blob: c6a1fe9cda8f9431b7433ab20071413f5c83be2b [file] [log] [blame]
class XglDescriptorSetObj
{
public:
XglDescriptorSetObj(XglDevice *device);
void AttachMemoryView( XGL_MEMORY_VIEW_ATTACH_INFO* memoryView);
void AttachSampler( XGL_SAMPLER* sampler);
void AttachImageView( XGL_IMAGE_VIEW_ATTACH_INFO* imageView);
void BindCommandBuffer(XGL_CMD_BUFFER commandBuffer);
XGL_DESCRIPTOR_SLOT_INFO * GetSlotInfo(vector<int>slots, vector<XGL_DESCRIPTOR_SET_SLOT_TYPE>types, vector<XGL_OBJECT>objs );
protected:
XGL_DESCRIPTOR_SET_CREATE_INFO m_descriptorInfo;
XGL_DESCRIPTOR_SET m_rsrcDescSet;
XGL_GPU_MEMORY m_descriptor_set_mem;
XglDevice *m_device;
int m_nextSlot;
vector<int> m_memorySlots;
vector<XGL_MEMORY_VIEW_ATTACH_INFO*> m_memoryViews;
vector<int> m_samplerSlots;
vector<XGL_SAMPLER*> m_samplers;
vector<int> m_imageSlots;
vector<XGL_IMAGE_VIEW_ATTACH_INFO*> m_imageViews;
};
XglDescriptorSetObj::XglDescriptorSetObj(XglDevice *device)
{
m_device = device;
m_nextSlot = 0;
}
void XglDescriptorSetObj::AttachMemoryView(XGL_MEMORY_VIEW_ATTACH_INFO* memoryView)
{
m_memoryViews.push_back(memoryView);
m_memorySlots.push_back(m_nextSlot);
m_nextSlot++;
}
void XglDescriptorSetObj::AttachSampler(XGL_SAMPLER* sampler)
{
m_samplers.push_back(sampler);
m_samplerSlots.push_back(m_nextSlot);
m_nextSlot++;
}
void XglDescriptorSetObj::AttachImageView(XGL_IMAGE_VIEW_ATTACH_INFO* imageView)
{
m_imageViews.push_back(imageView);
m_imageSlots.push_back(m_nextSlot);
m_nextSlot++;
}
XGL_DESCRIPTOR_SLOT_INFO* XglDescriptorSetObj::GetSlotInfo(vector<int>slots,
vector<XGL_DESCRIPTOR_SET_SLOT_TYPE>types,
vector<XGL_OBJECT>objs )
{
int nSlots = m_memorySlots.size() + m_imageSlots.size() + m_samplerSlots.size();
XGL_DESCRIPTOR_SLOT_INFO *slotInfo = (XGL_DESCRIPTOR_SLOT_INFO*) malloc( nSlots * sizeof(XGL_DESCRIPTOR_SLOT_INFO) );
for (int i=0; i<nSlots; i++)
{
slotInfo[i].slotObjectType = XGL_SLOT_UNUSED;
}
for (int i=0; i<slots.size(); i++)
{
for (int j=0; j<m_memorySlots.size(); j++)
{
if ( (XGL_OBJECT) m_memoryViews[j] == objs[i])
{
slotInfo[m_memorySlots[j]].shaderEntityIndex = slots[i];
slotInfo[m_memorySlots[j]].slotObjectType = types[i];
}
}
for (int j=0; j<m_imageSlots.size(); j++)
{
if ( (XGL_OBJECT) m_imageViews[j] == objs[i])
{
slotInfo[m_imageSlots[j]].shaderEntityIndex = slots[i];
slotInfo[m_imageSlots[j]].slotObjectType = types[i];
}
}
for (int j=0; j<m_samplerSlots.size(); j++)
{
if ( (XGL_OBJECT) m_samplers[j] == objs[i])
{
slotInfo[m_samplerSlots[j]].shaderEntityIndex = slots[i];
slotInfo[m_samplerSlots[j]].slotObjectType = types[i];
}
}
}
for (int i=0;i<nSlots;i++)
{
printf("SlotInfo[%d]: Index = %d, Type = %d\n",i,slotInfo[i].shaderEntityIndex, slotInfo[i].slotObjectType);
fflush(stdout);
}
return(slotInfo);
}
void XglDescriptorSetObj::BindCommandBuffer(XGL_CMD_BUFFER commandBuffer)
{
XGL_RESULT err;
// Create descriptor set for a uniform resource
m_descriptorInfo = {};
m_descriptorInfo.sType = XGL_STRUCTURE_TYPE_DESCRIPTOR_SET_CREATE_INFO;
m_descriptorInfo.slots = m_nextSlot;
// Create a descriptor set with requested number of slots
err = xglCreateDescriptorSet( m_device->device(), &m_descriptorInfo, &m_rsrcDescSet );
// Bind memory to the descriptor set
err = m_device->AllocAndBindGpuMemory(m_rsrcDescSet, "DescriptorSet", &m_descriptor_set_mem);
xglBeginDescriptorSetUpdate( m_rsrcDescSet );
xglClearDescriptorSetSlots(m_rsrcDescSet, 0, m_nextSlot);
for (int i=0; i<m_memoryViews.size();i++)
{
xglAttachMemoryViewDescriptors( m_rsrcDescSet, m_memorySlots[i], 1, m_memoryViews[i] );
}
for (int i=0; i<m_samplers.size();i++)
{
xglAttachSamplerDescriptors( m_rsrcDescSet, m_samplerSlots[i], 1, m_samplers[i] );
}
for (int i=0; i<m_imageViews.size();i++)
{
xglAttachImageViewDescriptors( m_rsrcDescSet, m_imageSlots[i], 1, m_imageViews[i] );
}
xglEndDescriptorSetUpdate( m_rsrcDescSet );
// bind pipeline, vertex buffer (descriptor set) and WVP (dynamic memory view)
xglCmdBindDescriptorSet(commandBuffer, XGL_PIPELINE_BIND_POINT_GRAPHICS, 0, m_rsrcDescSet, 0 );
}
class XglTextureObj
{
public:
XglTextureObj(XglDevice *device);
XGL_IMAGE m_texture;
XGL_IMAGE_VIEW_ATTACH_INFO m_textureViewInfo;
XGL_GPU_MEMORY m_textureMem;
protected:
XglDevice *m_device;
XGL_IMAGE_VIEW m_textureView;
};
XglTextureObj::XglTextureObj(XglDevice *device)
{
m_device = device;
const XGL_FORMAT tex_format = { XGL_CH_FMT_B8G8R8A8, XGL_NUM_FMT_UNORM };
const XGL_INT tex_width = 16;
const XGL_INT tex_height = 16;
const uint32_t tex_colors[2] = { 0xffff0000, 0xff00ff00 };
XGL_RESULT err;
XGL_UINT i;
m_textureViewInfo.sType = XGL_STRUCTURE_TYPE_IMAGE_VIEW_ATTACH_INFO;
const XGL_IMAGE_CREATE_INFO image = {
.sType = XGL_STRUCTURE_TYPE_IMAGE_CREATE_INFO,
.pNext = NULL,
.imageType = XGL_IMAGE_2D,
.format = tex_format,
.extent = { tex_width, tex_height, 1 },
.mipLevels = 1,
.arraySize = 1,
.samples = 1,
.tiling = XGL_LINEAR_TILING,
.usage = XGL_IMAGE_USAGE_SHADER_ACCESS_READ_BIT,
.flags = 0,
};
XGL_MEMORY_ALLOC_INFO mem_alloc;
mem_alloc.sType = XGL_STRUCTURE_TYPE_MEMORY_ALLOC_INFO;
mem_alloc.pNext = NULL;
mem_alloc.allocationSize = 0;
mem_alloc.alignment = 0;
mem_alloc.flags = 0;
mem_alloc.heapCount = 0;
mem_alloc.memPriority = XGL_MEMORY_PRIORITY_NORMAL;
XGL_IMAGE_VIEW_CREATE_INFO view;
view.sType = XGL_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
view.pNext = NULL;
view.image = XGL_NULL_HANDLE;
view.viewType = XGL_IMAGE_VIEW_2D;
view.format = image.format;
view.channels.r = XGL_CHANNEL_SWIZZLE_R;
view.channels.g = XGL_CHANNEL_SWIZZLE_G;
view.channels.b = XGL_CHANNEL_SWIZZLE_B;
view.channels.a = XGL_CHANNEL_SWIZZLE_A;
view.subresourceRange.aspect = XGL_IMAGE_ASPECT_COLOR;
view.subresourceRange.baseMipLevel = 0;
view.subresourceRange.mipLevels = 1;
view.subresourceRange.baseArraySlice = 0;
view.subresourceRange.arraySize = 1;
view.minLod = 0.0f;
XGL_MEMORY_REQUIREMENTS mem_reqs;
XGL_SIZE mem_reqs_size;
/* create image */
err = xglCreateImage(m_device->device(), &image, &m_texture);
assert(!err);
err = xglGetObjectInfo(m_texture,
XGL_INFO_TYPE_MEMORY_REQUIREMENTS,
&mem_reqs_size, &mem_reqs);
assert(!err && mem_reqs_size == sizeof(mem_reqs));
mem_alloc.allocationSize = mem_reqs.size;
mem_alloc.alignment = mem_reqs.alignment;
mem_alloc.heapCount = mem_reqs.heapCount;
memcpy(mem_alloc.heaps, mem_reqs.heaps,
sizeof(mem_reqs.heaps[0]) * mem_reqs.heapCount);
/* allocate memory */
err = xglAllocMemory(m_device->device(), &mem_alloc, &m_textureMem);
assert(!err);
/* bind memory */
err = xglBindObjectMemory(m_texture, m_textureMem, 0);
assert(!err);
/* create image view */
view.image = m_texture;
err = xglCreateImageView(m_device->device(), &view, &m_textureView);
assert(!err);
const XGL_IMAGE_SUBRESOURCE subres = {
.aspect = XGL_IMAGE_ASPECT_COLOR,
.mipLevel = 0,
.arraySlice = 0,
};
XGL_SUBRESOURCE_LAYOUT layout;
XGL_SIZE layout_size;
XGL_VOID *data;
XGL_INT x, y;
err = xglGetImageSubresourceInfo(m_texture, &subres,
XGL_INFO_TYPE_SUBRESOURCE_LAYOUT, &layout_size, &layout);
assert(!err && layout_size == sizeof(layout));
err = xglMapMemory(m_textureMem, 0, &data);
assert(!err);
for (y = 0; y < tex_height; y++) {
uint32_t *row = (uint32_t *) ((char *) data + layout.rowPitch * y);
for (x = 0; x < tex_width; x++)
row[x] = tex_colors[(x & 1) ^ (y & 1)];
}
err = xglUnmapMemory(m_textureMem);
assert(!err);
m_textureViewInfo.view = m_textureView;
}
class XglSamplerObj
{
public:
XglSamplerObj(XglDevice *device);
XGL_SAMPLER m_sampler;
protected:
XGL_SAMPLER_CREATE_INFO m_samplerCreateInfo = {};
XglDevice *m_device;
};
XglSamplerObj::XglSamplerObj(XglDevice *device)
{
XGL_RESULT err = XGL_SUCCESS;
m_device = device;
m_samplerCreateInfo.sType = XGL_STRUCTURE_TYPE_SAMPLER_CREATE_INFO;
m_samplerCreateInfo.magFilter = XGL_TEX_FILTER_NEAREST;
m_samplerCreateInfo.minFilter = XGL_TEX_FILTER_NEAREST;
m_samplerCreateInfo.mipMode = XGL_TEX_MIPMAP_BASE;
m_samplerCreateInfo.addressU = XGL_TEX_ADDRESS_WRAP;
m_samplerCreateInfo.addressV = XGL_TEX_ADDRESS_WRAP;
m_samplerCreateInfo.addressW = XGL_TEX_ADDRESS_WRAP;
m_samplerCreateInfo.mipLodBias = 0.0;
m_samplerCreateInfo.maxAnisotropy = 0.0;
m_samplerCreateInfo.compareFunc = XGL_COMPARE_NEVER;
m_samplerCreateInfo.minLod = 0.0;
m_samplerCreateInfo.maxLod = 0.0;
m_samplerCreateInfo.borderColorType = XGL_BORDER_COLOR_OPAQUE_WHITE;
err = xglCreateSampler(m_device->device(),&m_samplerCreateInfo, &m_sampler);
}
class XglConstantBufferObj
{
public:
XglConstantBufferObj(XglDevice *device, int constantCount, int constantSize, const void* data);
void SetMemoryState(XGL_CMD_BUFFER cmdBuffer, XGL_MEMORY_STATE newState);
XGL_MEMORY_VIEW_ATTACH_INFO m_constantBufferView;
XGL_GPU_MEMORY m_constantBufferMem;
protected:
XglDevice *m_device;
int m_numVertices;
int m_stride;
};
XglConstantBufferObj::XglConstantBufferObj(XglDevice *device, int constantCount, int constantSize, const void* data)
{
XGL_RESULT err = XGL_SUCCESS;
XGL_UINT8 *pData;
XGL_MEMORY_ALLOC_INFO alloc_info = {};
m_device = device;
m_numVertices = constantCount;
m_stride = constantSize;
alloc_info.sType = XGL_STRUCTURE_TYPE_MEMORY_ALLOC_INFO;
alloc_info.allocationSize = constantCount * constantSize;
alloc_info.alignment = 0;
alloc_info.heapCount = 1;
alloc_info.heaps[0] = 0; // TODO: Use known existing heap
alloc_info.flags = XGL_MEMORY_HEAP_CPU_VISIBLE_BIT;
alloc_info.memPriority = XGL_MEMORY_PRIORITY_NORMAL;
err = xglAllocMemory(m_device->device(), &alloc_info, &m_constantBufferMem);
err = xglMapMemory(m_constantBufferMem, 0, (XGL_VOID **) &pData);
memcpy(pData, data, alloc_info.allocationSize);
err = xglUnmapMemory(m_constantBufferMem);
// set up the memory view for the constant buffer
this->m_constantBufferView.stride = 16;
this->m_constantBufferView.range = alloc_info.allocationSize;
this->m_constantBufferView.offset = 0;
this->m_constantBufferView.mem = m_constantBufferMem;
this->m_constantBufferView.format.channelFormat = XGL_CH_FMT_R32G32B32A32;
this->m_constantBufferView.format.numericFormat = XGL_NUM_FMT_FLOAT;
this->m_constantBufferView.state = XGL_MEMORY_STATE_DATA_TRANSFER;
}
void XglConstantBufferObj::SetMemoryState(XGL_CMD_BUFFER cmdBuffer, XGL_MEMORY_STATE newState)
{
if (this->m_constantBufferView.state == newState)
return;
// open the command buffer
XGL_RESULT err = xglBeginCommandBuffer( cmdBuffer, 0 );
ASSERT_XGL_SUCCESS(err);
XGL_MEMORY_STATE_TRANSITION transition = {};
transition.mem = m_constantBufferMem;
transition.oldState = XGL_MEMORY_STATE_DATA_TRANSFER;
transition.newState = newState;
transition.offset = 0;
transition.regionSize = m_numVertices * m_stride;
// write transition to the command buffer
xglCmdPrepareMemoryRegions( cmdBuffer, 1, &transition );
this->m_constantBufferView.state = newState;
// finish recording the command buffer
err = xglEndCommandBuffer( cmdBuffer );
ASSERT_XGL_SUCCESS(err);
XGL_UINT32 numMemRefs=1;
XGL_MEMORY_REF memRefs;
// this command buffer only uses the vertex buffer memory
memRefs.flags = 0;
memRefs.mem = m_constantBufferMem;
// submit the command buffer to the universal queue
err = xglQueueSubmit( m_device->m_queue, 1, &cmdBuffer, numMemRefs, &memRefs, NULL );
ASSERT_XGL_SUCCESS(err);
}
class XglShaderObj
{
public:
XglShaderObj(XglDevice *device, const char * shaderText, XGL_PIPELINE_SHADER_STAGE stage );
XGL_PIPELINE_SHADER_STAGE_CREATE_INFO* GetStageCreateInfo(XglDescriptorSetObj descriptorSet);
void BindShaderEntitySlotToMemory(int slot, XGL_DESCRIPTOR_SET_SLOT_TYPE type, XGL_OBJECT object);
void BindShaderEntitySlotToImage(int slot, XGL_DESCRIPTOR_SET_SLOT_TYPE type, XGL_OBJECT object);
void BindShaderEntitySlotToSampler(int slot, XGL_OBJECT object);
protected:
XGL_PIPELINE_SHADER_STAGE_CREATE_INFO stage_info;
XGL_SHADER m_shader;
XGL_PIPELINE_SHADER_STAGE m_stage;
XglDevice *m_device;
vector<int> m_memSlots;
vector<XGL_DESCRIPTOR_SET_SLOT_TYPE> m_memTypes;
vector<XGL_OBJECT> m_memObjs;
vector<int> m_samplerSlots;
vector<XGL_DESCRIPTOR_SET_SLOT_TYPE> m_samplerTypes;
vector<XGL_OBJECT> m_samplerObjs;
vector<int> m_imageSlots;
vector<XGL_DESCRIPTOR_SET_SLOT_TYPE> m_imageTypes;
vector<XGL_OBJECT> m_imageObjs;
};
XGL_PIPELINE_SHADER_STAGE_CREATE_INFO* XglShaderObj::GetStageCreateInfo(XglDescriptorSetObj descriptorSet)
{
XGL_DESCRIPTOR_SLOT_INFO *slotInfo;
XGL_PIPELINE_SHADER_STAGE_CREATE_INFO *stageInfo = (XGL_PIPELINE_SHADER_STAGE_CREATE_INFO*) calloc( 1,sizeof(XGL_PIPELINE_SHADER_STAGE_CREATE_INFO) );
stageInfo->sType = XGL_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
stageInfo->shader.stage = m_stage;
stageInfo->shader.shader = m_shader;
stageInfo->shader.descriptorSetMapping[0].descriptorCount = 0;
stageInfo->shader.linkConstBufferCount = 0;
stageInfo->shader.pLinkConstBufferInfo = XGL_NULL_HANDLE;
stageInfo->shader.dynamicMemoryViewMapping.slotObjectType = XGL_SLOT_UNUSED;
stageInfo->shader.dynamicMemoryViewMapping.shaderEntityIndex = 0;
stageInfo->shader.descriptorSetMapping[0].descriptorCount = m_memSlots.size() + m_imageSlots.size() + m_samplerSlots.size();
if (stageInfo->shader.descriptorSetMapping[0].descriptorCount)
{
vector<int> allSlots;
vector<XGL_DESCRIPTOR_SET_SLOT_TYPE> allTypes;
vector<XGL_OBJECT> allObjs;
allSlots.reserve(m_memSlots.size() + m_imageSlots.size() + m_samplerSlots.size());
allTypes.reserve(m_memTypes.size() + m_imageTypes.size() + m_samplerTypes.size());
allObjs.reserve(m_memObjs.size() + m_imageObjs.size() + m_samplerObjs.size());
if (m_memSlots.size())
{
allSlots.insert(allSlots.end(), m_memSlots.begin(), m_memSlots.end());
allTypes.insert(allTypes.end(), m_memTypes.begin(), m_memTypes.end());
allObjs.insert(allObjs.end(), m_memObjs.begin(), m_memObjs.end());
}
if (m_imageSlots.size())
{
allSlots.insert(allSlots.end(), m_imageSlots.begin(), m_imageSlots.end());
allTypes.insert(allTypes.end(), m_imageTypes.begin(), m_imageTypes.end());
allObjs.insert(allObjs.end(), m_imageObjs.begin(), m_imageObjs.end());
}
if (m_samplerSlots.size())
{
allSlots.insert(allSlots.end(), m_samplerSlots.begin(), m_samplerSlots.end());
allTypes.insert(allTypes.end(), m_samplerTypes.begin(), m_samplerTypes.end());
allObjs.insert(allObjs.end(), m_samplerObjs.begin(), m_samplerObjs.end());
}
slotInfo = descriptorSet.GetSlotInfo(allSlots, allTypes, allObjs);
stageInfo->shader.descriptorSetMapping[0].pDescriptorInfo = (const XGL_DESCRIPTOR_SLOT_INFO*) slotInfo;
}
return stageInfo;
}
void XglShaderObj::BindShaderEntitySlotToMemory(int slot, XGL_DESCRIPTOR_SET_SLOT_TYPE type, XGL_OBJECT object)
{
m_memSlots.push_back(slot);
m_memTypes.push_back(type);
m_memObjs.push_back(object);
}
void XglShaderObj::BindShaderEntitySlotToImage(int slot, XGL_DESCRIPTOR_SET_SLOT_TYPE type, XGL_OBJECT object)
{
m_imageSlots.push_back(slot);
m_imageTypes.push_back(type);
m_imageObjs.push_back(object);
}
void XglShaderObj::BindShaderEntitySlotToSampler(int slot, XGL_OBJECT object)
{
m_samplerSlots.push_back(slot);
m_samplerTypes.push_back(XGL_SLOT_SHADER_SAMPLER);
m_samplerObjs.push_back(object);
}
XglShaderObj::XglShaderObj(XglDevice *device, const char * shader_code, XGL_PIPELINE_SHADER_STAGE stage)
{
XGL_RESULT err = XGL_SUCCESS;
std::vector<unsigned int> bil;
XGL_SHADER_CREATE_INFO createInfo;
size_t shader_len;
m_stage = stage;
m_device = device;
createInfo.sType = XGL_STRUCTURE_TYPE_SHADER_CREATE_INFO;
createInfo.pNext = NULL;
shader_len = strlen(shader_code);
createInfo.codeSize = 3 * sizeof(uint32_t) + shader_len + 1;
createInfo.pCode = malloc(createInfo.codeSize);
createInfo.flags = 0;
/* try version 0 first: XGL_PIPELINE_SHADER_STAGE followed by GLSL */
((uint32_t *) createInfo.pCode)[0] = ICD_BIL_MAGIC;
((uint32_t *) createInfo.pCode)[1] = 0;
((uint32_t *) createInfo.pCode)[2] = stage;
memcpy(((uint32_t *) createInfo.pCode + 3), shader_code, shader_len + 1);
err = xglCreateShader(m_device->device(), &createInfo, &m_shader);
if (err) {
free((void *) createInfo.pCode);
}
}
#if 0
void XglShaderObj::CreateShaderBIL(XGL_PIPELINE_SHADER_STAGE stage,
const char *shader_code,
XGL_SHADER *pshader)
{
XGL_RESULT err = XGL_SUCCESS;
std::vector<unsigned int> bil;
XGL_SHADER_CREATE_INFO createInfo;
size_t shader_len;
XGL_SHADER shader;
createInfo.sType = XGL_STRUCTURE_TYPE_SHADER_CREATE_INFO;
createInfo.pNext = NULL;
// Use Reference GLSL to BIL compiler
GLSLtoBIL(stage, shader_code, bil);
createInfo.pCode = bil.data();
createInfo.codeSize = bil.size() * sizeof(unsigned int);
createInfo.flags = 0;
err = xglCreateShader(device(), &createInfo, &shader);
ASSERT_XGL_SUCCESS(err);
*pshader = shader;
}
#endif
class XglPipelineObj
{
public:
XglPipelineObj(XglDevice *device);
void BindPipelineCommandBuffer(XGL_CMD_BUFFER m_cmdBuffer, XglDescriptorSetObj descriptorSet);
void AddShader(XglShaderObj* shaderObj);
void AddVertexInputAttribs(XGL_VERTEX_INPUT_ATTRIBUTE_DESCRIPTION* vi_attrib, int count);
void AddVertexInputBindings(XGL_VERTEX_INPUT_BINDING_DESCRIPTION* vi_binding, int count);
void AddVertexDataBuffer(XglConstantBufferObj* vertexDataBuffer, int binding);
protected:
XGL_PIPELINE pipeline;
XGL_PIPELINE_VERTEX_INPUT_CREATE_INFO vi_state;
XGL_PIPELINE_IA_STATE_CREATE_INFO ia_state;
XGL_PIPELINE_RS_STATE_CREATE_INFO rs_state;
XGL_PIPELINE_CB_STATE cb_state;
XGL_PIPELINE_DB_STATE_CREATE_INFO db_state;
XGL_FORMAT render_target_format;
XGL_GPU_MEMORY m_pipe_mem;
XglDevice *m_device;
XGL_VERTEX_INPUT_BINDING_DESCRIPTION *m_vi_binding;
int m_vi_binding_count;
XGL_VERTEX_INPUT_ATTRIBUTE_DESCRIPTION *m_vi_attribs;
int m_vi_attrib_count;
vector<XglShaderObj*> m_shaderObjs;
vector<XglConstantBufferObj*> m_vertexBufferObjs;
vector<int> m_vertexBufferBindings;
int m_vertexBufferCount;
};
XglPipelineObj::XglPipelineObj(XglDevice *device)
{
XGL_RESULT err;
m_device = device;
m_vi_attrib_count = m_vi_binding_count = m_vertexBufferCount = 0;
ia_state = {
XGL_STRUCTURE_TYPE_PIPELINE_IA_STATE_CREATE_INFO, // sType
XGL_NULL_HANDLE, // pNext
XGL_TOPOLOGY_TRIANGLE_LIST, // XGL_PRIMITIVE_TOPOLOGY
XGL_FALSE, // disableVertexReuse
XGL_PROVOKING_VERTEX_LAST, // XGL_PROVOKING_VERTEX_CONVENTION
XGL_FALSE, // primitiveRestartEnable
0 // primitiveRestartIndex
};
rs_state = {
XGL_STRUCTURE_TYPE_PIPELINE_RS_STATE_CREATE_INFO,
&ia_state,
XGL_FALSE, // depthClipEnable
XGL_FALSE, // rasterizerDiscardEnable
1.0 // pointSize
};
render_target_format.channelFormat = XGL_CH_FMT_R8G8B8A8;
render_target_format.numericFormat = XGL_NUM_FMT_UNORM;
cb_state = {
XGL_STRUCTURE_TYPE_PIPELINE_CB_STATE_CREATE_INFO,
&rs_state,
XGL_FALSE, // alphaToCoverageEnable
XGL_FALSE, // dualSourceBlendEnable
XGL_LOGIC_OP_COPY, // XGL_LOGIC_OP
{ // XGL_PIPELINE_CB_ATTACHMENT_STATE
{
XGL_FALSE, // blendEnable
render_target_format, // XGL_FORMAT
0xF // channelWriteMask
}
}
};
db_state = {
XGL_STRUCTURE_TYPE_PIPELINE_DB_STATE_CREATE_INFO,
&cb_state,
{XGL_CH_FMT_R32, XGL_NUM_FMT_DS} // XGL_FORMAT
};
};
void XglPipelineObj::AddShader(XglShaderObj* shader)
{
m_shaderObjs.push_back(shader);
}
void XglPipelineObj::AddVertexInputAttribs(XGL_VERTEX_INPUT_ATTRIBUTE_DESCRIPTION* vi_attrib, int count)
{
m_vi_attribs = vi_attrib;
m_vi_attrib_count = count;
}
void XglPipelineObj::AddVertexInputBindings(XGL_VERTEX_INPUT_BINDING_DESCRIPTION* vi_binding, int count)
{
m_vi_binding = vi_binding;
m_vi_binding_count = count;
}
void XglPipelineObj::AddVertexDataBuffer(XglConstantBufferObj* vertexDataBuffer, int binding)
{
m_vertexBufferObjs.push_back(vertexDataBuffer);
m_vertexBufferBindings.push_back(binding);
m_vertexBufferCount++;
}
void XglPipelineObj::BindPipelineCommandBuffer(XGL_CMD_BUFFER m_cmdBuffer, XglDescriptorSetObj descriptorSet)
{
XGL_RESULT err;
XGL_VOID* head_ptr = &db_state;
XGL_GRAPHICS_PIPELINE_CREATE_INFO info = {};
XGL_PIPELINE_SHADER_STAGE_CREATE_INFO* shaderCreateInfo;
XGL_VERTEX_INPUT_ATTRIBUTE_DESCRIPTION* vertexInputAttrib;
for (int i=0; i<m_shaderObjs.size(); i++)
{
shaderCreateInfo = m_shaderObjs[i]->GetStageCreateInfo(descriptorSet);
shaderCreateInfo->pNext = head_ptr;
head_ptr = shaderCreateInfo;
}
if (m_vi_attrib_count && m_vi_binding_count)
{
vi_state = {
XGL_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_CREATE_INFO, // sType;
head_ptr, // pNext;
m_vi_binding_count, // bindingCount
m_vi_binding, // pVertexBindingDescriptions;
m_vi_attrib_count, // attributeCount; // number of attributes
m_vi_attribs // pVertexAttributeDescriptions;
};
head_ptr = &vi_state;
}
info.sType = XGL_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO;
info.pNext = head_ptr;
info.flags = 0;
err = xglCreateGraphicsPipeline(m_device->device(), &info, &pipeline);
err = m_device->AllocAndBindGpuMemory(pipeline, "Pipeline", &m_pipe_mem);
xglCmdBindPipeline( m_cmdBuffer, XGL_PIPELINE_BIND_POINT_GRAPHICS, pipeline );
for (int i=0; i < m_vertexBufferCount; i++)
{
xglCmdBindVertexData(m_cmdBuffer, m_vertexBufferObjs[i]->m_constantBufferView.mem, m_vertexBufferObjs[i]->m_constantBufferView.offset, m_vertexBufferBindings[i]);
}
// xglCmdBindVertexData(m_cmdBuffer, meshBuffer.m_constantBufferView.mem, meshBuffer.m_constantBufferView.offset, 0);
}
class XglMemoryRefManager{
public:
XglMemoryRefManager();
void AddMemoryRef(XGL_GPU_MEMORY* memoryRef);
XGL_MEMORY_REF* GetMemoryRefList();
int GetNumRefs();
protected:
int m_numRefs;
vector<XGL_GPU_MEMORY*> m_bufferObjs;
};
XglMemoryRefManager::XglMemoryRefManager() {
}
void XglMemoryRefManager::AddMemoryRef(XGL_GPU_MEMORY *memoryRef) {
m_bufferObjs.push_back(memoryRef);
}
XGL_MEMORY_REF* XglMemoryRefManager::GetMemoryRefList() {
XGL_MEMORY_REF *localRefs;
XGL_UINT32 numRefs=m_bufferObjs.size();
if (numRefs <= 0)
return NULL;
localRefs = (XGL_MEMORY_REF*) malloc( numRefs * sizeof(XGL_MEMORY_REF) );
for (int i=0; i<numRefs; i++)
{
localRefs[i].flags = 0;
localRefs[i].mem = *m_bufferObjs[i];
}
return localRefs;
}
int XglMemoryRefManager::GetNumRefs() {
return m_bufferObjs.size();
}