Tony-LunarG | b0b195d | 2015-05-13 15:01:06 -0600 | [diff] [blame] | 1 | /////////////////////////////////////////////////////////////////////////////////////////////////// |
| 2 | // OpenGL Mathematics Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net) |
| 3 | /////////////////////////////////////////////////////////////////////////////////////////////////// |
| 4 | // Created : 2011-03-05 |
| 5 | // Updated : 2011-03-05 |
| 6 | // Licence : This source is under MIT License |
| 7 | // File : glm/gtx/matrix_interpolation.inl |
| 8 | /////////////////////////////////////////////////////////////////////////////////////////////////// |
| 9 | |
| 10 | namespace glm |
| 11 | { |
| 12 | template <typename T, precision P> |
| 13 | GLM_FUNC_QUALIFIER void axisAngle |
| 14 | ( |
| 15 | detail::tmat4x4<T, P> const & mat, |
| 16 | detail::tvec3<T, P> & axis, |
| 17 | T & angle |
| 18 | ) |
| 19 | { |
| 20 | T epsilon = (T)0.01; |
| 21 | T epsilon2 = (T)0.1; |
| 22 | |
| 23 | if((abs(mat[1][0] - mat[0][1]) < epsilon) && (abs(mat[2][0] - mat[0][2]) < epsilon) && (abs(mat[2][1] - mat[1][2]) < epsilon)) |
| 24 | { |
| 25 | if ((abs(mat[1][0] + mat[0][1]) < epsilon2) && (abs(mat[2][0] + mat[0][2]) < epsilon2) && (abs(mat[2][1] + mat[1][2]) < epsilon2) && (abs(mat[0][0] + mat[1][1] + mat[2][2] - (T)3.0) < epsilon2)) |
| 26 | { |
| 27 | angle = (T)0.0; |
| 28 | axis.x = (T)1.0; |
| 29 | axis.y = (T)0.0; |
| 30 | axis.z = (T)0.0; |
| 31 | return; |
| 32 | } |
| 33 | angle = static_cast<T>(3.1415926535897932384626433832795); |
| 34 | T xx = (mat[0][0] + (T)1.0) / (T)2.0; |
| 35 | T yy = (mat[1][1] + (T)1.0) / (T)2.0; |
| 36 | T zz = (mat[2][2] + (T)1.0) / (T)2.0; |
| 37 | T xy = (mat[1][0] + mat[0][1]) / (T)4.0; |
| 38 | T xz = (mat[2][0] + mat[0][2]) / (T)4.0; |
| 39 | T yz = (mat[2][1] + mat[1][2]) / (T)4.0; |
| 40 | if((xx > yy) && (xx > zz)) |
| 41 | { |
| 42 | if (xx < epsilon) { |
| 43 | axis.x = (T)0.0; |
| 44 | axis.y = (T)0.7071; |
| 45 | axis.z = (T)0.7071; |
| 46 | } else { |
| 47 | axis.x = sqrt(xx); |
| 48 | axis.y = xy / axis.x; |
| 49 | axis.z = xz / axis.x; |
| 50 | } |
| 51 | } |
| 52 | else if (yy > zz) |
| 53 | { |
| 54 | if (yy < epsilon) { |
| 55 | axis.x = (T)0.7071; |
| 56 | axis.y = (T)0.0; |
| 57 | axis.z = (T)0.7071; |
| 58 | } else { |
| 59 | axis.y = sqrt(yy); |
| 60 | axis.x = xy / axis.y; |
| 61 | axis.z = yz / axis.y; |
| 62 | } |
| 63 | } |
| 64 | else |
| 65 | { |
| 66 | if (zz < epsilon) { |
| 67 | axis.x = (T)0.7071; |
| 68 | axis.y = (T)0.7071; |
| 69 | axis.z = (T)0.0; |
| 70 | } else { |
| 71 | axis.z = sqrt(zz); |
| 72 | axis.x = xz / axis.z; |
| 73 | axis.y = yz / axis.z; |
| 74 | } |
| 75 | } |
| 76 | return; |
| 77 | } |
| 78 | T s = sqrt((mat[2][1] - mat[1][2]) * (mat[2][1] - mat[1][2]) + (mat[2][0] - mat[0][2]) * (mat[2][0] - mat[0][2]) + (mat[1][0] - mat[0][1]) * (mat[1][0] - mat[0][1])); |
| 79 | if (glm::abs(s) < T(0.001)) |
| 80 | s = (T)1.0; |
| 81 | angle = acos((mat[0][0] + mat[1][1] + mat[2][2] - (T)1.0) / (T)2.0); |
| 82 | axis.x = (mat[1][2] - mat[2][1]) / s; |
| 83 | axis.y = (mat[2][0] - mat[0][2]) / s; |
| 84 | axis.z = (mat[0][1] - mat[1][0]) / s; |
| 85 | } |
| 86 | |
| 87 | template <typename T, precision P> |
| 88 | GLM_FUNC_QUALIFIER detail::tmat4x4<T, P> axisAngleMatrix |
| 89 | ( |
| 90 | detail::tvec3<T, P> const & axis, |
| 91 | T const angle |
| 92 | ) |
| 93 | { |
| 94 | T c = cos(angle); |
| 95 | T s = sin(angle); |
| 96 | T t = static_cast<T>(1) - c; |
| 97 | detail::tvec3<T, P> n = normalize(axis); |
| 98 | |
| 99 | return detail::tmat4x4<T, P>( |
| 100 | t * n.x * n.x + c, t * n.x * n.y + n.z * s, t * n.x * n.z - n.y * s, T(0), |
| 101 | t * n.x * n.y - n.z * s, t * n.y * n.y + c, t * n.y * n.z + n.x * s, T(0), |
| 102 | t * n.x * n.z + n.y * s, t * n.y * n.z - n.x * s, t * n.z * n.z + c, T(0), |
| 103 | T(0), T(0), T(0), T(1) |
| 104 | ); |
| 105 | } |
| 106 | |
| 107 | template <typename T, precision P> |
| 108 | GLM_FUNC_QUALIFIER detail::tmat4x4<T, P> extractMatrixRotation |
| 109 | ( |
| 110 | detail::tmat4x4<T, P> const & mat |
| 111 | ) |
| 112 | { |
| 113 | return detail::tmat4x4<T, P>( |
| 114 | mat[0][0], mat[0][1], mat[0][2], 0.0, |
| 115 | mat[1][0], mat[1][1], mat[1][2], 0.0, |
| 116 | mat[2][0], mat[2][1], mat[2][2], 0.0, |
| 117 | 0.0, 0.0, 0.0, 1.0 |
| 118 | ); |
| 119 | } |
| 120 | |
| 121 | template <typename T, precision P> |
| 122 | GLM_FUNC_QUALIFIER detail::tmat4x4<T, P> interpolate |
| 123 | ( |
| 124 | detail::tmat4x4<T, P> const & m1, |
| 125 | detail::tmat4x4<T, P> const & m2, |
| 126 | T const delta |
| 127 | ) |
| 128 | { |
| 129 | detail::tmat4x4<T, P> m1rot = extractMatrixRotation(m1); |
| 130 | detail::tmat4x4<T, P> dltRotation = m2 * transpose(m1rot); |
| 131 | detail::tvec3<T, P> dltAxis; |
| 132 | T dltAngle; |
| 133 | axisAngle(dltRotation, dltAxis, dltAngle); |
| 134 | detail::tmat4x4<T, P> out = axisAngleMatrix(dltAxis, dltAngle * delta) * m1rot; |
| 135 | out[3][0] = m1[3][0] + delta * (m2[3][0] - m1[3][0]); |
| 136 | out[3][1] = m1[3][1] + delta * (m2[3][1] - m1[3][1]); |
| 137 | out[3][2] = m1[3][2] + delta * (m2[3][2] - m1[3][2]); |
| 138 | return out; |
| 139 | } |
| 140 | }//namespace glm |