Tony-LunarG | b0b195d | 2015-05-13 15:01:06 -0600 | [diff] [blame^] | 1 | /////////////////////////////////////////////////////////////////////////////////// |
| 2 | /// OpenGL Mathematics (glm.g-truc.net) |
| 3 | /// |
| 4 | /// Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net) |
| 5 | /// Permission is hereby granted, free of charge, to any person obtaining a copy |
| 6 | /// of this software and associated documentation files (the "Software"), to deal |
| 7 | /// in the Software without restriction, including without limitation the rights |
| 8 | /// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| 9 | /// copies of the Software, and to permit persons to whom the Software is |
| 10 | /// furnished to do so, subject to the following conditions: |
| 11 | /// |
| 12 | /// The above copyright notice and this permission notice shall be included in |
| 13 | /// all copies or substantial portions of the Software. |
| 14 | /// |
| 15 | /// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| 16 | /// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| 17 | /// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| 18 | /// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| 19 | /// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| 20 | /// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| 21 | /// THE SOFTWARE. |
| 22 | /// |
| 23 | /// @ref gtx_compatibility |
| 24 | /// @file glm/gtx/compatibility.hpp |
| 25 | /// @date 2007-01-24 / 2011-06-07 |
| 26 | /// @author Christophe Riccio |
| 27 | /// |
| 28 | /// @see core (dependence) |
| 29 | /// @see gtc_half_float (dependence) |
| 30 | /// |
| 31 | /// @defgroup gtx_compatibility GLM_GTX_compatibility |
| 32 | /// @ingroup gtx |
| 33 | /// |
| 34 | /// @brief Provide functions to increase the compatibility with Cg and HLSL languages |
| 35 | /// |
| 36 | /// <glm/gtx/compatibility.hpp> need to be included to use these functionalities. |
| 37 | /////////////////////////////////////////////////////////////////////////////////// |
| 38 | |
| 39 | #ifndef GLM_GTX_compatibility |
| 40 | #define GLM_GTX_compatibility |
| 41 | |
| 42 | // Dependency: |
| 43 | #include "../glm.hpp" |
| 44 | #include "../gtc/quaternion.hpp" |
| 45 | |
| 46 | #if(defined(GLM_MESSAGES) && !defined(GLM_EXT_INCLUDED)) |
| 47 | # pragma message("GLM: GLM_GTX_compatibility extension included") |
| 48 | #endif |
| 49 | |
| 50 | #if(GLM_COMPILER & GLM_COMPILER_VC) |
| 51 | # include <cfloat> |
| 52 | #elif(GLM_COMPILER & GLM_COMPILER_GCC) |
| 53 | # include <cmath> |
| 54 | # if(GLM_PLATFORM & GLM_PLATFORM_ANDROID) |
| 55 | # undef isfinite |
| 56 | # endif |
| 57 | #endif//GLM_COMPILER |
| 58 | |
| 59 | namespace glm |
| 60 | { |
| 61 | /// @addtogroup gtx_compatibility |
| 62 | /// @{ |
| 63 | |
| 64 | template <typename T> GLM_FUNC_QUALIFIER T lerp(T x, T y, T a){return mix(x, y, a);} //!< \brief Returns x * (1.0 - a) + y * a, i.e., the linear blend of x and y using the floating-point value a. The value for a is not restricted to the range [0, 1]. (From GLM_GTX_compatibility) |
| 65 | template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tvec2<T, P> lerp(const detail::tvec2<T, P>& x, const detail::tvec2<T, P>& y, T a){return mix(x, y, a);} //!< \brief Returns x * (1.0 - a) + y * a, i.e., the linear blend of x and y using the floating-point value a. The value for a is not restricted to the range [0, 1]. (From GLM_GTX_compatibility) |
| 66 | |
| 67 | template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tvec3<T, P> lerp(const detail::tvec3<T, P>& x, const detail::tvec3<T, P>& y, T a){return mix(x, y, a);} //!< \brief Returns x * (1.0 - a) + y * a, i.e., the linear blend of x and y using the floating-point value a. The value for a is not restricted to the range [0, 1]. (From GLM_GTX_compatibility) |
| 68 | template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tvec4<T, P> lerp(const detail::tvec4<T, P>& x, const detail::tvec4<T, P>& y, T a){return mix(x, y, a);} //!< \brief Returns x * (1.0 - a) + y * a, i.e., the linear blend of x and y using the floating-point value a. The value for a is not restricted to the range [0, 1]. (From GLM_GTX_compatibility) |
| 69 | template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tvec2<T, P> lerp(const detail::tvec2<T, P>& x, const detail::tvec2<T, P>& y, const detail::tvec2<T, P>& a){return mix(x, y, a);} //!< \brief Returns the component-wise result of x * (1.0 - a) + y * a, i.e., the linear blend of x and y using vector a. The value for a is not restricted to the range [0, 1]. (From GLM_GTX_compatibility) |
| 70 | template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tvec3<T, P> lerp(const detail::tvec3<T, P>& x, const detail::tvec3<T, P>& y, const detail::tvec3<T, P>& a){return mix(x, y, a);} //!< \brief Returns the component-wise result of x * (1.0 - a) + y * a, i.e., the linear blend of x and y using vector a. The value for a is not restricted to the range [0, 1]. (From GLM_GTX_compatibility) |
| 71 | template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tvec4<T, P> lerp(const detail::tvec4<T, P>& x, const detail::tvec4<T, P>& y, const detail::tvec4<T, P>& a){return mix(x, y, a);} //!< \brief Returns the component-wise result of x * (1.0 - a) + y * a, i.e., the linear blend of x and y using vector a. The value for a is not restricted to the range [0, 1]. (From GLM_GTX_compatibility) |
| 72 | |
| 73 | template <typename T, precision P> GLM_FUNC_QUALIFIER T slerp(detail::tquat<T, P> const & x, detail::tquat<T, P> const & y, T const & a){return mix(x, y, a);} //!< \brief Returns the slurp interpolation between two quaternions. |
| 74 | |
| 75 | template <typename T, precision P> GLM_FUNC_QUALIFIER T saturate(T x){return clamp(x, T(0), T(1));} //!< \brief Returns clamp(x, 0, 1) for each component in x. (From GLM_GTX_compatibility) |
| 76 | template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tvec2<T, P> saturate(const detail::tvec2<T, P>& x){return clamp(x, T(0), T(1));} //!< \brief Returns clamp(x, 0, 1) for each component in x. (From GLM_GTX_compatibility) |
| 77 | template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tvec3<T, P> saturate(const detail::tvec3<T, P>& x){return clamp(x, T(0), T(1));} //!< \brief Returns clamp(x, 0, 1) for each component in x. (From GLM_GTX_compatibility) |
| 78 | template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tvec4<T, P> saturate(const detail::tvec4<T, P>& x){return clamp(x, T(0), T(1));} //!< \brief Returns clamp(x, 0, 1) for each component in x. (From GLM_GTX_compatibility) |
| 79 | |
| 80 | template <typename T, precision P> GLM_FUNC_QUALIFIER T atan2(T x, T y){return atan(x, y);} //!< \brief Arc tangent. Returns an angle whose tangent is y/x. The signs of x and y are used to determine what quadrant the angle is in. The range of values returned by this function is [-PI, PI]. Results are undefined if x and y are both 0. (From GLM_GTX_compatibility) |
| 81 | template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tvec2<T, P> atan2(const detail::tvec2<T, P>& x, const detail::tvec2<T, P>& y){return atan(x, y);} //!< \brief Arc tangent. Returns an angle whose tangent is y/x. The signs of x and y are used to determine what quadrant the angle is in. The range of values returned by this function is [-PI, PI]. Results are undefined if x and y are both 0. (From GLM_GTX_compatibility) |
| 82 | template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tvec3<T, P> atan2(const detail::tvec3<T, P>& x, const detail::tvec3<T, P>& y){return atan(x, y);} //!< \brief Arc tangent. Returns an angle whose tangent is y/x. The signs of x and y are used to determine what quadrant the angle is in. The range of values returned by this function is [-PI, PI]. Results are undefined if x and y are both 0. (From GLM_GTX_compatibility) |
| 83 | template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tvec4<T, P> atan2(const detail::tvec4<T, P>& x, const detail::tvec4<T, P>& y){return atan(x, y);} //!< \brief Arc tangent. Returns an angle whose tangent is y/x. The signs of x and y are used to determine what quadrant the angle is in. The range of values returned by this function is [-PI, PI]. Results are undefined if x and y are both 0. (From GLM_GTX_compatibility) |
| 84 | |
| 85 | template <typename genType> GLM_FUNC_DECL bool isfinite(genType const & x); //!< \brief Test whether or not a scalar or each vector component is a finite value. (From GLM_GTX_compatibility) |
| 86 | template <typename T, precision P> GLM_FUNC_DECL detail::tvec2<bool, P> isfinite(const detail::tvec2<T, P>& x); //!< \brief Test whether or not a scalar or each vector component is a finite value. (From GLM_GTX_compatibility) |
| 87 | template <typename T, precision P> GLM_FUNC_DECL detail::tvec3<bool, P> isfinite(const detail::tvec3<T, P>& x); //!< \brief Test whether or not a scalar or each vector component is a finite value. (From GLM_GTX_compatibility) |
| 88 | template <typename T, precision P> GLM_FUNC_DECL detail::tvec4<bool, P> isfinite(const detail::tvec4<T, P>& x); //!< \brief Test whether or not a scalar or each vector component is a finite value. (From GLM_GTX_compatibility) |
| 89 | |
| 90 | typedef bool bool1; //!< \brief boolean type with 1 component. (From GLM_GTX_compatibility extension) |
| 91 | typedef detail::tvec2<bool, highp> bool2; //!< \brief boolean type with 2 components. (From GLM_GTX_compatibility extension) |
| 92 | typedef detail::tvec3<bool, highp> bool3; //!< \brief boolean type with 3 components. (From GLM_GTX_compatibility extension) |
| 93 | typedef detail::tvec4<bool, highp> bool4; //!< \brief boolean type with 4 components. (From GLM_GTX_compatibility extension) |
| 94 | |
| 95 | typedef bool bool1x1; //!< \brief boolean matrix with 1 x 1 component. (From GLM_GTX_compatibility extension) |
| 96 | typedef detail::tmat2x2<bool, highp> bool2x2; //!< \brief boolean matrix with 2 x 2 components. (From GLM_GTX_compatibility extension) |
| 97 | typedef detail::tmat2x3<bool, highp> bool2x3; //!< \brief boolean matrix with 2 x 3 components. (From GLM_GTX_compatibility extension) |
| 98 | typedef detail::tmat2x4<bool, highp> bool2x4; //!< \brief boolean matrix with 2 x 4 components. (From GLM_GTX_compatibility extension) |
| 99 | typedef detail::tmat3x2<bool, highp> bool3x2; //!< \brief boolean matrix with 3 x 2 components. (From GLM_GTX_compatibility extension) |
| 100 | typedef detail::tmat3x3<bool, highp> bool3x3; //!< \brief boolean matrix with 3 x 3 components. (From GLM_GTX_compatibility extension) |
| 101 | typedef detail::tmat3x4<bool, highp> bool3x4; //!< \brief boolean matrix with 3 x 4 components. (From GLM_GTX_compatibility extension) |
| 102 | typedef detail::tmat4x2<bool, highp> bool4x2; //!< \brief boolean matrix with 4 x 2 components. (From GLM_GTX_compatibility extension) |
| 103 | typedef detail::tmat4x3<bool, highp> bool4x3; //!< \brief boolean matrix with 4 x 3 components. (From GLM_GTX_compatibility extension) |
| 104 | typedef detail::tmat4x4<bool, highp> bool4x4; //!< \brief boolean matrix with 4 x 4 components. (From GLM_GTX_compatibility extension) |
| 105 | |
| 106 | typedef int int1; //!< \brief integer vector with 1 component. (From GLM_GTX_compatibility extension) |
| 107 | typedef detail::tvec2<int, highp> int2; //!< \brief integer vector with 2 components. (From GLM_GTX_compatibility extension) |
| 108 | typedef detail::tvec3<int, highp> int3; //!< \brief integer vector with 3 components. (From GLM_GTX_compatibility extension) |
| 109 | typedef detail::tvec4<int, highp> int4; //!< \brief integer vector with 4 components. (From GLM_GTX_compatibility extension) |
| 110 | |
| 111 | typedef int int1x1; //!< \brief integer matrix with 1 component. (From GLM_GTX_compatibility extension) |
| 112 | typedef detail::tmat2x2<int, highp> int2x2; //!< \brief integer matrix with 2 x 2 components. (From GLM_GTX_compatibility extension) |
| 113 | typedef detail::tmat2x3<int, highp> int2x3; //!< \brief integer matrix with 2 x 3 components. (From GLM_GTX_compatibility extension) |
| 114 | typedef detail::tmat2x4<int, highp> int2x4; //!< \brief integer matrix with 2 x 4 components. (From GLM_GTX_compatibility extension) |
| 115 | typedef detail::tmat3x2<int, highp> int3x2; //!< \brief integer matrix with 3 x 2 components. (From GLM_GTX_compatibility extension) |
| 116 | typedef detail::tmat3x3<int, highp> int3x3; //!< \brief integer matrix with 3 x 3 components. (From GLM_GTX_compatibility extension) |
| 117 | typedef detail::tmat3x4<int, highp> int3x4; //!< \brief integer matrix with 3 x 4 components. (From GLM_GTX_compatibility extension) |
| 118 | typedef detail::tmat4x2<int, highp> int4x2; //!< \brief integer matrix with 4 x 2 components. (From GLM_GTX_compatibility extension) |
| 119 | typedef detail::tmat4x3<int, highp> int4x3; //!< \brief integer matrix with 4 x 3 components. (From GLM_GTX_compatibility extension) |
| 120 | typedef detail::tmat4x4<int, highp> int4x4; //!< \brief integer matrix with 4 x 4 components. (From GLM_GTX_compatibility extension) |
| 121 | |
| 122 | typedef float float1; //!< \brief single-precision floating-point vector with 1 component. (From GLM_GTX_compatibility extension) |
| 123 | typedef detail::tvec2<float, highp> float2; //!< \brief single-precision floating-point vector with 2 components. (From GLM_GTX_compatibility extension) |
| 124 | typedef detail::tvec3<float, highp> float3; //!< \brief single-precision floating-point vector with 3 components. (From GLM_GTX_compatibility extension) |
| 125 | typedef detail::tvec4<float, highp> float4; //!< \brief single-precision floating-point vector with 4 components. (From GLM_GTX_compatibility extension) |
| 126 | |
| 127 | typedef float float1x1; //!< \brief single-precision floating-point matrix with 1 component. (From GLM_GTX_compatibility extension) |
| 128 | typedef detail::tmat2x2<float, highp> float2x2; //!< \brief single-precision floating-point matrix with 2 x 2 components. (From GLM_GTX_compatibility extension) |
| 129 | typedef detail::tmat2x3<float, highp> float2x3; //!< \brief single-precision floating-point matrix with 2 x 3 components. (From GLM_GTX_compatibility extension) |
| 130 | typedef detail::tmat2x4<float, highp> float2x4; //!< \brief single-precision floating-point matrix with 2 x 4 components. (From GLM_GTX_compatibility extension) |
| 131 | typedef detail::tmat3x2<float, highp> float3x2; //!< \brief single-precision floating-point matrix with 3 x 2 components. (From GLM_GTX_compatibility extension) |
| 132 | typedef detail::tmat3x3<float, highp> float3x3; //!< \brief single-precision floating-point matrix with 3 x 3 components. (From GLM_GTX_compatibility extension) |
| 133 | typedef detail::tmat3x4<float, highp> float3x4; //!< \brief single-precision floating-point matrix with 3 x 4 components. (From GLM_GTX_compatibility extension) |
| 134 | typedef detail::tmat4x2<float, highp> float4x2; //!< \brief single-precision floating-point matrix with 4 x 2 components. (From GLM_GTX_compatibility extension) |
| 135 | typedef detail::tmat4x3<float, highp> float4x3; //!< \brief single-precision floating-point matrix with 4 x 3 components. (From GLM_GTX_compatibility extension) |
| 136 | typedef detail::tmat4x4<float, highp> float4x4; //!< \brief single-precision floating-point matrix with 4 x 4 components. (From GLM_GTX_compatibility extension) |
| 137 | |
| 138 | typedef double double1; //!< \brief double-precision floating-point vector with 1 component. (From GLM_GTX_compatibility extension) |
| 139 | typedef detail::tvec2<double, highp> double2; //!< \brief double-precision floating-point vector with 2 components. (From GLM_GTX_compatibility extension) |
| 140 | typedef detail::tvec3<double, highp> double3; //!< \brief double-precision floating-point vector with 3 components. (From GLM_GTX_compatibility extension) |
| 141 | typedef detail::tvec4<double, highp> double4; //!< \brief double-precision floating-point vector with 4 components. (From GLM_GTX_compatibility extension) |
| 142 | |
| 143 | typedef double double1x1; //!< \brief double-precision floating-point matrix with 1 component. (From GLM_GTX_compatibility extension) |
| 144 | typedef detail::tmat2x2<double, highp> double2x2; //!< \brief double-precision floating-point matrix with 2 x 2 components. (From GLM_GTX_compatibility extension) |
| 145 | typedef detail::tmat2x3<double, highp> double2x3; //!< \brief double-precision floating-point matrix with 2 x 3 components. (From GLM_GTX_compatibility extension) |
| 146 | typedef detail::tmat2x4<double, highp> double2x4; //!< \brief double-precision floating-point matrix with 2 x 4 components. (From GLM_GTX_compatibility extension) |
| 147 | typedef detail::tmat3x2<double, highp> double3x2; //!< \brief double-precision floating-point matrix with 3 x 2 components. (From GLM_GTX_compatibility extension) |
| 148 | typedef detail::tmat3x3<double, highp> double3x3; //!< \brief double-precision floating-point matrix with 3 x 3 components. (From GLM_GTX_compatibility extension) |
| 149 | typedef detail::tmat3x4<double, highp> double3x4; //!< \brief double-precision floating-point matrix with 3 x 4 components. (From GLM_GTX_compatibility extension) |
| 150 | typedef detail::tmat4x2<double, highp> double4x2; //!< \brief double-precision floating-point matrix with 4 x 2 components. (From GLM_GTX_compatibility extension) |
| 151 | typedef detail::tmat4x3<double, highp> double4x3; //!< \brief double-precision floating-point matrix with 4 x 3 components. (From GLM_GTX_compatibility extension) |
| 152 | typedef detail::tmat4x4<double, highp> double4x4; //!< \brief double-precision floating-point matrix with 4 x 4 components. (From GLM_GTX_compatibility extension) |
| 153 | |
| 154 | /// @} |
| 155 | }//namespace glm |
| 156 | |
| 157 | #include "compatibility.inl" |
| 158 | |
| 159 | #endif//GLM_GTX_compatibility |
| 160 | |