Tony-LunarG | b0b195d | 2015-05-13 15:01:06 -0600 | [diff] [blame] | 1 | /////////////////////////////////////////////////////////////////////////////////////////////////// |
| 2 | // OpenGL Mathematics Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net) |
| 3 | /////////////////////////////////////////////////////////////////////////////////////////////////// |
| 4 | // Created : 2007-03-05 |
| 5 | // Updated : 2007-03-05 |
| 6 | // Licence : This source is under MIT License |
| 7 | // File : glm/gtx/matrix_query.inl |
| 8 | /////////////////////////////////////////////////////////////////////////////////////////////////// |
| 9 | // Dependency: |
| 10 | // - GLM core |
| 11 | /////////////////////////////////////////////////////////////////////////////////////////////////// |
| 12 | |
| 13 | namespace glm |
| 14 | { |
| 15 | template<typename T, precision P> |
| 16 | GLM_FUNC_QUALIFIER bool isNull(detail::tmat2x2<T, P> const & m, T const & epsilon) |
| 17 | { |
| 18 | bool result = true; |
| 19 | for(length_t i = 0; result && i < 2 ; ++i) |
| 20 | result = isNull(m[i], epsilon); |
| 21 | return result; |
| 22 | } |
| 23 | |
| 24 | template<typename T, precision P> |
| 25 | GLM_FUNC_QUALIFIER bool isNull(detail::tmat3x3<T, P> const & m, T const & epsilon) |
| 26 | { |
| 27 | bool result = true; |
| 28 | for(length_t i = 0; result && i < 3 ; ++i) |
| 29 | result = isNull(m[i], epsilon); |
| 30 | return result; |
| 31 | } |
| 32 | |
| 33 | template<typename T, precision P> |
| 34 | GLM_FUNC_QUALIFIER bool isNull(detail::tmat4x4<T, P> const & m, T const & epsilon) |
| 35 | { |
| 36 | bool result = true; |
| 37 | for(length_t i = 0; result && i < 4 ; ++i) |
| 38 | result = isNull(m[i], epsilon); |
| 39 | return result; |
| 40 | } |
| 41 | |
| 42 | template<typename T, precision P, template <typename, precision> class matType> |
| 43 | GLM_FUNC_QUALIFIER bool isIdentity(matType<T, P> const & m, T const & epsilon) |
| 44 | { |
| 45 | bool result = true; |
| 46 | for(length_t i(0); result && i < m[0].length(); ++i) |
| 47 | { |
| 48 | for(length_t j(0); result && j < i ; ++j) |
| 49 | result = abs(m[i][j]) <= epsilon; |
| 50 | if(result) |
| 51 | result = abs(m[i][i] - 1) <= epsilon; |
| 52 | for(length_t j(i + 1); result && j < m.length(); ++j) |
| 53 | result = abs(m[i][j]) <= epsilon; |
| 54 | } |
| 55 | return result; |
| 56 | } |
| 57 | |
| 58 | template<typename T, precision P> |
| 59 | GLM_FUNC_QUALIFIER bool isNormalized(detail::tmat2x2<T, P> const & m, T const & epsilon) |
| 60 | { |
| 61 | bool result(true); |
| 62 | for(length_t i(0); result && i < m.length(); ++i) |
| 63 | result = isNormalized(m[i], epsilon); |
| 64 | for(length_t i(0); result && i < m.length(); ++i) |
| 65 | { |
| 66 | typename detail::tmat2x2<T, P>::col_type v; |
| 67 | for(length_t j(0); j < m.length(); ++j) |
| 68 | v[j] = m[j][i]; |
| 69 | result = isNormalized(v, epsilon); |
| 70 | } |
| 71 | return result; |
| 72 | } |
| 73 | |
| 74 | template<typename T, precision P> |
| 75 | GLM_FUNC_QUALIFIER bool isNormalized(detail::tmat3x3<T, P> const & m, T const & epsilon) |
| 76 | { |
| 77 | bool result(true); |
| 78 | for(length_t i(0); result && i < m.length(); ++i) |
| 79 | result = isNormalized(m[i], epsilon); |
| 80 | for(length_t i(0); result && i < m.length(); ++i) |
| 81 | { |
| 82 | typename detail::tmat3x3<T, P>::col_type v; |
| 83 | for(length_t j(0); j < m.length(); ++j) |
| 84 | v[j] = m[j][i]; |
| 85 | result = isNormalized(v, epsilon); |
| 86 | } |
| 87 | return result; |
| 88 | } |
| 89 | |
| 90 | template<typename T, precision P> |
| 91 | GLM_FUNC_QUALIFIER bool isNormalized(detail::tmat4x4<T, P> const & m, T const & epsilon) |
| 92 | { |
| 93 | bool result(true); |
| 94 | for(length_t i(0); result && i < m.length(); ++i) |
| 95 | result = isNormalized(m[i], epsilon); |
| 96 | for(length_t i(0); result && i < m.length(); ++i) |
| 97 | { |
| 98 | typename detail::tmat4x4<T, P>::col_type v; |
| 99 | for(length_t j(0); j < m.length(); ++j) |
| 100 | v[j] = m[j][i]; |
| 101 | result = isNormalized(v, epsilon); |
| 102 | } |
| 103 | return result; |
| 104 | } |
| 105 | |
| 106 | template<typename T, precision P, template <typename, precision> class matType> |
| 107 | GLM_FUNC_QUALIFIER bool isOrthogonal(matType<T, P> const & m, T const & epsilon) |
| 108 | { |
| 109 | bool result(true); |
| 110 | for(length_t i(0); result && i < m.length() - 1; ++i) |
| 111 | for(length_t j(i + 1); result && j < m.length(); ++j) |
| 112 | result = areOrthogonal(m[i], m[j], epsilon); |
| 113 | |
| 114 | if(result) |
| 115 | { |
| 116 | matType<T, P> tmp = transpose(m); |
| 117 | for(length_t i(0); result && i < m.length() - 1 ; ++i) |
| 118 | for(length_t j(i + 1); result && j < m.length(); ++j) |
| 119 | result = areOrthogonal(tmp[i], tmp[j], epsilon); |
| 120 | } |
| 121 | return result; |
| 122 | } |
| 123 | }//namespace glm |