blob: a48a6472c6e00bbffbac8b22ef54a7bd959f037f [file] [log] [blame]
/*
* Vulkan
*
* Copyright (C) 2014 LunarG, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*
* Authors:
* Chia-I Wu <olv@lunarg.com>
*/
#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include "genhw/genhw.h"
#include "kmd/winsys.h"
#include "queue.h"
#include "gpu.h"
#include "instance.h"
#include "wsi.h"
struct intel_gpu_ext_props {
uint32_t version;
const char * const name;
};
static const struct intel_gpu_ext_props intel_gpu_exts[INTEL_EXT_COUNT] = {
[INTEL_EXT_WSI_LUNARG] = {
.version = VK_WSI_LUNARG_REVISION,
.name = "VK_WSI_LunarG"
}
};
static int gpu_open_primary_node(struct intel_gpu *gpu)
{
if (gpu->primary_fd_internal < 0)
gpu->primary_fd_internal = open(gpu->primary_node, O_RDWR);
return gpu->primary_fd_internal;
}
static void gpu_close_primary_node(struct intel_gpu *gpu)
{
if (gpu->primary_fd_internal >= 0) {
close(gpu->primary_fd_internal);
gpu->primary_fd_internal = -1;
}
}
static int gpu_open_render_node(struct intel_gpu *gpu)
{
if (gpu->render_fd_internal < 0 && gpu->render_node) {
gpu->render_fd_internal = open(gpu->render_node, O_RDWR);
if (gpu->render_fd_internal < 0) {
intel_log(gpu, VK_DBG_MSG_ERROR, VK_VALIDATION_LEVEL_0, VK_NULL_HANDLE, 0,
0, "failed to open %s", gpu->render_node);
}
}
return gpu->render_fd_internal;
}
static void gpu_close_render_node(struct intel_gpu *gpu)
{
if (gpu->render_fd_internal >= 0) {
close(gpu->render_fd_internal);
gpu->render_fd_internal = -1;
}
}
static const char *gpu_get_name(const struct intel_gpu *gpu)
{
const char *name = NULL;
if (gen_is_hsw(gpu->devid)) {
if (gen_is_desktop(gpu->devid))
name = "Intel(R) Haswell Desktop";
else if (gen_is_mobile(gpu->devid))
name = "Intel(R) Haswell Mobile";
else if (gen_is_server(gpu->devid))
name = "Intel(R) Haswell Server";
}
else if (gen_is_ivb(gpu->devid)) {
if (gen_is_desktop(gpu->devid))
name = "Intel(R) Ivybridge Desktop";
else if (gen_is_mobile(gpu->devid))
name = "Intel(R) Ivybridge Mobile";
else if (gen_is_server(gpu->devid))
name = "Intel(R) Ivybridge Server";
}
else if (gen_is_snb(gpu->devid)) {
if (gen_is_desktop(gpu->devid))
name = "Intel(R) Sandybridge Desktop";
else if (gen_is_mobile(gpu->devid))
name = "Intel(R) Sandybridge Mobile";
else if (gen_is_server(gpu->devid))
name = "Intel(R) Sandybridge Server";
}
if (!name)
name = "Unknown Intel Chipset";
return name;
}
void intel_gpu_destroy(struct intel_gpu *gpu)
{
intel_wsi_gpu_cleanup(gpu);
intel_gpu_cleanup_winsys(gpu);
intel_free(gpu, gpu->primary_node);
intel_free(gpu, gpu);
}
static int devid_to_gen(int devid)
{
int gen;
if (gen_is_hsw(devid))
gen = INTEL_GEN(7.5);
else if (gen_is_ivb(devid))
gen = INTEL_GEN(7);
else if (gen_is_snb(devid))
gen = INTEL_GEN(6);
else
gen = -1;
#ifdef INTEL_GEN_SPECIALIZED
if (gen != INTEL_GEN(INTEL_GEN_SPECIALIZED))
gen = -1;
#endif
return gen;
}
VkResult intel_gpu_create(const struct intel_instance *instance, int devid,
const char *primary_node, const char *render_node,
struct intel_gpu **gpu_ret)
{
const int gen = devid_to_gen(devid);
size_t primary_len, render_len;
struct intel_gpu *gpu;
if (gen < 0) {
intel_log(instance, VK_DBG_MSG_WARNING, VK_VALIDATION_LEVEL_0,
VK_NULL_HANDLE, 0, 0, "unsupported device id 0x%04x", devid);
return VK_ERROR_INITIALIZATION_FAILED;
}
gpu = intel_alloc(instance, sizeof(*gpu), 0, VK_SYSTEM_ALLOC_TYPE_API_OBJECT);
if (!gpu)
return VK_ERROR_OUT_OF_HOST_MEMORY;
memset(gpu, 0, sizeof(*gpu));
/* there is no VK_DBG_OBJECT_GPU */
intel_handle_init(&gpu->handle, VK_DBG_OBJECT_UNKNOWN, instance->icd);
gpu->devid = devid;
primary_len = strlen(primary_node);
render_len = (render_node) ? strlen(render_node) : 0;
gpu->primary_node = intel_alloc(gpu, primary_len + 1 +
((render_len) ? (render_len + 1) : 0), 0, VK_SYSTEM_ALLOC_TYPE_INTERNAL);
if (!gpu->primary_node) {
intel_free(instance, gpu);
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
memcpy(gpu->primary_node, primary_node, primary_len + 1);
if (render_node) {
gpu->render_node = gpu->primary_node + primary_len + 1;
memcpy(gpu->render_node, render_node, render_len + 1);
} else {
gpu->render_node = gpu->primary_node;
}
gpu->gen_opaque = gen;
switch (intel_gpu_gen(gpu)) {
case INTEL_GEN(7.5):
gpu->gt = gen_get_hsw_gt(devid);
break;
case INTEL_GEN(7):
gpu->gt = gen_get_ivb_gt(devid);
break;
case INTEL_GEN(6):
gpu->gt = gen_get_snb_gt(devid);
break;
}
/* 150K dwords */
gpu->max_batch_buffer_size = sizeof(uint32_t) * 150*1024;
/* the winsys is prepared for one reloc every two dwords, then minus 2 */
gpu->batch_buffer_reloc_count =
gpu->max_batch_buffer_size / sizeof(uint32_t) / 2 - 2;
gpu->primary_fd_internal = -1;
gpu->render_fd_internal = -1;
*gpu_ret = gpu;
return VK_SUCCESS;
}
void intel_gpu_get_props(const struct intel_gpu *gpu,
VkPhysicalDeviceProperties *props)
{
const char *name;
size_t name_len;
props->apiVersion = INTEL_API_VERSION;
props->driverVersion = INTEL_DRIVER_VERSION;
props->vendorId = 0x8086;
props->deviceId = gpu->devid;
props->deviceType = VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU;
/* copy GPU name */
name = gpu_get_name(gpu);
name_len = strlen(name);
if (name_len > sizeof(props->deviceName) - 1)
name_len = sizeof(props->deviceName) - 1;
memcpy(props->deviceName, name, name_len);
props->deviceName[name_len] = '\0';
/* no size limit, but no bounded buffer could exceed 2GB */
props->maxInlineMemoryUpdateSize = 2u << 30;
props->maxBoundDescriptorSets = 1;
props->maxThreadGroupSize = 512;
/* incremented every 80ns */
props->timestampFrequency = 1000 * 1000 * 1000 / 80;
props->multiColorAttachmentClears = false;
}
void intel_gpu_get_perf(const struct intel_gpu *gpu,
VkPhysicalDevicePerformance *perf)
{
/* TODO */
perf->maxDeviceClock = 1.0f;
perf->aluPerClock = 1.0f;
perf->texPerClock = 1.0f;
perf->primsPerClock = 1.0f;
perf->pixelsPerClock = 1.0f;
}
void intel_gpu_get_queue_props(const struct intel_gpu *gpu,
enum intel_gpu_engine_type engine,
VkPhysicalDeviceQueueProperties *props)
{
switch (engine) {
case INTEL_GPU_ENGINE_3D:
props->queueFlags = VK_QUEUE_GRAPHICS_BIT | VK_QUEUE_COMPUTE_BIT | VK_QUEUE_MEMMGR_BIT;
props->queueCount = 1;
props->maxAtomicCounters = INTEL_QUEUE_ATOMIC_COUNTER_COUNT;
props->supportsTimestamps = true;
break;
default:
assert(!"unknown engine type");
return;
}
}
void intel_gpu_get_memory_props(const struct intel_gpu *gpu,
VkPhysicalDeviceMemoryProperties *props)
{
props->supportsMigration = false;
props->supportsPinning = true;
}
int intel_gpu_get_max_threads(const struct intel_gpu *gpu,
VkShaderStage stage)
{
switch (intel_gpu_gen(gpu)) {
case INTEL_GEN(7.5):
switch (stage) {
case VK_SHADER_STAGE_VERTEX:
return (gpu->gt >= 2) ? 280 : 70;
case VK_SHADER_STAGE_FRAGMENT:
return (gpu->gt == 3) ? 408 :
(gpu->gt == 2) ? 204 : 102;
default:
break;
}
break;
case INTEL_GEN(7):
switch (stage) {
case VK_SHADER_STAGE_VERTEX:
return (gpu->gt == 2) ? 128 : 36;
case VK_SHADER_STAGE_FRAGMENT:
return (gpu->gt == 2) ? 172 : 48;
default:
break;
}
break;
case INTEL_GEN(6):
switch (stage) {
case VK_SHADER_STAGE_VERTEX:
return (gpu->gt == 2) ? 60 : 24;
case VK_SHADER_STAGE_FRAGMENT:
return (gpu->gt == 2) ? 80 : 40;
default:
break;
}
break;
default:
break;
}
intel_log(gpu, VK_DBG_MSG_ERROR, VK_VALIDATION_LEVEL_0, VK_NULL_HANDLE,
0, 0, "unknown Gen or shader stage");
switch (stage) {
case VK_SHADER_STAGE_VERTEX:
return 1;
case VK_SHADER_STAGE_FRAGMENT:
return 4;
default:
return 1;
}
}
int intel_gpu_get_primary_fd(struct intel_gpu *gpu)
{
return gpu_open_primary_node(gpu);
}
VkResult intel_gpu_init_winsys(struct intel_gpu *gpu)
{
int fd;
assert(!gpu->winsys);
fd = gpu_open_render_node(gpu);
if (fd < 0)
return VK_ERROR_UNKNOWN;
gpu->winsys = intel_winsys_create_for_fd(gpu->handle.icd, fd);
if (!gpu->winsys) {
intel_log(gpu, VK_DBG_MSG_ERROR, VK_VALIDATION_LEVEL_0,
VK_NULL_HANDLE, 0, 0, "failed to create GPU winsys");
gpu_close_render_node(gpu);
return VK_ERROR_UNKNOWN;
}
return VK_SUCCESS;
}
void intel_gpu_cleanup_winsys(struct intel_gpu *gpu)
{
if (gpu->winsys) {
intel_winsys_destroy(gpu->winsys);
gpu->winsys = NULL;
}
gpu_close_primary_node(gpu);
gpu_close_render_node(gpu);
}
enum intel_ext_type intel_gpu_lookup_extension(const struct intel_gpu *gpu,
const char *ext)
{
enum intel_ext_type type;
for (type = 0; type < ARRAY_SIZE(intel_gpu_exts); type++) {
if (intel_gpu_exts[type].name && strcmp(intel_gpu_exts[type].name, ext) == 0)
break;
}
assert(type < INTEL_EXT_COUNT || type == INTEL_EXT_INVALID);
return type;
}
ICD_EXPORT VkResult VKAPI vkEnumerateLayers(
VkPhysicalDevice gpu,
size_t maxStringSize,
size_t* pLayerCount,
char* const* pOutLayers,
void* pReserved)
{
if (!pLayerCount)
return VK_ERROR_INVALID_POINTER;
*pLayerCount = 0;
return VK_SUCCESS;
}
ICD_EXPORT VkResult VKAPI vkGetPhysicalDeviceInfo(
VkPhysicalDevice gpu_,
VkPhysicalDeviceInfoType infoType,
size_t* pDataSize,
void* pData)
{
struct intel_gpu *gpu = intel_gpu(gpu_);
VkResult ret = VK_SUCCESS;
switch (infoType) {
case VK_PHYSICAL_DEVICE_INFO_TYPE_PROPERTIES:
*pDataSize = sizeof(VkPhysicalDeviceProperties);
if (pData == NULL) {
return ret;
}
intel_gpu_get_props(gpu, pData);
break;
case VK_PHYSICAL_DEVICE_INFO_TYPE_PERFORMANCE:
*pDataSize = sizeof(VkPhysicalDevicePerformance);
if (pData == NULL) {
return ret;
}
intel_gpu_get_perf(gpu, pData);
break;
case VK_PHYSICAL_DEVICE_INFO_TYPE_QUEUE_PROPERTIES:
/*
* Vulkan Programmers guide, page 33:
* to determine the data size an application calls
* vkGetPhysicalDeviceInfo() with a NULL data pointer. The
* expected data size for all queue property structures
* is returned in pDataSize
*/
*pDataSize = sizeof(VkPhysicalDeviceQueueProperties) *
INTEL_GPU_ENGINE_COUNT;
if (pData != NULL) {
VkPhysicalDeviceQueueProperties *dst = pData;
int engine;
for (engine = 0; engine < INTEL_GPU_ENGINE_COUNT; engine++) {
intel_gpu_get_queue_props(gpu, engine, dst);
dst++;
}
}
break;
case VK_PHYSICAL_DEVICE_INFO_TYPE_MEMORY_PROPERTIES:
*pDataSize = sizeof(VkPhysicalDeviceMemoryProperties);
if (pData == NULL) {
return ret;
}
intel_gpu_get_memory_props(gpu, pData);
break;
default:
ret = intel_wsi_gpu_get_info(gpu, infoType, pDataSize, pData);
break;
}
return ret;
}
ICD_EXPORT VkResult VKAPI vkGetGlobalExtensionInfo(
VkExtensionInfoType infoType,
uint32_t extensionIndex,
size_t* pDataSize,
void* pData)
{
VkExtensionProperties *ext_props;
uint32_t *count;
if (pDataSize == NULL)
return VK_ERROR_INVALID_POINTER;
switch (infoType) {
case VK_EXTENSION_INFO_TYPE_COUNT:
*pDataSize = sizeof(uint32_t);
if (pData == NULL)
return VK_SUCCESS;
count = (uint32_t *) pData;
*count = INTEL_EXT_COUNT;
break;
case VK_EXTENSION_INFO_TYPE_PROPERTIES:
*pDataSize = sizeof(VkExtensionProperties);
if (pData == NULL)
return VK_SUCCESS;
if (extensionIndex >= INTEL_EXT_COUNT)
return VK_ERROR_INVALID_VALUE;
ext_props = (VkExtensionProperties *) pData;
ext_props->version = intel_gpu_exts[extensionIndex].version;
strncpy(ext_props->extName, intel_gpu_exts[extensionIndex].name,
VK_MAX_EXTENSION_NAME);
ext_props->extName[VK_MAX_EXTENSION_NAME - 1] = '\0';
break;
default:
return VK_ERROR_INVALID_VALUE;
};
return VK_SUCCESS;
}
ICD_EXPORT VkResult VKAPI vkGetPhysicalDeviceExtensionInfo(
VkPhysicalDevice gpu,
VkExtensionInfoType infoType,
uint32_t extensionIndex,
size_t* pDataSize,
void* pData)
{
/*
* If/when we have device-specific extensions, should retrieve them
* based on the passed-in physical device
*
*VkExtensionProperties *ext_props;
*/
uint32_t *count;
if (pDataSize == NULL)
return VK_ERROR_INVALID_POINTER;
switch (infoType) {
case VK_EXTENSION_INFO_TYPE_COUNT:
*pDataSize = sizeof(uint32_t);
if (pData == NULL)
return VK_SUCCESS;
count = (uint32_t *) pData;
*count = INTEL_PHY_DEV_EXT_COUNT;
break;
case VK_EXTENSION_INFO_TYPE_PROPERTIES:
*pDataSize = sizeof(VkExtensionProperties);
if (pData == NULL)
return VK_SUCCESS;
/*
* Currently no device-specific extensions
*/
return VK_ERROR_INVALID_VALUE;
break;
default:
return VK_ERROR_INVALID_VALUE;
};
return VK_SUCCESS;
}
ICD_EXPORT VkResult VKAPI vkGetMultiDeviceCompatibility(
VkPhysicalDevice gpu0_,
VkPhysicalDevice gpu1_,
VkPhysicalDeviceCompatibilityInfo* pInfo)
{
const struct intel_gpu *gpu0 = intel_gpu(gpu0_);
const struct intel_gpu *gpu1 = intel_gpu(gpu1_);
VkFlags compat = VK_PHYSICAL_DEVICE_COMPATIBILITY_IQ_MATCH_BIT |
VK_PHYSICAL_DEVICE_COMPATIBILITY_PEER_TRANSFER_BIT |
VK_PHYSICAL_DEVICE_COMPATIBILITY_SHARED_MEMORY_BIT |
VK_PHYSICAL_DEVICE_COMPATIBILITY_SHARED_DEVICE0_DISPLAY_BIT |
VK_PHYSICAL_DEVICE_COMPATIBILITY_SHARED_DEVICE1_DISPLAY_BIT;
if (intel_gpu_gen(gpu0) == intel_gpu_gen(gpu1))
compat |= VK_PHYSICAL_DEVICE_COMPATIBILITY_FEATURES_BIT;
pInfo->compatibilityFlags = compat;
return VK_SUCCESS;
}