blob: 7d3c77720f100f6385d5eb4423e75203b4f3b597 [file] [log] [blame]
/*
* Vulkan Tests
*
* Copyright (C) 2014 LunarG, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*
* Authors:
* Courtney Goeltzenleuchter <courtney@lunarg.com>
*/
#include "vkrenderframework.h"
#define ARRAY_SIZE(a) (sizeof(a) / sizeof(a[0]))
VkRenderFramework::VkRenderFramework() :
m_cmdBuffer( VK_NULL_HANDLE ),
m_renderPass(VK_NULL_HANDLE),
m_framebuffer(VK_NULL_HANDLE),
m_stateRaster( VK_NULL_HANDLE ),
m_colorBlend( VK_NULL_HANDLE ),
m_stateViewport( VK_NULL_HANDLE ),
m_stateDepthStencil( VK_NULL_HANDLE ),
m_width( 256.0 ), // default window width
m_height( 256.0 ), // default window height
m_render_target_fmt( VK_FORMAT_R8G8B8A8_UNORM ),
m_depth_stencil_fmt( VK_FORMAT_UNDEFINED ),
m_depth_clear_color( 1.0 ),
m_stencil_clear_color( 0 )
{
// clear the back buffer to dark grey
m_clear_color.color.rawColor[0] = 64;
m_clear_color.color.rawColor[1] = 64;
m_clear_color.color.rawColor[2] = 64;
m_clear_color.color.rawColor[3] = 0;
m_clear_color.useRawValue = true;
}
VkRenderFramework::~VkRenderFramework()
{
}
void VkRenderFramework::InitFramework()
{
VkResult err;
VkInstanceCreateInfo instInfo = {};
instInfo.sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO;
instInfo.pNext = NULL;
instInfo.pAppInfo = &app_info;
instInfo.pAllocCb = NULL;
instInfo.extensionCount = 0;
instInfo.ppEnabledExtensionNames = NULL;
err = vkCreateInstance(&instInfo, &this->inst);
ASSERT_VK_SUCCESS(err);
err = vkEnumeratePhysicalDevices(inst, &this->gpu_count, NULL);
ASSERT_LE(this->gpu_count, ARRAY_SIZE(objs)) << "Too many gpus";
ASSERT_VK_SUCCESS(err);
err = vkEnumeratePhysicalDevices(inst, &this->gpu_count, objs);
ASSERT_VK_SUCCESS(err);
ASSERT_GE(this->gpu_count, 1) << "No GPU available";
m_device = new VkDeviceObj(0, objs[0]);
m_device->get_device_queue();
m_depthStencil = new VkDepthStencilObj();
}
void VkRenderFramework::ShutdownFramework()
{
if (m_colorBlend) vkDestroyObject(m_colorBlend);
if (m_stateDepthStencil) vkDestroyObject(m_stateDepthStencil);
if (m_stateRaster) vkDestroyObject(m_stateRaster);
if (m_cmdBuffer) vkDestroyObject(m_cmdBuffer);
if (m_framebuffer) vkDestroyObject(m_framebuffer);
if (m_renderPass) vkDestroyObject(m_renderPass);
if (m_stateViewport) {
vkDestroyObject(m_stateViewport);
}
while (!m_renderTargets.empty()) {
vkDestroyObject(m_renderTargets.back()->targetView());
vkQueueBindObjectMemory(m_device->m_queue, m_renderTargets.back()->image(), 0, VK_NULL_HANDLE, 0);
vkDestroyObject(m_renderTargets.back()->image());
vkFreeMemory(m_renderTargets.back()->memory());
m_renderTargets.pop_back();
}
delete m_depthStencil;
// reset the driver
delete m_device;
vkDestroyInstance(this->inst);
}
void VkRenderFramework::InitState()
{
VkResult err;
m_render_target_fmt = VK_FORMAT_B8G8R8A8_UNORM;
// create a raster state (solid, back-face culling)
VkDynamicRsStateCreateInfo raster = {};
raster.sType = VK_STRUCTURE_TYPE_DYNAMIC_RS_STATE_CREATE_INFO;
raster.pointSize = 1.0;
err = vkCreateDynamicRasterState( device(), &raster, &m_stateRaster );
ASSERT_VK_SUCCESS(err);
VkDynamicCbStateCreateInfo blend = {};
blend.sType = VK_STRUCTURE_TYPE_DYNAMIC_CB_STATE_CREATE_INFO;
err = vkCreateDynamicColorBlendState(device(), &blend, &m_colorBlend);
ASSERT_VK_SUCCESS( err );
VkDynamicDsStateCreateInfo depthStencil = {};
depthStencil.sType = VK_STRUCTURE_TYPE_DYNAMIC_DS_STATE_CREATE_INFO;
depthStencil.minDepth = 0.f;
depthStencil.maxDepth = 1.f;
depthStencil.stencilFrontRef = 0;
depthStencil.stencilBackRef = 0;
err = vkCreateDynamicDepthStencilState( device(), &depthStencil, &m_stateDepthStencil );
ASSERT_VK_SUCCESS( err );
VkCmdBufferCreateInfo cmdInfo = {};
cmdInfo.sType = VK_STRUCTURE_TYPE_CMD_BUFFER_CREATE_INFO;
cmdInfo.queueNodeIndex = m_device->graphics_queue_node_index_;
err = vkCreateCommandBuffer(device(), &cmdInfo, &m_cmdBuffer);
ASSERT_VK_SUCCESS(err) << "vkCreateCommandBuffer failed";
}
void VkRenderFramework::InitViewport(float width, float height)
{
VkResult err;
VkViewport viewport;
VkRect scissor;
VkDynamicVpStateCreateInfo viewportCreate = {};
viewportCreate.sType = VK_STRUCTURE_TYPE_DYNAMIC_VP_STATE_CREATE_INFO;
viewportCreate.viewportAndScissorCount = 1;
viewport.originX = 0;
viewport.originY = 0;
viewport.width = 1.f * width;
viewport.height = 1.f * height;
viewport.minDepth = 0.f;
viewport.maxDepth = 1.f;
scissor.extent.width = width;
scissor.extent.height = height;
scissor.offset.x = 0;
scissor.offset.y = 0;
viewportCreate.pViewports = &viewport;
viewportCreate.pScissors = &scissor;
err = vkCreateDynamicViewportState( device(), &viewportCreate, &m_stateViewport );
ASSERT_VK_SUCCESS( err );
m_width = width;
m_height = height;
}
void VkRenderFramework::InitViewport()
{
InitViewport(m_width, m_height);
}
void VkRenderFramework::InitRenderTarget()
{
InitRenderTarget(1);
}
void VkRenderFramework::InitRenderTarget(uint32_t targets)
{
InitRenderTarget(targets, NULL);
}
void VkRenderFramework::InitRenderTarget(VkDepthStencilBindInfo *dsBinding)
{
InitRenderTarget(1, dsBinding);
}
void VkRenderFramework::InitRenderTarget(uint32_t targets, VkDepthStencilBindInfo *dsBinding)
{
std::vector<VkAttachmentLoadOp> load_ops;
std::vector<VkAttachmentStoreOp> store_ops;
std::vector<VkClearColor> clear_colors;
uint32_t i;
for (i = 0; i < targets; i++) {
VkImageObj *img = new VkImageObj(m_device);
img->init(m_width, m_height, m_render_target_fmt,
VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT);
m_colorBindings[i].view = img->targetView();
m_colorBindings[i].layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
m_renderTargets.push_back(img);
load_ops.push_back(VK_ATTACHMENT_LOAD_OP_LOAD);
store_ops.push_back(VK_ATTACHMENT_STORE_OP_STORE);
clear_colors.push_back(m_clear_color);
// m_mem_ref_mgr.AddMemoryRefs(*img);
}
// Create Framebuffer and RenderPass with color attachments and any depth/stencil attachment
VkFramebufferCreateInfo fb_info = {};
fb_info.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO;
fb_info.pNext = NULL;
fb_info.colorAttachmentCount = m_renderTargets.size();
fb_info.pColorAttachments = m_colorBindings;
fb_info.pDepthStencilAttachment = dsBinding;
fb_info.sampleCount = 1;
fb_info.width = (uint32_t)m_width;
fb_info.height = (uint32_t)m_height;
fb_info.layers = 1;
vkCreateFramebuffer(device(), &fb_info, &m_framebuffer);
VkRenderPassCreateInfo rp_info = {};
rp_info.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO;
rp_info.renderArea.extent.width = m_width;
rp_info.renderArea.extent.height = m_height;
rp_info.colorAttachmentCount = m_renderTargets.size();
rp_info.pColorFormats = &m_render_target_fmt;
rp_info.pColorLayouts = &m_colorBindings[0].layout;
rp_info.pColorLoadOps = &load_ops[0];
rp_info.pColorStoreOps = &store_ops[0];
rp_info.pColorLoadClearValues = &clear_colors[0];
rp_info.depthStencilFormat = m_depth_stencil_fmt;
if (dsBinding) {
rp_info.depthStencilLayout = dsBinding->layout;
}
rp_info.depthLoadOp = VK_ATTACHMENT_LOAD_OP_LOAD;
rp_info.depthLoadClearValue = m_depth_clear_color;
rp_info.depthStoreOp = VK_ATTACHMENT_STORE_OP_STORE;
rp_info.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_LOAD;
rp_info.stencilLoadClearValue = m_stencil_clear_color;
rp_info.stencilStoreOp = VK_ATTACHMENT_STORE_OP_STORE;
vkCreateRenderPass(device(), &rp_info, &m_renderPass);
}
VkDeviceObj::VkDeviceObj(uint32_t id, VkPhysicalDevice obj) :
vk_testing::Device(obj), id(id)
{
init();
props = gpu().properties();
queue_props = &gpu().queue_properties()[0];
}
void VkDeviceObj::get_device_queue()
{
ASSERT_NE(true, graphics_queues().empty());
m_queue = graphics_queues()[0]->obj();
}
VkDescriptorSetObj::VkDescriptorSetObj(VkDeviceObj *device)
{
m_device = device;
m_nextSlot = 0;
}
VkDescriptorSetObj::~VkDescriptorSetObj()
{
delete m_set;
}
int VkDescriptorSetObj::AppendDummy()
{
/* request a descriptor but do not update it */
VkDescriptorTypeCount tc = {};
tc.type = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER;
tc.count = 1;
m_type_counts.push_back(tc);
return m_nextSlot++;
}
int VkDescriptorSetObj::AppendBuffer(VkDescriptorType type, VkConstantBufferObj &constantBuffer)
{
VkDescriptorTypeCount tc = {};
tc.type = type;
tc.count = 1;
m_type_counts.push_back(tc);
m_updateBuffers.push_back(vk_testing::DescriptorSet::update(type,
m_nextSlot, 0, 1, &constantBuffer.m_bufferViewInfo));
// Track mem references for this descriptor set object
mem_ref_mgr.AddMemoryRefs(constantBuffer);
return m_nextSlot++;
}
int VkDescriptorSetObj::AppendSamplerTexture( VkSamplerObj* sampler, VkTextureObj* texture)
{
VkDescriptorTypeCount tc = {};
tc.type = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
tc.count = 1;
m_type_counts.push_back(tc);
VkSamplerImageViewInfo tmp = {};
tmp.sampler = sampler->obj();
tmp.pImageView = &texture->m_textureViewInfo;
m_samplerTextureInfo.push_back(tmp);
m_updateSamplerTextures.push_back(vk_testing::DescriptorSet::update(m_nextSlot, 0, 1,
(const VkSamplerImageViewInfo *) NULL));
// Track mem references for the texture referenced here
mem_ref_mgr.AddMemoryRefs(*texture);
return m_nextSlot++;
}
VkDescriptorSetLayoutChain VkDescriptorSetObj::GetLayoutChain() const
{
return m_layout_chain.obj();
}
VkDescriptorSet VkDescriptorSetObj::GetDescriptorSetHandle() const
{
return m_set->obj();
}
void VkDescriptorSetObj::CreateVKDescriptorSet(VkCommandBufferObj *cmdBuffer)
{
// create VkDescriptorPool
VkDescriptorPoolCreateInfo pool = {};
pool.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO;
pool.count = m_type_counts.size();
pool.pTypeCount = &m_type_counts[0];
init(*m_device, VK_DESCRIPTOR_POOL_USAGE_ONE_SHOT, 1, pool);
// create VkDescriptorSetLayout
vector<VkDescriptorSetLayoutBinding> bindings;
bindings.resize(m_type_counts.size());
for (int i = 0; i < m_type_counts.size(); i++) {
bindings[i].descriptorType = m_type_counts[i].type;
bindings[i].count = m_type_counts[i].count;
bindings[i].stageFlags = VK_SHADER_STAGE_ALL;
bindings[i].pImmutableSamplers = NULL;
}
// create VkDescriptorSetLayout
VkDescriptorSetLayoutCreateInfo layout = {};
layout.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO;
layout.count = bindings.size();
layout.pBinding = &bindings[0];
m_layout.init(*m_device, layout);
vector<const vk_testing::DescriptorSetLayout *> layouts;
layouts.push_back(&m_layout);
m_layout_chain.init(*m_device, layouts);
// create VkDescriptorSet
m_set = alloc_sets(*m_device, VK_DESCRIPTOR_SET_USAGE_STATIC, m_layout);
// build the update array
vector<const void *> update_array;
for (int i = 0; i < m_updateBuffers.size(); i++) {
update_array.push_back(&m_updateBuffers[i]);
}
for (int i = 0; i < m_updateSamplerTextures.size(); i++) {
m_updateSamplerTextures[i].pSamplerImageViews = &m_samplerTextureInfo[i];
update_array.push_back(&m_updateSamplerTextures[i]);
}
// do the updates
m_device->begin_descriptor_pool_update(VK_DESCRIPTOR_UPDATE_MODE_FASTEST);
clear_sets(*m_set);
m_set->update(update_array);
m_device->end_descriptor_pool_update(*cmdBuffer);
}
VkImageObj::VkImageObj(VkDeviceObj *dev)
{
m_device = dev;
m_imageInfo.view = VK_NULL_HANDLE;
m_imageInfo.layout = VK_IMAGE_LAYOUT_GENERAL;
}
void VkImageObj::ImageMemoryBarrier(
VkCommandBufferObj *cmd_buf,
VkImageAspect aspect,
VkFlags output_mask /*=
VK_MEMORY_OUTPUT_CPU_WRITE_BIT |
VK_MEMORY_OUTPUT_SHADER_WRITE_BIT |
VK_MEMORY_OUTPUT_COLOR_ATTACHMENT_BIT |
VK_MEMORY_OUTPUT_DEPTH_STENCIL_ATTACHMENT_BIT |
VK_MEMORY_OUTPUT_COPY_BIT*/,
VkFlags input_mask /*=
VK_MEMORY_INPUT_CPU_READ_BIT |
VK_MEMORY_INPUT_INDIRECT_COMMAND_BIT |
VK_MEMORY_INPUT_INDEX_FETCH_BIT |
VK_MEMORY_INPUT_VERTEX_ATTRIBUTE_FETCH_BIT |
VK_MEMORY_INPUT_UNIFORM_READ_BIT |
VK_MEMORY_INPUT_SHADER_READ_BIT |
VK_MEMORY_INPUT_COLOR_ATTACHMENT_BIT |
VK_MEMORY_INPUT_DEPTH_STENCIL_ATTACHMENT_BIT |
VK_MEMORY_INPUT_COPY_BIT*/,
VkImageLayout image_layout)
{
const VkImageSubresourceRange subresourceRange = subresource_range(aspect, 0, 1, 0, 1);
VkImageMemoryBarrier barrier;
barrier = image_memory_barrier(output_mask, input_mask, layout(), image_layout,
subresourceRange);
VkImageMemoryBarrier *pmemory_barrier = &barrier;
VkPipeEvent pipe_events[] = { VK_PIPE_EVENT_COMMANDS_COMPLETE };
// write barrier to the command buffer
vkCmdPipelineBarrier(cmd_buf->obj(), VK_WAIT_EVENT_TOP_OF_PIPE, 1, pipe_events, 1, (const void **)&pmemory_barrier);
}
void VkImageObj::SetLayout(VkCommandBufferObj *cmd_buf,
VkImageAspect aspect,
VkImageLayout image_layout)
{
VkFlags output_mask, input_mask;
const VkFlags all_cache_outputs =
VK_MEMORY_OUTPUT_CPU_WRITE_BIT |
VK_MEMORY_OUTPUT_SHADER_WRITE_BIT |
VK_MEMORY_OUTPUT_COLOR_ATTACHMENT_BIT |
VK_MEMORY_OUTPUT_DEPTH_STENCIL_ATTACHMENT_BIT |
VK_MEMORY_OUTPUT_TRANSFER_BIT;
const VkFlags all_cache_inputs =
VK_MEMORY_INPUT_CPU_READ_BIT |
VK_MEMORY_INPUT_INDIRECT_COMMAND_BIT |
VK_MEMORY_INPUT_INDEX_FETCH_BIT |
VK_MEMORY_INPUT_VERTEX_ATTRIBUTE_FETCH_BIT |
VK_MEMORY_INPUT_UNIFORM_READ_BIT |
VK_MEMORY_INPUT_SHADER_READ_BIT |
VK_MEMORY_INPUT_COLOR_ATTACHMENT_BIT |
VK_MEMORY_INPUT_DEPTH_STENCIL_ATTACHMENT_BIT |
VK_MEMORY_INPUT_TRANSFER_BIT;
if (image_layout == m_imageInfo.layout) {
return;
}
switch (image_layout) {
case VK_IMAGE_LAYOUT_TRANSFER_SOURCE_OPTIMAL:
output_mask = VK_MEMORY_OUTPUT_TRANSFER_BIT;
input_mask = VK_MEMORY_INPUT_SHADER_READ_BIT | VK_MEMORY_INPUT_TRANSFER_BIT;
break;
case VK_IMAGE_LAYOUT_TRANSFER_DESTINATION_OPTIMAL:
output_mask = VK_MEMORY_OUTPUT_TRANSFER_BIT;
input_mask = VK_MEMORY_INPUT_SHADER_READ_BIT | VK_MEMORY_INPUT_TRANSFER_BIT;
break;
case VK_IMAGE_LAYOUT_CLEAR_OPTIMAL:
break;
case VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL:
output_mask = VK_MEMORY_OUTPUT_TRANSFER_BIT;
input_mask = VK_MEMORY_INPUT_SHADER_READ_BIT | VK_MEMORY_INPUT_TRANSFER_BIT;
break;
default:
output_mask = all_cache_outputs;
input_mask = all_cache_inputs;
break;
}
ImageMemoryBarrier(cmd_buf, aspect, output_mask, input_mask, image_layout);
m_imageInfo.layout = image_layout;
}
void VkImageObj::SetLayout(VkImageAspect aspect,
VkImageLayout image_layout)
{
VkResult err;
VkCommandBufferObj cmd_buf(m_device);
/* Build command buffer to set image layout in the driver */
err = cmd_buf.BeginCommandBuffer();
assert(!err);
SetLayout(&cmd_buf, aspect, image_layout);
err = cmd_buf.EndCommandBuffer();
assert(!err);
cmd_buf.QueueCommandBuffer();
}
bool VkImageObj::IsCompatible(VkFlags usage, VkFlags features)
{
if ((usage & VK_IMAGE_USAGE_SAMPLED_BIT) &&
!(features & VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT))
return false;
return true;
}
void VkImageObj::init(uint32_t w, uint32_t h,
VkFormat fmt, VkFlags usage,
VkImageTiling requested_tiling)
{
uint32_t mipCount;
VkFormatProperties image_fmt;
VkImageTiling tiling;
VkResult err;
size_t size;
mipCount = 0;
uint32_t _w = w;
uint32_t _h = h;
while( ( _w > 0 ) || ( _h > 0 ) )
{
_w >>= 1;
_h >>= 1;
mipCount++;
}
size = sizeof(image_fmt);
err = vkGetFormatInfo(m_device->obj(), fmt,
VK_FORMAT_INFO_TYPE_PROPERTIES,
&size, &image_fmt);
ASSERT_VK_SUCCESS(err);
if (requested_tiling == VK_IMAGE_TILING_LINEAR) {
if (IsCompatible(usage, image_fmt.linearTilingFeatures)) {
tiling = VK_IMAGE_TILING_LINEAR;
} else if (IsCompatible(usage, image_fmt.optimalTilingFeatures)) {
tiling = VK_IMAGE_TILING_OPTIMAL;
} else {
ASSERT_TRUE(false) << "Error: Cannot find requested tiling configuration";
}
} else if (IsCompatible(usage, image_fmt.optimalTilingFeatures)) {
tiling = VK_IMAGE_TILING_OPTIMAL;
} else if (IsCompatible(usage, image_fmt.linearTilingFeatures)) {
tiling = VK_IMAGE_TILING_LINEAR;
} else {
ASSERT_TRUE(false) << "Error: Cannot find requested tiling configuration";
}
VkImageCreateInfo imageCreateInfo = vk_testing::Image::create_info();
imageCreateInfo.imageType = VK_IMAGE_TYPE_2D;
imageCreateInfo.format = fmt;
imageCreateInfo.extent.width = w;
imageCreateInfo.extent.height = h;
imageCreateInfo.mipLevels = mipCount;
imageCreateInfo.tiling = tiling;
imageCreateInfo.usage = usage;
vk_testing::Image::init(*m_device, imageCreateInfo);
if (usage & VK_IMAGE_USAGE_SAMPLED_BIT) {
SetLayout(VK_IMAGE_ASPECT_COLOR, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
} else {
SetLayout(VK_IMAGE_ASPECT_COLOR, VK_IMAGE_LAYOUT_GENERAL);
}
}
VkResult VkImageObj::MapMemory(void** ptr)
{
*ptr = map();
return (*ptr) ? VK_SUCCESS : VK_ERROR_UNKNOWN;
}
VkResult VkImageObj::UnmapMemory()
{
unmap();
return VK_SUCCESS;
}
VkResult VkImageObj::CopyImage(VkImageObj &src_image)
{
VkResult err;
VkCommandBufferObj cmd_buf(m_device);
VkImageLayout src_image_layout, dest_image_layout;
/* Build command buffer to copy staging texture to usable texture */
err = cmd_buf.BeginCommandBuffer();
assert(!err);
/* TODO: Can we determine image aspect from image object? */
src_image_layout = src_image.layout();
src_image.SetLayout(&cmd_buf, VK_IMAGE_ASPECT_COLOR, VK_IMAGE_LAYOUT_TRANSFER_SOURCE_OPTIMAL);
dest_image_layout = this->layout();
this->SetLayout(&cmd_buf, VK_IMAGE_ASPECT_COLOR, VK_IMAGE_LAYOUT_TRANSFER_DESTINATION_OPTIMAL);
VkImageCopy copy_region = {};
copy_region.srcSubresource.aspect = VK_IMAGE_ASPECT_COLOR;
copy_region.srcSubresource.arraySlice = 0;
copy_region.srcSubresource.mipLevel = 0;
copy_region.srcOffset.x = 0;
copy_region.srcOffset.y = 0;
copy_region.srcOffset.z = 0;
copy_region.destSubresource.aspect = VK_IMAGE_ASPECT_COLOR;
copy_region.destSubresource.arraySlice = 0;
copy_region.destSubresource.mipLevel = 0;
copy_region.destOffset.x = 0;
copy_region.destOffset.y = 0;
copy_region.destOffset.z = 0;
copy_region.extent = src_image.extent();
vkCmdCopyImage(cmd_buf.obj(),
src_image.obj(), src_image.layout(),
obj(), layout(),
1, &copy_region);
cmd_buf.mem_ref_mgr.AddMemoryRefs(src_image);
cmd_buf.mem_ref_mgr.AddMemoryRefs(*this);
src_image.SetLayout(&cmd_buf, VK_IMAGE_ASPECT_COLOR, src_image_layout);
this->SetLayout(&cmd_buf, VK_IMAGE_ASPECT_COLOR, dest_image_layout);
err = cmd_buf.EndCommandBuffer();
assert(!err);
cmd_buf.QueueCommandBuffer();
return VK_SUCCESS;
}
VkTextureObj::VkTextureObj(VkDeviceObj *device, uint32_t *colors)
:VkImageObj(device)
{
m_device = device;
const VkFormat tex_format = VK_FORMAT_B8G8R8A8_UNORM;
uint32_t tex_colors[2] = { 0xffff0000, 0xff00ff00 };
void *data;
int32_t x, y;
VkImageObj stagingImage(device);
stagingImage.init(16, 16, tex_format, 0, VK_IMAGE_TILING_LINEAR);
VkSubresourceLayout layout = stagingImage.subresource_layout(subresource(VK_IMAGE_ASPECT_COLOR, 0, 0));
if (colors == NULL)
colors = tex_colors;
memset(&m_textureViewInfo,0,sizeof(m_textureViewInfo));
m_textureViewInfo.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_ATTACH_INFO;
VkImageViewCreateInfo view = {};
view.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
view.pNext = NULL;
view.image = VK_NULL_HANDLE;
view.viewType = VK_IMAGE_VIEW_TYPE_2D;
view.format = tex_format;
view.channels.r = VK_CHANNEL_SWIZZLE_R;
view.channels.g = VK_CHANNEL_SWIZZLE_G;
view.channels.b = VK_CHANNEL_SWIZZLE_B;
view.channels.a = VK_CHANNEL_SWIZZLE_A;
view.subresourceRange.aspect = VK_IMAGE_ASPECT_COLOR;
view.subresourceRange.baseMipLevel = 0;
view.subresourceRange.mipLevels = 1;
view.subresourceRange.baseArraySlice = 0;
view.subresourceRange.arraySize = 1;
view.minLod = 0.0f;
/* create image */
init(16, 16, tex_format, VK_IMAGE_USAGE_SAMPLED_BIT, VK_IMAGE_TILING_OPTIMAL);
/* create image view */
view.image = obj();
m_textureView.init(*m_device, view);
m_textureViewInfo.view = m_textureView.obj();
data = stagingImage.map();
for (y = 0; y < extent().height; y++) {
uint32_t *row = (uint32_t *) ((char *) data + layout.rowPitch * y);
for (x = 0; x < extent().width; x++)
row[x] = colors[(x & 1) ^ (y & 1)];
}
stagingImage.unmap();
VkImageObj::CopyImage(stagingImage);
}
VkSamplerObj::VkSamplerObj(VkDeviceObj *device)
{
m_device = device;
VkSamplerCreateInfo samplerCreateInfo;
memset(&samplerCreateInfo,0,sizeof(samplerCreateInfo));
samplerCreateInfo.sType = VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO;
samplerCreateInfo.magFilter = VK_TEX_FILTER_NEAREST;
samplerCreateInfo.minFilter = VK_TEX_FILTER_NEAREST;
samplerCreateInfo.mipMode = VK_TEX_MIPMAP_MODE_BASE;
samplerCreateInfo.addressU = VK_TEX_ADDRESS_WRAP;
samplerCreateInfo.addressV = VK_TEX_ADDRESS_WRAP;
samplerCreateInfo.addressW = VK_TEX_ADDRESS_WRAP;
samplerCreateInfo.mipLodBias = 0.0;
samplerCreateInfo.maxAnisotropy = 0.0;
samplerCreateInfo.compareOp = VK_COMPARE_OP_NEVER;
samplerCreateInfo.minLod = 0.0;
samplerCreateInfo.maxLod = 0.0;
samplerCreateInfo.borderColor = VK_BORDER_COLOR_OPAQUE_WHITE;
init(*m_device, samplerCreateInfo);
}
/*
* Basic ConstantBuffer constructor. Then use create methods to fill in the details.
*/
VkConstantBufferObj::VkConstantBufferObj(VkDeviceObj *device)
{
m_device = device;
m_commandBuffer = 0;
memset(&m_bufferViewInfo,0,sizeof(m_bufferViewInfo));
}
VkConstantBufferObj::~VkConstantBufferObj()
{
// TODO: Should we call QueueRemoveMemReference for the constant buffer memory here?
if (m_commandBuffer) {
delete m_commandBuffer;
}
}
VkConstantBufferObj::VkConstantBufferObj(VkDeviceObj *device, int constantCount, int constantSize, const void* data)
{
m_device = device;
m_commandBuffer = 0;
memset(&m_bufferViewInfo,0,sizeof(m_bufferViewInfo));
m_numVertices = constantCount;
m_stride = constantSize;
const size_t allocationSize = constantCount * constantSize;
init(*m_device, allocationSize);
void *pData = map();
memcpy(pData, data, allocationSize);
unmap();
// set up the buffer view for the constant buffer
VkBufferViewCreateInfo view_info = {};
view_info.sType = VK_STRUCTURE_TYPE_BUFFER_VIEW_CREATE_INFO;
view_info.buffer = obj();
view_info.viewType = VK_BUFFER_VIEW_TYPE_RAW;
view_info.offset = 0;
view_info.range = allocationSize;
m_bufferView.init(*m_device, view_info);
this->m_bufferViewInfo.sType = VK_STRUCTURE_TYPE_BUFFER_VIEW_ATTACH_INFO;
this->m_bufferViewInfo.view = m_bufferView.obj();
}
void VkConstantBufferObj::Bind(VkCmdBuffer cmdBuffer, VkDeviceSize offset, uint32_t binding)
{
vkCmdBindVertexBuffers(cmdBuffer, binding, 1, &obj(), &offset);
}
void VkConstantBufferObj::BufferMemoryBarrier(
VkFlags outputMask /*=
VK_MEMORY_OUTPUT_CPU_WRITE_BIT |
VK_MEMORY_OUTPUT_SHADER_WRITE_BIT |
VK_MEMORY_OUTPUT_COLOR_ATTACHMENT_BIT |
VK_MEMORY_OUTPUT_DEPTH_STENCIL_ATTACHMENT_BIT |
VK_MEMORY_OUTPUT_COPY_BIT*/,
VkFlags inputMask /*=
VK_MEMORY_INPUT_CPU_READ_BIT |
VK_MEMORY_INPUT_INDIRECT_COMMAND_BIT |
VK_MEMORY_INPUT_INDEX_FETCH_BIT |
VK_MEMORY_INPUT_VERTEX_ATTRIBUTE_FETCH_BIT |
VK_MEMORY_INPUT_UNIFORM_READ_BIT |
VK_MEMORY_INPUT_SHADER_READ_BIT |
VK_MEMORY_INPUT_COLOR_ATTACHMENT_BIT |
VK_MEMORY_INPUT_DEPTH_STENCIL_ATTACHMENT_BIT |
VK_MEMORY_INPUT_COPY_BIT*/)
{
VkResult err = VK_SUCCESS;
if (!m_commandBuffer)
{
m_fence.init(*m_device, vk_testing::Fence::create_info());
m_commandBuffer = new VkCommandBufferObj(m_device);
}
else
{
m_device->wait(m_fence);
m_commandBuffer->mem_ref_mgr.EmitRemoveMemoryRefs(m_device->m_queue);
}
// open the command buffer
VkCmdBufferBeginInfo cmd_buf_info = {};
cmd_buf_info.sType = VK_STRUCTURE_TYPE_CMD_BUFFER_BEGIN_INFO;
cmd_buf_info.pNext = NULL;
cmd_buf_info.flags = 0;
err = m_commandBuffer->BeginCommandBuffer(&cmd_buf_info);
ASSERT_VK_SUCCESS(err);
VkBufferMemoryBarrier memory_barrier =
buffer_memory_barrier(outputMask, inputMask, 0, m_numVertices * m_stride);
VkBufferMemoryBarrier *pmemory_barrier = &memory_barrier;
VkPipeEvent set_events[] = { VK_PIPE_EVENT_COMMANDS_COMPLETE };
// write barrier to the command buffer
m_commandBuffer->PipelineBarrier(VK_WAIT_EVENT_TOP_OF_PIPE, 1, set_events, 1, (const void **)&pmemory_barrier);
// finish recording the command buffer
err = m_commandBuffer->EndCommandBuffer();
ASSERT_VK_SUCCESS(err);
/*
* Tell driver about memory references made in this command buffer
* Note: Since this command buffer only has a PipelineBarrier
* command there really aren't any memory refs to worry about.
*/
m_commandBuffer->mem_ref_mgr.EmitAddMemoryRefs(m_device->m_queue);
// submit the command buffer to the universal queue
VkCmdBuffer bufferArray[1];
bufferArray[0] = m_commandBuffer->GetBufferHandle();
err = vkQueueSubmit( m_device->m_queue, 1, bufferArray, m_fence.obj() );
ASSERT_VK_SUCCESS(err);
}
VkIndexBufferObj::VkIndexBufferObj(VkDeviceObj *device)
: VkConstantBufferObj(device)
{
}
void VkIndexBufferObj::CreateAndInitBuffer(int numIndexes, VkIndexType indexType, const void* data)
{
VkFormat viewFormat;
m_numVertices = numIndexes;
m_indexType = indexType;
switch (indexType) {
case VK_INDEX_TYPE_UINT8:
m_stride = 1;
viewFormat = VK_FORMAT_R8_UINT;
break;
case VK_INDEX_TYPE_UINT16:
m_stride = 2;
viewFormat = VK_FORMAT_R16_UINT;
break;
case VK_INDEX_TYPE_UINT32:
m_stride = 4;
viewFormat = VK_FORMAT_R32_UINT;
break;
default:
assert(!"unknown index type");
break;
}
const size_t allocationSize = numIndexes * m_stride;
init(*m_device, allocationSize);
void *pData = map();
memcpy(pData, data, allocationSize);
unmap();
// set up the buffer view for the constant buffer
VkBufferViewCreateInfo view_info = {};
view_info.sType = VK_STRUCTURE_TYPE_BUFFER_VIEW_CREATE_INFO;
view_info.buffer = obj();
view_info.viewType = VK_BUFFER_VIEW_TYPE_FORMATTED;
view_info.format = viewFormat;
view_info.offset = 0;
view_info.range = allocationSize;
m_bufferView.init(*m_device, view_info);
this->m_bufferViewInfo.sType = VK_STRUCTURE_TYPE_BUFFER_VIEW_ATTACH_INFO;
this->m_bufferViewInfo.view = m_bufferView.obj();
}
void VkIndexBufferObj::Bind(VkCmdBuffer cmdBuffer, VkDeviceSize offset)
{
vkCmdBindIndexBuffer(cmdBuffer, obj(), offset, m_indexType);
}
VkIndexType VkIndexBufferObj::GetIndexType()
{
return m_indexType;
}
VkPipelineShaderStageCreateInfo* VkShaderObj::GetStageCreateInfo()
{
VkPipelineShaderStageCreateInfo *stageInfo = (VkPipelineShaderStageCreateInfo*) calloc( 1,sizeof(VkPipelineShaderStageCreateInfo) );
stageInfo->sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
stageInfo->shader.stage = m_stage;
stageInfo->shader.shader = obj();
stageInfo->shader.linkConstBufferCount = 0;
stageInfo->shader.pLinkConstBufferInfo = VK_NULL_HANDLE;
return stageInfo;
}
VkShaderObj::VkShaderObj(VkDeviceObj *device, const char * shader_code, VkShaderStage stage, VkRenderFramework *framework)
{
VkResult err = VK_SUCCESS;
std::vector<unsigned int> spv;
VkShaderCreateInfo createInfo;
size_t shader_len;
m_stage = stage;
m_device = device;
createInfo.sType = VK_STRUCTURE_TYPE_SHADER_CREATE_INFO;
createInfo.pNext = NULL;
if (!framework->m_use_spv) {
shader_len = strlen(shader_code);
createInfo.codeSize = 3 * sizeof(uint32_t) + shader_len + 1;
createInfo.pCode = malloc(createInfo.codeSize);
createInfo.flags = 0;
/* try version 0 first: VkShaderStage followed by GLSL */
((uint32_t *) createInfo.pCode)[0] = ICD_SPV_MAGIC;
((uint32_t *) createInfo.pCode)[1] = 0;
((uint32_t *) createInfo.pCode)[2] = stage;
memcpy(((uint32_t *) createInfo.pCode + 3), shader_code, shader_len + 1);
err = init_try(*m_device, createInfo);
}
if (framework->m_use_spv || err) {
std::vector<unsigned int> spv;
err = VK_SUCCESS;
// Use Reference GLSL to SPV compiler
framework->GLSLtoSPV(stage, shader_code, spv);
createInfo.pCode = spv.data();
createInfo.codeSize = spv.size() * sizeof(unsigned int);
createInfo.flags = 0;
init(*m_device, createInfo);
}
}
VkPipelineObj::VkPipelineObj(VkDeviceObj *device)
{
m_device = device;
m_vi_state.attributeCount = m_vi_state.bindingCount = 0;
m_vertexBufferCount = 0;
m_ia_state.sType = VK_STRUCTURE_TYPE_PIPELINE_IA_STATE_CREATE_INFO;
m_ia_state.pNext = VK_NULL_HANDLE;
m_ia_state.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST;
m_ia_state.disableVertexReuse = VK_FALSE;
m_ia_state.primitiveRestartEnable = VK_FALSE;
m_ia_state.primitiveRestartIndex = 0;
m_rs_state.sType = VK_STRUCTURE_TYPE_PIPELINE_RS_STATE_CREATE_INFO;
m_rs_state.pNext = &m_ia_state;
m_rs_state.depthClipEnable = VK_FALSE;
m_rs_state.rasterizerDiscardEnable = VK_FALSE;
m_rs_state.programPointSize = VK_FALSE;
m_rs_state.pointOrigin = VK_COORDINATE_ORIGIN_UPPER_LEFT;
m_rs_state.provokingVertex = VK_PROVOKING_VERTEX_LAST;
m_rs_state.fillMode = VK_FILL_MODE_SOLID;
m_rs_state.cullMode = VK_CULL_MODE_NONE;
m_rs_state.frontFace = VK_FRONT_FACE_CCW;
memset(&m_cb_state,0,sizeof(m_cb_state));
m_cb_state.sType = VK_STRUCTURE_TYPE_PIPELINE_CB_STATE_CREATE_INFO;
m_cb_state.pNext = &m_rs_state;
m_cb_state.alphaToCoverageEnable = VK_FALSE;
m_cb_state.logicOp = VK_LOGIC_OP_COPY;
m_ms_state.pNext = &m_cb_state;
m_ms_state.sType = VK_STRUCTURE_TYPE_PIPELINE_MS_STATE_CREATE_INFO;
m_ms_state.multisampleEnable = VK_FALSE;
m_ms_state.sampleMask = 1; // Do we have to specify MSAA even just to disable it?
m_ms_state.samples = 1;
m_ms_state.minSampleShading = 0;
m_ms_state.sampleShadingEnable = 0;
m_ds_state.sType = VK_STRUCTURE_TYPE_PIPELINE_DS_STATE_CREATE_INFO;
m_ds_state.pNext = &m_ms_state,
m_ds_state.format = VK_FORMAT_D32_SFLOAT;
m_ds_state.depthTestEnable = VK_FALSE;
m_ds_state.depthWriteEnable = VK_FALSE;
m_ds_state.depthBoundsEnable = VK_FALSE;
m_ds_state.depthCompareOp = VK_COMPARE_OP_LESS_EQUAL;
m_ds_state.back.stencilDepthFailOp = VK_STENCIL_OP_KEEP;
m_ds_state.back.stencilFailOp = VK_STENCIL_OP_KEEP;
m_ds_state.back.stencilPassOp = VK_STENCIL_OP_KEEP;
m_ds_state.back.stencilCompareOp = VK_COMPARE_OP_ALWAYS;
m_ds_state.stencilTestEnable = VK_FALSE;
m_ds_state.front = m_ds_state.back;
VkPipelineCbAttachmentState att = {};
att.blendEnable = VK_FALSE;
att.format = VK_FORMAT_B8G8R8A8_UNORM;
att.channelWriteMask = 0xf;
AddColorAttachment(0, &att);
};
void VkPipelineObj::AddShader(VkShaderObj* shader)
{
m_shaderObjs.push_back(shader);
}
void VkPipelineObj::AddVertexInputAttribs(VkVertexInputAttributeDescription* vi_attrib, int count)
{
m_vi_state.pVertexAttributeDescriptions = vi_attrib;
m_vi_state.attributeCount = count;
}
void VkPipelineObj::AddVertexInputBindings(VkVertexInputBindingDescription* vi_binding, int count)
{
m_vi_state.pVertexBindingDescriptions = vi_binding;
m_vi_state.bindingCount = count;
}
void VkPipelineObj::AddVertexDataBuffer(VkConstantBufferObj* vertexDataBuffer, int binding)
{
m_vertexBufferObjs.push_back(vertexDataBuffer);
m_vertexBufferBindings.push_back(binding);
m_vertexBufferCount++;
}
void VkPipelineObj::AddColorAttachment(uint32_t binding, const VkPipelineCbAttachmentState *att)
{
if (binding+1 > m_colorAttachments.size())
{
m_colorAttachments.resize(binding+1);
}
m_colorAttachments[binding] = *att;
}
void VkPipelineObj::SetDepthStencil(VkPipelineDsStateCreateInfo *ds_state)
{
m_ds_state.format = ds_state->format;
m_ds_state.depthTestEnable = ds_state->depthTestEnable;
m_ds_state.depthWriteEnable = ds_state->depthWriteEnable;
m_ds_state.depthBoundsEnable = ds_state->depthBoundsEnable;
m_ds_state.depthCompareOp = ds_state->depthCompareOp;
m_ds_state.stencilTestEnable = ds_state->stencilTestEnable;
m_ds_state.back = ds_state->back;
m_ds_state.front = ds_state->front;
}
void VkPipelineObj::CreateVKPipeline(VkDescriptorSetObj &descriptorSet)
{
void* head_ptr = &m_ds_state;
VkGraphicsPipelineCreateInfo info = {};
VkPipelineShaderStageCreateInfo* shaderCreateInfo;
for (int i=0; i<m_shaderObjs.size(); i++)
{
shaderCreateInfo = m_shaderObjs[i]->GetStageCreateInfo();
shaderCreateInfo->pNext = head_ptr;
head_ptr = shaderCreateInfo;
}
if (m_vi_state.attributeCount && m_vi_state.bindingCount)
{
m_vi_state.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_CREATE_INFO;
m_vi_state.pNext = head_ptr;
head_ptr = &m_vi_state;
}
info.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO;
info.pNext = head_ptr;
info.flags = 0;
info.pSetLayoutChain = descriptorSet.GetLayoutChain();
m_cb_state.attachmentCount = m_colorAttachments.size();
m_cb_state.pAttachments = &m_colorAttachments[0];
init(*m_device, info);
}
vector<VkDeviceMemory> VkMemoryRefManager::mem_refs() const
{
std::vector<VkDeviceMemory> mems;
if (this->mem_refs_.size()) {
mems.reserve(this->mem_refs_.size());
for (uint32_t i = 0; i < this->mem_refs_.size(); i++)
mems.push_back(this->mem_refs_[i]);
}
return mems;
}
void VkMemoryRefManager::AddMemoryRefs(vk_testing::Object &vkObject)
{
const std::vector<VkDeviceMemory> mems = vkObject.memories();
AddMemoryRefs(mems);
}
void VkMemoryRefManager::AddMemoryRefs(vector<VkDeviceMemory> mem)
{
for (size_t i = 0; i < mem.size(); i++) {
if (mem[i] != NULL) {
this->mem_refs_.push_back(mem[i]);
}
}
}
void VkMemoryRefManager::EmitAddMemoryRefs(VkQueue queue)
{
vkQueueAddMemReferences(queue, mem_refs_.size(), &mem_refs_[0]);
}
void VkMemoryRefManager::EmitRemoveMemoryRefs(VkQueue queue)
{
vkQueueRemoveMemReferences(queue, mem_refs_.size(), &mem_refs_[0]);
}
VkCommandBufferObj::VkCommandBufferObj(VkDeviceObj *device)
: vk_testing::CmdBuffer(*device, vk_testing::CmdBuffer::create_info(device->graphics_queue_node_index_))
{
m_device = device;
}
VkCmdBuffer VkCommandBufferObj::GetBufferHandle()
{
return obj();
}
VkResult VkCommandBufferObj::BeginCommandBuffer(VkCmdBufferBeginInfo *pInfo)
{
begin(pInfo);
return VK_SUCCESS;
}
VkResult VkCommandBufferObj::BeginCommandBuffer(VkRenderPass renderpass_obj, VkFramebuffer framebuffer_obj)
{
begin(renderpass_obj, framebuffer_obj);
return VK_SUCCESS;
}
VkResult VkCommandBufferObj::BeginCommandBuffer()
{
begin();
return VK_SUCCESS;
}
VkResult VkCommandBufferObj::EndCommandBuffer()
{
end();
return VK_SUCCESS;
}
void VkCommandBufferObj::PipelineBarrier(VkWaitEvent waitEvent, uint32_t pipeEventCount, const VkPipeEvent* pPipeEvents, uint32_t memBarrierCount, const void** ppMemBarriers)
{
vkCmdPipelineBarrier(obj(), waitEvent, pipeEventCount, pPipeEvents, memBarrierCount, ppMemBarriers);
}
void VkCommandBufferObj::ClearAllBuffers(VkClearColor clear_color, float depth_clear_color, uint32_t stencil_clear_color,
VkDepthStencilObj *depthStencilObj)
{
uint32_t i;
const VkFlags output_mask =
VK_MEMORY_OUTPUT_CPU_WRITE_BIT |
VK_MEMORY_OUTPUT_SHADER_WRITE_BIT |
VK_MEMORY_OUTPUT_COLOR_ATTACHMENT_BIT |
VK_MEMORY_OUTPUT_DEPTH_STENCIL_ATTACHMENT_BIT |
VK_MEMORY_OUTPUT_TRANSFER_BIT;
const VkFlags input_mask = 0;
// whatever we want to do, we do it to the whole buffer
VkImageSubresourceRange srRange = {};
srRange.aspect = VK_IMAGE_ASPECT_COLOR;
srRange.baseMipLevel = 0;
srRange.mipLevels = VK_LAST_MIP_OR_SLICE;
srRange.baseArraySlice = 0;
srRange.arraySize = VK_LAST_MIP_OR_SLICE;
VkImageMemoryBarrier memory_barrier = {};
memory_barrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
memory_barrier.outputMask = output_mask;
memory_barrier.inputMask = input_mask;
memory_barrier.newLayout = VK_IMAGE_LAYOUT_CLEAR_OPTIMAL;
memory_barrier.subresourceRange = srRange;
VkImageMemoryBarrier *pmemory_barrier = &memory_barrier;
VkPipeEvent set_events[] = { VK_PIPE_EVENT_COMMANDS_COMPLETE };
for (i = 0; i < m_renderTargets.size(); i++) {
memory_barrier.image = m_renderTargets[i]->image();
memory_barrier.oldLayout = m_renderTargets[i]->layout();
vkCmdPipelineBarrier( obj(), VK_WAIT_EVENT_TOP_OF_PIPE, 1, set_events, 1, (const void **)&pmemory_barrier);
m_renderTargets[i]->layout(memory_barrier.newLayout);
vkCmdClearColorImage(obj(),
m_renderTargets[i]->image(), VK_IMAGE_LAYOUT_CLEAR_OPTIMAL,
clear_color, 1, &srRange );
mem_ref_mgr.AddMemoryRefs(*m_renderTargets[i]);
}
if (depthStencilObj)
{
VkImageSubresourceRange dsRange = {};
dsRange.aspect = VK_IMAGE_ASPECT_DEPTH;
dsRange.baseMipLevel = 0;
dsRange.mipLevels = VK_LAST_MIP_OR_SLICE;
dsRange.baseArraySlice = 0;
dsRange.arraySize = VK_LAST_MIP_OR_SLICE;
// prepare the depth buffer for clear
memory_barrier.oldLayout = depthStencilObj->BindInfo()->layout;
memory_barrier.newLayout = VK_IMAGE_LAYOUT_CLEAR_OPTIMAL;
memory_barrier.image = depthStencilObj->obj();
memory_barrier.subresourceRange = dsRange;
vkCmdPipelineBarrier( obj(), VK_WAIT_EVENT_TOP_OF_PIPE, 1, set_events, 1, (const void **)&pmemory_barrier);
vkCmdClearDepthStencil(obj(),
depthStencilObj->obj(), VK_IMAGE_LAYOUT_CLEAR_OPTIMAL,
depth_clear_color, stencil_clear_color,
1, &dsRange);
mem_ref_mgr.AddMemoryRefs(*depthStencilObj);
// prepare depth buffer for rendering
memory_barrier.image = depthStencilObj->obj();
memory_barrier.oldLayout = VK_IMAGE_LAYOUT_CLEAR_OPTIMAL;
memory_barrier.newLayout = depthStencilObj->BindInfo()->layout;
memory_barrier.subresourceRange = dsRange;
vkCmdPipelineBarrier( obj(), VK_WAIT_EVENT_TOP_OF_PIPE, 1, set_events, 1, (const void **)&pmemory_barrier);
}
}
void VkCommandBufferObj::PrepareAttachments()
{
uint32_t i;
const VkFlags output_mask =
VK_MEMORY_OUTPUT_CPU_WRITE_BIT |
VK_MEMORY_OUTPUT_SHADER_WRITE_BIT |
VK_MEMORY_OUTPUT_COLOR_ATTACHMENT_BIT |
VK_MEMORY_OUTPUT_DEPTH_STENCIL_ATTACHMENT_BIT |
VK_MEMORY_OUTPUT_TRANSFER_BIT;
const VkFlags input_mask =
VK_MEMORY_INPUT_CPU_READ_BIT |
VK_MEMORY_INPUT_INDIRECT_COMMAND_BIT |
VK_MEMORY_INPUT_INDEX_FETCH_BIT |
VK_MEMORY_INPUT_VERTEX_ATTRIBUTE_FETCH_BIT |
VK_MEMORY_INPUT_UNIFORM_READ_BIT |
VK_MEMORY_INPUT_SHADER_READ_BIT |
VK_MEMORY_INPUT_COLOR_ATTACHMENT_BIT |
VK_MEMORY_INPUT_DEPTH_STENCIL_ATTACHMENT_BIT |
VK_MEMORY_INPUT_TRANSFER_BIT;
VkImageSubresourceRange srRange = {};
srRange.aspect = VK_IMAGE_ASPECT_COLOR;
srRange.baseMipLevel = 0;
srRange.mipLevels = VK_LAST_MIP_OR_SLICE;
srRange.baseArraySlice = 0;
srRange.arraySize = VK_LAST_MIP_OR_SLICE;
VkImageMemoryBarrier memory_barrier = {};
memory_barrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
memory_barrier.outputMask = output_mask;
memory_barrier.inputMask = input_mask;
memory_barrier.newLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
memory_barrier.subresourceRange = srRange;
VkImageMemoryBarrier *pmemory_barrier = &memory_barrier;
VkPipeEvent set_events[] = { VK_PIPE_EVENT_COMMANDS_COMPLETE };
for(i=0; i<m_renderTargets.size(); i++)
{
memory_barrier.image = m_renderTargets[i]->image();
memory_barrier.oldLayout = m_renderTargets[i]->layout();
vkCmdPipelineBarrier( obj(), VK_WAIT_EVENT_TOP_OF_PIPE, 1, set_events, 1, (const void **)&pmemory_barrier);
m_renderTargets[i]->layout(memory_barrier.newLayout);
}
}
void VkCommandBufferObj::BeginRenderPass(VkRenderPass renderpass, VkFramebuffer framebuffer)
{
VkRenderPassBegin rp_begin = {
renderpass,
framebuffer,
};
vkCmdBeginRenderPass( obj(), &rp_begin);
}
void VkCommandBufferObj::EndRenderPass(VkRenderPass renderpass)
{
vkCmdEndRenderPass( obj(), renderpass);
}
void VkCommandBufferObj::BindStateObject(VkStateBindPoint stateBindPoint, VkDynamicStateObject stateObject)
{
vkCmdBindDynamicStateObject( obj(), stateBindPoint, stateObject);
}
void VkCommandBufferObj::AddRenderTarget(VkImageObj *renderTarget)
{
m_renderTargets.push_back(renderTarget);
}
void VkCommandBufferObj::DrawIndexed(uint32_t firstIndex, uint32_t indexCount, int32_t vertexOffset, uint32_t firstInstance, uint32_t instanceCount)
{
vkCmdDrawIndexed(obj(), firstIndex, indexCount, vertexOffset, firstInstance, instanceCount);
}
void VkCommandBufferObj::Draw(uint32_t firstVertex, uint32_t vertexCount, uint32_t firstInstance, uint32_t instanceCount)
{
vkCmdDraw(obj(), firstVertex, vertexCount, firstInstance, instanceCount);
}
void VkCommandBufferObj::QueueCommandBuffer()
{
QueueCommandBuffer(NULL);
}
void VkCommandBufferObj::QueueCommandBuffer(VkFence fence)
{
VkResult err = VK_SUCCESS;
mem_ref_mgr.EmitAddMemoryRefs(m_device->m_queue);
// submit the command buffer to the universal queue
err = vkQueueSubmit( m_device->m_queue, 1, &obj(), fence );
ASSERT_VK_SUCCESS( err );
err = vkQueueWaitIdle( m_device->m_queue );
ASSERT_VK_SUCCESS( err );
// Wait for work to finish before cleaning up.
vkDeviceWaitIdle(m_device->device());
/*
* Now that processing on this command buffer is complete
* we can remove the memory references.
*/
mem_ref_mgr.EmitRemoveMemoryRefs(m_device->m_queue);
}
void VkCommandBufferObj::BindPipeline(VkPipelineObj &pipeline)
{
vkCmdBindPipeline( obj(), VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline.obj() );
mem_ref_mgr.AddMemoryRefs(pipeline);
}
void VkCommandBufferObj::BindDescriptorSet(VkDescriptorSetObj &descriptorSet)
{
VkDescriptorSet set_obj = descriptorSet.GetDescriptorSetHandle();
// bind pipeline, vertex buffer (descriptor set) and WVP (dynamic buffer view)
vkCmdBindDescriptorSets(obj(), VK_PIPELINE_BIND_POINT_GRAPHICS,
0, 1, &set_obj, NULL );
// Add descriptor set mem refs to command buffer's list
mem_ref_mgr.AddMemoryRefs(descriptorSet.memories());
mem_ref_mgr.AddMemoryRefs(descriptorSet.mem_ref_mgr.mem_refs());
}
void VkCommandBufferObj::BindIndexBuffer(VkIndexBufferObj *indexBuffer, uint32_t offset)
{
vkCmdBindIndexBuffer(obj(), indexBuffer->obj(), offset, indexBuffer->GetIndexType());
mem_ref_mgr.AddMemoryRefs(*indexBuffer);
}
void VkCommandBufferObj::BindVertexBuffer(VkConstantBufferObj *vertexBuffer, VkDeviceSize offset, uint32_t binding)
{
vkCmdBindVertexBuffers(obj(), binding, 1, &vertexBuffer->obj(), &offset);
mem_ref_mgr.AddMemoryRefs(*vertexBuffer);
}
VkDepthStencilObj::VkDepthStencilObj()
{
m_initialized = false;
}
bool VkDepthStencilObj::Initialized()
{
return m_initialized;
}
VkDepthStencilBindInfo* VkDepthStencilObj::BindInfo()
{
return &m_depthStencilBindInfo;
}
void VkDepthStencilObj::Init(VkDeviceObj *device, int32_t width, int32_t height)
{
VkImageCreateInfo image_info;
VkDepthStencilViewCreateInfo view_info;
m_device = device;
m_initialized = true;
m_depth_stencil_fmt = VK_FORMAT_D16_UNORM;
image_info.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
image_info.pNext = NULL;
image_info.imageType = VK_IMAGE_TYPE_2D;
image_info.format = m_depth_stencil_fmt;
image_info.extent.width = width;
image_info.extent.height = height;
image_info.extent.depth = 1;
image_info.mipLevels = 1;
image_info.arraySize = 1;
image_info.samples = 1;
image_info.tiling = VK_IMAGE_TILING_OPTIMAL;
image_info.usage = VK_IMAGE_USAGE_DEPTH_STENCIL_BIT;
image_info.flags = 0;
init(*m_device, image_info);
view_info.sType = VK_STRUCTURE_TYPE_DEPTH_STENCIL_VIEW_CREATE_INFO;
view_info.pNext = NULL;
view_info.image = VK_NULL_HANDLE;
view_info.mipLevel = 0;
view_info.baseArraySlice = 0;
view_info.arraySize = 1;
view_info.flags = 0;
view_info.image = obj();
m_depthStencilView.init(*m_device, view_info);
m_depthStencilBindInfo.view = m_depthStencilView.obj();
m_depthStencilBindInfo.layout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
}