blob: e788e88c61a2ac47177c71eceff35810a2c1d1b3 [file] [log] [blame]
/* Copyright (c) 2015-2017 The Khronos Group Inc.
* Copyright (c) 2015-2017 Valve Corporation
* Copyright (c) 2015-2017 LunarG, Inc.
* Copyright (C) 2015-2017 Google Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Author: Mark Lobodzinski <mark@lunarg.com>
*/
// Allow use of STL min and max functions in Windows
#define NOMINMAX
#include <sstream>
#include "vk_enum_string_helper.h"
#include "vk_layer_data.h"
#include "vk_layer_utils.h"
#include "vk_layer_logging.h"
#include "buffer_validation.h"
void SetLayout(core_validation::layer_data *device_data, GLOBAL_CB_NODE *pCB, ImageSubresourcePair imgpair,
const VkImageLayout &layout) {
if (std::find(pCB->imageSubresourceMap[imgpair.image].begin(), pCB->imageSubresourceMap[imgpair.image].end(), imgpair) !=
pCB->imageSubresourceMap[imgpair.image].end()) {
pCB->imageLayoutMap[imgpair].layout = layout;
} else {
assert(imgpair.hasSubresource);
IMAGE_CMD_BUF_LAYOUT_NODE node;
if (!FindCmdBufLayout(device_data, pCB, imgpair.image, imgpair.subresource, node)) {
node.initialLayout = layout;
}
SetLayout(device_data, pCB, imgpair, {node.initialLayout, layout});
}
}
template <class OBJECT, class LAYOUT>
void SetLayout(core_validation::layer_data *device_data, OBJECT *pObject, VkImage image, VkImageSubresource range,
const LAYOUT &layout) {
ImageSubresourcePair imgpair = {image, true, range};
SetLayout(device_data, pObject, imgpair, layout, VK_IMAGE_ASPECT_COLOR_BIT);
SetLayout(device_data, pObject, imgpair, layout, VK_IMAGE_ASPECT_DEPTH_BIT);
SetLayout(device_data, pObject, imgpair, layout, VK_IMAGE_ASPECT_STENCIL_BIT);
SetLayout(device_data, pObject, imgpair, layout, VK_IMAGE_ASPECT_METADATA_BIT);
}
template <class OBJECT, class LAYOUT>
void SetLayout(core_validation::layer_data *device_data, OBJECT *pObject, ImageSubresourcePair imgpair, const LAYOUT &layout,
VkImageAspectFlags aspectMask) {
if (imgpair.subresource.aspectMask & aspectMask) {
imgpair.subresource.aspectMask = aspectMask;
SetLayout(device_data, pObject, imgpair, layout);
}
}
bool FindLayoutVerifyNode(core_validation::layer_data *device_data, GLOBAL_CB_NODE *pCB, ImageSubresourcePair imgpair,
IMAGE_CMD_BUF_LAYOUT_NODE &node, const VkImageAspectFlags aspectMask) {
const debug_report_data *report_data = core_validation::GetReportData(device_data);
if (!(imgpair.subresource.aspectMask & aspectMask)) {
return false;
}
VkImageAspectFlags oldAspectMask = imgpair.subresource.aspectMask;
imgpair.subresource.aspectMask = aspectMask;
auto imgsubIt = pCB->imageLayoutMap.find(imgpair);
if (imgsubIt == pCB->imageLayoutMap.end()) {
return false;
}
if (node.layout != VK_IMAGE_LAYOUT_MAX_ENUM && node.layout != imgsubIt->second.layout) {
log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT,
reinterpret_cast<uint64_t &>(imgpair.image), __LINE__, DRAWSTATE_INVALID_LAYOUT, "DS",
"Cannot query for VkImage 0x%" PRIx64 " layout when combined aspect mask %d has multiple layout types: %s and %s",
reinterpret_cast<uint64_t &>(imgpair.image), oldAspectMask, string_VkImageLayout(node.layout),
string_VkImageLayout(imgsubIt->second.layout));
}
if (node.initialLayout != VK_IMAGE_LAYOUT_MAX_ENUM && node.initialLayout != imgsubIt->second.initialLayout) {
log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT,
reinterpret_cast<uint64_t &>(imgpair.image), __LINE__, DRAWSTATE_INVALID_LAYOUT, "DS",
"Cannot query for VkImage 0x%" PRIx64
" layout when combined aspect mask %d has multiple initial layout types: %s and %s",
reinterpret_cast<uint64_t &>(imgpair.image), oldAspectMask, string_VkImageLayout(node.initialLayout),
string_VkImageLayout(imgsubIt->second.initialLayout));
}
node = imgsubIt->second;
return true;
}
bool FindLayoutVerifyLayout(core_validation::layer_data *device_data, ImageSubresourcePair imgpair, VkImageLayout &layout,
const VkImageAspectFlags aspectMask) {
if (!(imgpair.subresource.aspectMask & aspectMask)) {
return false;
}
const debug_report_data *report_data = core_validation::GetReportData(device_data);
VkImageAspectFlags oldAspectMask = imgpair.subresource.aspectMask;
imgpair.subresource.aspectMask = aspectMask;
auto imgsubIt = (*core_validation::GetImageLayoutMap(device_data)).find(imgpair);
if (imgsubIt == (*core_validation::GetImageLayoutMap(device_data)).end()) {
return false;
}
if (layout != VK_IMAGE_LAYOUT_MAX_ENUM && layout != imgsubIt->second.layout) {
log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT,
reinterpret_cast<uint64_t &>(imgpair.image), __LINE__, DRAWSTATE_INVALID_LAYOUT, "DS",
"Cannot query for VkImage 0x%" PRIx64 " layout when combined aspect mask %d has multiple layout types: %s and %s",
reinterpret_cast<uint64_t &>(imgpair.image), oldAspectMask, string_VkImageLayout(layout),
string_VkImageLayout(imgsubIt->second.layout));
}
layout = imgsubIt->second.layout;
return true;
}
// Find layout(s) on the command buffer level
bool FindCmdBufLayout(core_validation::layer_data *device_data, GLOBAL_CB_NODE *pCB, VkImage image, VkImageSubresource range,
IMAGE_CMD_BUF_LAYOUT_NODE &node) {
ImageSubresourcePair imgpair = {image, true, range};
node = IMAGE_CMD_BUF_LAYOUT_NODE(VK_IMAGE_LAYOUT_MAX_ENUM, VK_IMAGE_LAYOUT_MAX_ENUM);
FindLayoutVerifyNode(device_data, pCB, imgpair, node, VK_IMAGE_ASPECT_COLOR_BIT);
FindLayoutVerifyNode(device_data, pCB, imgpair, node, VK_IMAGE_ASPECT_DEPTH_BIT);
FindLayoutVerifyNode(device_data, pCB, imgpair, node, VK_IMAGE_ASPECT_STENCIL_BIT);
FindLayoutVerifyNode(device_data, pCB, imgpair, node, VK_IMAGE_ASPECT_METADATA_BIT);
if (node.layout == VK_IMAGE_LAYOUT_MAX_ENUM) {
imgpair = {image, false, VkImageSubresource()};
auto imgsubIt = pCB->imageLayoutMap.find(imgpair);
if (imgsubIt == pCB->imageLayoutMap.end()) return false;
// TODO: This is ostensibly a find function but it changes state here
node = imgsubIt->second;
}
return true;
}
// Find layout(s) on the global level
bool FindGlobalLayout(core_validation::layer_data *device_data, ImageSubresourcePair imgpair, VkImageLayout &layout) {
layout = VK_IMAGE_LAYOUT_MAX_ENUM;
FindLayoutVerifyLayout(device_data, imgpair, layout, VK_IMAGE_ASPECT_COLOR_BIT);
FindLayoutVerifyLayout(device_data, imgpair, layout, VK_IMAGE_ASPECT_DEPTH_BIT);
FindLayoutVerifyLayout(device_data, imgpair, layout, VK_IMAGE_ASPECT_STENCIL_BIT);
FindLayoutVerifyLayout(device_data, imgpair, layout, VK_IMAGE_ASPECT_METADATA_BIT);
if (layout == VK_IMAGE_LAYOUT_MAX_ENUM) {
imgpair = {imgpair.image, false, VkImageSubresource()};
auto imgsubIt = (*core_validation::GetImageLayoutMap(device_data)).find(imgpair);
if (imgsubIt == (*core_validation::GetImageLayoutMap(device_data)).end()) return false;
layout = imgsubIt->second.layout;
}
return true;
}
bool FindLayouts(core_validation::layer_data *device_data, VkImage image, std::vector<VkImageLayout> &layouts) {
auto sub_data = (*core_validation::GetImageSubresourceMap(device_data)).find(image);
if (sub_data == (*core_validation::GetImageSubresourceMap(device_data)).end()) return false;
auto image_state = getImageState(device_data, image);
if (!image_state) return false;
bool ignoreGlobal = false;
// TODO: Make this robust for >1 aspect mask. Now it will just say ignore potential errors in this case.
if (sub_data->second.size() >= (image_state->createInfo.arrayLayers * image_state->createInfo.mipLevels + 1)) {
ignoreGlobal = true;
}
for (auto imgsubpair : sub_data->second) {
if (ignoreGlobal && !imgsubpair.hasSubresource) continue;
auto img_data = (*core_validation::GetImageLayoutMap(device_data)).find(imgsubpair);
if (img_data != (*core_validation::GetImageLayoutMap(device_data)).end()) {
layouts.push_back(img_data->second.layout);
}
}
return true;
}
// Set the layout on the global level
void SetGlobalLayout(core_validation::layer_data *device_data, ImageSubresourcePair imgpair, const VkImageLayout &layout) {
VkImage &image = imgpair.image;
(*core_validation::GetImageLayoutMap(device_data))[imgpair].layout = layout;
auto &image_subresources = (*core_validation::GetImageSubresourceMap(device_data))[image];
auto subresource = std::find(image_subresources.begin(), image_subresources.end(), imgpair);
if (subresource == image_subresources.end()) {
image_subresources.push_back(imgpair);
}
}
// Set the layout on the cmdbuf level
void SetLayout(core_validation::layer_data *device_data, GLOBAL_CB_NODE *pCB, ImageSubresourcePair imgpair,
const IMAGE_CMD_BUF_LAYOUT_NODE &node) {
pCB->imageLayoutMap[imgpair] = node;
auto subresource =
std::find(pCB->imageSubresourceMap[imgpair.image].begin(), pCB->imageSubresourceMap[imgpair.image].end(), imgpair);
if (subresource == pCB->imageSubresourceMap[imgpair.image].end()) {
pCB->imageSubresourceMap[imgpair.image].push_back(imgpair);
}
}
void SetImageViewLayout(core_validation::layer_data *device_data, GLOBAL_CB_NODE *pCB, VkImageView imageView,
const VkImageLayout &layout) {
auto view_state = getImageViewState(device_data, imageView);
assert(view_state);
auto image = view_state->create_info.image;
const VkImageSubresourceRange &subRange = view_state->create_info.subresourceRange;
// TODO: Do not iterate over every possibility - consolidate where possible
for (uint32_t j = 0; j < subRange.levelCount; j++) {
uint32_t level = subRange.baseMipLevel + j;
for (uint32_t k = 0; k < subRange.layerCount; k++) {
uint32_t layer = subRange.baseArrayLayer + k;
VkImageSubresource sub = {subRange.aspectMask, level, layer};
// TODO: If ImageView was created with depth or stencil, transition both layouts as the aspectMask is ignored and both
// are used. Verify that the extra implicit layout is OK for descriptor set layout validation
if (subRange.aspectMask & (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT)) {
if (vk_format_is_depth_and_stencil(view_state->create_info.format)) {
sub.aspectMask |= (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT);
}
}
SetLayout(device_data, pCB, image, sub, layout);
}
}
}
bool VerifyFramebufferAndRenderPassLayouts(core_validation::layer_data *device_data, GLOBAL_CB_NODE *pCB,
const VkRenderPassBeginInfo *pRenderPassBegin,
const FRAMEBUFFER_STATE *framebuffer_state) {
bool skip_call = false;
auto const pRenderPassInfo = getRenderPassState(device_data, pRenderPassBegin->renderPass)->createInfo.ptr();
auto const &framebufferInfo = framebuffer_state->createInfo;
const auto report_data = core_validation::GetReportData(device_data);
if (pRenderPassInfo->attachmentCount != framebufferInfo.attachmentCount) {
skip_call |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, (VkDebugReportObjectTypeEXT)0, 0, __LINE__,
DRAWSTATE_INVALID_RENDERPASS, "DS",
"You cannot start a render pass using a framebuffer "
"with a different number of attachments.");
}
for (uint32_t i = 0; i < pRenderPassInfo->attachmentCount; ++i) {
const VkImageView &image_view = framebufferInfo.pAttachments[i];
auto view_state = getImageViewState(device_data, image_view);
assert(view_state);
const VkImage &image = view_state->create_info.image;
const VkImageSubresourceRange &subRange = view_state->create_info.subresourceRange;
IMAGE_CMD_BUF_LAYOUT_NODE newNode = {pRenderPassInfo->pAttachments[i].initialLayout,
pRenderPassInfo->pAttachments[i].initialLayout};
// TODO: Do not iterate over every possibility - consolidate where possible
for (uint32_t j = 0; j < subRange.levelCount; j++) {
uint32_t level = subRange.baseMipLevel + j;
for (uint32_t k = 0; k < subRange.layerCount; k++) {
uint32_t layer = subRange.baseArrayLayer + k;
VkImageSubresource sub = {subRange.aspectMask, level, layer};
IMAGE_CMD_BUF_LAYOUT_NODE node;
if (!FindCmdBufLayout(device_data, pCB, image, sub, node)) {
SetLayout(device_data, pCB, image, sub, newNode);
continue;
}
if (newNode.layout != VK_IMAGE_LAYOUT_UNDEFINED && newNode.layout != node.layout) {
skip_call |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, (VkDebugReportObjectTypeEXT)0, 0, __LINE__,
DRAWSTATE_INVALID_RENDERPASS, "DS",
"You cannot start a render pass using attachment %u "
"where the render pass initial layout is %s and the previous "
"known layout of the attachment is %s. The layouts must match, or "
"the render pass initial layout for the attachment must be "
"VK_IMAGE_LAYOUT_UNDEFINED",
i, string_VkImageLayout(newNode.layout), string_VkImageLayout(node.layout));
}
}
}
}
return skip_call;
}
void TransitionAttachmentRefLayout(core_validation::layer_data *device_data, GLOBAL_CB_NODE *pCB, FRAMEBUFFER_STATE *pFramebuffer,
VkAttachmentReference ref) {
if (ref.attachment != VK_ATTACHMENT_UNUSED) {
auto image_view = pFramebuffer->createInfo.pAttachments[ref.attachment];
SetImageViewLayout(device_data, pCB, image_view, ref.layout);
}
}
void TransitionSubpassLayouts(core_validation::layer_data *device_data, GLOBAL_CB_NODE *pCB,
const VkRenderPassBeginInfo *pRenderPassBegin, const int subpass_index,
FRAMEBUFFER_STATE *framebuffer_state) {
auto renderPass = getRenderPassState(device_data, pRenderPassBegin->renderPass);
if (!renderPass) return;
if (framebuffer_state) {
auto const &subpass = renderPass->createInfo.pSubpasses[subpass_index];
for (uint32_t j = 0; j < subpass.inputAttachmentCount; ++j) {
TransitionAttachmentRefLayout(device_data, pCB, framebuffer_state, subpass.pInputAttachments[j]);
}
for (uint32_t j = 0; j < subpass.colorAttachmentCount; ++j) {
TransitionAttachmentRefLayout(device_data, pCB, framebuffer_state, subpass.pColorAttachments[j]);
}
if (subpass.pDepthStencilAttachment) {
TransitionAttachmentRefLayout(device_data, pCB, framebuffer_state, *subpass.pDepthStencilAttachment);
}
}
}
bool TransitionImageAspectLayout(core_validation::layer_data *device_data, GLOBAL_CB_NODE *pCB,
const VkImageMemoryBarrier *mem_barrier, uint32_t level, uint32_t layer,
VkImageAspectFlags aspect) {
if (!(mem_barrier->subresourceRange.aspectMask & aspect)) {
return false;
}
VkImageSubresource sub = {aspect, level, layer};
IMAGE_CMD_BUF_LAYOUT_NODE node;
if (!FindCmdBufLayout(device_data, pCB, mem_barrier->image, sub, node)) {
SetLayout(device_data, pCB, mem_barrier->image, sub,
IMAGE_CMD_BUF_LAYOUT_NODE(mem_barrier->oldLayout, mem_barrier->newLayout));
return false;
}
bool skip = false;
if (mem_barrier->oldLayout == VK_IMAGE_LAYOUT_UNDEFINED) {
// TODO: Set memory invalid which is in mem_tracker currently
} else if (node.layout != mem_barrier->oldLayout) {
skip |= log_msg(core_validation::GetReportData(device_data), VK_DEBUG_REPORT_ERROR_BIT_EXT, (VkDebugReportObjectTypeEXT)0,
0, __LINE__, DRAWSTATE_INVALID_IMAGE_LAYOUT, "DS",
"You cannot transition the layout of aspect %d from %s when current layout is %s.", aspect,
string_VkImageLayout(mem_barrier->oldLayout), string_VkImageLayout(node.layout));
}
SetLayout(device_data, pCB, mem_barrier->image, sub, mem_barrier->newLayout);
return skip;
}
// TODO: Separate validation and layout state updates
bool TransitionImageLayouts(core_validation::layer_data *device_data, VkCommandBuffer cmdBuffer, uint32_t memBarrierCount,
const VkImageMemoryBarrier *pImgMemBarriers) {
GLOBAL_CB_NODE *pCB = getCBNode(device_data, cmdBuffer);
bool skip = false;
uint32_t levelCount = 0;
uint32_t layerCount = 0;
for (uint32_t i = 0; i < memBarrierCount; ++i) {
auto mem_barrier = &pImgMemBarriers[i];
if (!mem_barrier) continue;
// TODO: Do not iterate over every possibility - consolidate where possible
ResolveRemainingLevelsLayers(device_data, &levelCount, &layerCount, mem_barrier->subresourceRange,
getImageState(device_data, mem_barrier->image));
for (uint32_t j = 0; j < levelCount; j++) {
uint32_t level = mem_barrier->subresourceRange.baseMipLevel + j;
for (uint32_t k = 0; k < layerCount; k++) {
uint32_t layer = mem_barrier->subresourceRange.baseArrayLayer + k;
skip |= TransitionImageAspectLayout(device_data, pCB, mem_barrier, level, layer, VK_IMAGE_ASPECT_COLOR_BIT);
skip |= TransitionImageAspectLayout(device_data, pCB, mem_barrier, level, layer, VK_IMAGE_ASPECT_DEPTH_BIT);
skip |= TransitionImageAspectLayout(device_data, pCB, mem_barrier, level, layer, VK_IMAGE_ASPECT_STENCIL_BIT);
skip |= TransitionImageAspectLayout(device_data, pCB, mem_barrier, level, layer, VK_IMAGE_ASPECT_METADATA_BIT);
}
}
}
return skip;
}
bool VerifySourceImageLayout(core_validation::layer_data *device_data, GLOBAL_CB_NODE *cb_node, VkImage srcImage,
VkImageSubresourceLayers subLayers, VkImageLayout srcImageLayout,
UNIQUE_VALIDATION_ERROR_CODE msgCode) {
const auto report_data = core_validation::GetReportData(device_data);
bool skip_call = false;
for (uint32_t i = 0; i < subLayers.layerCount; ++i) {
uint32_t layer = i + subLayers.baseArrayLayer;
VkImageSubresource sub = {subLayers.aspectMask, subLayers.mipLevel, layer};
IMAGE_CMD_BUF_LAYOUT_NODE node;
if (!FindCmdBufLayout(device_data, cb_node, srcImage, sub, node)) {
SetLayout(device_data, cb_node, srcImage, sub, IMAGE_CMD_BUF_LAYOUT_NODE(srcImageLayout, srcImageLayout));
continue;
}
if (node.layout != srcImageLayout) {
// TODO: Improve log message in the next pass
skip_call |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT, 0,
__LINE__, DRAWSTATE_INVALID_IMAGE_LAYOUT, "DS",
"Cannot copy from an image whose source layout is %s "
"and doesn't match the current layout %s.",
string_VkImageLayout(srcImageLayout), string_VkImageLayout(node.layout));
}
}
if (srcImageLayout != VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL) {
if (srcImageLayout == VK_IMAGE_LAYOUT_GENERAL) {
// TODO : Can we deal with image node from the top of call tree and avoid map look-up here?
auto image_state = getImageState(device_data, srcImage);
if (image_state->createInfo.tiling != VK_IMAGE_TILING_LINEAR) {
// LAYOUT_GENERAL is allowed, but may not be performance optimal, flag as perf warning.
skip_call |= log_msg(report_data, VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT, (VkDebugReportObjectTypeEXT)0, 0,
__LINE__, DRAWSTATE_INVALID_IMAGE_LAYOUT, "DS",
"Layout for input image should be TRANSFER_SRC_OPTIMAL instead of GENERAL.");
}
} else {
skip_call |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, (VkDebugReportObjectTypeEXT)0, 0, __LINE__, msgCode,
"DS", "Layout for input image is %s but can only be TRANSFER_SRC_OPTIMAL or GENERAL. %s",
string_VkImageLayout(srcImageLayout), validation_error_map[msgCode]);
}
}
return skip_call;
}
bool VerifyDestImageLayout(core_validation::layer_data *device_data, GLOBAL_CB_NODE *cb_node, VkImage destImage,
VkImageSubresourceLayers subLayers, VkImageLayout destImageLayout,
UNIQUE_VALIDATION_ERROR_CODE msgCode) {
const auto report_data = core_validation::GetReportData(device_data);
bool skip_call = false;
for (uint32_t i = 0; i < subLayers.layerCount; ++i) {
uint32_t layer = i + subLayers.baseArrayLayer;
VkImageSubresource sub = {subLayers.aspectMask, subLayers.mipLevel, layer};
IMAGE_CMD_BUF_LAYOUT_NODE node;
if (!FindCmdBufLayout(device_data, cb_node, destImage, sub, node)) {
SetLayout(device_data, cb_node, destImage, sub, IMAGE_CMD_BUF_LAYOUT_NODE(destImageLayout, destImageLayout));
continue;
}
if (node.layout != destImageLayout) {
skip_call |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT, 0,
__LINE__, DRAWSTATE_INVALID_IMAGE_LAYOUT, "DS",
"Cannot copy from an image whose dest layout is %s and "
"doesn't match the current layout %s.",
string_VkImageLayout(destImageLayout), string_VkImageLayout(node.layout));
}
}
if (destImageLayout != VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL) {
if (destImageLayout == VK_IMAGE_LAYOUT_GENERAL) {
auto image_state = getImageState(device_data, destImage);
if (image_state->createInfo.tiling != VK_IMAGE_TILING_LINEAR) {
// LAYOUT_GENERAL is allowed, but may not be performance optimal, flag as perf warning.
skip_call |= log_msg(report_data, VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT, (VkDebugReportObjectTypeEXT)0, 0,
__LINE__, DRAWSTATE_INVALID_IMAGE_LAYOUT, "DS",
"Layout for output image should be TRANSFER_DST_OPTIMAL instead of GENERAL.");
}
} else {
skip_call |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, (VkDebugReportObjectTypeEXT)0, 0, __LINE__, msgCode,
"DS", "Layout for output image is %s but can only be TRANSFER_DST_OPTIMAL or GENERAL. %s",
string_VkImageLayout(destImageLayout), validation_error_map[msgCode]);
}
}
return skip_call;
}
void TransitionFinalSubpassLayouts(core_validation::layer_data *device_data, GLOBAL_CB_NODE *pCB,
const VkRenderPassBeginInfo *pRenderPassBegin, FRAMEBUFFER_STATE *framebuffer_state) {
auto renderPass = getRenderPassState(device_data, pRenderPassBegin->renderPass);
if (!renderPass) return;
const VkRenderPassCreateInfo *pRenderPassInfo = renderPass->createInfo.ptr();
if (framebuffer_state) {
for (uint32_t i = 0; i < pRenderPassInfo->attachmentCount; ++i) {
auto image_view = framebuffer_state->createInfo.pAttachments[i];
SetImageViewLayout(device_data, pCB, image_view, pRenderPassInfo->pAttachments[i].finalLayout);
}
}
}
bool PreCallValidateCreateImage(core_validation::layer_data *device_data, const VkImageCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator, VkImage *pImage) {
bool skip_call = false;
VkImageFormatProperties ImageFormatProperties;
const VkPhysicalDevice physical_device = core_validation::GetPhysicalDevice(device_data);
const debug_report_data *report_data = core_validation::GetReportData(device_data);
if (pCreateInfo->format != VK_FORMAT_UNDEFINED) {
VkFormatProperties properties;
core_validation::GetFormatPropertiesPointer(device_data)(physical_device, pCreateInfo->format, &properties);
if ((pCreateInfo->tiling == VK_IMAGE_TILING_LINEAR) && (properties.linearTilingFeatures == 0)) {
std::stringstream ss;
ss << "vkCreateImage format parameter (" << string_VkFormat(pCreateInfo->format) << ") is an unsupported format";
skip_call |=
log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0, __LINE__,
VALIDATION_ERROR_02150, "IMAGE", "%s. %s", ss.str().c_str(), validation_error_map[VALIDATION_ERROR_02150]);
}
if ((pCreateInfo->tiling == VK_IMAGE_TILING_OPTIMAL) && (properties.optimalTilingFeatures == 0)) {
std::stringstream ss;
ss << "vkCreateImage format parameter (" << string_VkFormat(pCreateInfo->format) << ") is an unsupported format";
skip_call |=
log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0, __LINE__,
VALIDATION_ERROR_02155, "IMAGE", "%s. %s", ss.str().c_str(), validation_error_map[VALIDATION_ERROR_02155]);
}
// Validate that format supports usage as color attachment
if (pCreateInfo->usage & VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT) {
if ((pCreateInfo->tiling == VK_IMAGE_TILING_OPTIMAL) &&
((properties.optimalTilingFeatures & VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT) == 0)) {
std::stringstream ss;
ss << "vkCreateImage: VkFormat for TILING_OPTIMAL image (" << string_VkFormat(pCreateInfo->format)
<< ") does not support requested Image usage type VK_IMAGE_USAGE_COLOR_ATTACHMENT";
skip_call |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0,
__LINE__, VALIDATION_ERROR_02158, "IMAGE", "%s. %s", ss.str().c_str(),
validation_error_map[VALIDATION_ERROR_02158]);
}
if ((pCreateInfo->tiling == VK_IMAGE_TILING_LINEAR) &&
((properties.linearTilingFeatures & VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT) == 0)) {
std::stringstream ss;
ss << "vkCreateImage: VkFormat for TILING_LINEAR image (" << string_VkFormat(pCreateInfo->format)
<< ") does not support requested Image usage type VK_IMAGE_USAGE_COLOR_ATTACHMENT";
skip_call |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0,
__LINE__, VALIDATION_ERROR_02153, "IMAGE", "%s. %s", ss.str().c_str(),
validation_error_map[VALIDATION_ERROR_02153]);
}
}
// Validate that format supports usage as depth/stencil attachment
if (pCreateInfo->usage & VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) {
if ((pCreateInfo->tiling == VK_IMAGE_TILING_OPTIMAL) &&
((properties.optimalTilingFeatures & VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT) == 0)) {
std::stringstream ss;
ss << "vkCreateImage: VkFormat for TILING_OPTIMAL image (" << string_VkFormat(pCreateInfo->format)
<< ") does not support requested Image usage type VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT";
skip_call |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0,
__LINE__, VALIDATION_ERROR_02159, "IMAGE", "%s. %s", ss.str().c_str(),
validation_error_map[VALIDATION_ERROR_02159]);
}
if ((pCreateInfo->tiling == VK_IMAGE_TILING_LINEAR) &&
((properties.linearTilingFeatures & VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT) == 0)) {
std::stringstream ss;
ss << "vkCreateImage: VkFormat for TILING_LINEAR image (" << string_VkFormat(pCreateInfo->format)
<< ") does not support requested Image usage type VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT";
skip_call |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0,
__LINE__, VALIDATION_ERROR_02154, "IMAGE", "%s. %s", ss.str().c_str(),
validation_error_map[VALIDATION_ERROR_02154]);
}
}
} else {
skip_call |=
log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0, __LINE__,
VALIDATION_ERROR_00715, "IMAGE", "vkCreateImage: VkFormat for image must not be VK_FORMAT_UNDEFINED. %s",
validation_error_map[VALIDATION_ERROR_00715]);
}
// Internal call to get format info. Still goes through layers, could potentially go directly to ICD.
core_validation::GetImageFormatPropertiesPointer(device_data)(physical_device, pCreateInfo->format, pCreateInfo->imageType,
pCreateInfo->tiling, pCreateInfo->usage, pCreateInfo->flags,
&ImageFormatProperties);
VkDeviceSize imageGranularity = core_validation::GetPhysicalDeviceProperties(device_data)->limits.bufferImageGranularity;
imageGranularity = imageGranularity == 1 ? 0 : imageGranularity;
if ((pCreateInfo->extent.width <= 0) || (pCreateInfo->extent.height <= 0) || (pCreateInfo->extent.depth <= 0)) {
skip_call |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, 0, __LINE__,
VALIDATION_ERROR_00716, "Image",
"CreateImage extent is 0 for at least one required dimension for image: "
"Width = %d Height = %d Depth = %d. %s",
pCreateInfo->extent.width, pCreateInfo->extent.height, pCreateInfo->extent.depth,
validation_error_map[VALIDATION_ERROR_00716]);
}
// TODO: VALIDATION_ERROR_02125 VALIDATION_ERROR_02126 VALIDATION_ERROR_02128 VALIDATION_ERROR_00720
// All these extent-related VUs should be checked here
if ((pCreateInfo->extent.depth > ImageFormatProperties.maxExtent.depth) ||
(pCreateInfo->extent.width > ImageFormatProperties.maxExtent.width) ||
(pCreateInfo->extent.height > ImageFormatProperties.maxExtent.height)) {
skip_call |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, 0, __LINE__,
IMAGE_INVALID_FORMAT_LIMITS_VIOLATION, "Image",
"CreateImage extents exceed allowable limits for format: "
"Width = %d Height = %d Depth = %d: Limits for Width = %d Height = %d Depth = %d for format %s.",
pCreateInfo->extent.width, pCreateInfo->extent.height, pCreateInfo->extent.depth,
ImageFormatProperties.maxExtent.width, ImageFormatProperties.maxExtent.height,
ImageFormatProperties.maxExtent.depth, string_VkFormat(pCreateInfo->format));
}
uint64_t totalSize = ((uint64_t)pCreateInfo->extent.width * (uint64_t)pCreateInfo->extent.height *
(uint64_t)pCreateInfo->extent.depth * (uint64_t)pCreateInfo->arrayLayers *
(uint64_t)pCreateInfo->samples * (uint64_t)vk_format_get_size(pCreateInfo->format) +
(uint64_t)imageGranularity) &
~(uint64_t)imageGranularity;
if (totalSize > ImageFormatProperties.maxResourceSize) {
skip_call |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, 0, __LINE__,
IMAGE_INVALID_FORMAT_LIMITS_VIOLATION, "Image",
"CreateImage resource size exceeds allowable maximum "
"Image resource size = 0x%" PRIxLEAST64 ", maximum resource size = 0x%" PRIxLEAST64 " ",
totalSize, ImageFormatProperties.maxResourceSize);
}
// TODO: VALIDATION_ERROR_02132
if (pCreateInfo->mipLevels > ImageFormatProperties.maxMipLevels) {
skip_call |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, 0, __LINE__,
IMAGE_INVALID_FORMAT_LIMITS_VIOLATION, "Image",
"CreateImage mipLevels=%d exceeds allowable maximum supported by format of %d", pCreateInfo->mipLevels,
ImageFormatProperties.maxMipLevels);
}
if (pCreateInfo->arrayLayers > ImageFormatProperties.maxArrayLayers) {
skip_call |= log_msg(
report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, 0, __LINE__, VALIDATION_ERROR_02133,
"Image", "CreateImage arrayLayers=%d exceeds allowable maximum supported by format of %d. %s", pCreateInfo->arrayLayers,
ImageFormatProperties.maxArrayLayers, validation_error_map[VALIDATION_ERROR_02133]);
}
if ((pCreateInfo->samples & ImageFormatProperties.sampleCounts) == 0) {
skip_call |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, 0, __LINE__,
VALIDATION_ERROR_02138, "Image", "CreateImage samples %s is not supported by format 0x%.8X. %s",
string_VkSampleCountFlagBits(pCreateInfo->samples), ImageFormatProperties.sampleCounts,
validation_error_map[VALIDATION_ERROR_02138]);
}
if (pCreateInfo->initialLayout != VK_IMAGE_LAYOUT_UNDEFINED && pCreateInfo->initialLayout != VK_IMAGE_LAYOUT_PREINITIALIZED) {
skip_call |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, 0, __LINE__,
VALIDATION_ERROR_00731, "Image",
"vkCreateImage parameter, pCreateInfo->initialLayout, must be VK_IMAGE_LAYOUT_UNDEFINED or "
"VK_IMAGE_LAYOUT_PREINITIALIZED. %s",
validation_error_map[VALIDATION_ERROR_00731]);
}
return skip_call;
}
void PostCallRecordCreateImage(core_validation::layer_data *device_data, const VkImageCreateInfo *pCreateInfo, VkImage *pImage) {
IMAGE_LAYOUT_NODE image_state;
image_state.layout = pCreateInfo->initialLayout;
image_state.format = pCreateInfo->format;
GetImageMap(device_data)->insert(std::make_pair(*pImage, std::unique_ptr<IMAGE_STATE>(new IMAGE_STATE(*pImage, pCreateInfo))));
ImageSubresourcePair subpair{*pImage, false, VkImageSubresource()};
(*core_validation::GetImageSubresourceMap(device_data))[*pImage].push_back(subpair);
(*core_validation::GetImageLayoutMap(device_data))[subpair] = image_state;
}
bool PreCallValidateDestroyImage(core_validation::layer_data *device_data, VkImage image, IMAGE_STATE **image_state,
VK_OBJECT *obj_struct) {
const CHECK_DISABLED *disabled = core_validation::GetDisables(device_data);
*image_state = core_validation::getImageState(device_data, image);
*obj_struct = {reinterpret_cast<uint64_t &>(image), VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT};
if (disabled->destroy_image) return false;
bool skip = false;
if (*image_state) {
skip |= core_validation::ValidateObjectNotInUse(device_data, *image_state, *obj_struct, VALIDATION_ERROR_00743);
}
return skip;
}
void PostCallRecordDestroyImage(core_validation::layer_data *device_data, VkImage image, IMAGE_STATE *image_state,
VK_OBJECT obj_struct) {
core_validation::invalidateCommandBuffers(device_data, image_state->cb_bindings, obj_struct);
// Clean up memory mapping, bindings and range references for image
for (auto mem_binding : image_state->GetBoundMemory()) {
auto mem_info = core_validation::getMemObjInfo(device_data, mem_binding);
if (mem_info) {
core_validation::RemoveImageMemoryRange(obj_struct.handle, mem_info);
}
}
core_validation::ClearMemoryObjectBindings(device_data, obj_struct.handle, VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT);
// Remove image from imageMap
core_validation::GetImageMap(device_data)->erase(image);
std::unordered_map<VkImage, std::vector<ImageSubresourcePair>> *imageSubresourceMap =
core_validation::GetImageSubresourceMap(device_data);
const auto &sub_entry = imageSubresourceMap->find(image);
if (sub_entry != imageSubresourceMap->end()) {
for (const auto &pair : sub_entry->second) {
core_validation::GetImageLayoutMap(device_data)->erase(pair);
}
imageSubresourceMap->erase(sub_entry);
}
}
bool ValidateImageAttributes(core_validation::layer_data *device_data, IMAGE_STATE *image_state, VkImageSubresourceRange range) {
bool skip = false;
const debug_report_data *report_data = core_validation::GetReportData(device_data);
if (range.aspectMask != VK_IMAGE_ASPECT_COLOR_BIT) {
char const str[] = "vkCmdClearColorImage aspectMasks for all subresource ranges must be set to VK_IMAGE_ASPECT_COLOR_BIT";
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT,
reinterpret_cast<uint64_t &>(image_state->image), __LINE__, DRAWSTATE_INVALID_IMAGE_ASPECT, "IMAGE", str);
}
if (vk_format_is_depth_or_stencil(image_state->createInfo.format)) {
char const str[] = "vkCmdClearColorImage called with depth/stencil image.";
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT,
reinterpret_cast<uint64_t &>(image_state->image), __LINE__, VALIDATION_ERROR_01088, "IMAGE", "%s. %s", str,
validation_error_map[VALIDATION_ERROR_01088]);
} else if (vk_format_is_compressed(image_state->createInfo.format)) {
char const str[] = "vkCmdClearColorImage called with compressed image.";
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT,
reinterpret_cast<uint64_t &>(image_state->image), __LINE__, VALIDATION_ERROR_01088, "IMAGE", "%s. %s", str,
validation_error_map[VALIDATION_ERROR_01088]);
}
if (!(image_state->createInfo.usage & VK_IMAGE_USAGE_TRANSFER_DST_BIT)) {
char const str[] = "vkCmdClearColorImage called with image created without VK_IMAGE_USAGE_TRANSFER_DST_BIT.";
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT,
reinterpret_cast<uint64_t &>(image_state->image), __LINE__, VALIDATION_ERROR_01084, "IMAGE", "%s. %s", str,
validation_error_map[VALIDATION_ERROR_01084]);
}
return skip;
}
void ResolveRemainingLevelsLayers(core_validation::layer_data *dev_data, VkImageSubresourceRange *range, IMAGE_STATE *image_state) {
// If the caller used the special values VK_REMAINING_MIP_LEVELS and VK_REMAINING_ARRAY_LAYERS, resolve them now in our
// internal state to the actual values.
if (range->levelCount == VK_REMAINING_MIP_LEVELS) {
range->levelCount = image_state->createInfo.mipLevels - range->baseMipLevel;
}
if (range->layerCount == VK_REMAINING_ARRAY_LAYERS) {
range->layerCount = image_state->createInfo.arrayLayers - range->baseArrayLayer;
}
}
// Return the correct layer/level counts if the caller used the special values VK_REMAINING_MIP_LEVELS or VK_REMAINING_ARRAY_LAYERS.
void ResolveRemainingLevelsLayers(core_validation::layer_data *dev_data, uint32_t *levels, uint32_t *layers,
VkImageSubresourceRange range, IMAGE_STATE *image_state) {
*levels = range.levelCount;
*layers = range.layerCount;
if (range.levelCount == VK_REMAINING_MIP_LEVELS) {
*levels = image_state->createInfo.mipLevels - range.baseMipLevel;
}
if (range.layerCount == VK_REMAINING_ARRAY_LAYERS) {
*layers = image_state->createInfo.arrayLayers - range.baseArrayLayer;
}
}
bool VerifyClearImageLayout(core_validation::layer_data *device_data, GLOBAL_CB_NODE *cb_node, IMAGE_STATE *image_state,
VkImageSubresourceRange range, VkImageLayout dest_image_layout, const char *func_name) {
bool skip = false;
const debug_report_data *report_data = core_validation::GetReportData(device_data);
VkImageSubresourceRange resolved_range = range;
ResolveRemainingLevelsLayers(device_data, &resolved_range, image_state);
if (dest_image_layout != VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL) {
if (dest_image_layout == VK_IMAGE_LAYOUT_GENERAL) {
if (image_state->createInfo.tiling != VK_IMAGE_TILING_LINEAR) {
// LAYOUT_GENERAL is allowed, but may not be performance optimal, flag as perf warning.
skip |= log_msg(report_data, VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT, (VkDebugReportObjectTypeEXT)0, 0,
__LINE__, DRAWSTATE_INVALID_IMAGE_LAYOUT, "DS",
"%s: Layout for cleared image should be TRANSFER_DST_OPTIMAL instead of GENERAL.", func_name);
}
} else {
UNIQUE_VALIDATION_ERROR_CODE error_code = VALIDATION_ERROR_01086;
if (strcmp(func_name, "vkCmdClearDepthStencilImage()") == 0) {
error_code = VALIDATION_ERROR_01101;
} else {
assert(strcmp(func_name, "vkCmdClearColorImage()") == 0);
}
skip |=
log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, (VkDebugReportObjectTypeEXT)0, 0, __LINE__, error_code, "DS",
"%s: Layout for cleared image is %s but can only be "
"TRANSFER_DST_OPTIMAL or GENERAL. %s",
func_name, string_VkImageLayout(dest_image_layout), validation_error_map[error_code]);
}
}
for (uint32_t level_index = 0; level_index < resolved_range.levelCount; ++level_index) {
uint32_t level = level_index + resolved_range.baseMipLevel;
for (uint32_t layer_index = 0; layer_index < resolved_range.layerCount; ++layer_index) {
uint32_t layer = layer_index + resolved_range.baseArrayLayer;
VkImageSubresource sub = {resolved_range.aspectMask, level, layer};
IMAGE_CMD_BUF_LAYOUT_NODE node;
if (FindCmdBufLayout(device_data, cb_node, image_state->image, sub, node)) {
if (node.layout != dest_image_layout) {
UNIQUE_VALIDATION_ERROR_CODE error_code = VALIDATION_ERROR_01085;
if (strcmp(func_name, "vkCmdClearDepthStencilImage()") == 0) {
error_code = VALIDATION_ERROR_01100;
} else {
assert(strcmp(func_name, "vkCmdClearColorImage()") == 0);
}
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT, 0,
__LINE__, error_code, "DS",
"%s: Cannot clear an image whose layout is %s and "
"doesn't match the current layout %s. %s",
func_name, string_VkImageLayout(dest_image_layout), string_VkImageLayout(node.layout),
validation_error_map[error_code]);
}
}
}
}
return skip;
}
void RecordClearImageLayout(core_validation::layer_data *device_data, GLOBAL_CB_NODE *cb_node, VkImage image,
VkImageSubresourceRange range, VkImageLayout dest_image_layout) {
VkImageSubresourceRange resolved_range = range;
ResolveRemainingLevelsLayers(device_data, &resolved_range, getImageState(device_data, image));
for (uint32_t level_index = 0; level_index < resolved_range.levelCount; ++level_index) {
uint32_t level = level_index + resolved_range.baseMipLevel;
for (uint32_t layer_index = 0; layer_index < resolved_range.layerCount; ++layer_index) {
uint32_t layer = layer_index + resolved_range.baseArrayLayer;
VkImageSubresource sub = {resolved_range.aspectMask, level, layer};
IMAGE_CMD_BUF_LAYOUT_NODE node;
if (!FindCmdBufLayout(device_data, cb_node, image, sub, node)) {
SetLayout(device_data, cb_node, image, sub, IMAGE_CMD_BUF_LAYOUT_NODE(dest_image_layout, dest_image_layout));
}
}
}
}
bool PreCallValidateCmdClearColorImage(core_validation::layer_data *dev_data, VkCommandBuffer commandBuffer, VkImage image,
VkImageLayout imageLayout, uint32_t rangeCount, const VkImageSubresourceRange *pRanges) {
bool skip = false;
// TODO : Verify memory is in VK_IMAGE_STATE_CLEAR state
auto cb_node = getCBNode(dev_data, commandBuffer);
auto image_state = getImageState(dev_data, image);
if (cb_node && image_state) {
skip |= ValidateMemoryIsBoundToImage(dev_data, image_state, "vkCmdClearColorImage()", VALIDATION_ERROR_02527);
skip |= ValidateCmd(dev_data, cb_node, CMD_CLEARCOLORIMAGE, "vkCmdClearColorImage()");
skip |= insideRenderPass(dev_data, cb_node, "vkCmdClearColorImage()", VALIDATION_ERROR_01096);
for (uint32_t i = 0; i < rangeCount; ++i) {
skip |= ValidateImageAttributes(dev_data, image_state, pRanges[i]);
skip |= VerifyClearImageLayout(dev_data, cb_node, image_state, pRanges[i], imageLayout, "vkCmdClearColorImage()");
}
}
return skip;
}
// This state recording routine is shared between ClearColorImage and ClearDepthStencilImage
void PreCallRecordCmdClearImage(core_validation::layer_data *dev_data, VkCommandBuffer commandBuffer, VkImage image,
VkImageLayout imageLayout, uint32_t rangeCount, const VkImageSubresourceRange *pRanges,
CMD_TYPE cmd_type) {
auto cb_node = getCBNode(dev_data, commandBuffer);
auto image_state = getImageState(dev_data, image);
if (cb_node && image_state) {
AddCommandBufferBindingImage(dev_data, cb_node, image_state);
std::function<bool()> function = [=]() {
SetImageMemoryValid(dev_data, image_state, true);
return false;
};
cb_node->validate_functions.push_back(function);
UpdateCmdBufferLastCmd(dev_data, cb_node, cmd_type);
for (uint32_t i = 0; i < rangeCount; ++i) {
RecordClearImageLayout(dev_data, cb_node, image, pRanges[i], imageLayout);
}
}
}
bool PreCallValidateCmdClearDepthStencilImage(core_validation::layer_data *device_data, VkCommandBuffer commandBuffer,
VkImage image, VkImageLayout imageLayout, uint32_t rangeCount,
const VkImageSubresourceRange *pRanges) {
bool skip = false;
const debug_report_data *report_data = core_validation::GetReportData(device_data);
// TODO : Verify memory is in VK_IMAGE_STATE_CLEAR state
auto cb_node = getCBNode(device_data, commandBuffer);
auto image_state = getImageState(device_data, image);
if (cb_node && image_state) {
skip |= ValidateMemoryIsBoundToImage(device_data, image_state, "vkCmdClearDepthStencilImage()", VALIDATION_ERROR_02528);
skip |= ValidateCmd(device_data, cb_node, CMD_CLEARDEPTHSTENCILIMAGE, "vkCmdClearDepthStencilImage()");
skip |= insideRenderPass(device_data, cb_node, "vkCmdClearDepthStencilImage()", VALIDATION_ERROR_01111);
for (uint32_t i = 0; i < rangeCount; ++i) {
skip |=
VerifyClearImageLayout(device_data, cb_node, image_state, pRanges[i], imageLayout, "vkCmdClearDepthStencilImage()");
// Image aspect must be depth or stencil or both
if (((pRanges[i].aspectMask & VK_IMAGE_ASPECT_DEPTH_BIT) != VK_IMAGE_ASPECT_DEPTH_BIT) &&
((pRanges[i].aspectMask & VK_IMAGE_ASPECT_STENCIL_BIT) != VK_IMAGE_ASPECT_STENCIL_BIT)) {
char const str[] =
"vkCmdClearDepthStencilImage aspectMasks for all subresource ranges must be "
"set to VK_IMAGE_ASPECT_DEPTH_BIT and/or VK_IMAGE_ASPECT_STENCIL_BIT";
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
(uint64_t)commandBuffer, __LINE__, DRAWSTATE_INVALID_IMAGE_ASPECT, "IMAGE", str);
}
}
if (image_state && !vk_format_is_depth_or_stencil(image_state->createInfo.format)) {
char const str[] = "vkCmdClearDepthStencilImage called without a depth/stencil image.";
skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT,
reinterpret_cast<uint64_t &>(image), __LINE__, VALIDATION_ERROR_01103, "IMAGE", "%s. %s", str,
validation_error_map[VALIDATION_ERROR_01103]);
}
}
return skip;
}