blob: f40f435f3eeb8a83588feec723b3d4d43d182cc7 [file] [log] [blame]
// Copyright 2005, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// VK tests
//
// Copyright (C) 2014 LunarG, Inc.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included
// in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
// THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
// Verify VK driver initialization
#include <stdlib.h>
#include <stdio.h>
#include <stdbool.h>
#include <string.h>
#include <vulkan.h>
#include "gtest-1.7.0/include/gtest/gtest.h"
#include "vktestbinding.h"
#include "test_common.h"
#include "icd-spv.h"
class XglTest : public ::testing::Test {
public:
void CreateImageTest();
void CreateCommandBufferTest();
void CreatePipelineTest();
void CreateShaderTest();
void CreateShader(VK_SHADER *pshader);
VK_DEVICE device() {return m_device->obj();}
protected:
VK_APPLICATION_INFO app_info;
VK_INSTANCE inst;
VK_PHYSICAL_GPU objs[VK_MAX_PHYSICAL_GPUS];
uint32_t gpu_count;
uint32_t m_device_id;
vk_testing::Device *m_device;
VK_PHYSICAL_GPU_PROPERTIES props;
std::vector<VK_PHYSICAL_GPU_QUEUE_PROPERTIES> queue_props;
uint32_t graphics_queue_node_index;
virtual void SetUp() {
VK_RESULT err;
int i;
this->app_info.sType = VK_STRUCTURE_TYPE_APPLICATION_INFO;
this->app_info.pNext = NULL;
this->app_info.pAppName = "base";
this->app_info.appVersion = 1;
this->app_info.pEngineName = "unittest";
this->app_info.engineVersion = 1;
this->app_info.apiVersion = VK_API_VERSION;
VkInstanceCreateInfo inst_info = {};
inst_info.sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO;
inst_info.pNext = NULL;
inst_info.pAppInfo = &app_info;
inst_info.pAllocCb = NULL;
inst_info.extensionCount = 0;
inst_info.ppEnabledExtensionNames = NULL;
err = vkCreateInstance(&inst_info, &inst);
ASSERT_VK_SUCCESS(err);
err = vkEnumerateGpus(inst, VK_MAX_PHYSICAL_GPUS, &this->gpu_count,
objs);
ASSERT_VK_SUCCESS(err);
ASSERT_GE(this->gpu_count, 1) << "No GPU available";
m_device_id = 0;
this->m_device = new vk_testing::Device(objs[m_device_id]);
this->m_device->init();
props = m_device->gpu().properties();
queue_props = this->m_device->gpu().queue_properties();
for (i = 0; i < queue_props.size(); i++) {
if (queue_props[i].queueFlags & VK_QUEUE_GRAPHICS_BIT) {
graphics_queue_node_index = i;
break;
}
}
ASSERT_LT(i, queue_props.size()) << "Could not find a Queue with Graphics support";
}
virtual void TearDown() {
vkDestroyInstance(inst);
}
};
TEST(Initialization, vkEnumerateGpus) {
VK_APPLICATION_INFO app_info = {};
VK_INSTANCE inst;
VK_PHYSICAL_GPU objs[VK_MAX_PHYSICAL_GPUS];
uint32_t gpu_count;
VK_RESULT err;
vk_testing::PhysicalGpu *gpu;
char *layers[16];
size_t layer_count;
char layer_buf[16][256];
VkInstanceCreateInfo inst_info = {};
inst_info.sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO;
inst_info.pNext = NULL;
inst_info.pAppInfo = &app_info;
inst_info.pAllocCb = NULL;
inst_info.extensionCount = 0;
inst_info.ppEnabledExtensionNames = NULL;
app_info.sType = VK_STRUCTURE_TYPE_APPLICATION_INFO;
app_info.pNext = NULL;
app_info.pAppName = "base";
app_info.appVersion = 1;
app_info.pEngineName = "unittest";
app_info.engineVersion = 1;
app_info.apiVersion = VK_API_VERSION;
err = vkCreateInstance(&inst_info, &inst);
ASSERT_VK_SUCCESS(err);
err = vkEnumerateGpus(inst, VK_MAX_PHYSICAL_GPUS, &gpu_count, objs);
ASSERT_VK_SUCCESS(err);
ASSERT_GE(gpu_count, 1) << "No GPU available";
for (int i = 0; i < 16; i++)
layers[i] = &layer_buf[i][0];
err = vkEnumerateLayers(objs[0], 16, 256, &layer_count, (char * const *) layers, NULL);
ASSERT_VK_SUCCESS(err);
for (int i = 0; i < layer_count; i++) {
printf("Enumerated layers: %s ", layers[i]);
}
printf("\n");
// TODO: Iterate over all GPUs
gpu = new vk_testing::PhysicalGpu(objs[0]);
delete gpu;
// TODO: Verify destroy functions
err = vkDestroyInstance(inst);
ASSERT_VK_SUCCESS(err);
}
TEST_F(XglTest, AllocMemory) {
VK_RESULT err;
VkMemoryAllocInfo alloc_info = {};
VK_GPU_MEMORY gpu_mem;
uint8_t *pData;
alloc_info.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOC_INFO;
alloc_info.allocationSize = 1024 * 1024; // 1MB
alloc_info.memProps = VK_MEMORY_PROPERTY_SHAREABLE_BIT |
VK_MEMORY_PROPERTY_CPU_VISIBLE_BIT;
alloc_info.memType = VK_MEMORY_TYPE_OTHER;
// TODO: Try variety of memory priorities
alloc_info.memPriority = VK_MEMORY_PRIORITY_NORMAL;
err = vkAllocMemory(device(), &alloc_info, &gpu_mem);
ASSERT_VK_SUCCESS(err);
err = vkMapMemory(gpu_mem, 0, (void **) &pData);
ASSERT_VK_SUCCESS(err);
memset(pData, 0x55, alloc_info.allocationSize);
EXPECT_EQ(0x55, pData[0]) << "Memory read not same a write";
err = vkUnmapMemory(gpu_mem);
ASSERT_VK_SUCCESS(err);
err = vkFreeMemory(gpu_mem);
ASSERT_VK_SUCCESS(err);
}
TEST_F(XglTest, Event) {
VK_EVENT_CREATE_INFO event_info;
VK_EVENT event;
VK_MEMORY_REQUIREMENTS mem_req;
size_t data_size = sizeof(mem_req);
VK_RESULT err;
// typedef struct _VK_EVENT_CREATE_INFO
// {
// VK_STRUCTURE_TYPE sType; // Must be VK_STRUCTURE_TYPE_EVENT_CREATE_INFO
// const void* pNext; // Pointer to next structure
// VK_FLAGS flags; // Reserved
// } VK_EVENT_CREATE_INFO;
memset(&event_info, 0, sizeof(event_info));
event_info.sType = VK_STRUCTURE_TYPE_EVENT_CREATE_INFO;
err = vkCreateEvent(device(), &event_info, &event);
ASSERT_VK_SUCCESS(err);
err = vkGetObjectInfo(event, VK_INFO_TYPE_MEMORY_REQUIREMENTS,
&data_size, &mem_req);
ASSERT_VK_SUCCESS(err);
// VK_RESULT VKAPI vkAllocMemory(
// VK_DEVICE device,
// const VkMemoryAllocInfo* pAllocInfo,
// VK_GPU_MEMORY* pMem);
VkMemoryAllocInfo mem_info;
VK_GPU_MEMORY event_mem;
ASSERT_NE(0, mem_req.size) << "vkGetObjectInfo (Event): Failed - expect events to require memory";
memset(&mem_info, 0, sizeof(mem_info));
mem_info.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOC_INFO;
mem_info.allocationSize = mem_req.size;
mem_info.memProps = VK_MEMORY_PROPERTY_SHAREABLE_BIT;
mem_info.memPriority = VK_MEMORY_PRIORITY_NORMAL;
mem_info.memType = VK_MEMORY_TYPE_OTHER;
err = vkAllocMemory(device(), &mem_info, &event_mem);
ASSERT_VK_SUCCESS(err);
err = vkBindObjectMemory(event, 0, event_mem, 0);
ASSERT_VK_SUCCESS(err);
err = vkResetEvent(event);
ASSERT_VK_SUCCESS(err);
err = vkGetEventStatus(event);
ASSERT_EQ(VK_EVENT_RESET, err);
err = vkSetEvent(event);
ASSERT_VK_SUCCESS(err);
err = vkGetEventStatus(event);
ASSERT_EQ(VK_EVENT_SET, err);
// TODO: Test actual synchronization with command buffer event.
// All done with event memory, clean up
err = vkBindObjectMemory(event, 0, VK_NULL_HANDLE, 0);
ASSERT_VK_SUCCESS(err);
err = vkDestroyObject(event);
ASSERT_VK_SUCCESS(err);
}
TEST_F(XglTest, Fence) {
VK_RESULT err;
VK_FENCE_CREATE_INFO fence_info;
VK_FENCE fence;
memset(&fence_info, 0, sizeof(fence_info));
// typedef struct _VK_FENCE_CREATE_INFO
// {
// VK_STRUCTURE_TYPE sType; // Must be VK_STRUCTURE_TYPE_FENCE_CREATE_INFO
// const void* pNext; // Pointer to next structure
// VK_FLAGS flags; // Reserved
fence_info.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO;
err = vkCreateFence(device(), &fence_info, &fence);
ASSERT_VK_SUCCESS(err);
err = vkGetFenceStatus(fence);
// We've not submitted this fence on a command buffer so should get
// VK_ERROR_UNAVAILABLE
EXPECT_EQ(VK_ERROR_UNAVAILABLE, err);
// Test glxWaitForFences
// VK_RESULT VKAPI vkWaitForFences(
// VK_DEVICE device,
// uint32_t fenceCount,
// const VK_FENCE* pFences,
// bool32_t waitAll,
// uint64_t timeout);
err = vkWaitForFences(device(), 1, &fence, VK_TRUE, 0);
EXPECT_EQ(VK_ERROR_UNAVAILABLE, err);
// TODO: Attached to command buffer and test GetFenceStatus
// TODO: Add some commands and submit the command buffer
err = vkDestroyObject(fence);
ASSERT_VK_SUCCESS(err);
}
#define MAX_QUERY_SLOTS 10
TEST_F(XglTest, Query) {
VK_QUERY_POOL_CREATE_INFO query_info;
VK_QUERY_POOL query_pool;
size_t data_size;
VK_MEMORY_REQUIREMENTS mem_req;
size_t query_result_size;
uint32_t *query_result_data;
VK_RESULT err;
// typedef enum _VK_QUERY_TYPE
// {
// VK_QUERY_OCCLUSION = 0x00000000,
// VK_QUERY_PIPELINE_STATISTICS = 0x00000001,
// VK_QUERY_TYPE_BEGIN_RANGE = VK_QUERY_OCCLUSION,
// VK_QUERY_TYPE_END_RANGE = VK_QUERY_PIPELINE_STATISTICS,
// VK_NUM_QUERY_TYPE = (VK_QUERY_TYPE_END_RANGE - VK_QUERY_TYPE_BEGIN_RANGE + 1),
// VK_MAX_ENUM(_VK_QUERY_TYPE)
// } VK_QUERY_TYPE;
// typedef struct _VK_QUERY_POOL_CREATE_INFO
// {
// VK_STRUCTURE_TYPE sType; // Must be VK_STRUCTURE_TYPE_QUERY_POOL_CREATE_INFO
// const void* pNext; // Pointer to next structure
// VK_QUERY_TYPE queryType;
// uint32_t slots;
// } VK_QUERY_POOL_CREATE_INFO;
memset(&query_info, 0, sizeof(query_info));
query_info.sType = VK_STRUCTURE_TYPE_QUERY_POOL_CREATE_INFO;
query_info.queryType = VK_QUERY_OCCLUSION;
query_info.slots = MAX_QUERY_SLOTS;
// VK_RESULT VKAPI vkCreateQueryPool(
// VK_DEVICE device,
// const VK_QUERY_POOL_CREATE_INFO* pCreateInfo,
// VK_QUERY_POOL* pQueryPool);
err = vkCreateQueryPool(device(), &query_info, &query_pool);
ASSERT_VK_SUCCESS(err);
data_size = sizeof(mem_req);
err = vkGetObjectInfo(query_pool, VK_INFO_TYPE_MEMORY_REQUIREMENTS,
&data_size, &mem_req);
ASSERT_VK_SUCCESS(err);
ASSERT_NE(0, data_size) << "Invalid data_size";
// VK_RESULT VKAPI vkAllocMemory(
// VK_DEVICE device,
// const VkMemoryAllocInfo* pAllocInfo,
// VK_GPU_MEMORY* pMem);
VkMemoryAllocInfo mem_info;
VK_GPU_MEMORY query_mem;
memset(&mem_info, 0, sizeof(mem_info));
mem_info.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOC_INFO;
// TODO: Is a simple multiple all that's needed here?
mem_info.allocationSize = mem_req.size * MAX_QUERY_SLOTS;
mem_info.memProps = VK_MEMORY_PROPERTY_SHAREABLE_BIT;
mem_info.memType = VK_MEMORY_TYPE_OTHER;
mem_info.memPriority = VK_MEMORY_PRIORITY_NORMAL;
// TODO: Should this be pinned? Or maybe a separate test with pinned.
err = vkAllocMemory(device(), &mem_info, &query_mem);
ASSERT_VK_SUCCESS(err);
err = vkBindObjectMemory(query_pool, 0, query_mem, 0);
ASSERT_VK_SUCCESS(err);
// TODO: Test actual synchronization with command buffer event.
// TODO: Create command buffer
// TODO: vkCmdResetQueryPool
// TODO: vkCmdBeginQuery
// TODO: commands
// TOOD: vkCmdEndQuery
err = vkGetQueryPoolResults(query_pool, 0, MAX_QUERY_SLOTS,
&query_result_size, VK_NULL_HANDLE);
ASSERT_VK_SUCCESS(err);
if (query_result_size > 0) {
query_result_data = new uint32_t [query_result_size];
err = vkGetQueryPoolResults(query_pool, 0, MAX_QUERY_SLOTS,
&query_result_size, query_result_data);
ASSERT_VK_SUCCESS(err);
// TODO: Test Query result data.
}
// All done with QueryPool memory, clean up
err = vkBindObjectMemory(query_pool, 0, VK_NULL_HANDLE, 0);
ASSERT_VK_SUCCESS(err);
err = vkDestroyObject(query_pool);
ASSERT_VK_SUCCESS(err);
}
void getQueue(vk_testing::Device *device, uint32_t queue_node_index, const char *qname)
{
int que_idx;
VK_RESULT err;
VK_QUEUE queue;
const VK_PHYSICAL_GPU_QUEUE_PROPERTIES props = device->gpu().queue_properties()[queue_node_index];
for (que_idx = 0; que_idx < props.queueCount; que_idx++) {
err = vkGetDeviceQueue(device->obj(), queue_node_index, que_idx, &queue);
ASSERT_EQ(VK_SUCCESS, err) << "vkGetDeviceQueue: " << qname << " queue #" << que_idx << ": Failed with error: " << vk_result_string(err);
}
}
void print_queue_info(vk_testing::Device *device, uint32_t queue_node_index)
{
uint32_t que_idx;
VK_PHYSICAL_GPU_QUEUE_PROPERTIES queue_props;
VK_PHYSICAL_GPU_PROPERTIES props;
props = device->gpu().properties();
queue_props = device->gpu().queue_properties()[queue_node_index];
ASSERT_NE(0, queue_props.queueCount) << "No Queues available at Node Index #" << queue_node_index << " GPU: " << props.gpuName;
// VK_RESULT VKAPI vkGetDeviceQueue(
// VK_DEVICE device,
// uint32_t queueNodeIndex,
// uint32_t queueIndex,
// VK_QUEUE* pQueue);
/*
* queue handles are retrieved from the device by calling
* vkGetDeviceQueue() with a queue node index and a requested logical
* queue ID. The queue node index is the index into the array of
* VK_PHYSICAL_GPU_QUEUE_PROPERTIES returned by GetGpuInfo. Each
* queue node index has different attributes specified by the VK_QUEUE_FLAGS property.
* The logical queue ID is a sequential number starting from zero
* and referencing up to the number of queues supported of that node index
* at device creation.
*/
for (que_idx = 0; que_idx < queue_props.queueCount; que_idx++) {
// typedef enum _VK_QUEUE_FLAGS
// {
// VK_QUEUE_GRAPHICS_BIT = 0x00000001, // Queue supports graphics operations
// VK_QUEUE_COMPUTE_BIT = 0x00000002, // Queue supports compute operations
// VK_QUEUE_DMA_BIT = 0x00000004, // Queue supports DMA operations
// VK_QUEUE_EXTENDED_BIT = 0x80000000 // Extended queue
// } VK_QUEUE_FLAGS;
if (queue_props.queueFlags & VK_QUEUE_GRAPHICS_BIT) {
getQueue(device, queue_node_index, "Graphics");
}
if (queue_props.queueFlags & VK_QUEUE_COMPUTE_BIT) {
getQueue(device, queue_node_index, "Compute");
}
if (queue_props.queueFlags & VK_QUEUE_DMA_BIT) {
getQueue(device, queue_node_index, "DMA");
}
// TODO: What do we do about EXTENDED_BIT?
/* Guide: pg 34:
* The queue objects cannot be destroyed explicitly by an application
* and are automatically destroyed when the associated device is destroyed.
* Once the device is destroyed, attempting to use a queue results in
* undefined behavior.
*/
}
}
TEST_F(XglTest, Queue)
{
uint32_t i;
for (i = 0; i < m_device->gpu().queue_properties().size(); i++) {
print_queue_info(m_device, i);
}
}
void XglTest::CreateImageTest()
{
VK_RESULT err;
VK_IMAGE image;
uint32_t w, h, mipCount;
size_t size;
VK_FORMAT fmt;
VK_FORMAT_PROPERTIES image_fmt;
size_t data_size;
w =512;
h = 256;
mipCount = 0;
uint32_t _w = w;
uint32_t _h = h;
while( ( _w > 0 ) || ( _h > 0 ) )
{
_w >>= 1;
_h >>= 1;
mipCount++;
}
fmt = VK_FMT_R8G8B8A8_UINT;
// TODO: Pick known good format rather than just expect common format
/*
* XXX: What should happen if given NULL HANDLE for the pData argument?
* We're not requesting VK_INFO_TYPE_MEMORY_REQUIREMENTS so there is
* an expectation that pData is a valid pointer.
* However, why include a returned size value? That implies that the
* amount of data may vary and that doesn't work well for using a
* fixed structure.
*/
size = sizeof(image_fmt);
err = vkGetFormatInfo(device(), fmt,
VK_INFO_TYPE_FORMAT_PROPERTIES,
&size, &image_fmt);
ASSERT_VK_SUCCESS(err);
// typedef struct _VK_IMAGE_CREATE_INFO
// {
// VK_STRUCTURE_TYPE sType; // Must be VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO
// const void* pNext; // Pointer to next structure.
// VK_IMAGE_TYPE imageType;
// VK_FORMAT format;
// VK_EXTENT3D extent;
// uint32_t mipLevels;
// uint32_t arraySize;
// uint32_t samples;
// VK_IMAGE_TILING tiling;
// VK_FLAGS usage; // VK_IMAGE_USAGE_FLAGS
// VK_FLAGS flags; // VK_IMAGE_CREATE_FLAGS
// } VK_IMAGE_CREATE_INFO;
VK_IMAGE_CREATE_INFO imageCreateInfo = {};
imageCreateInfo.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
imageCreateInfo.imageType = VK_IMAGE_2D;
imageCreateInfo.format = fmt;
imageCreateInfo.arraySize = 1;
imageCreateInfo.extent.width = w;
imageCreateInfo.extent.height = h;
imageCreateInfo.extent.depth = 1;
imageCreateInfo.mipLevels = mipCount;
imageCreateInfo.samples = 1;
imageCreateInfo.tiling = VK_LINEAR_TILING;
// Image usage flags
// typedef enum _VK_IMAGE_USAGE_FLAGS
// {
// VK_IMAGE_USAGE_SHADER_ACCESS_READ_BIT = 0x00000001,
// VK_IMAGE_USAGE_SHADER_ACCESS_WRITE_BIT = 0x00000002,
// VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT = 0x00000004,
// VK_IMAGE_USAGE_DEPTH_STENCIL_BIT = 0x00000008,
// } VK_IMAGE_USAGE_FLAGS;
imageCreateInfo.usage = VK_IMAGE_USAGE_SHADER_ACCESS_WRITE_BIT | VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
// VK_RESULT VKAPI vkCreateImage(
// VK_DEVICE device,
// const VK_IMAGE_CREATE_INFO* pCreateInfo,
// VK_IMAGE* pImage);
err = vkCreateImage(device(), &imageCreateInfo, &image);
ASSERT_VK_SUCCESS(err);
// Verify image resources
// VK_RESULT VKAPI vkGetImageSubresourceInfo(
// VK_IMAGE image,
// const VK_IMAGE_SUBRESOURCE* pSubresource,
// VK_SUBRESOURCE_INFO_TYPE infoType,
// size_t* pDataSize,
// void* pData);
// typedef struct _VK_SUBRESOURCE_LAYOUT
// {
// VK_GPU_SIZE offset; // Specified in bytes
// VK_GPU_SIZE size; // Specified in bytes
// VK_GPU_SIZE rowPitch; // Specified in bytes
// VK_GPU_SIZE depthPitch; // Specified in bytes
// } VK_SUBRESOURCE_LAYOUT;
// typedef struct _VK_IMAGE_SUBRESOURCE
// {
// VK_IMAGE_ASPECT aspect;
// uint32_t mipLevel;
// uint32_t arraySlice;
// } VK_IMAGE_SUBRESOURCE;
// typedef enum _VK_SUBRESOURCE_INFO_TYPE
// {
// // Info type for vkGetImageSubresourceInfo()
// VK_INFO_TYPE_SUBRESOURCE_LAYOUT = 0x00000000,
// VK_MAX_ENUM(_VK_SUBRESOURCE_INFO_TYPE)
// } VK_SUBRESOURCE_INFO_TYPE;
VK_IMAGE_SUBRESOURCE subresource = {};
subresource.aspect = VK_IMAGE_ASPECT_COLOR;
subresource.arraySlice = 0;
_w = w;
_h = h;
while( ( _w > 0 ) || ( _h > 0 ) )
{
VK_SUBRESOURCE_LAYOUT layout = {};
data_size = sizeof(layout);
err = vkGetImageSubresourceInfo(image, &subresource, VK_INFO_TYPE_SUBRESOURCE_LAYOUT,
&data_size, &layout);
ASSERT_VK_SUCCESS(err);
ASSERT_EQ(sizeof(VK_SUBRESOURCE_LAYOUT), data_size) << "Invalid structure (VK_SUBRESOURCE_LAYOUT) size";
// TODO: 4 should be replaced with pixel size for given format
EXPECT_LE(_w * 4, layout.rowPitch) << "Pitch does not match expected image pitch";
_w >>= 1;
_h >>= 1;
subresource.mipLevel++;
}
VkMemoryAllocImageInfo img_alloc = {
.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOC_IMAGE_INFO,
.pNext = NULL,
};
VK_MEMORY_REQUIREMENTS mem_req;
VK_IMAGE_MEMORY_REQUIREMENTS img_reqs;
size_t img_reqs_size = sizeof(VK_IMAGE_MEMORY_REQUIREMENTS);
data_size = sizeof(mem_req);
err = vkGetObjectInfo(image, VK_INFO_TYPE_MEMORY_REQUIREMENTS,
&data_size, &mem_req);
ASSERT_VK_SUCCESS(err);
ASSERT_EQ(data_size, sizeof(mem_req));
ASSERT_NE(0, mem_req.size) << "vkGetObjectInfo (Event): Failed - expect images to require memory";
err = vkGetObjectInfo(image, VK_INFO_TYPE_IMAGE_MEMORY_REQUIREMENTS,
&img_reqs_size, &img_reqs);
ASSERT_VK_SUCCESS(err);
ASSERT_EQ(img_reqs_size, sizeof(VK_IMAGE_MEMORY_REQUIREMENTS));
img_alloc.usage = img_reqs.usage;
img_alloc.formatClass = img_reqs.formatClass;
img_alloc.samples = img_reqs.samples;
// VK_RESULT VKAPI vkAllocMemory(
// VK_DEVICE device,
// const VkMemoryAllocInfo* pAllocInfo,
// VK_GPU_MEMORY* pMem);
VkMemoryAllocInfo mem_info = {};
VK_GPU_MEMORY image_mem;
mem_info.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOC_INFO;
mem_info.pNext = &img_alloc;
mem_info.allocationSize = mem_req.size;
mem_info.memProps = VK_MEMORY_PROPERTY_SHAREABLE_BIT;
mem_info.memType = VK_MEMORY_TYPE_IMAGE;
mem_info.memPriority = VK_MEMORY_PRIORITY_NORMAL;
err = vkAllocMemory(device(), &mem_info, &image_mem);
ASSERT_VK_SUCCESS(err);
err = vkBindObjectMemory(image, 0, image_mem, 0);
ASSERT_VK_SUCCESS(err);
// typedef struct _VK_IMAGE_VIEW_CREATE_INFO
// {
// VK_STRUCTURE_TYPE sType; // Must be VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO
// const void* pNext; // Pointer to next structure
// VK_IMAGE image;
// VK_IMAGE_VIEW_TYPE viewType;
// VK_FORMAT format;
// VK_CHANNEL_MAPPING channels;
// VK_IMAGE_SUBRESOURCE_RANGE subresourceRange;
// float minLod;
// } VK_IMAGE_VIEW_CREATE_INFO;
VK_IMAGE_VIEW_CREATE_INFO viewInfo = {};
VK_IMAGE_VIEW view;
viewInfo.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
viewInfo.image = image;
viewInfo.viewType = VK_IMAGE_VIEW_2D;
viewInfo.format = fmt;
viewInfo.channels.r = VK_CHANNEL_SWIZZLE_R;
viewInfo.channels.g = VK_CHANNEL_SWIZZLE_G;
viewInfo.channels.b = VK_CHANNEL_SWIZZLE_B;
viewInfo.channels.a = VK_CHANNEL_SWIZZLE_A;
viewInfo.subresourceRange.baseArraySlice = 0;
viewInfo.subresourceRange.arraySize = 1;
viewInfo.subresourceRange.baseMipLevel = 0;
viewInfo.subresourceRange.mipLevels = 1;
viewInfo.subresourceRange.aspect = VK_IMAGE_ASPECT_COLOR;
// VK_RESULT VKAPI vkCreateImageView(
// VK_DEVICE device,
// const VK_IMAGE_VIEW_CREATE_INFO* pCreateInfo,
// VK_IMAGE_VIEW* pView);
err = vkCreateImageView(device(), &viewInfo, &view);
ASSERT_VK_SUCCESS(err) << "vkCreateImageView failed";
// TODO: Test image memory.
// All done with image memory, clean up
ASSERT_VK_SUCCESS(vkBindObjectMemory(image, 0, VK_NULL_HANDLE, 0));
ASSERT_VK_SUCCESS(vkFreeMemory(image_mem));
ASSERT_VK_SUCCESS(vkDestroyObject(image));
}
TEST_F(XglTest, CreateImage) {
CreateImageTest();
}
void XglTest::CreateCommandBufferTest()
{
VK_RESULT err;
VK_CMD_BUFFER_CREATE_INFO info = {};
VK_CMD_BUFFER cmdBuffer;
// typedef struct _VK_CMD_BUFFER_CREATE_INFO
// {
// VK_STRUCTURE_TYPE sType; // Must be VK_STRUCTURE_TYPE_CMD_BUFFER_CREATE_INFO
// const void* pNext;
// VK_QUEUE_TYPE queueType;
// VK_FLAGS flags;
// } VK_CMD_BUFFER_CREATE_INFO;
info.sType = VK_STRUCTURE_TYPE_CMD_BUFFER_CREATE_INFO;
info.queueNodeIndex = graphics_queue_node_index;
err = vkCreateCommandBuffer(device(), &info, &cmdBuffer);
ASSERT_VK_SUCCESS(err) << "vkCreateCommandBuffer failed";
ASSERT_VK_SUCCESS(vkDestroyObject(cmdBuffer));
}
TEST_F(XglTest, TestComandBuffer) {
CreateCommandBufferTest();
}
void XglTest::CreateShader(VK_SHADER *pshader)
{
void *code;
uint32_t codeSize;
struct icd_spv_header *pSPV;
VK_RESULT err;
codeSize = sizeof(struct icd_spv_header) + 100;
code = malloc(codeSize);
ASSERT_TRUE(NULL != code) << "malloc failed!";
memset(code, 0, codeSize);
// Indicate that this is SPV data.
pSPV = (struct icd_spv_header *) code;
pSPV->magic = ICD_SPV_MAGIC;
pSPV->version = ICD_SPV_VERSION;
// typedef struct _VK_SHADER_CREATE_INFO
// {
// VK_STRUCTURE_TYPE sType; // Must be VK_STRUCTURE_TYPE_SHADER_CREATE_INFO
// const void* pNext; // Pointer to next structure
// size_t codeSize; // Specified in bytes
// const void* pCode;
// VK_FLAGS flags; // Reserved
// } VK_SHADER_CREATE_INFO;
VK_SHADER_CREATE_INFO createInfo;
VK_SHADER shader;
createInfo.sType = VK_STRUCTURE_TYPE_SHADER_CREATE_INFO;
createInfo.pNext = NULL;
createInfo.pCode = code;
createInfo.codeSize = codeSize;
createInfo.flags = 0;
err = vkCreateShader(device(), &createInfo, &shader);
ASSERT_VK_SUCCESS(err);
*pshader = shader;
}
int main(int argc, char **argv) {
::testing::InitGoogleTest(&argc, argv);
vk_testing::set_error_callback(test_error_callback);
return RUN_ALL_TESTS();
}