blob: 789b40f2238cfa78bd0a5e603f1ddefa60088abd [file] [log] [blame]
/* Copyright (c) 2015-2017 The Khronos Group Inc.
* Copyright (c) 2015-2017 Valve Corporation
* Copyright (c) 2015-2017 LunarG, Inc.
* Copyright (C) 2015-2017 Google Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Author: Mark Lobodzinski <mark@lunarg.com>
*/
// Allow use of STL min and max functions in Windows
#define NOMINMAX
#include <sstream>
#include "vk_enum_string_helper.h"
#include "vk_layer_data.h"
#include "vk_layer_utils.h"
#include "vk_layer_logging.h"
#include "buffer_validation.h"
void SetLayout(core_validation::layer_data *device_data, GLOBAL_CB_NODE *pCB, ImageSubresourcePair imgpair,
const VkImageLayout &layout) {
if (std::find(pCB->imageSubresourceMap[imgpair.image].begin(), pCB->imageSubresourceMap[imgpair.image].end(), imgpair) !=
pCB->imageSubresourceMap[imgpair.image].end()) {
pCB->imageLayoutMap[imgpair].layout = layout;
} else {
assert(imgpair.hasSubresource);
IMAGE_CMD_BUF_LAYOUT_NODE node;
if (!FindCmdBufLayout(device_data, pCB, imgpair.image, imgpair.subresource, node)) {
node.initialLayout = layout;
}
SetLayout(device_data, pCB, imgpair, {node.initialLayout, layout});
}
}
template <class OBJECT, class LAYOUT>
void SetLayout(core_validation::layer_data *device_data, OBJECT *pObject, VkImage image, VkImageSubresource range,
const LAYOUT &layout) {
ImageSubresourcePair imgpair = {image, true, range};
SetLayout(device_data, pObject, imgpair, layout, VK_IMAGE_ASPECT_COLOR_BIT);
SetLayout(device_data, pObject, imgpair, layout, VK_IMAGE_ASPECT_DEPTH_BIT);
SetLayout(device_data, pObject, imgpair, layout, VK_IMAGE_ASPECT_STENCIL_BIT);
SetLayout(device_data, pObject, imgpair, layout, VK_IMAGE_ASPECT_METADATA_BIT);
}
template <class OBJECT, class LAYOUT>
void SetLayout(core_validation::layer_data *device_data, OBJECT *pObject, ImageSubresourcePair imgpair, const LAYOUT &layout,
VkImageAspectFlags aspectMask) {
if (imgpair.subresource.aspectMask & aspectMask) {
imgpair.subresource.aspectMask = aspectMask;
SetLayout(device_data, pObject, imgpair, layout);
}
}
bool FindLayoutVerifyNode(core_validation::layer_data *device_data, GLOBAL_CB_NODE *pCB, ImageSubresourcePair imgpair,
IMAGE_CMD_BUF_LAYOUT_NODE &node, const VkImageAspectFlags aspectMask) {
const debug_report_data *report_data = core_validation::GetReportData(device_data);
if (!(imgpair.subresource.aspectMask & aspectMask)) {
return false;
}
VkImageAspectFlags oldAspectMask = imgpair.subresource.aspectMask;
imgpair.subresource.aspectMask = aspectMask;
auto imgsubIt = pCB->imageLayoutMap.find(imgpair);
if (imgsubIt == pCB->imageLayoutMap.end()) {
return false;
}
if (node.layout != VK_IMAGE_LAYOUT_MAX_ENUM && node.layout != imgsubIt->second.layout) {
log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT,
reinterpret_cast<uint64_t &>(imgpair.image), __LINE__, DRAWSTATE_INVALID_LAYOUT, "DS",
"Cannot query for VkImage 0x%" PRIx64 " layout when combined aspect mask %d has multiple layout types: %s and %s",
reinterpret_cast<uint64_t &>(imgpair.image), oldAspectMask, string_VkImageLayout(node.layout),
string_VkImageLayout(imgsubIt->second.layout));
}
if (node.initialLayout != VK_IMAGE_LAYOUT_MAX_ENUM && node.initialLayout != imgsubIt->second.initialLayout) {
log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT,
reinterpret_cast<uint64_t &>(imgpair.image), __LINE__, DRAWSTATE_INVALID_LAYOUT, "DS",
"Cannot query for VkImage 0x%" PRIx64
" layout when combined aspect mask %d has multiple initial layout types: %s and %s",
reinterpret_cast<uint64_t &>(imgpair.image), oldAspectMask, string_VkImageLayout(node.initialLayout),
string_VkImageLayout(imgsubIt->second.initialLayout));
}
node = imgsubIt->second;
return true;
}
bool FindLayoutVerifyLayout(core_validation::layer_data *device_data, ImageSubresourcePair imgpair, VkImageLayout &layout,
const VkImageAspectFlags aspectMask) {
if (!(imgpair.subresource.aspectMask & aspectMask)) {
return false;
}
const debug_report_data *report_data = core_validation::GetReportData(device_data);
VkImageAspectFlags oldAspectMask = imgpair.subresource.aspectMask;
imgpair.subresource.aspectMask = aspectMask;
auto imgsubIt = (*core_validation::GetImageLayoutMap(device_data)).find(imgpair);
if (imgsubIt == (*core_validation::GetImageLayoutMap(device_data)).end()) {
return false;
}
if (layout != VK_IMAGE_LAYOUT_MAX_ENUM && layout != imgsubIt->second.layout) {
log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT,
reinterpret_cast<uint64_t &>(imgpair.image), __LINE__, DRAWSTATE_INVALID_LAYOUT, "DS",
"Cannot query for VkImage 0x%" PRIx64 " layout when combined aspect mask %d has multiple layout types: %s and %s",
reinterpret_cast<uint64_t &>(imgpair.image), oldAspectMask, string_VkImageLayout(layout),
string_VkImageLayout(imgsubIt->second.layout));
}
layout = imgsubIt->second.layout;
return true;
}
// Find layout(s) on the command buffer level
bool FindCmdBufLayout(core_validation::layer_data *device_data, GLOBAL_CB_NODE *pCB, VkImage image, VkImageSubresource range,
IMAGE_CMD_BUF_LAYOUT_NODE &node) {
ImageSubresourcePair imgpair = {image, true, range};
node = IMAGE_CMD_BUF_LAYOUT_NODE(VK_IMAGE_LAYOUT_MAX_ENUM, VK_IMAGE_LAYOUT_MAX_ENUM);
FindLayoutVerifyNode(device_data, pCB, imgpair, node, VK_IMAGE_ASPECT_COLOR_BIT);
FindLayoutVerifyNode(device_data, pCB, imgpair, node, VK_IMAGE_ASPECT_DEPTH_BIT);
FindLayoutVerifyNode(device_data, pCB, imgpair, node, VK_IMAGE_ASPECT_STENCIL_BIT);
FindLayoutVerifyNode(device_data, pCB, imgpair, node, VK_IMAGE_ASPECT_METADATA_BIT);
if (node.layout == VK_IMAGE_LAYOUT_MAX_ENUM) {
imgpair = {image, false, VkImageSubresource()};
auto imgsubIt = pCB->imageLayoutMap.find(imgpair);
if (imgsubIt == pCB->imageLayoutMap.end()) return false;
// TODO: This is ostensibly a find function but it changes state here
node = imgsubIt->second;
}
return true;
}
// Find layout(s) on the global level
bool FindGlobalLayout(core_validation::layer_data *device_data, ImageSubresourcePair imgpair, VkImageLayout &layout) {
layout = VK_IMAGE_LAYOUT_MAX_ENUM;
FindLayoutVerifyLayout(device_data, imgpair, layout, VK_IMAGE_ASPECT_COLOR_BIT);
FindLayoutVerifyLayout(device_data, imgpair, layout, VK_IMAGE_ASPECT_DEPTH_BIT);
FindLayoutVerifyLayout(device_data, imgpair, layout, VK_IMAGE_ASPECT_STENCIL_BIT);
FindLayoutVerifyLayout(device_data, imgpair, layout, VK_IMAGE_ASPECT_METADATA_BIT);
if (layout == VK_IMAGE_LAYOUT_MAX_ENUM) {
imgpair = {imgpair.image, false, VkImageSubresource()};
auto imgsubIt = (*core_validation::GetImageLayoutMap(device_data)).find(imgpair);
if (imgsubIt == (*core_validation::GetImageLayoutMap(device_data)).end()) return false;
layout = imgsubIt->second.layout;
}
return true;
}
bool FindLayouts(core_validation::layer_data *device_data, VkImage image, std::vector<VkImageLayout> &layouts) {
auto sub_data = (*core_validation::GetImageSubresourceMap(device_data)).find(image);
if (sub_data == (*core_validation::GetImageSubresourceMap(device_data)).end()) return false;
auto image_state = getImageState(device_data, image);
if (!image_state) return false;
bool ignoreGlobal = false;
// TODO: Make this robust for >1 aspect mask. Now it will just say ignore potential errors in this case.
if (sub_data->second.size() >= (image_state->createInfo.arrayLayers * image_state->createInfo.mipLevels + 1)) {
ignoreGlobal = true;
}
for (auto imgsubpair : sub_data->second) {
if (ignoreGlobal && !imgsubpair.hasSubresource) continue;
auto img_data = (*core_validation::GetImageLayoutMap(device_data)).find(imgsubpair);
if (img_data != (*core_validation::GetImageLayoutMap(device_data)).end()) {
layouts.push_back(img_data->second.layout);
}
}
return true;
}
// Set the layout on the global level
void SetGlobalLayout(core_validation::layer_data *device_data, ImageSubresourcePair imgpair, const VkImageLayout &layout) {
VkImage &image = imgpair.image;
(*core_validation::GetImageLayoutMap(device_data))[imgpair].layout = layout;
auto &image_subresources = (*core_validation::GetImageSubresourceMap(device_data))[image];
auto subresource = std::find(image_subresources.begin(), image_subresources.end(), imgpair);
if (subresource == image_subresources.end()) {
image_subresources.push_back(imgpair);
}
}
// Set the layout on the cmdbuf level
void SetLayout(core_validation::layer_data *device_data, GLOBAL_CB_NODE *pCB, ImageSubresourcePair imgpair,
const IMAGE_CMD_BUF_LAYOUT_NODE &node) {
pCB->imageLayoutMap[imgpair] = node;
auto subresource =
std::find(pCB->imageSubresourceMap[imgpair.image].begin(), pCB->imageSubresourceMap[imgpair.image].end(), imgpair);
if (subresource == pCB->imageSubresourceMap[imgpair.image].end()) {
pCB->imageSubresourceMap[imgpair.image].push_back(imgpair);
}
}
void SetImageViewLayout(core_validation::layer_data *device_data, GLOBAL_CB_NODE *pCB, VkImageView imageView,
const VkImageLayout &layout) {
auto view_state = getImageViewState(device_data, imageView);
assert(view_state);
auto image = view_state->create_info.image;
const VkImageSubresourceRange &subRange = view_state->create_info.subresourceRange;
// TODO: Do not iterate over every possibility - consolidate where possible
for (uint32_t j = 0; j < subRange.levelCount; j++) {
uint32_t level = subRange.baseMipLevel + j;
for (uint32_t k = 0; k < subRange.layerCount; k++) {
uint32_t layer = subRange.baseArrayLayer + k;
VkImageSubresource sub = {subRange.aspectMask, level, layer};
// TODO: If ImageView was created with depth or stencil, transition both layouts as the aspectMask is ignored and both
// are used. Verify that the extra implicit layout is OK for descriptor set layout validation
if (subRange.aspectMask & (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT)) {
if (vk_format_is_depth_and_stencil(view_state->create_info.format)) {
sub.aspectMask |= (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT);
}
}
SetLayout(device_data, pCB, image, sub, layout);
}
}
}
bool VerifyFramebufferAndRenderPassLayouts(core_validation::layer_data *device_data, GLOBAL_CB_NODE *pCB,
const VkRenderPassBeginInfo *pRenderPassBegin,
const FRAMEBUFFER_STATE *framebuffer_state) {
bool skip_call = false;
auto const pRenderPassInfo = getRenderPassState(device_data, pRenderPassBegin->renderPass)->createInfo.ptr();
auto const &framebufferInfo = framebuffer_state->createInfo;
const auto report_data = core_validation::GetReportData(device_data);
if (pRenderPassInfo->attachmentCount != framebufferInfo.attachmentCount) {
skip_call |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, (VkDebugReportObjectTypeEXT)0, 0, __LINE__,
DRAWSTATE_INVALID_RENDERPASS, "DS",
"You cannot start a render pass using a framebuffer "
"with a different number of attachments.");
}
for (uint32_t i = 0; i < pRenderPassInfo->attachmentCount; ++i) {
const VkImageView &image_view = framebufferInfo.pAttachments[i];
auto view_state = getImageViewState(device_data, image_view);
assert(view_state);
const VkImage &image = view_state->create_info.image;
const VkImageSubresourceRange &subRange = view_state->create_info.subresourceRange;
IMAGE_CMD_BUF_LAYOUT_NODE newNode = {pRenderPassInfo->pAttachments[i].initialLayout,
pRenderPassInfo->pAttachments[i].initialLayout};
// TODO: Do not iterate over every possibility - consolidate where possible
for (uint32_t j = 0; j < subRange.levelCount; j++) {
uint32_t level = subRange.baseMipLevel + j;
for (uint32_t k = 0; k < subRange.layerCount; k++) {
uint32_t layer = subRange.baseArrayLayer + k;
VkImageSubresource sub = {subRange.aspectMask, level, layer};
IMAGE_CMD_BUF_LAYOUT_NODE node;
if (!FindCmdBufLayout(device_data, pCB, image, sub, node)) {
SetLayout(device_data, pCB, image, sub, newNode);
continue;
}
if (newNode.layout != VK_IMAGE_LAYOUT_UNDEFINED && newNode.layout != node.layout) {
skip_call |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, (VkDebugReportObjectTypeEXT)0, 0, __LINE__,
DRAWSTATE_INVALID_RENDERPASS, "DS",
"You cannot start a render pass using attachment %u "
"where the render pass initial layout is %s and the previous "
"known layout of the attachment is %s. The layouts must match, or "
"the render pass initial layout for the attachment must be "
"VK_IMAGE_LAYOUT_UNDEFINED",
i, string_VkImageLayout(newNode.layout), string_VkImageLayout(node.layout));
}
}
}
}
return skip_call;
}
void TransitionAttachmentRefLayout(core_validation::layer_data *device_data, GLOBAL_CB_NODE *pCB, FRAMEBUFFER_STATE *pFramebuffer,
VkAttachmentReference ref) {
if (ref.attachment != VK_ATTACHMENT_UNUSED) {
auto image_view = pFramebuffer->createInfo.pAttachments[ref.attachment];
SetImageViewLayout(device_data, pCB, image_view, ref.layout);
}
}
void TransitionSubpassLayouts(core_validation::layer_data *device_data, GLOBAL_CB_NODE *pCB,
const VkRenderPassBeginInfo *pRenderPassBegin, const int subpass_index,
FRAMEBUFFER_STATE *framebuffer_state) {
auto renderPass = getRenderPassState(device_data, pRenderPassBegin->renderPass);
if (!renderPass) return;
if (framebuffer_state) {
auto const &subpass = renderPass->createInfo.pSubpasses[subpass_index];
for (uint32_t j = 0; j < subpass.inputAttachmentCount; ++j) {
TransitionAttachmentRefLayout(device_data, pCB, framebuffer_state, subpass.pInputAttachments[j]);
}
for (uint32_t j = 0; j < subpass.colorAttachmentCount; ++j) {
TransitionAttachmentRefLayout(device_data, pCB, framebuffer_state, subpass.pColorAttachments[j]);
}
if (subpass.pDepthStencilAttachment) {
TransitionAttachmentRefLayout(device_data, pCB, framebuffer_state, *subpass.pDepthStencilAttachment);
}
}
}
bool TransitionImageAspectLayout(core_validation::layer_data *device_data, GLOBAL_CB_NODE *pCB,
const VkImageMemoryBarrier *mem_barrier, uint32_t level, uint32_t layer,
VkImageAspectFlags aspect) {
if (!(mem_barrier->subresourceRange.aspectMask & aspect)) {
return false;
}
VkImageSubresource sub = {aspect, level, layer};
IMAGE_CMD_BUF_LAYOUT_NODE node;
if (!FindCmdBufLayout(device_data, pCB, mem_barrier->image, sub, node)) {
SetLayout(device_data, pCB, mem_barrier->image, sub,
IMAGE_CMD_BUF_LAYOUT_NODE(mem_barrier->oldLayout, mem_barrier->newLayout));
return false;
}
bool skip = false;
if (mem_barrier->oldLayout == VK_IMAGE_LAYOUT_UNDEFINED) {
// TODO: Set memory invalid which is in mem_tracker currently
} else if (node.layout != mem_barrier->oldLayout) {
skip |= log_msg(core_validation::GetReportData(device_data), VK_DEBUG_REPORT_ERROR_BIT_EXT, (VkDebugReportObjectTypeEXT)0,
0, __LINE__, DRAWSTATE_INVALID_IMAGE_LAYOUT, "DS",
"You cannot transition the layout of aspect %d from %s when current layout is %s.", aspect,
string_VkImageLayout(mem_barrier->oldLayout), string_VkImageLayout(node.layout));
}
SetLayout(device_data, pCB, mem_barrier->image, sub, mem_barrier->newLayout);
return skip;
}
// TODO: Separate validation and layout state updates
bool TransitionImageLayouts(core_validation::layer_data *device_data, VkCommandBuffer cmdBuffer, uint32_t memBarrierCount,
const VkImageMemoryBarrier *pImgMemBarriers) {
GLOBAL_CB_NODE *pCB = getCBNode(device_data, cmdBuffer);
bool skip = false;
uint32_t levelCount = 0;
uint32_t layerCount = 0;
for (uint32_t i = 0; i < memBarrierCount; ++i) {
auto mem_barrier = &pImgMemBarriers[i];
if (!mem_barrier) continue;
// TODO: Do not iterate over every possibility - consolidate where possible
ResolveRemainingLevelsLayers(device_data, &levelCount, &layerCount, mem_barrier->subresourceRange,
getImageState(device_data, mem_barrier->image));
for (uint32_t j = 0; j < levelCount; j++) {
uint32_t level = mem_barrier->subresourceRange.baseMipLevel + j;
for (uint32_t k = 0; k < layerCount; k++) {
uint32_t layer = mem_barrier->subresourceRange.baseArrayLayer + k;
skip |= TransitionImageAspectLayout(device_data, pCB, mem_barrier, level, layer, VK_IMAGE_ASPECT_COLOR_BIT);
skip |= TransitionImageAspectLayout(device_data, pCB, mem_barrier, level, layer, VK_IMAGE_ASPECT_DEPTH_BIT);
skip |= TransitionImageAspectLayout(device_data, pCB, mem_barrier, level, layer, VK_IMAGE_ASPECT_STENCIL_BIT);
skip |= TransitionImageAspectLayout(device_data, pCB, mem_barrier, level, layer, VK_IMAGE_ASPECT_METADATA_BIT);
}
}
}
return skip;
}
bool VerifySourceImageLayout(core_validation::layer_data *device_data, GLOBAL_CB_NODE *cb_node, VkImage srcImage,
VkImageSubresourceLayers subLayers, VkImageLayout srcImageLayout,
UNIQUE_VALIDATION_ERROR_CODE msgCode) {
const auto report_data = core_validation::GetReportData(device_data);
bool skip_call = false;
for (uint32_t i = 0; i < subLayers.layerCount; ++i) {
uint32_t layer = i + subLayers.baseArrayLayer;
VkImageSubresource sub = {subLayers.aspectMask, subLayers.mipLevel, layer};
IMAGE_CMD_BUF_LAYOUT_NODE node;
if (!FindCmdBufLayout(device_data, cb_node, srcImage, sub, node)) {
SetLayout(device_data, cb_node, srcImage, sub, IMAGE_CMD_BUF_LAYOUT_NODE(srcImageLayout, srcImageLayout));
continue;
}
if (node.layout != srcImageLayout) {
// TODO: Improve log message in the next pass
skip_call |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT, 0,
__LINE__, DRAWSTATE_INVALID_IMAGE_LAYOUT, "DS",
"Cannot copy from an image whose source layout is %s "
"and doesn't match the current layout %s.",
string_VkImageLayout(srcImageLayout), string_VkImageLayout(node.layout));
}
}
if (srcImageLayout != VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL) {
if (srcImageLayout == VK_IMAGE_LAYOUT_GENERAL) {
// TODO : Can we deal with image node from the top of call tree and avoid map look-up here?
auto image_state = getImageState(device_data, srcImage);
if (image_state->createInfo.tiling != VK_IMAGE_TILING_LINEAR) {
// LAYOUT_GENERAL is allowed, but may not be performance optimal, flag as perf warning.
skip_call |= log_msg(report_data, VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT, (VkDebugReportObjectTypeEXT)0, 0,
__LINE__, DRAWSTATE_INVALID_IMAGE_LAYOUT, "DS",
"Layout for input image should be TRANSFER_SRC_OPTIMAL instead of GENERAL.");
}
} else {
skip_call |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, (VkDebugReportObjectTypeEXT)0, 0, __LINE__, msgCode,
"DS", "Layout for input image is %s but can only be TRANSFER_SRC_OPTIMAL or GENERAL. %s",
string_VkImageLayout(srcImageLayout), validation_error_map[msgCode]);
}
}
return skip_call;
}
bool VerifyDestImageLayout(core_validation::layer_data *device_data, GLOBAL_CB_NODE *cb_node, VkImage destImage,
VkImageSubresourceLayers subLayers, VkImageLayout destImageLayout,
UNIQUE_VALIDATION_ERROR_CODE msgCode) {
const auto report_data = core_validation::GetReportData(device_data);
bool skip_call = false;
for (uint32_t i = 0; i < subLayers.layerCount; ++i) {
uint32_t layer = i + subLayers.baseArrayLayer;
VkImageSubresource sub = {subLayers.aspectMask, subLayers.mipLevel, layer};
IMAGE_CMD_BUF_LAYOUT_NODE node;
if (!FindCmdBufLayout(device_data, cb_node, destImage, sub, node)) {
SetLayout(device_data, cb_node, destImage, sub, IMAGE_CMD_BUF_LAYOUT_NODE(destImageLayout, destImageLayout));
continue;
}
if (node.layout != destImageLayout) {
skip_call |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT, 0,
__LINE__, DRAWSTATE_INVALID_IMAGE_LAYOUT, "DS",
"Cannot copy from an image whose dest layout is %s and "
"doesn't match the current layout %s.",
string_VkImageLayout(destImageLayout), string_VkImageLayout(node.layout));
}
}
if (destImageLayout != VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL) {
if (destImageLayout == VK_IMAGE_LAYOUT_GENERAL) {
auto image_state = getImageState(device_data, destImage);
if (image_state->createInfo.tiling != VK_IMAGE_TILING_LINEAR) {
// LAYOUT_GENERAL is allowed, but may not be performance optimal, flag as perf warning.
skip_call |= log_msg(report_data, VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT, (VkDebugReportObjectTypeEXT)0, 0,
__LINE__, DRAWSTATE_INVALID_IMAGE_LAYOUT, "DS",
"Layout for output image should be TRANSFER_DST_OPTIMAL instead of GENERAL.");
}
} else {
skip_call |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, (VkDebugReportObjectTypeEXT)0, 0, __LINE__, msgCode,
"DS", "Layout for output image is %s but can only be TRANSFER_DST_OPTIMAL or GENERAL. %s",
string_VkImageLayout(destImageLayout), validation_error_map[msgCode]);
}
}
return skip_call;
}
void TransitionFinalSubpassLayouts(core_validation::layer_data *device_data, GLOBAL_CB_NODE *pCB,
const VkRenderPassBeginInfo *pRenderPassBegin, FRAMEBUFFER_STATE *framebuffer_state) {
auto renderPass = getRenderPassState(device_data, pRenderPassBegin->renderPass);
if (!renderPass) return;
const VkRenderPassCreateInfo *pRenderPassInfo = renderPass->createInfo.ptr();
if (framebuffer_state) {
for (uint32_t i = 0; i < pRenderPassInfo->attachmentCount; ++i) {
auto image_view = framebuffer_state->createInfo.pAttachments[i];
SetImageViewLayout(device_data, pCB, image_view, pRenderPassInfo->pAttachments[i].finalLayout);
}
}
}
bool PreCallValidateCreateImage(core_validation::layer_data *device_data, const VkImageCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator, VkImage *pImage) {
bool skip_call = false;
VkImageFormatProperties ImageFormatProperties;
const VkPhysicalDevice physical_device = core_validation::GetPhysicalDevice(device_data);
const debug_report_data *report_data = core_validation::GetReportData(device_data);
if (pCreateInfo->format != VK_FORMAT_UNDEFINED) {
VkFormatProperties properties;
core_validation::GetFormatPropertiesPointer(device_data)(physical_device, pCreateInfo->format, &properties);
if ((pCreateInfo->tiling == VK_IMAGE_TILING_LINEAR) && (properties.linearTilingFeatures == 0)) {
std::stringstream ss;
ss << "vkCreateImage format parameter (" << string_VkFormat(pCreateInfo->format) << ") is an unsupported format";
skip_call |=
log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0, __LINE__,
VALIDATION_ERROR_02150, "IMAGE", "%s. %s", ss.str().c_str(), validation_error_map[VALIDATION_ERROR_02150]);
}
if ((pCreateInfo->tiling == VK_IMAGE_TILING_OPTIMAL) && (properties.optimalTilingFeatures == 0)) {
std::stringstream ss;
ss << "vkCreateImage format parameter (" << string_VkFormat(pCreateInfo->format) << ") is an unsupported format";
skip_call |=
log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0, __LINE__,
VALIDATION_ERROR_02155, "IMAGE", "%s. %s", ss.str().c_str(), validation_error_map[VALIDATION_ERROR_02155]);
}
// Validate that format supports usage as color attachment
if (pCreateInfo->usage & VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT) {
if ((pCreateInfo->tiling == VK_IMAGE_TILING_OPTIMAL) &&
((properties.optimalTilingFeatures & VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT) == 0)) {
std::stringstream ss;
ss << "vkCreateImage: VkFormat for TILING_OPTIMAL image (" << string_VkFormat(pCreateInfo->format)
<< ") does not support requested Image usage type VK_IMAGE_USAGE_COLOR_ATTACHMENT";
skip_call |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0,
__LINE__, VALIDATION_ERROR_02158, "IMAGE", "%s. %s", ss.str().c_str(),
validation_error_map[VALIDATION_ERROR_02158]);
}
if ((pCreateInfo->tiling == VK_IMAGE_TILING_LINEAR) &&
((properties.linearTilingFeatures & VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT) == 0)) {
std::stringstream ss;
ss << "vkCreateImage: VkFormat for TILING_LINEAR image (" << string_VkFormat(pCreateInfo->format)
<< ") does not support requested Image usage type VK_IMAGE_USAGE_COLOR_ATTACHMENT";
skip_call |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0,
__LINE__, VALIDATION_ERROR_02153, "IMAGE", "%s. %s", ss.str().c_str(),
validation_error_map[VALIDATION_ERROR_02153]);
}
}
// Validate that format supports usage as depth/stencil attachment
if (pCreateInfo->usage & VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) {
if ((pCreateInfo->tiling == VK_IMAGE_TILING_OPTIMAL) &&
((properties.optimalTilingFeatures & VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT) == 0)) {
std::stringstream ss;
ss << "vkCreateImage: VkFormat for TILING_OPTIMAL image (" << string_VkFormat(pCreateInfo->format)
<< ") does not support requested Image usage type VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT";
skip_call |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0,
__LINE__, VALIDATION_ERROR_02159, "IMAGE", "%s. %s", ss.str().c_str(),
validation_error_map[VALIDATION_ERROR_02159]);
}
if ((pCreateInfo->tiling == VK_IMAGE_TILING_LINEAR) &&
((properties.linearTilingFeatures & VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT) == 0)) {
std::stringstream ss;
ss << "vkCreateImage: VkFormat for TILING_LINEAR image (" << string_VkFormat(pCreateInfo->format)
<< ") does not support requested Image usage type VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT";
skip_call |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0,
__LINE__, VALIDATION_ERROR_02154, "IMAGE", "%s. %s", ss.str().c_str(),
validation_error_map[VALIDATION_ERROR_02154]);
}
}
} else {
skip_call |=
log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0, __LINE__,
VALIDATION_ERROR_00715, "IMAGE", "vkCreateImage: VkFormat for image must not be VK_FORMAT_UNDEFINED. %s",
validation_error_map[VALIDATION_ERROR_00715]);
}
// Internal call to get format info. Still goes through layers, could potentially go directly to ICD.
core_validation::GetImageFormatPropertiesPointer(device_data)(physical_device, pCreateInfo->format, pCreateInfo->imageType,
pCreateInfo->tiling, pCreateInfo->usage, pCreateInfo->flags,
&ImageFormatProperties);
VkDeviceSize imageGranularity = core_validation::GetPhysicalDeviceProperties(device_data)->limits.bufferImageGranularity;
imageGranularity = imageGranularity == 1 ? 0 : imageGranularity;
if ((pCreateInfo->extent.width <= 0) || (pCreateInfo->extent.height <= 0) || (pCreateInfo->extent.depth <= 0)) {
skip_call |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, 0, __LINE__,
VALIDATION_ERROR_00716, "Image",
"CreateImage extent is 0 for at least one required dimension for image: "
"Width = %d Height = %d Depth = %d. %s",
pCreateInfo->extent.width, pCreateInfo->extent.height, pCreateInfo->extent.depth,
validation_error_map[VALIDATION_ERROR_00716]);
}
// TODO: VALIDATION_ERROR_02125 VALIDATION_ERROR_02126 VALIDATION_ERROR_02128 VALIDATION_ERROR_00720
// All these extent-related VUs should be checked here
if ((pCreateInfo->extent.depth > ImageFormatProperties.maxExtent.depth) ||
(pCreateInfo->extent.width > ImageFormatProperties.maxExtent.width) ||
(pCreateInfo->extent.height > ImageFormatProperties.maxExtent.height)) {
skip_call |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, 0, __LINE__,
IMAGE_INVALID_FORMAT_LIMITS_VIOLATION, "Image",
"CreateImage extents exceed allowable limits for format: "
"Width = %d Height = %d Depth = %d: Limits for Width = %d Height = %d Depth = %d for format %s.",
pCreateInfo->extent.width, pCreateInfo->extent.height, pCreateInfo->extent.depth,
ImageFormatProperties.maxExtent.width, ImageFormatProperties.maxExtent.height,
ImageFormatProperties.maxExtent.depth, string_VkFormat(pCreateInfo->format));
}
uint64_t totalSize = ((uint64_t)pCreateInfo->extent.width * (uint64_t)pCreateInfo->extent.height *
(uint64_t)pCreateInfo->extent.depth * (uint64_t)pCreateInfo->arrayLayers *
(uint64_t)pCreateInfo->samples * (uint64_t)vk_format_get_size(pCreateInfo->format) +
(uint64_t)imageGranularity) &
~(uint64_t)imageGranularity;
if (totalSize > ImageFormatProperties.maxResourceSize) {
skip_call |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, 0, __LINE__,
IMAGE_INVALID_FORMAT_LIMITS_VIOLATION, "Image",
"CreateImage resource size exceeds allowable maximum "
"Image resource size = 0x%" PRIxLEAST64 ", maximum resource size = 0x%" PRIxLEAST64 " ",
totalSize, ImageFormatProperties.maxResourceSize);
}
// TODO: VALIDATION_ERROR_02132
if (pCreateInfo->mipLevels > ImageFormatProperties.maxMipLevels) {
skip_call |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, 0, __LINE__,
IMAGE_INVALID_FORMAT_LIMITS_VIOLATION, "Image",
"CreateImage mipLevels=%d exceeds allowable maximum supported by format of %d", pCreateInfo->mipLevels,
ImageFormatProperties.maxMipLevels);
}
if (pCreateInfo->arrayLayers > ImageFormatProperties.maxArrayLayers) {
skip_call |= log_msg(
report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, 0, __LINE__, VALIDATION_ERROR_02133,
"Image", "CreateImage arrayLayers=%d exceeds allowable maximum supported by format of %d. %s", pCreateInfo->arrayLayers,
ImageFormatProperties.maxArrayLayers, validation_error_map[VALIDATION_ERROR_02133]);
}
if ((pCreateInfo->samples & ImageFormatProperties.sampleCounts) == 0) {
skip_call |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, 0, __LINE__,
VALIDATION_ERROR_02138, "Image", "CreateImage samples %s is not supported by format 0x%.8X. %s",
string_VkSampleCountFlagBits(pCreateInfo->samples), ImageFormatProperties.sampleCounts,
validation_error_map[VALIDATION_ERROR_02138]);
}
if (pCreateInfo->initialLayout != VK_IMAGE_LAYOUT_UNDEFINED && pCreateInfo->initialLayout != VK_IMAGE_LAYOUT_PREINITIALIZED) {
skip_call |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, 0, __LINE__,
VALIDATION_ERROR_00731, "Image",
"vkCreateImage parameter, pCreateInfo->initialLayout, must be VK_IMAGE_LAYOUT_UNDEFINED or "
"VK_IMAGE_LAYOUT_PREINITIALIZED. %s",
validation_error_map[VALIDATION_ERROR_00731]);
}
return skip_call;
}
void PostCallRecordCreateImage(core_validation::layer_data *device_data, const VkImageCreateInfo *pCreateInfo, VkImage *pImage) {
IMAGE_LAYOUT_NODE image_state;
image_state.layout = pCreateInfo->initialLayout;
image_state.format = pCreateInfo->format;
GetImageMap(device_data)->insert(std::make_pair(*pImage, std::unique_ptr<IMAGE_STATE>(new IMAGE_STATE(*pImage, pCreateInfo))));
ImageSubresourcePair subpair{*pImage, false, VkImageSubresource()};
(*core_validation::GetImageSubresourceMap(device_data))[*pImage].push_back(subpair);
(*core_validation::GetImageLayoutMap(device_data))[subpair] = image_state;
}
bool PreCallValidateDestroyImage(core_validation::layer_data *device_data, VkImage image, IMAGE_STATE **image_state,
VK_OBJECT *obj_struct) {
const CHECK_DISABLED *disabled = core_validation::GetDisables(device_data);
*image_state = core_validation::getImageState(device_data, image);
*obj_struct = {reinterpret_cast<uint64_t &>(image), VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT};
if (disabled->destroy_image) return false;
bool skip = false;
if (*image_state) {
skip |= core_validation::ValidateObjectNotInUse(device_data, *image_state, *obj_struct, VALIDATION_ERROR_00743);
}
return skip;
}
void PostCallRecordDestroyImage(core_validation::layer_data *device_data, VkImage image, IMAGE_STATE *image_state,
VK_OBJECT obj_struct) {
core_validation::invalidateCommandBuffers(device_data, image_state->cb_bindings, obj_struct);
// Clean up memory mapping, bindings and range references for image
for (auto mem_binding : image_state->GetBoundMemory()) {
auto mem_info = core_validation::getMemObjInfo(device_data, mem_binding);
if (mem_info) {
core_validation::RemoveImageMemoryRange(obj_struct.handle, mem_info);
}
}
core_validation::ClearMemoryObjectBindings(device_data, obj_struct.handle, VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT);
// Remove image from imageMap
core_validation::GetImageMap(device_data)->erase(image);
std::unordered_map<VkImage, std::vector<ImageSubresourcePair>> *imageSubresourceMap =
core_validation::GetImageSubresourceMap(device_data);
const auto &sub_entry = imageSubresourceMap->find(image);
if (sub_entry != imageSubresourceMap->end()) {
for (const auto &pair : sub_entry->second) {
core_validation::GetImageLayoutMap(device_data)->erase(pair);
}
imageSubresourceMap->erase(sub_entry);
}
}
bool ValidateImageAttributes(core_validation::layer_data *device_data, IMAGE_STATE *image_state, VkImageSubresourceRange range) {
bool skip = false;
const debug_report_data *report_data = core_validation::GetReportData(device_data);
if (range.aspectMask != VK_IMAGE_ASPECT_COLOR_BIT) {
char const str[] = "vkCmdClearColorImage aspectMasks for all subresource ranges must be set to VK_IMAGE_ASPECT_COLOR_BIT";
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT,
reinterpret_cast<uint64_t &>(image_state->image), __LINE__, DRAWSTATE_INVALID_IMAGE_ASPECT, "IMAGE", str);
}
if (vk_format_is_depth_or_stencil(image_state->createInfo.format)) {
char const str[] = "vkCmdClearColorImage called with depth/stencil image.";
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT,
reinterpret_cast<uint64_t &>(image_state->image), __LINE__, VALIDATION_ERROR_01088, "IMAGE", "%s. %s", str,
validation_error_map[VALIDATION_ERROR_01088]);
} else if (vk_format_is_compressed(image_state->createInfo.format)) {
char const str[] = "vkCmdClearColorImage called with compressed image.";
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT,
reinterpret_cast<uint64_t &>(image_state->image), __LINE__, VALIDATION_ERROR_01088, "IMAGE", "%s. %s", str,
validation_error_map[VALIDATION_ERROR_01088]);
}
if (!(image_state->createInfo.usage & VK_IMAGE_USAGE_TRANSFER_DST_BIT)) {
char const str[] = "vkCmdClearColorImage called with image created without VK_IMAGE_USAGE_TRANSFER_DST_BIT.";
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT,
reinterpret_cast<uint64_t &>(image_state->image), __LINE__, VALIDATION_ERROR_01084, "IMAGE", "%s. %s", str,
validation_error_map[VALIDATION_ERROR_01084]);
}
return skip;
}
void ResolveRemainingLevelsLayers(core_validation::layer_data *dev_data, VkImageSubresourceRange *range, IMAGE_STATE *image_state) {
// If the caller used the special values VK_REMAINING_MIP_LEVELS and VK_REMAINING_ARRAY_LAYERS, resolve them now in our
// internal state to the actual values.
if (range->levelCount == VK_REMAINING_MIP_LEVELS) {
range->levelCount = image_state->createInfo.mipLevels - range->baseMipLevel;
}
if (range->layerCount == VK_REMAINING_ARRAY_LAYERS) {
range->layerCount = image_state->createInfo.arrayLayers - range->baseArrayLayer;
}
}
// Return the correct layer/level counts if the caller used the special values VK_REMAINING_MIP_LEVELS or VK_REMAINING_ARRAY_LAYERS.
void ResolveRemainingLevelsLayers(core_validation::layer_data *dev_data, uint32_t *levels, uint32_t *layers,
VkImageSubresourceRange range, IMAGE_STATE *image_state) {
*levels = range.levelCount;
*layers = range.layerCount;
if (range.levelCount == VK_REMAINING_MIP_LEVELS) {
*levels = image_state->createInfo.mipLevels - range.baseMipLevel;
}
if (range.layerCount == VK_REMAINING_ARRAY_LAYERS) {
*layers = image_state->createInfo.arrayLayers - range.baseArrayLayer;
}
}
bool VerifyClearImageLayout(core_validation::layer_data *device_data, GLOBAL_CB_NODE *cb_node, IMAGE_STATE *image_state,
VkImageSubresourceRange range, VkImageLayout dest_image_layout, const char *func_name) {
bool skip = false;
const debug_report_data *report_data = core_validation::GetReportData(device_data);
VkImageSubresourceRange resolved_range = range;
ResolveRemainingLevelsLayers(device_data, &resolved_range, image_state);
if (dest_image_layout != VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL) {
if (dest_image_layout == VK_IMAGE_LAYOUT_GENERAL) {
if (image_state->createInfo.tiling != VK_IMAGE_TILING_LINEAR) {
// LAYOUT_GENERAL is allowed, but may not be performance optimal, flag as perf warning.
skip |= log_msg(report_data, VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT, (VkDebugReportObjectTypeEXT)0, 0,
__LINE__, DRAWSTATE_INVALID_IMAGE_LAYOUT, "DS",
"%s: Layout for cleared image should be TRANSFER_DST_OPTIMAL instead of GENERAL.", func_name);
}
} else {
UNIQUE_VALIDATION_ERROR_CODE error_code = VALIDATION_ERROR_01086;
if (strcmp(func_name, "vkCmdClearDepthStencilImage()") == 0) {
error_code = VALIDATION_ERROR_01101;
} else {
assert(strcmp(func_name, "vkCmdClearColorImage()") == 0);
}
skip |=
log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, (VkDebugReportObjectTypeEXT)0, 0, __LINE__, error_code, "DS",
"%s: Layout for cleared image is %s but can only be "
"TRANSFER_DST_OPTIMAL or GENERAL. %s",
func_name, string_VkImageLayout(dest_image_layout), validation_error_map[error_code]);
}
}
for (uint32_t level_index = 0; level_index < resolved_range.levelCount; ++level_index) {
uint32_t level = level_index + resolved_range.baseMipLevel;
for (uint32_t layer_index = 0; layer_index < resolved_range.layerCount; ++layer_index) {
uint32_t layer = layer_index + resolved_range.baseArrayLayer;
VkImageSubresource sub = {resolved_range.aspectMask, level, layer};
IMAGE_CMD_BUF_LAYOUT_NODE node;
if (FindCmdBufLayout(device_data, cb_node, image_state->image, sub, node)) {
if (node.layout != dest_image_layout) {
UNIQUE_VALIDATION_ERROR_CODE error_code = VALIDATION_ERROR_01085;
if (strcmp(func_name, "vkCmdClearDepthStencilImage()") == 0) {
error_code = VALIDATION_ERROR_01100;
} else {
assert(strcmp(func_name, "vkCmdClearColorImage()") == 0);
}
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT, 0,
__LINE__, error_code, "DS",
"%s: Cannot clear an image whose layout is %s and "
"doesn't match the current layout %s. %s",
func_name, string_VkImageLayout(dest_image_layout), string_VkImageLayout(node.layout),
validation_error_map[error_code]);
}
}
}
}
return skip;
}
void RecordClearImageLayout(core_validation::layer_data *device_data, GLOBAL_CB_NODE *cb_node, VkImage image,
VkImageSubresourceRange range, VkImageLayout dest_image_layout) {
VkImageSubresourceRange resolved_range = range;
ResolveRemainingLevelsLayers(device_data, &resolved_range, getImageState(device_data, image));
for (uint32_t level_index = 0; level_index < resolved_range.levelCount; ++level_index) {
uint32_t level = level_index + resolved_range.baseMipLevel;
for (uint32_t layer_index = 0; layer_index < resolved_range.layerCount; ++layer_index) {
uint32_t layer = layer_index + resolved_range.baseArrayLayer;
VkImageSubresource sub = {resolved_range.aspectMask, level, layer};
IMAGE_CMD_BUF_LAYOUT_NODE node;
if (!FindCmdBufLayout(device_data, cb_node, image, sub, node)) {
SetLayout(device_data, cb_node, image, sub, IMAGE_CMD_BUF_LAYOUT_NODE(dest_image_layout, dest_image_layout));
}
}
}
}
bool PreCallValidateCmdClearColorImage(core_validation::layer_data *dev_data, VkCommandBuffer commandBuffer, VkImage image,
VkImageLayout imageLayout, uint32_t rangeCount, const VkImageSubresourceRange *pRanges) {
bool skip = false;
// TODO : Verify memory is in VK_IMAGE_STATE_CLEAR state
auto cb_node = getCBNode(dev_data, commandBuffer);
auto image_state = getImageState(dev_data, image);
if (cb_node && image_state) {
skip |= ValidateMemoryIsBoundToImage(dev_data, image_state, "vkCmdClearColorImage()", VALIDATION_ERROR_02527);
skip |= ValidateCmd(dev_data, cb_node, CMD_CLEARCOLORIMAGE, "vkCmdClearColorImage()");
skip |= insideRenderPass(dev_data, cb_node, "vkCmdClearColorImage()", VALIDATION_ERROR_01096);
for (uint32_t i = 0; i < rangeCount; ++i) {
skip |= ValidateImageAttributes(dev_data, image_state, pRanges[i]);
skip |= VerifyClearImageLayout(dev_data, cb_node, image_state, pRanges[i], imageLayout, "vkCmdClearColorImage()");
}
}
return skip;
}
// This state recording routine is shared between ClearColorImage and ClearDepthStencilImage
void PreCallRecordCmdClearImage(core_validation::layer_data *dev_data, VkCommandBuffer commandBuffer, VkImage image,
VkImageLayout imageLayout, uint32_t rangeCount, const VkImageSubresourceRange *pRanges,
CMD_TYPE cmd_type) {
auto cb_node = getCBNode(dev_data, commandBuffer);
auto image_state = getImageState(dev_data, image);
if (cb_node && image_state) {
AddCommandBufferBindingImage(dev_data, cb_node, image_state);
std::function<bool()> function = [=]() {
SetImageMemoryValid(dev_data, image_state, true);
return false;
};
cb_node->validate_functions.push_back(function);
UpdateCmdBufferLastCmd(dev_data, cb_node, cmd_type);
for (uint32_t i = 0; i < rangeCount; ++i) {
RecordClearImageLayout(dev_data, cb_node, image, pRanges[i], imageLayout);
}
}
}
bool PreCallValidateCmdClearDepthStencilImage(core_validation::layer_data *device_data, VkCommandBuffer commandBuffer,
VkImage image, VkImageLayout imageLayout, uint32_t rangeCount,
const VkImageSubresourceRange *pRanges) {
bool skip = false;
const debug_report_data *report_data = core_validation::GetReportData(device_data);
// TODO : Verify memory is in VK_IMAGE_STATE_CLEAR state
auto cb_node = getCBNode(device_data, commandBuffer);
auto image_state = getImageState(device_data, image);
if (cb_node && image_state) {
skip |= ValidateMemoryIsBoundToImage(device_data, image_state, "vkCmdClearDepthStencilImage()", VALIDATION_ERROR_02528);
skip |= ValidateCmd(device_data, cb_node, CMD_CLEARDEPTHSTENCILIMAGE, "vkCmdClearDepthStencilImage()");
skip |= insideRenderPass(device_data, cb_node, "vkCmdClearDepthStencilImage()", VALIDATION_ERROR_01111);
for (uint32_t i = 0; i < rangeCount; ++i) {
skip |=
VerifyClearImageLayout(device_data, cb_node, image_state, pRanges[i], imageLayout, "vkCmdClearDepthStencilImage()");
// Image aspect must be depth or stencil or both
if (((pRanges[i].aspectMask & VK_IMAGE_ASPECT_DEPTH_BIT) != VK_IMAGE_ASPECT_DEPTH_BIT) &&
((pRanges[i].aspectMask & VK_IMAGE_ASPECT_STENCIL_BIT) != VK_IMAGE_ASPECT_STENCIL_BIT)) {
char const str[] =
"vkCmdClearDepthStencilImage aspectMasks for all subresource ranges must be "
"set to VK_IMAGE_ASPECT_DEPTH_BIT and/or VK_IMAGE_ASPECT_STENCIL_BIT";
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
(uint64_t)commandBuffer, __LINE__, DRAWSTATE_INVALID_IMAGE_ASPECT, "IMAGE", str);
}
}
if (image_state && !vk_format_is_depth_or_stencil(image_state->createInfo.format)) {
char const str[] = "vkCmdClearDepthStencilImage called without a depth/stencil image.";
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT,
reinterpret_cast<uint64_t &>(image), __LINE__, VALIDATION_ERROR_01103, "IMAGE", "%s. %s", str,
validation_error_map[VALIDATION_ERROR_01103]);
}
}
return skip;
}
// Returns true if [x, xoffset] and [y, yoffset] overlap
static bool RangesIntersect(int32_t start, uint32_t start_offset, int32_t end, uint32_t end_offset) {
bool result = false;
uint32_t intersection_min = std::max(static_cast<uint32_t>(start), static_cast<uint32_t>(end));
uint32_t intersection_max = std::min(static_cast<uint32_t>(start) + start_offset, static_cast<uint32_t>(end) + end_offset);
if (intersection_max > intersection_min) {
result = true;
}
return result;
}
// Returns true if two VkImageCopy structures overlap
static bool RegionIntersects(const VkImageCopy *src, const VkImageCopy *dst, VkImageType type) {
bool result = false;
if ((src->srcSubresource.mipLevel == dst->dstSubresource.mipLevel) &&
(RangesIntersect(src->srcSubresource.baseArrayLayer, src->srcSubresource.layerCount, dst->dstSubresource.baseArrayLayer,
dst->dstSubresource.layerCount))) {
result = true;
switch (type) {
case VK_IMAGE_TYPE_3D:
result &= RangesIntersect(src->srcOffset.z, src->extent.depth, dst->dstOffset.z, dst->extent.depth);
// Intentionally fall through to 2D case
case VK_IMAGE_TYPE_2D:
result &= RangesIntersect(src->srcOffset.y, src->extent.height, dst->dstOffset.y, dst->extent.height);
// Intentionally fall through to 1D case
case VK_IMAGE_TYPE_1D:
result &= RangesIntersect(src->srcOffset.x, src->extent.width, dst->dstOffset.x, dst->extent.width);
break;
default:
// Unrecognized or new IMAGE_TYPE enums will be caught in parameter_validation
assert(false);
}
}
return result;
}
// Returns true if offset and extent exceed image extents
static bool ExceedsBounds(const VkOffset3D *offset, const VkExtent3D *extent, const IMAGE_STATE *image_state) {
bool result = false;
// Extents/depths cannot be negative but checks left in for clarity
switch (image_state->createInfo.imageType) {
case VK_IMAGE_TYPE_3D: // Validate z and depth
if ((offset->z + extent->depth > image_state->createInfo.extent.depth) || (offset->z < 0) ||
((offset->z + static_cast<int32_t>(extent->depth)) < 0)) {
result = true;
}
// Intentionally fall through to 2D case to check height
case VK_IMAGE_TYPE_2D: // Validate y and height
if ((offset->y + extent->height > image_state->createInfo.extent.height) || (offset->y < 0) ||
((offset->y + static_cast<int32_t>(extent->height)) < 0)) {
result = true;
}
// Intentionally fall through to 1D case to check width
case VK_IMAGE_TYPE_1D: // Validate x and width
if ((offset->x + extent->width > image_state->createInfo.extent.width) || (offset->x < 0) ||
((offset->x + static_cast<int32_t>(extent->width)) < 0)) {
result = true;
}
break;
default:
assert(false);
}
return result;
}
bool PreCallValidateCmdCopyImage(core_validation::layer_data *device_data, GLOBAL_CB_NODE *cb_node, IMAGE_STATE *src_image_state,
IMAGE_STATE *dst_image_state, uint32_t region_count, const VkImageCopy *regions) {
bool skip = false;
const debug_report_data *report_data = core_validation::GetReportData(device_data);
VkCommandBuffer command_buffer = cb_node->commandBuffer;
// TODO: This does not cover swapchain-created images. This should fall out when this layer is moved into the core_validation
// layer
if (src_image_state && dst_image_state) {
for (uint32_t i = 0; i < region_count; i++) {
if (regions[i].srcSubresource.layerCount == 0) {
std::stringstream ss;
ss << "vkCmdCopyImage: number of layers in pRegions[" << i << "] srcSubresource is zero";
skip |= log_msg(report_data, VK_DEBUG_REPORT_WARNING_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
reinterpret_cast<uint64_t &>(command_buffer), __LINE__, DRAWSTATE_INVALID_IMAGE_ASPECT, "IMAGE",
"%s", ss.str().c_str());
}
if (regions[i].dstSubresource.layerCount == 0) {
std::stringstream ss;
ss << "vkCmdCopyImage: number of layers in pRegions[" << i << "] dstSubresource is zero";
skip |= log_msg(report_data, VK_DEBUG_REPORT_WARNING_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
reinterpret_cast<uint64_t &>(command_buffer), __LINE__, DRAWSTATE_INVALID_IMAGE_ASPECT, "IMAGE",
"%s", ss.str().c_str());
}
// For each region the layerCount member of srcSubresource and dstSubresource must match
if (regions[i].srcSubresource.layerCount != regions[i].dstSubresource.layerCount) {
std::stringstream ss;
ss << "vkCmdCopyImage: number of layers in source and destination subresources for pRegions[" << i
<< "] do not match";
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
reinterpret_cast<uint64_t &>(command_buffer), __LINE__, VALIDATION_ERROR_01198, "IMAGE", "%s. %s",
ss.str().c_str(), validation_error_map[VALIDATION_ERROR_01198]);
}
// For each region, the aspectMask member of srcSubresource and dstSubresource must match
if (regions[i].srcSubresource.aspectMask != regions[i].dstSubresource.aspectMask) {
char const str[] = "vkCmdCopyImage: Src and dest aspectMasks for each region must match";
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
reinterpret_cast<uint64_t &>(command_buffer), __LINE__, VALIDATION_ERROR_01197, "IMAGE", "%s. %s",
str, validation_error_map[VALIDATION_ERROR_01197]);
}
// AspectMask must not contain VK_IMAGE_ASPECT_METADATA_BIT
if ((regions[i].srcSubresource.aspectMask & VK_IMAGE_ASPECT_METADATA_BIT) ||
(regions[i].dstSubresource.aspectMask & VK_IMAGE_ASPECT_METADATA_BIT)) {
std::stringstream ss;
ss << "vkCmdCopyImage: pRegions[" << i << "] may not specify aspectMask containing VK_IMAGE_ASPECT_METADATA_BIT";
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
reinterpret_cast<uint64_t &>(command_buffer), __LINE__, VALIDATION_ERROR_01222, "IMAGE", "%s. %s",
ss.str().c_str(), validation_error_map[VALIDATION_ERROR_01222]);
}
// For each region, if aspectMask contains VK_IMAGE_ASPECT_COLOR_BIT, it must not contain either of
// VK_IMAGE_ASPECT_DEPTH_BIT or VK_IMAGE_ASPECT_STENCIL_BIT
if ((regions[i].srcSubresource.aspectMask & VK_IMAGE_ASPECT_COLOR_BIT) &&
(regions[i].srcSubresource.aspectMask & (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT))) {
char const str[] = "vkCmdCopyImage aspectMask cannot specify both COLOR and DEPTH/STENCIL aspects";
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
reinterpret_cast<uint64_t &>(command_buffer), __LINE__, VALIDATION_ERROR_01221, "IMAGE", "%s. %s",
str, validation_error_map[VALIDATION_ERROR_01221]);
}
// If either of the calling command's src_image or dst_image parameters are of VkImageType VK_IMAGE_TYPE_3D,
// the baseArrayLayer and layerCount members of both srcSubresource and dstSubresource must be 0 and 1, respectively
if (((src_image_state->createInfo.imageType == VK_IMAGE_TYPE_3D) ||
(dst_image_state->createInfo.imageType == VK_IMAGE_TYPE_3D)) &&
((regions[i].srcSubresource.baseArrayLayer != 0) || (regions[i].srcSubresource.layerCount != 1) ||
(regions[i].dstSubresource.baseArrayLayer != 0) || (regions[i].dstSubresource.layerCount != 1))) {
std::stringstream ss;
ss << "vkCmdCopyImage: src or dstImage type was IMAGE_TYPE_3D, but in subRegion[" << i
<< "] baseArrayLayer was not zero or layerCount was not 1.";
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
reinterpret_cast<uint64_t &>(command_buffer), __LINE__, VALIDATION_ERROR_01199, "IMAGE", "%s. %s",
ss.str().c_str(), validation_error_map[VALIDATION_ERROR_01199]);
}
// MipLevel must be less than the mipLevels specified in VkImageCreateInfo when the image was created
if (regions[i].srcSubresource.mipLevel >= src_image_state->createInfo.mipLevels) {
std::stringstream ss;
ss << "vkCmdCopyImage: pRegions[" << i
<< "] specifies a src mipLevel greater than the number specified when the srcImage was created.";
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
reinterpret_cast<uint64_t &>(command_buffer), __LINE__, VALIDATION_ERROR_01223, "IMAGE", "%s. %s",
ss.str().c_str(), validation_error_map[VALIDATION_ERROR_01223]);
}
if (regions[i].dstSubresource.mipLevel >= dst_image_state->createInfo.mipLevels) {
std::stringstream ss;
ss << "vkCmdCopyImage: pRegions[" << i
<< "] specifies a dst mipLevel greater than the number specified when the dstImage was created.";
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
reinterpret_cast<uint64_t &>(command_buffer), __LINE__, VALIDATION_ERROR_01223, "IMAGE", "%s. %s",
ss.str().c_str(), validation_error_map[VALIDATION_ERROR_01223]);
}
// (baseArrayLayer + layerCount) must be less than or equal to the arrayLayers specified in VkImageCreateInfo when the
// image was created
if ((regions[i].srcSubresource.baseArrayLayer + regions[i].srcSubresource.layerCount) >
src_image_state->createInfo.arrayLayers) {
std::stringstream ss;
ss << "vkCmdCopyImage: srcImage arrayLayers was " << src_image_state->createInfo.arrayLayers << " but subRegion["
<< i << "] baseArrayLayer + layerCount is "
<< (regions[i].srcSubresource.baseArrayLayer + regions[i].srcSubresource.layerCount);
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
reinterpret_cast<uint64_t &>(command_buffer), __LINE__, VALIDATION_ERROR_01224, "IMAGE", "%s. %s",
ss.str().c_str(), validation_error_map[VALIDATION_ERROR_01224]);
}
if ((regions[i].dstSubresource.baseArrayLayer + regions[i].dstSubresource.layerCount) >
dst_image_state->createInfo.arrayLayers) {
std::stringstream ss;
ss << "vkCmdCopyImage: dstImage arrayLayers was " << dst_image_state->createInfo.arrayLayers << " but subRegion["
<< i << "] baseArrayLayer + layerCount is "
<< (regions[i].dstSubresource.baseArrayLayer + regions[i].dstSubresource.layerCount);
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
reinterpret_cast<uint64_t &>(command_buffer), __LINE__, VALIDATION_ERROR_01224, "IMAGE", "%s. %s",
ss.str().c_str(), validation_error_map[VALIDATION_ERROR_01224]);
}
// The source region specified by a given element of regions must be a region that is contained within srcImage
if (ExceedsBounds(&regions[i].srcOffset, &regions[i].extent, src_image_state)) {
std::stringstream ss;
ss << "vkCmdCopyImage: srcSubResource in pRegions[" << i << "] exceeds extents srcImage was created with";
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
reinterpret_cast<uint64_t &>(command_buffer), __LINE__, VALIDATION_ERROR_01175, "IMAGE", "%s. %s",
ss.str().c_str(), validation_error_map[VALIDATION_ERROR_01175]);
}
// The destination region specified by a given element of regions must be a region that is contained within dst_image
if (ExceedsBounds(&regions[i].dstOffset, &regions[i].extent, dst_image_state)) {
std::stringstream ss;
ss << "vkCmdCopyImage: dstSubResource in pRegions[" << i << "] exceeds extents dstImage was created with";
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
reinterpret_cast<uint64_t &>(command_buffer), __LINE__, VALIDATION_ERROR_01176, "IMAGE", "%s. %s",
ss.str().c_str(), validation_error_map[VALIDATION_ERROR_01176]);
}
// The union of all source regions, and the union of all destination regions, specified by the elements of regions,
// must not overlap in memory
if (src_image_state->image == dst_image_state->image) {
for (uint32_t j = 0; j < region_count; j++) {
if (RegionIntersects(&regions[i], &regions[j], src_image_state->createInfo.imageType)) {
std::stringstream ss;
ss << "vkCmdCopyImage: pRegions[" << i << "] src overlaps with pRegions[" << j << "].";
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
reinterpret_cast<uint64_t &>(command_buffer), __LINE__, VALIDATION_ERROR_01177, "IMAGE",
"%s. %s", ss.str().c_str(), validation_error_map[VALIDATION_ERROR_01177]);
}
}
}
}
// The formats of src_image and dst_image must be compatible. Formats are considered compatible if their texel size in bytes
// is the same between both formats. For example, VK_FORMAT_R8G8B8A8_UNORM is compatible with VK_FORMAT_R32_UINT because
// because both texels are 4 bytes in size. Depth/stencil formats must match exactly.
if (vk_format_is_depth_or_stencil(src_image_state->createInfo.format) ||
vk_format_is_depth_or_stencil(dst_image_state->createInfo.format)) {
if (src_image_state->createInfo.format != dst_image_state->createInfo.format) {
char const str[] = "vkCmdCopyImage called with unmatched source and dest image depth/stencil formats.";
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
reinterpret_cast<uint64_t &>(command_buffer), __LINE__, DRAWSTATE_MISMATCHED_IMAGE_FORMAT, "IMAGE",
str);
}
} else {
size_t srcSize = vk_format_get_size(src_image_state->createInfo.format);
size_t destSize = vk_format_get_size(dst_image_state->createInfo.format);
if (srcSize != destSize) {
char const str[] = "vkCmdCopyImage called with unmatched source and dest image format sizes.";
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
reinterpret_cast<uint64_t &>(command_buffer), __LINE__, VALIDATION_ERROR_01184, "IMAGE", "%s. %s",
str, validation_error_map[VALIDATION_ERROR_01184]);
}
}
}
return skip;
}
// TODO : Should be tracking lastBound per commandBuffer and when draws occur, report based on that cmd buffer lastBound
// Then need to synchronize the accesses based on cmd buffer so that if I'm reading state on one cmd buffer, updates
// to that same cmd buffer by separate thread are not changing state from underneath us
// Track the last cmd buffer touched by this thread
static bool hasDrawCmd(GLOBAL_CB_NODE *pCB) {
for (uint32_t i = 0; i < NUM_DRAW_TYPES; i++) {
if (pCB->drawCount[i]) return true;
}
return false;
}
// Returns true if sub_rect is entirely contained within rect
static inline bool ContainsRect(VkRect2D rect, VkRect2D sub_rect) {
if ((sub_rect.offset.x < rect.offset.x) || (sub_rect.offset.x + sub_rect.extent.width > rect.offset.x + rect.extent.width) ||
(sub_rect.offset.y < rect.offset.y) || (sub_rect.offset.y + sub_rect.extent.height > rect.offset.y + rect.extent.height))
return false;
return true;
}
bool PreCallValidateCmdClearAttachments(core_validation::layer_data *device_data, VkCommandBuffer commandBuffer,
uint32_t attachmentCount, const VkClearAttachment *pAttachments, uint32_t rectCount,
const VkClearRect *pRects) {
GLOBAL_CB_NODE *cb_node = getCBNode(device_data, commandBuffer);
const debug_report_data *report_data = core_validation::GetReportData(device_data);
bool skip = false;
if (cb_node) {
skip |= ValidateCmd(device_data, cb_node, CMD_CLEARATTACHMENTS, "vkCmdClearAttachments()");
UpdateCmdBufferLastCmd(device_data, cb_node, CMD_CLEARATTACHMENTS);
// Warn if this is issued prior to Draw Cmd and clearing the entire attachment
if (!hasDrawCmd(cb_node) && (cb_node->activeRenderPassBeginInfo.renderArea.extent.width == pRects[0].rect.extent.width) &&
(cb_node->activeRenderPassBeginInfo.renderArea.extent.height == pRects[0].rect.extent.height)) {
// There are times where app needs to use ClearAttachments (generally when reusing a buffer inside of a render pass)
// Can we make this warning more specific? I'd like to avoid triggering this test if we can tell it's a use that must
// call CmdClearAttachments. Otherwise this seems more like a performance warning.
skip |=
log_msg(report_data, VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
reinterpret_cast<uint64_t &>(commandBuffer), 0, DRAWSTATE_CLEAR_CMD_BEFORE_DRAW, "DS",
"vkCmdClearAttachments() issued on command buffer object 0x%p prior to any Draw Cmds."
" It is recommended you use RenderPass LOAD_OP_CLEAR on Attachments prior to any Draw.",
commandBuffer);
}
skip |= outsideRenderPass(device_data, cb_node, "vkCmdClearAttachments()", VALIDATION_ERROR_01122);
}
// Validate that attachment is in reference list of active subpass
if (cb_node->activeRenderPass) {
const VkRenderPassCreateInfo *renderpass_create_info = cb_node->activeRenderPass->createInfo.ptr();
const VkSubpassDescription *subpass_desc = &renderpass_create_info->pSubpasses[cb_node->activeSubpass];
auto framebuffer = getFramebufferState(device_data, cb_node->activeFramebuffer);
for (uint32_t i = 0; i < attachmentCount; i++) {
auto clear_desc = &pAttachments[i];
VkImageView image_view = VK_NULL_HANDLE;
if (0 == clear_desc->aspectMask) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
(uint64_t)commandBuffer, __LINE__, VALIDATION_ERROR_01128, "IMAGE", "%s",
validation_error_map[VALIDATION_ERROR_01128]);
} else if (clear_desc->aspectMask & VK_IMAGE_ASPECT_METADATA_BIT) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
(uint64_t)commandBuffer, __LINE__, VALIDATION_ERROR_01126, "IMAGE", "%s",
validation_error_map[VALIDATION_ERROR_01126]);
} else if (clear_desc->aspectMask & VK_IMAGE_ASPECT_COLOR_BIT) {
if (clear_desc->colorAttachment >= subpass_desc->colorAttachmentCount) {
skip |=
log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
(uint64_t)commandBuffer, __LINE__, VALIDATION_ERROR_01114, "DS",
"vkCmdClearAttachments() color attachment index %d out of range for active subpass %d. %s",
clear_desc->colorAttachment, cb_node->activeSubpass, validation_error_map[VALIDATION_ERROR_01114]);
} else if (subpass_desc->pColorAttachments[clear_desc->colorAttachment].attachment == VK_ATTACHMENT_UNUSED) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT,
VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT, (uint64_t)commandBuffer, __LINE__,
DRAWSTATE_MISSING_ATTACHMENT_REFERENCE, "DS",
"vkCmdClearAttachments() color attachment index %d is VK_ATTACHMENT_UNUSED; ignored.",
clear_desc->colorAttachment);
} else {
image_view = framebuffer->createInfo
.pAttachments[subpass_desc->pColorAttachments[clear_desc->colorAttachment].attachment];
}
if ((clear_desc->aspectMask & VK_IMAGE_ASPECT_DEPTH_BIT) ||
(clear_desc->aspectMask & VK_IMAGE_ASPECT_STENCIL_BIT)) {
char const str[] =
"vkCmdClearAttachments aspectMask [%d] must set only VK_IMAGE_ASPECT_COLOR_BIT of a color attachment. %s";
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
(uint64_t)commandBuffer, __LINE__, VALIDATION_ERROR_01125, "IMAGE", str, i,
validation_error_map[VALIDATION_ERROR_01125]);
}
} else { // Must be depth and/or stencil
if (((clear_desc->aspectMask & VK_IMAGE_ASPECT_DEPTH_BIT) != VK_IMAGE_ASPECT_DEPTH_BIT) &&
((clear_desc->aspectMask & VK_IMAGE_ASPECT_STENCIL_BIT) != VK_IMAGE_ASPECT_STENCIL_BIT)) {
char const str[] = "vkCmdClearAttachments aspectMask [%d] is not a valid combination of bits. %s";
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
(uint64_t)commandBuffer, __LINE__, VALIDATION_ERROR_01127, "IMAGE", str, i,
validation_error_map[VALIDATION_ERROR_01127]);
}
if (!subpass_desc->pDepthStencilAttachment ||
(subpass_desc->pDepthStencilAttachment->attachment == VK_ATTACHMENT_UNUSED)) {
skip |= log_msg(
report_data, VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
(uint64_t)commandBuffer, __LINE__, DRAWSTATE_MISSING_ATTACHMENT_REFERENCE, "DS",
"vkCmdClearAttachments() depth/stencil clear with no depth/stencil attachment in subpass; ignored");
} else {
image_view = framebuffer->createInfo.pAttachments[subpass_desc->pDepthStencilAttachment->attachment];
}
}
if (image_view) {
auto image_view_state = getImageViewState(device_data, image_view);
for (uint32_t j = 0; j < rectCount; j++) {
// The rectangular region specified by a given element of pRects must be contained within the render area of
// the current render pass instance
if (false == ContainsRect(cb_node->activeRenderPassBeginInfo.renderArea, pRects[j].rect)) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0,
__LINE__, VALIDATION_ERROR_01115, "DS",
"vkCmdClearAttachments(): The area defined by pRects[%d] is not contained in the area of "
"the current render pass instance. %s",
j, validation_error_map[VALIDATION_ERROR_01115]);
}
// The layers specified by a given element of pRects must be contained within every attachment that
// pAttachments refers to
auto attachment_base_array_layer = image_view_state->create_info.subresourceRange.baseArrayLayer;
auto attachment_layer_count = image_view_state->create_info.subresourceRange.layerCount;
if ((pRects[j].baseArrayLayer < attachment_base_array_layer) || pRects[j].layerCount > attachment_layer_count) {
skip |=
log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0,
__LINE__, VALIDATION_ERROR_01116, "DS",
"vkCmdClearAttachments(): The layers defined in pRects[%d] are not contained in the layers of "
"pAttachment[%d]. %s",
j, i, validation_error_map[VALIDATION_ERROR_01116]);
}
}
}
}
}
return skip;
}
bool PreCallValidateCmdResolveImage(core_validation::layer_data *device_data, GLOBAL_CB_NODE *cb_node, IMAGE_STATE *src_image_state,
IMAGE_STATE *dst_image_state, uint32_t regionCount, const VkImageResolve *pRegions) {
const debug_report_data *report_data = core_validation::GetReportData(device_data);
bool skip = false;
if (cb_node && src_image_state && dst_image_state) {
skip |= ValidateMemoryIsBoundToImage(device_data, src_image_state, "vkCmdResolveImage()", VALIDATION_ERROR_02541);
skip |= ValidateMemoryIsBoundToImage(device_data, dst_image_state, "vkCmdResolveImage()", VALIDATION_ERROR_02542);
skip |= ValidateCmd(device_data, cb_node, CMD_RESOLVEIMAGE, "vkCmdResolveImage()");
skip |= insideRenderPass(device_data, cb_node, "vkCmdResolveImage()", VALIDATION_ERROR_01335);
// For each region, the number of layers in the image subresource should not be zero
// For each region, src and dest image aspect must be color only
for (uint32_t i = 0; i < regionCount; i++) {
if (pRegions[i].srcSubresource.layerCount == 0) {
char const str[] = "vkCmdResolveImage: number of layers in source subresource is zero";
skip |= log_msg(report_data, VK_DEBUG_REPORT_WARNING_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
reinterpret_cast<uint64_t>(cb_node->commandBuffer), __LINE__, DRAWSTATE_MISMATCHED_IMAGE_ASPECT,
"IMAGE", str);
}
if (pRegions[i].dstSubresource.layerCount == 0) {
char const str[] = "vkCmdResolveImage: number of layers in destination subresource is zero";
skip |= log_msg(report_data, VK_DEBUG_REPORT_WARNING_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
reinterpret_cast<uint64_t>(cb_node->commandBuffer), __LINE__, DRAWSTATE_MISMATCHED_IMAGE_ASPECT,
"IMAGE", str);
}
if (pRegions[i].srcSubresource.layerCount != pRegions[i].dstSubresource.layerCount) {
skip |= log_msg(
report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
reinterpret_cast<uint64_t>(cb_node->commandBuffer), __LINE__, VALIDATION_ERROR_01339, "IMAGE",
"vkCmdResolveImage: layerCount in source and destination subresource of pRegions[%d] does not match. %s", i,
validation_error_map[VALIDATION_ERROR_01339]);
}
if ((pRegions[i].srcSubresource.aspectMask != VK_IMAGE_ASPECT_COLOR_BIT) ||
(pRegions[i].dstSubresource.aspectMask != VK_IMAGE_ASPECT_COLOR_BIT)) {
char const str[] =
"vkCmdResolveImage: src and dest aspectMasks for each region must specify only VK_IMAGE_ASPECT_COLOR_BIT";
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
reinterpret_cast<uint64_t>(cb_node->commandBuffer), __LINE__, VALIDATION_ERROR_01338, "IMAGE",
"%s. %s", str, validation_error_map[VALIDATION_ERROR_01338]);
}
}
if (src_image_state->createInfo.format != dst_image_state->createInfo.format) {
char const str[] = "vkCmdResolveImage called with unmatched source and dest formats.";
skip |= log_msg(report_data, VK_DEBUG_REPORT_WARNING_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
reinterpret_cast<uint64_t>(cb_node->commandBuffer), __LINE__, DRAWSTATE_MISMATCHED_IMAGE_FORMAT,
"IMAGE", str);
}
if (src_image_state->createInfo.imageType != dst_image_state->createInfo.imageType) {
char const str[] = "vkCmdResolveImage called with unmatched source and dest image types.";
skip |= log_msg(report_data, VK_DEBUG_REPORT_WARNING_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
reinterpret_cast<uint64_t>(cb_node->commandBuffer), __LINE__, DRAWSTATE_MISMATCHED_IMAGE_TYPE, "IMAGE",
str);
}
if (src_image_state->createInfo.samples == VK_SAMPLE_COUNT_1_BIT) {
char const str[] = "vkCmdResolveImage called with source sample count less than 2.";
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
reinterpret_cast<uint64_t>(cb_node->commandBuffer), __LINE__, VALIDATION_ERROR_01320, "IMAGE", "%s. %s",
str, validation_error_map[VALIDATION_ERROR_01320]);
}
if (dst_image_state->createInfo.samples != VK_SAMPLE_COUNT_1_BIT) {
char const str[] = "vkCmdResolveImage called with dest sample count greater than 1.";
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
reinterpret_cast<uint64_t>(cb_node->commandBuffer), __LINE__, VALIDATION_ERROR_01321, "IMAGE", "%s. %s",
str, validation_error_map[VALIDATION_ERROR_01321]);
}
} else {
assert(0);
}
return skip;
}
void PreCallRecordCmdResolveImage(core_validation::layer_data *device_data, GLOBAL_CB_NODE *cb_node, IMAGE_STATE *src_image_state,
IMAGE_STATE *dst_image_state) {
// Update bindings between images and cmd buffer
AddCommandBufferBindingImage(device_data, cb_node, src_image_state);
AddCommandBufferBindingImage(device_data, cb_node, dst_image_state);
std::function<bool()> function = [=]() {
return ValidateImageMemoryIsValid(device_data, src_image_state, "vkCmdResolveImage()");
};
cb_node->validate_functions.push_back(function);
function = [=]() {
SetImageMemoryValid(device_data, dst_image_state, true);
return false;
};
cb_node->validate_functions.push_back(function);
UpdateCmdBufferLastCmd(device_data, cb_node, CMD_RESOLVEIMAGE);
}
bool PreCallValidateCmdBlitImage(core_validation::layer_data *device_data, GLOBAL_CB_NODE *cb_node, IMAGE_STATE *src_image_state,
IMAGE_STATE *dst_image_state, uint32_t regionCount, const VkImageBlit *pRegions, VkFilter filter) {
const debug_report_data *report_data = core_validation::GetReportData(device_data);
bool skip = false;
if (cb_node && src_image_state && dst_image_state) {
skip |= ValidateImageSampleCount(device_data, src_image_state, VK_SAMPLE_COUNT_1_BIT, "vkCmdBlitImage(): srcImage",
VALIDATION_ERROR_02194);
skip |= ValidateImageSampleCount(device_data, dst_image_state, VK_SAMPLE_COUNT_1_BIT, "vkCmdBlitImage(): dstImage",
VALIDATION_ERROR_02195);
skip |= ValidateMemoryIsBoundToImage(device_data, src_image_state, "vkCmdBlitImage()", VALIDATION_ERROR_02539);
skip |= ValidateMemoryIsBoundToImage(device_data, dst_image_state, "vkCmdBlitImage()", VALIDATION_ERROR_02540);
skip |= ValidateImageUsageFlags(device_data, src_image_state, VK_IMAGE_USAGE_TRANSFER_SRC_BIT, true, VALIDATION_ERROR_02182,
"vkCmdBlitImage()", "VK_IMAGE_USAGE_TRANSFER_SRC_BIT");
skip |= ValidateImageUsageFlags(device_data, dst_image_state, VK_IMAGE_USAGE_TRANSFER_DST_BIT, true, VALIDATION_ERROR_02186,
"vkCmdBlitImage()", "VK_IMAGE_USAGE_TRANSFER_DST_BIT");
skip |= ValidateCmd(device_data, cb_node, CMD_BLITIMAGE, "vkCmdBlitImage()");
skip |= insideRenderPass(device_data, cb_node, "vkCmdBlitImage()", VALIDATION_ERROR_01300);
for (uint32_t i = 0; i < regionCount; i++) {
// Warn for zero-sized regions
if ((pRegions[i].srcOffsets[0].x == pRegions[i].srcOffsets[1].x) ||
(pRegions[i].srcOffsets[0].y == pRegions[i].srcOffsets[1].y) ||
(pRegions[i].srcOffsets[0].z == pRegions[i].srcOffsets[1].z)) {
std::stringstream ss;
ss << "vkCmdBlitImage: pRegions[" << i << "].srcOffsets specify a zero-volume area.";
skip |= log_msg(report_data, VK_DEBUG_REPORT_WARNING_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
reinterpret_cast<uint64_t>(cb_node->commandBuffer), __LINE__, DRAWSTATE_INVALID_EXTENTS, "IMAGE",
"%s", ss.str().c_str());
}
if ((pRegions[i].dstOffsets[0].x == pRegions[i].dstOffsets[1].x) ||
(pRegions[i].dstOffsets[0].y == pRegions[i].dstOffsets[1].y) ||
(pRegions[i].dstOffsets[0].z == pRegions[i].dstOffsets[1].z)) {
std::stringstream ss;
ss << "vkCmdBlitImage: pRegions[" << i << "].dstOffsets specify a zero-volume area.";
skip |= log_msg(report_data, VK_DEBUG_REPORT_WARNING_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
reinterpret_cast<uint64_t>(cb_node->commandBuffer), __LINE__, DRAWSTATE_INVALID_EXTENTS, "IMAGE",
"%s", ss.str().c_str());
}
if (pRegions[i].srcSubresource.layerCount == 0) {
char const str[] = "vkCmdBlitImage: number of layers in source subresource is zero";
skip |= log_msg(report_data, VK_DEBUG_REPORT_WARNING_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
reinterpret_cast<uint64_t>(cb_node->commandBuffer), __LINE__, DRAWSTATE_MISMATCHED_IMAGE_ASPECT,
"IMAGE", str);
}
if (pRegions[i].dstSubresource.layerCount == 0) {
char const str[] = "vkCmdBlitImage: number of layers in destination subresource is zero";
skip |= log_msg(report_data, VK_DEBUG_REPORT_WARNING_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
reinterpret_cast<uint64_t>(cb_node->commandBuffer), __LINE__, DRAWSTATE_MISMATCHED_IMAGE_ASPECT,
"IMAGE", str);
}
// Check that src/dst layercounts match
if (pRegions[i].srcSubresource.layerCount != pRegions[i].dstSubresource.layerCount) {
skip |=
log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
reinterpret_cast<uint64_t>(cb_node->commandBuffer), __LINE__, VALIDATION_ERROR_01304, "IMAGE",
"vkCmdBlitImage: layerCount in source and destination subresource of pRegions[%d] does not match. %s",
i, validation_error_map[VALIDATION_ERROR_01304]);
}
if (pRegions[i].srcSubresource.aspectMask != pRegions[i].dstSubresource.aspectMask) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
reinterpret_cast<uint64_t>(cb_node->commandBuffer), __LINE__, VALIDATION_ERROR_01303, "IMAGE",
"vkCmdBlitImage: aspectMask members for pRegion[%d] do not match. %s", i,
validation_error_map[VALIDATION_ERROR_01303]);
}
}
VkFormat src_format = src_image_state->createInfo.format;
VkFormat dst_format = dst_image_state->createInfo.format;
// Validate consistency for unsigned formats
if (vk_format_is_uint(src_format) != vk_format_is_uint(dst_format)) {
std::stringstream ss;
ss << "vkCmdBlitImage: If one of srcImage and dstImage images has unsigned integer format, "
<< "the other one must also have unsigned integer format. "
<< "Source format is " << string_VkFormat(src_format) << " Destination format is " << string_VkFormat(dst_format);
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
reinterpret_cast<uint64_t>(cb_node->commandBuffer), __LINE__, VALIDATION_ERROR_02191, "IMAGE", "%s. %s",
ss.str().c_str(), validation_error_map[VALIDATION_ERROR_02191]);
}
// Validate consistency for signed formats
if (vk_format_is_sint(src_format) != vk_format_is_sint(dst_format)) {
std::stringstream ss;
ss << "vkCmdBlitImage: If one of srcImage and dstImage images has signed integer format, "
<< "the other one must also have signed integer format. "
<< "Source format is " << string_VkFormat(src_format) << " Destination format is " << string_VkFormat(dst_format);
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
reinterpret_cast<uint64_t>(cb_node->commandBuffer), __LINE__, VALIDATION_ERROR_02190, "IMAGE", "%s. %s",
ss.str().c_str(), validation_error_map[VALIDATION_ERROR_02190]);
}
// Validate aspect bits and formats for depth/stencil images
if (vk_format_is_depth_or_stencil(src_format) || vk_format_is_depth_or_stencil(dst_format)) {
if (src_format != dst_format) {
std::stringstream ss;
ss << "vkCmdBlitImage: If one of srcImage and dstImage images has a format of depth, stencil or depth "
<< "stencil, the other one must have exactly the same format. "
<< "Source format is " << string_VkFormat(src_format) << " Destination format is "
<< string_VkFormat(dst_format);
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
reinterpret_cast<uint64_t>(cb_node->commandBuffer), __LINE__, VALIDATION_ERROR_02192, "IMAGE",
"%s. %s", ss.str().c_str(), validation_error_map[VALIDATION_ERROR_02192]);
}
for (uint32_t i = 0; i < regionCount; i++) {
VkImageAspectFlags srcAspect = pRegions[i].srcSubresource.aspectMask;
if (vk_format_is_depth_and_stencil(src_format)) {
if ((srcAspect != VK_IMAGE_ASPECT_DEPTH_BIT) && (srcAspect != VK_IMAGE_ASPECT_STENCIL_BIT)) {
std::stringstream ss;
ss << "vkCmdBlitImage: Combination depth/stencil image formats must have only one of "
"VK_IMAGE_ASPECT_DEPTH_BIT "
<< "and VK_IMAGE_ASPECT_STENCIL_BIT set in srcImage and dstImage";
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
reinterpret_cast<uint64_t>(cb_node->commandBuffer), __LINE__,
DRAWSTATE_INVALID_IMAGE_ASPECT, "IMAGE", "%s", ss.str().c_str());
}
} else if (vk_format_is_stencil_only(src_format)) {
if (srcAspect != VK_IMAGE_ASPECT_STENCIL_BIT) {
std::stringstream ss;
ss << "vkCmdBlitImage: Stencil-only image formats must have only the VK_IMAGE_ASPECT_STENCIL_BIT "
<< "set in both the srcImage and dstImage";
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
reinterpret_cast<uint64_t>(cb_node->commandBuffer), __LINE__,
DRAWSTATE_INVALID_IMAGE_ASPECT, "IMAGE", "%s", ss.str().c_str());
}
} else if (vk_format_is_depth_only(src_format)) {
if (srcAspect != VK_IMAGE_ASPECT_DEPTH_BIT) {
std::stringstream ss;
ss << "vkCmdBlitImage: Depth-only image formats must have only the VK_IMAGE_ASPECT_DEPTH "
<< "set in both the srcImage and dstImage";
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
reinterpret_cast<uint64_t>(cb_node->commandBuffer), __LINE__,
DRAWSTATE_INVALID_IMAGE_ASPECT, "IMAGE", "%s", ss.str().c_str());
}
}
}
}
// Validate filter
if (vk_format_is_depth_or_stencil(src_format) && (filter != VK_FILTER_NEAREST)) {
std::stringstream ss;
ss << "vkCmdBlitImage: If the format of srcImage is a depth, stencil, or depth stencil "
<< "then filter must be VK_FILTER_NEAREST.";
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
reinterpret_cast<uint64_t>(cb_node->commandBuffer), __LINE__, VALIDATION_ERROR_02193, "IMAGE", "%s. %s",
ss.str().c_str(), validation_error_map[VALIDATION_ERROR_02193]);
}
} else {
assert(0);
}
return skip;
}
void PreCallRecordCmdBlitImage(core_validation::layer_data *device_data, GLOBAL_CB_NODE *cb_node, IMAGE_STATE *src_image_state,
IMAGE_STATE *dst_image_state) {
// Update bindings between images and cmd buffer
AddCommandBufferBindingImage(device_data, cb_node, src_image_state);
AddCommandBufferBindingImage(device_data, cb_node, dst_image_state);
std::function<bool()> function = [=]() { return ValidateImageMemoryIsValid(device_data, src_image_state, "vkCmdBlitImage()"); };
cb_node->validate_functions.push_back(function);
function = [=]() {
SetImageMemoryValid(device_data, dst_image_state, true);
return false;
};
cb_node->validate_functions.push_back(function);
UpdateCmdBufferLastCmd(device_data, cb_node, CMD_BLITIMAGE);
}
// This validates that the initial layout specified in the command buffer for the IMAGE is the same as the global IMAGE layout
bool ValidateCmdBufImageLayouts(core_validation::layer_data *device_data, GLOBAL_CB_NODE *pCB) {
const debug_report_data *report_data = core_validation::GetReportData(device_data);
bool skip = false;
for (auto cb_image_data : pCB->imageLayoutMap) {
VkImageLayout imageLayout;
if (!FindGlobalLayout(device_data, cb_image_data.first, imageLayout)) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT, 0, __LINE__,
DRAWSTATE_INVALID_IMAGE_LAYOUT, "DS", "Cannot submit cmd buffer using deleted image 0x%" PRIx64 ".",
reinterpret_cast<const uint64_t &>(cb_image_data.first));
} else {
if (cb_image_data.second.initialLayout == VK_IMAGE_LAYOUT_UNDEFINED) {
// TODO: Set memory invalid which is in mem_tracker currently
} else if (imageLayout != cb_image_data.second.initialLayout) {
if (cb_image_data.first.hasSubresource) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
reinterpret_cast<uint64_t &>(pCB->commandBuffer), __LINE__, DRAWSTATE_INVALID_IMAGE_LAYOUT,
"DS", "Cannot submit cmd buffer using image (0x%" PRIx64
") [sub-resource: aspectMask 0x%X array layer %u, mip level %u], "
"with layout %s when first use is %s.",
reinterpret_cast<const uint64_t &>(cb_image_data.first.image),
cb_image_data.first.subresource.aspectMask, cb_image_data.first.subresource.arrayLayer,
cb_image_data.first.subresource.mipLevel, string_VkImageLayout(imageLayout),
string_VkImageLayout(cb_image_data.second.initialLayout));
} else {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
reinterpret_cast<uint64_t &>(pCB->commandBuffer), __LINE__, DRAWSTATE_INVALID_IMAGE_LAYOUT,
"DS", "Cannot submit cmd buffer using image (0x%" PRIx64
") with layout %s when "
"first use is %s.",
reinterpret_cast<const uint64_t &>(cb_image_data.first.image),
string_VkImageLayout(imageLayout), string_VkImageLayout(cb_image_data.second.initialLayout));
}
}
SetGlobalLayout(device_data, cb_image_data.first, cb_image_data.second.layout);
}
}
return skip;
}
// Print readable FlagBits in FlagMask
static std::string string_VkAccessFlags(VkAccessFlags accessMask) {
std::string result;
std::string separator;
if (accessMask == 0) {
result = "[None]";
} else {
result = "[";
for (auto i = 0; i < 32; i++) {
if (accessMask & (1 << i)) {
result = result + separator + string_VkAccessFlagBits((VkAccessFlagBits)(1 << i));
separator = " | ";
}
}
result = result + "]";
}
return result;
}
// AccessFlags MUST have 'required_bit' set, and may have one or more of 'optional_bits' set. If required_bit is zero, accessMask
// must have at least one of 'optional_bits' set
// TODO: Add tracking to ensure that at least one barrier has been set for these layout transitions
static bool ValidateMaskBits(core_validation::layer_data *device_data, VkCommandBuffer cmdBuffer, const VkAccessFlags &accessMask,
const VkImageLayout &layout, VkAccessFlags required_bit, VkAccessFlags optional_bits,
const char *type) {
const debug_report_data *report_data = core_validation::GetReportData(device_data);
bool skip = false;
if ((accessMask & required_bit) || (!required_bit && (accessMask & optional_bits))) {
if (accessMask & ~(required_bit | optional_bits)) {
// TODO: Verify against Valid Use
skip |= log_msg(report_data, VK_DEBUG_REPORT_WARNING_BIT_EXT, (VkDebugReportObjectTypeEXT)0, 0, __LINE__,
DRAWSTATE_INVALID_BARRIER, "DS",
"Additional bits in %s accessMask 0x%X %s are specified when layout is %s.", type, accessMask,
string_VkAccessFlags(accessMask).c_str(), string_VkImageLayout(layout));
}
} else {
if (!required_bit) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_WARNING_BIT_EXT, (VkDebugReportObjectTypeEXT)0, 0, __LINE__,
DRAWSTATE_INVALID_BARRIER, "DS",
"%s AccessMask %d %s must contain at least one of access bits %d "
"%s when layout is %s, unless the app has previously added a "
"barrier for this transition.",
type, accessMask, string_VkAccessFlags(accessMask).c_str(), optional_bits,
string_VkAccessFlags(optional_bits).c_str(), string_VkImageLayout(layout));
} else {
std::string opt_bits;
if (optional_bits != 0) {
std::stringstream ss;
ss << optional_bits;
opt_bits = "and may have optional bits " + ss.str() + ' ' + string_VkAccessFlags(optional_bits);
}
skip |= log_msg(report_data, VK_DEBUG_REPORT_WARNING_BIT_EXT, (VkDebugReportObjectTypeEXT)0, 0, __LINE__,
DRAWSTATE_INVALID_BARRIER, "DS",
"%s AccessMask %d %s must have required access bit %d %s %s when "
"layout is %s, unless the app has previously added a barrier for "
"this transition.",
type, accessMask, string_VkAccessFlags(accessMask).c_str(), required_bit,
string_VkAccessFlags(required_bit).c_str(), opt_bits.c_str(), string_VkImageLayout(layout));
}
}
return skip;
}
bool ValidateMaskBitsFromLayouts(core_validation::layer_data *device_data, VkCommandBuffer cmdBuffer,
const VkAccessFlags &accessMask, const VkImageLayout &layout, const char *type) {
const debug_report_data *report_data = core_validation::GetReportData(device_data);
bool skip = false;
switch (layout) {
case VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL: {
skip |= ValidateMaskBits(device_data, cmdBuffer, accessMask, layout, VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,
VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_INPUT_ATTACHMENT_READ_BIT, type);
break;
}
case VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL: {
skip |= ValidateMaskBits(device_data, cmdBuffer, accessMask, layout, VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT,
VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT | VK_ACCESS_INPUT_ATTACHMENT_READ_BIT, type);
break;
}
case VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL: {
skip |= ValidateMaskBits(device_data, cmdBuffer, accessMask, layout, VK_ACCESS_TRANSFER_WRITE_BIT, 0, type);
break;
}
case VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL: {
skip |= ValidateMaskBits(
device_data, cmdBuffer, accessMask, layout, 0,
VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT | VK_ACCESS_SHADER_READ_BIT | VK_ACCESS_INPUT_ATTACHMENT_READ_BIT,
type);
break;
}
case VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL: {
skip |= ValidateMaskBits(device_data, cmdBuffer, accessMask, layout, 0,
VK_ACCESS_INPUT_ATTACHMENT_READ_BIT | VK_ACCESS_SHADER_READ_BIT, type);
break;
}
case VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL: {
skip |= ValidateMaskBits(device_data, cmdBuffer, accessMask, layout, VK_ACCESS_TRANSFER_READ_BIT, 0, type);
break;
}
case VK_IMAGE_LAYOUT_PRESENT_SRC_KHR: {
skip |= ValidateMaskBits(device_data, cmdBuffer, accessMask, layout, VK_ACCESS_MEMORY_READ_BIT, 0, type);
break;
}
case VK_IMAGE_LAYOUT_UNDEFINED: {
if (accessMask != 0) {
// TODO: Verify against Valid Use section spec
skip |= log_msg(report_data, VK_DEBUG_REPORT_WARNING_BIT_EXT, (VkDebugReportObjectTypeEXT)0, 0, __LINE__,
DRAWSTATE_INVALID_BARRIER, "DS",
"Additional bits in %s accessMask 0x%X %s are specified when layout is %s.", type, accessMask,
string_VkAccessFlags(accessMask).c_str(), string_VkImageLayout(layout));
}
break;
}
case VK_IMAGE_LAYOUT_GENERAL:
default: { break; }
}
return skip;
}
// ValidateLayoutVsAttachmentDescription is a general function where we can validate various state associated with the
// VkAttachmentDescription structs that are used by the sub-passes of a renderpass. Initial check is to make sure that READ_ONLY
// layout attachments don't have CLEAR as their loadOp.
bool ValidateLayoutVsAttachmentDescription(const debug_report_data *report_data, const VkImageLayout first_layout,
const uint32_t attachment, const VkAttachmentDescription &attachment_description) {
bool skip = false;
// Verify that initial loadOp on READ_ONLY attachments is not CLEAR
if (attachment_description.loadOp == VK_ATTACHMENT_LOAD_OP_CLEAR) {
if ((first_layout == VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL) ||
(first_layout == VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL)) {
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT,
VkDebugReportObjectTypeEXT(0), __LINE__, VALIDATION_ERROR_02351, "DS",
"Cannot clear attachment %d with invalid first layout %s. %s", attachment,
string_VkImageLayout(first_layout), validation_error_map[VALIDATION_ERROR_02351]);
}
}
return skip;
}
bool ValidateLayouts(core_validation::layer_data *device_data, VkDevice device, const VkRenderPassCreateInfo *pCreateInfo) {
const debug_report_data *report_data = core_validation::GetReportData(device_data);
bool skip = false;
// Track when we're observing the first use of an attachment
std::vector<bool> attach_first_use(pCreateInfo->attachmentCount, true);
for (uint32_t i = 0; i < pCreateInfo->subpassCount; ++i) {
const VkSubpassDescription &subpass = pCreateInfo->pSubpasses[i];
for (uint32_t j = 0; j < subpass.colorAttachmentCount; ++j) {
auto attach_index = subpass.pColorAttachments[j].attachment;
if (attach_index == VK_ATTACHMENT_UNUSED) continue;
switch (subpass.pColorAttachments[j].layout) {
case VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL:
// This is ideal.
break;
case VK_IMAGE_LAYOUT_GENERAL:
// May not be optimal; TODO: reconsider this warning based on other constraints?
skip |= log_msg(report_data, VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT,
VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0, __LINE__, DRAWSTATE_INVALID_IMAGE_LAYOUT, "DS",
"Layout for color attachment is GENERAL but should be COLOR_ATTACHMENT_OPTIMAL.");
break;
default:
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0,
__LINE__, DRAWSTATE_INVALID_IMAGE_LAYOUT, "DS",
"Layout for color attachment is %s but can only be COLOR_ATTACHMENT_OPTIMAL or GENERAL.",
string_VkImageLayout(subpass.pColorAttachments[j].layout));
}
if (attach_first_use[attach_index]) {
skip |= ValidateLayoutVsAttachmentDescription(report_data, subpass.pColorAttachments[j].layout, attach_index,
pCreateInfo->pAttachments[attach_index]);
}
attach_first_use[attach_index] = false;
}
if (subpass.pDepthStencilAttachment && subpass.pDepthStencilAttachment->attachment != VK_ATTACHMENT_UNUSED) {
switch (subpass.pDepthStencilAttachment->layout) {
case VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL:
case VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL:
// These are ideal.
break;
case VK_IMAGE_LAYOUT_GENERAL:
// May not be optimal; TODO: reconsider this warning based on other constraints? GENERAL can be better than
// doing a bunch of transitions.
skip |= log_msg(report_data, VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT,
VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0, __LINE__, DRAWSTATE_INVALID_IMAGE_LAYOUT, "DS",
"GENERAL layout for depth attachment may not give optimal performance.");
break;
default:
// No other layouts are acceptable
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0,
__LINE__, DRAWSTATE_INVALID_IMAGE_LAYOUT, "DS",
"Layout for depth attachment is %s but can only be DEPTH_STENCIL_ATTACHMENT_OPTIMAL, "
"DEPTH_STENCIL_READ_ONLY_OPTIMAL or GENERAL.",
string_VkImageLayout(subpass.pDepthStencilAttachment->layout));
}
auto attach_index = subpass.pDepthStencilAttachment->attachment;
if (attach_first_use[attach_index]) {
skip |= ValidateLayoutVsAttachmentDescription(report_data, subpass.pDepthStencilAttachment->layout, attach_index,
pCreateInfo->pAttachments[attach_index]);
}
attach_first_use[attach_index] = false;
}
for (uint32_t j = 0; j < subpass.inputAttachmentCount; ++j) {
auto attach_index = subpass.pInputAttachments[j].attachment;
if (attach_index == VK_ATTACHMENT_UNUSED) continue;
switch (subpass.pInputAttachments[j].layout) {
case VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL:
case VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL:
// These are ideal.
break;
case VK_IMAGE_LAYOUT_GENERAL:
// May not be optimal. TODO: reconsider this warning based on other constraints.
skip |= log_msg(report_data, VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT,
VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0, __LINE__, DRAWSTATE_INVALID_IMAGE_LAYOUT, "DS",
"Layout for input attachment is GENERAL but should be READ_ONLY_OPTIMAL.");
break;
default:
// No other layouts are acceptable
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, (VkDebugReportObjectTypeEXT)0, 0, __LINE__,
DRAWSTATE_INVALID_IMAGE_LAYOUT, "DS",
"Layout for input attachment is %s but can only be READ_ONLY_OPTIMAL or GENERAL.",
string_VkImageLayout(subpass.pInputAttachments[j].layout));
}
if (attach_first_use[attach_index]) {
skip |= ValidateLayoutVsAttachmentDescription(report_data, subpass.pInputAttachments[j].layout, attach_index,
pCreateInfo->pAttachments[attach_index]);
}
attach_first_use[attach_index] = false;
}
}
return skip;
}