Chia-I Wu | 4bc4701 | 2014-08-14 13:03:25 +0800 | [diff] [blame^] | 1 | /* |
| 2 | * Mesa 3-D graphics library |
| 3 | * |
| 4 | * Copyright (C) 2014 LunarG, Inc. |
| 5 | * |
| 6 | * Permission is hereby granted, free of charge, to any person obtaining a |
| 7 | * copy of this software and associated documentation files (the "Software"), |
| 8 | * to deal in the Software without restriction, including without limitation |
| 9 | * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| 10 | * and/or sell copies of the Software, and to permit persons to whom the |
| 11 | * Software is furnished to do so, subject to the following conditions: |
| 12 | * |
| 13 | * The above copyright notice and this permission notice shall be included |
| 14 | * in all copies or substantial portions of the Software. |
| 15 | * |
| 16 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| 17 | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| 18 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| 19 | * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| 20 | * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| 21 | * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER |
| 22 | * DEALINGS IN THE SOFTWARE. |
| 23 | * |
| 24 | * Authors: |
| 25 | * Chia-I Wu <olv@lunarg.com> |
| 26 | */ |
| 27 | |
| 28 | #include "ilo_layout.h" |
| 29 | |
| 30 | enum { |
| 31 | LAYOUT_TILING_NONE = 1 << INTEL_TILING_NONE, |
| 32 | LAYOUT_TILING_X = 1 << INTEL_TILING_X, |
| 33 | LAYOUT_TILING_Y = 1 << INTEL_TILING_Y, |
| 34 | LAYOUT_TILING_W = 1 << (INTEL_TILING_Y + 1), |
| 35 | |
| 36 | LAYOUT_TILING_ALL = (LAYOUT_TILING_NONE | |
| 37 | LAYOUT_TILING_X | |
| 38 | LAYOUT_TILING_Y | |
| 39 | LAYOUT_TILING_W) |
| 40 | }; |
| 41 | |
| 42 | struct ilo_layout_params { |
| 43 | const struct ilo_dev_info *dev; |
| 44 | const struct pipe_resource *templ; |
| 45 | |
| 46 | bool compressed; |
| 47 | |
| 48 | unsigned h0, h1; |
| 49 | unsigned max_x, max_y; |
| 50 | }; |
| 51 | |
| 52 | static void |
| 53 | layout_get_slice_size(const struct ilo_layout *layout, |
| 54 | const struct ilo_layout_params *params, |
| 55 | unsigned level, unsigned *width, unsigned *height) |
| 56 | { |
| 57 | const struct pipe_resource *templ = params->templ; |
| 58 | unsigned w, h; |
| 59 | |
| 60 | w = u_minify(templ->width0, level); |
| 61 | h = u_minify(templ->height0, level); |
| 62 | |
| 63 | /* |
| 64 | * From the Sandy Bridge PRM, volume 1 part 1, page 114: |
| 65 | * |
| 66 | * "The dimensions of the mip maps are first determined by applying the |
| 67 | * sizing algorithm presented in Non-Power-of-Two Mipmaps above. Then, |
| 68 | * if necessary, they are padded out to compression block boundaries." |
| 69 | */ |
| 70 | w = align(w, layout->block_width); |
| 71 | h = align(h, layout->block_height); |
| 72 | |
| 73 | /* |
| 74 | * From the Sandy Bridge PRM, volume 1 part 1, page 111: |
| 75 | * |
| 76 | * "If the surface is multisampled (4x), these values must be adjusted |
| 77 | * as follows before proceeding: |
| 78 | * |
| 79 | * W_L = ceiling(W_L / 2) * 4 |
| 80 | * H_L = ceiling(H_L / 2) * 4" |
| 81 | * |
| 82 | * From the Ivy Bridge PRM, volume 1 part 1, page 108: |
| 83 | * |
| 84 | * "If the surface is multisampled and it is a depth or stencil surface |
| 85 | * or Multisampled Surface StorageFormat in SURFACE_STATE is |
| 86 | * MSFMT_DEPTH_STENCIL, W_L and H_L must be adjusted as follows before |
| 87 | * proceeding: |
| 88 | * |
| 89 | * #samples W_L = H_L = |
| 90 | * 2 ceiling(W_L / 2) * 4 HL [no adjustment] |
| 91 | * 4 ceiling(W_L / 2) * 4 ceiling(H_L / 2) * 4 |
| 92 | * 8 ceiling(W_L / 2) * 8 ceiling(H_L / 2) * 4 |
| 93 | * 16 ceiling(W_L / 2) * 8 ceiling(H_L / 2) * 8" |
| 94 | * |
| 95 | * For interleaved samples (4x), where pixels |
| 96 | * |
| 97 | * (x, y ) (x+1, y ) |
| 98 | * (x, y+1) (x+1, y+1) |
| 99 | * |
| 100 | * would be is occupied by |
| 101 | * |
| 102 | * (x, y , si0) (x+1, y , si0) (x, y , si1) (x+1, y , si1) |
| 103 | * (x, y+1, si0) (x+1, y+1, si0) (x, y+1, si1) (x+1, y+1, si1) |
| 104 | * (x, y , si2) (x+1, y , si2) (x, y , si3) (x+1, y , si3) |
| 105 | * (x, y+1, si2) (x+1, y+1, si2) (x, y+1, si3) (x+1, y+1, si3) |
| 106 | * |
| 107 | * Thus the need to |
| 108 | * |
| 109 | * w = align(w, 2) * 2; |
| 110 | * y = align(y, 2) * 2; |
| 111 | */ |
| 112 | if (layout->interleaved_samples) { |
| 113 | switch (templ->nr_samples) { |
| 114 | case 0: |
| 115 | case 1: |
| 116 | break; |
| 117 | case 2: |
| 118 | w = align(w, 2) * 2; |
| 119 | break; |
| 120 | case 4: |
| 121 | w = align(w, 2) * 2; |
| 122 | h = align(h, 2) * 2; |
| 123 | break; |
| 124 | case 8: |
| 125 | w = align(w, 2) * 4; |
| 126 | h = align(h, 2) * 2; |
| 127 | break; |
| 128 | case 16: |
| 129 | w = align(w, 2) * 4; |
| 130 | h = align(h, 2) * 4; |
| 131 | break; |
| 132 | default: |
| 133 | assert(!"unsupported sample count"); |
| 134 | break; |
| 135 | } |
| 136 | } |
| 137 | |
| 138 | w = align(w, layout->align_i); |
| 139 | h = align(h, layout->align_j); |
| 140 | |
| 141 | *width = w; |
| 142 | *height = h; |
| 143 | } |
| 144 | |
| 145 | static unsigned |
| 146 | layout_get_num_layers(const struct ilo_layout *layout, |
| 147 | const struct ilo_layout_params *params) |
| 148 | { |
| 149 | const struct pipe_resource *templ = params->templ; |
| 150 | unsigned num_layers = templ->array_size; |
| 151 | |
| 152 | /* samples of the same index are stored in a layer */ |
| 153 | if (templ->nr_samples > 1 && !layout->interleaved_samples) |
| 154 | num_layers *= templ->nr_samples; |
| 155 | |
| 156 | return num_layers; |
| 157 | } |
| 158 | |
| 159 | static void |
| 160 | layout_init_layer_height(struct ilo_layout *layout, |
| 161 | struct ilo_layout_params *params) |
| 162 | { |
| 163 | const struct pipe_resource *templ = params->templ; |
| 164 | unsigned num_layers; |
| 165 | |
| 166 | num_layers = layout_get_num_layers(layout, params); |
| 167 | if (num_layers <= 1) |
| 168 | return; |
| 169 | |
| 170 | if (!layout->full_layers) { |
| 171 | layout->layer_height = params->h0; |
| 172 | params->max_y += params->h0 * (num_layers - 1); |
| 173 | return; |
| 174 | } |
| 175 | |
| 176 | /* |
| 177 | * From the Sandy Bridge PRM, volume 1 part 1, page 115: |
| 178 | * |
| 179 | * "The following equation is used for surface formats other than |
| 180 | * compressed textures: |
| 181 | * |
| 182 | * QPitch = (h0 + h1 + 11j)" |
| 183 | * |
| 184 | * "The equation for compressed textures (BC* and FXT1 surface formats) |
| 185 | * follows: |
| 186 | * |
| 187 | * QPitch = (h0 + h1 + 11j) / 4" |
| 188 | * |
| 189 | * "[DevSNB] Errata: Sampler MSAA Qpitch will be 4 greater than the |
| 190 | * value calculated in the equation above, for every other odd Surface |
| 191 | * Height starting from 1 i.e. 1,5,9,13" |
| 192 | * |
| 193 | * From the Ivy Bridge PRM, volume 1 part 1, page 111-112: |
| 194 | * |
| 195 | * "If Surface Array Spacing is set to ARYSPC_FULL (note that the depth |
| 196 | * buffer and stencil buffer have an implied value of ARYSPC_FULL): |
| 197 | * |
| 198 | * QPitch = (h0 + h1 + 12j) |
| 199 | * QPitch = (h0 + h1 + 12j) / 4 (compressed) |
| 200 | * |
| 201 | * (There are many typos or missing words here...)" |
| 202 | * |
| 203 | * To access the N-th slice, an offset of (Stride * QPitch * N) is added to |
| 204 | * the base address. The PRM divides QPitch by 4 for compressed formats |
| 205 | * because the block height for those formats are 4, and it wants QPitch to |
| 206 | * mean the number of memory rows, as opposed to texel rows, between |
| 207 | * slices. Since we use texel rows everywhere, we do not need to divide |
| 208 | * QPitch by 4. |
| 209 | */ |
| 210 | layout->layer_height = params->h0 + params->h1 + |
| 211 | ((params->dev->gen >= ILO_GEN(7)) ? 12 : 11) * layout->align_j; |
| 212 | |
| 213 | if (params->dev->gen == ILO_GEN(6) && templ->nr_samples > 1 && |
| 214 | templ->height0 % 4 == 1) |
| 215 | layout->layer_height += 4; |
| 216 | |
| 217 | params->max_y += layout->layer_height * (num_layers - 1); |
| 218 | } |
| 219 | |
| 220 | static void |
| 221 | layout_init_levels(struct ilo_layout *layout, |
| 222 | struct ilo_layout_params *params) |
| 223 | { |
| 224 | const struct pipe_resource *templ = params->templ; |
| 225 | unsigned cur_x, cur_y; |
| 226 | unsigned lv; |
| 227 | |
| 228 | cur_x = 0; |
| 229 | cur_y = 0; |
| 230 | for (lv = 0; lv <= templ->last_level; lv++) { |
| 231 | unsigned level_w, level_h; |
| 232 | |
| 233 | layout_get_slice_size(layout, params, lv, &level_w, &level_h); |
| 234 | |
| 235 | layout->levels[lv].x = cur_x; |
| 236 | layout->levels[lv].y = cur_y; |
| 237 | layout->levels[lv].slice_width = level_w; |
| 238 | layout->levels[lv].slice_height = level_h; |
| 239 | |
| 240 | if (templ->target == PIPE_TEXTURE_3D) { |
| 241 | const unsigned num_slices = u_minify(templ->depth0, lv); |
| 242 | const unsigned num_slices_per_row = 1 << lv; |
| 243 | const unsigned num_rows = |
| 244 | (num_slices + num_slices_per_row - 1) / num_slices_per_row; |
| 245 | |
| 246 | level_w *= num_slices_per_row; |
| 247 | level_h *= num_rows; |
| 248 | |
| 249 | cur_y += level_h; |
| 250 | } else { |
| 251 | /* MIPLAYOUT_BELOW */ |
| 252 | if (lv == 1) |
| 253 | cur_x += level_w; |
| 254 | else |
| 255 | cur_y += level_h; |
| 256 | } |
| 257 | |
| 258 | if (params->max_x < layout->levels[lv].x + level_w) |
| 259 | params->max_x = layout->levels[lv].x + level_w; |
| 260 | if (params->max_y < layout->levels[lv].y + level_h) |
| 261 | params->max_y = layout->levels[lv].y + level_h; |
| 262 | } |
| 263 | |
| 264 | params->h0 = layout->levels[0].slice_height; |
| 265 | if (layout->full_layers) { |
| 266 | if (templ->last_level > 0) |
| 267 | params->h1 = layout->levels[1].slice_height; |
| 268 | else |
| 269 | layout_get_slice_size(layout, params, 1, &cur_x, ¶ms->h1); |
| 270 | } |
| 271 | } |
| 272 | |
| 273 | static void |
| 274 | layout_init_alignments(struct ilo_layout *layout, |
| 275 | struct ilo_layout_params *params) |
| 276 | { |
| 277 | const struct pipe_resource *templ = params->templ; |
| 278 | |
| 279 | /* |
| 280 | * From the Sandy Bridge PRM, volume 1 part 1, page 113: |
| 281 | * |
| 282 | * "surface format align_i align_j |
| 283 | * YUV 4:2:2 formats 4 *see below |
| 284 | * BC1-5 4 4 |
| 285 | * FXT1 8 4 |
| 286 | * all other formats 4 *see below" |
| 287 | * |
| 288 | * "- align_j = 4 for any depth buffer |
| 289 | * - align_j = 2 for separate stencil buffer |
| 290 | * - align_j = 4 for any render target surface is multisampled (4x) |
| 291 | * - align_j = 4 for any render target surface with Surface Vertical |
| 292 | * Alignment = VALIGN_4 |
| 293 | * - align_j = 2 for any render target surface with Surface Vertical |
| 294 | * Alignment = VALIGN_2 |
| 295 | * - align_j = 2 for all other render target surface |
| 296 | * - align_j = 2 for any sampling engine surface with Surface Vertical |
| 297 | * Alignment = VALIGN_2 |
| 298 | * - align_j = 4 for any sampling engine surface with Surface Vertical |
| 299 | * Alignment = VALIGN_4" |
| 300 | * |
| 301 | * From the Sandy Bridge PRM, volume 4 part 1, page 86: |
| 302 | * |
| 303 | * "This field (Surface Vertical Alignment) must be set to VALIGN_2 if |
| 304 | * the Surface Format is 96 bits per element (BPE)." |
| 305 | * |
| 306 | * They can be rephrased as |
| 307 | * |
| 308 | * align_i align_j |
| 309 | * compressed formats block width block height |
| 310 | * PIPE_FORMAT_S8_UINT 4 2 |
| 311 | * other depth/stencil formats 4 4 |
| 312 | * 4x multisampled 4 4 |
| 313 | * bpp 96 4 2 |
| 314 | * others 4 2 or 4 |
| 315 | */ |
| 316 | |
| 317 | /* |
| 318 | * From the Ivy Bridge PRM, volume 1 part 1, page 110: |
| 319 | * |
| 320 | * "surface defined by surface format align_i align_j |
| 321 | * 3DSTATE_DEPTH_BUFFER D16_UNORM 8 4 |
| 322 | * not D16_UNORM 4 4 |
| 323 | * 3DSTATE_STENCIL_BUFFER N/A 8 8 |
| 324 | * SURFACE_STATE BC*, ETC*, EAC* 4 4 |
| 325 | * FXT1 8 4 |
| 326 | * all others (set by SURFACE_STATE)" |
| 327 | * |
| 328 | * From the Ivy Bridge PRM, volume 4 part 1, page 63: |
| 329 | * |
| 330 | * "- This field (Surface Vertical Aligment) is intended to be set to |
| 331 | * VALIGN_4 if the surface was rendered as a depth buffer, for a |
| 332 | * multisampled (4x) render target, or for a multisampled (8x) |
| 333 | * render target, since these surfaces support only alignment of 4. |
| 334 | * - Use of VALIGN_4 for other surfaces is supported, but uses more |
| 335 | * memory. |
| 336 | * - This field must be set to VALIGN_4 for all tiled Y Render Target |
| 337 | * surfaces. |
| 338 | * - Value of 1 is not supported for format YCRCB_NORMAL (0x182), |
| 339 | * YCRCB_SWAPUVY (0x183), YCRCB_SWAPUV (0x18f), YCRCB_SWAPY (0x190) |
| 340 | * - If Number of Multisamples is not MULTISAMPLECOUNT_1, this field |
| 341 | * must be set to VALIGN_4." |
| 342 | * - VALIGN_4 is not supported for surface format R32G32B32_FLOAT." |
| 343 | * |
| 344 | * "- This field (Surface Horizontal Aligment) is intended to be set to |
| 345 | * HALIGN_8 only if the surface was rendered as a depth buffer with |
| 346 | * Z16 format or a stencil buffer, since these surfaces support only |
| 347 | * alignment of 8. |
| 348 | * - Use of HALIGN_8 for other surfaces is supported, but uses more |
| 349 | * memory. |
| 350 | * - This field must be set to HALIGN_4 if the Surface Format is BC*. |
| 351 | * - This field must be set to HALIGN_8 if the Surface Format is |
| 352 | * FXT1." |
| 353 | * |
| 354 | * They can be rephrased as |
| 355 | * |
| 356 | * align_i align_j |
| 357 | * compressed formats block width block height |
| 358 | * PIPE_FORMAT_Z16_UNORM 8 4 |
| 359 | * PIPE_FORMAT_S8_UINT 8 8 |
| 360 | * other depth/stencil formats 4 or 8 4 |
| 361 | * 2x or 4x multisampled 4 or 8 4 |
| 362 | * tiled Y 4 or 8 4 (if rt) |
| 363 | * PIPE_FORMAT_R32G32B32_FLOAT 4 or 8 2 |
| 364 | * others 4 or 8 2 or 4 |
| 365 | */ |
| 366 | |
| 367 | if (params->compressed) { |
| 368 | /* this happens to be the case */ |
| 369 | layout->align_i = layout->block_width; |
| 370 | layout->align_j = layout->block_height; |
| 371 | } else if (templ->bind & PIPE_BIND_DEPTH_STENCIL) { |
| 372 | if (params->dev->gen >= ILO_GEN(7)) { |
| 373 | switch (layout->format) { |
| 374 | case PIPE_FORMAT_Z16_UNORM: |
| 375 | layout->align_i = 8; |
| 376 | layout->align_j = 4; |
| 377 | break; |
| 378 | case PIPE_FORMAT_S8_UINT: |
| 379 | layout->align_i = 8; |
| 380 | layout->align_j = 8; |
| 381 | break; |
| 382 | default: |
| 383 | layout->align_i = 4; |
| 384 | layout->align_j = 4; |
| 385 | break; |
| 386 | } |
| 387 | } else { |
| 388 | switch (layout->format) { |
| 389 | case PIPE_FORMAT_S8_UINT: |
| 390 | layout->align_i = 4; |
| 391 | layout->align_j = 2; |
| 392 | break; |
| 393 | default: |
| 394 | layout->align_i = 4; |
| 395 | layout->align_j = 4; |
| 396 | break; |
| 397 | } |
| 398 | } |
| 399 | } else { |
| 400 | const bool valign_4 = (templ->nr_samples > 1) || |
| 401 | (params->dev->gen >= ILO_GEN(7) && |
| 402 | layout->tiling == INTEL_TILING_Y && |
| 403 | (templ->bind & PIPE_BIND_RENDER_TARGET)); |
| 404 | |
| 405 | if (valign_4) |
| 406 | assert(layout->block_size != 12); |
| 407 | |
| 408 | layout->align_i = 4; |
| 409 | layout->align_j = (valign_4) ? 4 : 2; |
| 410 | } |
| 411 | |
| 412 | /* |
| 413 | * the fact that align i and j are multiples of block width and height |
| 414 | * respectively is what makes the size of the bo a multiple of the block |
| 415 | * size, slices start at block boundaries, and many of the computations |
| 416 | * work. |
| 417 | */ |
| 418 | assert(layout->align_i % layout->block_width == 0); |
| 419 | assert(layout->align_j % layout->block_height == 0); |
| 420 | |
| 421 | /* make sure align() works */ |
| 422 | assert(util_is_power_of_two(layout->align_i) && |
| 423 | util_is_power_of_two(layout->align_j)); |
| 424 | assert(util_is_power_of_two(layout->block_width) && |
| 425 | util_is_power_of_two(layout->block_height)); |
| 426 | } |
| 427 | |
| 428 | static unsigned |
| 429 | layout_get_valid_tilings(const struct ilo_layout *layout, |
| 430 | const struct ilo_layout_params *params) |
| 431 | { |
| 432 | const struct pipe_resource *templ = params->templ; |
| 433 | const enum pipe_format format = layout->format; |
| 434 | unsigned valid_tilings = LAYOUT_TILING_ALL; |
| 435 | |
| 436 | /* |
| 437 | * From the Sandy Bridge PRM, volume 1 part 2, page 32: |
| 438 | * |
| 439 | * "Display/Overlay Y-Major not supported. |
| 440 | * X-Major required for Async Flips" |
| 441 | */ |
| 442 | if (unlikely(templ->bind & PIPE_BIND_SCANOUT)) |
| 443 | valid_tilings &= LAYOUT_TILING_X; |
| 444 | |
| 445 | /* |
| 446 | * From the Sandy Bridge PRM, volume 3 part 2, page 158: |
| 447 | * |
| 448 | * "The cursor surface address must be 4K byte aligned. The cursor must |
| 449 | * be in linear memory, it cannot be tiled." |
| 450 | */ |
| 451 | if (unlikely(templ->bind & (PIPE_BIND_CURSOR | PIPE_BIND_LINEAR))) |
| 452 | valid_tilings &= LAYOUT_TILING_NONE; |
| 453 | |
| 454 | /* |
| 455 | * From the Sandy Bridge PRM, volume 2 part 1, page 318: |
| 456 | * |
| 457 | * "[DevSNB+]: This field (Tiled Surface) must be set to TRUE. Linear |
| 458 | * Depth Buffer is not supported." |
| 459 | * |
| 460 | * "The Depth Buffer, if tiled, must use Y-Major tiling." |
| 461 | * |
| 462 | * From the Sandy Bridge PRM, volume 1 part 2, page 22: |
| 463 | * |
| 464 | * "W-Major Tile Format is used for separate stencil." |
| 465 | */ |
| 466 | if (templ->bind & PIPE_BIND_DEPTH_STENCIL) { |
| 467 | switch (format) { |
| 468 | case PIPE_FORMAT_S8_UINT: |
| 469 | valid_tilings &= LAYOUT_TILING_W; |
| 470 | break; |
| 471 | default: |
| 472 | valid_tilings &= LAYOUT_TILING_Y; |
| 473 | break; |
| 474 | } |
| 475 | } |
| 476 | |
| 477 | if (templ->bind & PIPE_BIND_RENDER_TARGET) { |
| 478 | /* |
| 479 | * From the Sandy Bridge PRM, volume 1 part 2, page 32: |
| 480 | * |
| 481 | * "NOTE: 128BPE Format Color buffer ( render target ) MUST be |
| 482 | * either TileX or Linear." |
| 483 | */ |
| 484 | if (layout->block_size == 16) |
| 485 | valid_tilings &= ~LAYOUT_TILING_Y; |
| 486 | |
| 487 | /* |
| 488 | * From the Ivy Bridge PRM, volume 4 part 1, page 63: |
| 489 | * |
| 490 | * "This field (Surface Vertical Aligment) must be set to VALIGN_4 |
| 491 | * for all tiled Y Render Target surfaces." |
| 492 | * |
| 493 | * "VALIGN_4 is not supported for surface format R32G32B32_FLOAT." |
| 494 | */ |
| 495 | if (params->dev->gen >= ILO_GEN(7) && layout->block_size == 12) |
| 496 | valid_tilings &= ~LAYOUT_TILING_Y; |
| 497 | } |
| 498 | |
| 499 | /* no conflicting binding flags */ |
| 500 | assert(valid_tilings); |
| 501 | |
| 502 | return valid_tilings; |
| 503 | } |
| 504 | |
| 505 | static void |
| 506 | layout_init_tiling(struct ilo_layout *layout, |
| 507 | struct ilo_layout_params *params) |
| 508 | { |
| 509 | const struct pipe_resource *templ = params->templ; |
| 510 | unsigned valid_tilings = layout_get_valid_tilings(layout, params); |
| 511 | |
| 512 | layout->valid_tilings = valid_tilings; |
| 513 | |
| 514 | if (templ->bind & (PIPE_BIND_RENDER_TARGET | PIPE_BIND_SAMPLER_VIEW)) { |
| 515 | /* |
| 516 | * heuristically set a minimum width/height for enabling tiling |
| 517 | */ |
| 518 | if (templ->width0 < 64 && (valid_tilings & ~LAYOUT_TILING_X)) |
| 519 | valid_tilings &= ~LAYOUT_TILING_X; |
| 520 | |
| 521 | if ((templ->width0 < 32 || templ->height0 < 16) && |
| 522 | (templ->width0 < 16 || templ->height0 < 32) && |
| 523 | (valid_tilings & ~LAYOUT_TILING_Y)) |
| 524 | valid_tilings &= ~LAYOUT_TILING_Y; |
| 525 | } else { |
| 526 | /* force linear if we are not sure where the texture is bound to */ |
| 527 | if (valid_tilings & LAYOUT_TILING_NONE) |
| 528 | valid_tilings &= LAYOUT_TILING_NONE; |
| 529 | } |
| 530 | |
| 531 | /* prefer tiled over linear */ |
| 532 | if (valid_tilings & LAYOUT_TILING_Y) |
| 533 | layout->tiling = INTEL_TILING_Y; |
| 534 | else if (valid_tilings & LAYOUT_TILING_X) |
| 535 | layout->tiling = INTEL_TILING_X; |
| 536 | else /* linear or W-tiled, which has no hardware support */ |
| 537 | layout->tiling = INTEL_TILING_NONE; |
| 538 | } |
| 539 | |
| 540 | static void |
| 541 | layout_init_arrangements_gen7(struct ilo_layout *layout, |
| 542 | struct ilo_layout_params *params) |
| 543 | { |
| 544 | const struct pipe_resource *templ = params->templ; |
| 545 | |
| 546 | /* |
| 547 | * It is not explicitly states, but render targets are expected to be |
| 548 | * UMS/CMS (samples non-interleaved) and depth/stencil buffers are expected |
| 549 | * to be IMS (samples interleaved). |
| 550 | * |
| 551 | * See "Multisampled Surface Storage Format" field of SURFACE_STATE. |
| 552 | */ |
| 553 | if (templ->bind & PIPE_BIND_DEPTH_STENCIL) { |
| 554 | layout->interleaved_samples = true; |
| 555 | |
| 556 | /* |
| 557 | * From the Ivy Bridge PRM, volume 1 part 1, page 111: |
| 558 | * |
| 559 | * "note that the depth buffer and stencil buffer have an implied |
| 560 | * value of ARYSPC_FULL" |
| 561 | */ |
| 562 | layout->full_layers = true; |
| 563 | } else { |
| 564 | layout->interleaved_samples = false; |
| 565 | |
| 566 | /* |
| 567 | * From the Ivy Bridge PRM, volume 4 part 1, page 66: |
| 568 | * |
| 569 | * "If Multisampled Surface Storage Format is MSFMT_MSS and Number |
| 570 | * of Multisamples is not MULTISAMPLECOUNT_1, this field (Surface |
| 571 | * Array Spacing) must be set to ARYSPC_LOD0." |
| 572 | * |
| 573 | * As multisampled resources are not mipmapped, we never use |
| 574 | * ARYSPC_FULL for them. |
| 575 | */ |
| 576 | if (templ->nr_samples > 1) |
| 577 | assert(templ->last_level == 0); |
| 578 | layout->full_layers = (templ->last_level > 0); |
| 579 | } |
| 580 | } |
| 581 | |
| 582 | static void |
| 583 | layout_init_arrangements_gen6(struct ilo_layout *layout, |
| 584 | struct ilo_layout_params *params) |
| 585 | { |
| 586 | /* GEN6 supports only interleaved samples */ |
| 587 | layout->interleaved_samples = true; |
| 588 | |
| 589 | /* |
| 590 | * From the Sandy Bridge PRM, volume 1 part 1, page 115: |
| 591 | * |
| 592 | * "The separate stencil buffer does not support mip mapping, thus the |
| 593 | * storage for LODs other than LOD 0 is not needed. The following |
| 594 | * QPitch equation applies only to the separate stencil buffer: |
| 595 | * |
| 596 | * QPitch = h_0" |
| 597 | * |
| 598 | * GEN6 does not support compact spacing otherwise. |
| 599 | */ |
| 600 | layout->full_layers = (layout->format != PIPE_FORMAT_S8_UINT); |
| 601 | } |
| 602 | |
| 603 | static void |
| 604 | layout_init_arrangements(struct ilo_layout *layout, |
| 605 | struct ilo_layout_params *params) |
| 606 | { |
| 607 | if (params->dev->gen >= ILO_GEN(7)) |
| 608 | layout_init_arrangements_gen7(layout, params); |
| 609 | else |
| 610 | layout_init_arrangements_gen6(layout, params); |
| 611 | |
| 612 | layout->is_2d = (params->templ->target != PIPE_TEXTURE_3D); |
| 613 | } |
| 614 | |
| 615 | static void |
| 616 | layout_init_format(struct ilo_layout *layout, |
| 617 | struct ilo_layout_params *params) |
| 618 | { |
| 619 | const struct pipe_resource *templ = params->templ; |
| 620 | enum pipe_format format = templ->format; |
| 621 | bool require_separate_stencil; |
| 622 | |
| 623 | /* |
| 624 | * From the Sandy Bridge PRM, volume 2 part 1, page 317: |
| 625 | * |
| 626 | * "This field (Separate Stencil Buffer Enable) must be set to the same |
| 627 | * value (enabled or disabled) as Hierarchical Depth Buffer Enable." |
| 628 | * |
| 629 | * GEN7+ requires separate stencil buffers. |
| 630 | */ |
| 631 | if (templ->bind & PIPE_BIND_DEPTH_STENCIL) { |
| 632 | if (params->dev->gen >= ILO_GEN(7)) |
| 633 | require_separate_stencil = true; |
| 634 | else |
| 635 | require_separate_stencil = (layout->aux_type == ILO_LAYOUT_AUX_HIZ); |
| 636 | } |
| 637 | |
| 638 | switch (format) { |
| 639 | case PIPE_FORMAT_ETC1_RGB8: |
| 640 | format = PIPE_FORMAT_R8G8B8X8_UNORM; |
| 641 | break; |
| 642 | case PIPE_FORMAT_Z24_UNORM_S8_UINT: |
| 643 | if (require_separate_stencil) { |
| 644 | format = PIPE_FORMAT_Z24X8_UNORM; |
| 645 | layout->separate_stencil = true; |
| 646 | } |
| 647 | break; |
| 648 | case PIPE_FORMAT_Z32_FLOAT_S8X24_UINT: |
| 649 | if (require_separate_stencil) { |
| 650 | format = PIPE_FORMAT_Z32_FLOAT; |
| 651 | layout->separate_stencil = true; |
| 652 | } |
| 653 | break; |
| 654 | default: |
| 655 | break; |
| 656 | } |
| 657 | |
| 658 | params->compressed = util_format_is_compressed(format); |
| 659 | |
| 660 | layout->format = format; |
| 661 | layout->block_width = util_format_get_blockwidth(format); |
| 662 | layout->block_height = util_format_get_blockheight(format); |
| 663 | layout->block_size = util_format_get_blocksize(format); |
| 664 | } |
| 665 | |
| 666 | static bool |
| 667 | layout_want_mcs(struct ilo_layout *layout, |
| 668 | struct ilo_layout_params *params) |
| 669 | { |
| 670 | const struct pipe_resource *templ = params->templ; |
| 671 | bool want_mcs = false; |
| 672 | |
| 673 | /* MCS is for RT on GEN7+ */ |
| 674 | if (params->dev->gen < ILO_GEN(7)) |
| 675 | return false; |
| 676 | |
| 677 | if (templ->target != PIPE_TEXTURE_2D || |
| 678 | !(templ->bind & PIPE_BIND_RENDER_TARGET)) |
| 679 | return false; |
| 680 | |
| 681 | /* |
| 682 | * From the Ivy Bridge PRM, volume 4 part 1, page 77: |
| 683 | * |
| 684 | * "For Render Target and Sampling Engine Surfaces:If the surface is |
| 685 | * multisampled (Number of Multisamples any value other than |
| 686 | * MULTISAMPLECOUNT_1), this field (MCS Enable) must be enabled." |
| 687 | * |
| 688 | * "This field must be set to 0 for all SINT MSRTs when all RT channels |
| 689 | * are not written" |
| 690 | */ |
| 691 | if (templ->nr_samples > 1 && !layout->interleaved_samples && |
| 692 | !util_format_is_pure_sint(templ->format)) { |
| 693 | want_mcs = true; |
| 694 | } else if (templ->nr_samples <= 1) { |
| 695 | /* |
| 696 | * From the Ivy Bridge PRM, volume 2 part 1, page 326: |
| 697 | * |
| 698 | * "When MCS is buffer is used for color clear of non-multisampler |
| 699 | * render target, the following restrictions apply. |
| 700 | * - Support is limited to tiled render targets. |
| 701 | * - Support is for non-mip-mapped and non-array surface types |
| 702 | * only. |
| 703 | * - Clear is supported only on the full RT; i.e., no partial clear |
| 704 | * or overlapping clears. |
| 705 | * - MCS buffer for non-MSRT is supported only for RT formats |
| 706 | * 32bpp, 64bpp and 128bpp. |
| 707 | * ..." |
| 708 | */ |
| 709 | if (layout->tiling != INTEL_TILING_NONE && |
| 710 | templ->last_level == 0 && templ->array_size == 1) { |
| 711 | switch (layout->block_size) { |
| 712 | case 4: |
| 713 | case 8: |
| 714 | case 16: |
| 715 | want_mcs = true; |
| 716 | break; |
| 717 | default: |
| 718 | break; |
| 719 | } |
| 720 | } |
| 721 | } |
| 722 | |
| 723 | return want_mcs; |
| 724 | } |
| 725 | |
| 726 | static bool |
| 727 | layout_want_hiz(const struct ilo_layout *layout, |
| 728 | const struct ilo_layout_params *params) |
| 729 | { |
| 730 | const struct pipe_resource *templ = params->templ; |
| 731 | const struct util_format_description *desc = |
| 732 | util_format_description(templ->format); |
| 733 | bool want_hiz = false; |
| 734 | |
| 735 | if (ilo_debug & ILO_DEBUG_NOHIZ) |
| 736 | return false; |
| 737 | |
| 738 | if (!(templ->bind & PIPE_BIND_DEPTH_STENCIL)) |
| 739 | return false; |
| 740 | |
| 741 | if (!util_format_has_depth(desc)) |
| 742 | return false; |
| 743 | |
| 744 | /* no point in having HiZ */ |
| 745 | if (templ->usage == PIPE_USAGE_STAGING) |
| 746 | return false; |
| 747 | |
| 748 | if (params->dev->gen >= ILO_GEN(7)) { |
| 749 | want_hiz = true; |
| 750 | } else { |
| 751 | /* |
| 752 | * From the Sandy Bridge PRM, volume 2 part 1, page 312: |
| 753 | * |
| 754 | * "The hierarchical depth buffer does not support the LOD field, it |
| 755 | * is assumed by hardware to be zero. A separate hierarachical |
| 756 | * depth buffer is required for each LOD used, and the |
| 757 | * corresponding buffer's state delivered to hardware each time a |
| 758 | * new depth buffer state with modified LOD is delivered." |
| 759 | * |
| 760 | * But we have a stronger requirement. Because of layer offsetting |
| 761 | * (check out the callers of ilo_layout_get_slice_tile_offset()), we |
| 762 | * already have to require the texture to be non-mipmapped and |
| 763 | * non-array. |
| 764 | */ |
| 765 | if (templ->last_level == 0 && templ->array_size == 1 && |
| 766 | templ->depth0 == 1) |
| 767 | want_hiz = true; |
| 768 | } |
| 769 | |
| 770 | return want_hiz; |
| 771 | } |
| 772 | |
| 773 | static void |
| 774 | layout_init_aux(struct ilo_layout *layout, |
| 775 | struct ilo_layout_params *params) |
| 776 | { |
| 777 | if (layout_want_hiz(layout, params)) |
| 778 | layout->aux_type = ILO_LAYOUT_AUX_HIZ; |
| 779 | else if (layout_want_mcs(layout, params)) |
| 780 | layout->aux_type = ILO_LAYOUT_AUX_MCS; |
| 781 | } |
| 782 | |
| 783 | static void |
| 784 | layout_align(struct ilo_layout *layout, struct ilo_layout_params *params) |
| 785 | { |
| 786 | const struct pipe_resource *templ = params->templ; |
| 787 | int align_w = 1, align_h = 1, pad_h = 0; |
| 788 | |
| 789 | /* |
| 790 | * From the Sandy Bridge PRM, volume 1 part 1, page 118: |
| 791 | * |
| 792 | * "To determine the necessary padding on the bottom and right side of |
| 793 | * the surface, refer to the table in Section 7.18.3.4 for the i and j |
| 794 | * parameters for the surface format in use. The surface must then be |
| 795 | * extended to the next multiple of the alignment unit size in each |
| 796 | * dimension, and all texels contained in this extended surface must |
| 797 | * have valid GTT entries." |
| 798 | * |
| 799 | * "For cube surfaces, an additional two rows of padding are required |
| 800 | * at the bottom of the surface. This must be ensured regardless of |
| 801 | * whether the surface is stored tiled or linear. This is due to the |
| 802 | * potential rotation of cache line orientation from memory to cache." |
| 803 | * |
| 804 | * "For compressed textures (BC* and FXT1 surface formats), padding at |
| 805 | * the bottom of the surface is to an even compressed row, which is |
| 806 | * equal to a multiple of 8 uncompressed texel rows. Thus, for padding |
| 807 | * purposes, these surfaces behave as if j = 8 only for surface |
| 808 | * padding purposes. The value of 4 for j still applies for mip level |
| 809 | * alignment and QPitch calculation." |
| 810 | */ |
| 811 | if (templ->bind & PIPE_BIND_SAMPLER_VIEW) { |
| 812 | align_w = MAX2(align_w, layout->align_i); |
| 813 | align_h = MAX2(align_h, layout->align_j); |
| 814 | |
| 815 | if (templ->target == PIPE_TEXTURE_CUBE) |
| 816 | pad_h += 2; |
| 817 | |
| 818 | if (params->compressed) |
| 819 | align_h = MAX2(align_h, layout->align_j * 2); |
| 820 | } |
| 821 | |
| 822 | /* |
| 823 | * From the Sandy Bridge PRM, volume 1 part 1, page 118: |
| 824 | * |
| 825 | * "If the surface contains an odd number of rows of data, a final row |
| 826 | * below the surface must be allocated." |
| 827 | */ |
| 828 | if (templ->bind & PIPE_BIND_RENDER_TARGET) |
| 829 | align_h = MAX2(align_h, 2); |
| 830 | |
| 831 | /* |
| 832 | * Depth Buffer Clear/Resolve works in 8x4 sample blocks. In |
| 833 | * ilo_texture_can_enable_hiz(), we always return true for the first slice. |
| 834 | * To avoid out-of-bound access, we have to pad. |
| 835 | */ |
| 836 | if (layout->aux_type == ILO_LAYOUT_AUX_HIZ) { |
| 837 | align_w = MAX2(align_w, 8); |
| 838 | align_h = MAX2(align_h, 4); |
| 839 | } |
| 840 | |
| 841 | params->max_x = align(params->max_x, align_w); |
| 842 | params->max_y = align(params->max_y + pad_h, align_h); |
| 843 | } |
| 844 | |
| 845 | /* note that this may force the texture to be linear */ |
| 846 | static void |
| 847 | layout_calculate_bo_size(struct ilo_layout *layout, |
| 848 | struct ilo_layout_params *params) |
| 849 | { |
| 850 | assert(params->max_x % layout->block_width == 0); |
| 851 | assert(params->max_y % layout->block_height == 0); |
| 852 | assert(layout->layer_height % layout->block_height == 0); |
| 853 | |
| 854 | layout->bo_stride = |
| 855 | (params->max_x / layout->block_width) * layout->block_size; |
| 856 | layout->bo_height = params->max_y / layout->block_height; |
| 857 | |
| 858 | while (true) { |
| 859 | unsigned w = layout->bo_stride, h = layout->bo_height; |
| 860 | unsigned align_w, align_h; |
| 861 | |
| 862 | /* |
| 863 | * From the Haswell PRM, volume 5, page 163: |
| 864 | * |
| 865 | * "For linear surfaces, additional padding of 64 bytes is required |
| 866 | * at the bottom of the surface. This is in addition to the padding |
| 867 | * required above." |
| 868 | */ |
| 869 | if (params->dev->gen >= ILO_GEN(7.5) && |
| 870 | (params->templ->bind & PIPE_BIND_SAMPLER_VIEW) && |
| 871 | layout->tiling == INTEL_TILING_NONE) { |
| 872 | layout->bo_height += |
| 873 | (64 + layout->bo_stride - 1) / layout->bo_stride; |
| 874 | } |
| 875 | |
| 876 | /* |
| 877 | * From the Sandy Bridge PRM, volume 4 part 1, page 81: |
| 878 | * |
| 879 | * "- For linear render target surfaces, the pitch must be a |
| 880 | * multiple of the element size for non-YUV surface formats. |
| 881 | * Pitch must be a multiple of 2 * element size for YUV surface |
| 882 | * formats. |
| 883 | * - For other linear surfaces, the pitch can be any multiple of |
| 884 | * bytes. |
| 885 | * - For tiled surfaces, the pitch must be a multiple of the tile |
| 886 | * width." |
| 887 | * |
| 888 | * Different requirements may exist when the bo is used in different |
| 889 | * places, but our alignments here should be good enough that we do not |
| 890 | * need to check layout->templ->bind. |
| 891 | */ |
| 892 | switch (layout->tiling) { |
| 893 | case INTEL_TILING_X: |
| 894 | align_w = 512; |
| 895 | align_h = 8; |
| 896 | break; |
| 897 | case INTEL_TILING_Y: |
| 898 | align_w = 128; |
| 899 | align_h = 32; |
| 900 | break; |
| 901 | default: |
| 902 | if (layout->format == PIPE_FORMAT_S8_UINT) { |
| 903 | /* |
| 904 | * From the Sandy Bridge PRM, volume 1 part 2, page 22: |
| 905 | * |
| 906 | * "A 4KB tile is subdivided into 8-high by 8-wide array of |
| 907 | * Blocks for W-Major Tiles (W Tiles). Each Block is 8 rows by 8 |
| 908 | * bytes." |
| 909 | * |
| 910 | * Since we asked for INTEL_TILING_NONE instead of the non-existent |
| 911 | * INTEL_TILING_W, we want to align to W tiles here. |
| 912 | */ |
| 913 | align_w = 64; |
| 914 | align_h = 64; |
| 915 | } else { |
| 916 | /* some good enough values */ |
| 917 | align_w = 64; |
| 918 | align_h = 2; |
| 919 | } |
| 920 | break; |
| 921 | } |
| 922 | |
| 923 | w = align(w, align_w); |
| 924 | h = align(h, align_h); |
| 925 | |
| 926 | /* make sure the bo is mappable */ |
| 927 | if (layout->tiling != INTEL_TILING_NONE) { |
| 928 | /* |
| 929 | * Usually only the first 256MB of the GTT is mappable. |
| 930 | * |
| 931 | * See also how intel_context::max_gtt_map_object_size is calculated. |
| 932 | */ |
| 933 | const size_t mappable_gtt_size = 256 * 1024 * 1024; |
| 934 | |
| 935 | /* |
| 936 | * Be conservative. We may be able to switch from VALIGN_4 to |
| 937 | * VALIGN_2 if the layout was Y-tiled, but let's keep it simple. |
| 938 | */ |
| 939 | if (mappable_gtt_size / w / 4 < h) { |
| 940 | if (layout->valid_tilings & LAYOUT_TILING_NONE) { |
| 941 | layout->tiling = INTEL_TILING_NONE; |
| 942 | /* MCS support for non-MSRTs is limited to tiled RTs */ |
| 943 | if (layout->aux_type == ILO_LAYOUT_AUX_MCS && |
| 944 | params->templ->nr_samples <= 1) |
| 945 | layout->aux_type = ILO_LAYOUT_AUX_NONE; |
| 946 | |
| 947 | continue; |
| 948 | } else { |
| 949 | ilo_warn("cannot force texture to be linear\n"); |
| 950 | } |
| 951 | } |
| 952 | } |
| 953 | |
| 954 | layout->bo_stride = w; |
| 955 | layout->bo_height = h; |
| 956 | break; |
| 957 | } |
| 958 | } |
| 959 | |
| 960 | static void |
| 961 | layout_calculate_hiz_size(struct ilo_layout *layout, |
| 962 | struct ilo_layout_params *params) |
| 963 | { |
| 964 | const struct pipe_resource *templ = params->templ; |
| 965 | const int hz_align_j = 8; |
| 966 | int hz_width, hz_height; |
| 967 | |
| 968 | assert(layout->aux_type == ILO_LAYOUT_AUX_HIZ); |
| 969 | |
| 970 | /* |
| 971 | * See the Sandy Bridge PRM, volume 2 part 1, page 312, and the Ivy Bridge |
| 972 | * PRM, volume 2 part 1, page 312-313. |
| 973 | * |
| 974 | * It seems HiZ buffer is aligned to 8x8, with every two rows packed into a |
| 975 | * memory row. |
| 976 | */ |
| 977 | |
| 978 | hz_width = align(layout->levels[0].slice_width, 16); |
| 979 | |
| 980 | if (templ->target == PIPE_TEXTURE_3D) { |
| 981 | unsigned lv; |
| 982 | |
| 983 | hz_height = 0; |
| 984 | |
| 985 | for (lv = 0; lv <= templ->last_level; lv++) { |
| 986 | const unsigned h = |
| 987 | align(layout->levels[lv].slice_height, hz_align_j); |
| 988 | hz_height += h * u_minify(templ->depth0, lv); |
| 989 | } |
| 990 | |
| 991 | hz_height /= 2; |
| 992 | } else { |
| 993 | const unsigned h0 = align(params->h0, hz_align_j); |
| 994 | unsigned hz_qpitch = h0; |
| 995 | |
| 996 | if (layout->full_layers) { |
| 997 | const unsigned h1 = align(params->h1, hz_align_j); |
| 998 | const unsigned htail = |
| 999 | ((params->dev->gen >= ILO_GEN(7)) ? 12 : 11) * hz_align_j; |
| 1000 | |
| 1001 | hz_qpitch += h1 + htail; |
| 1002 | } |
| 1003 | |
| 1004 | hz_height = hz_qpitch * templ->array_size / 2; |
| 1005 | |
| 1006 | if (params->dev->gen >= ILO_GEN(7)) |
| 1007 | hz_height = align(hz_height, 8); |
| 1008 | } |
| 1009 | |
| 1010 | /* align to Y-tile */ |
| 1011 | layout->aux_stride = align(hz_width, 128); |
| 1012 | layout->aux_height = align(hz_height, 32); |
| 1013 | } |
| 1014 | |
| 1015 | static void |
| 1016 | layout_calculate_mcs_size(struct ilo_layout *layout, |
| 1017 | struct ilo_layout_params *params) |
| 1018 | { |
| 1019 | const struct pipe_resource *templ = params->templ; |
| 1020 | int mcs_width, mcs_height, mcs_cpp; |
| 1021 | int downscale_x, downscale_y; |
| 1022 | |
| 1023 | assert(layout->aux_type == ILO_LAYOUT_AUX_MCS); |
| 1024 | |
| 1025 | if (templ->nr_samples > 1) { |
| 1026 | /* |
| 1027 | * From the Ivy Bridge PRM, volume 2 part 1, page 326, the clear |
| 1028 | * rectangle is scaled down by 8x2 for 4X MSAA and 2x2 for 8X MSAA. The |
| 1029 | * need of scale down could be that the clear rectangle is used to clear |
| 1030 | * the MCS instead of the RT. |
| 1031 | * |
| 1032 | * For 8X MSAA, we need 32 bits in MCS for every pixel in the RT. The |
| 1033 | * 2x2 factor could come from that the hardware writes 128 bits (an |
| 1034 | * OWord) at a time, and the OWord in MCS maps to a 2x2 pixel block in |
| 1035 | * the RT. For 4X MSAA, we need 8 bits in MCS for every pixel in the |
| 1036 | * RT. Similarly, we could reason that an OWord in 4X MCS maps to a 8x2 |
| 1037 | * pixel block in the RT. |
| 1038 | */ |
| 1039 | switch (templ->nr_samples) { |
| 1040 | case 2: |
| 1041 | case 4: |
| 1042 | downscale_x = 8; |
| 1043 | downscale_y = 2; |
| 1044 | mcs_cpp = 1; |
| 1045 | break; |
| 1046 | case 8: |
| 1047 | downscale_x = 2; |
| 1048 | downscale_y = 2; |
| 1049 | mcs_cpp = 4; |
| 1050 | break; |
| 1051 | case 16: |
| 1052 | downscale_x = 2; |
| 1053 | downscale_y = 1; |
| 1054 | mcs_cpp = 8; |
| 1055 | break; |
| 1056 | default: |
| 1057 | assert(!"unsupported sample count"); |
| 1058 | return; |
| 1059 | break; |
| 1060 | } |
| 1061 | |
| 1062 | /* |
| 1063 | * It also appears that the 2x2 subspans generated by the scaled-down |
| 1064 | * clear rectangle cannot be masked. The scale-down clear rectangle |
| 1065 | * thus must be aligned to 2x2, and we need to pad. |
| 1066 | */ |
| 1067 | mcs_width = align(templ->width0, downscale_x * 2); |
| 1068 | mcs_height = align(templ->height0, downscale_y * 2); |
| 1069 | } |
| 1070 | else { |
| 1071 | /* |
| 1072 | * From the Ivy Bridge PRM, volume 2 part 1, page 327: |
| 1073 | * |
| 1074 | * " Pixels Lines |
| 1075 | * TiledY RT CL |
| 1076 | * bpp |
| 1077 | * 32 8 4 |
| 1078 | * 64 4 4 |
| 1079 | * 128 2 4 |
| 1080 | * |
| 1081 | * TiledX RT CL |
| 1082 | * bpp |
| 1083 | * 32 16 2 |
| 1084 | * 64 8 2 |
| 1085 | * 128 4 2" |
| 1086 | * |
| 1087 | * This table and the two following tables define the RT alignments, the |
| 1088 | * clear rectangle alignments, and the clear rectangle scale factors. |
| 1089 | * Viewing the RT alignments as the sizes of 128-byte blocks, we can see |
| 1090 | * that the clear rectangle alignments are 16x32 blocks, and the clear |
| 1091 | * rectangle scale factors are 8x16 blocks. |
| 1092 | * |
| 1093 | * For non-MSAA RT, we need 1 bit in MCS for every 128-byte block in the |
| 1094 | * RT. Similar to the MSAA cases, we can argue that an OWord maps to |
| 1095 | * 8x16 blocks. |
| 1096 | * |
| 1097 | * One problem with this reasoning is that a Y-tile in MCS has 8x32 |
| 1098 | * OWords and maps to 64x512 128-byte blocks. This differs from i965, |
| 1099 | * which says that a Y-tile maps to 128x256 blocks (\see |
| 1100 | * intel_get_non_msrt_mcs_alignment). It does not really change |
| 1101 | * anything except for the size of the allocated MCS. Let's see if we |
| 1102 | * hit out-of-bound access. |
| 1103 | */ |
| 1104 | switch (layout->tiling) { |
| 1105 | case INTEL_TILING_X: |
| 1106 | downscale_x = 64 / layout->block_size; |
| 1107 | downscale_y = 2; |
| 1108 | break; |
| 1109 | case INTEL_TILING_Y: |
| 1110 | downscale_x = 32 / layout->block_size; |
| 1111 | downscale_y = 4; |
| 1112 | break; |
| 1113 | default: |
| 1114 | assert(!"unsupported tiling mode"); |
| 1115 | return; |
| 1116 | break; |
| 1117 | } |
| 1118 | |
| 1119 | downscale_x *= 8; |
| 1120 | downscale_y *= 16; |
| 1121 | |
| 1122 | /* |
| 1123 | * From the Haswell PRM, volume 7, page 652: |
| 1124 | * |
| 1125 | * "Clear rectangle must be aligned to two times the number of |
| 1126 | * pixels in the table shown below due to 16X16 hashing across the |
| 1127 | * slice." |
| 1128 | * |
| 1129 | * The scaled-down clear rectangle must be aligned to 4x4 instead of |
| 1130 | * 2x2, and we need to pad. |
| 1131 | */ |
| 1132 | mcs_width = align(templ->width0, downscale_x * 4) / downscale_x; |
| 1133 | mcs_height = align(templ->height0, downscale_y * 4) / downscale_y; |
| 1134 | mcs_cpp = 16; /* an OWord */ |
| 1135 | } |
| 1136 | |
| 1137 | /* align to Y-tile */ |
| 1138 | layout->aux_stride = align(mcs_width * mcs_cpp, 128); |
| 1139 | layout->aux_height = align(mcs_height, 32); |
| 1140 | } |
| 1141 | |
| 1142 | /** |
| 1143 | * The texutre is for transfer only. We can define our own layout to save |
| 1144 | * space. |
| 1145 | */ |
| 1146 | static void |
| 1147 | layout_init_for_transfer(struct ilo_layout *layout, |
| 1148 | const struct ilo_dev_info *dev, |
| 1149 | const struct pipe_resource *templ) |
| 1150 | { |
| 1151 | const unsigned num_layers = (templ->target == PIPE_TEXTURE_3D) ? |
| 1152 | templ->depth0 : templ->array_size; |
| 1153 | unsigned layer_width, layer_height; |
| 1154 | |
| 1155 | assert(templ->last_level == 0); |
| 1156 | assert(templ->nr_samples <= 1); |
| 1157 | |
| 1158 | layout->block_width = util_format_get_blockwidth(templ->format); |
| 1159 | layout->block_height = util_format_get_blockheight(templ->format); |
| 1160 | layout->block_size = util_format_get_blocksize(templ->format); |
| 1161 | |
| 1162 | layout->valid_tilings = LAYOUT_TILING_NONE; |
| 1163 | layout->tiling = INTEL_TILING_NONE; |
| 1164 | |
| 1165 | layout->align_i = layout->block_width; |
| 1166 | layout->align_j = layout->block_height; |
| 1167 | |
| 1168 | assert(util_is_power_of_two(layout->block_width) && |
| 1169 | util_is_power_of_two(layout->block_height)); |
| 1170 | |
| 1171 | /* use packed layout */ |
| 1172 | layer_width = align(templ->width0, layout->align_i); |
| 1173 | layer_height = align(templ->height0, layout->align_j); |
| 1174 | |
| 1175 | layout->levels[0].slice_width = layer_width; |
| 1176 | layout->levels[0].slice_height = layer_height; |
| 1177 | layout->layer_height = layer_height; |
| 1178 | |
| 1179 | layout->bo_stride = (layer_width / layout->block_width) * layout->block_size; |
| 1180 | layout->bo_stride = align(layout->bo_stride, 64); |
| 1181 | |
| 1182 | layout->bo_height = (layer_height / layout->block_height) * num_layers; |
| 1183 | } |
| 1184 | |
| 1185 | /** |
| 1186 | * Initialize the layout. Callers should zero-initialize \p layout first. |
| 1187 | */ |
| 1188 | void ilo_layout_init(struct ilo_layout *layout, |
| 1189 | const struct ilo_dev_info *dev, |
| 1190 | const struct pipe_resource *templ) |
| 1191 | { |
| 1192 | struct ilo_layout_params params; |
| 1193 | bool transfer_only; |
| 1194 | |
| 1195 | /* use transfer layout when the texture is never bound to GPU */ |
| 1196 | transfer_only = !(templ->bind & ~(PIPE_BIND_TRANSFER_WRITE | |
| 1197 | PIPE_BIND_TRANSFER_READ)); |
| 1198 | if (transfer_only && templ->last_level == 0 && templ->nr_samples <= 1) { |
| 1199 | layout_init_for_transfer(layout, dev, templ); |
| 1200 | return; |
| 1201 | } |
| 1202 | |
| 1203 | memset(¶ms, 0, sizeof(params)); |
| 1204 | params.dev = dev; |
| 1205 | params.templ = templ; |
| 1206 | |
| 1207 | /* note that there are dependencies between these functions */ |
| 1208 | layout_init_aux(layout, ¶ms); |
| 1209 | layout_init_format(layout, ¶ms); |
| 1210 | layout_init_arrangements(layout, ¶ms); |
| 1211 | layout_init_tiling(layout, ¶ms); |
| 1212 | layout_init_alignments(layout, ¶ms); |
| 1213 | layout_init_levels(layout, ¶ms); |
| 1214 | layout_init_layer_height(layout, ¶ms); |
| 1215 | |
| 1216 | layout_align(layout, ¶ms); |
| 1217 | layout_calculate_bo_size(layout, ¶ms); |
| 1218 | |
| 1219 | switch (layout->aux_type) { |
| 1220 | case ILO_LAYOUT_AUX_HIZ: |
| 1221 | layout_calculate_hiz_size(layout, ¶ms); |
| 1222 | break; |
| 1223 | case ILO_LAYOUT_AUX_MCS: |
| 1224 | layout_calculate_mcs_size(layout, ¶ms); |
| 1225 | break; |
| 1226 | default: |
| 1227 | break; |
| 1228 | } |
| 1229 | } |
| 1230 | |
| 1231 | /** |
| 1232 | * Update the tiling mode and bo stride (for imported resources). |
| 1233 | */ |
| 1234 | bool |
| 1235 | ilo_layout_update_for_imported_bo(struct ilo_layout *layout, |
| 1236 | enum intel_tiling_mode tiling, |
| 1237 | unsigned bo_stride) |
| 1238 | { |
| 1239 | if (!(layout->valid_tilings & (1 << tiling))) |
| 1240 | return false; |
| 1241 | |
| 1242 | if ((tiling == INTEL_TILING_X && bo_stride % 512) || |
| 1243 | (tiling == INTEL_TILING_Y && bo_stride % 128)) |
| 1244 | return false; |
| 1245 | |
| 1246 | layout->tiling = tiling; |
| 1247 | layout->bo_stride = bo_stride; |
| 1248 | |
| 1249 | return true; |
| 1250 | } |
| 1251 | |
| 1252 | /** |
| 1253 | * Return the offset (in bytes) to a slice within the bo. |
| 1254 | * |
| 1255 | * The returned offset is aligned to tile size. Since slices are not |
| 1256 | * guaranteed to start at tile boundaries, the X and Y offsets (in pixels) |
| 1257 | * from the tile origin to the slice are also returned. X offset is always a |
| 1258 | * multiple of 4 and Y offset is always a multiple of 2. |
| 1259 | */ |
| 1260 | unsigned |
| 1261 | ilo_layout_get_slice_tile_offset(const struct ilo_layout *layout, |
| 1262 | unsigned level, unsigned slice, |
| 1263 | unsigned *x_offset, unsigned *y_offset) |
| 1264 | { |
| 1265 | unsigned tile_w, tile_h, tile_size, row_size; |
| 1266 | unsigned tile_offset, x, y; |
| 1267 | |
| 1268 | /* see the Sandy Bridge PRM, volume 1 part 2, page 24 */ |
| 1269 | |
| 1270 | switch (layout->tiling) { |
| 1271 | case INTEL_TILING_NONE: |
| 1272 | /* W-tiled */ |
| 1273 | if (layout->format == PIPE_FORMAT_S8_UINT) { |
| 1274 | tile_w = 64; |
| 1275 | tile_h = 64; |
| 1276 | } |
| 1277 | else { |
| 1278 | tile_w = 1; |
| 1279 | tile_h = 1; |
| 1280 | } |
| 1281 | break; |
| 1282 | case INTEL_TILING_X: |
| 1283 | tile_w = 512; |
| 1284 | tile_h = 8; |
| 1285 | break; |
| 1286 | case INTEL_TILING_Y: |
| 1287 | tile_w = 128; |
| 1288 | tile_h = 32; |
| 1289 | break; |
| 1290 | default: |
| 1291 | assert(!"unknown tiling"); |
| 1292 | tile_w = 1; |
| 1293 | tile_h = 1; |
| 1294 | break; |
| 1295 | } |
| 1296 | |
| 1297 | tile_size = tile_w * tile_h; |
| 1298 | row_size = layout->bo_stride * tile_h; |
| 1299 | |
| 1300 | ilo_layout_get_slice_pos(layout, level, slice, &x, &y); |
| 1301 | /* in bytes */ |
| 1302 | ilo_layout_pos_to_mem(layout, x, y, &x, &y); |
| 1303 | tile_offset = row_size * (y / tile_h) + tile_size * (x / tile_w); |
| 1304 | |
| 1305 | /* |
| 1306 | * Since tex->bo_stride is a multiple of tile_w, slice_offset should be |
| 1307 | * aligned at this point. |
| 1308 | */ |
| 1309 | assert(tile_offset % tile_size == 0); |
| 1310 | |
| 1311 | /* |
| 1312 | * because of the possible values of align_i and align_j in |
| 1313 | * tex_layout_init_alignments(), x_offset is guaranteed to be a multiple of |
| 1314 | * 4 and y_offset is guaranteed to be a multiple of 2. |
| 1315 | */ |
| 1316 | if (x_offset) { |
| 1317 | /* in pixels */ |
| 1318 | x = (x % tile_w) / layout->block_size * layout->block_width; |
| 1319 | assert(x % 4 == 0); |
| 1320 | |
| 1321 | *x_offset = x; |
| 1322 | } |
| 1323 | |
| 1324 | if (y_offset) { |
| 1325 | /* in pixels */ |
| 1326 | y = (y % tile_h) * layout->block_height; |
| 1327 | assert(y % 2 == 0); |
| 1328 | |
| 1329 | *y_offset = y; |
| 1330 | } |
| 1331 | |
| 1332 | return tile_offset; |
| 1333 | } |