blob: 7eab599085f930eb216850c987add8b3277bb8f4 [file] [log] [blame]
// Copyright 2005, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// XGL tests
//
// Copyright (C) 2014 LunarG, Inc.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included
// in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
// THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
// Basic rendering tests
#include <stdlib.h>
#include <stdio.h>
#include <stdbool.h>
#include <string.h>
#include <iostream>
#include <fstream>
using namespace std;
#include <xgl.h>
#include "gtest-1.7.0/include/gtest/gtest.h"
#include "xgldevice.h"
#include "xglimage.h"
#include "icd-bil.h"
#define GLM_FORCE_RADIANS
#include "glm/glm.hpp"
#include <glm/gtc/matrix_transform.hpp>
#include "xglrenderframework.h"
#undef ASSERT_NO_FATAL_FAILURE
#define ASSERT_NO_FATAL_FAILURE(x) x
//--------------------------------------------------------------------------------------
// Mesh and VertexFormat Data
//--------------------------------------------------------------------------------------
struct Vertex
{
XGL_FLOAT posX, posY, posZ, posW; // Position data
XGL_FLOAT r, g, b, a; // Color
};
#define XYZ1(_x_, _y_, _z_) (_x_), (_y_), (_z_), 1.f
static const Vertex g_vbData[] =
{
{ XYZ1( -1, -1, -1 ), XYZ1( 0.f, 0.f, 0.f ) },
{ XYZ1( 1, -1, -1 ), XYZ1( 1.f, 0.f, 0.f ) },
{ XYZ1( -1, 1, -1 ), XYZ1( 0.f, 1.f, 0.f ) },
{ XYZ1( -1, 1, -1 ), XYZ1( 0.f, 1.f, 0.f ) },
{ XYZ1( 1, -1, -1 ), XYZ1( 1.f, 0.f, 0.f ) },
{ XYZ1( 1, 1, -1 ), XYZ1( 1.f, 1.f, 0.f ) },
{ XYZ1( -1, -1, 1 ), XYZ1( 0.f, 0.f, 1.f ) },
{ XYZ1( -1, 1, 1 ), XYZ1( 0.f, 1.f, 1.f ) },
{ XYZ1( 1, -1, 1 ), XYZ1( 1.f, 0.f, 1.f ) },
{ XYZ1( 1, -1, 1 ), XYZ1( 1.f, 0.f, 1.f ) },
{ XYZ1( -1, 1, 1 ), XYZ1( 0.f, 1.f, 1.f ) },
{ XYZ1( 1, 1, 1 ), XYZ1( 1.f, 1.f, 1.f ) },
{ XYZ1( 1, 1, 1 ), XYZ1( 1.f, 1.f, 1.f ) },
{ XYZ1( 1, 1, -1 ), XYZ1( 1.f, 1.f, 0.f ) },
{ XYZ1( 1, -1, 1 ), XYZ1( 1.f, 0.f, 1.f ) },
{ XYZ1( 1, -1, 1 ), XYZ1( 1.f, 0.f, 1.f ) },
{ XYZ1( 1, 1, -1 ), XYZ1( 1.f, 1.f, 0.f ) },
{ XYZ1( 1, -1, -1 ), XYZ1( 1.f, 0.f, 0.f ) },
{ XYZ1( -1, 1, 1 ), XYZ1( 0.f, 1.f, 1.f ) },
{ XYZ1( -1, -1, 1 ), XYZ1( 0.f, 0.f, 1.f ) },
{ XYZ1( -1, 1, -1 ), XYZ1( 0.f, 1.f, 0.f ) },
{ XYZ1( -1, 1, -1 ), XYZ1( 0.f, 1.f, 0.f ) },
{ XYZ1( -1, -1, 1 ), XYZ1( 0.f, 0.f, 1.f ) },
{ XYZ1( -1, -1, -1 ), XYZ1( 0.f, 0.f, 0.f ) },
{ XYZ1( 1, 1, 1 ), XYZ1( 1.f, 1.f, 1.f ) },
{ XYZ1( -1, 1, 1 ), XYZ1( 0.f, 1.f, 1.f ) },
{ XYZ1( 1, 1, -1 ), XYZ1( 1.f, 1.f, 0.f ) },
{ XYZ1( 1, 1, -1 ), XYZ1( 1.f, 1.f, 0.f ) },
{ XYZ1( -1, 1, 1 ), XYZ1( 0.f, 1.f, 1.f ) },
{ XYZ1( -1, 1, -1 ), XYZ1( 0.f, 1.f, 0.f ) },
{ XYZ1( 1, -1, 1 ), XYZ1( 1.f, 0.f, 1.f ) },
{ XYZ1( 1, -1, -1 ), XYZ1( 1.f, 0.f, 0.f ) },
{ XYZ1( -1, -1, 1 ), XYZ1( 0.f, 0.f, 1.f ) },
{ XYZ1( -1, -1, 1 ), XYZ1( 0.f, 0.f, 1.f ) },
{ XYZ1( 1, -1, -1 ), XYZ1( 1.f, 0.f, 0.f ) },
{ XYZ1( -1, -1, -1 ), XYZ1( 0.f, 0.f, 0.f ) },
};
class XglRenderTest : public XglRenderFramework
{
public:
void InitMesh( XGL_UINT32 numVertices, XGL_GPU_SIZE vbStride, const void* vertices );
void InitTexture();
void InitSampler();
void DrawTriangleTest(const char *vertShaderText, const char *fragShaderText);
void DrawTriangleTwoUniformsFS(const char *vertShaderText, const char *fragShaderText);
void DrawTriangleWithVertexFetch(const char *vertShaderText, const char *fragShaderText);
void DrawTriangleVSUniform(const char *vertShaderText, const char *fragShaderText);
void CreatePipelineWithVertexFetch(XGL_PIPELINE* pipeline, XGL_SHADER vs, XGL_SHADER ps);
void CreatePipelineVSUniform(XGL_PIPELINE* pipeline, XGL_SHADER vs, XGL_SHADER ps);
void DrawRotatedTriangleTest();
protected:
XGL_IMAGE m_texture;
XGL_IMAGE_VIEW m_textureView;
XGL_IMAGE_VIEW_ATTACH_INFO m_textureViewInfo;
XGL_GPU_MEMORY m_textureMem;
XGL_SAMPLER m_sampler;
// XGL_APPLICATION_INFO app_info;
// XGL_PHYSICAL_GPU objs[MAX_GPUS];
// XGL_UINT gpu_count;
// XGL_GPU_MEMORY m_descriptor_set_mem;
// XGL_GPU_MEMORY m_pipe_mem;
// XglDevice *m_device;
// XGL_CMD_BUFFER m_cmdBuffer;
// XGL_UINT32 m_numVertices;
// XGL_MEMORY_VIEW_ATTACH_INFO m_vtxBufferView;
// XGL_MEMORY_VIEW_ATTACH_INFO m_constantBufferView;
// XGL_GPU_MEMORY m_vtxBufferMem;
// XGL_GPU_MEMORY m_constantBufferMem;
// XGL_UINT32 m_numMemRefs;
// XGL_MEMORY_REF m_memRefs[5];
// XGL_RASTER_STATE_OBJECT m_stateRaster;
// XGL_COLOR_BLEND_STATE_OBJECT m_colorBlend;
// XGL_VIEWPORT_STATE_OBJECT m_stateViewport;
// XGL_DEPTH_STENCIL_STATE_OBJECT m_stateDepthStencil;
// XGL_MSAA_STATE_OBJECT m_stateMsaa;
// XGL_DESCRIPTOR_SET m_rsrcDescSet;
virtual void SetUp() {
this->app_info.sType = XGL_STRUCTURE_TYPE_APPLICATION_INFO;
this->app_info.pNext = NULL;
this->app_info.pAppName = (const XGL_CHAR *) "render_tests";
this->app_info.appVersion = 1;
this->app_info.pEngineName = (const XGL_CHAR *) "unittest";
this->app_info.engineVersion = 1;
this->app_info.apiVersion = XGL_MAKE_VERSION(0, 22, 0);
memset(&m_textureViewInfo, 0, sizeof(m_textureViewInfo));
m_textureViewInfo.sType = XGL_STRUCTURE_TYPE_IMAGE_VIEW_ATTACH_INFO;
InitFramework();
}
virtual void TearDown() {
// Clean up resources before we reset
ShutdownFramework();
}
};
// this function will create the vertex buffer and fill it with the mesh data
void XglRenderTest::InitMesh( XGL_UINT32 numVertices, XGL_GPU_SIZE vbStride,
const void* vertices )
{
XGL_RESULT err = XGL_SUCCESS;
assert( numVertices * vbStride > 0 );
m_numVertices = numVertices;
XGL_MEMORY_ALLOC_INFO alloc_info = {};
XGL_UINT8 *pData;
alloc_info.sType = XGL_STRUCTURE_TYPE_MEMORY_ALLOC_INFO;
alloc_info.allocationSize = numVertices * vbStride;
alloc_info.alignment = 0;
alloc_info.heapCount = 1;
alloc_info.heaps[0] = 0; // TODO: Use known existing heap
alloc_info.flags = XGL_MEMORY_HEAP_CPU_VISIBLE_BIT;
alloc_info.memPriority = XGL_MEMORY_PRIORITY_NORMAL;
err = xglAllocMemory(device(), &alloc_info, &m_vtxBufferMem);
ASSERT_XGL_SUCCESS(err);
err = xglMapMemory(m_vtxBufferMem, 0, (XGL_VOID **) &pData);
ASSERT_XGL_SUCCESS(err);
memcpy(pData, vertices, alloc_info.allocationSize);
err = xglUnmapMemory(m_vtxBufferMem);
ASSERT_XGL_SUCCESS(err);
// set up the memory view for the vertex buffer
this->m_vtxBufferView.stride = vbStride;
this->m_vtxBufferView.range = numVertices * vbStride;
this->m_vtxBufferView.offset = 0;
this->m_vtxBufferView.mem = m_vtxBufferMem;
this->m_vtxBufferView.format.channelFormat = XGL_CH_FMT_UNDEFINED;
this->m_vtxBufferView.format.numericFormat = XGL_NUM_FMT_UNDEFINED;
// open the command buffer
err = xglBeginCommandBuffer( m_cmdBuffer, 0 );
ASSERT_XGL_SUCCESS(err);
XGL_MEMORY_STATE_TRANSITION transition = {};
transition.mem = m_vtxBufferMem;
transition.oldState = XGL_MEMORY_STATE_DATA_TRANSFER;
transition.newState = XGL_MEMORY_STATE_GRAPHICS_SHADER_READ_ONLY;
transition.offset = 0;
transition.regionSize = numVertices * vbStride;
// write transition to the command buffer
xglCmdPrepareMemoryRegions( m_cmdBuffer, 1, &transition );
this->m_vtxBufferView.state = XGL_MEMORY_STATE_GRAPHICS_SHADER_READ_ONLY;
// finish recording the command buffer
err = xglEndCommandBuffer( m_cmdBuffer );
ASSERT_XGL_SUCCESS(err);
// this command buffer only uses the vertex buffer memory
m_numMemRefs = 1;
m_memRefs[0].flags = 0;
m_memRefs[0].mem = m_vtxBufferMem;
// submit the command buffer to the universal queue
err = xglQueueSubmit( m_device->m_queue, 1, &m_cmdBuffer, m_numMemRefs, m_memRefs, NULL );
ASSERT_XGL_SUCCESS(err);
}
void XglRenderTest::InitTexture()
{
#define DEMO_TEXTURE_COUNT 1
const XGL_FORMAT tex_format = { XGL_CH_FMT_B8G8R8A8, XGL_NUM_FMT_UNORM };
const XGL_INT tex_width = 16;
const XGL_INT tex_height = 16;
const uint32_t tex_colors[DEMO_TEXTURE_COUNT][2] = {
{ 0xffff0000, 0xff00ff00 },
};
XGL_RESULT err;
XGL_UINT i;
for (i = 0; i < DEMO_TEXTURE_COUNT; i++) {
const XGL_SAMPLER_CREATE_INFO sampler = {
.sType = XGL_STRUCTURE_TYPE_SAMPLER_CREATE_INFO,
.pNext = NULL,
.magFilter = XGL_TEX_FILTER_NEAREST,
.minFilter = XGL_TEX_FILTER_NEAREST,
.mipMode = XGL_TEX_MIPMAP_BASE,
.addressU = XGL_TEX_ADDRESS_WRAP,
.addressV = XGL_TEX_ADDRESS_WRAP,
.addressW = XGL_TEX_ADDRESS_WRAP,
.mipLodBias = 0.0f,
.maxAnisotropy = 0,
.compareFunc = XGL_COMPARE_NEVER,
.minLod = 0.0f,
.maxLod = 0.0f,
.borderColorType = XGL_BORDER_COLOR_OPAQUE_WHITE,
};
const XGL_IMAGE_CREATE_INFO image = {
.sType = XGL_STRUCTURE_TYPE_IMAGE_CREATE_INFO,
.pNext = NULL,
.imageType = XGL_IMAGE_2D,
.format = tex_format,
.extent = { tex_width, tex_height, 1 },
.mipLevels = 1,
.arraySize = 1,
.samples = 1,
.tiling = XGL_LINEAR_TILING,
.usage = XGL_IMAGE_USAGE_SHADER_ACCESS_READ_BIT,
.flags = 0,
};
XGL_MEMORY_ALLOC_INFO mem_alloc;
mem_alloc.sType = XGL_STRUCTURE_TYPE_MEMORY_ALLOC_INFO;
mem_alloc.pNext = NULL;
mem_alloc.allocationSize = 0;
mem_alloc.alignment = 0;
mem_alloc.flags = 0;
mem_alloc.heapCount = 0;
mem_alloc.memPriority = XGL_MEMORY_PRIORITY_NORMAL;
XGL_IMAGE_VIEW_CREATE_INFO view;
view.sType = XGL_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
view.pNext = NULL;
view.image = XGL_NULL_HANDLE;
view.viewType = XGL_IMAGE_VIEW_2D;
view.format = image.format;
view.channels.r = XGL_CHANNEL_SWIZZLE_R;
view.channels.g = XGL_CHANNEL_SWIZZLE_G;
view.channels.b = XGL_CHANNEL_SWIZZLE_B;
view.channels.a = XGL_CHANNEL_SWIZZLE_A;
view.subresourceRange.aspect = XGL_IMAGE_ASPECT_COLOR;
view.subresourceRange.baseMipLevel = 0;
view.subresourceRange.mipLevels = 1;
view.subresourceRange.baseArraySlice = 0;
view.subresourceRange.arraySize = 1;
view.minLod = 0.0f;
XGL_MEMORY_REQUIREMENTS mem_reqs;
XGL_SIZE mem_reqs_size;
/* create sampler */
err = xglCreateSampler(device(), &sampler, &m_sampler);
assert(!err);
/* create image */
err = xglCreateImage(device(), &image, &m_texture);
assert(!err);
err = xglGetObjectInfo(m_texture,
XGL_INFO_TYPE_MEMORY_REQUIREMENTS,
&mem_reqs_size, &mem_reqs);
assert(!err && mem_reqs_size == sizeof(mem_reqs));
mem_alloc.allocationSize = mem_reqs.size;
mem_alloc.alignment = mem_reqs.alignment;
mem_alloc.heapCount = mem_reqs.heapCount;
memcpy(mem_alloc.heaps, mem_reqs.heaps,
sizeof(mem_reqs.heaps[0]) * mem_reqs.heapCount);
/* allocate memory */
err = xglAllocMemory(device(), &mem_alloc, &m_textureMem);
assert(!err);
/* bind memory */
err = xglBindObjectMemory(m_texture, m_textureMem, 0);
assert(!err);
/* create image view */
view.image = m_texture;
err = xglCreateImageView(device(), &view, &m_textureView);
assert(!err);
}
for (i = 0; i < DEMO_TEXTURE_COUNT; i++) {
const XGL_IMAGE_SUBRESOURCE subres = {
.aspect = XGL_IMAGE_ASPECT_COLOR,
.mipLevel = 0,
.arraySlice = 0,
};
XGL_SUBRESOURCE_LAYOUT layout;
XGL_SIZE layout_size;
XGL_VOID *data;
XGL_INT x, y;
err = xglGetImageSubresourceInfo(m_texture, &subres,
XGL_INFO_TYPE_SUBRESOURCE_LAYOUT, &layout_size, &layout);
assert(!err && layout_size == sizeof(layout));
err = xglMapMemory(m_textureMem, 0, &data);
assert(!err);
for (y = 0; y < tex_height; y++) {
uint32_t *row = (uint32_t *) ((char *) data + layout.rowPitch * y);
for (x = 0; x < tex_width; x++)
row[x] = tex_colors[i][(x & 1) ^ (y & 1)];
}
err = xglUnmapMemory(m_textureMem);
assert(!err);
}
m_textureViewInfo.view = m_textureView;
}
void XglRenderTest::InitSampler()
{
XGL_RESULT err;
XGL_SAMPLER_CREATE_INFO samplerCreateInfo = {};
samplerCreateInfo.sType = XGL_STRUCTURE_TYPE_SAMPLER_CREATE_INFO;
samplerCreateInfo.magFilter = XGL_TEX_FILTER_NEAREST;
samplerCreateInfo.minFilter = XGL_TEX_FILTER_NEAREST;
samplerCreateInfo.mipMode = XGL_TEX_MIPMAP_BASE;
samplerCreateInfo.addressU = XGL_TEX_ADDRESS_WRAP;
samplerCreateInfo.addressV = XGL_TEX_ADDRESS_WRAP;
samplerCreateInfo.addressW = XGL_TEX_ADDRESS_WRAP;
samplerCreateInfo.mipLodBias = 0.0;
samplerCreateInfo.maxAnisotropy = 0.0;
samplerCreateInfo.compareFunc = XGL_COMPARE_NEVER;
samplerCreateInfo.minLod = 0.0;
samplerCreateInfo.maxLod = 0.0;
samplerCreateInfo.borderColorType = XGL_BORDER_COLOR_OPAQUE_WHITE;
err = xglCreateSampler(device(),&samplerCreateInfo, &m_sampler);
ASSERT_XGL_SUCCESS(err);
}
void XglRenderTest::DrawRotatedTriangleTest()
{
// TODO : This test will pass a matrix into VS to affect triangle orientation.
}
void XglRenderTest::DrawTriangleTest(const char *vertShaderText, const char *fragShaderText)
{
XGL_PIPELINE pipeline;
XGL_SHADER vs, ps;
XGL_RESULT err;
ASSERT_NO_FATAL_FAILURE(InitState());
ASSERT_NO_FATAL_FAILURE(InitViewport());
ASSERT_NO_FATAL_FAILURE(CreateShader(XGL_SHADER_STAGE_VERTEX,
vertShaderText, &vs));
ASSERT_NO_FATAL_FAILURE(CreateShader(XGL_SHADER_STAGE_FRAGMENT,
fragShaderText, &ps));
ASSERT_NO_FATAL_FAILURE(CreateDefaultPipeline(&pipeline, vs, ps));
/*
* Shaders are now part of the pipeline, don't need these anymore
*/
ASSERT_XGL_SUCCESS(xglDestroyObject(ps));
ASSERT_XGL_SUCCESS(xglDestroyObject(vs));
ASSERT_NO_FATAL_FAILURE(InitRenderTarget());
const int constantCount = 4;
const float constants[constantCount] = { 0.5, 0.5, 0.5, 1.0 };
InitConstantBuffer(constantCount, sizeof(constants[0]), (const void*) constants);
// Create descriptor set for a uniform resource
XGL_DESCRIPTOR_SET_CREATE_INFO descriptorInfo = {};
descriptorInfo.sType = XGL_STRUCTURE_TYPE_DESCRIPTOR_SET_CREATE_INFO;
descriptorInfo.slots = 1;
// create a descriptor set with a single slot
err = xglCreateDescriptorSet( device(), &descriptorInfo, &m_rsrcDescSet );
ASSERT_XGL_SUCCESS(err) << "xglCreateDescriptorSet failed";
// bind memory to the descriptor set
err = m_device->AllocAndBindGpuMemory(m_rsrcDescSet, "DescriptorSet", &m_descriptor_set_mem);
// write the constant buffer view to the descriptor set
xglBeginDescriptorSetUpdate( m_rsrcDescSet );
xglAttachMemoryViewDescriptors( m_rsrcDescSet, 0, 1, &m_constantBufferView );
xglEndDescriptorSetUpdate( m_rsrcDescSet );
// Build command buffer
err = xglBeginCommandBuffer(m_cmdBuffer, 0);
ASSERT_XGL_SUCCESS(err);
GenerateClearAndPrepareBufferCmds();
GenerateBindRenderTargetCmd();
GenerateBindStateAndPipelineCmds(&pipeline);
// xglCmdBindDescriptorSet(m_cmdBuffer, XGL_PIPELINE_BIND_POINT_GRAPHICS, 0, m_rsrcDescSet, 0 );
// xglCmdBindDynamicMemoryView( m_cmdBuffer, XGL_PIPELINE_BIND_POINT_GRAPHICS, &m_constantBufferView );
// render the cube
xglCmdDraw( m_cmdBuffer, 0, 3, 0, 1 );
// prepare the back buffer for present
// XGL_IMAGE_STATE_TRANSITION transitionToPresent = {};
// transitionToPresent.image = m_image;
// transitionToPresent.oldState = m_image_state;
// transitionToPresent.newState = m_display.fullscreen ? XGL_WSI_WIN_PRESENT_SOURCE_FLIP : XGL_WSI_WIN_PRESENT_SOURCE_BLT;
// transitionToPresent.subresourceRange = srRange;
// xglCmdPrepareImages( m_cmdBuffer, 1, &transitionToPresent );
// m_image_state = ( XGL_IMAGE_STATE ) transitionToPresent.newState;
// finalize recording of the command buffer
err = xglEndCommandBuffer( m_cmdBuffer );
ASSERT_XGL_SUCCESS( err );
// this command buffer only uses the vertex buffer memory
m_numMemRefs = 0;
// m_memRefs[0].flags = 0;
// m_memRefs[0].mem = m_vtxBufferMemory;
// submit the command buffer to the universal queue
err = xglQueueSubmit( m_device->m_queue, 1, &m_cmdBuffer, m_numMemRefs, m_memRefs, NULL );
ASSERT_XGL_SUCCESS( err );
err = xglQueueWaitIdle( m_device->m_queue );
ASSERT_XGL_SUCCESS( err );
// Wait for work to finish before cleaning up.
xglDeviceWaitIdle(m_device->device());
RecordImage(m_renderTarget);
}
void XglRenderTest::DrawTriangleTwoUniformsFS(const char *vertShaderText, const char *fragShaderText)
{
XGL_PIPELINE pipeline;
XGL_SHADER vs, ps;
XGL_RESULT err;
ASSERT_NO_FATAL_FAILURE(InitState());
ASSERT_NO_FATAL_FAILURE(InitViewport());
ASSERT_NO_FATAL_FAILURE(CreateShader(XGL_SHADER_STAGE_VERTEX,
vertShaderText, &vs));
ASSERT_NO_FATAL_FAILURE(CreateShader(XGL_SHADER_STAGE_FRAGMENT,
fragShaderText, &ps));
ASSERT_NO_FATAL_FAILURE(CreateDefaultPipeline(&pipeline, vs, ps));
/*
* Shaders are now part of the pipeline, don't need these anymore
*/
ASSERT_XGL_SUCCESS(xglDestroyObject(ps));
ASSERT_XGL_SUCCESS(xglDestroyObject(vs));
ASSERT_NO_FATAL_FAILURE(InitRenderTarget());
const int constantCount = 8;
const float constants[constantCount] = { 1.0, 0.0, 0.0, 1.0,
0.0, 0.0, 1.0, 1.0 };
InitConstantBuffer(constantCount, sizeof(constants[0]), (const void*) constants);
// Create descriptor set for a uniform resource
const int slotCount = 1;
XGL_DESCRIPTOR_SET_CREATE_INFO descriptorInfo = {};
descriptorInfo.sType = XGL_STRUCTURE_TYPE_DESCRIPTOR_SET_CREATE_INFO;
descriptorInfo.slots = slotCount;
// create a descriptor set with a single slot
err = xglCreateDescriptorSet( device(), &descriptorInfo, &m_rsrcDescSet );
ASSERT_XGL_SUCCESS(err) << "xglCreateDescriptorSet failed";
// bind memory to the descriptor set
err = m_device->AllocAndBindGpuMemory(m_rsrcDescSet, "DescriptorSet", &m_descriptor_set_mem);
// write the constant buffer view to the descriptor set
xglBeginDescriptorSetUpdate( m_rsrcDescSet );
xglAttachMemoryViewDescriptors( m_rsrcDescSet, 0, 1, &m_constantBufferView );
xglEndDescriptorSetUpdate( m_rsrcDescSet );
// Build command buffer
err = xglBeginCommandBuffer(m_cmdBuffer, 0);
ASSERT_XGL_SUCCESS(err);
GenerateClearAndPrepareBufferCmds();
GenerateBindRenderTargetCmd();
GenerateBindStateAndPipelineCmds(&pipeline);
// xglCmdBindDescriptorSet(m_cmdBuffer, XGL_PIPELINE_BIND_POINT_GRAPHICS, 0, m_rsrcDescSet, 0 );
// xglCmdBindDynamicMemoryView( m_cmdBuffer, XGL_PIPELINE_BIND_POINT_GRAPHICS, &m_constantBufferView );
// render the cube
xglCmdDraw( m_cmdBuffer, 0, 3, 0, 1 );
// prepare the back buffer for present
// XGL_IMAGE_STATE_TRANSITION transitionToPresent = {};
// transitionToPresent.image = m_image;
// transitionToPresent.oldState = m_image_state;
// transitionToPresent.newState = m_display.fullscreen ? XGL_WSI_WIN_PRESENT_SOURCE_FLIP : XGL_WSI_WIN_PRESENT_SOURCE_BLT;
// transitionToPresent.subresourceRange = srRange;
// xglCmdPrepareImages( m_cmdBuffer, 1, &transitionToPresent );
// m_image_state = ( XGL_IMAGE_STATE ) transitionToPresent.newState;
// finalize recording of the command buffer
err = xglEndCommandBuffer( m_cmdBuffer );
ASSERT_XGL_SUCCESS( err );
// this command buffer only uses the vertex buffer memory
m_numMemRefs = 0;
// m_memRefs[0].flags = 0;
// m_memRefs[0].mem = m_vtxBufferMemory;
// submit the command buffer to the universal queue
err = xglQueueSubmit( m_device->m_queue, 1, &m_cmdBuffer, m_numMemRefs, m_memRefs, NULL );
ASSERT_XGL_SUCCESS( err );
err = xglQueueWaitIdle( m_device->m_queue );
ASSERT_XGL_SUCCESS( err );
// Wait for work to finish before cleaning up.
xglDeviceWaitIdle(m_device->device());
RecordImage(m_renderTarget);
}
void XglRenderTest::DrawTriangleVSUniform(const char *vertShaderText, const char *fragShaderText)
{
XGL_PIPELINE pipeline;
XGL_SHADER vs, ps;
XGL_RESULT err;
glm::mat4 MVP;
int i;
// Create identity matrix
glm::mat4 Model = glm::mat4(1.0f);
ASSERT_NO_FATAL_FAILURE(InitState());
ASSERT_NO_FATAL_FAILURE(InitViewport());
ASSERT_NO_FATAL_FAILURE(CreateShader(XGL_SHADER_STAGE_VERTEX,
vertShaderText, &vs));
ASSERT_NO_FATAL_FAILURE(CreateShader(XGL_SHADER_STAGE_FRAGMENT,
fragShaderText, &ps));
ASSERT_NO_FATAL_FAILURE(CreatePipelineVSUniform(&pipeline, vs, ps));
/*
* Shaders are now part of the pipeline, don't need these anymore
*/
ASSERT_XGL_SUCCESS(xglDestroyObject(ps));
ASSERT_XGL_SUCCESS(xglDestroyObject(vs));
ASSERT_NO_FATAL_FAILURE(InitRenderTarget());
const int matrixSize = 16;
MVP = Model;
InitConstantBuffer(matrixSize, sizeof(MVP[0]), (const void*) &MVP[0][0]);
// Create descriptor set for a uniform resource
const int slotCount = 1;
XGL_DESCRIPTOR_SET_CREATE_INFO descriptorInfo = {};
descriptorInfo.sType = XGL_STRUCTURE_TYPE_DESCRIPTOR_SET_CREATE_INFO;
descriptorInfo.slots = slotCount;
// create a descriptor set with a single slot
err = xglCreateDescriptorSet( device(), &descriptorInfo, &m_rsrcDescSet );
ASSERT_XGL_SUCCESS(err) << "xglCreateDescriptorSet failed";
// bind memory to the descriptor set
err = m_device->AllocAndBindGpuMemory(m_rsrcDescSet, "DescriptorSet", &m_descriptor_set_mem);
// write the constant buffer view to the descriptor set
xglBeginDescriptorSetUpdate( m_rsrcDescSet );
xglAttachMemoryViewDescriptors( m_rsrcDescSet, 0, 1, &m_constantBufferView );
xglEndDescriptorSetUpdate( m_rsrcDescSet );
// Build command buffer
err = xglBeginCommandBuffer(m_cmdBuffer, 0);
ASSERT_XGL_SUCCESS(err);
GenerateClearAndPrepareBufferCmds();
GenerateBindRenderTargetCmd();
GenerateBindStateAndPipelineCmds(&pipeline);
// xglCmdBindDescriptorSet(m_cmdBuffer, XGL_PIPELINE_BIND_POINT_GRAPHICS, 0, m_rsrcDescSet, 0 );
// xglCmdBindDynamicMemoryView( m_cmdBuffer, XGL_PIPELINE_BIND_POINT_GRAPHICS, &m_constantBufferView );
// render the cube
xglCmdDraw( m_cmdBuffer, 0, 3, 0, 1 );
// prepare the back buffer for present
// XGL_IMAGE_STATE_TRANSITION transitionToPresent = {};
// transitionToPresent.image = m_image;
// transitionToPresent.oldState = m_image_state;
// transitionToPresent.newState = m_display.fullscreen ? XGL_WSI_WIN_PRESENT_SOURCE_FLIP : XGL_WSI_WIN_PRESENT_SOURCE_BLT;
// transitionToPresent.subresourceRange = srRange;
// xglCmdPrepareImages( m_cmdBuffer, 1, &transitionToPresent );
// m_image_state = ( XGL_IMAGE_STATE ) transitionToPresent.newState;
// finalize recording of the command buffer
err = xglEndCommandBuffer( m_cmdBuffer );
ASSERT_XGL_SUCCESS( err );
// this command buffer only uses the vertex buffer memory
m_numMemRefs = 0;
// m_memRefs[0].flags = 0;
// m_memRefs[0].mem = m_vtxBufferMemory;
// submit the command buffer to the universal queue
err = xglQueueSubmit( m_device->m_queue, 1, &m_cmdBuffer, m_numMemRefs, m_memRefs, NULL );
ASSERT_XGL_SUCCESS( err );
err = xglQueueWaitIdle( m_device->m_queue );
ASSERT_XGL_SUCCESS( err );
// Wait for work to finish before cleaning up.
xglDeviceWaitIdle(m_device->device());
RecordImage(m_renderTarget);
for (i = 0; i < 8; i++) {
XGL_UINT8 *pData;
err = xglMapMemory(m_constantBufferMem, 0, (XGL_VOID **) &pData);
ASSERT_XGL_SUCCESS(err);
MVP = glm::rotate(MVP, glm::radians(22.5f), glm::vec3(0.0f, 1.0f, 0.0f));
memcpy(pData, (const void*) &MVP[0][0], matrixSize);
err = xglUnmapMemory(m_constantBufferMem);
ASSERT_XGL_SUCCESS(err);
// submit the command buffer to the universal queue
err = xglQueueSubmit( m_device->m_queue, 1, &m_cmdBuffer, m_numMemRefs, m_memRefs, NULL );
ASSERT_XGL_SUCCESS( err );
err = xglQueueWaitIdle( m_device->m_queue );
ASSERT_XGL_SUCCESS( err );
// Wait for work to finish before cleaning up.
xglDeviceWaitIdle(m_device->device());
RecordImage(m_renderTarget);
}
}
void XglRenderTest::CreatePipelineWithVertexFetch(XGL_PIPELINE* pipeline, XGL_SHADER vs, XGL_SHADER ps)
{
XGL_RESULT err;
XGL_GRAPHICS_PIPELINE_CREATE_INFO info = {};
XGL_PIPELINE_SHADER_STAGE_CREATE_INFO vs_stage;
XGL_PIPELINE_SHADER_STAGE_CREATE_INFO ps_stage;
// Create descriptor set for our one resource
XGL_DESCRIPTOR_SET_CREATE_INFO descriptorInfo = {};
descriptorInfo.sType = XGL_STRUCTURE_TYPE_DESCRIPTOR_SET_CREATE_INFO;
descriptorInfo.slots = 1; // Vertex buffer only
// create a descriptor set with a single slot
err = xglCreateDescriptorSet( device(), &descriptorInfo, &m_rsrcDescSet );
ASSERT_XGL_SUCCESS(err) << "xglCreateDescriptorSet failed";
// bind memory to the descriptor set
err = m_device->AllocAndBindGpuMemory(m_rsrcDescSet, "DescriptorSet", &m_descriptor_set_mem);
// write the vertex buffer view to the descriptor set
xglBeginDescriptorSetUpdate( m_rsrcDescSet );
xglAttachMemoryViewDescriptors( m_rsrcDescSet, 0, 1, &m_vtxBufferView );
xglEndDescriptorSetUpdate( m_rsrcDescSet );
const int slots = 1;
XGL_DESCRIPTOR_SLOT_INFO *slotInfo = (XGL_DESCRIPTOR_SLOT_INFO*) malloc( slots * sizeof(XGL_DESCRIPTOR_SLOT_INFO) );
slotInfo[0].shaderEntityIndex = 0;
slotInfo[0].slotObjectType = XGL_SLOT_VERTEX_INPUT;
vs_stage.sType = XGL_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
vs_stage.pNext = XGL_NULL_HANDLE;
vs_stage.shader.stage = XGL_SHADER_STAGE_VERTEX;
vs_stage.shader.shader = vs;
vs_stage.shader.descriptorSetMapping[0].pDescriptorInfo = (const XGL_DESCRIPTOR_SLOT_INFO*) slotInfo;
vs_stage.shader.descriptorSetMapping[0].descriptorCount = slots;
vs_stage.shader.linkConstBufferCount = 0;
vs_stage.shader.pLinkConstBufferInfo = XGL_NULL_HANDLE;
vs_stage.shader.dynamicMemoryViewMapping.slotObjectType = XGL_SLOT_UNUSED;
vs_stage.shader.dynamicMemoryViewMapping.shaderEntityIndex = 0;
ps_stage.sType = XGL_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
ps_stage.pNext = &vs_stage;
ps_stage.shader.stage = XGL_SHADER_STAGE_FRAGMENT;
ps_stage.shader.shader = ps;
ps_stage.shader.descriptorSetMapping[0].descriptorCount = 0;
ps_stage.shader.linkConstBufferCount = 0;
ps_stage.shader.pLinkConstBufferInfo = XGL_NULL_HANDLE;
ps_stage.shader.dynamicMemoryViewMapping.slotObjectType = XGL_SLOT_UNUSED;
ps_stage.shader.dynamicMemoryViewMapping.shaderEntityIndex = 0;
XGL_VERTEX_INPUT_BINDING_DESCRIPTION vi_binding = {
sizeof(g_vbData[0]), // strideInBytes; Distance between vertices in bytes (0 = no advancement)
XGL_VERTEX_INPUT_STEP_RATE_VERTEX // stepRate; // Rate at which binding is incremented
};
// this is the current description of g_vbData
XGL_VERTEX_INPUT_ATTRIBUTE_DESCRIPTION vi_attribs[2];
vi_attribs[0].binding = 0; // index into vertexBindingDescriptions
vi_attribs[0].format.channelFormat = XGL_CH_FMT_R32G32B32A32; // format of source data
vi_attribs[0].format.numericFormat = XGL_NUM_FMT_FLOAT;
vi_attribs[0].offsetInBytes = 0; // Offset of first element in bytes from base of vertex
vi_attribs[1].binding = 0; // index into vertexBindingDescriptions
vi_attribs[1].format.channelFormat = XGL_CH_FMT_R32G32B32A32; // format of source data
vi_attribs[1].format.numericFormat = XGL_NUM_FMT_FLOAT;
vi_attribs[1].offsetInBytes = 16; // Offset of first element in bytes from base of vertex
XGL_PIPELINE_VERTEX_INPUT_CREATE_INFO vi_state = {
XGL_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_CREATE_INFO, // sType;
&ps_stage, // pNext;
1, // bindingCount
&vi_binding, // pVertexBindingDescriptions;
2, // attributeCount; // number of attributes
vi_attribs // pVertexAttributeDescriptions;
};
XGL_PIPELINE_IA_STATE_CREATE_INFO ia_state = {
XGL_STRUCTURE_TYPE_PIPELINE_IA_STATE_CREATE_INFO, // sType
&vi_state, // pNext
XGL_TOPOLOGY_TRIANGLE_LIST, // XGL_PRIMITIVE_TOPOLOGY
XGL_FALSE, // disableVertexReuse
XGL_PROVOKING_VERTEX_LAST, // XGL_PROVOKING_VERTEX_CONVENTION
XGL_FALSE, // primitiveRestartEnable
0 // primitiveRestartIndex
};
XGL_PIPELINE_RS_STATE_CREATE_INFO rs_state = {
XGL_STRUCTURE_TYPE_PIPELINE_RS_STATE_CREATE_INFO,
&ia_state,
XGL_FALSE, // depthClipEnable
XGL_FALSE, // rasterizerDiscardEnable
1.0 // pointSize
};
XGL_PIPELINE_CB_STATE cb_state = {
XGL_STRUCTURE_TYPE_PIPELINE_CB_STATE_CREATE_INFO,
&rs_state,
XGL_FALSE, // alphaToCoverageEnable
XGL_FALSE, // dualSourceBlendEnable
XGL_LOGIC_OP_COPY, // XGL_LOGIC_OP
{ // XGL_PIPELINE_CB_ATTACHMENT_STATE
{
XGL_FALSE, // blendEnable
m_render_target_fmt, // XGL_FORMAT
0xF // channelWriteMask
}
}
};
// TODO: Should take depth buffer format from queried formats
XGL_PIPELINE_DB_STATE_CREATE_INFO db_state = {
XGL_STRUCTURE_TYPE_PIPELINE_DB_STATE_CREATE_INFO,
&cb_state,
{XGL_CH_FMT_R32, XGL_NUM_FMT_DS} // XGL_FORMAT
};
info.sType = XGL_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO;
info.pNext = &db_state;
info.flags = 0;
err = xglCreateGraphicsPipeline(device(), &info, pipeline);
ASSERT_XGL_SUCCESS(err);
err = m_device->AllocAndBindGpuMemory(*pipeline, "Pipeline", &m_pipe_mem);
ASSERT_XGL_SUCCESS(err);
}
void XglRenderTest::CreatePipelineVSUniform(XGL_PIPELINE* pipeline, XGL_SHADER vs, XGL_SHADER ps)
{
XGL_RESULT err;
XGL_GRAPHICS_PIPELINE_CREATE_INFO info = {};
XGL_PIPELINE_SHADER_STAGE_CREATE_INFO vs_stage;
XGL_PIPELINE_SHADER_STAGE_CREATE_INFO ps_stage;
const int vsSlots = 1; // Uniform buffer only
// Create descriptor set for our one resource
XGL_DESCRIPTOR_SET_CREATE_INFO descriptorInfo = {};
descriptorInfo.sType = XGL_STRUCTURE_TYPE_DESCRIPTOR_SET_CREATE_INFO;
descriptorInfo.slots = vsSlots;
// create a descriptor set with a single slot
err = xglCreateDescriptorSet( device(), &descriptorInfo, &m_rsrcDescSet );
ASSERT_XGL_SUCCESS(err) << "xglCreateDescriptorSet failed";
// bind memory to the descriptor set
err = m_device->AllocAndBindGpuMemory(m_rsrcDescSet, "DescriptorSet", &m_descriptor_set_mem);
XGL_DESCRIPTOR_SLOT_INFO *slotInfo = (XGL_DESCRIPTOR_SLOT_INFO*) malloc( vsSlots * sizeof(XGL_DESCRIPTOR_SLOT_INFO) );
slotInfo[0].shaderEntityIndex = 0;
slotInfo[0].slotObjectType = XGL_SLOT_SHADER_RESOURCE;
vs_stage.sType = XGL_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
vs_stage.pNext = XGL_NULL_HANDLE;
vs_stage.shader.stage = XGL_SHADER_STAGE_VERTEX;
vs_stage.shader.shader = vs;
vs_stage.shader.descriptorSetMapping[0].pDescriptorInfo = (const XGL_DESCRIPTOR_SLOT_INFO*) slotInfo;
vs_stage.shader.descriptorSetMapping[0].descriptorCount = vsSlots;
vs_stage.shader.linkConstBufferCount = 0;
vs_stage.shader.pLinkConstBufferInfo = XGL_NULL_HANDLE;
vs_stage.shader.dynamicMemoryViewMapping.slotObjectType = XGL_SLOT_UNUSED;
vs_stage.shader.dynamicMemoryViewMapping.shaderEntityIndex = 0;
ps_stage.sType = XGL_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
ps_stage.pNext = &vs_stage;
ps_stage.shader.stage = XGL_SHADER_STAGE_FRAGMENT;
ps_stage.shader.shader = ps;
ps_stage.shader.descriptorSetMapping[0].descriptorCount = 0;
ps_stage.shader.linkConstBufferCount = 0;
ps_stage.shader.pLinkConstBufferInfo = XGL_NULL_HANDLE;
ps_stage.shader.dynamicMemoryViewMapping.slotObjectType = XGL_SLOT_UNUSED;
ps_stage.shader.dynamicMemoryViewMapping.shaderEntityIndex = 0;
XGL_PIPELINE_IA_STATE_CREATE_INFO ia_state = {
XGL_STRUCTURE_TYPE_PIPELINE_IA_STATE_CREATE_INFO, // sType
&ps_stage, // pNext
XGL_TOPOLOGY_TRIANGLE_LIST, // XGL_PRIMITIVE_TOPOLOGY
XGL_FALSE, // disableVertexReuse
XGL_PROVOKING_VERTEX_LAST, // XGL_PROVOKING_VERTEX_CONVENTION
XGL_FALSE, // primitiveRestartEnable
0 // primitiveRestartIndex
};
XGL_PIPELINE_RS_STATE_CREATE_INFO rs_state = {
XGL_STRUCTURE_TYPE_PIPELINE_RS_STATE_CREATE_INFO,
&ia_state,
XGL_FALSE, // depthClipEnable
XGL_FALSE, // rasterizerDiscardEnable
1.0 // pointSize
};
XGL_PIPELINE_CB_STATE cb_state = {
XGL_STRUCTURE_TYPE_PIPELINE_CB_STATE_CREATE_INFO,
&rs_state,
XGL_FALSE, // alphaToCoverageEnable
XGL_FALSE, // dualSourceBlendEnable
XGL_LOGIC_OP_COPY, // XGL_LOGIC_OP
{ // XGL_PIPELINE_CB_ATTACHMENT_STATE
{
XGL_FALSE, // blendEnable
m_render_target_fmt, // XGL_FORMAT
0xF // channelWriteMask
}
}
};
// TODO: Should take depth buffer format from queried formats
XGL_PIPELINE_DB_STATE_CREATE_INFO db_state = {
XGL_STRUCTURE_TYPE_PIPELINE_DB_STATE_CREATE_INFO,
&cb_state,
{XGL_CH_FMT_R32, XGL_NUM_FMT_DS} // XGL_FORMAT
};
info.sType = XGL_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO;
info.pNext = &db_state;
info.flags = 0;
err = xglCreateGraphicsPipeline(device(), &info, pipeline);
ASSERT_XGL_SUCCESS(err);
err = m_device->AllocAndBindGpuMemory(*pipeline, "Pipeline", &m_pipe_mem);
ASSERT_XGL_SUCCESS(err);
}
void XglRenderTest::DrawTriangleWithVertexFetch(const char *vertShaderText, const char *fragShaderText)
{
XGL_PIPELINE pipeline;
XGL_SHADER vs, ps;
XGL_RESULT err;
ASSERT_NO_FATAL_FAILURE(InitState());
ASSERT_NO_FATAL_FAILURE(InitViewport());
ASSERT_NO_FATAL_FAILURE(InitMesh(sizeof(g_vbData)/sizeof(g_vbData[0]), sizeof(g_vbData[0]), g_vbData));
ASSERT_NO_FATAL_FAILURE(CreateShader(XGL_SHADER_STAGE_VERTEX,
vertShaderText, &vs));
ASSERT_NO_FATAL_FAILURE(CreateShader(XGL_SHADER_STAGE_FRAGMENT,
fragShaderText, &ps));
ASSERT_NO_FATAL_FAILURE(CreatePipelineWithVertexFetch(&pipeline, vs, ps));
/*
* Shaders are now part of the pipeline, don't need these anymore
*/
ASSERT_XGL_SUCCESS(xglDestroyObject(ps));
ASSERT_XGL_SUCCESS(xglDestroyObject(vs));
ASSERT_NO_FATAL_FAILURE(InitRenderTarget());
// Build command buffer
err = xglBeginCommandBuffer(m_cmdBuffer, 0);
ASSERT_XGL_SUCCESS(err);
GenerateClearAndPrepareBufferCmds();
GenerateBindRenderTargetCmd();
GenerateBindStateAndPipelineCmds(&pipeline);
// xglCmdBindDescriptorSet(m_cmdBuffer, XGL_PIPELINE_BIND_POINT_GRAPHICS, 0, m_rsrcDescSet, 0 );
// xglCmdBindDynamicMemoryView( m_cmdBuffer, XGL_PIPELINE_BIND_POINT_GRAPHICS, &m_constantBufferView );
// render the cube
xglCmdDraw( m_cmdBuffer, 0, 6, 0, 1 );
// prepare the back buffer for present
// XGL_IMAGE_STATE_TRANSITION transitionToPresent = {};
// transitionToPresent.image = m_image;
// transitionToPresent.oldState = m_image_state;
// transitionToPresent.newState = m_display.fullscreen ? XGL_WSI_WIN_PRESENT_SOURCE_FLIP : XGL_WSI_WIN_PRESENT_SOURCE_BLT;
// transitionToPresent.subresourceRange = srRange;
// xglCmdPrepareImages( m_cmdBuffer, 1, &transitionToPresent );
// m_image_state = ( XGL_IMAGE_STATE ) transitionToPresent.newState;
// finalize recording of the command buffer
err = xglEndCommandBuffer( m_cmdBuffer );
ASSERT_XGL_SUCCESS( err );
// this command buffer only uses the vertex buffer memory
m_numMemRefs = 0;
// m_memRefs[0].flags = 0;
// m_memRefs[0].mem = m_vtxBufferMemory;
// submit the command buffer to the universal queue
err = xglQueueSubmit( m_device->m_queue, 1, &m_cmdBuffer, m_numMemRefs, m_memRefs, NULL );
ASSERT_XGL_SUCCESS( err );
err = xglQueueWaitIdle( m_device->m_queue );
ASSERT_XGL_SUCCESS( err );
// Wait for work to finish before cleaning up.
xglDeviceWaitIdle(m_device->device());
RecordImage(m_renderTarget);
}
TEST_F(XglRenderTest, GreenTriangle)
{
static const char *vertShaderText =
"#version 130\n"
"vec2 vertices[3];\n"
"void main() {\n"
" vertices[0] = vec2(-1.0, -1.0);\n"
" vertices[1] = vec2( 1.0, -1.0);\n"
" vertices[2] = vec2( 0.0, 1.0);\n"
" gl_Position = vec4(vertices[gl_VertexID % 3], 0.0, 1.0);\n"
"}\n";
static const char *fragShaderText =
"#version 130\n"
"void main() {\n"
" gl_FragColor = vec4(0,1,0,1);\n"
"}\n";
DrawTriangleTest(vertShaderText, fragShaderText);
}
TEST_F(XglRenderTest, BIL_GreenTriangle)
{
bool saved_use_bil = XglTestFramework::m_use_bil;
static const char *vertShaderText =
"#version 130\n"
"vec2 vertices[3];\n"
"void main() {\n"
" vertices[0] = vec2(-1.0, -1.0);\n"
" vertices[1] = vec2( 1.0, -1.0);\n"
" vertices[2] = vec2( 0.0, 1.0);\n"
" gl_Position = vec4(vertices[gl_VertexID % 3], 0.0, 1.0);\n"
"}\n";
static const char *fragShaderText =
"#version 130\n"
"void main() {\n"
" gl_FragColor = vec4(0,1,0,1);\n"
"}\n";
XglTestFramework::m_use_bil = true;
DrawTriangleTest(vertShaderText, fragShaderText);
XglTestFramework::m_use_bil = saved_use_bil;
}
TEST_F(XglRenderTest, TriangleFragUniform)
{
static const char *vertShaderText =
"#version 130\n"
"out vec4 color;\n"
"out vec4 scale;\n"
"vec2 vertices[3];\n"
"void main() {\n"
"vec2 vertices[3];\n"
" vertices[0] = vec2(-0.5, -0.5);\n"
" vertices[1] = vec2( 0.5, -0.5);\n"
" vertices[2] = vec2( 0.5, 0.5);\n"
"vec4 colors[3];\n"
" colors[0] = vec4(1.0, 0.0, 0.0, 1.0);\n"
" colors[1] = vec4(0.0, 1.0, 0.0, 1.0);\n"
" colors[2] = vec4(0.0, 0.0, 1.0, 1.0);\n"
" color = colors[gl_VertexID % 3];\n"
" scale = vec4(1.0, 1.0, 1.0, 1.0);\n"
" gl_Position = vec4(vertices[gl_VertexID % 3], 0.0, 1.0);\n"
"}\n";
static const char *fragShaderText =
"#version 130\n"
"in vec4 color;\n"
"in vec4 scale;\n"
"uniform vec4 foo;\n"
"void main() {\n"
" gl_FragColor = color * scale + foo;\n"
"}\n";
DrawTriangleTest(vertShaderText, fragShaderText);
}
TEST_F(XglRenderTest, YellowTriangle)
{
static const char *vertShaderText =
"#version 130\n"
"void main() {\n"
" vec2 vertices[3];"
" vertices[0] = vec2(-0.5, -0.5);\n"
" vertices[1] = vec2( 0.5, -0.5);\n"
" vertices[2] = vec2( 0.5, 0.5);\n"
" vec4 colors[3];\n"
" colors[0] = vec4(1.0, 0.0, 0.0, 1.0);\n"
" colors[1] = vec4(0.0, 1.0, 0.0, 1.0);\n"
" colors[2] = vec4(0.0, 0.0, 1.0, 1.0);\n"
" gl_Position = vec4(vertices[gl_VertexID % 3], 0.0, 1.0);\n"
"}\n";
static const char *fragShaderText =
"#version 130\n"
"void main() {\n"
" gl_FragColor = vec4(1.0, 1.0, 0.0, 1.0);\n"
"}\n";
DrawTriangleTest(vertShaderText, fragShaderText);
}
TEST_F(XglRenderTest, RotatedTriangle) {
DrawRotatedTriangleTest();
}
TEST_F(XglRenderTest, TriangleTwoFSUniforms)
{
static const char *vertShaderText =
"#version 130\n"
"out vec4 color;\n"
"out vec4 scale;\n"
"out vec2 samplePos;\n"
"void main() {\n"
" vec2 vertices[3];"
" vertices[0] = vec2(-0.5, -0.5);\n"
" vertices[1] = vec2( 0.5, -0.5);\n"
" vertices[2] = vec2( 0.5, 0.5);\n"
" vec4 colors[3];\n"
" colors[0] = vec4(1.0, 0.0, 0.0, 1.0);\n"
" colors[1] = vec4(0.0, 1.0, 0.0, 1.0);\n"
" colors[2] = vec4(0.0, 0.0, 1.0, 1.0);\n"
" color = colors[gl_VertexID % 3];\n"
" vec2 positions[3];"
" positions[0] = vec2( 0.0, 0.0);\n"
" positions[1] = vec2( 1.0, 0.0);\n"
" positions[2] = vec2( 1.0, 1.0);\n"
" scale = vec4(0.0, 0.0, 0.0, 0.0);\n"
" gl_Position = vec4(vertices[gl_VertexID % 3], 0.0, 1.0);\n"
"}\n";
static const char *fragShaderText =
"#version 430\n"
"in vec4 color;\n"
"in vec4 scale;\n"
"uniform vec4 foo;\n"
"uniform vec4 bar;\n"
"void main() {\n"
// by default, with no location or blocks
// the compiler will read them from buffer
// in reverse order of first use in shader
// The buffer contains red, followed by blue,
// so foo should be blue, bar should be red
" gl_FragColor = color * scale * foo * bar + foo;\n"
"}\n";
DrawTriangleTwoUniformsFS(vertShaderText, fragShaderText);
}
TEST_F(XglRenderTest, TriangleWithVertexFetch)
{
static const char *vertShaderText =
"#version 130\n"
//XYZ1( -1, -1, -1 )
"in vec4 pos;\n"
//XYZ1( 0.f, 0.f, 0.f )
"in vec4 inColor;\n"
"out vec4 outColor;\n"
"void main() {\n"
" outColor = inColor;\n"
" gl_Position = pos;\n"
"}\n";
static const char *fragShaderText =
"#version 430\n"
"in vec4 color;\n"
"void main() {\n"
" gl_FragColor = color;\n"
"}\n";
DrawTriangleWithVertexFetch(vertShaderText, fragShaderText);
}
TEST_F(XglRenderTest, TriangleVSUniform)
{
static const char *vertShaderText =
"#version 130\n"
"uniform mat4 mvp;\n"
"void main() {\n"
" vec2 vertices[3];"
" vertices[0] = vec2(-0.5, -0.5);\n"
" vertices[1] = vec2( 0.5, -0.5);\n"
" vertices[2] = vec2( 0.5, 0.5);\n"
" gl_Position = vec4(vertices[gl_VertexID % 3], 0.0, 1.0) * mvp;\n"
"}\n";
static const char *fragShaderText =
"#version 430\n"
"void main() {\n"
" gl_FragColor = vec4(1.0, 0.0, 0.0, 1.0);\n"
"}\n";
// Create identity matrix
glm::mat4 Model = glm::mat4(1.0f);
DrawTriangleVSUniform(vertShaderText, fragShaderText);
// Model = glm::rotate(Model, glm::radians(45.0f), glm::vec3(0.0f, 0.0f, 1.0f));
// DrawTriangleVSUniform(vertShaderText, fragShaderText, Model);
}
int main(int argc, char **argv) {
int result;
::testing::InitGoogleTest(&argc, argv);
XglTestFramework::InitArgs(&argc, argv);
::testing::Environment* const xgl_test_env = ::testing::AddGlobalTestEnvironment(new TestEnvironment);
result = RUN_ALL_TESTS();
XglTestFramework::Finish();
return result;
}