blob: 7d16f2b0661f05aec0361dabf0b2b875a22f8433 [file] [log] [blame]
/*
*
* Copyright (C) 2015 Valve Corporation
* Copyright (C) 2015 Google, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <algorithm>
#include <memory>
#include <unordered_map>
#include <unordered_set>
#include "vk_loader_platform.h"
#include "vk_dispatch_table_helper.h"
#include "vk_struct_string_helper_cpp.h"
#if defined(__GNUC__)
#pragma GCC diagnostic ignored "-Wwrite-strings"
#endif
#if defined(__GNUC__)
#pragma GCC diagnostic warning "-Wwrite-strings"
#endif
#include "vk_struct_size_helper.h"
#include "draw_state.h"
#include "vk_layer_config.h"
#include "vk_debug_marker_layer.h"
#include "vk_layer_table.h"
#include "vk_layer_debug_marker_table.h"
#include "vk_layer_data.h"
#include "vk_layer_logging.h"
#include "vk_layer_extension_utils.h"
#include "vk_layer_utils.h"
struct devExts {
VkBool32 debug_marker_enabled;
VkBool32 wsi_enabled;
unordered_map<VkSwapchainKHR, SWAPCHAIN_NODE*> swapchainMap;
};
struct layer_data {
debug_report_data *report_data;
// TODO: put instance data here
std::vector<VkDbgMsgCallback> logging_callback;
VkLayerDispatchTable* device_dispatch_table;
VkLayerInstanceDispatchTable* instance_dispatch_table;
devExts device_extensions;
// Layer specific data
unordered_map<VkSampler, unique_ptr<SAMPLER_NODE>> sampleMap;
unordered_map<VkImageView, unique_ptr<VkImageViewCreateInfo>> imageViewMap;
unordered_map<VkImage, unique_ptr<VkImageCreateInfo>> imageMap;
unordered_map<VkBufferView, unique_ptr<VkBufferViewCreateInfo>> bufferViewMap;
unordered_map<VkBuffer, unique_ptr<VkBufferCreateInfo>> bufferMap;
unordered_map<VkPipeline, PIPELINE_NODE*> pipelineMap;
unordered_map<VkDescriptorPool, POOL_NODE*> poolMap;
unordered_map<VkDescriptorSet, SET_NODE*> setMap;
unordered_map<VkDescriptorSetLayout, LAYOUT_NODE*> layoutMap;
unordered_map<VkPipelineLayout, PIPELINE_LAYOUT_NODE> pipelineLayoutMap;
unordered_map<VkDeviceMemory, VkImage> memImageMap;
// Map for layout chains
unordered_map<void*, GLOBAL_CB_NODE*> commandBufferMap;
unordered_map<VkFramebuffer, VkFramebufferCreateInfo*> frameBufferMap;
unordered_map<VkImage, IMAGE_NODE*> imageLayoutMap;
unordered_map<VkRenderPass, RENDER_PASS_NODE*> renderPassMap;
// Current render pass
VkRenderPassBeginInfo renderPassBeginInfo;
uint32_t currentSubpass;
layer_data() :
report_data(nullptr),
device_dispatch_table(nullptr),
instance_dispatch_table(nullptr),
device_extensions()
{};
};
// TODO : Do we need to guard access to layer_data_map w/ lock?
static std::unordered_map<void *, layer_data *> layer_data_map;
static LOADER_PLATFORM_THREAD_ONCE_DECLARATION(g_initOnce);
// TODO : This can be much smarter, using separate locks for separate global data
static int globalLockInitialized = 0;
static loader_platform_thread_mutex globalLock;
#define MAX_TID 513
static loader_platform_thread_id g_tidMapping[MAX_TID] = {0};
static uint32_t g_maxTID = 0;
template layer_data *get_my_data_ptr<layer_data>(
void *data_key,
std::unordered_map<void *, layer_data *> &data_map);
// Map actual TID to an index value and return that index
// This keeps TIDs in range from 0-MAX_TID and simplifies compares between runs
static uint32_t getTIDIndex() {
loader_platform_thread_id tid = loader_platform_get_thread_id();
for (uint32_t i = 0; i < g_maxTID; i++) {
if (tid == g_tidMapping[i])
return i;
}
// Don't yet have mapping, set it and return newly set index
uint32_t retVal = (uint32_t) g_maxTID;
g_tidMapping[g_maxTID++] = tid;
assert(g_maxTID < MAX_TID);
return retVal;
}
// Return a string representation of CMD_TYPE enum
static string cmdTypeToString(CMD_TYPE cmd)
{
switch (cmd)
{
case CMD_BINDPIPELINE:
return "CMD_BINDPIPELINE";
case CMD_BINDPIPELINEDELTA:
return "CMD_BINDPIPELINEDELTA";
case CMD_SETVIEWPORTSTATE:
return "CMD_SETVIEWPORTSTATE";
case CMD_SETLINEWIDTHSTATE:
return "CMD_SETLINEWIDTHSTATE";
case CMD_SETDEPTHBIASSTATE:
return "CMD_SETDEPTHBIASSTATE";
case CMD_SETBLENDSTATE:
return "CMD_SETBLENDSTATE";
case CMD_SETDEPTHBOUNDSSTATE:
return "CMD_SETDEPTHBOUNDSSTATE";
case CMD_SETSTENCILREADMASKSTATE:
return "CMD_SETSTENCILREADMASKSTATE";
case CMD_SETSTENCILWRITEMASKSTATE:
return "CMD_SETSTENCILWRITEMASKSTATE";
case CMD_SETSTENCILREFERENCESTATE:
return "CMD_SETSTENCILREFERENCESTATE";
case CMD_BINDDESCRIPTORSETS:
return "CMD_BINDDESCRIPTORSETS";
case CMD_BINDINDEXBUFFER:
return "CMD_BINDINDEXBUFFER";
case CMD_BINDVERTEXBUFFER:
return "CMD_BINDVERTEXBUFFER";
case CMD_DRAW:
return "CMD_DRAW";
case CMD_DRAWINDEXED:
return "CMD_DRAWINDEXED";
case CMD_DRAWINDIRECT:
return "CMD_DRAWINDIRECT";
case CMD_DRAWINDEXEDINDIRECT:
return "CMD_DRAWINDEXEDINDIRECT";
case CMD_DISPATCH:
return "CMD_DISPATCH";
case CMD_DISPATCHINDIRECT:
return "CMD_DISPATCHINDIRECT";
case CMD_COPYBUFFER:
return "CMD_COPYBUFFER";
case CMD_COPYIMAGE:
return "CMD_COPYIMAGE";
case CMD_BLITIMAGE:
return "CMD_BLITIMAGE";
case CMD_COPYBUFFERTOIMAGE:
return "CMD_COPYBUFFERTOIMAGE";
case CMD_COPYIMAGETOBUFFER:
return "CMD_COPYIMAGETOBUFFER";
case CMD_CLONEIMAGEDATA:
return "CMD_CLONEIMAGEDATA";
case CMD_UPDATEBUFFER:
return "CMD_UPDATEBUFFER";
case CMD_FILLBUFFER:
return "CMD_FILLBUFFER";
case CMD_CLEARCOLORIMAGE:
return "CMD_CLEARCOLORIMAGE";
case CMD_CLEARATTACHMENTS:
return "CMD_CLEARCOLORATTACHMENT";
case CMD_CLEARDEPTHSTENCILIMAGE:
return "CMD_CLEARDEPTHSTENCILIMAGE";
case CMD_RESOLVEIMAGE:
return "CMD_RESOLVEIMAGE";
case CMD_SETEVENT:
return "CMD_SETEVENT";
case CMD_RESETEVENT:
return "CMD_RESETEVENT";
case CMD_WAITEVENTS:
return "CMD_WAITEVENTS";
case CMD_PIPELINEBARRIER:
return "CMD_PIPELINEBARRIER";
case CMD_BEGINQUERY:
return "CMD_BEGINQUERY";
case CMD_ENDQUERY:
return "CMD_ENDQUERY";
case CMD_RESETQUERYPOOL:
return "CMD_RESETQUERYPOOL";
case CMD_COPYQUERYPOOLRESULTS:
return "CMD_COPYQUERYPOOLRESULTS";
case CMD_WRITETIMESTAMP:
return "CMD_WRITETIMESTAMP";
case CMD_INITATOMICCOUNTERS:
return "CMD_INITATOMICCOUNTERS";
case CMD_LOADATOMICCOUNTERS:
return "CMD_LOADATOMICCOUNTERS";
case CMD_SAVEATOMICCOUNTERS:
return "CMD_SAVEATOMICCOUNTERS";
case CMD_BEGINRENDERPASS:
return "CMD_BEGINRENDERPASS";
case CMD_ENDRENDERPASS:
return "CMD_ENDRENDERPASS";
case CMD_DBGMARKERBEGIN:
return "CMD_DBGMARKERBEGIN";
case CMD_DBGMARKEREND:
return "CMD_DBGMARKEREND";
default:
return "UNKNOWN";
}
}
// Block of code at start here for managing/tracking Pipeline state that this layer cares about
// Just track 2 shaders for now
#define MAX_SLOTS 2048
#define NUM_COMMAND_BUFFERS_TO_DISPLAY 10
static uint64_t g_drawCount[NUM_DRAW_TYPES] = {0, 0, 0, 0};
// TODO : Should be tracking lastBound per commandBuffer and when draws occur, report based on that cmd buffer lastBound
// Then need to synchronize the accesses based on cmd buffer so that if I'm reading state on one cmd buffer, updates
// to that same cmd buffer by separate thread are not changing state from underneath us
// Track the last cmd buffer touched by this thread
static VkCommandBuffer g_lastCommandBuffer[MAX_TID] = {NULL};
// Track the last group of CBs touched for displaying to dot file
static GLOBAL_CB_NODE* g_pLastTouchedCB[NUM_COMMAND_BUFFERS_TO_DISPLAY] = {NULL};
static uint32_t g_lastTouchedCBIndex = 0;
// Track the last global DrawState of interest touched by any thread
static GLOBAL_CB_NODE* g_lastGlobalCB = NULL;
static PIPELINE_NODE* g_lastBoundPipeline = NULL;
#define MAX_BINDING 0xFFFFFFFF // Default vtxBinding value in CB Node to identify if no vtxBinding set
// prototype
static GLOBAL_CB_NODE* getCBNode(layer_data*, const VkCommandBuffer);
// Update global ptrs to reflect that specified commandBuffer has been used
static void updateCBTracking(GLOBAL_CB_NODE* pCB)
{
g_lastCommandBuffer[getTIDIndex()] = pCB->commandBuffer;
loader_platform_thread_lock_mutex(&globalLock);
g_lastGlobalCB = pCB;
// TODO : This is a dumb algorithm. Need smart LRU that drops off oldest
for (uint32_t i = 0; i < NUM_COMMAND_BUFFERS_TO_DISPLAY; i++) {
if (g_pLastTouchedCB[i] == pCB) {
loader_platform_thread_unlock_mutex(&globalLock);
return;
}
}
g_pLastTouchedCB[g_lastTouchedCBIndex++] = pCB;
g_lastTouchedCBIndex = g_lastTouchedCBIndex % NUM_COMMAND_BUFFERS_TO_DISPLAY;
loader_platform_thread_unlock_mutex(&globalLock);
}
static VkBool32 hasDrawCmd(GLOBAL_CB_NODE* pCB)
{
for (uint32_t i=0; i<NUM_DRAW_TYPES; i++) {
if (pCB->drawCount[i])
return VK_TRUE;
}
return VK_FALSE;
}
// Check object status for selected flag state
static VkBool32 validate_status(layer_data* my_data, GLOBAL_CB_NODE* pNode, CBStatusFlags enable_mask, CBStatusFlags status_mask, CBStatusFlags status_flag, VkFlags msg_flags, DRAW_STATE_ERROR error_code, const char* fail_msg)
{
// If non-zero enable mask is present, check it against status but if enable_mask
// is 0 then no enable required so we should always just check status
if ((!enable_mask) || (enable_mask & pNode->status)) {
if ((pNode->status & status_mask) != status_flag) {
// TODO : How to pass dispatchable objects as srcObject? Here src obj should be cmd buffer
return log_msg(my_data->report_data, msg_flags, VK_OBJECT_TYPE_COMMAND_BUFFER, 0, 0, error_code, "DS",
"CB object %#" PRIxLEAST64 ": %s", reinterpret_cast<uint64_t>(pNode->commandBuffer), fail_msg);
}
}
return VK_FALSE;
}
// Retrieve pipeline node ptr for given pipeline object
static PIPELINE_NODE* getPipeline(layer_data* my_data, const VkPipeline pipeline)
{
loader_platform_thread_lock_mutex(&globalLock);
if (my_data->pipelineMap.find(pipeline) == my_data->pipelineMap.end()) {
loader_platform_thread_unlock_mutex(&globalLock);
return NULL;
}
loader_platform_thread_unlock_mutex(&globalLock);
return my_data->pipelineMap[pipeline];
}
// Return VK_TRUE if for a given PSO, the given state enum is dynamic, else return VK_FALSE
static VkBool32 isDynamic(const PIPELINE_NODE* pPipeline, const VkDynamicState state)
{
if (pPipeline && pPipeline->graphicsPipelineCI.pDynamicState) {
for (uint32_t i=0; i<pPipeline->graphicsPipelineCI.pDynamicState->dynamicStateCount; i++) {
if (state == pPipeline->graphicsPipelineCI.pDynamicState->pDynamicStates[i])
return VK_TRUE;
}
}
return VK_FALSE;
}
// Validate state stored as flags at time of draw call
static VkBool32 validate_draw_state_flags(layer_data* my_data, GLOBAL_CB_NODE* pCB, VkBool32 indexedDraw) {
VkBool32 result;
result = validate_status(my_data, pCB, CBSTATUS_NONE, CBSTATUS_VIEWPORT_SET, CBSTATUS_VIEWPORT_SET, VK_DBG_REPORT_ERROR_BIT, DRAWSTATE_VIEWPORT_NOT_BOUND, "Dynamic viewport state not set for this command buffer");
result |= validate_status(my_data, pCB, CBSTATUS_NONE, CBSTATUS_SCISSOR_SET, CBSTATUS_SCISSOR_SET, VK_DBG_REPORT_ERROR_BIT, DRAWSTATE_SCISSOR_NOT_BOUND, "Dynamic scissor state not set for this command buffer");
result |= validate_status(my_data, pCB, CBSTATUS_NONE, CBSTATUS_LINE_WIDTH_SET, CBSTATUS_LINE_WIDTH_SET, VK_DBG_REPORT_ERROR_BIT, DRAWSTATE_LINE_WIDTH_NOT_BOUND, "Dynamic line width state not set for this command buffer");
result |= validate_status(my_data, pCB, CBSTATUS_NONE, CBSTATUS_DEPTH_BIAS_SET, CBSTATUS_DEPTH_BIAS_SET, VK_DBG_REPORT_ERROR_BIT, DRAWSTATE_DEPTH_BIAS_NOT_BOUND, "Dynamic depth bias state not set for this command buffer");
result |= validate_status(my_data, pCB, CBSTATUS_COLOR_BLEND_WRITE_ENABLE, CBSTATUS_BLEND_SET, CBSTATUS_BLEND_SET, VK_DBG_REPORT_ERROR_BIT, DRAWSTATE_BLEND_NOT_BOUND, "Dynamic blend object state not set for this command buffer");
result |= validate_status(my_data, pCB, CBSTATUS_DEPTH_WRITE_ENABLE, CBSTATUS_DEPTH_BOUNDS_SET, CBSTATUS_DEPTH_BOUNDS_SET, VK_DBG_REPORT_ERROR_BIT, DRAWSTATE_DEPTH_BOUNDS_NOT_BOUND, "Dynamic depth bounds state not set for this command buffer");
result |= validate_status(my_data, pCB, CBSTATUS_STENCIL_TEST_ENABLE, CBSTATUS_STENCIL_READ_MASK_SET, CBSTATUS_STENCIL_READ_MASK_SET, VK_DBG_REPORT_ERROR_BIT, DRAWSTATE_STENCIL_NOT_BOUND, "Dynamic stencil read mask state not set for this command buffer");
result |= validate_status(my_data, pCB, CBSTATUS_STENCIL_TEST_ENABLE, CBSTATUS_STENCIL_WRITE_MASK_SET, CBSTATUS_STENCIL_WRITE_MASK_SET, VK_DBG_REPORT_ERROR_BIT, DRAWSTATE_STENCIL_NOT_BOUND, "Dynamic stencil write mask state not set for this command buffer");
result |= validate_status(my_data, pCB, CBSTATUS_STENCIL_TEST_ENABLE, CBSTATUS_STENCIL_REFERENCE_SET, CBSTATUS_STENCIL_REFERENCE_SET, VK_DBG_REPORT_ERROR_BIT, DRAWSTATE_STENCIL_NOT_BOUND, "Dynamic stencil reference state not set for this command buffer");
if (indexedDraw)
result |= validate_status(my_data, pCB, CBSTATUS_NONE, CBSTATUS_INDEX_BUFFER_BOUND, CBSTATUS_INDEX_BUFFER_BOUND, VK_DBG_REPORT_ERROR_BIT, DRAWSTATE_INDEX_BUFFER_NOT_BOUND, "Index buffer object not bound to this command buffer when Indexed Draw attempted");
return result;
}
// Validate overall state at the time of a draw call
static VkBool32 validate_draw_state(layer_data* my_data, GLOBAL_CB_NODE* pCB, VkBool32 indexedDraw) {
// First check flag states
VkBool32 result = validate_draw_state_flags(my_data, pCB, indexedDraw);
PIPELINE_NODE* pPipe = getPipeline(my_data, pCB->lastBoundPipeline);
// Now complete other state checks
// TODO : Currently only performing next check if *something* was bound (non-zero last bound)
// There is probably a better way to gate when this check happens, and to know if something *should* have been bound
// We should have that check separately and then gate this check based on that check
if (pPipe && (pCB->lastBoundPipelineLayout) && (pCB->lastBoundPipelineLayout != pPipe->graphicsPipelineCI.layout)) {
result |= log_msg(my_data->report_data, VK_DBG_REPORT_ERROR_BIT, VK_OBJECT_TYPE_PIPELINE_LAYOUT, (uint64_t) pCB->lastBoundPipelineLayout, 0, DRAWSTATE_PIPELINE_LAYOUT_MISMATCH, "DS",
"Pipeline layout from last vkCmdBindDescriptorSets() (%#" PRIxLEAST64 ") does not match PSO Pipeline layout (%#" PRIxLEAST64 ") ", (uint64_t) pCB->lastBoundPipelineLayout, (uint64_t) pPipe->graphicsPipelineCI.layout);
}
// Verify Vtx binding
if (MAX_BINDING != pCB->lastVtxBinding) {
if (pCB->lastVtxBinding >= pPipe->vtxBindingCount) {
if (0 == pPipe->vtxBindingCount) {
result |= log_msg(my_data->report_data, VK_DBG_REPORT_ERROR_BIT, (VkDbgObjectType) 0, 0, 0, DRAWSTATE_VTX_INDEX_OUT_OF_BOUNDS, "DS",
"Vtx Buffer Index %u was bound, but no vtx buffers are attached to PSO.", pCB->lastVtxBinding);
}
else {
result |= log_msg(my_data->report_data, VK_DBG_REPORT_ERROR_BIT, (VkDbgObjectType) 0, 0, 0, DRAWSTATE_VTX_INDEX_OUT_OF_BOUNDS, "DS",
"Vtx binding Index of %u exceeds PSO pVertexBindingDescriptions max array index of %u.", pCB->lastVtxBinding, (pPipe->vtxBindingCount - 1));
}
}
}
// If Viewport or scissors are dynamic, verify that dynamic count matches PSO count
VkBool32 dynViewport = isDynamic(pPipe, VK_DYNAMIC_STATE_VIEWPORT);
VkBool32 dynScissor = isDynamic(pPipe, VK_DYNAMIC_STATE_SCISSOR);
if (dynViewport) {
if (pCB->viewports.size() != pPipe->graphicsPipelineCI.pViewportState->viewportCount) {
result |= log_msg(my_data->report_data, VK_DBG_REPORT_ERROR_BIT, (VkDbgObjectType) 0, 0, 0, DRAWSTATE_VIEWPORT_SCISSOR_MISMATCH, "DS",
"Dynamic viewportCount from vkCmdSetViewport() is %u, but PSO viewportCount is %u. These counts must match.", pCB->viewports.size(), pPipe->graphicsPipelineCI.pViewportState->viewportCount);
}
}
if (dynScissor) {
if (pCB->scissors.size() != pPipe->graphicsPipelineCI.pViewportState->scissorCount) {
result |= log_msg(my_data->report_data, VK_DBG_REPORT_ERROR_BIT, (VkDbgObjectType) 0, 0, 0, DRAWSTATE_VIEWPORT_SCISSOR_MISMATCH, "DS",
"Dynamic scissorCount from vkCmdSetScissor() is %u, but PSO scissorCount is %u. These counts must match.", pCB->scissors.size(), pPipe->graphicsPipelineCI.pViewportState->scissorCount);
}
}
return result;
}
// Verify that create state for a pipeline is valid
static VkBool32 verifyPipelineCreateState(layer_data* my_data, const VkDevice device, const PIPELINE_NODE* pPipeline)
{
VkBool32 skipCall = VK_FALSE;
// VS is required
if (!(pPipeline->active_shaders & VK_SHADER_STAGE_VERTEX_BIT)) {
skipCall |= log_msg(my_data->report_data, VK_DBG_REPORT_ERROR_BIT, (VkDbgObjectType) 0, 0, 0, DRAWSTATE_INVALID_PIPELINE_CREATE_STATE, "DS",
"Invalid Pipeline CreateInfo State: Vtx Shader required");
}
// Either both or neither TC/TE shaders should be defined
if (((pPipeline->active_shaders & VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT) == 0) !=
((pPipeline->active_shaders & VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT) == 0) ) {
skipCall |= log_msg(my_data->report_data, VK_DBG_REPORT_ERROR_BIT, (VkDbgObjectType) 0, 0, 0, DRAWSTATE_INVALID_PIPELINE_CREATE_STATE, "DS",
"Invalid Pipeline CreateInfo State: TE and TC shaders must be included or excluded as a pair");
}
// Compute shaders should be specified independent of Gfx shaders
if ((pPipeline->active_shaders & VK_SHADER_STAGE_COMPUTE_BIT) &&
(pPipeline->active_shaders & (VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT |
VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT | VK_SHADER_STAGE_GEOMETRY_BIT |
VK_SHADER_STAGE_FRAGMENT_BIT))) {
skipCall |= log_msg(my_data->report_data, VK_DBG_REPORT_ERROR_BIT, (VkDbgObjectType) 0, 0, 0, DRAWSTATE_INVALID_PIPELINE_CREATE_STATE, "DS",
"Invalid Pipeline CreateInfo State: Do not specify Compute Shader for Gfx Pipeline");
}
// VK_PRIMITIVE_TOPOLOGY_PATCH_LIST primitive topology is only valid for tessellation pipelines.
// Mismatching primitive topology and tessellation fails graphics pipeline creation.
if (pPipeline->active_shaders & (VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT | VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT) &&
(pPipeline->iaStateCI.topology != VK_PRIMITIVE_TOPOLOGY_PATCH_LIST)) {
skipCall |= log_msg(my_data->report_data, VK_DBG_REPORT_ERROR_BIT, (VkDbgObjectType) 0, 0, 0, DRAWSTATE_INVALID_PIPELINE_CREATE_STATE, "DS",
"Invalid Pipeline CreateInfo State: VK_PRIMITIVE_TOPOLOGY_PATCH_LIST must be set as IA topology for tessellation pipelines");
}
if (pPipeline->iaStateCI.topology == VK_PRIMITIVE_TOPOLOGY_PATCH_LIST) {
if (~pPipeline->active_shaders & VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT) {
skipCall |= log_msg(my_data->report_data, VK_DBG_REPORT_ERROR_BIT, (VkDbgObjectType) 0, 0, 0, DRAWSTATE_INVALID_PIPELINE_CREATE_STATE, "DS",
"Invalid Pipeline CreateInfo State: VK_PRIMITIVE_TOPOLOGY_PATCH_LIST primitive topology is only valid for tessellation pipelines");
}
if (!pPipeline->tessStateCI.patchControlPoints || (pPipeline->tessStateCI.patchControlPoints > 32)) {
skipCall |= log_msg(my_data->report_data, VK_DBG_REPORT_ERROR_BIT, (VkDbgObjectType) 0, 0, 0, DRAWSTATE_INVALID_PIPELINE_CREATE_STATE, "DS",
"Invalid Pipeline CreateInfo State: VK_PRIMITIVE_TOPOLOGY_PATCH_LIST primitive topology used with patchControlPoints value %u."
" patchControlPoints should be >0 and <=32.", pPipeline->tessStateCI.patchControlPoints);
}
}
// Viewport state must be included and viewport and scissor counts should always match
// NOTE : Even if these are flagged as dynamic, counts need to be set correctly for shader compiler
if (!pPipeline->graphicsPipelineCI.pViewportState) {
skipCall |= log_msg(my_data->report_data, VK_DBG_REPORT_ERROR_BIT, (VkDbgObjectType) 0, 0, 0, DRAWSTATE_VIEWPORT_SCISSOR_MISMATCH, "DS",
"Gfx Pipeline pViewportState is null. Even if viewport and scissors are dynamic PSO must include viewportCount and scissorCount in pViewportState.");
} else if (pPipeline->graphicsPipelineCI.pViewportState->scissorCount != pPipeline->graphicsPipelineCI.pViewportState->viewportCount) {
skipCall |= log_msg(my_data->report_data, VK_DBG_REPORT_ERROR_BIT, (VkDbgObjectType) 0, 0, 0, DRAWSTATE_VIEWPORT_SCISSOR_MISMATCH, "DS",
"Gfx Pipeline viewport count (%u) must match scissor count (%u).", pPipeline->vpStateCI.viewportCount, pPipeline->vpStateCI.scissorCount);
} else {
// If viewport or scissor are not dynamic, then verify that data is appropriate for count
VkBool32 dynViewport = isDynamic(pPipeline, VK_DYNAMIC_STATE_VIEWPORT);
VkBool32 dynScissor = isDynamic(pPipeline, VK_DYNAMIC_STATE_SCISSOR);
if (!dynViewport) {
if (pPipeline->graphicsPipelineCI.pViewportState->viewportCount && !pPipeline->graphicsPipelineCI.pViewportState->pViewports) {
skipCall |= log_msg(my_data->report_data, VK_DBG_REPORT_ERROR_BIT, (VkDbgObjectType) 0, 0, 0, DRAWSTATE_VIEWPORT_SCISSOR_MISMATCH, "DS",
"Gfx Pipeline viewportCount is %u, but pViewports is NULL. For non-zero viewportCount, you must either include pViewports data, or include viewport in pDynamicState and set it with vkCmdSetViewport().", pPipeline->graphicsPipelineCI.pViewportState->viewportCount);
}
}
if (!dynScissor) {
if (pPipeline->graphicsPipelineCI.pViewportState->scissorCount && !pPipeline->graphicsPipelineCI.pViewportState->pScissors) {
skipCall |= log_msg(my_data->report_data, VK_DBG_REPORT_ERROR_BIT, (VkDbgObjectType) 0, 0, 0, DRAWSTATE_VIEWPORT_SCISSOR_MISMATCH, "DS",
"Gfx Pipeline scissorCount is %u, but pScissors is NULL. For non-zero scissorCount, you must either include pScissors data, or include scissor in pDynamicState and set it with vkCmdSetScissor().", pPipeline->graphicsPipelineCI.pViewportState->scissorCount);
}
}
}
return skipCall;
}
// Init the pipeline mapping info based on pipeline create info LL tree
// Threading note : Calls to this function should wrapped in mutex
static PIPELINE_NODE* initPipeline(layer_data* dev_data, const VkGraphicsPipelineCreateInfo* pCreateInfo, PIPELINE_NODE* pBasePipeline)
{
PIPELINE_NODE* pPipeline = new PIPELINE_NODE;
if (pBasePipeline) {
memcpy((void*)pPipeline, (void*)pBasePipeline, sizeof(PIPELINE_NODE));
} else {
memset((void*)pPipeline, 0, sizeof(PIPELINE_NODE));
}
// First init create info
memcpy(&pPipeline->graphicsPipelineCI, pCreateInfo, sizeof(VkGraphicsPipelineCreateInfo));
size_t bufferSize = 0;
const VkPipelineVertexInputStateCreateInfo* pVICI = NULL;
const VkPipelineColorBlendStateCreateInfo* pCBCI = NULL;
for (uint32_t i = 0; i < pCreateInfo->stageCount; i++) {
const VkPipelineShaderStageCreateInfo *pPSSCI = &pCreateInfo->pStages[i];
switch (pPSSCI->stage) {
case VK_SHADER_STAGE_VERTEX_BIT:
memcpy(&pPipeline->vsCI, pPSSCI, sizeof(VkPipelineShaderStageCreateInfo));
pPipeline->active_shaders |= VK_SHADER_STAGE_VERTEX_BIT;
break;
case VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT:
memcpy(&pPipeline->tcsCI, pPSSCI, sizeof(VkPipelineShaderStageCreateInfo));
pPipeline->active_shaders |= VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT;
break;
case VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT:
memcpy(&pPipeline->tesCI, pPSSCI, sizeof(VkPipelineShaderStageCreateInfo));
pPipeline->active_shaders |= VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT;
break;
case VK_SHADER_STAGE_GEOMETRY_BIT:
memcpy(&pPipeline->gsCI, pPSSCI, sizeof(VkPipelineShaderStageCreateInfo));
pPipeline->active_shaders |= VK_SHADER_STAGE_GEOMETRY_BIT;
break;
case VK_SHADER_STAGE_FRAGMENT_BIT:
memcpy(&pPipeline->fsCI, pPSSCI, sizeof(VkPipelineShaderStageCreateInfo));
pPipeline->active_shaders |= VK_SHADER_STAGE_FRAGMENT_BIT;
break;
case VK_SHADER_STAGE_COMPUTE_BIT:
// TODO : Flag error, CS is specified through VkComputePipelineCreateInfo
pPipeline->active_shaders |= VK_SHADER_STAGE_COMPUTE_BIT;
break;
default:
// TODO : Flag error
break;
}
}
// Copy over GraphicsPipelineCreateInfo structure embedded pointers
if (pCreateInfo->stageCount != 0) {
pPipeline->graphicsPipelineCI.pStages = new VkPipelineShaderStageCreateInfo[pCreateInfo->stageCount];
bufferSize = pCreateInfo->stageCount * sizeof(VkPipelineShaderStageCreateInfo);
memcpy((void*)pPipeline->graphicsPipelineCI.pStages, pCreateInfo->pStages, bufferSize);
}
if (pCreateInfo->pVertexInputState != NULL) {
memcpy((void*)&pPipeline->vertexInputCI, pCreateInfo->pVertexInputState , sizeof(VkPipelineVertexInputStateCreateInfo));
// Copy embedded ptrs
pVICI = pCreateInfo->pVertexInputState;
pPipeline->vtxBindingCount = pVICI->vertexBindingDescriptionCount;
if (pPipeline->vtxBindingCount) {
pPipeline->pVertexBindingDescriptions = new VkVertexInputBindingDescription[pPipeline->vtxBindingCount];
bufferSize = pPipeline->vtxBindingCount * sizeof(VkVertexInputBindingDescription);
memcpy((void*)pPipeline->pVertexBindingDescriptions, pVICI->pVertexBindingDescriptions, bufferSize);
}
pPipeline->vtxAttributeCount = pVICI->vertexAttributeDescriptionCount;
if (pPipeline->vtxAttributeCount) {
pPipeline->pVertexAttributeDescriptions = new VkVertexInputAttributeDescription[pPipeline->vtxAttributeCount];
bufferSize = pPipeline->vtxAttributeCount * sizeof(VkVertexInputAttributeDescription);
memcpy((void*)pPipeline->pVertexAttributeDescriptions, pVICI->pVertexAttributeDescriptions, bufferSize);
}
pPipeline->graphicsPipelineCI.pVertexInputState = &pPipeline->vertexInputCI;
}
if (pCreateInfo->pInputAssemblyState != NULL) {
memcpy((void*)&pPipeline->iaStateCI, pCreateInfo->pInputAssemblyState, sizeof(VkPipelineInputAssemblyStateCreateInfo));
pPipeline->graphicsPipelineCI.pInputAssemblyState = &pPipeline->iaStateCI;
}
if (pCreateInfo->pTessellationState != NULL) {
memcpy((void*)&pPipeline->tessStateCI, pCreateInfo->pTessellationState, sizeof(VkPipelineTessellationStateCreateInfo));
pPipeline->graphicsPipelineCI.pTessellationState = &pPipeline->tessStateCI;
}
if (pCreateInfo->pViewportState != NULL) {
memcpy((void*)&pPipeline->vpStateCI, pCreateInfo->pViewportState, sizeof(VkPipelineViewportStateCreateInfo));
pPipeline->graphicsPipelineCI.pViewportState = &pPipeline->vpStateCI;
}
if (pCreateInfo->pRasterizationState != NULL) {
memcpy((void*)&pPipeline->rsStateCI, pCreateInfo->pRasterizationState, sizeof(VkPipelineRasterizationStateCreateInfo));
pPipeline->graphicsPipelineCI.pRasterizationState = &pPipeline->rsStateCI;
}
if (pCreateInfo->pMultisampleState != NULL) {
memcpy((void*)&pPipeline->msStateCI, pCreateInfo->pMultisampleState, sizeof(VkPipelineMultisampleStateCreateInfo));
pPipeline->graphicsPipelineCI.pMultisampleState = &pPipeline->msStateCI;
}
if (pCreateInfo->pDepthStencilState != NULL) {
memcpy((void*)&pPipeline->dsStateCI, pCreateInfo->pDepthStencilState, sizeof(VkPipelineDepthStencilStateCreateInfo));
pPipeline->graphicsPipelineCI.pDepthStencilState = &pPipeline->dsStateCI;
}
if (pCreateInfo->pColorBlendState != NULL) {
memcpy((void*)&pPipeline->cbStateCI, pCreateInfo->pColorBlendState, sizeof(VkPipelineColorBlendStateCreateInfo));
// Copy embedded ptrs
pCBCI = pCreateInfo->pColorBlendState;
pPipeline->attachmentCount = pCBCI->attachmentCount;
if (pPipeline->attachmentCount) {
pPipeline->pAttachments = new VkPipelineColorBlendAttachmentState[pPipeline->attachmentCount];
bufferSize = pPipeline->attachmentCount * sizeof(VkPipelineColorBlendAttachmentState);
memcpy((void*)pPipeline->pAttachments, pCBCI->pAttachments, bufferSize);
}
pPipeline->graphicsPipelineCI.pColorBlendState = &pPipeline->cbStateCI;
}
if (pCreateInfo->pDynamicState != NULL) {
memcpy((void*)&pPipeline->dynStateCI, pCreateInfo->pDynamicState, sizeof(VkPipelineDynamicStateCreateInfo));
if (pPipeline->dynStateCI.dynamicStateCount) {
pPipeline->dynStateCI.pDynamicStates = new VkDynamicState[pPipeline->dynStateCI.dynamicStateCount];
bufferSize = pPipeline->dynStateCI.dynamicStateCount * sizeof(VkDynamicState);
memcpy((void*)pPipeline->dynStateCI.pDynamicStates, pCreateInfo->pDynamicState->pDynamicStates, bufferSize);
}
pPipeline->graphicsPipelineCI.pDynamicState = &pPipeline->dynStateCI;
}
return pPipeline;
}
// Free the Pipeline nodes
static void deletePipelines(layer_data* my_data)
{
if (my_data->pipelineMap.size() <= 0)
return;
for (auto ii=my_data->pipelineMap.begin(); ii!=my_data->pipelineMap.end(); ++ii) {
if ((*ii).second->graphicsPipelineCI.stageCount != 0) {
delete[] (*ii).second->graphicsPipelineCI.pStages;
}
if ((*ii).second->pVertexBindingDescriptions) {
delete[] (*ii).second->pVertexBindingDescriptions;
}
if ((*ii).second->pVertexAttributeDescriptions) {
delete[] (*ii).second->pVertexAttributeDescriptions;
}
if ((*ii).second->pAttachments) {
delete[] (*ii).second->pAttachments;
}
if ((*ii).second->dynStateCI.dynamicStateCount != 0) {
delete[] (*ii).second->dynStateCI.pDynamicStates;
}
delete (*ii).second;
}
my_data->pipelineMap.clear();
}
// For given pipeline, return number of MSAA samples, or one if MSAA disabled
static VkSampleCountFlagBits getNumSamples(layer_data* my_data, const VkPipeline pipeline)
{
PIPELINE_NODE* pPipe = my_data->pipelineMap[pipeline];
if (VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO == pPipe->msStateCI.sType) {
return pPipe->msStateCI.rasterizationSamples;
}
return VK_SAMPLE_COUNT_1_BIT;
}
// Validate state related to the PSO
static VkBool32 validatePipelineState(layer_data* my_data, const GLOBAL_CB_NODE* pCB, const VkPipelineBindPoint pipelineBindPoint, const VkPipeline pipeline)
{
if (VK_PIPELINE_BIND_POINT_GRAPHICS == pipelineBindPoint) {
// Verify that any MSAA request in PSO matches sample# in bound FB
VkSampleCountFlagBits psoNumSamples = getNumSamples(my_data, pipeline);
if (pCB->activeRenderPass) {
const VkRenderPassCreateInfo* pRPCI = my_data->renderPassMap[pCB->activeRenderPass]->createInfo;
const VkSubpassDescription* pSD = &pRPCI->pSubpasses[pCB->activeSubpass];
VkSampleCountFlagBits subpassNumSamples = (VkSampleCountFlagBits) 0;
uint32_t i;
for (i = 0; i < pSD->colorAttachmentCount; i++) {
VkSampleCountFlagBits samples;
if (pSD->pColorAttachments[i].attachment == VK_ATTACHMENT_UNUSED)
continue;
samples = pRPCI->pAttachments[pSD->pColorAttachments[i].attachment].samples;
if (subpassNumSamples == (VkSampleCountFlagBits) 0) {
subpassNumSamples = samples;
} else if (subpassNumSamples != samples) {
subpassNumSamples = (VkSampleCountFlagBits) -1;
break;
}
}
if (pSD->pDepthStencilAttachment && pSD->pDepthStencilAttachment->attachment != VK_ATTACHMENT_UNUSED) {
const VkSampleCountFlagBits samples = pRPCI->pAttachments[pSD->pDepthStencilAttachment->attachment].samples;
if (subpassNumSamples == (VkSampleCountFlagBits) 0)
subpassNumSamples = samples;
else if (subpassNumSamples != samples)
subpassNumSamples = (VkSampleCountFlagBits) -1;
}
if (psoNumSamples != subpassNumSamples) {
return log_msg(my_data->report_data, VK_DBG_REPORT_ERROR_BIT, VK_OBJECT_TYPE_PIPELINE, (uint64_t) pipeline, 0, DRAWSTATE_NUM_SAMPLES_MISMATCH, "DS",
"Num samples mismatch! Binding PSO (%#" PRIxLEAST64 ") with %u samples while current RenderPass (%#" PRIxLEAST64 ") w/ %u samples!",
(uint64_t) pipeline, psoNumSamples, (uint64_t) pCB->activeRenderPass, subpassNumSamples);
}
} else {
// TODO : I believe it's an error if we reach this point and don't have an activeRenderPass
// Verify and flag error as appropriate
}
// TODO : Add more checks here
} else {
// TODO : Validate non-gfx pipeline updates
}
return VK_FALSE;
}
// Block of code at start here specifically for managing/tracking DSs
// Return Pool node ptr for specified pool or else NULL
static POOL_NODE* getPoolNode(layer_data* my_data, const VkDescriptorPool pool)
{
loader_platform_thread_lock_mutex(&globalLock);
if (my_data->poolMap.find(pool) == my_data->poolMap.end()) {
loader_platform_thread_unlock_mutex(&globalLock);
return NULL;
}
loader_platform_thread_unlock_mutex(&globalLock);
return my_data->poolMap[pool];
}
// Return Set node ptr for specified set or else NULL
static SET_NODE* getSetNode(layer_data* my_data, const VkDescriptorSet set)
{
loader_platform_thread_lock_mutex(&globalLock);
if (my_data->setMap.find(set) == my_data->setMap.end()) {
loader_platform_thread_unlock_mutex(&globalLock);
return NULL;
}
loader_platform_thread_unlock_mutex(&globalLock);
return my_data->setMap[set];
}
static LAYOUT_NODE* getLayoutNode(layer_data* my_data, const VkDescriptorSetLayout layout) {
loader_platform_thread_lock_mutex(&globalLock);
if (my_data->layoutMap.find(layout) == my_data->layoutMap.end()) {
loader_platform_thread_unlock_mutex(&globalLock);
return NULL;
}
loader_platform_thread_unlock_mutex(&globalLock);
return my_data->layoutMap[layout];
}
// Return VK_FALSE if update struct is of valid type, otherwise flag error and return code from callback
static VkBool32 validUpdateStruct(layer_data* my_data, const VkDevice device, const GENERIC_HEADER* pUpdateStruct)
{
switch (pUpdateStruct->sType)
{
case VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET:
case VK_STRUCTURE_TYPE_COPY_DESCRIPTOR_SET:
return VK_FALSE;
default:
return log_msg(my_data->report_data, VK_DBG_REPORT_ERROR_BIT, (VkDbgObjectType) 0, 0, 0, DRAWSTATE_INVALID_UPDATE_STRUCT, "DS",
"Unexpected UPDATE struct of type %s (value %u) in vkUpdateDescriptors() struct tree", string_VkStructureType(pUpdateStruct->sType), pUpdateStruct->sType);
}
}
// Set count for given update struct in the last parameter
// Return value of skipCall, which is only VK_TRUE is error occurs and callback signals execution to cease
static uint32_t getUpdateCount(layer_data* my_data, const VkDevice device, const GENERIC_HEADER* pUpdateStruct)
{
switch (pUpdateStruct->sType)
{
case VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET:
return ((VkWriteDescriptorSet*)pUpdateStruct)->descriptorCount;
case VK_STRUCTURE_TYPE_COPY_DESCRIPTOR_SET:
// TODO : Need to understand this case better and make sure code is correct
return ((VkCopyDescriptorSet*)pUpdateStruct)->descriptorCount;
}
}
// For given Layout Node and binding, return index where that binding begins
static uint32_t getBindingStartIndex(const LAYOUT_NODE* pLayout, const uint32_t binding)
{
uint32_t offsetIndex = 0;
for (uint32_t i = 0; i < pLayout->createInfo.bindingCount; i++) {
if (pLayout->createInfo.pBinding[i].binding == binding)
break;
offsetIndex += pLayout->createInfo.pBinding[i].arraySize;
}
return offsetIndex;
}
// For given layout node and binding, return last index that is updated
static uint32_t getBindingEndIndex(const LAYOUT_NODE* pLayout, const uint32_t binding)
{
uint32_t offsetIndex = 0;
for (uint32_t i = 0; i < pLayout->createInfo.bindingCount; i++) {
offsetIndex += pLayout->createInfo.pBinding[i].arraySize;
if (pLayout->createInfo.pBinding[i].binding == binding)
break;
}
return offsetIndex-1;
}
// For given layout and update, return the first overall index of the layout that is updated
static uint32_t getUpdateStartIndex(layer_data* my_data, const VkDevice device, const LAYOUT_NODE* pLayout, const uint32_t binding, const uint32_t arrayIndex, const GENERIC_HEADER* pUpdateStruct)
{
return getBindingStartIndex(pLayout, binding)+arrayIndex;
}
// For given layout and update, return the last overall index of the layout that is updated
static uint32_t getUpdateEndIndex(layer_data* my_data, const VkDevice device, const LAYOUT_NODE* pLayout, const uint32_t binding, const uint32_t arrayIndex, const GENERIC_HEADER* pUpdateStruct)
{
uint32_t count = getUpdateCount(my_data, device, pUpdateStruct);
return getBindingStartIndex(pLayout, binding)+arrayIndex+count-1;
}
// Verify that the descriptor type in the update struct matches what's expected by the layout
static VkBool32 validateUpdateConsistency(layer_data* my_data, const VkDevice device, const LAYOUT_NODE* pLayout, const GENERIC_HEADER* pUpdateStruct, uint32_t startIndex, uint32_t endIndex)
{
// First get actual type of update
VkBool32 skipCall = VK_FALSE;
VkDescriptorType actualType;
uint32_t i = 0;
switch (pUpdateStruct->sType)
{
case VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET:
actualType = ((VkWriteDescriptorSet*)pUpdateStruct)->descriptorType;
break;
case VK_STRUCTURE_TYPE_COPY_DESCRIPTOR_SET:
/* no need to validate */
return VK_FALSE;
break;
default:
skipCall |= log_msg(my_data->report_data, VK_DBG_REPORT_ERROR_BIT, (VkDbgObjectType) 0, 0, 0, DRAWSTATE_INVALID_UPDATE_STRUCT, "DS",
"Unexpected UPDATE struct of type %s (value %u) in vkUpdateDescriptors() struct tree", string_VkStructureType(pUpdateStruct->sType), pUpdateStruct->sType);
}
if (VK_FALSE == skipCall) {
// Set first stageFlags as reference and verify that all other updates match it
VkShaderStageFlags refStageFlags = pLayout->stageFlags[startIndex];
for (i = startIndex; i <= endIndex; i++) {
if (pLayout->descriptorTypes[i] != actualType) {
skipCall |= log_msg(my_data->report_data, VK_DBG_REPORT_ERROR_BIT, (VkDbgObjectType) 0, 0, 0, DRAWSTATE_DESCRIPTOR_TYPE_MISMATCH, "DS",
"Write descriptor update has descriptor type %s that does not match overlapping binding descriptor type of %s!",
string_VkDescriptorType(actualType), string_VkDescriptorType(pLayout->descriptorTypes[i]));
}
if (pLayout->stageFlags[i] != refStageFlags) {
skipCall |= log_msg(my_data->report_data, VK_DBG_REPORT_ERROR_BIT, (VkDbgObjectType) 0, 0, 0, DRAWSTATE_DESCRIPTOR_STAGEFLAGS_MISMATCH, "DS",
"Write descriptor update has stageFlags %x that do not match overlapping binding descriptor stageFlags of %x!",
refStageFlags, pLayout->stageFlags[i]);
}
}
}
return skipCall;
}
// Determine the update type, allocate a new struct of that type, shadow the given pUpdate
// struct into the pNewNode param. Return VK_TRUE if error condition encountered and callback signals early exit.
// NOTE : Calls to this function should be wrapped in mutex
static VkBool32 shadowUpdateNode(layer_data* my_data, const VkDevice device, GENERIC_HEADER* pUpdate, GENERIC_HEADER** pNewNode)
{
VkBool32 skipCall = VK_FALSE;
VkWriteDescriptorSet* pWDS = NULL;
VkCopyDescriptorSet* pCDS = NULL;
size_t array_size = 0;
size_t base_array_size = 0;
size_t total_array_size = 0;
size_t baseBuffAddr = 0;
switch (pUpdate->sType)
{
case VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET:
pWDS = new VkWriteDescriptorSet;
*pNewNode = (GENERIC_HEADER*)pWDS;
memcpy(pWDS, pUpdate, sizeof(VkWriteDescriptorSet));
switch (pWDS->descriptorType) {
case VK_DESCRIPTOR_TYPE_SAMPLER:
case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE:
{
VkDescriptorImageInfo *info = new VkDescriptorImageInfo[pWDS->descriptorCount];
memcpy(info, pWDS->pImageInfo, pWDS->descriptorCount * sizeof(VkDescriptorImageInfo));
pWDS->pImageInfo = info;
}
break;
case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
{
VkBufferView *info = new VkBufferView[pWDS->descriptorCount];
memcpy(info, pWDS->pTexelBufferView, pWDS->descriptorCount * sizeof(VkBufferView));
pWDS->pTexelBufferView = info;
}
break;
case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
{
VkDescriptorBufferInfo *info = new VkDescriptorBufferInfo[pWDS->descriptorCount];
memcpy(info, pWDS->pBufferInfo, pWDS->descriptorCount * sizeof(VkDescriptorBufferInfo));
pWDS->pBufferInfo = info;
}
break;
default:
return VK_ERROR_VALIDATION_FAILED;
break;
}
break;
case VK_STRUCTURE_TYPE_COPY_DESCRIPTOR_SET:
pCDS = new VkCopyDescriptorSet;
*pNewNode = (GENERIC_HEADER*)pCDS;
memcpy(pCDS, pUpdate, sizeof(VkCopyDescriptorSet));
break;
default:
if (log_msg(my_data->report_data, VK_DBG_REPORT_ERROR_BIT, (VkDbgObjectType) 0, 0, 0, DRAWSTATE_INVALID_UPDATE_STRUCT, "DS",
"Unexpected UPDATE struct of type %s (value %u) in vkUpdateDescriptors() struct tree", string_VkStructureType(pUpdate->sType), pUpdate->sType))
return VK_TRUE;
}
// Make sure that pNext for the end of shadow copy is NULL
(*pNewNode)->pNext = NULL;
return skipCall;
}
// Verify that given sampler is valid
static VkBool32 validateSampler(const layer_data* my_data, const VkSampler* pSampler, const VkBool32 immutable)
{
VkBool32 skipCall = VK_FALSE;
auto sampIt = my_data->sampleMap.find(*pSampler);
if (sampIt == my_data->sampleMap.end()) {
if (!immutable) {
skipCall |= log_msg(my_data->report_data, VK_DBG_REPORT_ERROR_BIT, VK_OBJECT_TYPE_SAMPLER, (uint64_t) *pSampler, 0, DRAWSTATE_SAMPLER_DESCRIPTOR_ERROR, "DS",
"vkUpdateDescriptorSets: Attempt to update descriptor with invalid sampler %#" PRIxLEAST64, (uint64_t) *pSampler);
} else { // immutable
skipCall |= log_msg(my_data->report_data, VK_DBG_REPORT_ERROR_BIT, VK_OBJECT_TYPE_SAMPLER, (uint64_t) *pSampler, 0, DRAWSTATE_SAMPLER_DESCRIPTOR_ERROR, "DS",
"vkUpdateDescriptorSets: Attempt to update descriptor whose binding has an invalid immutable sampler %#" PRIxLEAST64, (uint64_t) *pSampler);
}
} else {
// TODO : Any further checks we want to do on the sampler?
}
return skipCall;
}
// Verify that given imageView is valid
static VkBool32 validateImageView(const layer_data* my_data, const VkImageView* pImageView, const VkImageLayout imageLayout)
{
VkBool32 skipCall = VK_FALSE;
auto ivIt = my_data->imageViewMap.find(*pImageView);
if (ivIt == my_data->imageViewMap.end()) {
skipCall |= log_msg(my_data->report_data, VK_DBG_REPORT_ERROR_BIT, VK_OBJECT_TYPE_IMAGE_VIEW, (uint64_t) *pImageView, 0, DRAWSTATE_IMAGEVIEW_DESCRIPTOR_ERROR, "DS",
"vkUpdateDescriptorSets: Attempt to update descriptor with invalid imageView %#" PRIxLEAST64, (uint64_t) *pImageView);
} else {
// Validate that imageLayout is compatible with aspectMask and image format
VkImageAspectFlags aspectMask = ivIt->second->subresourceRange.aspectMask;
VkImage image = ivIt->second->image;
// TODO : Check here in case we have a bad image
auto imgIt = my_data->imageMap.find(image);
if (imgIt == my_data->imageMap.end()) {
skipCall |= log_msg(my_data->report_data, VK_DBG_REPORT_ERROR_BIT, VK_OBJECT_TYPE_IMAGE, (uint64_t) image, 0, DRAWSTATE_IMAGEVIEW_DESCRIPTOR_ERROR, "DS",
"vkUpdateDescriptorSets: Attempt to update descriptor with invalid image %#" PRIxLEAST64 " in imageView %#" PRIxLEAST64, (uint64_t) image, (uint64_t) *pImageView);
} else {
VkFormat format = (*imgIt).second->format;
VkBool32 ds = vk_format_is_depth_or_stencil(format);
switch (imageLayout) {
case VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL:
// Only Color bit must be set
if ((aspectMask & VK_IMAGE_ASPECT_COLOR_BIT) != VK_IMAGE_ASPECT_COLOR_BIT) {
skipCall |= log_msg(my_data->report_data, VK_DBG_REPORT_ERROR_BIT, VK_OBJECT_TYPE_IMAGE_VIEW, (uint64_t) *pImageView, 0,
DRAWSTATE_INVALID_IMAGE_ASPECT, "DS", "vkUpdateDescriptorSets: Updating descriptor with layout VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL and imageView %#" PRIxLEAST64 ""
" that does not have VK_IMAGE_ASPECT_COLOR_BIT set.", (uint64_t) *pImageView);
}
// format must NOT be DS
if (ds) {
skipCall |= log_msg(my_data->report_data, VK_DBG_REPORT_ERROR_BIT, VK_OBJECT_TYPE_IMAGE_VIEW, (uint64_t) *pImageView, 0,
DRAWSTATE_IMAGEVIEW_DESCRIPTOR_ERROR, "DS", "vkUpdateDescriptorSets: Updating descriptor with layout VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL and imageView %#" PRIxLEAST64 ""
" but the image format is %s which is not a color format.", (uint64_t) *pImageView, string_VkFormat(format));
}
break;
case VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL:
case VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL:
// Depth or stencil bit must be set, but both must NOT be set
if (aspectMask & VK_IMAGE_ASPECT_DEPTH_BIT) {
if (aspectMask & VK_IMAGE_ASPECT_STENCIL_BIT) {
// both must NOT be set
skipCall |= log_msg(my_data->report_data, VK_DBG_REPORT_ERROR_BIT, VK_OBJECT_TYPE_IMAGE_VIEW, (uint64_t) *pImageView, 0,
DRAWSTATE_INVALID_IMAGE_ASPECT, "DS", "vkUpdateDescriptorSets: Updating descriptor with imageView %#" PRIxLEAST64 ""
" that has both STENCIL and DEPTH aspects set", (uint64_t) *pImageView);
}
} else if (!(aspectMask & VK_IMAGE_ASPECT_STENCIL_BIT)) {
// Neither were set
skipCall |= log_msg(my_data->report_data, VK_DBG_REPORT_ERROR_BIT, VK_OBJECT_TYPE_IMAGE_VIEW, (uint64_t) *pImageView, 0,
DRAWSTATE_INVALID_IMAGE_ASPECT, "DS", "vkUpdateDescriptorSets: Updating descriptor with layout %s and imageView %#" PRIxLEAST64 ""
" that does not have STENCIL or DEPTH aspect set.", string_VkImageLayout(imageLayout), (uint64_t) *pImageView);
}
// format must be DS
if (!ds) {
skipCall |= log_msg(my_data->report_data, VK_DBG_REPORT_ERROR_BIT, VK_OBJECT_TYPE_IMAGE_VIEW, (uint64_t) *pImageView, 0,
DRAWSTATE_IMAGEVIEW_DESCRIPTOR_ERROR, "DS", "vkUpdateDescriptorSets: Updating descriptor with layout %s and imageView %#" PRIxLEAST64 ""
" but the image format is %s which is not a depth/stencil format.", string_VkImageLayout(imageLayout), (uint64_t) *pImageView, string_VkFormat(format));
}
break;
default:
// anything to check for other layouts?
break;
}
}
}
return skipCall;
}
// Verify that given bufferView is valid
static VkBool32 validateBufferView(const layer_data* my_data, const VkBufferView* pBufferView)
{
VkBool32 skipCall = VK_FALSE;
auto sampIt = my_data->bufferViewMap.find(*pBufferView);
if (sampIt == my_data->bufferViewMap.end()) {
skipCall |= log_msg(my_data->report_data, VK_DBG_REPORT_ERROR_BIT, VK_OBJECT_TYPE_BUFFER_VIEW, (uint64_t) *pBufferView, 0, DRAWSTATE_BUFFERVIEW_DESCRIPTOR_ERROR, "DS",
"vkUpdateDescriptorSets: Attempt to update descriptor with invalid bufferView %#" PRIxLEAST64, (uint64_t) *pBufferView);
} else {
// TODO : Any further checks we want to do on the bufferView?
}
return skipCall;
}
// Verify that given bufferInfo is valid
static VkBool32 validateBufferInfo(const layer_data* my_data, const VkDescriptorBufferInfo* pBufferInfo)
{
VkBool32 skipCall = VK_FALSE;
auto sampIt = my_data->bufferMap.find(pBufferInfo->buffer);
if (sampIt == my_data->bufferMap.end()) {
skipCall |= log_msg(my_data->report_data, VK_DBG_REPORT_ERROR_BIT, VK_OBJECT_TYPE_BUFFER, (uint64_t) pBufferInfo->buffer, 0, DRAWSTATE_BUFFERINFO_DESCRIPTOR_ERROR, "DS",
"vkUpdateDescriptorSets: Attempt to update descriptor where bufferInfo has invalid buffer %#" PRIxLEAST64, (uint64_t) pBufferInfo->buffer);
} else {
// TODO : Any further checks we want to do on the bufferView?
}
return skipCall;
}
static VkBool32 validateUpdateContents(const layer_data* my_data, const VkWriteDescriptorSet *pWDS, const VkDescriptorSetLayoutBinding* pLayoutBinding)
{
VkBool32 skipCall = VK_FALSE;
// First verify that for the given Descriptor type, the correct DescriptorInfo data is supplied
VkBufferView* pBufferView = NULL;
const VkSampler* pSampler = NULL;
VkImageView* pImageView = NULL;
VkImageLayout* pImageLayout = NULL;
VkDescriptorBufferInfo* pBufferInfo = NULL;
VkBool32 immutable = VK_FALSE;
uint32_t i = 0;
// For given update type, verify that update contents are correct
switch (pWDS->descriptorType) {
case VK_DESCRIPTOR_TYPE_SAMPLER:
for (i=0; i<pWDS->descriptorCount; ++i) {
skipCall |= validateSampler(my_data, &(pWDS->pImageInfo[i].sampler), immutable);
}
break;
case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
for (i=0; i<pWDS->descriptorCount; ++i) {
if (NULL == pLayoutBinding->pImmutableSamplers) {
pSampler = &(pWDS->pImageInfo[i].sampler);
if (immutable) {
skipCall |= log_msg(my_data->report_data, VK_DBG_REPORT_ERROR_BIT, VK_OBJECT_TYPE_SAMPLER, (uint64_t) *pSampler, 0, DRAWSTATE_INCONSISTENT_IMMUTABLE_SAMPLER_UPDATE, "DS",
"vkUpdateDescriptorSets: Update #%u is not an immutable sampler %#" PRIxLEAST64 ", but previous update(s) from this "
"VkWriteDescriptorSet struct used an immutable sampler. All updates from a single struct must either "
"use immutable or non-immutable samplers.", i, (uint64_t) *pSampler);
}
} else {
if (i>0 && !immutable) {
skipCall |= log_msg(my_data->report_data, VK_DBG_REPORT_ERROR_BIT, VK_OBJECT_TYPE_SAMPLER, (uint64_t) *pSampler, 0, DRAWSTATE_INCONSISTENT_IMMUTABLE_SAMPLER_UPDATE, "DS",
"vkUpdateDescriptorSets: Update #%u is an immutable sampler, but previous update(s) from this "
"VkWriteDescriptorSet struct used a non-immutable sampler. All updates from a single struct must either "
"use immutable or non-immutable samplers.", i);
}
immutable = VK_TRUE;
pSampler = &(pLayoutBinding->pImmutableSamplers[i]);
}
skipCall |= validateSampler(my_data, pSampler, immutable);
}
// Intentionally fall through here to also validate image stuff
case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE:
case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
for (i=0; i<pWDS->descriptorCount; ++i) {
skipCall |= validateImageView(my_data, &(pWDS->pImageInfo[i].imageView), pWDS->pImageInfo[i].imageLayout);
}
break;
case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
for (i=0; i<pWDS->descriptorCount; ++i) {
skipCall |= validateBufferView(my_data, &(pWDS->pTexelBufferView[i]));
}
break;
case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
for (i=0; i<pWDS->descriptorCount; ++i) {
skipCall |= validateBufferInfo(my_data, &(pWDS->pBufferInfo[i]));
}
break;
}
return skipCall;
}
// update DS mappings based on write and copy update arrays
static VkBool32 dsUpdate(layer_data* my_data, VkDevice device, uint32_t descriptorWriteCount, const VkWriteDescriptorSet* pWDS, uint32_t descriptorCopyCount, const VkCopyDescriptorSet* pCDS)
{
VkBool32 skipCall = VK_FALSE;
loader_platform_thread_lock_mutex(&globalLock);
LAYOUT_NODE* pLayout = NULL;
VkDescriptorSetLayoutCreateInfo* pLayoutCI = NULL;
// Validate Write updates
uint32_t i = 0;
for (i=0; i < descriptorWriteCount; i++) {
VkDescriptorSet ds = pWDS[i].dstSet;
SET_NODE* pSet = my_data->setMap[ds];
GENERIC_HEADER* pUpdate = (GENERIC_HEADER*) &pWDS[i];
pLayout = pSet->pLayout;
// First verify valid update struct
if ((skipCall = validUpdateStruct(my_data, device, pUpdate)) == VK_TRUE) {
break;
}
uint32_t binding = 0, endIndex = 0;
binding = pWDS[i].dstBinding;
// Make sure that layout being updated has the binding being updated
if (pLayout->bindings.find(binding) == pLayout->bindings.end()) {
skipCall |= log_msg(my_data->report_data, VK_DBG_REPORT_ERROR_BIT, VK_OBJECT_TYPE_DESCRIPTOR_SET, (uint64_t) ds, 0, DRAWSTATE_INVALID_UPDATE_INDEX, "DS",
"Descriptor Set %p does not have binding to match update binding %u for update type %s!", ds, binding, string_VkStructureType(pUpdate->sType));
} else {
// Next verify that update falls within size of given binding
endIndex = getUpdateEndIndex(my_data, device, pLayout, binding, pWDS[i].dstArrayElement, pUpdate);
if (getBindingEndIndex(pLayout, binding) < endIndex) {
pLayoutCI = &pLayout->createInfo;
string DSstr = vk_print_vkdescriptorsetlayoutcreateinfo(pLayoutCI, "{DS} ");
skipCall |= log_msg(my_data->report_data, VK_DBG_REPORT_ERROR_BIT, VK_OBJECT_TYPE_DESCRIPTOR_SET, (uint64_t) ds, 0, DRAWSTATE_DESCRIPTOR_UPDATE_OUT_OF_BOUNDS, "DS",
"Descriptor update type of %s is out of bounds for matching binding %u in Layout w/ CI:\n%s!", string_VkStructureType(pUpdate->sType), binding, DSstr.c_str());
} else { // TODO : should we skip update on a type mismatch or force it?
uint32_t startIndex;
startIndex = getUpdateStartIndex(my_data, device, pLayout, binding, pWDS[i].dstArrayElement, pUpdate);
// Layout bindings match w/ update, now verify that update type & stageFlags are the same for entire update
if ((skipCall = validateUpdateConsistency(my_data, device, pLayout, pUpdate, startIndex, endIndex)) == VK_FALSE) {
// The update is within bounds and consistent, but need to make sure contents make sense as well
if ((skipCall = validateUpdateContents(my_data, &pWDS[i], &pLayout->createInfo.pBinding[binding])) == VK_FALSE) {
// Update is good. Save the update info
// Create new update struct for this set's shadow copy
GENERIC_HEADER* pNewNode = NULL;
skipCall |= shadowUpdateNode(my_data, device, pUpdate, &pNewNode);
if (NULL == pNewNode) {
skipCall |= log_msg(my_data->report_data, VK_DBG_REPORT_ERROR_BIT, VK_OBJECT_TYPE_DESCRIPTOR_SET, (uint64_t) ds, 0, DRAWSTATE_OUT_OF_MEMORY, "DS",
"Out of memory while attempting to allocate UPDATE struct in vkUpdateDescriptors()");
} else {
// Insert shadow node into LL of updates for this set
pNewNode->pNext = pSet->pUpdateStructs;
pSet->pUpdateStructs = pNewNode;
// Now update appropriate descriptor(s) to point to new Update node
for (uint32_t j = startIndex; j <= endIndex; j++) {
assert(j<pSet->descriptorCount);
pSet->ppDescriptors[j] = pNewNode;
}
}
}
}
}
}
}
// Now validate copy updates
for (i=0; i < descriptorCopyCount; ++i) {
SET_NODE *pSrcSet = NULL, *pDstSet = NULL;
LAYOUT_NODE *pSrcLayout = NULL, *pDstLayout = NULL;
uint32_t srcStartIndex = 0, srcEndIndex = 0, dstStartIndex = 0, dstEndIndex = 0;
// For each copy make sure that update falls within given layout and that types match
pSrcSet = my_data->setMap[pCDS[i].srcSet];
pDstSet = my_data->setMap[pCDS[i].dstSet];
pSrcLayout = pSrcSet->pLayout;
pDstLayout = pDstSet->pLayout;
// Validate that src binding is valid for src set layout
if (pSrcLayout->bindings.find(pCDS[i].srcBinding) == pSrcLayout->bindings.end()) {
skipCall |= log_msg(my_data->report_data, VK_DBG_REPORT_ERROR_BIT, VK_OBJECT_TYPE_DESCRIPTOR_SET, (uint64_t) pSrcSet->set, 0, DRAWSTATE_INVALID_UPDATE_INDEX, "DS",
"Copy descriptor update %u has srcBinding %u which is out of bounds for underlying SetLayout %#" PRIxLEAST64 " which only has bindings 0-%u.",
i, pCDS[i].srcBinding, (uint64_t) pSrcLayout->layout, pSrcLayout->createInfo.bindingCount-1);
} else if (pDstLayout->bindings.find(pCDS[i].dstBinding) == pDstLayout->bindings.end()) {
skipCall |= log_msg(my_data->report_data, VK_DBG_REPORT_ERROR_BIT, VK_OBJECT_TYPE_DESCRIPTOR_SET, (uint64_t) pDstSet->set, 0, DRAWSTATE_INVALID_UPDATE_INDEX, "DS",
"Copy descriptor update %u has dstBinding %u which is out of bounds for underlying SetLayout %#" PRIxLEAST64 " which only has bindings 0-%u.",
i, pCDS[i].dstBinding, (uint64_t) pDstLayout->layout, pDstLayout->createInfo.bindingCount-1);
} else {
// Proceed with validation. Bindings are ok, but make sure update is within bounds of given layout
srcEndIndex = getUpdateEndIndex(my_data, device, pSrcLayout, pCDS[i].srcBinding, pCDS[i].srcArrayElement, (const GENERIC_HEADER*)&(pCDS[i]));
dstEndIndex = getUpdateEndIndex(my_data, device, pDstLayout, pCDS[i].dstBinding, pCDS[i].dstArrayElement, (const GENERIC_HEADER*)&(pCDS[i]));
if (getBindingEndIndex(pSrcLayout, pCDS[i].srcBinding) < srcEndIndex) {
pLayoutCI = &pSrcLayout->createInfo;
string DSstr = vk_print_vkdescriptorsetlayoutcreateinfo(pLayoutCI, "{DS} ");
skipCall |= log_msg(my_data->report_data, VK_DBG_REPORT_ERROR_BIT, VK_OBJECT_TYPE_DESCRIPTOR_SET, (uint64_t) pSrcSet->set, 0, DRAWSTATE_DESCRIPTOR_UPDATE_OUT_OF_BOUNDS, "DS",
"Copy descriptor src update is out of bounds for matching binding %u in Layout w/ CI:\n%s!", pCDS[i].srcBinding, DSstr.c_str());
} else if (getBindingEndIndex(pDstLayout, pCDS[i].dstBinding) < dstEndIndex) {
pLayoutCI = &pDstLayout->createInfo;
string DSstr = vk_print_vkdescriptorsetlayoutcreateinfo(pLayoutCI, "{DS} ");
skipCall |= log_msg(my_data->report_data, VK_DBG_REPORT_ERROR_BIT, VK_OBJECT_TYPE_DESCRIPTOR_SET, (uint64_t) pDstSet->set, 0, DRAWSTATE_DESCRIPTOR_UPDATE_OUT_OF_BOUNDS, "DS",
"Copy descriptor dest update is out of bounds for matching binding %u in Layout w/ CI:\n%s!", pCDS[i].dstBinding, DSstr.c_str());
} else {
srcStartIndex = getUpdateStartIndex(my_data, device, pSrcLayout, pCDS[i].srcBinding, pCDS[i].srcArrayElement, (const GENERIC_HEADER*)&(pCDS[i]));
dstStartIndex = getUpdateStartIndex(my_data, device, pDstLayout, pCDS[i].dstBinding, pCDS[i].dstArrayElement, (const GENERIC_HEADER*)&(pCDS[i]));
for (uint32_t j=0; j<pCDS[i].descriptorCount; ++j) {
// For copy just make sure that the types match and then perform the update
if (pSrcLayout->descriptorTypes[srcStartIndex+j] != pDstLayout->descriptorTypes[dstStartIndex+j]) {
skipCall |= log_msg(my_data->report_data, VK_DBG_REPORT_ERROR_BIT, (VkDbgObjectType) 0, 0, 0, DRAWSTATE_DESCRIPTOR_TYPE_MISMATCH, "DS",
"Copy descriptor update index %u, update count #%u, has src update descriptor type %s that does not match overlapping dest descriptor type of %s!",
i, j+1, string_VkDescriptorType(pSrcLayout->descriptorTypes[srcStartIndex+j]), string_VkDescriptorType(pDstLayout->descriptorTypes[dstStartIndex+j]));
} else {
// point dst descriptor at corresponding src descriptor
pDstSet->ppDescriptors[j+dstStartIndex] = pSrcSet->ppDescriptors[j+srcStartIndex];
}
}
}
}
}
loader_platform_thread_unlock_mutex(&globalLock);
return skipCall;
}
// Verify that given pool has descriptors that are being requested for allocation
static VkBool32 validate_descriptor_availability_in_pool(layer_data* dev_data, POOL_NODE* pPoolNode, uint32_t count, const VkDescriptorSetLayout* pSetLayouts)
{
VkBool32 skipCall = VK_FALSE;
uint32_t i = 0, j = 0;
for (i=0; i<count; ++i) {
LAYOUT_NODE* pLayout = getLayoutNode(dev_data, pSetLayouts[i]);
if (NULL == pLayout) {
skipCall |= log_msg(dev_data->report_data, VK_DBG_REPORT_ERROR_BIT, VK_OBJECT_TYPE_DESCRIPTOR_SET_LAYOUT, (uint64_t) pSetLayouts[i], 0, DRAWSTATE_INVALID_LAYOUT, "DS",
"Unable to find set layout node for layout %#" PRIxLEAST64 " specified in vkAllocateDescriptorSets() call", (uint64_t) pSetLayouts[i]);
} else {
uint32_t typeIndex = 0, poolSizeCount = 0;
for (j=0; j<pLayout->createInfo.bindingCount; ++j) {
typeIndex = static_cast<uint32_t>(pLayout->createInfo.pBinding[j].descriptorType);
poolSizeCount = pLayout->createInfo.pBinding[j].arraySize;
if (poolSizeCount > pPoolNode->availableDescriptorTypeCount[typeIndex]) {
skipCall |= log_msg(dev_data->report_data, VK_DBG_REPORT_ERROR_BIT, VK_OBJECT_TYPE_DESCRIPTOR_SET_LAYOUT, (uint64_t) pLayout->layout, 0, DRAWSTATE_DESCRIPTOR_POOL_EMPTY, "DS",
"Unable to allocate %u descriptors of type %s from pool %#" PRIxLEAST64 ". This pool only has %u descriptors of this type remaining.",
poolSizeCount, string_VkDescriptorType(pLayout->createInfo.pBinding[j].descriptorType), (uint64_t) pPoolNode->pool, pPoolNode->availableDescriptorTypeCount[typeIndex]);
} else { // Decrement available descriptors of this type
pPoolNode->availableDescriptorTypeCount[typeIndex] -= poolSizeCount;
}
}
}
}
return skipCall;
}
// Free the shadowed update node for this Set
// NOTE : Calls to this function should be wrapped in mutex
static void freeShadowUpdateTree(SET_NODE* pSet)
{
GENERIC_HEADER* pShadowUpdate = pSet->pUpdateStructs;
pSet->pUpdateStructs = NULL;
GENERIC_HEADER* pFreeUpdate = pShadowUpdate;
// Clear the descriptor mappings as they will now be invalid
memset(pSet->ppDescriptors, 0, pSet->descriptorCount*sizeof(GENERIC_HEADER*));
while(pShadowUpdate) {
pFreeUpdate = pShadowUpdate;
pShadowUpdate = (GENERIC_HEADER*)pShadowUpdate->pNext;
uint32_t index = 0;
VkWriteDescriptorSet * pWDS = NULL;
VkCopyDescriptorSet * pCDS = NULL;
void** ppToFree = NULL;
switch (pFreeUpdate->sType)
{
case VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET:
pWDS = (VkWriteDescriptorSet*)pFreeUpdate;
switch (pWDS->descriptorType) {
case VK_DESCRIPTOR_TYPE_SAMPLER:
case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE:
{
delete[] pWDS->pImageInfo;
}
break;
case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
{
delete[] pWDS->pTexelBufferView;
}
break;
case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
{
delete[] pWDS->pBufferInfo;
}
break;
default:
break;
}
break;
case VK_STRUCTURE_TYPE_COPY_DESCRIPTOR_SET:
break;
default:
assert(0);
break;
}
delete pFreeUpdate;
}
}
// Free all DS Pools including their Sets & related sub-structs
// NOTE : Calls to this function should be wrapped in mutex
static void deletePools(layer_data* my_data)
{
if (my_data->poolMap.size() <= 0)
return;
for (auto ii=my_data->poolMap.begin(); ii!=my_data->poolMap.end(); ++ii) {
SET_NODE* pSet = (*ii).second->pSets;
SET_NODE* pFreeSet = pSet;
while (pSet) {
pFreeSet = pSet;
pSet = pSet->pNext;
// Freeing layouts handled in deleteLayouts() function
// Free Update shadow struct tree
freeShadowUpdateTree(pFreeSet);
if (pFreeSet->ppDescriptors) {
delete[] pFreeSet->ppDescriptors;
}
delete pFreeSet;
}
delete (*ii).second;
}
my_data->poolMap.clear();
}
// WARN : Once deleteLayouts() called, any layout ptrs in Pool/Set data structure will be invalid
// NOTE : Calls to this function should be wrapped in mutex
static void deleteLayouts(layer_data* my_data)
{
if (my_data->layoutMap.size() <= 0)
return;
for (auto ii=my_data->layoutMap.begin(); ii!=my_data->layoutMap.end(); ++ii) {
LAYOUT_NODE* pLayout = (*ii).second;
if (pLayout->createInfo.pBinding) {
for (uint32_t i=0; i<pLayout->createInfo.bindingCount; i++) {
if (pLayout->createInfo.pBinding[i].pImmutableSamplers)
delete[] pLayout->createInfo.pBinding[i].pImmutableSamplers;
}
delete[] pLayout->createInfo.pBinding;
}
delete pLayout;
}
my_data->layoutMap.clear();
}
// Currently clearing a set is removing all previous updates to that set
// TODO : Validate if this is correct clearing behavior
static void clearDescriptorSet(layer_data* my_data, VkDescriptorSet set)
{
SET_NODE* pSet = getSetNode(my_data, set);
if (!pSet) {
// TODO : Return error
} else {
loader_platform_thread_lock_mutex(&globalLock);
freeShadowUpdateTree(pSet);
loader_platform_thread_unlock_mutex(&globalLock);
}
}
static void clearDescriptorPool(layer_data* my_data, const VkDevice device, const VkDescriptorPool pool, VkDescriptorPoolResetFlags flags)
{
POOL_NODE* pPool = getPoolNode(my_data, pool);
if (!pPool) {
log_msg(my_data->report_data, VK_DBG_REPORT_ERROR_BIT, VK_OBJECT_TYPE_DESCRIPTOR_POOL, (uint64_t) pool, 0, DRAWSTATE_INVALID_POOL, "DS",
"Unable to find pool node for pool %#" PRIxLEAST64 " specified in vkResetDescriptorPool() call", (uint64_t) pool);
} else {
// TODO: validate flags
// For every set off of this pool, clear it
SET_NODE* pSet = pPool->pSets;
while (pSet) {
clearDescriptorSet(my_data, pSet->set);
}
// Reset available count to max count for this pool
for (uint32_t i=0; i<pPool->availableDescriptorTypeCount.size(); ++i) {
pPool->availableDescriptorTypeCount[i] = pPool->maxDescriptorTypeCount[i];
}
}
}
// For given CB object, fetch associated CB Node from map
static GLOBAL_CB_NODE* getCBNode(layer_data* my_data, const VkCommandBuffer cb)
{
loader_platform_thread_lock_mutex(&globalLock);
if (my_data->commandBufferMap.find(cb) == my_data->commandBufferMap.end()) {
loader_platform_thread_unlock_mutex(&globalLock);
// TODO : How to pass cb as srcObj here?
log_msg(my_data->report_data, VK_DBG_REPORT_ERROR_BIT, VK_OBJECT_TYPE_COMMAND_BUFFER, 0, 0, DRAWSTATE_INVALID_COMMAND_BUFFER, "DS",
"Attempt to use CommandBuffer %#" PRIxLEAST64 " that doesn't exist!", reinterpret_cast<uint64_t>(cb));
return NULL;
}
loader_platform_thread_unlock_mutex(&globalLock);
return my_data->commandBufferMap[cb];
}
// Free all CB Nodes
// NOTE : Calls to this function should be wrapped in mutex
static void deleteCommandBuffers(layer_data* my_data)
{
if (my_data->commandBufferMap.size() <= 0)
return;
for (auto ii=my_data->commandBufferMap.begin(); ii!=my_data->commandBufferMap.end(); ++ii) {
vector<CMD_NODE*> cmd_node_list = (*ii).second->pCmds;
while (!cmd_node_list.empty()) {
CMD_NODE* cmd_node = cmd_node_list.back();
delete cmd_node;
cmd_node_list.pop_back();
}
delete (*ii).second;
}
my_data->commandBufferMap.clear();
}
static VkBool32 report_error_no_cb_begin(const layer_data* dev_data, const VkCommandBuffer cb, const char* caller_name)
{
// TODO : How to pass cb as srcObj here?
return log_msg(dev_data->report_data, VK_DBG_REPORT_ERROR_BIT, VK_OBJECT_TYPE_COMMAND_BUFFER, 0, 0, DRAWSTATE_NO_BEGIN_COMMAND_BUFFER, "DS",
"You must call vkBeginCommandBuffer() before this call to %s", (void*)caller_name);
}
bool validateCmdsInCmdBuffer(const layer_data* dev_data, const GLOBAL_CB_NODE* pCB, const CMD_TYPE cmd_type) {
bool skip_call = false;
for (auto cmd : pCB->pCmds) {
if (cmd_type == CMD_EXECUTECOMMANDS && cmd->type != CMD_EXECUTECOMMANDS) {
skip_call |= log_msg(dev_data->report_data, VK_DBG_REPORT_ERROR_BIT, (VkDbgObjectType)0, 0, 0, DRAWSTATE_INVALID_COMMAND_BUFFER, "DS",
"vkCmdExecuteCommands() cannot be called on a cmd buffer with exsiting commands.");
}
if (cmd_type != CMD_EXECUTECOMMANDS && cmd->type == CMD_EXECUTECOMMANDS) {
skip_call |= log_msg(dev_data->report_data, VK_DBG_REPORT_ERROR_BIT, (VkDbgObjectType)0, 0, 0, DRAWSTATE_INVALID_COMMAND_BUFFER, "DS",
"Commands cannot be added to a cmd buffer with exsiting secondary commands.");
}
}
return skip_call;
}
static VkBool32 addCmd(const layer_data* my_data, GLOBAL_CB_NODE* pCB, const CMD_TYPE cmd)
{
VkBool32 skipCall = validateCmdsInCmdBuffer(my_data, pCB, cmd);
CMD_NODE* pCmd = new CMD_NODE;
if (pCmd) {
// init cmd node and append to end of cmd LL
memset(pCmd, 0, sizeof(CMD_NODE));
pCmd->cmdNumber = ++pCB->numCmds;
pCmd->type = cmd;
pCB->pCmds.push_back(pCmd);
} else {
// TODO : How to pass cb as srcObj here?
skipCall |= log_msg(my_data->report_data, VK_DBG_REPORT_ERROR_BIT, VK_OBJECT_TYPE_COMMAND_BUFFER, 0, 0, DRAWSTATE_OUT_OF_MEMORY, "DS",
"Out of memory while attempting to allocate new CMD_NODE for commandBuffer %#" PRIxLEAST64, reinterpret_cast<uint64_t>(pCB->commandBuffer));
}
return skipCall;
}
static void resetCB(layer_data* my_data, const VkCommandBuffer cb)
{
GLOBAL_CB_NODE* pCB = getCBNode(my_data, cb);
if (pCB) {
vector<CMD_NODE*> cmd_list = pCB->pCmds;
while (!cmd_list.empty()) {
delete cmd_list.back();
cmd_list.pop_back();
}
pCB->pCmds.clear();
// Reset CB state (need to save createInfo)
VkCommandBufferAllocateInfo saveCBCI = pCB->createInfo;
pCB->commandBuffer = cb;
pCB->createInfo = saveCBCI;
memset(&pCB->beginInfo, 0, sizeof(VkCommandBufferBeginInfo));
pCB->fence = 0;
pCB->numCmds = 0;
memset(pCB->drawCount, 0, NUM_DRAW_TYPES * sizeof(uint64_t));
pCB->state = CB_NEW;
pCB->submitCount = 0;
pCB->status = 0;
pCB->pCmds.clear();
pCB->lastBoundPipeline = 0;
pCB->viewports.clear();
pCB->scissors.clear();
pCB->lineWidth = 0;
pCB->depthBiasConstantFactor = 0;
pCB->depthBiasClamp = 0;
pCB->depthBiasSlopeFactor = 0;
memset(pCB->blendConstants, 0, 4 * sizeof(float));
pCB->minDepthBounds = 0;
pCB->maxDepthBounds = 0;
memset(&pCB->front, 0, sizeof(stencil_data));
memset(&pCB->back, 0, sizeof(stencil_data));
pCB->lastBoundDescriptorSet = 0;
pCB->lastBoundPipelineLayout = 0;
pCB->activeRenderPass = 0;
pCB->activeSubpass = 0;
pCB->framebuffer = 0;
pCB->level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
pCB->boundDescriptorSets.clear();
pCB->imageLayoutMap.clear();
pCB->lastVtxBinding = MAX_BINDING;
}
}
// Set PSO-related status bits for CB, including dynamic state set via PSO
static void set_cb_pso_status(GLOBAL_CB_NODE* pCB, const PIPELINE_NODE* pPipe)
{
for (uint32_t i = 0; i < pPipe->cbStateCI.attachmentCount; i++) {
if (0 != pPipe->pAttachments[i].colorWriteMask) {
pCB->status |= CBSTATUS_COLOR_BLEND_WRITE_ENABLE;
}
}
if (pPipe->dsStateCI.depthWriteEnable) {
pCB->status |= CBSTATUS_DEPTH_WRITE_ENABLE;
}
if (pPipe->dsStateCI.stencilTestEnable) {
pCB->status |= CBSTATUS_STENCIL_TEST_ENABLE;
}
// Account for any dynamic state not set via this PSO
if (!pPipe->dynStateCI.dynamicStateCount) { // All state is static
pCB->status = CBSTATUS_ALL;
} else {
// First consider all state on
// Then unset any state that's noted as dynamic in PSO
// Finally OR that into CB statemask
CBStatusFlags psoDynStateMask = CBSTATUS_ALL;
for (uint32_t i=0; i < pPipe->dynStateCI.dynamicStateCount; i++) {
switch (pPipe->dynStateCI.pDynamicStates[i]) {
case VK_DYNAMIC_STATE_VIEWPORT:
psoDynStateMask &= ~CBSTATUS_VIEWPORT_SET;
break;
case VK_DYNAMIC_STATE_SCISSOR:
psoDynStateMask &= ~CBSTATUS_SCISSOR_SET;
break;
case VK_DYNAMIC_STATE_LINE_WIDTH:
psoDynStateMask &= ~CBSTATUS_LINE_WIDTH_SET;
break;
case VK_DYNAMIC_STATE_DEPTH_BIAS:
psoDynStateMask &= ~CBSTATUS_DEPTH_BIAS_SET;
break;
case VK_DYNAMIC_STATE_BLEND_CONSTANTS:
psoDynStateMask &= ~CBSTATUS_BLEND_SET;
break;
case VK_DYNAMIC_STATE_DEPTH_BOUNDS:
psoDynStateMask &= ~CBSTATUS_DEPTH_BOUNDS_SET;
break;
case VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK:
psoDynStateMask &= ~CBSTATUS_STENCIL_READ_MASK_SET;
break;
case VK_DYNAMIC_STATE_STENCIL_WRITE_MASK:
psoDynStateMask &= ~CBSTATUS_STENCIL_WRITE_MASK_SET;
break;
case VK_DYNAMIC_STATE_STENCIL_REFERENCE:
psoDynStateMask &= ~CBSTATUS_STENCIL_REFERENCE_SET;
break;
default:
// TODO : Flag error here
break;
}
}
pCB->status |= psoDynStateMask;
}
}
// Print the last bound Gfx Pipeline
static VkBool32 printPipeline(layer_data* my_data, const VkCommandBuffer cb)
{
VkBool32 skipCall = VK_FALSE;
GLOBAL_CB_NODE* pCB = getCBNode(my_data, cb);
if (pCB) {
PIPELINE_NODE *pPipeTrav = getPipeline(my_data, pCB->lastBoundPipeline);
if (!pPipeTrav) {
// nothing to print
} else {
skipCall |= log_msg(my_data->report_data, VK_DBG_REPORT_INFO_BIT, (VkDbgObjectType) 0, 0, 0, DRAWSTATE_NONE, "DS",
vk_print_vkgraphicspipelinecreateinfo(&pPipeTrav->graphicsPipelineCI, "{DS}").c_str());
}
}
return skipCall;
}
// Print details of DS config to stdout
static VkBool32 printDSConfig(layer_data* my_data, const VkCommandBuffer cb)
{
VkBool32 skipCall = VK_FALSE;
char ds_config_str[1024*256] = {0}; // TODO : Currently making this buffer HUGE w/o overrun protection. Need to be smarter, start smaller, and grow as needed.
GLOBAL_CB_NODE* pCB = getCBNode(my_data, cb);
if (pCB && pCB->lastBoundDescriptorSet) {
SET_NODE* pSet = getSetNode(my_data, pCB->lastBoundDescriptorSet);
POOL_NODE* pPool = getPoolNode(my_data, pSet->pool);
// Print out pool details
skipCall |= log_msg(my_data->report_data, VK_DBG_REPORT_INFO_BIT, (VkDbgObjectType) 0, 0, 0, DRAWSTATE_NONE, "DS",
"Details for pool %#" PRIxLEAST64 ".", (uint64_t) pPool->pool);
string poolStr = vk_print_vkdescriptorpoolcreateinfo(&pPool->createInfo, " ");
skipCall |= log_msg(my_data->report_data, VK_DBG_REPORT_INFO_BIT, (VkDbgObjectType) 0, 0, 0, DRAWSTATE_NONE, "DS",
"%s", poolStr.c_str());
// Print out set details
char prefix[10];
uint32_t index = 0;
skipCall |= log_msg(my_data->report_data, VK_DBG_REPORT_INFO_BIT, (VkDbgObjectType) 0, 0, 0, DRAWSTATE_NONE, "DS",
"Details for descriptor set %#" PRIxLEAST64 ".", (uint64_t) pSet->set);
LAYOUT_NODE* pLayout = pSet->pLayout;
// Print layout details
skipCall |= log_msg(my_data->report_data, VK_DBG_REPORT_INFO_BIT, (VkDbgObjectType) 0, 0, 0, DRAWSTATE_NONE, "DS",
"Layout #%u, (object %#" PRIxLEAST64 ") for DS %#" PRIxLEAST64 ".", index+1, (void*)pLayout->layout, (void*)pSet->set);
sprintf(prefix, " [L%u] ", index);
string DSLstr = vk_print_vkdescriptorsetlayoutcreateinfo(&pLayout->createInfo, prefix).c_str();
skipCall |= log_msg(my_data->report_data, VK_DBG_REPORT_INFO_BIT, (VkDbgObjectType) 0, 0, 0, DRAWSTATE_NONE, "DS",
"%s", DSLstr.c_str());
index++;
GENERIC_HEADER* pUpdate = pSet->pUpdateStructs;
if (pUpdate) {
skipCall |= log_msg(my_data->report_data, VK_DBG_REPORT_INFO_BIT, (VkDbgObjectType) 0, 0, 0, DRAWSTATE_NONE, "DS",
"Update Chain [UC] for descriptor set %#" PRIxLEAST64 ":", (uint64_t) pSet->set);
sprintf(prefix, " [UC] ");
skipCall |= log_msg(my_data->report_data, VK_DBG_REPORT_INFO_BIT, (VkDbgObjectType) 0, 0, 0, DRAWSTATE_NONE, "DS",
dynamic_display(pUpdate, prefix).c_str());
// TODO : If there is a "view" associated with this update, print CI for that view
} else {
if (0 != pSet->descriptorCount) {
skipCall |= log_msg(my_data->report_data, VK_DBG_REPORT_INFO_BIT, (VkDbgObjectType) 0, 0, 0, DRAWSTATE_NONE, "DS",
"No Update Chain for descriptor set %#" PRIxLEAST64 " which has %u descriptors (vkUpdateDescriptors has not been called)", (uint64_t) pSet->set, pSet->descriptorCount);
} else {
skipCall |= log_msg(my_data->report_data, VK_DBG_REPORT_INFO_BIT, (VkDbgObjectType) 0, 0, 0, DRAWSTATE_NONE, "DS",
"FYI: No descriptors in descriptor set %#" PRIxLEAST64 ".", (uint64_t) pSet->set);
}
}
}
return skipCall;
}
static void printCB(layer_data* my_data, const VkCommandBuffer cb)
{
GLOBAL_CB_NODE* pCB = getCBNode(my_data, cb);
if (pCB && pCB->pCmds.size() > 0) {
log_msg(my_data->report_data, VK_DBG_REPORT_INFO_BIT, (VkDbgObjectType) 0, 0, 0, DRAWSTATE_NONE, "DS",
"Cmds in CB %p", (void*)cb);
vector<CMD_NODE*> pCmds = pCB->pCmds;
for (auto ii=pCmds.begin(); ii!=pCmds.end(); ++ii) {
// TODO : Need to pass cb as srcObj here
log_msg(my_data->report_data, VK_DBG_REPORT_INFO_BIT, VK_OBJECT_TYPE_COMMAND_BUFFER, 0, 0, DRAWSTATE_NONE, "DS",
" CMD#%lu: %s", (*ii)->cmdNumber, cmdTypeToString((*ii)->type).c_str());
}
} else {
// Nothing to print
}
}
static VkBool32 synchAndPrintDSConfig(layer_data* my_data, const VkCommandBuffer cb)
{
VkBool32 skipCall = VK_FALSE;
if (!(my_data->report_data->active_flags & VK_DBG_REPORT_INFO_BIT)) {
return skipCall;
}
skipCall |= printDSConfig(my_data, cb);
skipCall |= printPipeline(my_data, cb);
return skipCall;
}
// Flags validation error if the associated call is made inside a render pass. The apiName
// routine should ONLY be called outside a render pass.
static VkBool32 insideRenderPass(const layer_data* my_data, GLOBAL_CB_NODE *pCB, const char *apiName)
{
VkBool32 inside = VK_FALSE;
if (pCB->activeRenderPass) {
inside = log_msg(my_data->report_data, VK_DBG_REPORT_ERROR_BIT, VK_OBJECT_TYPE_COMMAND_BUFFER,
(uint64_t)pCB->commandBuffer, 0, DRAWSTATE_INVALID_RENDERPASS_CMD, "DS",
"%s: It is invalid to issue this call inside an active render pass (%#" PRIxLEAST64 ")",
apiName, (uint64_t) pCB->activeRenderPass);
}
return inside;
}
// Flags validation error if the associated call is made outside a render pass. The apiName
// routine should ONLY be called inside a render pass.
static VkBool32 outsideRenderPass(const layer_data* my_data, GLOBAL_CB_NODE *pCB, const char *apiName)
{
VkBool32 outside = VK_FALSE;
if (!pCB->activeRenderPass) {
outside = log_msg(my_data->report_data, VK_DBG_REPORT_ERROR_BIT, VK_OBJECT_TYPE_COMMAND_BUFFER,
(uint64_t)pCB->commandBuffer, 0, DRAWSTATE_NO_ACTIVE_RENDERPASS, "DS",
"%s: This call must be issued inside an active render pass.", apiName);
}
return outside;
}
static void init_draw_state(layer_data *my_data)
{
uint32_t report_flags = 0;
uint32_t debug_action = 0;
FILE *log_output = NULL;
const char *option_str;
VkDbgMsgCallback callback;
// initialize DrawState options
report_flags = getLayerOptionFlags("DrawStateReportFlags", 0);
getLayerOptionEnum("DrawStateDebugAction", (uint32_t *) &debug_action);
if (debug_action & VK_DBG_LAYER_ACTION_LOG_MSG)
{
option_str = getLayerOption("DrawStateLogFilename");
log_output = getLayerLogOutput(option_str, "DrawState");
layer_create_msg_callback(my_data->report_data, report_flags, log_callback, (void *) log_output, &callback);
my_data->logging_callback.push_back(callback);
}
if (debug_action & VK_DBG_LAYER_ACTION_DEBUG_OUTPUT) {
layer_create_msg_callback(my_data->report_data, report_flags, win32_debug_output_msg, NULL, &callback);
my_data->logging_callback.push_back(callback);
}
if (!globalLockInitialized)
{
// This mutex may be deleted by vkDestroyInstance of last instance.
loader_platform_thread_create_mutex(&globalLock);
globalLockInitialized = 1;
}
}
VK_LAYER_EXPORT VkResult VKAPI vkCreateInstance(const VkInstanceCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkInstance* pInstance)
{
layer_data *my_data = get_my_data_ptr(get_dispatch_key(*pInstance), layer_data_map);
VkLayerInstanceDispatchTable *pTable = my_data->instance_dispatch_table;
VkResult result = pTable->CreateInstance(pCreateInfo, pAllocator, pInstance);
if (result == VK_SUCCESS) {
layer_data *my_data = get_my_data_ptr(get_dispatch_key(*pInstance), layer_data_map);
my_data->report_data = debug_report_create_instance(
pTable,
*pInstance,
pCreateInfo->enabledExtensionNameCount,
pCreateInfo->ppEnabledExtensionNames);
init_draw_state(my_data);
}
return result;
}
/* hook DestroyInstance to remove tableInstanceMap entry */
VK_LAYER_EXPORT void VKAPI vkDestroyInstance(VkInstance instance, const VkAllocationCallbacks* pAllocator)
{
dispatch_key key = get_dispatch_key(instance);
layer_data *my_data = get_my_data_ptr(key, layer_data_map);
VkLayerInstanceDispatchTable *pTable = my_data->instance_dispatch_table;
pTable->DestroyInstance(instance, pAllocator);
// Clean up logging callback, if any
while (my_data->logging_callback.size() > 0) {
VkDbgMsgCallback callback = my_data->logging_callback.back();
layer_destroy_msg_callback(my_data->report_data, callback);
my_data->logging_callback.pop_back();
}
layer_debug_report_destroy_instance(my_data->report_data);
delete my_data->instance_dispatch_table;
layer_data_map.erase(key);
// TODO : Potential race here with separate threads creating/destroying instance
if (layer_data_map.empty()) {
// Release mutex when destroying last instance.
loader_platform_thread_delete_mutex(&globalLock);
globalLockInitialized = 0;
}
}
static void createDeviceRegisterExtensions(const VkDeviceCreateInfo* pCreateInfo, VkDevice device)
{
uint32_t i;
layer_data* dev_data = get_my_data_ptr(get_dispatch_key(device), layer_data_map);
dev_data->device_extensions.debug_marker_enabled = false;
dev_data->device_extensions.wsi_enabled = false;
VkLayerDispatchTable *pDisp = dev_data->device_dispatch_table;
PFN_vkGetDeviceProcAddr gpa = pDisp->GetDeviceProcAddr;
pDisp->GetSurfacePropertiesKHR = (PFN_vkGetSurfacePropertiesKHR) gpa(device, "vkGetSurfacePropertiesKHR");
pDisp->GetSurfaceFormatsKHR = (PFN_vkGetSurfaceFormatsKHR) gpa(device, "vkGetSurfaceFormatsKHR");
pDisp->GetSurfacePresentModesKHR = (PFN_vkGetSurfacePresentModesKHR) gpa(device, "vkGetSurfacePresentModesKHR");
pDisp->CreateSwapchainKHR = (PFN_vkCreateSwapchainKHR) gpa(device, "vkCreateSwapchainKHR");
pDisp->DestroySwapchainKHR = (PFN_vkDestroySwapchainKHR) gpa(device, "vkDestroySwapchainKHR");
pDisp->GetSwapchainImagesKHR = (PFN_vkGetSwapchainImagesKHR) gpa(device, "vkGetSwapchainImagesKHR");
pDisp->AcquireNextImageKHR = (PFN_vkAcquireNextImageKHR) gpa(device, "vkAcquireNextImageKHR");
pDisp->QueuePresentKHR = (PFN_vkQueuePresentKHR) gpa(device, "vkQueuePresentKHR");
for (i = 0; i < pCreateInfo->enabledExtensionNameCount; i++) {
if (strcmp(pCreateInfo->ppEnabledExtensionNames[i], VK_EXT_KHR_DEVICE_SWAPCHAIN_EXTENSION_NAME) == 0) {
dev_data->device_extensions.wsi_enabled = true;
}
if (strcmp(pCreateInfo->ppEnabledExtensionNames[i], DEBUG_MARKER_EXTENSION_NAME) == 0) {
/* Found a matching extension name, mark it enabled and init dispatch table*/
initDebugMarkerTable(device);
dev_data->device_extensions.debug_marker_enabled = true;
}
}
}
VK_LAYER_EXPORT VkResult VKAPI vkCreateDevice(VkPhysicalDevice gpu, const VkDeviceCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkDevice* pDevice)
{
layer_data* dev_data = get_my_data_ptr(get_dispatch_key(*pDevice), layer_data_map);
VkResult result = dev_data->device_dispatch_table->CreateDevice(gpu, pCreateInfo, pAllocator, pDevice);
if (result == VK_SUCCESS) {
layer_data *my_instance_data = get_my_data_ptr(get_dispatch_key(gpu), layer_data_map);
dev_data->report_data = layer_debug_report_create_device(my_instance_data->report_data, *pDevice);
createDeviceRegisterExtensions(pCreateInfo, *pDevice);
}
return result;
}
// prototype
static void deleteRenderPasses(layer_data*);
VK_LAYER_EXPORT void VKAPI vkDestroyDevice(VkDevice device, const VkAllocationCallbacks* pAllocator)
{
dispatch_key key = get_dispatch_key(device);
layer_data* dev_data = get_my_data_ptr(key, layer_data_map);
// Free all the memory
loader_platform_thread_lock_mutex(&globalLock);
deletePipelines(dev_data);
deleteRenderPasses(dev_data);
deleteCommandBuffers(dev_data);
deletePools(dev_data);
deleteLayouts(dev_data);
dev_data->imageViewMap.clear();
dev_data->imageMap.clear();
dev_data->bufferViewMap.clear();
dev_data->bufferMap.clear();
loader_platform_thread_unlock_mutex(&globalLock);
dev_data->device_dispatch_table->DestroyDevice(device, pAllocator);
tableDebugMarkerMap.erase(key);
delete dev_data->device_dispatch_table;
layer_data_map.erase(key);
}
static const VkLayerProperties ds_global_layers[] = {
{
"DrawState",
VK_API_VERSION,
VK_MAKE_VERSION(0, 1, 0),
"Validation layer: DrawState",
}
};
VK_LAYER_EXPORT VkResult VKAPI vkEnumerateInstanceExtensionProperties(
const char *pLayerName,
uint32_t *pCount,
VkExtensionProperties* pProperties)
{
/* DrawState does not have any global extensions */
return util_GetExtensionProperties(0, NULL, pCount, pProperties);
}
VK_LAYER_EXPORT VkResult VKAPI vkEnumerateInstanceLayerProperties(
uint32_t *pCount,
VkLayerProperties* pProperties)
{
return util_GetLayerProperties(ARRAY_SIZE(ds_global_layers),
ds_global_layers,
pCount, pProperties);
}
static const VkExtensionProperties ds_device_extensions[] = {
{
DEBUG_MARKER_EXTENSION_NAME,
VK_MAKE_VERSION(0, 1, 0),
}
};
static const VkLayerProperties ds_device_layers[] = {
{
"DrawState",
VK_API_VERSION,
VK_MAKE_VERSION(0, 1, 0),
"Validation layer: DrawState",
}
};
VK_LAYER_EXPORT VkResult VKAPI vkEnumerateDeviceExtensionProperties(
VkPhysicalDevice physicalDevice,
const char* pLayerName,
uint32_t* pCount,
VkExtensionProperties* pProperties)
{
if (pLayerName == NULL) {
dispatch_key key = get_dispatch_key(physicalDevice);
layer_data *my_data = get_my_data_ptr(key, layer_data_map);
VkLayerInstanceDispatchTable *pTable = my_data->instance_dispatch_table;
return pTable->EnumerateDeviceExtensionProperties(
physicalDevice,
NULL,
pCount,
pProperties);
} else {
return util_GetExtensionProperties(ARRAY_SIZE(ds_device_extensions),
ds_device_extensions,
pCount, pProperties);
}
}
VK_LAYER_EXPORT VkResult VKAPI vkEnumerateDeviceLayerProperties(
VkPhysicalDevice physicalDevice,
uint32_t* pCount,
VkLayerProperties* pProperties)
{
/* Mem tracker's physical device layers are the same as global */
return util_GetLayerProperties(ARRAY_SIZE(ds_device_layers), ds_device_layers,
pCount, pProperties);
}
bool ValidateCmdBufImageLayouts(VkCommandBuffer cmdBuffer) {
bool skip_call = false;
layer_data* dev_data = get_my_data_ptr(get_dispatch_key(cmdBuffer), layer_data_map);
GLOBAL_CB_NODE* pCB = getCBNode(dev_data, cmdBuffer);
for (auto cb_image_data : pCB->imageLayoutMap) {
auto image_data = dev_data->imageLayoutMap.find(cb_image_data.first);
if (image_data == dev_data->imageLayoutMap.end()) {
skip_call |= log_msg(dev_data->report_data, VK_DBG_REPORT_ERROR_BIT, VK_OBJECT_TYPE_COMMAND_BUFFER, 0, 0, DRAWSTATE_INVALID_IMAGE_LAYOUT, "DS",
"Cannot submit cmd buffer using deleted image %d.", cb_image_data.first);
} else {
if (dev_data->imageLayoutMap[cb_image_data.first]->layout != cb_image_data.second.initialLayout) {
skip_call |= log_msg(dev_data->report_data, VK_DBG_REPORT_ERROR_BIT, VK_OBJECT_TYPE_COMMAND_BUFFER, 0, 0, DRAWSTATE_INVALID_IMAGE_LAYOUT, "DS",
"Cannot submit cmd buffer using image with layout %d when first use is %d.", dev_data->imageLayoutMap[cb_image_data.first]->layout, cb_image_data.second.initialLayout);
}
dev_data->imageLayoutMap[cb_image_data.first]->layout = cb_image_data.second.layout;
}
}
return skip_call;
}
VK_LAYER_EXPORT VkResult VKAPI vkQueueSubmit(VkQueue queue, uint32_t submitCount, const VkSubmitInfo* pSubmits, VkFence fence)
{
VkBool32 skipCall = VK_FALSE;
GLOBAL_CB_NODE* pCB = NULL;
layer_data* dev_data = get_my_data_ptr(get_dispatch_key(queue), layer_data_map);
for (uint32_t submit_idx = 0; submit_idx < submitCount; submit_idx++) {
const VkSubmitInfo *submit = &pSubmits[submit_idx];
for (uint32_t i=0; i < submit->commandBufferCount; i++) {
skipCall |= ValidateCmdBufImageLayouts(submit->pCommandBuffers[i]);
// Validate that cmd buffers have been updated
pCB = getCBNode(dev_data, submit->pCommandBuffers[i]);
loader_platform_thread_lock_mutex(&globalLock);
pCB->submitCount++; // increment submit count
if ((pCB->beginInfo.flags & VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT) && (pCB->submitCount > 1)) {
skipCall |= log_msg(dev_data->report_data, VK_DBG_REPORT_ERROR_BIT, VK_OBJECT_TYPE_COMMAND_BUFFER, 0, 0, DRAWSTATE_COMMAND_BUFFER_SINGLE_SUBMIT_VIOLATION, "DS",
"CB %#" PRIxLEAST64 " was begun w/ VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT set, but has been submitted %#" PRIxLEAST64 " times.",
reinterpret_cast<uint64_t>(pCB->commandBuffer), pCB->submitCount);
}
if (CB_UPDATE_COMPLETE != pCB->state) {
// Flag error for using CB w/o vkEndCommandBuffer() called
// TODO : How to pass cb as srcObj?
skipCall |= log_msg(dev_data->report_data, VK_DBG_REPORT_ERROR_BIT, VK_OBJECT_TYPE_COMMAND_BUFFER, 0, 0, DRAWSTATE_NO_END_COMMAND_BUFFER, "DS",
"You must call vkEndCommandBuffer() on CB %#" PRIxLEAST64 " before this call to vkQueueSubmit()!", reinterpret_cast<uint64_t>(pCB->commandBuffer));
loader_platform_thread_unlock_mutex(&globalLock);
return VK_ERROR_VALIDATION_FAILED;
}
loader_platform_thread_unlock_mutex(&globalLock);
}
}
if (VK_FALSE == skipCall)
return dev_data->device_dispatch_table->QueueSubmit(queue, submitCount, pSubmits, fence);
return VK_ERROR_VALIDATION_FAILED;
}
VK_LAYER_EXPORT void VKAPI vkDestroyFence(VkDevice device, VkFence fence, const VkAllocationCallbacks* pAllocator)
{
get_my_data_ptr(get_dispatch_key(device), layer_data_map)->device_dispatch_table->DestroyFence(device, fence, pAllocator);
// TODO : Clean up any internal data structures using this obj.
}
VK_LAYER_EXPORT void VKAPI vkDestroySemaphore(VkDevice device, VkSemaphore semaphore, const VkAllocationCallbacks* pAllocator)
{
get_my_data_ptr(get_dispatch_key(device), layer_data_map)->device_dispatch_table->DestroySemaphore(device, semaphore, pAllocator);
// TODO : Clean up any internal data structures using this obj.
}
VK_LAYER_EXPORT void VKAPI vkDestroyEvent(VkDevice device, VkEvent event, const VkAllocationCallbacks* pAllocator)
{
get_my_data_ptr(get_dispatch_key(device), layer_data_map)->device_dispatch_table->DestroyEvent(device, event, pAllocator);
// TODO : Clean up any internal data structures using this obj.
}
VK_LAYER_EXPORT void VKAPI vkDestroyQueryPool(VkDevice device, VkQueryPool queryPool, const VkAllocationCallbacks* pAllocator)
{
get_my_data_ptr(get_dispatch_key(device), layer_data_map)->device_dispatch_table->DestroyQueryPool(device, queryPool, pAllocator);
// TODO : Clean up any internal data structures using this obj.
}
VK_LAYER_EXPORT void VKAPI vkDestroyBuffer(VkDevice device, VkBuffer buffer, const VkAllocationCallbacks* pAllocator)
{
layer_data* dev_data = get_my_data_ptr(get_dispatch_key(device), layer_data_map);
dev_data->device_dispatch_table->DestroyBuffer(device, buffer, pAllocator);
dev_data->bufferMap.erase(buffer);
}
VK_LAYER_EXPORT void VKAPI vkDestroyBufferView(VkDevice device, VkBufferView bufferView, const VkAllocationCallbacks* pAllocator)
{
layer_data* dev_data = get_my_data_ptr(get_dispatch_key(device), layer_data_map);
dev_data->device_dispatch_table->DestroyBufferView(device, bufferView, pAllocator);
dev_data->bufferViewMap.erase(bufferView);
}
VK_LAYER_EXPORT void VKAPI vkDestroyImage(VkDevice device, VkImage image, const VkAllocationCallbacks* pAllocator)
{
layer_data* dev_data = get_my_data_ptr(get_dispatch_key(device), layer_data_map);
dev_data->device_dispatch_table->DestroyImage(device, image, pAllocator);
dev_data->imageMap.erase(image);
}
VK_LAYER_EXPORT void VKAPI vkDestroyImageView(VkDevice device, VkImageView imageView, const VkAllocationCallbacks* pAllocator)
{
get_my_data_ptr(get_dispatch_key(device), layer_data_map)->device_dispatch_table->DestroyImageView(device, imageView, pAllocator);
// TODO : Clean up any internal data structures using this obj.
}
VK_LAYER_EXPORT void VKAPI vkDestroyShaderModule(VkDevice device, VkShaderModule shaderModule, const VkAllocationCallbacks* pAllocator)
{
get_my_data_ptr(get_dispatch_key(device), layer_data_map)->device_dispatch_table->DestroyShaderModule(device, shaderModule, pAllocator);
// TODO : Clean up any internal data structures using this obj.
}
VK_LAYER_EXPORT void VKAPI vkDestroyPipeline(VkDevice device, VkPipeline pipeline, const VkAllocationCallbacks* pAllocator)
{
get_my_data_ptr(get_dispatch_key(device), layer_data_map)->device_dispatch_table->DestroyPipeline(device, pipeline, pAllocator);
// TODO : Clean up any internal data structures using this obj.
}
VK_LAYER_EXPORT void VKAPI vkDestroyPipelineLayout(VkDevice device, VkPipelineLayout pipelineLayout, const VkAllocationCallbacks* pAllocator)
{
get_my_data_ptr(get_dispatch_key(device), layer_data_map)->device_dispatch_table->DestroyPipelineLayout(device, pipelineLayout, pAllocator);
// TODO : Clean up any internal data structures using this obj.
}
VK_LAYER_EXPORT void VKAPI vkDestroySampler(VkDevice device, VkSampler sampler, const VkAllocationCallbacks* pAllocator)
{
get_my_data_ptr(get_dispatch_key(device), layer_data_map)->device_dispatch_table->DestroySampler(device, sampler, pAllocator);
// TODO : Clean up any internal data structures using this obj.
}
VK_LAYER_EXPORT void VKAPI vkDestroyDescriptorSetLayout(VkDevice device, VkDescriptorSetLayout descriptorSetLayout, const VkAllocationCallbacks* pAllocator)
{
get_my_data_ptr(get_dispatch_key(device), layer_data_map)->device_dispatch_table->DestroyDescriptorSetLayout(device, descriptorSetLayout, pAllocator);
// TODO : Clean up any internal data structures using this obj.
}
VK_LAYER_EXPORT void VKAPI vkDestroyDescriptorPool(VkDevice device, VkDescriptorPool descriptorPool, const VkAllocationCallbacks* pAllocator)
{
get_my_data_ptr(get_dispatch_key(device), layer_data_map)->device_dispatch_table->DestroyDescriptorPool(device, descriptorPool, pAllocator);
// TODO : Clean up any internal data structures using this obj.
}
VK_LAYER_EXPORT void VKAPI vkFreeCommandBuffers(VkDevice device, VkCommandPool commandPool, uint32_t count, const VkCommandBuffer *pCommandBuffers)
{
get_my_data_ptr(get_dispatch_key(device), layer_data_map)->device_dispatch_table->FreeCommandBuffers(device, commandPool, count, pCommandBuffers);
// TODO : Clean up any internal data structures using this obj.
}
VK_LAYER_EXPORT void VKAPI vkDestroyFramebuffer(VkDevice device, VkFramebuffer framebuffer, const VkAllocationCallbacks* pAllocator)
{
get_my_data_ptr(get_dispatch_key(device), layer_data_map)->device_dispatch_table->DestroyFramebuffer(device, framebuffer, pAllocator);
// TODO : Clean up any internal data structures using this obj.
}
VK_LAYER_EXPORT void VKAPI vkDestroyRenderPass(VkDevice device, VkRenderPass renderPass, const VkAllocationCallbacks* pAllocator)
{
get_my_data_ptr(get_dispatch_key(device), layer_data_map)->device_dispatch_table->DestroyRenderPass(device, renderPass, pAllocator);
// TODO : Clean up any internal data structures using this obj.
}
VK_LAYER_EXPORT VkResult VKAPI vkCreateBuffer(VkDevice device, const VkBufferCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkBuffer* pBuffer)
{
layer_data* dev_data = get_my_data_ptr(get_dispatch_key(device), layer_data_map);
VkResult result = dev_data->device_dispatch_table->CreateBuffer(device, pCreateInfo, pAllocator, pBuffer);
if (VK_SUCCESS == result) {
loader_platform_thread_lock_mutex(&globalLock);
// TODO : This doesn't create deep copy of pQueueFamilyIndices so need to fix that if/when we want that data to be valid
dev_data->bufferMap[*pBuffer] = unique_ptr<VkBufferCreateInfo>(new VkBufferCreateInfo(*pCreateInfo));
loader_platform_thread_unlock_mutex(&globalLock);
}
return result;
}
VK_LAYER_EXPORT VkResult VKAPI vkCreateBufferView(VkDevice device, const VkBufferViewCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkBufferView* pView)
{
layer_data* dev_data = get_my_data_ptr(get_dispatch_key(device), layer_data_map);
VkResult result = dev_data->device_dispatch_table->CreateBufferView(device, pCreateInfo, pAllocator, pView);
if (VK_SUCCESS == result) {
loader_platform_thread_lock_mutex(&globalLock);
dev_data->bufferViewMap[*pView] = unique_ptr<VkBufferViewCreateInfo>(new VkBufferViewCreateInfo(*pCreateInfo));
loader_platform_thread_unlock_mutex(&globalLock);
}
return result;
}
VK_LAYER_EXPORT VkResult VKAPI vkCreateImage(VkDevice device, const VkImageCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkImage* pImage)
{
layer_data* dev_data = get_my_data_ptr(get_dispatch_key(device), layer_data_map);
VkResult result = dev_data->device_dispatch_table->CreateImage(device, pCreateInfo, pAllocator, pImage);
if (VK_SUCCESS == result) {
IMAGE_NODE* image_node = new IMAGE_NODE;
image_node->layout = pCreateInfo->initialLayout;
loader_platform_thread_lock_mutex(&globalLock);
dev_data->imageMap[*pImage] = unique_ptr<VkImageCreateInfo>(new VkImageCreateInfo(*pCreateInfo));
dev_data->imageLayoutMap[*pImage] = image_node;
loader_platform_thread_unlock_mutex(&globalLock);
}
return result;
}
VK_LAYER_EXPORT VkResult VKAPI vkCreateImageView(VkDevice device, const VkImageViewCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkImageView* pView)
{
layer_data* dev_data = get_my_data_ptr(get_dispatch_key(device), layer_data_map);
VkResult result = dev_data->device_dispatch_table->CreateImageView(device, pCreateInfo, pAllocator, pView);
if (VK_SUCCESS == result) {
loader_platform_thread_lock_mutex(&globalLock);
dev_data->imageViewMap[*pView] = unique_ptr<VkImageViewCreateInfo>(new VkImageViewCreateInfo(*pCreateInfo));
loader_platform_thread_unlock_mutex(&globalLock);
}
return result;
}
//TODO handle pipeline caches
VkResult VKAPI vkCreatePipelineCache(
VkDevice device,
const VkPipelineCacheCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkPipelineCache* pPipelineCache)
{
layer_data* dev_data = get_my_data_ptr(get_dispatch_key(device), layer_data_map);
VkResult result = dev_data->device_dispatch_table->CreatePipelineCache(device, pCreateInfo, pAllocator, pPipelineCache);
return result;
}
void VKAPI vkDestroyPipelineCache(
VkDevice device,
VkPipelineCache pipelineCache,
const VkAllocationCallbacks* pAllocator)
{
layer_data* dev_data = get_my_data_ptr(get_dispatch_key(device), layer_data_map);
dev_data->device_dispatch_table->DestroyPipelineCache(device, pipelineCache, pAllocator);
}
VkResult VKAPI vkGetPipelineCacheData(
VkDevice device,
VkPipelineCache pipelineCache,
size_t* pDataSize,
void* pData)
{
layer_data* dev_data = get_my_data_ptr(get_dispatch_key(device), layer_data_map);
VkResult result = dev_data->device_dispatch_table->GetPipelineCacheData(device, pipelineCache, pDataSize, pData);
return result;
}
VkResult VKAPI vkMergePipelineCaches(
VkDevice device,
VkPipelineCache dstCache,
uint32_t srcCacheCount,
const VkPipelineCache* pSrcCaches)
{
layer_data* dev_data = get_my_data_ptr(get_dispatch_key(device), layer_data_map);
VkResult result = dev_data->device_dispatch_table->MergePipelineCaches(device, dstCache, srcCacheCount, pSrcCaches);
return result;
}
VK_LAYER_EXPORT VkResult VKAPI vkCreateGraphicsPipelines(VkDevice device, VkPipelineCache pipelineCache, uint32_t count, const VkGraphicsPipelineCreateInfo* pCreateInfos, const VkAllocationCallbacks* pAllocator, VkPipeline* pPipelines)
{
VkResult result = VK_SUCCESS;
//TODO What to do with pipelineCache?
// The order of operations here is a little convoluted but gets the job done
// 1. Pipeline create state is first shadowed into PIPELINE_NODE struct
// 2. Create state is then validated (which uses flags setup during shadowing)
// 3. If everything looks good, we'll then create the pipeline and add NODE to pipelineMap
VkBool32 skipCall = VK_FALSE;
// TODO : Improve this data struct w/ unique_ptrs so cleanup below is automatic
vector<PIPELINE_NODE*> pPipeNode(count);
layer_data* dev_data = get_my_data_ptr(get_dispatch_key(device), layer_data_map);
uint32_t i=0;
loader_platform_thread_lock_mutex(&globalLock);
for (i=0; i<count; i++) {
pPipeNode[i] = initPipeline(dev_data, &pCreateInfos[i], NULL);
skipCall |= verifyPipelineCreateState(dev_data, device, pPipeNode[i]);
}
loader_platform_thread_unlock_mutex(&globalLock);
if (VK_FALSE == skipCall) {
result = dev_data->device_dispatch_table->CreateGraphicsPipelines(device, pipelineCache, count, pCreateInfos, pAllocator, pPipelines);
loader_platform_thread_lock_mutex(&globalLock);
for (i=0; i<count; i++) {
pPipeNode[i]->pipeline = pPipelines[i];
dev_data->pipelineMap[pPipeNode[i]->pipeline] = pPipeNode[i];
}
loader_platform_thread_unlock_mutex(&globalLock);
} else {
for (i=0; i<count; i++) {
if (pPipeNode[i]) {
// If we allocated a pipeNode, need to clean it up here
delete[] pPipeNode[i]->pVertexBindingDescriptions;
delete[] pPipeNode[i]->pVertexAttributeDescriptions;
delete[] pPipeNode[i]->pAttachments;
delete pPipeNode[i];
}
}
return VK_ERROR_VALIDATION_FAILED;
}
return result;
}
VK_LAYER_EXPORT VkResult VKAPI vkCreateSampler(VkDevice device, const VkSamplerCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkSampler* pSampler)
{
layer_data* dev_data = get_my_data_ptr(get_dispatch_key(device), layer_data_map);
VkResult result = dev_data->device_dispatch_table->CreateSampler(device, pCreateInfo, pAllocator, pSampler);
if (VK_SUCCESS == result) {
loader_platform_thread_lock_mutex(&globalLock);
dev_data->sampleMap[*pSampler] = unique_ptr<SAMPLER_NODE>(new SAMPLER_NODE(pSampler, pCreateInfo));
loader_platform_thread_unlock_mutex(&globalLock);
}
return result;
}
VK_LAYER_EXPORT VkResult VKAPI vkCreateDescriptorSetLayout(VkDevice device, const VkDescriptorSetLayoutCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkDescriptorSetLayout* pSetLayout)
{
layer_data* dev_data = get_my_data_ptr(get_dispatch_key(device), layer_data_map);
VkResult result = dev_data->device_dispatch_table->CreateDescriptorSetLayout(device, pCreateInfo, pAllocator, pSetLayout);
if (VK_SUCCESS == result) {
LAYOUT_NODE* pNewNode = new LAYOUT_NODE;
if (NULL == pNewNode) {
if (log_msg(dev_data->report_data, VK_DBG_REPORT_ERROR_BIT, VK_OBJECT_TYPE_DESCRIPTOR_SET_LAYOUT, (uint64_t) *pSetLayout, 0, DRAWSTATE_OUT_OF_MEMORY, "DS",
"Out of memory while attempting to allocate LAYOUT_NODE in vkCreateDescriptorSetLayout()"))
return VK_ERROR_VALIDATION_FAILED;
}
memset(pNewNode, 0, sizeof(LAYOUT_NODE));
memcpy((void*)&pNewNode->createInfo, pCreateInfo, sizeof(VkDescriptorSetLayoutCreateInfo));
pNewNode->createInfo.pBinding = new VkDescriptorSetLayoutBinding[pCreateInfo->bindingCount];
memcpy((void*)pNewNode->createInfo.pBinding, pCreateInfo->pBinding, sizeof(VkDescriptorSetLayoutBinding)*pCreateInfo->bindingCount);
// g++ does not like reserve with size 0
if (pCreateInfo->bindingCount)
pNewNode->bindings.reserve(pCreateInfo->bindingCount);
uint32_t totalCount = 0;
for (uint32_t i=0; i<pCreateInfo->bindingCount; i++) {
if (!pNewNode->bindings.insert(pCreateInfo->pBinding[i].binding).second) {
if (log_msg(dev_data->report_data, VK_DBG_REPORT_ERROR_BIT, VK_OBJECT_TYPE_DESCRIPTOR_SET_LAYOUT, (uint64_t) *pSetLayout, 0, DRAWSTATE_INVALID_LAYOUT, "DS",
"duplicated binding number in VkDescriptorSetLayoutBinding"))
return VK_ERROR_VALIDATION_FAILED;
}
totalCount += pCreateInfo->pBinding[i].arraySize;
if (pCreateInfo->pBinding[i].pImmutableSamplers) {
VkSampler** ppIS = (VkSampler**)&pNewNode->createInfo.pBinding[i].pImmutableSamplers;
*ppIS = new VkSampler[pCreateInfo->pBinding[i].arraySize];
memcpy(*ppIS, pCreateInfo->pBinding[i].pImmutableSamplers, pCreateInfo->pBinding[i].arraySize*sizeof(VkSampler));
}
}
if (totalCount > 0) {
pNewNode->descriptorTypes.resize(totalCount);
pNewNode->stageFlags.resize(totalCount);
uint32_t offset = 0;
uint32_t j = 0;
for (uint32_t i=0; i<pCreateInfo->bindingCount; i++) {
for (j = 0; j < pCreateInfo->pBinding[i].arraySize; j++) {
pNewNode->descriptorTypes[offset + j] = pCreateInfo->pBinding[i].descriptorType;
pNewNode->stageFlags[offset + j] = pCreateInfo->pBinding[i].stageFlags;
}
offset += j;
}
}
pNewNode->layout = *pSetLayout;
pNewNode->startIndex = 0;
pNewNode->endIndex = pNewNode->startIndex + totalCount - 1;
assert(pNewNode->endIndex >= pNewNode->startIndex);
// Put new node at Head of global Layer list
loader_platform_thread_lock_mutex(&globalLock);
dev_data->layoutMap[*pSetLayout] = pNewNode;
loader_platform_thread_unlock_mutex(&globalLock);
}
return result;
}
VkResult VKAPI vkCreatePipelineLayout(VkDevice device, const VkPipelineLayoutCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkPipelineLayout* pPipelineLayout)
{
layer_data* dev_data = get_my_data_ptr(get_dispatch_key(device), layer_data_map);
VkResult result = dev_data->device_dispatch_table->CreatePipelineLayout(device, pCreateInfo, pAllocator, pPipelineLayout);
if (VK_SUCCESS == result) {
PIPELINE_LAYOUT_NODE plNode = dev_data->pipelineLayoutMap[*pPipelineLayout];
plNode.descriptorSetLayouts.resize(pCreateInfo->setLayoutCount);
uint32_t i = 0;
for (i=0; i<pCreateInfo->setLayoutCount; ++i) {
plNode.descriptorSetLayouts[i] = pCreateInfo->pSetLayouts[i];
}
plNode.pushConstantRanges.resize(pCreateInfo->pushConstantRangeCount);
for (i=0; i<pCreateInfo->pushConstantRangeCount; ++i) {
plNode.pushConstantRanges[i] = pCreateInfo->pPushConstantRanges[i];
}
}
return result;
}
VK_LAYER_EXPORT VkResult VKAPI vkCreateDescriptorPool(VkDevice device, const VkDescriptorPoolCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkDescriptorPool* pDescriptorPool)
{
layer_data* dev_data = get_my_data_ptr(get_dispatch_key(device), layer_data_map);
VkResult result = dev_data->device_dispatch_table->CreateDescriptorPool(device, pCreateInfo, pAllocator, pDescriptorPool);
if (VK_SUCCESS == result) {
// Insert this pool into Global Pool LL at head
if (log_msg(dev_data->report_data, VK_DBG_REPORT_INFO_BIT, VK_OBJECT_TYPE_DESCRIPTOR_POOL, (uint64_t) *pDescriptorPool, 0, DRAWSTATE_OUT_OF_MEMORY, "DS",
"Created Descriptor Pool %#" PRIxLEAST64, (uint64_t) *pDescriptorPool))
return VK_ERROR_VALIDATION_FAILED;
loader_platform_thread_lock_mutex(&globalLock);
POOL_NODE* pNewNode = new POOL_NODE(*pDescriptorPool, pCreateInfo);
if (NULL == pNewNode) {
if (log_msg(dev_data->report_data, VK_DBG_REPORT_ERROR_BIT, VK_OBJECT_TYPE_DESCRIPTOR_POOL, (uint64_t) *pDescriptorPool, 0, DRAWSTATE_OUT_OF_MEMORY, "DS",
"Out of memory while attempting to allocate POOL_NODE in vkCreateDescriptorPool()"))
return VK_ERROR_VALIDATION_FAILED;
} else {
dev_data->poolMap[*pDescriptorPool] = pNewNode;
}
loader_platform_thread_unlock_mutex(&globalLock);
} else {
// Need to do anything if pool create fails?
}
return result;
}
VK_LAYER_EXPORT VkResult VKAPI vkResetDescriptorPool(VkDevice device, VkDescriptorPool descriptorPool, VkDescriptorPoolResetFlags flags)
{
layer_data* dev_data = get_my_data_ptr(get_dispatch_key(device), layer_data_map);
VkResult result = dev_data->device_dispatch_table->ResetDescriptorPool(device, descriptorPool, flags);
if (VK_SUCCESS == result) {
clearDescriptorPool(dev_data, device, descriptorPool, flags);
}
return result;
}
VK_LAYER_EXPORT VkResult VKAPI vkAllocateDescriptorSets(VkDevice device, const VkDescriptorSetAllocateInfo* pAllocateInfo, VkDescriptorSet* pDescriptorSets)
{
VkBool32 skipCall = VK_FALSE;
layer_data* dev_data = get_my_data_ptr(get_dispatch_key(device), layer_data_map);
// Verify that requested descriptorSets are available in pool
POOL_NODE *pPoolNode = getPoolNode(dev_data, pAllocateInfo->descriptorPool);
if (!pPoolNode) {
skipCall |= log_msg(dev_data->report_data, VK_DBG_REPORT_ERROR_BIT, VK_OBJECT_TYPE_DESCRIPTOR_POOL, (uint64_t) pAllocateInfo->descriptorPool, 0, DRAWSTATE_INVALID_POOL, "DS",
"Unable to find pool node for pool %#" PRIxLEAST64 " specified in vkAllocateDescriptorSets() call", (uint64_t) pAllocateInfo->descriptorPool);
} else { // Make sure pool has all the available descriptors before calling down chain
skipCall |= validate_descriptor_availability_in_pool(dev_data, pPoolNode, pAllocateInfo->setLayoutCount, pAllocateInfo->pSetLayouts);
}
if (skipCall)
return VK_ERROR_VALIDATION_FAILED;
VkResult result = dev_data->device_dispatch_table->AllocateDescriptorSets(device, pAllocateInfo, pDescriptorSets);
if (VK_SUCCESS == result) {
POOL_NODE *pPoolNode = getPoolNode(dev_data, pAllocateInfo->descriptorPool);
if (pPoolNode) {
if (pAllocateInfo->setLayoutCount == 0) {
log_msg(dev_data->report_data, VK_DBG_REPORT_INFO_BIT, VK_OBJECT_TYPE_DESCRIPTOR_SET, pAllocateInfo->setLayoutCount, 0, DRAWSTATE_NONE, "DS",
"AllocateDescriptorSets called with 0 count");
}
for (uint32_t i = 0; i < pAllocateInfo->setLayoutCount; i++) {
log_msg(dev_data->report_data, VK_DBG_REPORT_INFO_BIT, VK_OBJECT_TYPE_DESCRIPTOR_SET, (uint64_t) pDescriptorSets[i], 0, DRAWSTATE_NONE, "DS",
"Created Descriptor Set %#" PRIxLEAST64, (uint64_t) pDescriptorSets[i]);
// Create new set node and add to head of pool nodes
SET_NODE* pNewNode = new SET_NODE;
if (NULL == pNewNode) {
if (log_msg(dev_data->report_data, VK_DBG_REPORT_ERROR_BIT, VK_OBJECT_TYPE_DESCRIPTOR_SET, (uint64_t) pDescriptorSets[i], 0, DRAWSTATE_OUT_OF_MEMORY, "DS",
"Out of memory while attempting to allocate SET_NODE in vkAllocateDescriptorSets()"))
return VK_ERROR_VALIDATION_FAILED;
} else {
memset(pNewNode, 0, sizeof(SET_NODE));
// TODO : Pool should store a total count of each type of Descriptor available
// When descriptors are allocated, decrement the count and validate here
// that the count doesn't go below 0. One reset/free need to bump count back up.
// Insert set at head of Set LL for this pool
pNewNode->pNext = pPoolNode->pSets;
pPoolNode->pSets = pNewNode;
LAYOUT_NODE* pLayout = getLayoutNode(dev_data, pAllocateInfo->pSetLayouts[i]);
if (NULL == pLayout) {
if (log_msg(dev_data->report_data, VK_DBG_REPORT_ERROR_BIT, VK_OBJECT_TYPE_DESCRIPTOR_SET_LAYOUT, (uint64_t) pAllocateInfo->pSetLayouts[i], 0, DRAWSTATE_INVALID_LAYOUT, "DS",
"Unable to find set layout node for layout %#" PRIxLEAST64 " specified in vkAllocateDescriptorSets() call", (uint64_t) pAllocateInfo->pSetLayouts[i]))
return VK_ERROR_VALIDATION_FAILED;
}
pNewNode->pLayout = pLayout;
pNewNode->pool = pAllocateInfo->descriptorPool;
pNewNode->set = pDescriptorSets[i];
pNewNode->descriptorCount = pLayout->endIndex + 1;
if (pNewNode->descriptorCount) {
size_t descriptorArraySize = sizeof(GENERIC_HEADER*)*pNewNode->descriptorCount;
pNewNode->ppDescriptors = new GENERIC_HEADER*[descriptorArraySize];
memset(pNewNode->ppDescriptors, 0, descriptorArraySize);
}
dev_data->setMap[pDescriptorSets[i]] = pNewNode;
}
}
}
}
return result;
}
VK_LAYER_EXPORT VkResult VKAPI vkFreeDescriptorSets(VkDevice device, VkDescriptorPool descriptorPool, uint32_t count, const VkDescriptorSet* pDescriptorSets)
{
VkBool32 skipCall = VK_FALSE;
layer_data* dev_data = get_my_data_ptr(get_dispatch_key(device), layer_data_map);
POOL_NODE *pPoolNode = getPoolNode(dev_data, descriptorPool);
if (pPoolNode && !(VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT & pPoolNode->createInfo.flags)) {
// Can't Free from a NON_FREE pool
skipCall |= log_msg(dev_data->report_data, VK_DBG_REPORT_ERROR_BIT, VK_OBJECT_TYPE_DEVICE, (uint64_t)device, 0, DRAWSTATE_CANT_FREE_FROM_NON_FREE_POOL, "DS",
"It is invalid to call vkFreeDescriptorSets() with a pool created without setting VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT.");
}
if (skipCall)
return VK_ERROR_VALIDATION_FAILED;
VkResult result = dev_data->device_dispatch_table->FreeDescriptorSets(device, descriptorPool, count, pDescriptorSets);
if (VK_SUCCESS == result) {
// For each freed descriptor add it back into the pool as available
for (uint32_t i=0; i<count; ++i) {
SET_NODE* pSet = dev_data->setMap[pDescriptorSets[i]]; // getSetNode() without locking
LAYOUT_NODE* pLayout = pSet->pLayout;
uint32_t typeIndex = 0, poolSizeCount = 0;
for (uint32_t j=0; j<pLayout->createInfo.bindingCount; ++j) {
typeIndex = static_cast<uint32_t>(pLayout->createInfo.pBinding[j].descriptorType);
poolSizeCount = pLayout->createInfo.pBinding[j].arraySize;
pPoolNode->availableDescriptorTypeCount[typeIndex] += poolSizeCount;
}
}
}
// TODO : Any other clean-up or book-keeping to do here?
return result;
}
VK_LAYER_EXPORT void VKAPI vkUpdateDescriptorSets(VkDevice device, uint32_t descriptorWriteCount, const VkWriteDescriptorSet* pDescriptorWrites, uint32_t descriptorCopyCount, const VkCopyDescriptorSet* pDescriptorCopies)
{
// dsUpdate will return VK_TRUE only if a bailout error occurs, so we want to call down tree when update returns VK_FALSE
layer_data* dev_data = get_my_data_ptr(get_dispatch_key(device), layer_data_map);
if (!dsUpdate(dev_data, device, descriptorWriteCount, pDescriptorWrites, descriptorCopyCount, pDescriptorCopies)) {
dev_data->device_dispatch_table->UpdateDescriptorSets(device, descriptorWriteCount, pDescriptorWrites, descriptorCopyCount, pDescriptorCopies);
}
}
VK_LAYER_EXPORT VkResult VKAPI vkAllocateCommandBuffers(VkDevice device, const VkCommandBufferAllocateInfo* pCreateInfo, VkCommandBuffer* pCommandBuffer)
{
layer_data* dev_data = get_my_data_ptr(get_dispatch_key(device), layer_data_map);
VkResult result = dev_data->device_dispatch_table->AllocateCommandBuffers(device, pCreateInfo, pCommandBuffer);
if (VK_SUCCESS == result) {
loader_platform_thread_lock_mutex(&globalLock);
GLOBAL_CB_NODE* pCB = new GLOBAL_CB_NODE;
dev_data->commandBufferMap[*pCommandBuffer] = pCB;
loader_platform_thread_unlock_mutex(&globalLock);
resetCB(dev_data, *pCommandBuffer);
pCB->commandBuffer = *pCommandBuffer;
pCB->createInfo = *pCreateInfo;
pCB->level = pCreateInfo->level;
updateCBTracking(pCB);
}
return result;
}
VK_LAYER_EXPORT VkResult VKAPI vkBeginCommandBuffer(VkCommandBuffer commandBuffer, const VkCommandBufferBeginInfo* pBeginInfo)
{
VkBool32 skipCall = false;
layer_data* dev_data = get_my_data_ptr(get_dispatch_key(commandBuffer), layer_data_map);
// Validate command buffer level
GLOBAL_CB_NODE* pCB = getCBNode(dev_data, commandBuffer);
if (pCB) {
if (pCB->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY) {
if (pBeginInfo->renderPass || pBeginInfo->framebuffer) {
// These should be NULL for a Primary CB
skipCall |= log_msg(dev_data->report_data, VK_DBG_REPORT_ERROR_BIT, VK_OBJECT_TYPE_COMMAND_BUFFER, 0, 0, DRAWSTATE_BEGIN_CB_INVALID_STATE, "DS",
"vkAllocateCommandBuffers(): Primary Command Buffer (%p) may not specify framebuffer or renderpass parameters", (void*)commandBuffer);
}
} else {
if (!pBeginInfo->renderPass || !pBeginInfo->framebuffer) {
// These should NOT be null for an Secondary CB
skipCall |= log_msg(dev_data->report_data, VK_DBG_REPORT_ERROR_BIT, VK_OBJECT_TYPE_COMMAND_BUFFER, 0, 0, DRAWSTATE_BEGIN_CB_INVALID_STATE, "DS",
"vkAllocateCommandBuffers(): Secondary Command Buffers (%p) must specify framebuffer and renderpass parameters", (void*)commandBuffer);
}
}
pCB->beginInfo = *pBeginInfo;
} else {
// TODO : Need to pass commandBuffer as objType here
skipCall |= log_msg(dev_data->report_data, VK_DBG_REPORT_ERROR_BIT, VK_OBJECT_TYPE_COMMAND_BUFFER, 0, 0, DRAWSTATE_INVALID_COMMAND_BUFFER, "DS",
"In vkBeginCommandBuffer() and unable to find CommandBuffer Node for CB %p!", (void*)commandBuffer);
}
if (skipCall) {
return VK_ERROR_VALIDATION_FAILED;
}
VkResult result = dev_data->device_dispatch_table->BeginCommandBuffer(commandBuffer, pBeginInfo);
if (VK_SUCCESS == result) {
if (CB_NEW != pCB->state)
resetCB(dev_data, commandBuffer);
pCB->state = CB_UPDATE_ACTIVE;
updateCBTracking(pCB);
}
return result;
}
VK_LAYER_EXPORT VkResult VKAPI vkEndCommandBuffer(VkCommandBuffer commandBuffer)
{
VkBool32 skipCall = VK_FALSE;
VkResult result = VK_SUCCESS;
layer_data* dev_data = get_my_data_ptr(get_dispatch_key(commandBuffer), layer_data_map);
GLOBAL_CB_NODE* pCB = getCBNode(dev_data, commandBuffer);
/* TODO: preference is to always call API function after reporting any validation errors */
if (pCB) {
if (pCB->state != CB_UPDATE_ACTIVE) {
skipCall |= report_error_no_cb_begin(dev_data, commandBuffer, "vkEndCommandBuffer()");
}
}
if (VK_FALSE == skipCall) {
result = dev_data->device_dispatch_table->EndCommandBuffer(commandBuffer);
if (VK_SUCCESS == result) {
updateCBTracking(pCB);
pCB->state = CB_UPDATE_COMPLETE;
// Reset CB status flags
pCB->status = 0;
printCB(dev_data, commandBuffer);
}
} else {
result = VK_ERROR_VALIDATION_FAILED;
}
return result;
}
VK_LAYER_EXPORT VkResult VKAPI vkResetCommandBuffer(VkCommandBuffer commandBuffer, VkCommandBufferResetFlags flags)
{
layer_data* dev_data = get_my_data_ptr(get_dispatch_key(commandBuffer), layer_data_map);
VkResult result = dev_data->device_dispatch_table->ResetCommandBuffer(commandBuffer, flags);
if (VK_SUCCESS == result) {
resetCB(dev_data, commandBuffer);
updateCBTracking(getCBNode(dev_data, commandBuffer));
}
return result;
}
VK_LAYER_EXPORT void VKAPI vkCmdBindPipeline(VkCommandBuffer commandBuffer, VkPipelineBindPoint pipelineBindPoint, VkPipeline pipeline)
{
VkBool32 skipCall = VK_FALSE;
layer_data* dev_data = get_my_data_ptr(get_dispatch_key(commandBuffer), layer_data_map);
GLOBAL_CB_NODE* pCB = getCBNode(dev_data, commandBuffer);
if (pCB) {
if (pCB->state == CB_UPDATE_ACTIVE) {
updateCBTracking(pCB);
skipCall |= addCmd(dev_data, pCB, CMD_BINDPIPELINE);
if ((VK_PIPELINE_BIND_POINT_COMPUTE == pipelineBindPoint) && (pCB->activeRenderPass)) {
skipCall |= log_msg(dev_data->report_data, VK_DBG_REPORT_ERROR_BIT, VK_OBJECT_TYPE_PIPELINE, (uint64_t) pipeline,
0, DRAWSTATE_INVALID_RENDERPASS_CMD, "DS",
"Incorrectly binding compute pipeline (%#" PRIxLEAST64 ") during active RenderPass (%#" PRIxLEAST64 ")",
(uint64_t) pipeline, (uint64_t) pCB->activeRenderPass);
} else if ((VK_PIPELINE_BIND_POINT_GRAPHICS == pipelineBindPoint) && (!pCB->activeRenderPass)) {
skipCall |= log_msg(dev_data->report_data, VK_DBG_REPORT_ERROR_BIT, VK_OBJECT_TYPE_PIPELINE, (uint64_t) pipeline,
0, DRAWSTATE_NO_ACTIVE_RENDERPASS, "DS", "Incorrectly binding graphics pipeline "
" (%#" PRIxLEAST64 ") without an active RenderPass", (uint64_t) pipeline);
} else {
PIPELINE_NODE* pPN = getPipeline(dev_data, pipeline);
if (pPN) {
pCB->lastBoundPipeline = pipeline;
loader_platform_thread_lock_mutex(&globalLock);
set_cb_pso_status(pCB, pPN);
g_lastBoundPipeline = pPN;
loader_platform_thread_unlock_mutex(&globalLock);
skipCall |= validatePipelineState(dev_data, pCB, pipelineBindPoint, pipeline);
} else {
skipCall |= log_msg(dev_data->report_data, VK_DBG_REPORT_ERROR_BIT, VK_OBJECT_TYPE_PIPELINE, (uint64_t) pipeline,
0, DRAWSTATE_INVALID_PIPELINE, "DS",
"Attempt to bind Pipeline %#" PRIxLEAST64 " that doesn't exist!", (void*)pipeline);
}
}
} else {
skipCall |= report_error_no_cb_begin(dev_data, commandBuffer, "vkCmdBindPipeline()");
}
}
if (VK_FALSE == skipCall)
dev_data->device_dispatch_table->CmdBindPipeline(commandBuffer, pipelineBindPoint, pipeline);
}
VK_LAYER_EXPORT void VKAPI vkCmdSetViewport(
VkCommandBuffer commandBuffer,
uint32_t viewportCount,
const VkViewport* pViewports)
{
VkBool32 skipCall = VK_FALSE;
layer_data* dev_data = get_my_data_ptr(get_dispatch_key(commandBuffer), layer_data_map);
GLOBAL_CB_NODE* pCB = getCBNode(dev_data, commandBuffer);
if (pCB) {
if (pCB->state == CB_UPDATE_ACTIVE) {
updateCBTracking(pCB);
skipCall |= addCmd(dev_data, pCB, CMD_SETVIEWPORTSTATE);
loader_platform_thread_lock_mutex(&globalLock);
pCB->status |= CBSTATUS_VIEWPORT_SET;
pCB->viewports.resize(viewportCount);
memcpy(pCB->viewports.data(), pViewports, viewportCount * sizeof(VkViewport));
loader_platform_thread_unlock_mutex(&globalLock);
} else {
skipCall |= report_error_no_cb_begin(dev_data, commandBuffer, "vkCmdSetViewport()");
}
}
if (VK_FALSE == skipCall)
dev_data->device_dispatch_table->CmdSetViewport(commandBuffer, viewportCount, pViewports);
}
VK_LAYER_EXPORT void VKAPI vkCmdSetScissor(
VkCommandBuffer commandBuffer,
uint32_t scissorCount,
const VkRect2D* pScissors)
{
VkBool32 skipCall = VK_FALSE;
layer_data* dev_data = get_my_data_ptr(get_dispatch_key(commandBuffer), layer_data_map);
GLOBAL_CB_NODE* pCB = getCBNode(dev_data, commandBuffer);
if (pCB) {
if (pCB->state == CB_UPDATE_ACTIVE) {
updateCBTracking(pCB);
skipCall |= addCmd(dev_data, pCB, CMD_SETSCISSORSTATE);
loader_platform_thread_lock_mutex(&globalLock);
pCB->status |= CBSTATUS_SCISSOR_SET;
pCB->scissors.resize(scissorCount);
memcpy(pCB->scissors.data(), pScissors, scissorCount * sizeof(VkRect2D));
loader_platform_thread_unlock_mutex(&globalLock);
} else {
skipCall |= report_error_no_cb_begin(dev_data, commandBuffer, "vkCmdSetScissor()");
}
}
if (VK_FALSE == skipCall)
dev_data->device_dispatch_table->CmdSetScissor(commandBuffer, scissorCount, pScissors);
}
VK_LAYER_EXPORT void VKAPI vkCmdSetLineWidth(VkCommandBuffer commandBuffer, float lineWidth)
{
VkBool32 skipCall = VK_FALSE;
layer_data* dev_data = get_my_data_ptr(get_dispatch_key(commandBuffer), layer_data_map);
GLOBAL_CB_NODE* pCB = getCBNode(dev_data, commandBuffer);
if (pCB) {
if (pCB->state == CB_UPDATE_ACTIVE) {
updateCBTracking(pCB);
skipCall |= addCmd(dev_data, pCB, CMD_SETLINEWIDTHSTATE);
/* TODO: Do we still need this lock? */
loader_platform_thread_lock_mutex(&globalLock);
pCB->status |= CBSTATUS_LINE_WIDTH_SET;
pCB->lineWidth = lineWidth;
loader_platform_thread_unlock_mutex(&globalLock);
} else {
skipCall |= report_error_no_cb_begin(dev_data, commandBuffer, "vkCmdBindDynamicLineWidthState()");
}
}
if (VK_FALSE == skipCall)
dev_data->device_dispatch_table->CmdSetLineWidth(commandBuffer, lineWidth);
}
VK_LAYER_EXPORT void VKAPI vkCmdSetDepthBias(
VkCommandBuffer commandBuffer,
float depthBiasConstantFactor,
float depthBiasClamp,
float depthBiasSlopeFactor)
{
VkBool32 skipCall = VK_FALSE;
layer_data* dev_data = get_my_data_ptr(get_dispatch_key(commandBuffer), layer_data_map);
GLOBAL_CB_NODE* pCB = getCBNode(dev_data, commandBuffer);
if (pCB) {
if (pCB->state == CB_UPDATE_ACTIVE) {
updateCBTracking(pCB);
skipCall |= addCmd(dev_data, pCB, CMD_SETDEPTHBIASSTATE);
pCB->status |= CBSTATUS_DEPTH_BIAS_SET;
pCB->depthBiasConstantFactor = depthBiasConstantFactor;
pCB->depthBiasClamp = depthBiasClamp;
pCB->depthBiasSlopeFactor = depthBiasSlopeFactor;
} else {
skipCall |= report_error_no_cb_begin(dev_data, commandBuffer, "vkCmdSetDepthBias()");
}
}
if (VK_FALSE == skipCall)
dev_data->device_dispatch_table->CmdSetDepthBias(commandBuffer, depthBiasConstantFactor, depthBiasClamp, depthBiasSlopeFactor);
}
VK_LAYER_EXPORT void VKAPI vkCmdSetBlendConstants(VkCommandBuffer commandBuffer, const float blendConstants[4])
{
VkBool32 skipCall = VK_FALSE;
layer_data* dev_data = get_my_data_ptr(get_dispatch_key(commandBuffer), layer_data_map);
GLOBAL_CB_NODE* pCB = getCBNode(dev_data, commandBuffer);
if (pCB) {
if (pCB->state == CB_UPDATE_ACTIVE) {
updateCBTracking(pCB);
skipCall |= addCmd(dev_data, pCB, CMD_SETBLENDSTATE);
pCB->status |= CBSTATUS_BLEND_SET;
memcpy(pCB->blendConstants, blendConstants, 4 * sizeof(float));
} else {
skipCall |= report_error_no_cb_begin(dev_data, commandBuffer, "vkCmdSetBlendConstants()");
}
}
if (VK_FALSE == skipCall)
dev_data->device_dispatch_table->CmdSetBlendConstants(commandBuffer, blendConstants);
}
VK_LAYER_EXPORT void VKAPI vkCmdSetDepthBounds(
VkCommandBuffer commandBuffer,
float minDepthBounds,
float maxDepthBounds)
{
VkBool32 skipCall = VK_FALSE;
layer_data* dev_data = get_my_data_ptr(get_dispatch_key(commandBuffer), layer_data_map);
GLOBAL_CB_NODE* pCB = getCBNode(dev_data, commandBuffer);
if (pCB) {
if (pCB->state == CB_UPDATE_ACTIVE) {
updateCBTracking(pCB);
skipCall |= addCmd(dev_data, pCB, CMD_SETDEPTHBOUNDSSTATE);
pCB->status |= CBSTATUS_DEPTH_BOUNDS_SET;
pCB->minDepthBounds = minDepthBounds;
pCB->maxDepthBounds = maxDepthBounds;
} else {
skipCall |= report_error_no_cb_begin(dev_data, commandBuffer, "vkCmdSetDepthBounds()");
}
}
if (VK_FALSE == skipCall)
dev_data->device_dispatch_table->CmdSetDepthBounds(commandBuffer, minDepthBounds, maxDepthBounds);
}
VK_LAYER_EXPORT void VKAPI vkCmdSetStencilCompareMask(
VkCommandBuffer commandBuffer,
VkStencilFaceFlags faceMask,
uint32_t compareMask)
{
VkBool32 skipCall = VK_FALSE;
layer_data* dev_data = get_my_data_ptr(get_dispatch_key(commandBuffer), layer_data_map);
GLOBAL_CB_NODE* pCB = getCBNode(dev_data, commandBuffer);
if (pCB) {
if (pCB->state == CB_UPDATE_ACTIVE) {
updateCBTracking(pCB);
skipCall |= addCmd(dev_data, pCB, CMD_SETSTENCILREADMASKSTATE);
if (faceMask & VK_STENCIL_FACE_FRONT_BIT) {
pCB->front.compareMask = compareMask;
}
if (faceMask & VK_STENCIL_FACE_BACK_BIT) {
pCB->back.compareMask = compareMask;
}
/* TODO: Do we need to track front and back separately? */
/* TODO: We aren't capturing the faceMask, do we need to? */
pCB->status |= CBSTATUS_STENCIL_READ_MASK_SET;
} else {
skipCall |= report_error_no_cb_begin(dev_data, commandBuffer, "vkCmdSetStencilCompareMask()");
}
}
if (VK_FALSE == skipCall)
dev_data->device_dispatch_table->CmdSetStencilCompareMask(commandBuffer, faceMask, compareMask);
}
VK_LAYER_EXPORT void VKAPI vkCmdSetStencilWriteMask(
VkCommandBuffer commandBuffer,
VkStencilFaceFlags faceMask,
uint32_t writeMask)
{
VkBool32 skipCall = VK_FALSE;
layer_data* dev_data = get_my_data_ptr(get_dispatch_key(commandBuffer), layer_data_map);
GLOBAL_CB_NODE* pCB = getCBNode(dev_data, commandBuffer);
if (pCB) {
if (pCB->state == CB_UPDATE_ACTIVE) {
updateCBTracking(pCB);
skipCall |= addCmd(dev_data, pCB, CMD_SETSTENCILWRITEMASKSTATE);
if (faceMask & VK_STENCIL_FACE_FRONT_BIT) {
pCB->front.writeMask = writeMask;
}
if (faceMask & VK_STENCIL_FACE_BACK_BIT) {
pCB->back.writeMask = writeMask;
}
pCB->status |= CBSTATUS_STENCIL_WRITE_MASK_SET;
} else {
skipCall |= report_error_no_cb_begin(dev_data, commandBuffer, "vkCmdSetStencilWriteMask()");
}
}
if (VK_FALSE == skipCall)
dev_data->device_dispatch_table->CmdSetStencilWriteMask(commandBuffer, faceMask, writeMask);
}
VK_LAYER_EXPORT void VKAPI vkCmdSetStencilReference(
VkCommandBuffer commandBuffer,
VkStencilFaceFlags faceMask,
uint32_t reference)
{
VkBool32 skipCall = VK_FALSE;
layer_data* dev_data = get_my_data_ptr(get_dispatch_key(commandBuffer), layer_data_map);
GLOBAL_CB_NODE* pCB = getCBNode(dev_data, commandBuffer);
if (pCB) {
if (pCB->state == CB_UPDATE_ACTIVE) {
updateCBTracking(pCB);
skipCall |= addCmd(dev_data, pCB, CMD_SETSTENCILREFERENCESTATE);
if (faceMask & VK_STENCIL_FACE_FRONT_BIT) {
pCB->front.reference = reference;
}
if (faceMask & VK_STENCIL_FACE_BACK_BIT) {
pCB->back.reference = reference;
}
pCB->status |= CBSTATUS_STENCIL_REFERENCE_SET;
} else {
skipCall |= report_error_no_cb_begin(dev_data, commandBuffer, "vkCmdSetStencilReference()");
}
}
if (VK_FALSE == skipCall)
dev_data->device_dispatch_table->CmdSetStencilReference(commandBuffer, faceMask, reference);
}
VK_LAYER_EXPORT void VKAPI vkCmdBindDescriptorSets(VkCommandBuffer commandBuffer, VkPipelineBindPoint pipelineBindPoint, VkPipelineLayout layout, uint32_t firstSet, uint32_t setCount, const VkDescriptorSet* pDescriptorSets, uint32_t dynamicOffsetCount, const uint32_t* pDynamicOffsets)
{
VkBool32 skipCall = VK_FALSE;
layer_data* dev_data = get_my_data_ptr(get_dispatch_key(commandBuffer), layer_data_map);
GLOBAL_CB_NODE* pCB = getCBNode(dev_data, commandBuffer);
// TODO : Validate dynamic offsets
// If any of the sets being bound include dynamic uniform or storage buffers,
// then pDynamicOffsets must include one element for each array element
// in each dynamic descriptor type binding in each set.
// dynamicOffsetCount is the total number of dynamic offsets provided, and
// must equal the total number of dynamic descriptors in the sets being bound
if (pCB) {
if (pCB->state == CB_UPDATE_ACTIVE) {
if ((VK_PIPELINE_BIND_POINT_COMPUTE == pipelineBindPoint) && (pCB->activeRenderPass)) {
skipCall |= log_msg(dev_data->report_data, VK_DBG_REPORT_ERROR_BIT, (VkDbgObjectType) 0, 0, 0, DRAWSTATE_INVALID_RENDERPASS_CMD, "DS",
"Incorrectly binding compute DescriptorSets during active RenderPass (%#" PRIxLEAST64 ")", (uint64_t) pCB->activeRenderPass);
} else if ((VK_PIPELINE_BIND_POINT_GRAPHICS == pipelineBindPoint) && (!pCB->activeRenderPass)) {
skipCall |= log_msg(dev_data->report_data, VK_DBG_REPORT_ERROR_BIT, (VkDbgObjectType) 0, 0, 0, DRAWSTATE_NO_ACTIVE_RENDERPASS, "DS",
"Incorrectly binding graphics DescriptorSets without an active RenderPass");
} else {
for (uint32_t i=0; i<setCount; i++) {
SET_NODE* pSet = getSetNode(dev_data, pDescriptorSets[i]);
if (pSet) {
loader_platform_thread_lock_mutex(&globalLock);
pCB->lastBoundDescriptorSet = pDescriptorSets[i];
pCB->lastBoundPipelineLayout = layout;
pCB->boundDescriptorSets.push_back(pDescriptorSets[i]);
loader_platform_thread_unlock_mutex(&globalLock);
skipCall |= log_msg(dev_data->report_data, VK_DBG_REPORT_INFO_BIT, VK_OBJECT_TYPE_DESCRIPTOR_SET, (uint64_t) pDescriptorSets[i], 0, DRAWSTATE_NONE, "DS",
"DS %#" PRIxLEAST64 " bound on pipeline %s", (uint64_t) pDescriptorSets[i], string_VkPipelineBindPoint(pipelineBindPoint));
if (!pSet->pUpdateStructs)
skipCall |= log_msg(dev_data->report_data, VK_DBG_REPORT_WARN_BIT, VK_OBJECT_TYPE_DESCRIPTOR_SET, (uint64_t) pDescriptorSets[i], 0, DRAWSTATE_DESCRIPTOR_SET_NOT_UPDATED, "DS",
"DS %#" PRIxLEAST64 " bound but it was never updated. You may want to either update it or not bind it.", (uint64_t) pDescriptorSets[i]);
} else {
skipCall |= log_msg(dev_data->report_data, VK_DBG_REPORT_ERROR_BIT, VK_OBJECT_TYPE_DESCRIPTOR_SET, (uint64_t) pDescriptorSets[i], 0, DRAWSTATE_INVALID_SET, "DS",
"Attempt to bind DS %#" PRIxLEAST64 " that doesn't exist!", (uint64_t) pDescriptorSets[i]);
}
}
updateCBTracking(pCB);
skipCall |= addCmd(dev_data, pCB, CMD_BINDDESCRIPTORSETS);
}
} else {
skipCall |= report_error_no_cb_begin(dev_data, commandBuffer, "vkCmdBindDescriptorSets()");
}
}
if (VK_FALSE == skipCall)
dev_data->device_dispatch_table->CmdBindDescriptorSets(commandBuffer, pipelineBindPoint, layout, firstSet, setCount, pDescriptorSets, dynamicOffsetCount, pDynamicOffsets);
}
VK_LAYER_EXPORT void VKAPI vkCmdBindIndexBuffer(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset, VkIndexType indexType)
{
VkBool32 skipCall = VK_FALSE;
layer_data* dev_data = get_my_data_ptr(get_dispatch_key(commandBuffer), layer_data_map);
GLOBAL_CB_NODE* pCB = getCBNode(dev_data, commandBuffer);
if (pCB) {
if (pCB->state == CB_UPDATE_ACTIVE) {
VkDeviceSize offset_align = 0;
switch (indexType) {
case VK_INDEX_TYPE_UINT16:
offset_align = 2;
break;
case VK_INDEX_TYPE_UINT32:
offset_align = 4;
break;
default:
// ParamChecker should catch bad enum, we'll also throw alignment error below if offset_align stays 0
break;
}
if (!offset_align || (offset % offset_align)) {
skipCall |= log_msg(dev_data->report_data, VK_DBG_REPORT_ERROR_BIT, (VkDbgObjectType) 0, 0, 0, DRAWSTATE_VTX_INDEX_ALIGNMENT_ERROR, "DS",
"vkCmdBindIndexBuffer() offset (%#" PRIxLEAST64 ") does not fall on alignment (%s) boundary.", offset, string_VkIndexType(indexType));
}
} else {
skipCall |= report_error_no_cb_begin(dev_data, commandBuffer, "vkCmdBindIndexBuffer()");
}
pCB->status |= CBSTATUS_INDEX_BUFFER_BOUND;
updateCBTracking(pCB);
skipCall |= addCmd(dev_data, pCB, CMD_BINDINDEXBUFFER);
}
if (VK_FALSE == skipCall)
dev_data->device_dispatch_table->CmdBindIndexBuffer(commandBuffer, buffer, offset, indexType);
}
VK_LAYER_EXPORT void VKAPI vkCmdBindVertexBuffers(
VkCommandBuffer commandBuffer,
uint32_t startBinding,
uint32_t bindingCount,
const VkBuffer* pBuffers,
const VkDeviceSize* pOffsets)
{
VkBool32 skipCall = VK_FALSE;
layer_data* dev_data = get_my_data_ptr(get_dispatch_key(commandBuffer), layer_data_map);
GLOBAL_CB_NODE* pCB = getCBNode(dev_data, commandBuffer);
if (pCB) {
if (pCB->state == CB_UPDATE_ACTIVE) {
/* TODO: Need to track all the vertex buffers, not just last one */
pCB->lastVtxBinding = startBinding + bindingCount -1;
updateCBTracking(pCB);
addCmd(dev_data, pCB, CMD_BINDVERTEXBUFFER);
} else {
skipCall |= report_error_no_cb_begin(dev_data, commandBuffer, "vkCmdBindVertexBuffer()");
}
}
if (VK_FALSE == skipCall)
dev_data->device_dispatch_table->CmdBindVertexBuffers(commandBuffer, startBinding, bindingCount, pBuffers, pOffsets);
}
VK_LAYER_EXPORT void VKAPI vkCmdDraw(VkCommandBuffer commandBuffer, uint32_t vertexCount, uint32_t instanceCount, uint32_t firstVertex, uint32_t firstInstance)
{
VkBool32 skipCall = VK_FALSE;
layer_data* dev_data = get_my_data_ptr(get_dispatch_key(commandBuffer), layer_data_map);
GLOBAL_CB_NODE* pCB = getCBNode(dev_data, commandBuffer);
if (pCB) {
if (pCB->state == CB_UPDATE_ACTIVE) {
pCB->drawCount[DRAW]++;
skipCall |= validate_draw_state(dev_data, pCB, VK_FALSE);
// TODO : Need to pass commandBuffer as srcObj here
skipCall |= log_msg(dev_data->report_data, VK_DBG_REPORT_INFO_BIT, VK_OBJECT_TYPE_COMMAND_BUFFER, 0, 0, DRAWSTATE_NONE, "DS",
"vkCmdDraw() call #%lu, reporting DS state:", g_drawCount[DRAW]++);
skipCall |= synchAndPrintDSConfig(dev_data, commandBuffer);
if (VK_FALSE == skipCall) {
updateCBTracking(pCB);
skipCall |= addCmd(dev_data, pCB, CMD_DRAW);
}
} else {
skipCall |= report_error_no_cb_begin(dev_data, commandBuffer, "vkCmdDraw()");
}
skipCall |= outsideRenderPass(dev_data, pCB, "vkCmdDraw");
}
if (VK_FALSE == skipCall)
dev_data->device_dispatch_table->CmdDraw(commandBuffer, vertexCount, instanceCount, firstVertex, firstInstance);
}
VK_LAYER_EXPORT void VKAPI vkCmdDrawIndexed(VkCommandBuffer commandBuffer, uint32_t indexCount, uint32_t instanceCount, uint32_t firstIndex, int32_t vertexOffset, uint32_t firstInstance)
{
layer_data* dev_data = get_my_data_ptr(get_dispatch_key(commandBuffer), layer_data_map);
GLOBAL_CB_NODE* pCB = getCBNode(dev_data, commandBuffer);
VkBool32 skipCall = VK_FALSE;
if (pCB) {
if (pCB->state == CB_UPDATE_ACTIVE) {
pCB->drawCount[DRAW_INDEXED]++;
skipCall |= validate_draw_state(dev_data, pCB, VK_TRUE);
// TODO : Need to pass commandBuffer as srcObj here
skipCall |= log_msg(dev_data->report_data, VK_DBG_REPORT_INFO_BIT, VK_OBJECT_TYPE_COMMAND_BUFFER, 0, 0, DRAWSTATE_NONE, "DS",
"vkCmdDrawIndexed() call #%lu, reporting DS state:", g_drawCount[DRAW_INDEXED]++);
skipCall |= synchAndPrintDSConfig(dev_data, commandBuffer);
if (VK_FALSE == skipCall) {
updateCBTracking(pCB);
skipCall |= addCmd(dev_data, pCB, CMD_DRAWINDEXED);
}
} else {
skipCall |= report_error_no_cb_begin(dev_data, commandBuffer, "vkCmdDrawIndexed()");
}
skipCall |= outsideRenderPass(dev_data, pCB, "vkCmdDrawIndexed");
}
if (VK_FALSE == skipCall)
dev_data->device_dispatch_table->CmdDrawIndexed(commandBuffer, indexCount, instanceCount, firstIndex, vertexOffset, firstInstance);
}
VK_LAYER_EXPORT void VKAPI vkCmdDrawIndirect(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset, uint32_t count, uint32_t stride)
{
layer_data* dev_data = get_my_data_ptr(get_dispatch_key(commandBuffer), layer_data_map);
GLOBAL_CB_NODE* pCB = getCBNode(dev_data, commandBuffer);
VkBool32 skipCall = VK_FALSE;
if (pCB) {
if (pCB->state == CB_UPDATE_ACTIVE) {
pCB->drawCount[DRAW_INDIRECT]++;
skipCall |= validate_draw_state(dev_data, pCB, VK_FALSE);
// TODO : Need to pass commandBuffer as srcObj here
skipCall |= log_msg(dev_data->report_data, VK_DBG_REPORT_INFO_BIT, VK_OBJECT_TYPE_COMMAND_BUFFER, 0, 0, DRAWSTATE_NONE, "DS",
"vkCmdDrawIndirect() call #%lu, reporting DS state:", g_drawCount[DRAW_INDIRECT]++);
skipCall |= synchAndPrintDSConfig(dev_data, commandBuffer);
if (VK_FALSE == skipCall) {
updateCBTracking(pCB);
skipCall |= addCmd(dev_data, pCB, CMD_DRAWINDIRECT);
}
} else {
skipCall |= report_error_no_cb_begin(dev_data, commandBuffer, "vkCmdDrawIndirect()");
}
skipCall |= outsideRenderPass(dev_data, pCB, "vkCmdDrawIndirect");
}
if (VK_FALSE == skipCall)
dev_data->device_dispatch_table->CmdDrawIndirect(commandBuffer, buffer, offset, count, stride);
}
VK_LAYER_EXPORT void VKAPI vkCmdDrawIndexedIndirect(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset, uint32_t count, uint32_t stride)
{
VkBool32 skipCall = VK_FALSE;
layer_data* dev_data = get_my_data_ptr(get_dispatch_key(commandBuffer), layer_data_map);
GLOBAL_CB_NODE* pCB = getCBNode(dev_data, commandBuffer);
if (pCB) {
if (pCB->state == CB_UPDATE_ACTIVE) {
pCB->drawCount[DRAW_INDEXED_INDIRECT]++;
skipCall |= validate_draw_state(dev_data, pCB, VK_TRUE);
// TODO : Need to pass commandBuffer as srcObj here
skipCall |= log_msg(dev_data->report_data, VK_DBG_REPORT_INFO_BIT, VK_OBJECT_TYPE_COMMAND_BUFFER, 0, 0, DRAWSTATE_NONE, "DS",
"vkCmdDrawIndexedIndirect() call #%lu, reporting DS state:", g_drawCount[DRAW_INDEXED_INDIRECT]++);
skipCall |= synchAndPrintDSConfig(dev_data, commandBuffer);
if (VK_FALSE == skipCall) {
updateCBTracking(pCB);
skipCall |= addCmd(dev_data, pCB, CMD_DRAWINDEXEDINDIRECT);
}
} else {
skipCall |= report_error_no_cb_begin(dev_data, commandBuffer, "vkCmdDrawIndexedIndirect()");
}
skipCall |= outsideRenderPass(dev_data, pCB, "vkCmdDrawIndexedIndirect");
}
if (VK_FALSE == skipCall)
dev_data->device_dispatch_table->CmdDrawIndexedIndirect(commandBuffer, buffer, offset, count, stride);
}
VK_LAYER_EXPORT void VKAPI vkCmdDispatch(VkCommandBuffer commandBuffer, uint32_t x, uint32_t y, uint32_t z)
{
VkBool32 skipCall = VK_FALSE;
layer_data* dev_data = get_my_data_ptr(get_dispatch_key(commandBuffer), layer_data_map);
GLOBAL_CB_NODE* pCB = getCBNode(dev_data, commandBuffer);
if (pCB) {
if (pCB->state == CB_UPDATE_ACTIVE) {
updateCBTracking(pCB);
skipCall |= addCmd(dev_data, pCB, CMD_DISPATCH);
} else {
skipCall |= report_error_no_cb_begin(dev_data, commandBuffer, "vkCmdDispatch()");
}
skipCall |= insideRenderPass(dev_data, pCB, "vkCmdDispatch");
}
if (VK_FALSE == skipCall)
dev_data->device_dispatch_table->CmdDispatch(commandBuffer, x, y, z);
}
VK_LAYER_EXPORT void VKAPI vkCmdDispatchIndirect(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset)
{
VkBool32 skipCall = VK_FALSE;
layer_data* dev_data = get_my_data_ptr(get_dispatch_key(commandBuffer), layer_data_map);
GLOBAL_CB_NODE* pCB = getCBNode(dev_data, commandBuffer);
if (pCB) {
if (pCB->state == CB_UPDATE_ACTIVE) {
updateCBTracking(pCB);
skipCall |= addCmd(dev_data, pCB, CMD_DISPATCHINDIRECT);
} else {
skipCall |= report_error_no_cb_begin(dev_data, commandBuffer, "vkCmdDispatchIndirect()");
}
skipCall |= insideRenderPass(dev_data, pCB, "vkCmdDispatchIndirect");
}
if (VK_FALSE == skipCall)
dev_data->device_dispatch_table->CmdDispatchIndirect(commandBuffer, buffer, offset);
}
VK_LAYER_EXPORT void VKAPI vkCmdCopyBuffer(VkCommandBuffer commandBuffer, VkBuffer srcBuffer, VkBuffer dstBuffer, uint32_t regionCount, const VkBufferCopy* pRegions)
{
VkBool32 skipCall = VK_FALSE;
layer_data* dev_data = get_my_data_ptr(get_dispatch_key(commandBuffer), layer_data_map);
GLOBAL_CB_NODE* pCB = getCBNode(dev_data, commandBuffer);
if (pCB) {
if (pCB->state == CB_UPDATE_ACTIVE) {
updateCBTracking(pCB);
skipCall |= addCmd(dev_data, pCB, CMD_COPYBUFFER);
} else {
skipCall |= report_error_no_cb_begin(dev_data, commandBuffer, "vkCmdCopyBuffer()");
}
skipCall |= insideRenderPass(dev_data, pCB, "vkCmdCopyBuffer");
}
if (VK_FALSE == skipCall)
dev_data->device_dispatch_table->CmdCopyBuffer(commandBuffer, srcBuffer, dstBuffer, regionCount, pRegions);
}
bool VerifySourceImageLayout(VkCommandBuffer cmdBuffer, VkImage srcImage, VkImageLayout srcImageLayout) {
bool skip_call = false;
layer_data* dev_data = get_my_data_ptr(get_dispatch_key(cmdBuffer), layer_data_map);
GLOBAL_CB_NODE* pCB = getCBNode(dev_data, cmdBuffer);
auto src_image_element = pCB->imageLayoutMap.find(srcImage);
if (src_image_element == pCB->imageLayoutMap.end()) {
pCB->imageLayoutMap[srcImage].initialLayout = srcImageLayout;
pCB->imageLayoutMap[srcImage].layout = srcImageLayout;
return false;
}
if (src_image_element->second.layout != srcImageLayout) {
skip_call |= log_msg(dev_data->report_data, VK_DBG_REPORT_ERROR_BIT, VK_OBJECT_TYPE_COMMAND_BUFFER, 0, 0, DRAWSTATE_INVALID_IMAGE_LAYOUT, "DS",
"Cannot copy from an image whose source layout is %d and doesn't match the current layout %d.", srcImageLayout, src_image_element->second.layout);
}
if (srcImageLayout != VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL) {
if (srcImageLayout == VK_IMAGE_LAYOUT_GENERAL) {
skip_call |= log_msg(dev_data->report_data, VK_DBG_REPORT_WARN_BIT, (VkDbgObjectType)0, 0, 0, DRAWSTATE_INVALID_IMAGE_LAYOUT, "DS",
"Layout for input image should be TRANSFER_SRC_OPTIMAL instead of GENERAL.");
} else {
skip_call |= log_msg(dev_data->report_data, VK_DBG_REPORT_ERROR_BIT, (VkDbgObjectType)0, 0, 0, DRAWSTATE_INVALID_IMAGE_LAYOUT, "DS",
"Layout for input image is %d but can only be TRANSFER_SRC_OPTIMAL or GENERAL.", srcImageLayout);
}
}
return skip_call;
}
bool VerifyDestImageLayout(VkCommandBuffer cmdBuffer, VkImage destImage, VkImageLayout destImageLayout) {
bool skip_call = false;
layer_data* dev_data = get_my_data_ptr(get_dispatch_key(cmdBuffer), layer_data_map);
GLOBAL_CB_NODE* pCB = getCBNode(dev_data, cmdBuffer);
auto dest_image_element = pCB->imageLayoutMap.find(destImage);
if (dest_image_element == pCB->imageLayoutMap.end()) {
pCB->imageLayoutMap[destImage].initialLayout = destImageLayout;
pCB->imageLayoutMap[destImage].layout = destImageLayout;
return false;
}
if (dest_image_element->second.layout != destImageLayout) {
skip_call |= log_msg(dev_data->report_data, VK_DBG_REPORT_ERROR_BIT, VK_OBJECT_TYPE_COMMAND_BUFFER, 0, 0, DRAWSTATE_INVALID_IMAGE_LAYOUT, "DS",
"Cannot copy from an image whose dest layout is %d and doesn't match the current layout %d.", destImageLayout, dest_image_element->second.layout);
}
if (destImageLayout != VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL) {
if (destImageLayout == VK_IMAGE_LAYOUT_GENERAL) {
skip_call |= log_msg(dev_data->report_data, VK_DBG_REPORT_WARN_BIT, (VkDbgObjectType)0, 0, 0, DRAWSTATE_INVALID_IMAGE_LAYOUT, "DS",
"Layout for output image should be TRANSFER_DST_OPTIMAL instead of GENERAL.");
} else {
skip_call |= log_msg(dev_data->report_data, VK_DBG_REPORT_ERROR_BIT, (VkDbgObjectType)0, 0, 0, DRAWSTATE_INVALID_IMAGE_LAYOUT, "DS",
"Layout for output image is %d but can only be TRANSFER_DST_OPTIMAL or GENERAL.", destImageLayout);
}
}
return skip_call;
}
VK_LAYER_EXPORT void VKAPI vkCmdCopyImage(VkCommandBuffer commandBuffer,
VkImage srcImage,
VkImageLayout srcImageLayout,
VkImage dstImage,
VkImageLayout dstImageLayout,
uint32_t regionCount, const VkImageCopy* pRegions)
{
VkBool32 skipCall = VK_FALSE;
layer_data* dev_data = get_my_data_ptr(get_dispatch_key(commandBuffer), layer_data_map);
GLOBAL_CB_NODE* pCB = getCBNode(dev_data, commandBuffer);
if (pCB) {
if (pCB->state == CB_UPDATE_ACTIVE) {
updateCBTracking(pCB);
skipCall |= addCmd(dev_data, pCB, CMD_COPYIMAGE);
} else {
skipCall |= report_error_no_cb_begin(dev_data, commandBuffer, "vkCmdCopyImage()");
}
skipCall |= insideRenderPass(dev_data, pCB, "vkCmdCopyImage");
skipCall |= VerifySourceImageLayout(commandBuffer, srcImage, srcImageLayout);
skipCall |= VerifyDestImageLayout(commandBuffer, dstImage, dstImageLayout);
}
if (VK_FALSE == skipCall)
dev_data->device_dispatch_table->CmdCopyImage(commandBuffer, srcImage, srcImageLayout, dstImage, dstImageLayout, regionCount, pRegions);
}
VK_LAYER_EXPORT void VKAPI vkCmdBlitImage(VkCommandBuffer commandBuffer,
VkImage srcImage, VkImageLayout srcImageLayout,
VkImage dstImage, VkImageLayout dstImageLayout,
uint32_t regionCount, const VkImageBlit* pRegions,
VkFilter filter)
{
VkBool32 skipCall = VK_FALSE;
layer_data* dev_data = get_my_data_ptr(get_dispatch_key(commandBuffer), layer_data_map);
GLOBAL_CB_NODE* pCB = getCBNode(dev_data, commandBuffer);
if (pCB) {
if (pCB->state == CB_UPDATE_ACTIVE) {
updateCBTracking(pCB);
skipCall |= addCmd(dev_data, pCB, CMD_BLITIMAGE);
} else {
skipCall |= report_error_no_cb_begin(dev_data, commandBuffer, "vkCmdBlitImage()");
}
skipCall |= insideRenderPass(dev_data, pCB, "vkCmdBlitImage");
}
if (VK_FALSE == skipCall)
dev_data->device_dispatch_table->CmdBlitImage(commandBuffer, srcImage, srcImageLayout, dstImage, dstImageLayout, regionCount, pRegions, filter);
}
VK_LAYER_EXPORT void VKAPI vkCmdCopyBufferToImage(VkCommandBuffer commandBuffer,
VkBuffer srcBuffer,
VkImage dstImage, VkImageLayout dstImageLayout,
uint32_t regionCount, const VkBufferImageCopy* pRegions)
{
VkBool32 skipCall = VK_FALSE;
layer_data* dev_data = get_my_data_ptr(get_dispatch_key(commandBuffer), layer_data_map);
GLOBAL_CB_NODE* pCB = getCBNode(dev_data, commandBuffer);
if (pCB) {
if (pCB->state == CB_UPDATE_ACTIVE) {
updateCBTracking(pCB);
skipCall |= addCmd(dev_data, pCB, CMD_COPYBUFFERTOIMAGE);
} else {
skipCall |= report_error_no_cb_begin(dev_data, commandBuffer, "vkCmdCopyBufferToImage()");
}
skipCall |= insideRenderPass(dev_data, pCB, "vkCmdCopyBufferToImage");
skipCall |= VerifyDestImageLayout(commandBuffer, dstImage, dstImageLayout);
}
if (VK_FALSE == skipCall)
dev_data->device_dispatch_table->CmdCopyBufferToImage(commandBuffer, srcBuffer, dstImage, dstImageLayout, regionCount, pRegions);
}
VK_LAYER_EXPORT void VKAPI vkCmdCopyImageToBuffer(VkCommandBuffer commandBuffer,
VkImage srcImage, VkImageLayout srcImageLayout,
VkBuffer dstBuffer,
uint32_t regionCount, const VkBufferImageCopy* pRegions)
{
VkBool32 skipCall = VK_FALSE;
layer_data* dev_data = get_my_data_ptr(get_dispatch_key(commandBuffer), layer_data_map);
GLOBAL_CB_NODE* pCB = getCBNode(dev_data, commandBuffer);
if (pCB) {
if (pCB->state == CB_UPDATE_ACTIVE) {
updateCBTracking(pCB);
skipCall |= addCmd(dev_data, pCB, CMD_COPYIMAGETOBUFFER);
} else {
skipCall |= report_error_no_cb_begin(dev_data, commandBuffer, "vkCmdCopyImageToBuffer()");
}
skipCall |= insideRenderPass(dev_data, pCB, "vkCmdCopyImageToBuffer");
skipCall |= VerifySourceImageLayout(commandBuffer, srcImage, srcImageLayout);
}
if (VK_FALSE == skipCall)
dev_data->device_dispatch_table->CmdCopyImageToBuffer(commandBuffer, srcImage, srcImageLayout, dstBuffer, regionCount, pRegions);
}
VK_LAYER_EXPORT void VKAPI vkCmdUpdateBuffer(VkCommandBuffer commandBuffer, VkBuffer dstBuffer, VkDeviceSize dstOffset, VkDeviceSize dataSize, const uint32_t* pData)
{
VkBool32 skipCall = VK_FALSE;
layer_data* dev_data = get_my_data_ptr(get_dispatch_key(commandBuffer), layer_data_map);
GLOBAL_CB_NODE* pCB = getCBNode(dev_data, commandBuffer);
if (pCB) {
if (pCB->state == CB_UPDATE_ACTIVE) {
updateCBTracking(pCB);
skipCall |= addCmd(dev_data, pCB, CMD_UPDATEBUFFER);
} else {
skipCall |= report_error_no_cb_begin(dev_data, commandBuffer, "vkCmdUpdateBuffer()");
}
skipCall |= insideRenderPass(dev_data, pCB, "vkCmdCopyUpdateBuffer");
}
if (VK_FALSE == skipCall)
dev_data->device_dispatch_table->CmdUpdateBuffer(commandBuffer, dstBuffer, dstOffset, dataSize, pData);
}
VK_LAYER_EXPORT void VKAPI vkCmdFillBuffer(VkCommandBuffer commandBuffer, VkBuffer dstBuffer, VkDeviceSize dstOffset, VkDeviceSize size, uint32_t data)
{
VkBool32 skipCall = VK_FALSE;
layer_data* dev_data = get_my_data_ptr(get_dispatch_key(commandBuffer), layer_data_map);
GLOBAL_CB_NODE* pCB = getCBNode(dev_data, commandBuffer);
if (pCB) {
if (pCB->state == CB_UPDATE_ACTIVE) {
updateCBTracking(pCB);
skipCall |= addCmd(dev_data, pCB, CMD_FILLBUFFER);
} else {
skipCall |= report_error_no_cb_begin(dev_data, commandBuffer, "vkCmdFillBuffer()");
}
skipCall |= insideRenderPass(dev_data, pCB, "vkCmdCopyFillBuffer");
}
if (VK_FALSE == skipCall)
dev_data->device_dispatch_table->CmdFillBuffer(commandBuffer, dstBuffer, dstOffset, size, data);
}
VK_LAYER_EXPORT void VKAPI vkCmdClearAttachments(
VkCommandBuffer commandBuffer,
uint32_t attachmentCount,
const VkClearAttachment* pAttachments,
uint32_t rectCount,
const VkClearRect* pRects)
{
VkBool32 skipCall = VK_FALSE;
layer_data* dev_data = get_my_data_ptr(get_dispatch_key(commandBuffer), layer_data_map);
GLOBAL_CB_NODE* pCB = getCBNode(dev_data, commandBuffer);
if (pCB) {
if (pCB->state == CB_UPDATE_ACTIVE) {
// Warn if this is issued prior to Draw Cmd
if (!hasDrawCmd(pCB)) {
// TODO : commandBuffer should be srcObj
skipCall |= log_msg(dev_data->report_data, VK_DBG_REPORT_WARN_BIT, VK_OBJECT_TYPE_COMMAND_BUFFER, 0, 0, DRAWSTATE_CLEAR_CMD_BEFORE_DRAW, "DS",
"vkCmdClearAttachments() issued on CB object 0x%" PRIxLEAST64 " prior to any Draw Cmds."
" It is recommended you use RenderPass LOAD_OP_CLEAR on Attachments prior to any Draw.", reinterpret_cast<uint64_t>(commandBuffer));
}
updateCBTracking(pCB);
skipCall |= addCmd(dev_data, pCB, CMD_CLEARATTACHMENTS);
} else {
skipCall |= report_error_no_cb_begin(dev_data, commandBuffer, "vkCmdClearAttachments()");
}
skipCall |= outsideRenderPass(dev_data, pCB, "vkCmdClearAttachments");
}
// Validate that attachment is in reference list of active subpass
if (pCB->activeRenderPass) {
const VkRenderPassCreateInfo *pRPCI = dev_data->renderPassMap[pCB->activeRenderPass]->createInfo;
const VkSubpassDescription *pSD = &pRPCI->pSubpasses[pCB->activeSubpass];
for (uint32_t attachment_idx = 0; attachment_idx < attachmentCount; attachment_idx++) {
const VkClearAttachment *attachment = &pAttachments[attachment_idx];
if (attachment->aspectMask & VK_IMAGE_ASPECT_COLOR_BIT) {
VkBool32 found = VK_FALSE;
for (uint32_t i = 0; i < pSD->colorAttachmentCount; i++) {
if (attachment->colorAttachment == pSD->pColorAttachments[i].attachment) {
found = VK_TRUE;
break;
}
}
if (VK_FALSE == found) {
skipCall |= log_msg(dev_data->report_data, VK_DBG_REPORT_ERROR_BIT, VK_OBJECT_TYPE_COMMAND_BUFFER,
(uint64_t)commandBuffer, 0, DRAWSTATE_MISSING_ATTACHMENT_REFERENCE, "DS",
"vkCmdClearAttachments() attachment index %d not found in attachment reference array of active subpass %d",
attachment->colorAttachment, pCB->activeSubpass);
}
} else if (attachment->aspectMask & (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT)) {
/* TODO: Is this a good test for depth/stencil? */
if (!pSD->pDepthStencilAttachment || pSD->pDepthStencilAttachment->attachment != attachment->colorAttachment) {
skipCall |= log_msg(dev_data->report_data, VK_DBG_REPORT_ERROR_BIT, VK_OBJECT_TYPE_COMMAND_BUFFER,
(uint64_t)commandBuffer, 0, DRAWSTATE_MISSING_ATTACHMENT_REFERENCE, "DS",
"vkCmdClearAttachments() attachment index %d does not match depthStencilAttachment.attachment (%d) found in active subpass %d",
attachment->colorAttachment,
(pSD->pDepthStencilAttachment) ? pSD->pDepthStencilAttachment->attachment : VK_ATTACHMENT_UNUSED,
pCB->activeSubpass);
}
}
}
}
if (VK_FALSE == skipCall)
dev_data->device_dispatch_table->CmdClearAttachments(commandBuffer, attachmentCount, pAttachments, rectCount, pRects);
}
VK_LAYER_EXPORT void VKAPI vkCmdClearColorImage(
VkCommandBuffer commandBuffer,
VkImage image, VkImageLayout imageLayout,
const VkClearColorValue *pColor,
uint32_t rangeCount, const VkImageSubresourceRange* pRanges)
{
VkBool32 skipCall = VK_FALSE;
layer_data* dev_data = get_my_data_ptr(get_dispatch_key(commandBuffer), layer_data_map);
GLOBAL_CB_NODE* pCB = getCBNode(dev_data, commandBuffer);
if (pCB) {
if (pCB->state == CB_UPDATE_ACTIVE) {
updateCBTracking(pCB);
skipCall |= addCmd(dev_data, pCB, CMD_CLEARCOLORIMAGE);
} else {
skipCall |= report_error_no_cb_begin(dev_data, commandBuffer, "vkCmdClearColorImage()");
}
skipCall |= insideRenderPass(dev_data, pCB, "vkCmdClearColorImage");
}
if (VK_FALSE == skipCall)
dev_data->device_dispatch_table->CmdClearColorImage(commandBuffer, image, imageLayout, pColor, rangeCount, pRanges);
}
VK_LAYER_EXPORT void VKAPI vkCmdClearDepthStencilImage(
VkCommandBuffer commandBuffer,
VkImage image, VkImageLayout imageLayout,
const VkClearDepthStencilValue *pDepthStencil,
uint32_t rangeCount,
const VkImageSubresourceRange* pRanges)
{
VkBool32 skipCall = VK_FALSE;
layer_data* dev_data = get_my_data_ptr(get_dispatch_key(commandBuffer), layer_data_map);
GLOBAL_CB_NODE* pCB = getCBNode(dev_data, commandBuffer);
if (pCB) {
if (pCB->state == CB_UPDATE_ACTIVE) {
updateCBTracking(pCB);
skipCall |= addCmd(dev_data, pCB, CMD_CLEARDEPTHSTENCILIMAGE);
} else {
skipCall |= report_error_no_cb_begin(dev_data, commandBuffer, "vkCmdClearDepthStencilImage()");
}
skipCall |= insideRenderPass(dev_data, pCB, "vkCmdClearDepthStencilImage");
}
if (VK_FALSE == skipCall)
dev_data->device_dispatch_table->CmdClearDepthStencilImage(commandBuffer, image, imageLayout, pDepthStencil, rangeCount, pRanges);
}
VK_LAYER_EXPORT void VKAPI vkCmdResolveImage(VkCommandBuffer commandBuffer,
VkImage srcImage, VkImageLayout srcImageLayout,
VkImage dstImage, VkImageLayout dstImageLayout,
uint32_t regionCount, const VkImageResolve* pRegions)
{
VkBool32 skipCall = VK_FALSE;
layer_data* dev_data = get_my_data_ptr(get_dispatch_key(commandBuffer), layer_data_map);
GLOBAL_CB_NODE* pCB = getCBNode(dev_data, commandBuffer);
if (pCB) {
if (pCB->state == CB_UPDATE_ACTIVE) {
updateCBTracking(pCB);
skipCall |= addCmd(dev_data, pCB, CMD_RESOLVEIMAGE);
} else {
skipCall |= report_error_no_cb_begin(dev_data, commandBuffer, "vkCmdResolveImage()");
}
skipCall |= insideRenderPass(dev_data, pCB, "vkCmdResolveImage");
}
if (VK_FALSE == skipCall)
dev_data->device_dispatch_table->CmdResolveImage(commandBuffer, srcImage, srcImageLayout, dstImage, dstImageLayout, regionCount, pRegions);
}
VK_LAYER_EXPORT void VKAPI vkCmdSetEvent(VkCommandBuffer commandBuffer, VkEvent event, VkPipelineStageFlags stageMask)
{
VkBool32 skipCall = VK_FALSE;
layer_data* dev_data = get_my_data_ptr(get_dispatch_key(commandBuffer), layer_data_map);
GLOBAL_CB_NODE* pCB = getCBNode(dev_data, commandBuffer);
if (pCB) {
if (pCB->state == CB_UPDATE_ACTIVE) {
updateCBTracking(pCB);
skipCall |= addCmd(dev_data, pCB, CMD_SETEVENT);
} else {
skipCall |= report_error_no_cb_begin(dev_data, commandBuffer, "vkCmdSetEvent()");
}
skipCall |= insideRenderPass(dev_data, pCB, "vkCmdSetEvent");
}
if (VK_FALSE == skipCall)
dev_data->device_dispatch_table->CmdSetEvent(commandBuffer, event, stageMask);
}
VK_LAYER_EXPORT void VKAPI vkCmdResetEvent(VkCommandBuffer commandBuffer, VkEvent event, VkPipelineStageFlags stageMask)
{
VkBool32 skipCall = VK_FALSE;
layer_data* dev_data = get_my_data_ptr(get_dispatch_key(commandBuffer), layer_data_map);
GLOBAL_CB_NODE* pCB = getCBNode(dev_data, commandBuffer);
if (pCB) {
if (pCB->state == CB_UPDATE_ACTIVE) {
updateCBTracking(pCB);
skipCall |= addCmd(dev_data, pCB, CMD_RESETEVENT);
} else {
skipCall |= report_error_no_cb_begin(dev_data, commandBuffer, "vkCmdResetEvent()");
}
skipCall |= insideRenderPass(dev_data, pCB, "vkCmdResetEvent");
}
if (VK_FALSE == skipCall)
dev_data->device_dispatch_table->CmdResetEvent(commandBuffer, event, stageMask);
}
bool TransitionImageLayouts(VkCommandBuffer cmdBuffer, uint32_t memBarrierCount, const void* const* ppMemBarriers) {
layer_data* dev_data = get_my_data_ptr(get_dispatch_key(cmdBuffer), layer_data_map);
GLOBAL_CB_NODE* pCB = getCBNode(dev_data, cmdBuffer);
bool skip = false;
for (uint32_t i = 0; i < memBarrierCount; ++i) {
auto mem_barrier = reinterpret_cast<const VkMemoryBarrier*>(ppMemBarriers[i]);
if (mem_barrier && mem_barrier->sType == VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER) {
auto image_mem_barrier = reinterpret_cast<const VkImageMemoryBarrier*>(mem_barrier);
auto image_data = pCB->imageLayoutMap.find(image_mem_barrier->image);
if (image_data == pCB->imageLayoutMap.end()) {
pCB->imageLayoutMap[image_mem_barrier->image].initialLayout = image_mem_barrier->oldLayout;
pCB->imageLayoutMap[image_mem_barrier->image].layout = image_mem_barrier->newLayout;
} else {
if (image_data->second.layout != image_mem_barrier->oldLayout) {
skip |= log_msg(dev_data->report_data, VK_DBG_REPORT_ERROR_BIT, (VkDbgObjectType)0, 0, 0, DRAWSTATE_INVALID_IMAGE_LAYOUT, "DS",
"You cannot transition the layout from %d when current layout is %d.", image_mem_barrier->oldLayout, image_data->second.layout);
}
image_data->second.layout = image_mem_barrier->newLayout;
}
}
}
return skip;
}
bool ValidateOutputMaskBits(const layer_data* my_data, VkCommandBuffer cmdBuffer, const VkImageMemoryBarrier* image_mem_barrier, VkAccessFlags bit) {
bool skip_call = false;
if (image_mem_barrier->srcAccessMask | bit) {
if (image_mem_barrier->srcAccessMask != bit) {
skip_call |= log_msg(my_data->report_data, VK_DBG_REPORT_WARN_BIT, (VkDbgObjectType)0, 0, 0, DRAWSTATE_INVALID_BARRIER, "DS",
"Additional bits in srcAccessMask %d are specified when source layout is %d.", image_mem_barrier->srcAccessMask, image_mem_barrier->oldLayout);
}
} else {
skip_call |= log_msg(my_data->report_data, VK_DBG_REPORT_ERROR_BIT, (VkDbgObjectType)0, 0, 0, DRAWSTATE_INVALID_BARRIER, "DS",
"Cannot specify srcAccessMask %d without %d when source layout is %d.", image_mem_barrier->srcAccessMask, bit, image_mem_barrier->oldLayout);
}
return skip_call;
}
//TODO: Combine this with function below
bool ValidateInputMaskBits(const layer_data* my_data, VkCommandBuffer cmdBuffer, const VkImageMemoryBarrier* image_mem_barrier, VkAccessFlags bit) {
bool skip_call = false;
if (image_mem_barrier->dstAccessMask | bit) {
if (image_mem_barrier->dstAccessMask != bit) {
skip_call |= log_msg(my_data->report_data, VK_DBG_REPORT_WARN_BIT, (VkDbgObjectType)0, 0, 0, DRAWSTATE_INVALID_BARRIER, "DS",
"Additional bits in dstAccessMask %d are specified when dest layout is %d.", image_mem_barrier->srcAccessMask, image_mem_barrier->newLayout);
}
} else {
skip_call |= log_msg(my_data->report_data, VK_DBG_REPORT_ERROR_BIT, (VkDbgObjectType)0, 0, 0, DRAWSTATE_INVALID_BARRIER, "DS",
"Cannot specify srcAccessMask %d without %d when dest layout is %d.", image_mem_barrier->srcAccessMask, bit, image_mem_barrier->newLayout);
}
return skip_call;
}
bool ValidateInputMaskBits(const layer_data* my_data, VkCommandBuffer cmdBuffer, const VkImageMemoryBarrier* image_mem_barrier, VkAccessFlags bit1, VkAccessFlags bit2) {
bool skip_call = false;
if (image_mem_barrier->dstAccessMask | bit1 || image_mem_barrier->dstAccessMask | bit2) {
if (image_mem_barrier->dstAccessMask & !(bit1 | bit2)) {
skip_call |= log_msg(my_data->report_data, VK_DBG_REPORT_WARN_BIT, (VkDbgObjectType)0, 0, 0, DRAWSTATE_INVALID_BARRIER, "DS",
"Additional bits in dstAccessMask %d are specified when dest layout is %d.", image_mem_barrier->srcAccessMask, image_mem_barrier->newLayout);
}
} else {
skip_call |= log_msg(my_data->report_data, VK_DBG_REPORT_ERROR_BIT, (VkDbgObjectType)0, 0, 0, DRAWSTATE_INVALID_BARRIER, "DS",
"Cannot specify srcAccessMask %d without %d or %d when dest layout is %d.", image_mem_barrier->srcAccessMask, bit1, bit2, image_mem_barrier->newLayout);
}
return skip_call;
}
bool ValidateBarriers(VkCommandBuffer cmdBuffer, uint32_t memBarrierCount, const void* const* ppMemBarriers) {
bool skip_call = false;
layer_data* dev_data = get_my_data_ptr(get_dispatch_key(cmdBuffer), layer_data_map);
GLOBAL_CB_NODE* pCB = getCBNode(dev_data, cmdBuffer);
if (pCB->activeRenderPass && memBarrierCount) {
for (uint32_t i = 0; i < memBarrierCount; ++i) {
auto mem_barrier = reinterpret_cast<const VkMemoryBarrier*>(ppMemBarriers[i]);
if (mem_barrier && mem_barrier->sType != VK_STRUCTURE_TYPE_MEMORY_BARRIER) {
skip_call |= log_msg(dev_data->report_data, VK_DBG_REPORT_ERROR_BIT, (VkDbgObjectType)0, 0, 0, DRAWSTATE_INVALID_BARRIER, "DS",
"Image or Buffers Barriers cannot be used during a render pass.");
}
}
if (!dev_data->renderPassMap[pCB->activeRenderPass]->hasSelfDependency[pCB->activeSubpass]) {
skip_call |= log_msg(dev_data->report_data, VK_DBG_REPORT_ERROR_BIT, (VkDbgObjectType)0, 0, 0, DRAWSTATE_INVALID_BARRIER, "DS",
"Barriers cannot be set during subpass %d with no self dependency specified.", pCB->activeSubpass);
}
}
for (uint32_t i = 0; i < memBarrierCount; ++i) {
auto mem_barrier = reinterpret_cast<const VkMemoryBarrier*>(ppMemBarriers[i]);
if (mem_barrier && mem_barrier->sType == VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER) {
auto image_mem_barrier = reinterpret_cast<const VkImageMemoryBarrier*>(mem_barrier);
switch (image_mem_barrier->oldLayout) {
case VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL: {
ValidateOutputMaskBits(dev_data, cmdBuffer, image_mem_barrier, VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT);
break;
}
case VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL: {
ValidateOutputMaskBits(dev_data, cmdBuffer, image_mem_barrier, VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT);
break;
}
case VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL: {
ValidateOutputMaskBits(dev_data, cmdBuffer, image_mem_barrier, VK_ACCESS_TRANSFER_WRITE_BIT);
break;
}
case VK_IMAGE_LAYOUT_PREINITIALIZED: {
ValidateOutputMaskBits(dev_data, cmdBuffer, image_mem_barrier, VK_ACCESS_HOST_WRITE_BIT);
break;
}
case VK_IMAGE_LAYOUT_UNDEFINED:
case VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL:
case VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL:
case VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL: {
if (image_mem_barrier->srcAccessMask != 0) {
skip_call |= log_msg(dev_data->report_data, VK_DBG_REPORT_WARN_BIT, (VkDbgObjectType)0, 0, 0, DRAWSTATE_INVALID_BARRIER, "DS",
"Additional bits in srcAccessMask %d are specified when source layout is %d.", image_mem_barrier->srcAccessMask, image_mem_barrier->oldLayout);
}
break;
}
case VK_IMAGE_LAYOUT_GENERAL:
default: {
break;
}
}
switch (image_mem_barrier->newLayout) {
case VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL: {
ValidateInputMaskBits(dev_data, cmdBuffer, image_mem_barrier, VK_ACCESS_COLOR_ATTACHMENT_READ_BIT);
break;
}
case VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL: {
ValidateInputMaskBits(dev_data, cmdBuffer, image_mem_barrier, VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT);
break;
}
case VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL: {
ValidateInputMaskBits(dev_data, cmdBuffer, image_mem_barrier, VK_ACCESS_SHADER_READ_BIT, VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT);
break;
}
case VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL: {
ValidateInputMaskBits(dev_data, cmdBuffer, image_mem_barrier, VK_ACCESS_SHADER_READ_BIT, VK_ACCESS_INPUT_ATTACHMENT_READ_BIT);
break;
}
case VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL: {
ValidateInputMaskBits(dev_data, cmdBuffer, image_mem_barrier, VK_ACCESS_MEMORY_READ_BIT);
break;
}
case VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL: {
if (image_mem_barrier->srcAccessMask != 0) {
skip_call |= log_msg(dev_data->report_data, VK_DBG_REPORT_WARN_BIT, (VkDbgObjectType)0, 0, 0, DRAWSTATE_INVALID_BARRIER, "DS",
"Additional bits in dstAccessMask %d are specified when dest layout is %d.", image_mem_barrier->dstAccessMask, image_mem_barrier->newLayout);
}
break;
}
case VK_IMAGE_LAYOUT_PREINITIALIZED:
case VK_IMAGE_LAYOUT_UNDEFINED:
case VK_IMAGE_LAYOUT_GENERAL:
default: {
break;
}
}
}
}
return skip_call;
}
VK_LAYER_EXPORT void VKAPI vkCmdWaitEvents(VkCommandBuffer commandBuffer, uint32_t eventCount, const VkEvent* pEvents, VkPipelineStageFlags sourceStageMask, VkPipelineStageFlags dstStageMask, uint32_t memoryBarrierCount, const void* const* ppMemoryBarriers)
{
VkBool32 skipCall = VK_FALSE;
layer_data* dev_data = get_my_data_ptr(get_dispatch_key(commandBuffer), layer_data_map);
GLOBAL_CB_NODE* pCB = getCBNode(dev_data, commandBuffer);
if (pCB) {
if (pCB->state == CB_UPDATE_ACTIVE) {
updateCBTracking(pCB);
skipCall |= addCmd(dev_data, pCB, CMD_WAITEVENTS);
} else {
skipCall |= report_error_no_cb_begin(dev_data, commandBuffer, "vkCmdWaitEvents()");
}
skipCall |= TransitionImageLayouts(commandBuffer, memoryBarrierCount, ppMemoryBarriers);
skipCall |= ValidateBarriers(commandBuffer, memoryBarrierCount, ppMemoryBarriers);
}
if (VK_FALSE == skipCall)
dev_data->device_dispatch_table->CmdWaitEvents(commandBuffer, eventCount, pEvents, sourceStageMask, dstStageMask, memoryBarrierCount, ppMemoryBarriers);
}
VK_LAYER_EXPORT void VKAPI vkCmdPipelineBarrier(VkCommandBuffer commandBuffer, VkPipelineStageFlags srcStageMask, VkPipelineStageFlags dstStageMask, VkDependencyFlags dependencyFlags, uint32_t memoryBarrierCount, const void* const* ppMemoryBarriers)
{
VkBool32 skipCall = VK_FALSE;
layer_data* dev_data = get_my_data_ptr(get_dispatch_key(commandBuffer), layer_data_map);
GLOBAL_CB_NODE* pCB = getCBNode(dev_data, commandBuffer);
if (pCB) {
if (pCB->state == CB_UPDATE_ACTIVE) {
updateCBTracking(pCB);
skipCall |= addCmd(dev_data, pCB, CMD_PIPELINEBARRIER);
} else {
skipCall |= report_error_no_cb_begin(dev_data, commandBuffer, "vkCmdPipelineBarrier()");
}
skipCall |= TransitionImageLayouts(commandBuffer, memoryBarrierCount, ppMemoryBarriers);
skipCall |= ValidateBarriers(commandBuffer, memoryBarrierCount, ppMemoryBarriers);
}
if (VK_FALSE == skipCall)
dev_data->device_dispatch_table->CmdPipelineBarrier(commandBuffer, srcStageMask, dstStageMask, dependencyFlags, memoryBarrierCount, ppMemoryBarriers);
}
VK_LAYER_EXPORT void VKAPI vkCmdBeginQuery(VkCommandBuffer commandBuffer, VkQueryPool queryPool, uint32_t slot, VkFlags flags)
{
VkBool32 skipCall = VK_FALSE;
layer_data* dev_data = get_my_data_ptr(get_dispatch_key(commandBuffer), layer_data_map);
GLOBAL_CB_NODE* pCB = getCBNode(dev_data, commandBuffer);
if (pCB) {
if (pCB->state == CB_UPDATE_ACTIVE) {
updateCBTracking(pCB);
skipCall |= addCmd(dev_data, pCB, CMD_BEGINQUERY);
} else {
skipCall |= report_error_no_cb_begin(dev_data, commandBuffer, "vkCmdBeginQuery()");
}
}
if (VK_FALSE == skipCall)
dev_data->device_dispatch_table->CmdBeginQuery(commandBuffer, queryPool, slot, flags);
}
VK_LAYER_EXPORT void VKAPI vkCmdEndQuery(VkCommandBuffer commandBuffer, VkQueryPool queryPool, uint32_t slot)
{
VkBool32 skipCall = VK_FALSE;
layer_data* dev_data = get_my_data_ptr(get_dispatch_key(commandBuffer), layer_data_map);
GLOBAL_CB_NODE* pCB = getCBNode(dev_data, commandBuffer);
if (pCB) {
if (pCB->state == CB_UPDATE_ACTIVE) {
updateCBTracking(pCB);
skipCall |= addCmd(dev_data, pCB, CMD_ENDQUERY);
} else {
skipCall |= report_error_no_cb_begin(dev_data, commandBuffer, "vkCmdEndQuery()");
}
}
if (VK_FALSE == skipCall)
dev_data->device_dispatch_table->CmdEndQuery(commandBuffer, queryPool, slot);
}
VK_LAYER_EXPORT void VKAPI vkCmdResetQueryPool(VkCommandBuffer commandBuffer, VkQueryPool queryPool, uint32_t startQuery, uint32_t queryCount)
{
VkBool32 skipCall = VK_FALSE;
layer_data* dev_data = get_my_data_ptr(get_dispatch_key(commandBuffer), layer_data_map);
GLOBAL_CB_NODE* pCB = getCBNode(dev_data, commandBuffer);
if (pCB) {
if (pCB->state == CB_UPDATE_ACTIVE) {
updateCBTracking(pCB);
skipCall |= addCmd(dev_data, pCB, CMD_RESETQUERYPOOL);
} else {
skipCall |= report_error_no_cb_begin(dev_data, commandBuffer, "vkCmdResetQueryPool()");
}
skipCall |= insideRenderPass(dev_data, pCB, "vkCmdQueryPool");
}
if (VK_FALSE == skipCall)
dev_data->device_dispatch_table->CmdResetQueryPool(commandBuffer, queryPool, startQuery, queryCount);
}
VK_LAYER_EXPORT void VKAPI vkCmdCopyQueryPoolResults(VkCommandBuffer commandBuffer, VkQueryPool queryPool, uint32_t startQuery,
uint32_t queryCount, VkBuffer dstBuffer, VkDeviceSize dstOffset,
VkDeviceSize stride, VkQueryResultFlags flags)
{
VkBool32 skipCall = VK_FALSE;
layer_data* dev_data = get_my_data_ptr(get_dispatch_key(commandBuffer), layer_data_map);
GLOBAL_CB_NODE* pCB = getCBNode(dev_data, commandBuffer);
if (pCB) {
if (pCB->state == CB_UPDATE_ACTIVE) {
updateCBTracking(pCB);
skipCall |= addCmd(dev_data, pCB, CMD_COPYQUERYPOOLRESULTS);
} else {
skipCall |= report_error_no_cb_begin(dev_data, commandBuffer, "vkCmdCopyQueryPoolResults()");
}
skipCall |= insideRenderPass(dev_data, pCB, "vkCmdCopyQueryPoolResults");
}
if (VK_FALSE == skipCall)
dev_data->device_dispatch_table->CmdCopyQueryPoolResults(commandBuffer, queryPool,
startQuery, queryCount, dstBuffer, dstOffset, stride, flags);
}
VK_LAYER_EXPORT void VKAPI vkCmdWriteTimestamp(VkCommandBuffer commandBuffer, VkPipelineStageFlagBits pipelineStage, VkQueryPool queryPool, uint32_t slot)
{
VkBool32 skipCall = VK_FALSE;
layer_data* dev_data = get_my_data_ptr(get_dispatch_key(commandBuffer), layer_data_map);
GLOBAL_CB_NODE* pCB = getCBNode(dev_data, commandBuffer);
if (pCB) {
if (pCB->state == CB_UPDATE_ACTIVE) {
updateCBTracking(pCB);
skipCall |= addCmd(dev_data, pCB, CMD_WRITETIMESTAMP);
} else {
skipCall |= report_error_no_cb_begin(dev_data, commandBuffer, "vkCmdWriteTimestamp()");
}
}
if (VK_FALSE == skipCall)
dev_data->device_dispatch_table->CmdWriteTimestamp(commandBuffer, pipelineStage, queryPool, slot);
}
VK_LAYER_EXPORT VkResult VKAPI vkCreateFramebuffer(VkDevice device, const VkFramebufferCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkFramebuffer* pFramebuffer)
{
layer_data* dev_data = get_my_data_ptr(get_dispatch_key(device), layer_data_map);
VkResult result = dev_data->device_dispatch_table->CreateFramebuffer(device, pCreateInfo, pAllocator, pFramebuffer);
if (VK_SUCCESS == result) {
// Shadow create info and store in map
VkFramebufferCreateInfo* localFBCI = new VkFramebufferCreateInfo(*pCreateInfo);
if (pCreateInfo->pAttachments) {
localFBCI->pAttachments = new VkImageView[localFBCI->attachmentCount];
memcpy((void*)localFBCI->pAttachments, pCreateInfo->pAttachments, localFBCI->attachmentCount*sizeof(VkImageView));
}
dev_data->frameBufferMap[*pFramebuffer] = localFBCI;
}
return result;
}
// Store the DAG.
struct DAGNode {
uint32_t pass;
std::vector<uint32_t> prev;
std::vector<uint32_t> next;
};
VkBool32 FindDependency(const int index, const int dependent, const std::vector<DAGNode>& subpass_to_node, std::unordered_set<uint32_t>& processed_nodes) {
// If we have already checked this node we have not found a dependency path so return false.
if (processed_nodes.count(index))
return false;
processed_nodes.insert(index);
const DAGNode& node = subpass_to_node[index];
// Look for a dependency path. If one exists return true else recurse on the previous nodes.
if (std::find(node.prev.begin(), node.prev.end(), dependent) == node.prev.end()) {
for (auto elem : node.prev) {
if (FindDependency(elem, dependent, subpass_to_node, processed_nodes))
return true;
}
} else {
return true;
}
return false;
}
VkBool32 CheckDependencyExists(const layer_data* my_data, VkDevice device, const int subpass, const std::vector<uint32_t>& dependent_subpasses, const std::vector<DAGNode>& subpass_to_node, VkBool32& skip_call) {
VkBool32 result = true;
// Loop through all subpasses that share the same attachment and make sure a dependency exists
for (uint32_t k = 0; k < dependent_subpasses.size(); ++k) {
if (subpass == dependent_subpasses[k])
continue;
const DAGNode& node = subpass_to_node[subpass];
// Check for a specified dependency between the two nodes. If one exists we are done.
auto prev_elem = std::find(node.prev.begin(), node.prev.end(), dependent_subpasses[k]);
auto next_elem = std::find(node.next.begin(), node.next.end(), dependent_subpasses[k]);
if (prev_elem == node.prev.end() && next_elem == node.next.end()) {
// If no dependency exits an implicit dependency still might. If so, warn and if not throw an error.
std::unordered_set<uint32_t> processed_nodes;
if (FindDependency(subpass, dependent_subpasses[k], subpass_to_node, processed_nodes) ||
FindDependency(dependent_subpasses[k], subpass, subpass_to_node, processed_nodes)) {
skip_call |= log_msg(my_data->report_data, VK_DBG_REPORT_WARN_BIT, (VkDbgObjectType)0, 0, 0, DRAWSTATE_INVALID_RENDERPASS, "DS",
"A dependency between subpasses %d and %d must exist but only an implicit one is specified.",
subpass, dependent_subpasses[k]);
} else {
skip_call |= log_msg(my_data->report_data, VK_DBG_REPORT_ERROR_BIT, (VkDbgObjectType)0, 0, 0, DRAWSTATE_INVALID_RENDERPASS, "DS",
"A dependency between subpasses %d and %d must exist but one is not specified.",
subpass, dependent_subpasses[k]);
result = false;
}
}
}
return result;
}
VkBool32 CheckPreserved(const layer_data* my_data, VkDevice device, const VkRenderPassCreateInfo* pCreateInfo, const int index, const int attachment, const std::vector<DAGNode>& subpass_to_node, int depth, VkBool32& skip_call) {
const DAGNode& node = subpass_to_node[index];
// If this node writes to the attachment return true as next nodes need to preserve the attachment.
const VkSubpassDescription& subpass = pCreateInfo->pSubpasses[index];
for (uint32_t j = 0; j < subpass.colorAttachmentCount; ++j) {
if (attachment == subpass.pColorAttachments[j].attachment)
return VK_TRUE;
}
if (subpass.pDepthStencilAttachment &&
subpass.pDepthStencilAttachment->attachment != VK_ATTACHMENT_UNUSED) {
if (attachment == subpass.pDepthStencilAttachment->attachment)
return VK_TRUE;
}
VkBool32 result = VK_FALSE;
// Loop through previous nodes and see if any of them write to the attachment.
for (auto elem : node.prev) {
result |= CheckPreserved(my_data, device, pCreateInfo, elem, attachment, subpass_to_node, depth + 1, skip_call);
}
// If the attachment was written to by a previous node than this node needs to preserve it.
if (result && depth > 0) {
const VkSubpassDescription& subpass = pCreateInfo->pSubpasses[index];
VkBool32 has_preserved = false;
for (uint32_t j = 0; j < subpass.preserveAttachmentCount; ++j) {
if (subpass.pPreserveAttachments[j].attachment == attachment) {
has_preserved = true;
break;
}
}
if (!has_preserved) {
skip_call |= log_msg(my_data->report_data, VK_DBG_REPORT_ERROR_BIT, (VkDbgObjectType)0, 0, 0, DRAWSTATE_INVALID_RENDERPASS, "DS",
"Attachment %d is used by a later subpass and must be preserved in subpass %d.", attachment, index);
}
}
return result;
}
VkBool32 ValidateDependencies(const layer_data* my_data, VkDevice device, const VkRenderPassCreateInfo* pCreateInfo, std::vector<DAGNode>& subpass_to_node) {
VkBool32 skip_call = false;
std::vector<std::vector<uint32_t>> output_attachment_to_subpass(pCreateInfo->attachmentCount);
std::vector<std::vector<uint32_t>> input_attachment_to_subpass(pCreateInfo->attachmentCount);
// Create DAG
for (uint32_t i = 0; i < pCreateInfo->subpassCount; ++i) {
DAGNode& subpass_node = subpass_to_node[i];
subpass_node.pass = i;
}
for (uint32_t i = 0; i < pCreateInfo->dependencyCount; ++i) {
const VkSubpassDependency& dependency = pCreateInfo->pDependencies[i];
if (dependency.srcSubpass > dependency.dstSubpass) {
skip_call |= log_msg(my_data->report_data, VK_DBG_REPORT_ERROR_BIT, (VkDbgObjectType)0, 0, 0, DRAWSTATE_INVALID_RENDERPASS, "DS",
"Dependency graph must be specified such that an earlier pass cannot depend on a later pass.");
}
subpass_to_node[dependency.dstSubpass].prev.push_back(dependency.srcSubpass);
subpass_to_node[dependency.srcSubpass].next.push_back(dependency.dstSubpass);
}
// Find for each attachment the subpasses that use them.
for (uint32_t i = 0; i < pCreateInfo->subpassCount; ++i) {
const VkSubpassDescription& subpass = pCreateInfo->pSubpasses[i];
for (uint32_t j = 0; j < subpass.inputAttachmentCount; ++j) {
input_attachment_to_subpass[subpass.pInputAttachments[j].attachment].push_back(i);
}
for (uint32_t j = 0; j < subpass.colorAttachmentCount; ++j) {
output_attachment_to_subpass[subpass.pColorAttachments[j].attachment].push_back(i);
}
if (subpass.pDepthStencilAttachment && subpass.pDepthStencilAttachment->attachment != VK_ATTACHMENT_UNUSED) {
output_attachment_to_subpass[subpass.pDepthStencilAttachment->attachment].push_back(i);
}
}
// If there is a dependency needed make sure one exists
for (uint32_t i = 0; i < pCreateInfo->subpassCount; ++i) {
const VkSubpassDescription& subpass = pCreateInfo->pSubpasses[i];
// If the attachment is an input then all subpasses that output must have a dependency relationship
for (uint32_t j = 0; j < subpass.inputAttachmentCount; ++j) {
const uint32_t& attachment = subpass.pInputAttachments[j].attachment;
CheckDependencyExists(my_data, device, i, output_attachment_to_subpass[attachment], subpass_to_node, skip_call);
}
// If the attachment is an output then all subpasses that use the attachment must have a dependency relationship
for (uint32_t j = 0; j < subpass.colorAttachmentCount; ++j) {
const uint32_t& attachment = subpass.pColorAttachments[j].attachment;
CheckDependencyExists(my_data, device, i, output_attachment_to_subpass[attachment], subpass_to_node, skip_call);
CheckDependencyExists(my_data, device, i, input_attachment_to_subpass[attachment], subpass_to_node, skip_call);
}
if (subpass.pDepthStencilAttachment && subpass.pDepthStencilAttachment->attachment != VK_ATTACHMENT_UNUSED) {
const uint32_t& attachment = subpass.pDepthStencilAttachment->attachment;
CheckDependencyExists(my_data, device, i, output_attachment_to_subpass[attachment], subpass_to_node, skip_call);
CheckDependencyExists(my_data, device, i, input_attachment_to_subpass[attachment], subpass_to_node, skip_call);
}
}
// Loop through implicit dependencies, if this pass reads make sure the attachment is preserved for all passes after it was written.
for (uint32_t i = 0; i < pCreateInfo->subpassCount; ++i) {
const VkSubpassDescription& subpass = pCreateInfo->pSubpasses[i];
for (uint32_t j = 0; j < subpass.inputAttachmentCount; ++j) {
CheckPreserved(my_data, device, pCreateInfo, i, subpass.pInputAttachments[j].attachment, subpass_to_node, 0, skip_call);
}
}
return skip_call;
}
bool ValidateLayouts(const layer_data* my_data, VkDevice device, const VkRenderPassCreateInfo* pCreateInfo) {
bool skip = false;
for (uint32_t i = 0; i < pCreateInfo->subpassCount; ++i) {
const VkSubpassDescription& subpass = pCreateInfo->pSubpasses[i];
for (uint32_t j = 0; j < subpass.inputAttachmentCount; ++j) {
if (subpass.pInputAttachments[j].layout != VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL &&
subpass.pInputAttachments[j].layout != VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL) {
if (subpass.pInputAttachments[j].layout == VK_IMAGE_LAYOUT_GENERAL) {
skip |= log_msg(my_data->report_data, VK_DBG_REPORT_WARN_BIT, (VkDbgObjectType)0, 0, 0, DRAWSTATE_INVALID_IMAGE_LAYOUT, "DS",
"Layout for input attachment is GENERAL but should be READ_ONLY_OPTIMAL.");
} else {
skip |= log_msg(my_data->report_data, VK_DBG_REPORT_ERROR_BIT, (VkDbgObjectType)0, 0, 0, DRAWSTATE_INVALID_IMAGE_LAYOUT, "DS",
"Layout for input attachment is %d but can only be READ_ONLY_OPTIMAL or GENERAL.", subpass.pInputAttachments[j].attachment);
}
}
}
for (uint32_t j = 0; j < subpass.colorAttachmentCount; ++j) {
if (subpass.pColorAttachments[j].layout != VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL) {
if (subpass.pColorAttachments[j].layout == VK_IMAGE_LAYOUT_GENERAL) {
skip |= log_msg(my_data->report_data, VK_DBG_REPORT_WARN_BIT, (VkDbgObjectType)0, 0, 0, DRAWSTATE_INVALID_IMAGE_LAYOUT, "DS",
"Layout for color attachment is GENERAL but should be COLOR_ATTACHMENT_OPTIMAL.");
} else {
skip |= log_msg(my_data->report_data, VK_DBG_REPORT_ERROR_BIT, (VkDbgObjectType)0, 0, 0, DRAWSTATE_INVALID_IMAGE_LAYOUT, "DS",
"Layout for color attachment is %d but can only be COLOR_ATTACHMENT_OPTIMAL or GENERAL.", subpass.pColorAttachments[j].attachment);
}
}
}
if ((subpass.pDepthStencilAttachment != NULL) &&
(subpass.pDepthStencilAttachment->attachment != VK_ATTACHMENT_UNUSED)) {
if (subpass.pDepthStencilAttachment->layout != VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL) {
if (subpass.pDepthStencilAttachment->layout == VK_IMAGE_LAYOUT_GENERAL) {
skip |= log_msg(my_data->report_data, VK_DBG_REPORT_WARN_BIT, (VkDbgObjectType)0, 0, 0, DRAWSTATE_INVALID_IMAGE_LAYOUT, "DS",
"Layout for depth attachment is GENERAL but should be DEPTH_STENCIL_ATTACHMENT_OPTIMAL.");
} else {
skip |= log_msg(my_data->report_data, VK_DBG_REPORT_ERROR_BIT, (VkDbgObjectType)0, 0, 0, DRAWSTATE_INVALID_IMAGE_LAYOUT, "DS",
"Layout for depth attachment is %d but can only be DEPTH_STENCIL_ATTACHMENT_OPTIMAL or GENERAL.", subpass.pDepthStencilAttachment->attachment);
}
}
}
}
return skip;
}
bool CreatePassDAG(const layer_data* my_data, VkDevice device, const VkRenderPassCreateInfo* pCreateInfo, std::vector<DAGNode>& subpass_to_node, std::vector<bool>& has_self_dependency) {
bool skip_call = false;
for (uint32_t i = 0; i < pCreateInfo->subpassCount; ++i) {
DAGNode& subpass_node = subpass_to_node[i];
subpass_node.pass = i;
}
for (uint32_t i = 0; i < pCreateInfo->dependencyCount; ++i) {
const VkSubpassDependency& dependency = pCreateInfo->pDependencies[i];
if (dependency.srcSubpass > dependency.dstSubpass) {
skip_call |= log_msg(my_data->report_data, VK_DBG_REPORT_ERROR_BIT, (VkDbgObjectType)0, 0, 0, DRAWSTATE_INVALID_RENDERPASS, "DS",
"Depedency graph must be specified such that an earlier pass cannot depend on a later pass.");
} else if (dependency.srcSubpass == dependency.dstSubpass) {
has_self_dependency[dependency.srcSubpass] = true;
}
subpass_to_node[dependency.dstSubpass].prev.push_back(dependency.srcSubpass);
subpass_to_node[dependency.srcSubpass].next.push_back(dependency.dstSubpass);
}
return skip_call;
}
VK_LAYER_EXPORT VkResult VKAPI vkCreateRenderPass(VkDevice device, const VkRenderPassCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkRenderPass* pRenderPass)
{
bool skip_call = false;
layer_data* dev_data = get_my_data_ptr(get_dispatch_key(device), layer_data_map);
// Create DAG
std::vector<bool> has_self_dependency(pCreateInfo->subpassCount);
std::vector<DAGNode> subpass_to_node(pCreateInfo->subpassCount);
skip_call |= CreatePassDAG(dev_data, device, pCreateInfo, subpass_to_node, has_self_dependency);
// Validate using DAG
skip_call |= ValidateDependencies(dev_data, device, pCreateInfo, subpass_to_node);
skip_call |= ValidateLayouts(dev_data, device, pCreateInfo);
if (skip_call) {
return VK_ERROR_VALIDATION_FAILED;
}
VkResult result = dev_data->device_dispatch_table->CreateRenderPass(device, pCreateInfo, pAllocator, pRenderPass);
if (VK_SUCCESS == result) {
// Shadow create info and store in map
VkRenderPassCreateInfo* localRPCI = new VkRenderPassCreateInfo(*pCreateInfo);
if (pCreateInfo->pAttachments) {
localRPCI->pAttachments = new VkAttachmentDescription[localRPCI->attachmentCount];
memcpy((void*)localRPCI->pAttachments, pCreateInfo->pAttachments, localRPCI->attachmentCount*sizeof(VkAttachmentDescription));
}
if (pCreateInfo->pSubpasses) {
localRPCI->pSubpasses = new VkSubpassDescription[localRPCI->subpassCount];
memcpy((void*)localRPCI->pSubpasses, pCreateInfo->pSubpasses, localRPCI->subpassCount*sizeof(VkSubpassDescription));
for (uint32_t i = 0; i < localRPCI->subpassCount; i++) {
VkSubpassDescription *subpass = (VkSubpassDescription *) &localRPCI->pSubpasses[i];
const uint32_t attachmentCount = subpass->inputAttachmentCount +
subpass->colorAttachmentCount * (1 + (subpass->pResolveAttachments?1:0)) +
((subpass->pDepthStencilAttachment) ? 1 : 0) + subpass->preserveAttachmentCount;
VkAttachmentReference *attachments = new VkAttachmentReference[attachmentCount];
memcpy(attachments, subpass->pInputAttachments,
sizeof(attachments[0]) * subpass->inputAttachmentCount);
subpass->pInputAttachments = attachments;
attachments += subpass->inputAttachmentCount;
memcpy(attachments, subpass->pColorAttachments,
sizeof(attachments[0]) * subpass->colorAttachmentCount);
subpass->pColorAttachments = attachments;
attachments += subpass->colorAttachmentCount;
if (subpass->pResolveAttachments) {
memcpy(attachments, subpass->pResolveAttachments,
sizeof(attachments[0]) * subpass->colorAttachmentCount);
subpass->pResolveAttachments = attachments;
attachments += subpass->colorAttachmentCount;
}
if (subpass->pDepthStencilAttachment) {
memcpy(attachments, subpass->pDepthStencilAttachment,
sizeof(attachments[0]) * 1);
subpass->pDepthStencilAttachment = attachments;
attachments += 1;
}
memcpy(attachments, subpass->pPreserveAttachments,
sizeof(attachments[0]) * subpass->preserveAttachmentCount);
subpass->pPreserveAttachments = attachments;
}
}
if (pCreateInfo->pDependencies) {
localRPCI->pDependencies = new VkSubpassDependency[localRPCI->dependencyCount];
memcpy((void*)localRPCI->pDependencies, pCreateInfo->pDependencies, localRPCI->dependencyCount*sizeof(VkSubpassDependency));
}
dev_data->renderPassMap[*pRenderPass] = new RENDER_PASS_NODE();
dev_data->renderPassMap[*pRenderPass]->hasSelfDependency = has_self_dependency;
dev_data->renderPassMap[*pRenderPass]->createInfo = localRPCI;
}
return result;
}
// Free the renderpass shadow
static void deleteRenderPasses(layer_data* my_data)
{
if (my_data->renderPassMap.size() <= 0)
return;
for (auto ii=my_data->renderPassMap.begin(); ii!=my_data->renderPassMap.end(); ++ii) {
const VkRenderPassCreateInfo* pRenderPassInfo = (*ii).second->createInfo;
if (pRenderPassInfo->pAttachments) {
delete[] pRenderPassInfo->pAttachments;
}
if (pRenderPassInfo->pSubpasses) {
for (uint32_t i=0; i<pRenderPassInfo->subpassCount; ++i) {
// Attachements are all allocated in a block, so just need to
// find the first non-null one to delete
if (pRenderPassInfo->pSubpasses[i].pInputAttachments) {
delete[] pRenderPassInfo->pSubpasses[i].pInputAttachments;
} else if (pRenderPassInfo->pSubpasses[i].pColorAttachments) {
delete[] pRenderPassInfo->pSubpasses[i].pColorAttachments;
} else if (pRenderPassInfo->pSubpasses[i].pResolveAttachments) {
delete[] pRenderPassInfo->pSubpasses[i].pResolveAttachments;
} else if (pRenderPassInfo->pSubpasses[i].pPreserveAttachments) {
delete[] pRenderPassInfo->pSubpasses[i].pPreserveAttachments;
}
}
delete[] pRenderPassInfo->pSubpasses;
}
if (pRenderPassInfo->pDependencies) {
delete[] pRenderPassInfo->pDependencies;
}
delete (*ii).second;
}
my_data->renderPassMap.clear();
}
bool VerifyFramebufferAndRenderPassLayouts(VkCommandBuffer cmdBuffer, const VkRenderPassBeginInfo* pRenderPassBegin) {
bool skip_call = false;
layer_data* dev_data = get_my_data_ptr(get_dispatch_key(cmdBuffer), layer_data_map);
GLOBAL_CB_NODE* pCB = getCBNode(dev_data, cmdBuffer);
const VkRenderPassCreateInfo* pRenderPassInfo = dev_data->renderPassMap[pRenderPassBegin->renderPass]->createInfo;
const VkFramebufferCreateInfo* pFramebufferInfo = dev_data->frameBufferMap[pRenderPassBegin->framebuffer];
if (pRenderPassInfo->attachmentCount != pFramebufferInfo->attachmentCount) {
skip_call |= log_msg(dev_data->report_data, VK_DBG_REPORT_ERROR_BIT, (VkDbgObjectType)0, 0, 0, DRAWSTATE_INVALID_RENDERPASS, "DS",
"You cannot start a render pass using a framebuffer with a different number of attachments.");
}
for (uint32_t i = 0; i < pRenderPassInfo->attachmentCount; ++i) {
const VkImageView& image_view = pFramebufferInfo->pAttachments[i];
const VkImage& image = dev_data->imageViewMap[image_view]->image;
auto image_data = pCB->imageLayoutMap.find(image);
if (image_data == pCB->imageLayoutMap.end()) {
pCB->imageLayoutMap[image].initialLayout = pRenderPassInfo->pAttachments[i].initialLayout;
pCB->imageLayoutMap[image].layout = pRenderPassInfo->pAttachments[i].initialLayout;
} else if (pRenderPassInfo->pAttachments[i].initialLayout != image_data->second.layout) {
skip_call |= log_msg(dev_data->report_data, VK_DBG_REPORT_ERROR_BIT, (VkDbgObjectType)0, 0, 0, DRAWSTATE_INVALID_RENDERPASS, "DS",
"You cannot start a render pass using attachment %i where the intial layout differs from the starting layout.", i);
}
}
return skip_call;
}
void TransitionSubpassLayouts(VkCommandBuffer cmdBuffer, const VkRenderPassBeginInfo* pRenderPassBegin, const int subpass_index) {
layer_data* dev_data = get_my_data_ptr(get_dispatch_key(cmdBuffer), layer_data_map);
GLOBAL_CB_NODE* pCB = getCBNode(dev_data, cmdBuffer);
auto render_pass_data = dev_data->renderPassMap.find(pRenderPassBegin->renderPass);
if (render_pass_data == dev_data->renderPassMap.end()) {
return;
}
const VkRenderPassCreateInfo* pRenderPassInfo = render_pass_data->second->createInfo;
auto framebuffer_data = dev_data->frameBufferMap.find(pRenderPassBegin->framebuffer);
if (framebuffer_data == dev_data->frameBufferMap.end()) {
return;
}
const VkFramebufferCreateInfo* pFramebufferInfo = framebuffer_data->second;
const VkSubpassDescription& subpass = pRenderPassInfo->pSubpasses[subpass_index];
for (uint32_t j = 0; j < subpass.inputAttachmentCount; ++j) {
const VkImageView& image_view = pFramebufferInfo->pAttachments[subpass.pInputAttachments[j].attachment];
auto image_view_data = dev_data->imageViewMap.find(image_view);
if (image_view_data != dev_data->imageViewMap.end()) {
auto image_layout = pCB->imageLayoutMap.find(image_view_data->second->image);
if (image_layout != pCB->imageLayoutMap.end()) {
image_layout->second.layout = subpass.pInputAttachments[j].layout;
}
}
}
for (uint32_t j = 0; j < subpass.colorAttachmentCount; ++j) {
const VkImageView& image_view = pFramebufferInfo->pAttachments[subpass.pColorAttachments[j].attachment];
auto image_view_data = dev_data->imageViewMap.find(image_view);
if (image_view_data != dev_data->imageViewMap.end()) {
auto image_layout = pCB->imageLayoutMap.find(image_view_data->second->image);
if (image_layout != pCB->imageLayoutMap.end()) {
image_layout->second.layout = subpass.pColorAttachments[j].layout;
}
}
}
if ((subpass.pDepthStencilAttachment != NULL) &&
(subpass.pDepthStencilAttachment->attachment != VK_ATTACHMENT_UNUSED)) {
const VkImageView& image_view = pFramebufferInfo->pAttachments[subpass.pDepthStencilAttachment->attachment];
auto image_view_data = dev_data->imageViewMap.find(image_view);
if (image_view_data != dev_data->imageViewMap.end()) {
auto image_layout = pCB->imageLayoutMap.find(image_view_data->second->image);
if (image_layout != pCB->imageLayoutMap.end()) {
image_layout->second.layout = subpass.pDepthStencilAttachment->layout;
}
}
}
}
bool validatePrimaryCommandBuffer(const layer_data* my_data, const GLOBAL_CB_NODE* pCB, const std::string& cmd_name) {
bool skip_call = false;
if (pCB->createInfo.level != VK_COMMAND_BUFFER_LEVEL_PRIMARY) {
skip_call |= log_msg(my_data->report_data, VK_DBG_REPORT_ERROR_BIT, (VkDbgObjectType)0, 0, 0, DRAWSTATE_INVALID_COMMAND_BUFFER, "DS",
"Cannot execute command %s on a secondary command buffer.", cmd_name.c_str());
}
return skip_call;
}
void TransitionFinalSubpassLayouts(VkCommandBuffer cmdBuffer, const VkRenderPassBeginInfo* pRenderPassBegin) {
layer_data* dev_data = get_my_data_ptr(get_dispatch_key(cmdBuffer), layer_data_map);
GLOBAL_CB_NODE* pCB = getCBNode(dev_data, cmdBuffer);
auto render_pass_data = dev_data->renderPassMap.find(pRenderPassBegin->renderPass);
if (render_pass_data == dev_data->renderPassMap.end()) {
return;
}
const VkRenderPassCreateInfo* pRenderPassInfo = render_pass_data->second->createInfo;
auto framebuffer_data = dev_data->frameBufferMap.find(pRenderPassBegin->framebuffer);
if (framebuffer_data == dev_data->frameBufferMap.end()) {
return;
}
const VkFramebufferCreateInfo* pFramebufferInfo = framebuffer_data->second;
for (uint32_t i = 0; i < pRenderPassInfo->attachmentCount; ++i) {
const VkImageView& image_view = pFramebufferInfo->pAttachments[i];
auto image_view_data = dev_data->imageViewMap.find(image_view);
if (image_view_data != dev_data->imageViewMap.end()) {
auto image_layout = pCB->imageLayoutMap.find(image_view_data->second->image);
if (image_layout != pCB->imageLayoutMap.end()) {
image_layout->second.layout = pRenderPassInfo->pAttachments[i].finalLayout;
}
}
}
}
VK_LAYER_EXPORT void VKAPI vkCmdBeginRenderPass(VkCommandBuffer commandBuffer, const VkRenderPassBeginInfo *pRenderPassBegin, VkSubpassContents contents)
{
VkBool32 skipCall = VK_FALSE;
layer_data* dev_data = get_my_data_ptr(get_dispatch_key(commandBuffer), layer_data_map);
GLOBAL_CB_NODE* pCB = getCBNode(dev_data, commandBuffer);
if (pCB) {
if (pRenderPassBegin && pRenderPassBegin->renderPass) {
skipCall |= VerifyFramebufferAndRenderPassLayouts(commandBuffer, pRenderPassBegin);
skipCall |= insideRenderPass(dev_data, pCB, "vkCmdBeginRenderPass");
updateCBTracking(pCB);
skipCall |= validatePrimaryCommandBuffer(dev_data, pCB, "vkCmdBeginRenderPass");
skipCall |= addCmd(dev_data, pCB, CMD_BEGINRENDERPASS);
pCB->activeRenderPass = pRenderPassBegin->renderPass;
// This is a shallow copy as that is all that is needed for now
pCB->activeRenderPassBeginInfo = *pRenderPassBegin;
pCB->activeSubpass = 0;
pCB->framebuffer = pRenderPassBegin->framebuffer;
if (pCB->lastBoundPipeline) {
skipCall |= validatePipelineState(dev_data, pCB, VK_PIPELINE_BIND_POINT_GRAPHICS, pCB->lastBoundPipeline);
}
} else {
skipCall |= log_msg(dev_data->report_data, VK_DBG_REPORT_ERROR_BIT, (VkDbgObjectType) 0, 0, 0, DRAWSTATE_INVALID_RENDERPASS, "DS",
"You cannot use a NULL RenderPass object in vkCmdBeginRenderPass()");
}
}
if (VK_FALSE == skipCall) {
dev_data->device_dispatch_table->CmdBeginRenderPass(commandBuffer, pRenderPassBegin, contents);
// This is a shallow copy as that is all that is needed for now
dev_data->renderPassBeginInfo = *pRenderPassBegin;
dev_data->currentSubpass = 0;
}
}
VK_LAYER_EXPORT void VKAPI vkCmdNextSubpass(VkCommandBuffer commandBuffer, VkSubpassContents contents)
{
VkBool32 skipCall = VK_FALSE;
layer_data* dev_data = get_my_data_ptr(get_dispatch_key(commandBuffer), layer_data_map);
GLOBAL_CB_NODE* pCB = getCBNode(dev_data, commandBuffer);
TransitionSubpassLayouts(commandBuffer, &dev_data->renderPassBeginInfo, ++dev_data->currentSubpass);
if (pCB) {
updateCBTracking(pCB);
skipCall |= validatePrimaryCommandBuffer(dev_data, pCB, "vkCmdNextSubpass");
skipCall |= addCmd(dev_data, pCB, CMD_NEXTSUBPASS);
pCB->activeSubpass++;
TransitionSubpassLayouts(commandBuffer, &pCB->activeRenderPassBeginInfo, ++pCB->activeSubpass);
if (pCB->lastBoundPipeline) {
skipCall |= validatePipelineState(dev_data, pCB, VK_PIPELINE_BIND_POINT_GRAPHICS, pCB->lastBoundPipeline);
}
skipCall |= outsideRenderPass(dev_data, pCB, "vkCmdNextSubpass");
}
if (VK_FALSE == skipCall)
dev_data->device_dispatch_table->CmdNextSubpass(commandBuffer, contents);
}
VK_LAYER_EXPORT void VKAPI vkCmdEndRenderPass(VkCommandBuffer commandBuffer)
{
VkBool32 skipCall = VK_FALSE;
layer_data* dev_data = get_my_data_ptr(get_dispatch_key(commandBuffer), layer_data_map);
GLOBAL_CB_NODE* pCB = getCBNode(dev_data, commandBuffer);
TransitionFinalSubpassLayouts(commandBuffer, &dev_data->renderPassBeginInfo);
if (pCB) {
skipCall |= outsideRenderPass(dev_data, pCB, "vkCmdEndRenderpass");
updateCBTracking(pCB);
skipCall |= validatePrimaryCommandBuffer(dev_data, pCB, "vkCmdEndRenderPass");
skipCall |= addCmd(dev_data, pCB, CMD_ENDRENDERPASS);
TransitionFinalSubpassLayouts(commandBuffer, &pCB->activeRenderPassBeginInfo);
pCB->activeRenderPass = 0;
pCB->activeSubpass = 0;
}
if (VK_FALSE == skipCall)
dev_data->device_dispatch_table->CmdEndRenderPass(commandBuffer);
}
VK_LAYER_EXPORT void VKAPI vkCmdExecuteCommands(VkCommandBuffer commandBuffer, uint32_t commandBuffersCount, const VkCommandBuffer* pCommandBuffers)
{
VkBool32 skipCall = VK_FALSE;
layer_data* dev_data = get_my_data_ptr(get_dispatch_key(commandBuffer), layer_data_map);
GLOBAL_CB_NODE* pCB = getCBNode(dev_data, commandBuffer);
if (pCB) {
GLOBAL_CB_NODE* pSubCB = NULL;
for (uint32_t i=0; i<commandBuffersCount; i++) {
pSubCB = getCBNode(dev_data, pCommandBuffers[i]);
if (!pSubCB) {
skipCall |= log_msg(dev_data->report_data, VK_DBG_REPORT_ERROR_BIT, (VkDbgObjectType) 0, 0, 0, DRAWSTATE_INVALID_SECONDARY_COMMAND_BUFFER, "DS",
"vkCmdExecuteCommands() called w/ invalid Cmd Buffer %p in element %u of pCommandBuffers array.", (void*)pCommandBuffers[i], i);
} else if (VK_COMMAND_BUFFER_LEVEL_PRIMARY == pSubCB->createInfo.level) {
skipCall |= log_msg(dev_data->report_data, VK_DBG_REPORT_ERROR_BIT, (VkDbgObjectType) 0, 0, 0, DRAWSTATE_INVALID_SECONDARY_COMMAND_BUFFER, "DS",
"vkCmdExecuteCommands() called w/ Primary Cmd Buffer %p in element %u of pCommandBuffers array. All cmd buffers in pCommandBuffers array must be secondary.", (void*)pCommandBuffers[i], i);
}
}
updateCBTracking(pCB);
skipCall |= validatePrimaryCommandBuffer(dev_data, pCB, "vkCmdExecuteComands");
skipCall |= addCmd(dev_data, pCB, CMD_EXECUTECOMMANDS);
}
if (VK_FALSE == skipCall)
dev_data->device_dispatch_table->CmdExecuteCommands(commandBuffer, commandBuffersCount, pCommandBuffers);
}
bool ValidateMapImageLayouts(VkDevice device, VkDeviceMemory mem) {
bool skip_call = false;
layer_data* dev_data = get_my_data_ptr(get_dispatch_key(device), layer_data_map);
auto mem_data = dev_data->memImageMap.find(mem);
if (mem_data != dev_data->memImageMap.end()) {
auto image_data = dev_data->imageLayoutMap.find(mem_data->second);
if (image_data != dev_data->imageLayoutMap.end()) {
if (image_data->second->layout != VK_IMAGE_LAYOUT_PREINITIALIZED && image_data->second->layout != VK_IMAGE_LAYOUT_GENERAL) {
skip_call |= log_msg(dev_data->report_data, VK_DBG_REPORT_ERROR_BIT, (VkDbgObjectType) 0, 0, 0, DRAWSTATE_INVALID_IMAGE_LAYOUT, "DS",
"Cannot map an image with layout %d. Only GENERAL or PREINITIALIZED are supported.", image_data->second->layout);
}
}
}
return skip_call;
}
VK_LAYER_EXPORT VkResult VKAPI vkMapMemory(
VkDevice device,
VkDeviceMemory mem,
VkDeviceSize offset,
VkDeviceSize size,
VkFlags flags,
void **ppData)
{
layer_data* dev_data = get_my_data_ptr(get_dispatch_key(device), layer_data_map);
bool skip_call = ValidateMapImageLayouts(device, mem);
if (VK_FALSE == skip_call) {
return dev_data->device_dispatch_table->MapMemory(device, mem, offset, size, flags, ppData);
}
return VK_ERROR_VALIDATION_FAILED;
}
VkResult VKAPI vkBindImageMemory(
VkDevice device,
VkImage image,
VkDeviceMemory mem,
VkDeviceSize memOffset)
{
layer_data* dev_data = get_my_data_ptr(get_dispatch_key(device), layer_data_map);
VkResult result = dev_data->device_dispatch_table->BindImageMemory(device, image, mem, memOffset);
loader_platform_thread_lock_mutex(&globalLock);
dev_data->memImageMap[mem] = image;
loader_platform_thread_unlock_mutex(&globalLock);
return result;
}
VK_LAYER_EXPORT VkResult VKAPI vkCreateSwapchainKHR(
VkDevice device,
const VkSwapchainCreateInfoKHR *pCreateInfo,
VkSwapchainKHR *pSwapchain)
{
layer_data* dev_data = get_my_data_ptr(get_dispatch_key(device), layer_data_map);
VkResult result = dev_data->device_dispatch_table->CreateSwapchainKHR(device, pCreateInfo, pSwapchain);
if (VK_SUCCESS == result) {
SWAPCHAIN_NODE *swapchain_data = new SWAPCHAIN_NODE;
loader_platform_thread_lock_mutex(&globalLock);
dev_data->device_extensions.swapchainMap[*pSwapchain] = swapchain_data;
loader_platform_thread_unlock_mutex(&globalLock);
}
return result;
}
VK_LAYER_EXPORT VkResult VKAPI vkDestroySwapchainKHR(
VkDevice device,
VkSwapchainKHR swapchain)
{
layer_data* dev_data = get_my_data_ptr(get_dispatch_key(device), layer_data_map);
loader_platform_thread_lock_mutex(&globalLock);
auto swapchain_data = dev_data->device_extensions.swapchainMap.find(swapchain);
if (swapchain_data != dev_data->device_extensions.swapchainMap.end()) {
if (swapchain_data->second->images.size() > 0) {
for (auto swapchain_image : swapchain_data->second->images) {
auto image_item = dev_data->imageLayoutMap.find(swapchain_image);
if (image_item != dev_data->imageLayoutMap.end())
dev_data->imageLayoutMap.erase(image_item);
}
}
delete swapchain_data->second;
dev_data->device_extensions.swapchainMap.erase(swapchain);
}
loader_platform_thread_unlock_mutex(&globalLock);
return dev_data->device_dispatch_table->DestroySwapchainKHR(device, swapchain);
}
VK_LAYER_EXPORT VkResult VKAPI vkGetSwapchainImagesKHR(
VkDevice device,
VkSwapchainKHR swapchain,
uint32_t* pCount,
VkImage* pSwapchainImages)
{
layer_data* dev_data = get_my_data_ptr(get_dispatch_key(device), layer_data_map);
VkResult result = dev_data->device_dispatch_table->GetSwapchainImagesKHR(device, swapchain, pCount, pSwapchainImages);
if (result == VK_SUCCESS && pSwapchainImages != NULL) {
// This should never happen and is checked by param checker.
if (!pCount) return result;
for (uint32_t i = 0; i < *pCount; ++i) {
IMAGE_NODE* image_node = new IMAGE_NODE;
image_node->layout = VK_IMAGE_LAYOUT_UNDEFINED;
loader_platform_thread_lock_mutex(&globalLock);
dev_data->device_extensions.swapchainMap[swapchain]->images.push_back(pSwapchainImages[i]);
dev_data->imageLayoutMap[pSwapchainImages[i]] = image_node;
loader_platform_thread_unlock_mutex(&globalLock);
}
}
return result;
}
VK_LAYER_EXPORT VkResult VKAPI vkQueuePresentKHR(VkQueue queue, VkPresentInfoKHR* pPresentInfo)
{
layer_data* dev_data = get_my_data_ptr(get_dispatch_key(queue), layer_data_map);
bool skip_call = false;
if (pPresentInfo) {
for (uint32_t i = 0; i < pPresentInfo->swapchainCount; ++i) {
auto swapchain_data = dev_data->device_extensions.swapchainMap.find(pPresentInfo->swapchains[i]);
if (swapchain_data != dev_data->device_extensions.swapchainMap.end() && pPresentInfo->imageIndices[i] < swapchain_data->second->images.size()) {
VkImage image = swapchain_data->second->images[pPresentInfo->imageIndices[i]];
auto image_data = dev_data->imageLayoutMap.find(image);
if (image_data != dev_data->imageLayoutMap.end()) {
if (image_data->second->layout != VK_IMAGE_LAYOUT_PRESENT_SOURCE_KHR) {
skip_call |= log_msg(dev_data->report_data, VK_DBG_REPORT_ERROR_BIT, VK_OBJECT_TYPE_QUEUE, (uint64_t)queue, 0, DRAWSTATE_INVALID_IMAGE_LAYOUT, "DS",
"Images passed to present must be in layout PRESENT_SOURCE_KHR but is in %d", image_data->second->layout);
}
}
}
}
}
if (VK_FALSE == skip_call)
return dev_data->device_dispatch_table->QueuePresentKHR(queue, pPresentInfo);
return VK_ERROR_VALIDATION_FAILED;
}
VK_LAYER_EXPORT VkResult VKAPI vkDbgCreateMsgCallback(
VkInstance instance,
VkFlags msgFlags,
const PFN_vkDbgMsgCallback pfnMsgCallback,
void* pUserData,
VkDbgMsgCallback* pMsgCallback)
{
layer_data* my_data = get_my_data_ptr(get_dispatch_key(instance), layer_data_map);
VkLayerInstanceDispatchTable *pTable = my_data->instance_dispatch_table;
VkResult res = pTable->DbgCreateMsgCallback(instance, msgFlags, pfnMsgCallback, pUserData, pMsgCallback);
if (VK_SUCCESS == res) {
//layer_data *my_data = get_my_data_ptr(get_dispatch_key(instance), layer_data_map);
res = layer_create_msg_callback(my_data->report_data, msgFlags, pfnMsgCallback, pUserData, pMsgCallback);
}
return res;
}
VK_LAYER_EXPORT VkResult VKAPI vkDbgDestroyMsgCallback(
VkInstance instance,
VkDbgMsgCallback msgCallback)
{
layer_data* my_data = get_my_data_ptr(get_dispatch_key(instance), layer_data_map);
VkLayerInstanceDispatchTable *pTable = my_data->instance_dispatch_table;
VkResult res = pTable->DbgDestroyMsgCallback(instance, msgCallback);
layer_destroy_msg_callback(my_data->report_data, msgCallback);
return res;
}
VK_LAYER_EXPORT void VKAPI vkCmdDbgMarkerBegin(VkCommandBuffer commandBuffer, const char* pMarker)
{
VkBool32 skipCall = VK_FALSE;
layer_data* dev_data = get_my_data_ptr(get_dispatch_key(commandBuffer), layer_data_map);
GLOBAL_CB_NODE* pCB = getCBNode(dev_data, commandBuffer);
if (!dev_data->device_extensions.debug_marker_enabled) {
skipCall |= log_msg(dev_data->report_data, VK_DBG_REPORT_ERROR_BIT, VK_OBJECT_TYPE_COMMAND_BUFFER, (uint64_t)commandBuffer, 0, DRAWSTATE_INVALID_EXTENSION, "DS",
"Attempt to use CmdDbgMarkerBegin but extension disabled!");
return;
} else if (pCB) {
updateCBTracking(pCB);
skipCall |= addCmd(dev_data, pCB, CMD_DBGMARKERBEGIN);
}
if (VK_FALSE == skipCall)
debug_marker_dispatch_table(commandBuffer)->CmdDbgMarkerBegin(commandBuffer, pMarker);
}
VK_LAYER_EXPORT void VKAPI vkCmdDbgMarkerEnd(VkCommandBuffer commandBuffer)
{
VkBool32 skipCall = VK_FALSE;
layer_data* dev_data = get_my_data_ptr(get_dispatch_key(commandBuffer), layer_data_map);
GLOBAL_CB_NODE* pCB = getCBNode(dev_data, commandBuffer);
if (!dev_data->device_extensions.debug_marker_enabled) {
skipCall |= log_msg(dev_data->report_data, VK_DBG_REPORT_ERROR_BIT, VK_OBJECT_TYPE_COMMAND_BUFFER, (uint64_t)commandBuffer, 0, DRAWSTATE_INVALID_EXTENSION, "DS",
"Attempt to use CmdDbgMarkerEnd but extension disabled!");
return;
} else if (pCB) {
updateCBTracking(pCB);
skipCall |= addCmd(dev_data, pCB, CMD_DBGMARKEREND);
}
if (VK_FALSE == skipCall)
debug_marker_dispatch_table(commandBuffer)->CmdDbgMarkerEnd(commandBuffer);
}
VK_LAYER_EXPORT PFN_vkVoidFunction VKAPI vkGetDeviceProcAddr(VkDevice dev, const char* funcName)
{
if (dev == NULL)
return NULL;
layer_data *dev_data;
/* loader uses this to force layer initialization; device object is wrapped */
if (!strcmp(funcName, "vkGetDeviceProcAddr")) {
VkBaseLayerObject* wrapped_dev = (VkBaseLayerObject*) dev;
dev_data = get_my_data_ptr(get_dispatch_key(wrapped_dev->baseObject), layer_data_map);
dev_data->device_dispatch_table = new VkLayerDispatchTable;
layer_initialize_dispatch_table(dev_data->device_dispatch_table, wrapped_dev);
return (PFN_vkVoidFunction) vkGetDeviceProcAddr;
}
dev_data = get_my_data_ptr(get_dispatch_key(dev), layer_data_map);
if (!strcmp(funcName, "vkCreateDevice"))
return (PFN_vkVoidFunction) vkCreateDevice;
if (!strcmp(funcName, "vkDestroyDevice"))
return (PFN_vkVoidFunction) vkDestroyDevice;
if (!strcmp(funcName, "vkQueueSubmit"))
return (PFN_vkVoidFunction) vkQueueSubmit;
if (!strcmp(funcName, "vkDestroyInstance"))
return (PFN_vkVoidFunction) vkDestroyInstance;
if (!strcmp(funcName, "vkDestroyDevice"))
return (PFN_vkVoidFunction) vkDestroyDevice;
if (!strcmp(funcName, "vkDestroyFence"))
return (PFN_vkVoidFunction) vkDestroyFence;
if (!strcmp(funcName, "vkDestroySemaphore"))
return (PFN_vkVoidFunction) vkDestroySemaphore;
if (!strcmp(funcName, "vkDestroyEvent"))
return (PFN_vkVoidFunction) vkDestroyEvent;
if (!strcmp(funcName, "vkDestroyQueryPool"))
return (PFN_vkVoidFunction) vkDestroyQueryPool;
if (!strcmp(funcName, "vkDestroyBuffer"))
return (PFN_vkVoidFunction) vkDestroyBuffer;
if (!strcmp(funcName, "vkDestroyBufferView"))
return (PFN_vkVoidFunction) vkDestroyBufferView;
if (!strcmp(funcName, "vkDestroyImage"))
return (PFN_vkVoidFunction) vkDestroyImage;
if (!strcmp(funcName, "vkDestroyImageView"))
return (PFN_vkVoidFunction) vkDestroyImageView;
if (!strcmp(funcName, "vkDestroyShaderModule"))
return (PFN_vkVoidFunction) vkDestroyShaderModule;
if (!strcmp(funcName, "vkDestroyPipeline"))
return (PFN_vkVoidFunction) vkDestroyPipeline;
if (!strcmp(funcName, "vkDestroyPipelineLayout"))
return (PFN_vkVoidFunction) vkDestroyPipelineLayout;
if (!strcmp(funcName, "vkDestroySampler"))
return (PFN_vkVoidFunction) vkDestroySampler;
if (!strcmp(funcName, "vkDestroyDescriptorSetLayout"))
return (PFN_vkVoidFunction) vkDestroyDescriptorSetLayout;
if (!strcmp(funcName, "vkDestroyDescriptorPool"))
return (PFN_vkVoidFunction) vkDestroyDescriptorPool;
if (!strcmp(funcName, "vkFreeCommandBuffers"))
return (PFN_vkVoidFunction) vkFreeCommandBuffers;
if (!strcmp(funcName, "vkDestroyFramebuffer"))
return (PFN_vkVoidFunction) vkDestroyFramebuffer;
if (!strcmp(funcName, "vkDestroyRenderPass"))
return (PFN_vkVoidFunction) vkDestroyRenderPass;
if (!strcmp(funcName, "vkCreateBuffer"))
return (PFN_vkVoidFunction) vkCreateBuffer;
if (!strcmp(funcName, "vkCreateBufferView"))
return (PFN_vkVoidFunction) vkCreateBufferView;
if (!strcmp(funcName, "vkCreateImage"))
return (PFN_vkVoidFunction) vkCreateImage;
if (!strcmp(funcName, "vkCreateImageView"))
return (PFN_vkVoidFunction) vkCreateImageView;
if (!strcmp(funcName, "CreatePipelineCache"))
return (PFN_vkVoidFunction) vkCreatePipelineCache;
if (!strcmp(funcName, "DestroyPipelineCache"))
return (PFN_vkVoidFunction) vkDestroyPipelineCache;
if (!strcmp(funcName, "GetPipelineCacheData"))
return (PFN_vkVoidFunction) vkGetPipelineCacheData;
if (!strcmp(funcName, "MergePipelineCaches"))
return (PFN_vkVoidFunction) vkMergePipelineCaches;
if (!strcmp(funcName, "vkCreateGraphicsPipelines"))
return (PFN_vkVoidFunction) vkCreateGraphicsPipelines;
if (!strcmp(funcName, "vkCreateSampler"))
return (PFN_vkVoidFunction) vkCreateSampler;
if (!strcmp(funcName, "vkCreateDescriptorSetLayout"))
return (PFN_vkVoidFunction) vkCreateDescriptorSetLayout;
if (!strcmp(funcName, "vkCreatePipelineLayout"))
return (PFN_vkVoidFunction) vkCreatePipelineLayout;
if (!strcmp(funcName, "vkCreateDescriptorPool"))
return (PFN_vkVoidFunction) vkCreateDescriptorPool;
if (!strcmp(funcName, "vkResetDescriptorPool"))
return (PFN_vkVoidFunction) vkResetDescriptorPool;
if (!strcmp(funcName, "vkAllocateDescriptorSets"))
return (PFN_vkVoidFunction) vkAllocateDescriptorSets;
if (!strcmp(funcName, "vkFreeDescriptorSets"))
return (PFN_vkVoidFunction) vkFreeDescriptorSets;
if (!strcmp(funcName, "vkUpdateDescriptorSets"))
return (PFN_vkVoidFunction) vkUpdateDescriptorSets;
if (!strcmp(funcName, "vkAllocateCommandBuffers"))
return (PFN_vkVoidFunction) vkAllocateCommandBuffers;
if (!strcmp(funcName, "vkBeginCommandBuffer"))
return (PFN_vkVoidFunction) vkBeginCommandBuffer;
if (!strcmp(funcName, "vkEndCommandBuffer"))
return (PFN_vkVoidFunction) vkEndCommandBuffer;
if (!strcmp(funcName, "vkResetCommandBuffer"))
return (PFN_vkVoidFunction) vkResetCommandBuffer;
if (!strcmp(funcName, "vkCmdBindPipeline"))
return (PFN_vkVoidFunction) vkCmdBindPipeline;
if (!strcmp(funcName, "vkCmdSetViewport"))
return (PFN_vkVoidFunction) vkCmdSetViewport;
if (!strcmp(funcName, "vkCmdSetScissor"))
return (PFN_vkVoidFunction) vkCmdSetScissor;
if (!strcmp(funcName, "vkCmdSetLineWidth"))
return (PFN_vkVoidFunction) vkCmdSetLineWidth;
if (!strcmp(funcName, "vkCmdSetDepthBias"))
return (PFN_vkVoidFunction) vkCmdSetDepthBias;
if (!strcmp(funcName, "vkCmdSetBlendConstants"))
return (PFN_vkVoidFunction) vkCmdSetBlendConstants;
if (!strcmp(funcName, "vkCmdSetDepthBounds"))
return (PFN_vkVoidFunction) vkCmdSetDepthBounds;
if (!strcmp(funcName, "vkCmdSetStencilCompareMask"))
return (PFN_vkVoidFunction) vkCmdSetStencilCompareMask;
if (!strcmp(funcName, "vkCmdSetStencilWriteMask"))
return (PFN_vkVoidFunction) vkCmdSetStencilWriteMask;
if (!strcmp(funcName, "vkCmdSetStencilReference"))
return (PFN_vkVoidFunction) vkCmdSetStencilReference;
if (!strcmp(funcName, "vkCmdBindDescriptorSets"))
return (PFN_vkVoidFunction) vkCmdBindDescriptorSets;
if (!strcmp(funcName, "vkCmdBindVertexBuffers"))
return (PFN_vkVoidFunction) vkCmdBindVertexBuffers;
if (!strcmp(funcName, "vkCmdBindIndexBuffer"))
return (PFN_vkVoidFunction) vkCmdBindIndexBuffer;
if (!strcmp(funcName, "vkCmdDraw"))
return (PFN_vkVoidFunction) vkCmdDraw;
if (!strcmp(funcName, "vkCmdDrawIndexed"))
return (PFN_vkVoidFunction) vkCmdDrawIndexed;
if (!strcmp(funcName, "vkCmdDrawIndirect"))
return (PFN_vkVoidFunction) vkCmdDrawIndirect;
if (!strcmp(funcName, "vkCmdDrawIndexedIndirect"))
return (PFN_vkVoidFunction) vkCmdDrawIndexedIndirect;
if (!strcmp(funcName, "vkCmdDispatch"))
return (PFN_vkVoidFunction) vkCmdDispatch;
if (!strcmp(funcName, "vkCmdDispatchIndirect"))
return (PFN_vkVoidFunction) vkCmdDispatchIndirect;
if (!strcmp(funcName, "vkCmdCopyBuffer"))
return (PFN_vkVoidFunction) vkCmdCopyBuffer;
if (!strcmp(funcName, "vkCmdCopyImage"))
return (PFN_vkVoidFunction) vkCmdCopyImage;
if (!strcmp(funcName, "vkCmdCopyBufferToImage"))
return (PFN_vkVoidFunction) vkCmdCopyBufferToImage;
if (!strcmp(funcName, "vkCmdCopyImageToBuffer"))
return (PFN_vkVoidFunction) vkCmdCopyImageToBuffer;
if (!strcmp(funcName, "vkCmdUpdateBuffer"))
return (PFN_vkVoidFunction) vkCmdUpdateBuffer;
if (!strcmp(funcName, "vkCmdFillBuffer"))
return (PFN_vkVoidFunction) vkCmdFillBuffer;
if (!strcmp(funcName, "vkCmdClearColorImage"))
return (PFN_vkVoidFunction) vkCmdClearColorImage;
if (!strcmp(funcName, "vkCmdClearDepthStencilImage"))
return (PFN_vkVoidFunction) vkCmdClearDepthStencilImage;
if (!strcmp(funcName, "vkCmdClearAttachments"))
return (PFN_vkVoidFunction) vkCmdClearAttachments;
if (!strcmp(funcName, "vkCmdResolveImage"))
return (PFN_vkVoidFunction) vkCmdResolveImage;
if (!strcmp(funcName, "vkCmdSetEvent"))
return (PFN_vkVoidFunction) vkCmdSetEvent;
if (!strcmp(funcName, "vkCmdResetEvent"))
return (PFN_vkVoidFunction) vkCmdResetEvent;
if (!strcmp(funcName, "vkCmdWaitEvents"))
return (PFN_vkVoidFunction) vkCmdWaitEvents;
if (!strcmp(funcName, "vkCmdPipelineBarrier"))
return (PFN_vkVoidFunction) vkCmdPipelineBarrier;
if (!strcmp(funcName, "vkCmdBeginQuery"))
return (PFN_vkVoidFunction) vkCmdBeginQuery;
if (!strcmp(funcName, "vkCmdEndQuery"))
return (PFN_vkVoidFunction) vkCmdEndQuery;
if (!strcmp(funcName, "vkCmdResetQueryPool"))
return (PFN_vkVoidFunction) vkCmdResetQueryPool;
if (!strcmp(funcName, "vkCmdWriteTimestamp"))
return (PFN_vkVoidFunction) vkCmdWriteTimestamp;
if (!strcmp(funcName, "vkCreateFramebuffer"))
return (PFN_vkVoidFunction) vkCreateFramebuffer;
if (!strcmp(funcName, "vkCreateRenderPass"))
return (PFN_vkVoidFunction) vkCreateRenderPass;
if (!strcmp(funcName, "vkCmdBeginRenderPass"))
return (PFN_vkVoidFunction) vkCmdBeginRenderPass;
if (!strcmp(funcName, "vkCmdNextSubpass"))
return (PFN_vkVoidFunction) vkCmdNextSubpass;
if (!strcmp(funcName, "vkCmdEndRenderPass"))
return (PFN_vkVoidFunction) vkCmdEndRenderPass;
if (!strcmp(funcName, "vkCmdExecuteCommands"))
return (PFN_vkVoidFunction) vkCmdExecuteCommands;
if (!strcmp(funcName, "vkMapMemory"))
return (PFN_vkVoidFunction) vkMapMemory;
if (dev_data->device_extensions.wsi_enabled)
{
if (!strcmp(funcName, "vkCreateSwapchainKHR"))
return (PFN_vkVoidFunction) vkCreateSwapchainKHR;
if (!strcmp(funcName, "vkDestroySwapchainKHR"))
return (PFN_vkVoidFunction) vkDestroySwapchainKHR;
if (!strcmp(funcName, "vkGetSwapchainImagesKHR"))
return (PFN_vkVoidFunction) vkGetSwapchainImagesKHR;
if (!strcmp(funcName, "vkQueuePresentKHR"))
return (PFN_vkVoidFunction) vkQueuePresentKHR;
}
VkLayerDispatchTable* pTable = dev_data->device_dispatch_table;
if (dev_data->device_extensions.debug_marker_enabled)
{
if (!strcmp(funcName, "vkCmdDbgMarkerBegin"))
return (PFN_vkVoidFunction) vkCmdDbgMarkerBegin;
if (!strcmp(funcName, "vkCmdDbgMarkerEnd"))
return (PFN_vkVoidFunction) vkCmdDbgMarkerEnd;
}
{
if (pTable->GetDeviceProcAddr == NULL)
return NULL;
return pTable->GetDeviceProcAddr(dev, funcName);
}
}
VK_LAYER_EXPORT PFN_vkVoidFunction VKAPI vkGetInstanceProcAddr(VkInstance instance, const char* funcName)
{
PFN_vkVoidFunction fptr;
if (instance == NULL)
return NULL;
layer_data* my_data;
/* loader uses this to force layer initialization; instance object is wrapped */
if (!strcmp(funcName, "vkGetInstanceProcAddr")) {
VkBaseLayerObject* wrapped_inst = (VkBaseLayerObject*) instance;
my_data = get_my_data_ptr(get_dispatch_key(wrapped_inst->baseObject), layer_data_map);
my_data->instance_dispatch_table = new VkLayerInstanceDispatchTable;
layer_init_instance_dispatch_table(my_data->instance_dispatch_table, wrapped_inst);
return (PFN_vkVoidFunction) vkGetInstanceProcAddr;
}
my_data = get_my_data_ptr(get_dispatch_key(instance), layer_data_map);
if (!strcmp(funcName, "vkCreateInstance"))
return (PFN_vkVoidFunction) vkCreateInstance;
if (!strcmp(funcName, "vkDestroyInstance"))
return (PFN_vkVoidFunction) vkDestroyInstance;
if (!strcmp(funcName, "vkEnumerateInstanceLayerProperties"))
return (PFN_vkVoidFunction) vkEnumerateInstanceLayerProperties;
if (!strcmp(funcName, "vkEnumerateInstanceExtensionProperties"))
return (PFN_vkVoidFunction) vkEnumerateInstanceExtensionProperties;
if (!strcmp(funcName, "vkEnumerateDeviceLayerProperties"))
return (PFN_vkVoidFunction) vkEnumerateDeviceLayerProperties;
if (!strcmp(funcName, "vkEnumerateDeviceExtensionProperties"))
return (PFN_vkVoidFunction) vkEnumerateDeviceExtensionProperties;
fptr = debug_report_get_instance_proc_addr(my_data->report_data, funcName);
if (fptr)
return fptr;
{
VkLayerInstanceDispatchTable* pTable = my_data->instance_dispatch_table;
if (pTable->GetInstanceProcAddr == NULL)
return NULL;
return pTable->GetInstanceProcAddr(instance, funcName);
}
}