 1, (const void **)&pmemory_barrier);
}
static void demo_draw_build_cmd(struct demo *demo, VkCmdBuffer cmd_buf)
{
const VkColorAttachmentBindInfo color_attachment = {
.view = demo->buffers[demo->current_buffer].view,
.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,
};
const VkDepthStencilBindInfo depth_stencil = {
.view = demo->depth.view,
.layout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL,
};
const VkClearColor clear_color = {
.color.floatColor = { 0.2f, 0.2f, 0.2f, 0.2f },
.useRawValue = false,
};
const float clear_depth = 1.0f;
VkImageSubresourceRange clear_range;
VkCmdBufferBeginInfo cmd_buf_info = {
.sType = VK_STRUCTURE_TYPE_CMD_BUFFER_BEGIN_INFO,
.pNext = NULL,
.flags = VK_CMD_BUFFER_OPTIMIZE_SMALL_BATCH_BIT |
VK_CMD_BUFFER_OPTIMIZE_ONE_TIME_SUBMIT_BIT,
};
VkResult err;
VkAttachmentLoadOp load_op = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
VkAttachmentStoreOp store_op = VK_ATTACHMENT_STORE_OP_DONT_CARE;
const VkFramebufferCreateInfo fb_info = {
.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO,
.pNext = NULL,
.colorAttachmentCount = 1,
.pColorAttachments = (VkColorAttachmentBindInfo*) &color_attachment,
.pDepthStencilAttachment = (VkDepthStencilBindInfo*) &depth_stencil,
.sampleCount = 1,
.width = demo->width,
.height = demo->height,
.layers = 1,
};
VkRenderPassCreateInfo rp_info;
VkRenderPassBegin rp_begin;
memset(&rp_info, 0 , sizeof(rp_info));
err = vkCreateFramebuffer(demo->device, &fb_info, &rp_begin.framebuffer);
assert(!err);
rp_info.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO;
rp_info.renderArea.extent.width = demo->width;
rp_info.renderArea.extent.height = demo->height;
rp_info.colorAttachmentCount = fb_info.colorAttachmentCount;
rp_info.pColorFormats = &demo->format;
rp_info.pColorLayouts = &color_attachment.layout;
rp_info.pColorLoadOps = &load_op;
rp_info.pColorStoreOps = &store_op;
rp_info.pColorLoadClearValues = &clear_color;
rp_info.depthStencilFormat = VK_FORMAT_D16_UNORM;
rp_info.depthStencilLayout = depth_stencil.layout;
rp_info.depthLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
rp_info.depthLoadClearValue = clear_depth;
rp_info.depthStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
rp_info.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
rp_info.stencilLoadClearValue = 0;
rp_info.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
err = vkCreateRenderPass(demo->device, &rp_info, &rp_begin.renderPass);
assert(!err);
err = vkBeginCommandBuffer(cmd_buf, &cmd_buf_info);
assert(!err);
vkCmdBindPipeline(cmd_buf, VK_PIPELINE_BIND_POINT_GRAPHICS,
demo->pipeline);
vkCmdBindDescriptorSets(cmd_buf, VK_PIPELINE_BIND_POINT_GRAPHICS,
0, 1, &demo->desc_set, 0, NULL);
vkCmdBindDynamicStateObject(cmd_buf, VK_STATE_BIND_POINT_VIEWPORT, demo->viewport);
vkCmdBindDynamicStateObject(cmd_buf, VK_STATE_BIND_POINT_RASTER, demo->raster);
vkCmdBindDynamicStateObject(cmd_buf, VK_STATE_BIND_POINT_COLOR_BLEND,
demo->color_blend);
vkCmdBindDynamicStateObject(cmd_buf, VK_STATE_BIND_POINT_DEPTH_STENCIL,
demo->depth_stencil);
vkCmdBeginRenderPass(cmd_buf, &rp_begin);
clear_range.aspect = VK_IMAGE_ASPECT_COLOR;
clear_range.baseMipLevel = 0;
clear_range.mipLevels = 1;
clear_range.baseArraySlice = 0;
clear_range.arraySize = 1;
vkCmdClearColorImage(cmd_buf,
demo->buffers[demo->current_buffer].image,
VK_IMAGE_LAYOUT_CLEAR_OPTIMAL,
clear_color, 1, &clear_range);
clear_range.aspect = VK_IMAGE_ASPECT_DEPTH;
vkCmdClearDepthStencil(cmd_buf, demo->depth.image,
VK_IMAGE_LAYOUT_CLEAR_OPTIMAL,
clear_depth, 0, 1, &clear_range);
vkCmdDraw(cmd_buf, 0, 12 * 3, 0, 1);
vkCmdEndRenderPass(cmd_buf, rp_begin.renderPass);
err = vkEndCommandBuffer(cmd_buf);
assert(!err);
vkDestroyObject(demo->device, VK_OBJECT_TYPE_RENDER_PASS, rp_begin.renderPass);
vkDestroyObject(demo->device, VK_OBJECT_TYPE_FRAMEBUFFER, rp_begin.framebuffer);
}
void demo_update_data_buffer(struct demo *demo)
{
mat4x4 MVP, Model, VP;
int matrixSize = sizeof(MVP);
uint8_t *pData;
VkResult err;
mat4x4_mul(VP, demo->projection_matrix, demo->view_matrix);
// Rotate 22.5 degrees around the Y axis
mat4x4_dup(Model, demo->model_matrix);
mat4x4_rotate(demo->model_matrix, Model, 0.0f, 1.0f, 0.0f, (float)degreesToRadians(demo->spin_angle));
mat4x4_mul(MVP, VP, demo->model_matrix);
assert(demo->uniform_data.num_mem == 1);
err = vkMapMemory(demo->device, demo->uniform_data.mem[0], 0, 0, 0, (void **) &pData);
assert(!err);
memcpy(pData, (const void*) &MVP[0][0], matrixSize);
err = vkUnmapMemory(demo->device, demo->uniform_data.mem[0]);
assert(!err);
}
static void demo_draw(struct demo *demo)
{
const VkPresentInfoWSI present = {
.sType = VK_STRUCTURE_TYPE_PRESENT_INFO_WSI,
.pNext = NULL,
.image = demo->buffers[demo->current_buffer].image,
.flipInterval = 0,
};
VkResult err;
err = vkQueueSubmit(demo->queue, 1, &demo->buffers[demo->current_buffer].cmd,
VK_NULL_HANDLE);
assert(!err);
err = vkQueuePresentWSI(demo->queue, &present);
assert(!err);
demo->current_buffer = (demo->current_buffer + 1) % DEMO_BUFFER_COUNT;
err = vkQueueWaitIdle(demo->queue);
assert(err == VK_SUCCESS);
}
static void demo_prepare_buffers(struct demo *demo)
{
const VkSwapChainCreateInfoWSI swap_chain = {
.sType = VK_STRUCTURE_TYPE_SWAP_CHAIN_CREATE_INFO_WSI,
.pNext = NULL,
.pNativeWindowSystemHandle = demo->connection,
.pNativeWindowHandle = (void *) (intptr_t) demo->window,
.imageCount = DEMO_BUFFER_COUNT,
.imageFormat = demo->format,
.imageExtent = {
.width = demo->width,
.height = demo->height,
},
.imageArraySize = 1,
.imageUsageFlags = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT,
};
VkSwapChainImageInfoWSI images[DEMO_BUFFER_COUNT];
size_t images_size = sizeof(images);
VkResult err;
uint32_t i;
err = vkCreateSwapChainWSI(demo->device, &swap_chain, &demo->swap_chain);
assert(!err);
err = vkGetSwapChainInfoWSI(demo->swap_chain,
VK_SWAP_CHAIN_INFO_TYPE_PERSISTENT_IMAGES_WSI,
&images_size, images);
assert(!err && images_size == sizeof(images));
for (i = 0; i < DEMO_BUFFER_COUNT; i++) {
VkColorAttachmentViewCreateInfo color_attachment_view = {
.sType = VK_STRUCTURE_TYPE_COLOR_ATTACHMENT_VIEW_CREATE_INFO,
.pNext = NULL,
.format = demo->format,
.mipLevel = 0,
.baseArraySlice = 0,
.arraySize = 1,
};
demo->buffers[i].image = images[i].image;
demo->buffers[i].mem = images[i].memory;
demo_add_mem_refs(demo, 1, &demo->buffers[i].mem);
demo_set_image_layout(demo, demo->buffers[i].image,
VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
color_attachment_view.image = demo->buffers[i].image;
err = vkCreateColorAttachmentView(demo->device,
&color_attachment_view, &demo->buffers[i].view);
assert(!err);
}
}
static void demo_prepare_depth(struct demo *demo)
{
const VkFormat depth_format = VK_FORMAT_D16_UNORM;
const VkImageCreateInfo image = {
.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO,
.pNext = NULL,
.imageType = VK_IMAGE_TYPE_2D,
.format = depth_format,
.extent = { demo->width, demo->height, 1 },
.mipLevels = 1,
.arraySize = 1,
.samples = 1,
.tiling = VK_IMAGE_TILING_OPTIMAL,
.usage = VK_IMAGE_USAGE_DEPTH_STENCIL_BIT,
.flags = 0,
};
VkMemoryAllocInfo mem_alloc = {
.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOC_INFO,
.pNext = NULL,
.allocationSize = 0,
.memProps = VK_MEMORY_PROPERTY_DEVICE_ONLY,
.memPriority = VK_MEMORY_PRIORITY_NORMAL,
};
VkDepthStencilViewCreateInfo view = {
.sType = VK_STRUCTURE_TYPE_DEPTH_STENCIL_VIEW_CREATE_INFO,
.pNext = NULL,
.image = VK_NULL_HANDLE,
.mipLevel = 0,
.baseArraySlice = 0,
.arraySize = 1,
.flags = 0,
};
VkMemoryRequirements *mem_reqs;
size_t mem_reqs_size = sizeof(VkMemoryRequirements);
VkResult err;
uint32_t num_allocations = 0;
size_t num_alloc_size = sizeof(num_allocations);
demo->depth.format = depth_format;
/* create image */
err = vkCreateImage(demo->device, &image,
&demo->depth.image);
assert(!err);
err = vkGetObjectInfo(demo->device,
VK_OBJECT_TYPE_IMAGE, demo->depth.image,
VK_OBJECT_INFO_TYPE_MEMORY_ALLOCATION_COUNT,
&num_alloc_size, &num_allocations);
assert(!err && num_alloc_size == sizeof(num_allocations));
mem_reqs = malloc(num_allocations * sizeof(VkMemoryRequirements));
demo->depth.mem = malloc(num_allocations * sizeof(VkDeviceMemory));
demo->depth.num_mem = num_allocations;
err = vkGetObjectInfo(demo->device,
VK_OBJECT_TYPE_IMAGE, demo->depth.image,
VK_OBJECT_INFO_TYPE_MEMORY_REQUIREMENTS,
&mem_reqs_size, mem_reqs);
assert(!err && mem_reqs_size == num_allocations * sizeof(VkMemoryRequirements));
for (uint32_t i = 0; i < num_allocations; i ++) {
mem_alloc.allocationSize = mem_reqs[i].size;
/* allocate memory */
err = vkAllocMemory(demo->device, &mem_alloc,
&(demo->depth.mem[i]));
assert(!err);
/* bind memory */
err = vkQueueBindObjectMemory(demo->queue,
VK_OBJECT_TYPE_IMAGE, demo->depth.image,
i, demo->depth.mem[i], 0);
assert(!err);
}
demo_set_image_layout(demo, demo->depth.image,
VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL);
demo_add_mem_refs(demo, demo->depth.num_mem, demo->depth.mem);
/* create image view */
view.image = demo->depth.image;
err = vkCreateDepthStencilView(demo->device, &view,
&demo->depth.view);
assert(!err);
}
/** loadTexture
* loads a png file into an memory object, using cstdio , libpng.
*
* \param demo : Needed to access VK calls
* \param filename : the png file to be loaded
* \param width : width of png, to be updated as a side effect of this function
* \param height : height of png, to be updated as a side effect of this function
*
* \return bool : an opengl texture id. true if successful?,
* should be validated by the client of this function.
*
* Source: http://en.wikibooks.org/wiki/OpenGL_Programming/Intermediate/Textures
* Modified to copy image to memory
*
*/
bool loadTexture(const char *filename, uint8_t *rgba_data,
VkSubresourceLayout *layout,
int32_t *width, int32_t *height)
{
//header for testing if it is a png
png_byte header[8];
int is_png, bit_depth, color_type,rowbytes;
png_uint_32 i, twidth, theight;
png_structp png_ptr;
png_infop info_ptr, end_info;
png_byte *image_data;
png_bytep *row_pointers;
//open file as binary
FILE *fp = fopen(filename, "rb");
if (!fp) {
return false;
}
//read the header
fread(header, 1, 8, fp);
//test if png
is_png = !png_sig_cmp(header, 0, 8);
if (!is_png) {
fclose(fp);
return false;
}
//create png struct
png_ptr = png_create_read_struct(PNG_LIBPNG_VER_STRING, NULL,
NULL, NULL);
if (!png_ptr) {
fclose(fp);
return (false);
}
//create png info struct
info_ptr = png_create_info_struct(png_ptr);
if (!info_ptr) {
png_destroy_read_struct(&png_ptr, (png_infopp) NULL, (png_infopp) NULL);
fclose(fp);
return (false);
}
//create png info struct
end_info = png_create_info_struct(png_ptr);
if (!end_info) {
png_destroy_read_struct(&png_ptr, &info_ptr, (png_infopp) NULL);
fclose(fp);
return (false);
}
//png error stuff, not sure libpng man suggests this.
if (setjmp(png_jmpbuf(png_ptr))) {
png_destroy_read_struct(&png_ptr, &info_ptr, &end_info);
fclose(fp);
return (false);
}
//init png reading
png_init_io(png_ptr, fp);
//let libpng know you already read the first 8 bytes
png_set_sig_bytes(png_ptr, 8);
// read all the info up to the image data
png_read_info(png_ptr, info_ptr);
// get info about png
png_get_IHDR(png_ptr, info_ptr, &twidth, &theight, &bit_depth, &color_type,
NULL, NULL, NULL);
//update width and height based on png info
*width = twidth;
*height = theight;
// Require that incoming texture be 8bits per color component
// and 4 components (RGBA).
if (png_get_bit_depth(png_ptr, info_ptr) != 8 ||
png_get_channels(png_ptr, info_ptr) != 4) {
return false;
}
if (rgba_data == NULL) {
// If data pointer is null, we just want the width & height
// clean up memory and close stuff
png_destroy_read_struct(&png_ptr, &info_ptr, &end_info);
fclose(fp);
return true;
}
// Update the png info struct.
png_read_update_info(png_ptr, info_ptr);
// Row size in bytes.
rowbytes = png_get_rowbytes(png_ptr, info_ptr);
// Allocate the image_data as a big block, to be given to opengl
image_data = (png_byte *)malloc(rowbytes * theight * sizeof(png_byte));
if (!image_data) {
//clean up memory and close stuff
png_destroy_read_struct(&png_ptr, &info_ptr, &end_info);
fclose(fp);
return false;
}
// row_pointers is for pointing to image_data for reading the png with libpng
row_pointers = (png_bytep *)malloc(theight * sizeof(png_bytep));
if (!row_pointers) {
//clean up memory and close stuff
png_destroy_read_struct(&png_ptr, &info_ptr, &end_info);
// delete[] image_data;
fclose(fp);
return false;
}
// set the individual row_pointers to point at the correct offsets of image_data
for (i = 0; i < theight; ++i)
row_pointers[theight - 1 - i] = rgba_data + i * layout->rowPitch;
// read the png into image_data through row_pointers
png_read_image(png_ptr, row_pointers);
// clean up memory and close stuff
png_destroy_read_struct(&png_ptr, &info_ptr, &end_info);
free(row_pointers);
free(image_data);
fclose(fp);
return true;
}
static void demo_prepare_texture_image(struct demo *demo,
const char *filename,
struct texture_object *tex_obj,
VkImageTiling tiling,
VkFlags mem_props)
{
const VkFormat tex_format = VK_FORMAT_B8G8R8A8_UNORM;
int32_t tex_width;
int32_t tex_height;
VkResult err;
err = loadTexture(filename, NULL, NULL, &tex_width, &tex_height);
assert(err);
tex_obj->tex_width = tex_width;
tex_obj->tex_height = tex_height;
const VkImageCreateInfo image_create_info = {
.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO,
.pNext = NULL,
.imageType = VK_IMAGE_TYPE_2D,
.format = tex_format,
.extent = { tex_width, tex_height, 1 },
.mipLevels = 1,
.arraySize = 1,
.samples = 1,
.tiling = tiling,
.usage = VK_IMAGE_USAGE_TRANSFER_SOURCE_BIT,
.flags = 0,
};
VkMemoryAllocInfo mem_alloc = {
.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOC_INFO,
.pNext = NULL,
.allocationSize = 0,
.memProps = mem_props,
.memPriority = VK_MEMORY_PRIORITY_NORMAL,
};
VkMemoryRequirements *mem_reqs;
size_t mem_reqs_size = sizeof(VkMemoryRequirements);
uint32_t num_allocations = 0;
size_t num_alloc_size = sizeof(num_allocations);
err = vkCreateImage(demo->device, &image_create_info,
&tex_obj->image);
assert(!err);
err = vkGetObjectInfo(demo->device,
VK_OBJECT_TYPE_IMAGE, tex_obj->image,
VK_OBJECT_INFO_TYPE_MEMORY_ALLOCATION_COUNT,
&num_alloc_size, &num_allocations);
assert(!err && num_alloc_size == sizeof(num_allocations));
mem_reqs = malloc(num_allocations * sizeof(VkMemoryRequirements));
tex_obj->mem = malloc(num_allocations * sizeof(VkDeviceMemory));
err = vkGetObjectInfo(demo->device,
VK_OBJECT_TYPE_IMAGE, tex_obj->image,
VK_OBJECT_INFO_TYPE_MEMORY_REQUIREMENTS,
&mem_reqs_size, mem_reqs);
assert(!err && mem_reqs_size == num_allocations * sizeof(VkMemoryRequirements));
mem_alloc.memProps = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;
for (uint32_t j = 0; j < num_allocations; j ++) {
mem_alloc.allocationSize = mem_reqs[j].size;
/* allocate memory */
err = vkAllocMemory(demo->device, &mem_alloc,
&(tex_obj->mem[j]));
assert(!err);
/* bind memory */
err = vkQueueBindObjectMemory(demo->queue,
VK_OBJECT_TYPE_IMAGE, tex_obj->image,
j, tex_obj->mem[j], 0);
assert(!err);
}
free(mem_reqs);
mem_reqs = NULL;
tex_obj->num_mem = num_allocations;
if (mem_props & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) {
const VkImageSubresource subres = {
.aspect = VK_IMAGE_ASPECT_COLOR,
.mipLevel = 0,
.arraySlice = 0,
};
VkSubresourceLayout layout;
size_t layout_size = sizeof(VkSubresourceLayout);
void *data;
err = vkGetImageSubresourceInfo(demo->device, tex_obj->image, &subres,
VK_SUBRESOURCE_INFO_TYPE_LAYOUT,
&layout_size, &layout);
assert(!err && layout_size == sizeof(layout));
/* Linear texture must be within a single memory object */
assert(num_allocations == 1);
err = vkMapMemory(demo->device, tex_obj->mem[0], 0, 0, 0, &data);
assert(!err);
if (!loadTexture(filename, data, &layout, &tex_width, &tex_height)) {
fprintf(stderr, "Error loading texture: %s\n", filename);
}
err = vkUnmapMemory(demo->device, tex_obj->mem[0]);
assert(!err);
}
tex_obj->imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
demo_set_image_layout(demo, tex_obj->image,
VK_IMAGE_LAYOUT_UNDEFINED,
tex_obj->imageLayout);
/* setting the image layout does not reference the actual memory so no need to add a mem ref */
}
static void demo_destroy_texture_image(struct demo *demo, struct texture_object *tex_objs)
{
/* clean up staging resources */
for (uint32_t j = 0; j < tex_objs->num_mem; j ++) {
vkQueueBindObjectMemory(demo->queue,
VK_OBJECT_TYPE_IMAGE, tex_objs->image, j, VK_NULL_HANDLE, 0);
vkFreeMemory(demo->device, tex_objs->mem[j]);
}
free(tex_objs->mem);
vkDestroyObject(demo->device, VK_OBJECT_TYPE_IMAGE, tex_objs->image);
}
static void demo_prepare_textures(struct demo *demo)
{
const VkFormat tex_format = VK_FORMAT_R8G8B8A8_UNORM;
VkFormatProperties props;
size_t size = sizeof(props);
VkResult err;
uint32_t i;
err = vkGetFormatInfo(demo->device, tex_format,
VK_FORMAT_INFO_TYPE_PROPERTIES,
&size, &props);
assert(!err);
for (i = 0; i < DEMO_TEXTURE_COUNT; i++) {
if (props.linearTilingFeatures & VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT && !demo->use_staging_buffer) {
/* Device can texture using linear textures */
demo_prepare_texture_image(demo, tex_files[i], &demo->textures[i],
VK_IMAGE_TILING_LINEAR, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT);
} else if (props.optimalTilingFeatures & VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT) {
/* Must use staging buffer to copy linear texture to optimized */
struct texture_object staging_texture;
memset(&staging_texture, 0, sizeof(staging_texture));
demo_prepare_texture_image(demo, tex_files[i], &staging_texture,
VK_IMAGE_TILING_LINEAR, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT);
demo_prepare_texture_image(demo, tex_files[i], &demo->textures[i],
VK_IMAGE_TILING_OPTIMAL, VK_MEMORY_PROPERTY_DEVICE_ONLY);
demo_set_image_layout(demo, staging_texture.image,
staging_texture.imageLayout,
VK_IMAGE_LAYOUT_TRANSFER_SOURCE_OPTIMAL);
demo_set_image_layout(demo, demo->textures[i].image,
demo->textures[i].imageLayout,
VK_IMAGE_LAYOUT_TRANSFER_DESTINATION_OPTIMAL);
VkImageCopy copy_region = {
.srcSubresource = { VK_IMAGE_ASPECT_COLOR, 0, 0 },
.srcOffset = { 0, 0, 0 },
.destSubresource = { VK_IMAGE_ASPECT_COLOR, 0, 0 },
.destOffset = { 0, 0, 0 },
.extent = { staging_texture.tex_width, staging_texture.tex_height, 1 },
};
vkCmdCopyImage(demo->cmd,
staging_texture.image, VK_IMAGE_LAYOUT_TRANSFER_SOURCE_OPTIMAL,
demo->textures[i].image, VK_IMAGE_LAYOUT_TRANSFER_DESTINATION_OPTIMAL,
1, &copy_region);
demo_add_mem_refs(demo, staging_texture.num_mem, staging_texture.mem);
demo_add_mem_refs(demo, demo->textures[i].num_mem, demo->textures[i].mem);
demo_set_image_layout(demo, demo->textures[i].image,
VK_IMAGE_LAYOUT_TRANSFER_DESTINATION_OPTIMAL,
demo->textures[i].imageLayout);
demo_flush_init_cmd(demo);
demo_destroy_texture_image(demo, &staging_texture);
demo_remove_mem_refs(demo, staging_texture.num_mem, staging_texture.mem);
} else {
/* Can't support VK_FORMAT_B8G8R8A8_UNORM !? */
assert(!"No support for tB8G8R8A8_UNORM as texture image format");
}
const VkSamplerCreateInfo sampler = {
.sType = VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO,
.pNext = NULL,
.magFilter = VK_TEX_FILTER_NEAREST,
.minFilter = VK_TEX_FILTER_NEAREST,
.mipMode = VK_TEX_MIPMAP_MODE_BASE,
.addressU = VK_TEX_ADDRESS_CLAMP,
.addressV = VK_TEX_ADDRESS_CLAMP,
.addressW = VK_TEX_ADDRESS_CLAMP,
.mipLodBias = 0.0f,
.maxAnisotropy = 1,
.compareOp = VK_COMPARE_OP_NEVER,
.minLod = 0.0f,
.maxLod = 0.0f,
.borderColor = VK_BORDER_COLOR_OPAQUE_WHITE,
};
VkImageViewCreateInfo view = {
.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
.pNext = NULL,
.image = VK_NULL_HANDLE,
.viewType = VK_IMAGE_VIEW_TYPE_2D,
.format = tex_format,
.channels = { VK_CHANNEL_SWIZZLE_R,
VK_CHANNEL_SWIZZLE_G,
VK_CHANNEL_SWIZZLE_B,
VK_CHANNEL_SWIZZLE_A, },
.subresourceRange = { VK_IMAGE_ASPECT_COLOR, 0, 1, 0, 1 },
.minLod = 0.0f,
};
/* create sampler */
err = vkCreateSampler(demo->device, &sampler,
&demo->textures[i].sampler);
assert(!err);
/* create image view */
view.image = demo->textures[i].image;
err = vkCreateImageView(demo->device, &view,
&demo->textures[i].view);
assert(!err);
}
}
void demo_prepare_cube_data_buffer(struct demo *demo)
{
VkBufferCreateInfo buf_info;
VkBufferViewCreateInfo view_info;
VkMemoryAllocInfo alloc_info = {
.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOC_INFO,
.pNext = NULL,
.allocationSize = 0,
.memProps = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT,
.memPriority = VK_MEMORY_PRIORITY_NORMAL,
};
VkMemoryRequirements *mem_reqs;
size_t mem_reqs_size = sizeof(VkMemoryRequirements);
uint32_t num_allocations = 0;
size_t num_alloc_size = sizeof(num_allocations);
uint8_t *pData;
int i;
mat4x4 MVP, VP;
VkResult err;
struct vktexcube_vs_uniform data;
mat4x4_mul(VP, demo->projection_matrix, demo->view_matrix);
mat4x4_mul(MVP, VP, demo->model_matrix);
memcpy(data.mvp, MVP, sizeof(MVP));
// dumpMatrix("MVP", MVP);
for (i=0; i<12*3; i++) {
data.position[i][0] = g_vertex_buffer_data[i*3];
data.position[i][1] = g_vertex_buffer_data[i*3+1];
data.position[i][2] = g_vertex_buffer_data[i*3+2];
data.position[i][3] = 1.0f;
data.attr[i][0] = g_uv_buffer_data[2*i];
data.attr[i][1] = g_uv_buffer_data[2*i + 1];
data.attr[i][2] = 0;
data.attr[i][3] = 0;
}
memset(&buf_info, 0, sizeof(buf_info));
buf_info.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
buf_info.size = sizeof(data);
buf_info.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT;
err = vkCreateBuffer(demo->device, &buf_info, &demo->uniform_data.buf);
assert(!err);
err = vkGetObjectInfo(demo->device,
VK_OBJECT_TYPE_BUFFER, demo->uniform_data.buf,
VK_OBJECT_INFO_TYPE_MEMORY_ALLOCATION_COUNT,
&num_alloc_size, &num_allocations);
assert(!err && num_alloc_size == sizeof(num_allocations));
mem_reqs = malloc(num_allocations * sizeof(VkMemoryRequirements));
demo->uniform_data.mem = malloc(num_allocations * sizeof(VkDeviceMemory));
demo->uniform_data.num_mem = num_allocations;
err = vkGetObjectInfo(demo->device,
VK_OBJECT_TYPE_BUFFER, demo->uniform_data.buf,
VK_OBJECT_INFO_TYPE_MEMORY_REQUIREMENTS,
&mem_reqs_size, mem_reqs);
assert(!err && mem_reqs_size == num_allocations * sizeof(*mem_reqs));
for (uint32_t i = 0; i < num_allocations; i ++) {
alloc_info.allocationSize = mem_reqs[i].size;
err = vkAllocMemory(demo->device, &alloc_info, &(demo->uniform_data.mem[i]));
assert(!err);
err = vkMapMemory(demo->device, demo->uniform_data.mem[i], 0, 0, 0, (void **) &pData);
assert(!err);
memcpy(pData, &data, (size_t)alloc_info.allocationSize);
err = vkUnmapMemory(demo->device, demo->uniform_data.mem[i]);
assert(!err);
err = vkQueueBindObjectMemory(demo->queue,
VK_OBJECT_TYPE_BUFFER, demo->uniform_data.buf,
i, demo->uniform_data.mem[i], 0);
assert(!err);
}
demo_add_mem_refs(demo, demo->uniform_data.num_mem, demo->uniform_data.mem);
memset(&view_info, 0, sizeof(view_info));
view_info.sType = VK_STRUCTURE_TYPE_BUFFER_VIEW_CREATE_INFO;
view_info.buffer = demo->uniform_data.buf;
view_info.viewType = VK_BUFFER_VIEW_TYPE_RAW;
view_info.offset = 0;
view_info.range = sizeof(data);
err = vkCreateBufferView(demo->device, &view_info, &demo->uniform_data.view);
assert(!err);
demo->uniform_data.attach.sType = VK_STRUCTURE_TYPE_BUFFER_VIEW_ATTACH_INFO;
demo->uniform_data.attach.view = demo->uniform_data.view;
}
static void demo_prepare_descriptor_layout(struct demo *demo)
{
const VkDescriptorSetLayoutBinding layout_bindings[2] = {
[0] = {
.descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
.count = 1,
.stageFlags = VK_SHADER_STAGE_VERTEX_BIT,
.pImmutableSamplers = NULL,
},
[1] = {
.descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
.count = DEMO_TEXTURE_COUNT,
.stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT,
.pImmutableSamplers = NULL,
},
};
const VkDescriptorSetLayoutCreateInfo descriptor_layout = {
.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO,
.pNext = NULL,
.count = 2,
.pBinding = layout_bindings,
};
VkResult err;
err = vkCreateDescriptorSetLayout(demo->device,
&descriptor_layout, &demo->desc_layout);
assert(!err);
const VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo = {
.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO,
.pNext = NULL,
.descriptorSetCount = 1,
.pSetLayouts = &demo->desc_layout,
};
err = vkCreatePipelineLayout(demo->device,
&pPipelineLayoutCreateInfo,
&demo->pipeline_layout);
assert(!err);
}
static VkShader demo_prepare_shader(struct demo *demo,
VkShaderStage stage,
const void *code,
size_t size)
{
VkShaderCreateInfo createInfo;
VkShader shader;
VkResult err;
createInfo.sType = VK_STRUCTURE_TYPE_SHADER_CREATE_INFO;
createInfo.pNext = NULL;
#ifdef EXTERNAL_SPV
createInfo.codeSize = size;
createInfo.pCode = code;
createInfo.flags = 0;
err = vkCreateShader(demo->device, &createInfo, &shader);
if (err) {
free((void *) createInfo.pCode);
}
#else
// Create fake SPV structure to feed GLSL
// to the driver "under the covers"
createInfo.codeSize = 3 * sizeof(uint32_t) + size + 1;
createInfo.pCode = malloc(createInfo.codeSize);
createInfo.flags = 0;
/* try version 0 first: VkShaderStage followed by GLSL */
((uint32_t *) createInfo.pCode)[0] = ICD_SPV_MAGIC;
((uint32_t *) createInfo.pCode)[1] = 0;
((uint32_t *) createInfo.pCode)[2] = stage;
memcpy(((uint32_t *) createInfo.pCode + 3), code, size + 1);
err = vkCreateShader(demo->device, &createInfo, &shader);
if (err) {
free((void *) createInfo.pCode);
return NULL;
}
#endif
return shader;
}
char *demo_read_spv(const char *filename, size_t *psize)
{
long int size;
void *shader_code;
FILE *fp = fopen(filename, "rb");
if (!fp) return NULL;
fseek(fp, 0L, SEEK_END);
size = ftell(fp);
fseek(fp, 0L, SEEK_SET);
shader_code = malloc(size);
fread(shader_code, size, 1, fp);
*psize = size;
return shader_code;
}
static VkShader demo_prepare_vs(struct demo *demo)
{
#ifdef EXTERNAL_SPV
void *vertShaderCode;
size_t size;
vertShaderCode = demo_read_spv("cube-vert.spv", &size);
return demo_prepare_shader(demo, VK_SHADER_STAGE_VERTEX,
vertShaderCode, size);
#else
static const char *vertShaderText =
"#version 140\n"
"#extension GL_ARB_separate_shader_objects : enable\n"
"#extension GL_ARB_shading_language_420pack : enable\n"
"\n"
"layout(binding = 0) uniform buf {\n"
" mat4 MVP;\n"
" vec4 position[12*3];\n"
" vec4 attr[12*3];\n"
"} ubuf;\n"
"\n"
"layout (location = 0) out vec4 texcoord;\n"
"\n"
"void main() \n"
"{\n"
" texcoord = ubuf.attr[gl_VertexID];\n"
" gl_Position = ubuf.MVP * ubuf.position[gl_VertexID];\n"
"}\n";
return demo_prepare_shader(demo, VK_SHADER_STAGE_VERTEX,
(const void *) vertShaderText,
strlen(vertShaderText));
#endif
}
static VkShader demo_prepare_fs(struct demo *demo)
{
#ifdef EXTERNAL_SPV
void *fragShaderCode;
size_t size;
fragShaderCode = demo_read_spv("cube-frag.spv", &size);
return demo_prepare_shader(demo, VK_SHADER_STAGE_FRAGMENT,
fragShaderCode, size);
#else
static const char *fragShaderText =
"#version 140\n"
"#extension GL_ARB_separate_shader_objects : enable\n"
"#extension GL_ARB_shading_language_420pack : enable\n"
"layout (binding = 1) uniform sampler2D tex;\n"
"\n"
"layout (location = 0) in vec4 texcoord;\n"
"void main() {\n"
" gl_FragColor = texture(tex, texcoord.xy);\n"
"}\n";
return demo_prepare_shader(demo, VK_SHADER_STAGE_FRAGMENT,
(const void *) fragShaderText,
strlen(fragShaderText));
#endif
}
static void demo_prepare_pipeline(struct demo *demo)
{
VkGraphicsPipelineCreateInfo pipeline;
VkPipelineIaStateCreateInfo ia;
VkPipelineRsStateCreateInfo rs;
VkPipelineCbStateCreateInfo cb;
VkPipelineDsStateCreateInfo ds;
VkPipelineShaderStageCreateInfo vs;
VkPipelineShaderStageCreateInfo fs;
VkPipelineVpStateCreateInfo vp;
VkPipelineMsStateCreateInfo ms;
VkResult err;
memset(&pipeline, 0, sizeof(pipeline));
pipeline.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO;
pipeline.layout = demo->pipeline_layout;
memset(&ia, 0, sizeof(ia));
ia.sType = VK_STRUCTURE_TYPE_PIPELINE_IA_STATE_CREATE_INFO;
ia.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST;
memset(&rs, 0, sizeof(rs));
rs.sType = VK_STRUCTURE_TYPE_PIPELINE_RS_STATE_CREATE_INFO;
rs.fillMode = VK_FILL_MODE_SOLID;
rs.cullMode = VK_CULL_MODE_BACK;
rs.frontFace = VK_FRONT_FACE_CCW;
memset(&cb, 0, sizeof(cb));
cb.sType = VK_STRUCTURE_TYPE_PIPELINE_CB_STATE_CREATE_INFO;
VkPipelineCbAttachmentState att_state[1];
memset(att_state, 0, sizeof(att_state));
att_state[0].format = demo->format;
att_state[0].channelWriteMask = 0xf;
att_state[0].blendEnable = VK_FALSE;
cb.attachmentCount = 1;
cb.pAttachments = att_state;
memset(&vp, 0, sizeof(vp));
vp.sType = VK_STRUCTURE_TYPE_PIPELINE_VP_STATE_CREATE_INFO;
vp.viewportCount = 1;
vp.clipOrigin = VK_COORDINATE_ORIGIN_LOWER_LEFT;
memset(&ds, 0, sizeof(ds));
ds.sType = VK_STRUCTURE_TYPE_PIPELINE_DS_STATE_CREATE_INFO;
ds.format = demo->depth.format;
ds.depthTestEnable = VK_TRUE;
ds.depthWriteEnable = VK_TRUE;
ds.depthCompareOp = VK_COMPARE_OP_LESS_EQUAL;
ds.depthBoundsEnable = VK_FALSE;
ds.back.stencilFailOp = VK_STENCIL_OP_KEEP;
ds.back.stencilPassOp = VK_STENCIL_OP_KEEP;
ds.back.stencilCompareOp = VK_COMPARE_OP_ALWAYS;
ds.stencilTestEnable = VK_FALSE;
ds.front = ds.back;
memset(&vs, 0, sizeof(vs));
vs.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
vs.shader.stage = VK_SHADER_STAGE_VERTEX;
vs.shader.shader = demo_prepare_vs(demo);
assert(vs.shader.shader != VK_NULL_HANDLE);
memset(&fs, 0, sizeof(fs));
fs.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
fs.shader.stage = VK_SHADER_STAGE_FRAGMENT;
fs.shader.shader = demo_prepare_fs(demo);
assert(fs.shader.shader != VK_NULL_HANDLE);
memset(&ms, 0, sizeof(ms));
ms.sType = VK_STRUCTURE_TYPE_PIPELINE_MS_STATE_CREATE_INFO;
ms.sampleMask = 1;
ms.multisampleEnable = VK_FALSE;
ms.samples = 1;
pipeline.pNext = (const void *) &ia;
ia.pNext = (const void *) &rs;
rs.pNext = (const void *) &cb;
cb.pNext = (const void *) &ms;
ms.pNext = (const void *) &vp;
vp.pNext = (const void *) &ds;
ds.pNext = (const void *) &vs;
vs.pNext = (const void *) &fs;
err = vkCreateGraphicsPipeline(demo->device, &pipeline, &demo->pipeline);
assert(!err);
vkDestroyObject(demo->device, VK_OBJECT_TYPE_SHADER, vs.shader.shader);
vkDestroyObject(demo->device, VK_OBJECT_TYPE_SHADER, fs.shader.shader);
}
static void demo_prepare_dynamic_states(struct demo *demo)
{
VkDynamicVpStateCreateInfo viewport_create;
VkDynamicRsStateCreateInfo raster;
VkDynamicCbStateCreateInfo color_blend;
VkDynamicDsStateCreateInfo depth_stencil;
VkResult err;
memset(&viewport_create, 0, sizeof(viewport_create));
viewport_create.sType = VK_STRUCTURE_TYPE_DYNAMIC_VP_STATE_CREATE_INFO;
viewport_create.viewportAndScissorCount = 1;
VkViewport viewport;
memset(&viewport, 0, sizeof(viewport));
viewport.height = (float) demo->height;
viewport.width = (float) demo->width;
viewport.minDepth = (float) 0.0f;
viewport.maxDepth = (float) 1.0f;
viewport_create.pViewports = &viewport;
VkRect scissor;
memset(&scissor, 0, sizeof(scissor));
scissor.extent.width = demo->width;
scissor.extent.height = demo->height;
scissor.offset.x = 0;
scissor.offset.y = 0;
viewport_create.pScissors = &scissor;
memset(&raster, 0, sizeof(raster));
raster.sType = VK_STRUCTURE_TYPE_DYNAMIC_RS_STATE_CREATE_INFO;
raster.pointSize = 1.0;
raster.lineWidth = 1.0;
memset(&color_blend, 0, sizeof(color_blend));
color_blend.sType = VK_STRUCTURE_TYPE_DYNAMIC_CB_STATE_CREATE_INFO;
color_blend.blendConst[0] = 1.0f;
color_blend.blendConst[1] = 1.0f;
color_blend.blendConst[2] = 1.0f;
color_blend.blendConst[3] = 1.0f;
memset(&depth_stencil, 0, sizeof(depth_stencil));
depth_stencil.sType = VK_STRUCTURE_TYPE_DYNAMIC_DS_STATE_CREATE_INFO;
depth_stencil.minDepth = 0.0f;
depth_stencil.maxDepth = 1.0f;
depth_stencil.stencilBackRef = 0;
depth_stencil.stencilFrontRef = 0;
depth_stencil.stencilReadMask = 0xff;
depth_stencil.stencilWriteMask = 0xff;
err = vkCreateDynamicViewportState(demo->device, &viewport_create, &demo->viewport);
assert(!err);
err = vkCreateDynamicRasterState(demo->device, &raster, &demo->raster);
assert(!err);
err = vkCreateDynamicColorBlendState(demo->device,
&color_blend, &demo->color_blend);
assert(!err);
err = vkCreateDynamicDepthStencilState(demo->device,
&depth_stencil, &demo->depth_stencil);
assert(!err);
}
static void demo_prepare_descriptor_pool(struct demo *demo)
{
const VkDescriptorTypeCount type_counts[2] = {
[0] = {
.type = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
.count = 1,
},
[1] = {
.type = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
.count = DEMO_TEXTURE_COUNT,
},
};
const VkDescriptorPoolCreateInfo descriptor_pool = {
.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO,
.pNext = NULL,
.count = 2,
.pTypeCount = type_counts,
};
VkResult err;
err = vkCreateDescriptorPool(demo->device,
VK_DESCRIPTOR_POOL_USAGE_ONE_SHOT, 1,
&descriptor_pool, &demo->desc_pool);
assert(!err);
}
static void demo_prepare_descriptor_set(struct demo *demo)
{
VkImageViewAttachInfo view_info[DEMO_TEXTURE_COUNT];
VkSamplerImageViewInfo combined_info[DEMO_TEXTURE_COUNT];
VkUpdateSamplerTextures update_fs;
VkUpdateBuffers update_vs;
const void *update_array[2] = { &update_vs, &update_fs };
VkResult err;
uint32_t count;
uint32_t i;
for (i = 0; i < DEMO_TEXTURE_COUNT; i++) {
view_info[i].sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_ATTACH_INFO;
view_info[i].pNext = NULL;
view_info[i].view = demo->textures[i].view,
view_info[i].layout = VK_IMAGE_LAYOUT_GENERAL;
combined_info[i].sampler = demo->textures[i].sampler;
combined_info[i].pImageView = &view_info[i];
}
memset(&update_vs, 0, sizeof(update_vs));
update_vs.sType = VK_STRUCTURE_TYPE_UPDATE_BUFFERS;
update_vs.pNext = &update_fs;
update_vs.descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
update_vs.count = 1;
update_vs.pBufferViews = &demo->uniform_data.attach;
memset(&update_fs, 0, sizeof(update_fs));
update_fs.sType = VK_STRUCTURE_TYPE_UPDATE_SAMPLER_TEXTURES;
update_fs.binding = 1;
update_fs.count = DEMO_TEXTURE_COUNT;
update_fs.pSamplerImageViews = combined_info;
err = vkAllocDescriptorSets(demo->device, demo->desc_pool,
VK_DESCRIPTOR_SET_USAGE_STATIC,
1, &demo->desc_layout,
&demo->desc_set, &count);
assert(!err && count == 1);
vkBeginDescriptorPoolUpdate(demo->device,
VK_DESCRIPTOR_UPDATE_MODE_FASTEST);
vkClearDescriptorSets(demo->device, demo->desc_pool, 1, &demo->desc_set);
vkUpdateDescriptors(demo->device, demo->desc_set, 2, update_array);
vkEndDescriptorPoolUpdate(demo->device, demo->buffers[demo->current_buffer].cmd);
}
static void demo_prepare(struct demo *demo)
{
const VkCmdBufferCreateInfo cmd = {
.sType = VK_STRUCTURE_TYPE_CMD_BUFFER_CREATE_INFO,
.pNext = NULL,
.queueNodeIndex = demo->graphics_queue_node_index,
.flags = 0,
};
VkResult err;
demo_prepare_buffers(demo);
demo_prepare_depth(demo);
demo_prepare_textures(demo);
demo_prepare_cube_data_buffer(demo);
demo_prepare_descriptor_layout(demo);
demo_prepare_pipeline(demo);
demo_prepare_dynamic_states(demo);
for (int i = 0; i < DEMO_BUFFER_COUNT; i++) {
err = vkCreateCommandBuffer(demo->device, &cmd, &demo->buffers[i].cmd);
assert(!err);
}
demo_prepare_descriptor_pool(demo);
demo_prepare_descriptor_set(demo);
for (int i = 0; i < DEMO_BUFFER_COUNT; i++) {
demo->current_buffer = i;
demo_draw_build_cmd(demo, demo->buffers[i].cmd);
}
/*
* Prepare functions above may generate pipeline commands
* that need to be flushed before beginning the render loop.
*/
demo_flush_init_cmd(demo);
demo->current_buffer = 0;
}
#ifdef _WIN32
static void demo_run(struct demo *demo)
{
// Wait for work to finish before updating MVP.
vkDeviceWaitIdle(demo->device);
demo_update_data_buffer(demo);
demo_draw(demo);
// Wait for work to finish before updating MVP.
vkDeviceWaitIdle(demo->device);
}
// On MS-Windows, make this a global, so it's available to WndProc()
struct demo demo;
// MS-Windows event handling function:
LRESULT CALLBACK WndProc(HWND hWnd,
UINT uMsg,
WPARAM wParam,
LPARAM lParam)
{
PAINTSTRUCT paint_struct;
HDC hDC; // Device context
char tmp_str[] = "Test Vulkan Cube Program";
switch(uMsg)
{
case WM_CREATE:
return 0;
case WM_CLOSE:
PostQuitMessage(0);
return 0;
case WM_PAINT:
demo_run(&demo);
return 0;
default:
break;
}
return (DefWindowProc(hWnd, uMsg, wParam, lParam));
}
static void demo_create_window(struct demo *demo)
{
WNDCLASSEX win_class;
// Initialize the window class structure:
win_class.cbSize = sizeof(WNDCLASSEX);
win_class.style = CS_HREDRAW | CS_VREDRAW;
win_class.lpfnWndProc = WndProc;
win_class.cbClsExtra = 0;
win_class.cbWndExtra = 0;
win_class.hInstance = demo->connection; // hInstance
win_class.hIcon = LoadIcon(NULL, IDI_APPLICATION);
win_class.hCursor = LoadCursor(NULL, IDC_ARROW);
win_class.hbrBackground = (HBRUSH)GetStockObject(WHITE_BRUSH);
win_class.lpszMenuName = NULL;
win_class.lpszClassName = demo->name;
win_class.hIconSm = LoadIcon(NULL, IDI_WINLOGO);
// Register window class:
if (!RegisterClassEx(&win_class)) {
// It didn't work, so try to give a useful error:
printf("Unexpected error trying to start the application!\n");
fflush(stdout);
exit(1);
}
// Create window with the registered class:
demo->window = CreateWindowEx(0,
demo->name, // class name
demo->name, // app name
WS_OVERLAPPEDWINDOW | // window style
WS_VISIBLE |
WS_SYSMENU,
100,100, // x/y coords
demo->width, // width
demo->height, // height
NULL, // handle to parent
NULL, // handle to menu
demo->connection, // hInstance
NULL); // no extra parameters
if (!demo->window) {
// It didn't work, so try to give a useful error:
printf("Cannot create a window in which to draw!\n");
fflush(stdout);
exit(1);
}
}
#else // _WIN32
static void demo_handle_event(struct demo *demo,
const xcb_generic_event_t *event)
{
uint8_t event_code = event->response_type & 0x7f;
switch (event_code) {
case XCB_EXPOSE:
// TODO: Resize window
break;
case XCB_CLIENT_MESSAGE:
if((*(xcb_client_message_event_t*)event).data.data32[0] ==
(*demo->atom_wm_delete_window).atom) {
demo->quit = true;
}
break;
case XCB_KEY_RELEASE:
{
const xcb_key_release_event_t *key =
(const xcb_key_release_event_t *) event;
switch (key->detail) {
case 0x9: // Escape
demo->quit = true;
break;
case 0x71: // left arrow key
demo->spin_angle += demo->spin_increment;
break;
case 0x72: // right arrow key
demo->spin_angle -= demo->spin_increment;
break;
case 0x41:
demo->pause = !demo->pause;
break;
}
}
break;
default:
break;
}
}
static void demo_run(struct demo *demo)
{
xcb_flush(demo->connection);
while (!demo->quit) {
xcb_generic_event_t *event;
if (demo->pause) {
event = xcb_wait_for_event(demo->connection);
} else {
event = xcb_poll_for_event(demo->connection);
}
if (event) {
demo_handle_event(demo, event);
free(event);
}
// Wait for work to finish before updating MVP.
vkDeviceWaitIdle(demo->device);
demo_update_data_buffer(demo);
demo_draw(demo);
// Wait for work to finish before updating MVP.
vkDeviceWaitIdle(demo->device);
}
}
static void demo_create_window(struct demo *demo)
{
uint32_t value_mask, value_list[32];
demo->window = xcb_generate_id(demo->connection);
value_mask = XCB_CW_BACK_PIXEL | XCB_CW_EVENT_MASK;
value_list[0] = demo->screen->black_pixel;
value_list[1] = XCB_EVENT_MASK_KEY_RELEASE |
XCB_EVENT_MASK_EXPOSURE;
xcb_create_window(demo->connection,
XCB_COPY_FROM_PARENT,
demo->window, demo->screen->root,
0, 0, demo->width, demo->height, 0,
XCB_WINDOW_CLASS_INPUT_OUTPUT,
demo->screen->root_visual,
value_mask, value_list);
/* Magic code that will send notification when window is destroyed */
xcb_intern_atom_cookie_t cookie = xcb_intern_atom(demo->connection, 1, 12,
"WM_PROTOCOLS");
xcb_intern_atom_reply_t* reply = xcb_intern_atom_reply(demo->connection, cookie, 0);
xcb_intern_atom_cookie_t cookie2 = xcb_intern_atom(demo->connection, 0, 16, "WM_DELETE_WINDOW");
demo->atom_wm_delete_window = xcb_intern_atom_reply(demo->connection, cookie2, 0);
xcb_change_property(demo->connection, XCB_PROP_MODE_REPLACE,
demo->window, (*reply).atom, 4, 32, 1,
&(*demo->atom_wm_delete_window).atom);
free(reply);
xcb_map_window(demo->connection, demo->window);
}
#endif // _WIN32
static void demo_init_vk(struct demo *demo)
{
VkResult err;
// Extensions to enable
const char *ext_names[] = {
"VK_WSI_LunarG",
};
size_t extSize = sizeof(uint32_t);
uint32_t extCount = 0;
err = vkGetGlobalExtensionInfo(VK_EXTENSION_INFO_TYPE_COUNT, 0, &extSize, &extCount);
assert(!err);
VkExtensionProperties extProp;
extSize = sizeof(VkExtensionProperties);
bool32_t extFound = 0;
for (uint32_t i = 0; i < extCount; i++) {
err = vkGetGlobalExtensionInfo(VK_EXTENSION_INFO_TYPE_PROPERTIES, i, &extSize, &extProp);
if (!strcmp(ext_names[0], extProp.extName))
extFound = 1;
}
assert(extFound);
const VkApplicationInfo app = {
.sType = VK_STRUCTURE_TYPE_APPLICATION_INFO,
.pNext = NULL,
.pAppName = "cube",
.appVersion = 0,
.pEngineName = "cube",
.engineVersion = 0,
.apiVersion = VK_API_VERSION,
};
const VkInstanceCreateInfo inst_info = {
.sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO,
.pNext = NULL,
.pAppInfo = &app,
.pAllocCb = NULL,
.extensionCount = 1,
.ppEnabledExtensionNames = ext_names,
};
const VkDeviceQueueCreateInfo queue = {
.queueNodeIndex = 0,
.queueCount = 1,
};
const VkDeviceCreateInfo device = {
.sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO,
.pNext = NULL,
.queueRecordCount = 1,
.pRequestedQueues = &queue,
.extensionCount = 1,
.ppEnabledExtensionNames = ext_names,
.flags = VK_DEVICE_CREATE_VALIDATION_BIT,
};
uint32_t gpu_count;
uint32_t i;
size_t data_size;
uint32_t queue_count;
err = vkCreateInstance(&inst_info, &demo->inst);
if (err) {
#ifdef _WIN32
MessageBox(NULL, "vkCreateInstance failed - do you have a Vulkan graphics driver installed?",
"vkCreateInstance Failure", MB_OK);
#else
printf("vkCreateInstance failed - Do you have a Vulkan graphics driver installed?"
"(\nExiting ...\n");
fflush(stdout);
#endif
exit(1);
}
gpu_count = 1;
err = vkEnumeratePhysicalDevices(demo->inst, &gpu_count, &demo->gpu);
assert(!err && gpu_count == 1);
err = vkCreateDevice(demo->gpu, &device, &demo->device);
assert(!err);
err = vkGetPhysicalDeviceInfo(demo->gpu, VK_PHYSICAL_DEVICE_INFO_TYPE_PROPERTIES,
&data_size, NULL);
assert(!err);
demo->gpu_props = (VkPhysicalDeviceProperties *) malloc(data_size);
err = vkGetPhysicalDeviceInfo(demo->gpu, VK_PHYSICAL_DEVICE_INFO_TYPE_PROPERTIES,
&data_size, demo->gpu_props);
assert(!err);
err = vkGetPhysicalDeviceInfo(demo->gpu, VK_PHYSICAL_DEVICE_INFO_TYPE_QUEUE_PROPERTIES,
&data_size, NULL);
assert(!err);
demo->queue_props = (VkPhysicalDeviceQueueProperties *) malloc(data_size);
err = vkGetPhysicalDeviceInfo(demo->gpu, VK_PHYSICAL_DEVICE_INFO_TYPE_QUEUE_PROPERTIES,
&data_size, demo->queue_props);
assert(!err);
queue_count = (uint32_t)(data_size / sizeof(VkPhysicalDeviceQueueProperties));
assert(queue_count >= 1);
// Graphics queue and MemMgr queue can be separate.
// TODO: Add support for separate queues, including synchronization,
// and appropriate tracking for QueueSubmit and QueueBindObjectMemory
for (i = 0; i < queue_count; i++) {
if ((demo->queue_props[i].queueFlags & VK_QUEUE_GRAPHICS_BIT) &&
(demo->queue_props[i].queueFlags & VK_QUEUE_MEMMGR_BIT) )
break;
}
assert(i < queue_count);
demo->graphics_queue_node_index = i;
err = vkGetDeviceQueue(demo->device, demo->graphics_queue_node_index,
0, &demo->queue);
assert(!err);
}
static void demo_init_connection(struct demo *demo)
{
#ifndef _WIN32
const xcb_setup_t *setup;
xcb_screen_iterator_t iter;
int scr;
demo->connection = xcb_connect(NULL, &scr);
if (demo->connection == NULL) {
printf("Cannot find a compatible Vulkan installable client driver "
"(ICD).\nExiting ...\n");
fflush(stdout);
exit(1);
}
setup = xcb_get_setup(demo->connection);
iter = xcb_setup_roots_iterator(setup);
while (scr-- > 0)
xcb_screen_next(&iter);
demo->screen = iter.data;
#endif // _WIN32
}
#ifdef _WIN32
static void demo_init(struct demo *demo, HINSTANCE hInstance, LPSTR pCmdLine)
#else // _WIN32
static void demo_init(struct demo *demo, int argc, char **argv)
#endif // _WIN32
{
vec3 eye = {0.0f, 3.0f, 5.0f};
vec3 origin = {0, 0, 0};
vec3 up = {0.0f, -1.0f, 0.0};
bool argv_error = false;
memset(demo, 0, sizeof(*demo));
#ifdef _WIN32
demo->connection = hInstance;
strncpy(demo->name, "cube", APP_NAME_STR_LEN);
if (strncmp(pCmdLine, "--use_staging", strlen("--use_staging")) == 0)
demo->use_staging_buffer = true;
else if (strlen(pCmdLine) != 0) {
fprintf(stderr, "Do not recognize argument \"%s\".\n", pCmdLine);
argv_error = true;
}
#else // _WIN32
for (int i = 1; i < argc; i++) {
if (strncmp(argv[i], "--use_staging", strlen("--use_staging")) == 0)
demo->use_staging_buffer = true;
else {
fprintf(stderr, "Do not recognize argument \"%s\".\n", argv[i]);
argv_error = true;
}
}
#endif // _WIN32
if (argv_error) {
fprintf(stderr, "Usage:\n cube [--use_staging]\n");
fflush(stderr);
exit(1);
}
demo_init_connection(demo);
demo_init_vk(demo);
demo->width = 500;
demo->height = 500;
demo->format = VK_FORMAT_B8G8R8A8_UNORM;
demo->spin_angle = 0.01f;
demo->spin_increment = 0.01f;
demo->pause = false;
mat4x4_perspective(demo->projection_matrix, (float)degreesToRadians(45.0f), 1.0f, 0.1f, 100.0f);
mat4x4_look_at(demo->view_matrix, eye, origin, up);
mat4x4_identity(demo->model_matrix);
}
static void demo_cleanup(struct demo *demo)
{
uint32_t i, j;
vkDestroyObject(demo->device, VK_OBJECT_TYPE_DESCRIPTOR_SET, demo->desc_set);
vkDestroyObject(demo->device, VK_OBJECT_TYPE_DESCRIPTOR_POOL, demo->desc_pool);
vkDestroyObject(demo->device, VK_OBJECT_TYPE_DYNAMIC_VP_STATE, demo->viewport);
vkDestroyObject(demo->device, VK_OBJECT_TYPE_DYNAMIC_RS_STATE, demo->raster);
vkDestroyObject(demo->device, VK_OBJECT_TYPE_DYNAMIC_CB_STATE, demo->color_blend);
vkDestroyObject(demo->device, VK_OBJECT_TYPE_DYNAMIC_DS_STATE, demo->depth_stencil);
vkDestroyObject(demo->device, VK_OBJECT_TYPE_PIPELINE, demo->pipeline);
vkDestroyObject(demo->device, VK_OBJECT_TYPE_PIPELINE_LAYOUT, demo->pipeline_layout);
vkDestroyObject(demo->device, VK_OBJECT_TYPE_DESCRIPTOR_SET_LAYOUT, demo->desc_layout);
for (i = 0; i < DEMO_TEXTURE_COUNT; i++) {
vkDestroyObject(demo->device, VK_OBJECT_TYPE_IMAGE_VIEW, demo->textures[i].view);
vkQueueBindObjectMemory(demo->queue, VK_OBJECT_TYPE_IMAGE, demo->textures[i].image, 0, VK_NULL_HANDLE, 0);
vkDestroyObject(demo->device, VK_OBJECT_TYPE_IMAGE, demo->textures[i].image);
demo_remove_mem_refs(demo, demo->textures[i].num_mem, demo->textures[i].mem);
for (j = 0; j < demo->textures[i].num_mem; j++)
vkFreeMemory(demo->device, demo->textures[i].mem[j]);
free(demo->textures[i].mem);
vkDestroyObject(demo->device, VK_OBJECT_TYPE_SAMPLER, demo->textures[i].sampler);
}
vkDestroySwapChainWSI(demo->swap_chain);
vkDestroyObject(demo->device, VK_OBJECT_TYPE_DEPTH_STENCIL_VIEW, demo->depth.view);
vkQueueBindObjectMemory(demo->queue, VK_OBJECT_TYPE_IMAGE, demo->depth.image, 0, VK_NULL_HANDLE, 0);
demo_remove_mem_refs(demo, demo->depth.num_mem, demo->depth.mem);
vkDestroyObject(demo->device, VK_OBJECT_TYPE_IMAGE, demo->depth.image);
for (j = 0; j < demo->depth.num_mem; j++) {
vkFreeMemory(demo->device, demo->depth.mem[j]);
}
vkDestroyObject(demo->device, VK_OBJECT_TYPE_BUFFER_VIEW, demo->uniform_data.view);
vkQueueBindObjectMemory(demo->queue, VK_OBJECT_TYPE_BUFFER, demo->uniform_data.buf, 0, VK_NULL_HANDLE, 0);
vkDestroyObject(demo->device, VK_OBJECT_TYPE_BUFFER, demo->uniform_data.buf);
demo_remove_mem_refs(demo, demo->uniform_data.num_mem, demo->uniform_data.mem);
for (j = 0; j < demo->uniform_data.num_mem; j++)
vkFreeMemory(demo->device, demo->uniform_data.mem[j]);
for (i = 0; i < DEMO_BUFFER_COUNT; i++) {
vkDestroyObject(demo->device, VK_OBJECT_TYPE_COLOR_ATTACHMENT_VIEW, demo->buffers[i].view);
vkDestroyObject(demo->device, VK_OBJECT_TYPE_COMMAND_BUFFER, demo->buffers[i].cmd);
demo_remove_mem_refs(demo, 1, &demo->buffers[i].mem);
}
vkDestroyDevice(demo->device);
vkDestroyInstance(demo->inst);
#ifndef _WIN32
xcb_destroy_window(demo->connection, demo->window);
xcb_disconnect(demo->connection);
#endif // _WIN32
}
#ifdef _WIN32
int APIENTRY WinMain(HINSTANCE hInstance,
HINSTANCE hPrevInstance,
LPSTR pCmdLine,
int nCmdShow)
{
MSG msg; // message
bool done; // flag saying when app is complete
demo_init(&demo, hInstance, pCmdLine);
demo_create_window(&demo);
demo_prepare(&demo);
done = false; //initialize loop condition variable
/* main message loop*/
while(!done)
{
PeekMessage(&msg,NULL,NULL,NULL,PM_REMOVE);
if (msg.message == WM_QUIT) //check for a quit message
{
done = true; //if found, quit app
}
else
{
/* Translate and dispatch to event queue*/
TranslateMessage(&msg);
DispatchMessage(&msg);
}
}
demo_cleanup(&demo);
return msg.wParam;
}
#else // _WIN32
int main(int argc, char **argv)
{
struct demo demo;
demo_init(&demo, argc, argv);
demo_create_window(&demo);
demo_prepare(&demo);
demo_run(&demo);
demo_cleanup(&demo);
return 0;
}
#endif // _WIN32