blob: 6259b629fc95e89331529f2914a384e61f16882a [file] [log] [blame]
Tony-LunarGb0b195d2015-05-13 15:01:06 -06001///////////////////////////////////////////////////////////////////////////////////
2/// OpenGL Mathematics (glm.g-truc.net)
3///
4/// Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net)
5/// Permission is hereby granted, free of charge, to any person obtaining a copy
6/// of this software and associated documentation files (the "Software"), to deal
7/// in the Software without restriction, including without limitation the rights
8/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9/// copies of the Software, and to permit persons to whom the Software is
10/// furnished to do so, subject to the following conditions:
11///
12/// The above copyright notice and this permission notice shall be included in
13/// all copies or substantial portions of the Software.
14///
15/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
21/// THE SOFTWARE.
22///
23/// @ref gtx_simd_vec4
24/// @file glm/gtx/simd_vec4.hpp
25/// @date 2009-05-07 / 2011-06-07
26/// @author Christophe Riccio
27///
28/// @see core (dependence)
29///
30/// @defgroup gtx_simd_vec4 GLM_GTX_simd_vec4
31/// @ingroup gtx
32///
33/// @brief SIMD implementation of vec4 type.
34///
35/// <glm/gtx/simd_vec4.hpp> need to be included to use these functionalities.
36///////////////////////////////////////////////////////////////////////////////////
37
38#ifndef GLM_GTX_simd_vec4
39#define GLM_GTX_simd_vec4
40
41// Dependency:
42#include "../glm.hpp"
43
44#if(GLM_ARCH != GLM_ARCH_PURE)
45
46#if(GLM_ARCH & GLM_ARCH_SSE2)
47# include "../detail/intrinsic_common.hpp"
48# include "../detail/intrinsic_geometric.hpp"
49# include "../detail/intrinsic_integer.hpp"
50#else
51# error "GLM: GLM_GTX_simd_vec4 requires compiler support of SSE2 through intrinsics"
52#endif
53
54#if(defined(GLM_MESSAGES) && !defined(GLM_EXT_INCLUDED))
55# pragma message("GLM: GLM_GTX_simd_vec4 extension included")
56#endif
57
58
59// Warning silencer for nameless struct/union.
60#if (GLM_COMPILER & GLM_COMPILER_VC)
61# pragma warning(push)
62# pragma warning(disable:4201) // warning C4201: nonstandard extension used : nameless struct/union
63#endif
64
65namespace glm
66{
67 enum comp
68 {
69 X = 0,
70 R = 0,
71 S = 0,
72 Y = 1,
73 G = 1,
74 T = 1,
75 Z = 2,
76 B = 2,
77 P = 2,
78 W = 3,
79 A = 3,
80 Q = 3
81 };
82
83}//namespace glm
84
85namespace glm{
86namespace detail
87{
88 /// 4-dimensional vector implemented using SIMD SEE intrinsics.
89 /// \ingroup gtx_simd_vec4
90 GLM_ALIGNED_STRUCT(16) fvec4SIMD
91 {
92 enum ctor{null};
93 typedef __m128 value_type;
94 typedef std::size_t size_type;
95 static size_type value_size();
96
97 typedef fvec4SIMD type;
98 typedef tvec4<bool, highp> bool_type;
99
100#ifdef GLM_SIMD_ENABLE_XYZW_UNION
101 union
102 {
103 __m128 Data;
104 struct {float x, y, z, w;};
105 };
106#else
107 __m128 Data;
108#endif
109
110 //////////////////////////////////////
111 // Implicit basic constructors
112
113 fvec4SIMD();
114 fvec4SIMD(__m128 const & Data);
115 fvec4SIMD(fvec4SIMD const & v);
116
117 //////////////////////////////////////
118 // Explicit basic constructors
119
120 explicit fvec4SIMD(
121 ctor);
122 explicit fvec4SIMD(
123 float const & s);
124 explicit fvec4SIMD(
125 float const & x,
126 float const & y,
127 float const & z,
128 float const & w);
129 explicit fvec4SIMD(
130 vec4 const & v);
131
132 ////////////////////////////////////////
133 //// Conversion vector constructors
134
135 fvec4SIMD(vec2 const & v, float const & s1, float const & s2);
136 fvec4SIMD(float const & s1, vec2 const & v, float const & s2);
137 fvec4SIMD(float const & s1, float const & s2, vec2 const & v);
138 fvec4SIMD(vec3 const & v, float const & s);
139 fvec4SIMD(float const & s, vec3 const & v);
140 fvec4SIMD(vec2 const & v1, vec2 const & v2);
141 //fvec4SIMD(ivec4SIMD const & v);
142
143 //////////////////////////////////////
144 // Unary arithmetic operators
145
146 fvec4SIMD& operator= (fvec4SIMD const & v);
147 fvec4SIMD& operator+=(fvec4SIMD const & v);
148 fvec4SIMD& operator-=(fvec4SIMD const & v);
149 fvec4SIMD& operator*=(fvec4SIMD const & v);
150 fvec4SIMD& operator/=(fvec4SIMD const & v);
151
152 fvec4SIMD& operator+=(float const & s);
153 fvec4SIMD& operator-=(float const & s);
154 fvec4SIMD& operator*=(float const & s);
155 fvec4SIMD& operator/=(float const & s);
156
157 fvec4SIMD& operator++();
158 fvec4SIMD& operator--();
159
160 //////////////////////////////////////
161 // Swizzle operators
162
163 template <comp X, comp Y, comp Z, comp W>
164 fvec4SIMD& swizzle();
165 template <comp X, comp Y, comp Z, comp W>
166 fvec4SIMD swizzle() const;
167 template <comp X, comp Y, comp Z>
168 fvec4SIMD swizzle() const;
169 template <comp X, comp Y>
170 fvec4SIMD swizzle() const;
171 template <comp X>
172 fvec4SIMD swizzle() const;
173 };
174}//namespace detail
175
176 typedef glm::detail::fvec4SIMD simdVec4;
177
178 /// @addtogroup gtx_simd_vec4
179 /// @{
180
181 //! Convert a simdVec4 to a vec4.
182 /// @see gtx_simd_vec4
183 vec4 vec4_cast(
184 detail::fvec4SIMD const & x);
185
186 //! Returns x if x >= 0; otherwise, it returns -x.
187 /// @see gtx_simd_vec4
188 detail::fvec4SIMD abs(detail::fvec4SIMD const & x);
189
190 //! Returns 1.0 if x > 0, 0.0 if x = 0, or -1.0 if x < 0.
191 /// @see gtx_simd_vec4
192 detail::fvec4SIMD sign(detail::fvec4SIMD const & x);
193
194 //! Returns a value equal to the nearest integer that is less then or equal to x.
195 /// @see gtx_simd_vec4
196 detail::fvec4SIMD floor(detail::fvec4SIMD const & x);
197
198 //! Returns a value equal to the nearest integer to x
199 //! whose absolute value is not larger than the absolute value of x.
200 /// @see gtx_simd_vec4
201 detail::fvec4SIMD trunc(detail::fvec4SIMD const & x);
202
203 //! Returns a value equal to the nearest integer to x.
204 //! The fraction 0.5 will round in a direction chosen by the
205 //! implementation, presumably the direction that is fastest.
206 //! This includes the possibility that round(x) returns the
207 //! same value as roundEven(x) for all values of x.
208 ///
209 /// @see gtx_simd_vec4
210 detail::fvec4SIMD round(detail::fvec4SIMD const & x);
211
212 //! Returns a value equal to the nearest integer to x.
213 //! A fractional part of 0.5 will round toward the nearest even
214 //! integer. (Both 3.5 and 4.5 for x will return 4.0.)
215 ///
216 /// @see gtx_simd_vec4
217 //detail::fvec4SIMD roundEven(detail::fvec4SIMD const & x);
218
219 //! Returns a value equal to the nearest integer
220 //! that is greater than or equal to x.
221 /// @see gtx_simd_vec4
222 detail::fvec4SIMD ceil(detail::fvec4SIMD const & x);
223
224 //! Return x - floor(x).
225 ///
226 /// @see gtx_simd_vec4
227 detail::fvec4SIMD fract(detail::fvec4SIMD const & x);
228
229 //! Modulus. Returns x - y * floor(x / y)
230 //! for each component in x using the floating point value y.
231 ///
232 /// @see gtx_simd_vec4
233 detail::fvec4SIMD mod(
234 detail::fvec4SIMD const & x,
235 detail::fvec4SIMD const & y);
236
237 //! Modulus. Returns x - y * floor(x / y)
238 //! for each component in x using the floating point value y.
239 ///
240 /// @see gtx_simd_vec4
241 detail::fvec4SIMD mod(
242 detail::fvec4SIMD const & x,
243 float const & y);
244
245 //! Returns the fractional part of x and sets i to the integer
246 //! part (as a whole number floating point value). Both the
247 //! return value and the output parameter will have the same
248 //! sign as x.
249 //! (From GLM_GTX_simd_vec4 extension, common function)
250 //detail::fvec4SIMD modf(
251 // detail::fvec4SIMD const & x,
252 // detail::fvec4SIMD & i);
253
254 //! Returns y if y < x; otherwise, it returns x.
255 ///
256 /// @see gtx_simd_vec4
257 detail::fvec4SIMD min(
258 detail::fvec4SIMD const & x,
259 detail::fvec4SIMD const & y);
260
261 detail::fvec4SIMD min(
262 detail::fvec4SIMD const & x,
263 float const & y);
264
265 //! Returns y if x < y; otherwise, it returns x.
266 ///
267 /// @see gtx_simd_vec4
268 detail::fvec4SIMD max(
269 detail::fvec4SIMD const & x,
270 detail::fvec4SIMD const & y);
271
272 detail::fvec4SIMD max(
273 detail::fvec4SIMD const & x,
274 float const & y);
275
276 //! Returns min(max(x, minVal), maxVal) for each component in x
277 //! using the floating-point values minVal and maxVal.
278 ///
279 /// @see gtx_simd_vec4
280 detail::fvec4SIMD clamp(
281 detail::fvec4SIMD const & x,
282 detail::fvec4SIMD const & minVal,
283 detail::fvec4SIMD const & maxVal);
284
285 detail::fvec4SIMD clamp(
286 detail::fvec4SIMD const & x,
287 float const & minVal,
288 float const & maxVal);
289
290 //! \return If genTypeU is a floating scalar or vector:
291 //! Returns x * (1.0 - a) + y * a, i.e., the linear blend of
292 //! x and y using the floating-point value a.
293 //! The value for a is not restricted to the range [0, 1].
294 //!
295 //! \return If genTypeU is a boolean scalar or vector:
296 //! Selects which vector each returned component comes
297 //! from. For a component of a that is false, the
298 //! corresponding component of x is returned. For a
299 //! component of a that is true, the corresponding
300 //! component of y is returned. Components of x and y that
301 //! are not selected are allowed to be invalid floating point
302 //! values and will have no effect on the results. Thus, this
303 //! provides different functionality than
304 //! genType mix(genType x, genType y, genType(a))
305 //! where a is a Boolean vector.
306 //!
307 //! From GLSL 1.30.08 specification, section 8.3
308 //!
309 //! \param[in] x Floating point scalar or vector.
310 //! \param[in] y Floating point scalar or vector.
311 //! \param[in] a Floating point or boolean scalar or vector.
312 //!
313 /// \todo Test when 'a' is a boolean.
314 ///
315 /// @see gtx_simd_vec4
316 detail::fvec4SIMD mix(
317 detail::fvec4SIMD const & x,
318 detail::fvec4SIMD const & y,
319 detail::fvec4SIMD const & a);
320
321 //! Returns 0.0 if x < edge, otherwise it returns 1.0.
322 ///
323 /// @see gtx_simd_vec4
324 detail::fvec4SIMD step(
325 detail::fvec4SIMD const & edge,
326 detail::fvec4SIMD const & x);
327
328 detail::fvec4SIMD step(
329 float const & edge,
330 detail::fvec4SIMD const & x);
331
332 //! Returns 0.0 if x <= edge0 and 1.0 if x >= edge1 and
333 //! performs smooth Hermite interpolation between 0 and 1
334 //! when edge0 < x < edge1. This is useful in cases where
335 //! you would want a threshold function with a smooth
336 //! transition. This is equivalent to:
337 //! genType t;
338 //! t = clamp ((x - edge0) / (edge1 - edge0), 0, 1);
339 //! return t * t * (3 - 2 * t);
340 //! Results are undefined if edge0 >= edge1.
341 ///
342 /// @see gtx_simd_vec4
343 detail::fvec4SIMD smoothstep(
344 detail::fvec4SIMD const & edge0,
345 detail::fvec4SIMD const & edge1,
346 detail::fvec4SIMD const & x);
347
348 detail::fvec4SIMD smoothstep(
349 float const & edge0,
350 float const & edge1,
351 detail::fvec4SIMD const & x);
352
353 //! Returns true if x holds a NaN (not a number)
354 //! representation in the underlying implementation's set of
355 //! floating point representations. Returns false otherwise,
356 //! including for implementations with no NaN
357 //! representations.
358 ///
359 /// @see gtx_simd_vec4
360 //bvec4 isnan(detail::fvec4SIMD const & x);
361
362 //! Returns true if x holds a positive infinity or negative
363 //! infinity representation in the underlying implementation's
364 //! set of floating point representations. Returns false
365 //! otherwise, including for implementations with no infinity
366 //! representations.
367 ///
368 /// @see gtx_simd_vec4
369 //bvec4 isinf(detail::fvec4SIMD const & x);
370
371 //! Returns a signed or unsigned integer value representing
372 //! the encoding of a floating-point value. The floatingpoint
373 //! value's bit-level representation is preserved.
374 ///
375 /// @see gtx_simd_vec4
376 //detail::ivec4SIMD floatBitsToInt(detail::fvec4SIMD const & value);
377
378 //! Returns a floating-point value corresponding to a signed
379 //! or unsigned integer encoding of a floating-point value.
380 //! If an inf or NaN is passed in, it will not signal, and the
381 //! resulting floating point value is unspecified. Otherwise,
382 //! the bit-level representation is preserved.
383 ///
384 /// @see gtx_simd_vec4
385 //detail::fvec4SIMD intBitsToFloat(detail::ivec4SIMD const & value);
386
387 //! Computes and returns a * b + c.
388 ///
389 /// @see gtx_simd_vec4
390 detail::fvec4SIMD fma(
391 detail::fvec4SIMD const & a,
392 detail::fvec4SIMD const & b,
393 detail::fvec4SIMD const & c);
394
395 //! Splits x into a floating-point significand in the range
396 //! [0.5, 1.0) and an integral exponent of two, such that:
397 //! x = significand * exp(2, exponent)
398 //! The significand is returned by the function and the
399 //! exponent is returned in the parameter exp. For a
400 //! floating-point value of zero, the significant and exponent
401 //! are both zero. For a floating-point value that is an
402 //! infinity or is not a number, the results are undefined.
403 ///
404 /// @see gtx_simd_vec4
405 //detail::fvec4SIMD frexp(detail::fvec4SIMD const & x, detail::ivec4SIMD & exp);
406
407 //! Builds a floating-point number from x and the
408 //! corresponding integral exponent of two in exp, returning:
409 //! significand * exp(2, exponent)
410 //! If this product is too large to be represented in the
411 //! floating-point type, the result is undefined.
412 ///
413 /// @see gtx_simd_vec4
414 //detail::fvec4SIMD ldexp(detail::fvec4SIMD const & x, detail::ivec4SIMD const & exp);
415
416 //! Returns the length of x, i.e., sqrt(x * x).
417 ///
418 /// @see gtx_simd_vec4
419 float length(
420 detail::fvec4SIMD const & x);
421
422 //! Returns the length of x, i.e., sqrt(x * x).
423 //! Less accurate but much faster than simdLength.
424 ///
425 /// @see gtx_simd_vec4
426 float fastLength(
427 detail::fvec4SIMD const & x);
428
429 //! Returns the length of x, i.e., sqrt(x * x).
430 //! Slightly more accurate but much slower than simdLength.
431 ///
432 /// @see gtx_simd_vec4
433 float niceLength(
434 detail::fvec4SIMD const & x);
435
436 //! Returns the length of x, i.e., sqrt(x * x).
437 ///
438 /// @see gtx_simd_vec4
439 detail::fvec4SIMD length4(
440 detail::fvec4SIMD const & x);
441
442 //! Returns the length of x, i.e., sqrt(x * x).
443 //! Less accurate but much faster than simdLength4.
444 ///
445 /// @see gtx_simd_vec4
446 detail::fvec4SIMD fastLength4(
447 detail::fvec4SIMD const & x);
448
449 //! Returns the length of x, i.e., sqrt(x * x).
450 //! Slightly more accurate but much slower than simdLength4.
451 ///
452 /// @see gtx_simd_vec4
453 detail::fvec4SIMD niceLength4(
454 detail::fvec4SIMD const & x);
455
456 //! Returns the distance betwwen p0 and p1, i.e., length(p0 - p1).
457 ///
458 /// @see gtx_simd_vec4
459 float distance(
460 detail::fvec4SIMD const & p0,
461 detail::fvec4SIMD const & p1);
462
463 //! Returns the distance betwwen p0 and p1, i.e., length(p0 - p1).
464 ///
465 /// @see gtx_simd_vec4
466 detail::fvec4SIMD distance4(
467 detail::fvec4SIMD const & p0,
468 detail::fvec4SIMD const & p1);
469
470 //! Returns the dot product of x and y, i.e., result = x * y.
471 ///
472 /// @see gtx_simd_vec4
473 float simdDot(
474 detail::fvec4SIMD const & x,
475 detail::fvec4SIMD const & y);
476
477 //! Returns the dot product of x and y, i.e., result = x * y.
478 ///
479 /// @see gtx_simd_vec4
480 detail::fvec4SIMD dot4(
481 detail::fvec4SIMD const & x,
482 detail::fvec4SIMD const & y);
483
484 //! Returns the cross product of x and y.
485 ///
486 /// @see gtx_simd_vec4
487 detail::fvec4SIMD cross(
488 detail::fvec4SIMD const & x,
489 detail::fvec4SIMD const & y);
490
491 //! Returns a vector in the same direction as x but with length of 1.
492 ///
493 /// @see gtx_simd_vec4
494 detail::fvec4SIMD normalize(
495 detail::fvec4SIMD const & x);
496
497 //! Returns a vector in the same direction as x but with length of 1.
498 //! Less accurate but much faster than simdNormalize.
499 ///
500 /// @see gtx_simd_vec4
501 detail::fvec4SIMD fastNormalize(
502 detail::fvec4SIMD const & x);
503
504 //! If dot(Nref, I) < 0.0, return N, otherwise, return -N.
505 ///
506 /// @see gtx_simd_vec4
507 detail::fvec4SIMD simdFaceforward(
508 detail::fvec4SIMD const & N,
509 detail::fvec4SIMD const & I,
510 detail::fvec4SIMD const & Nref);
511
512 //! For the incident vector I and surface orientation N,
513 //! returns the reflection direction : result = I - 2.0 * dot(N, I) * N.
514 ///
515 /// @see gtx_simd_vec4
516 detail::fvec4SIMD reflect(
517 detail::fvec4SIMD const & I,
518 detail::fvec4SIMD const & N);
519
520 //! For the incident vector I and surface normal N,
521 //! and the ratio of indices of refraction eta,
522 //! return the refraction vector.
523 ///
524 /// @see gtx_simd_vec4
525 detail::fvec4SIMD refract(
526 detail::fvec4SIMD const & I,
527 detail::fvec4SIMD const & N,
528 float const & eta);
529
530 //! Returns the positive square root of x.
531 ///
532 /// @see gtx_simd_vec4
533 detail::fvec4SIMD sqrt(
534 detail::fvec4SIMD const & x);
535
536 //! Returns the positive square root of x with the nicest quality but very slow.
537 //! Slightly more accurate but much slower than simdSqrt.
538 ///
539 /// @see gtx_simd_vec4
540 detail::fvec4SIMD niceSqrt(
541 detail::fvec4SIMD const & x);
542
543 //! Returns the positive square root of x
544 //! Less accurate but much faster than sqrt.
545 ///
546 /// @see gtx_simd_vec4
547 detail::fvec4SIMD fastSqrt(
548 detail::fvec4SIMD const & x);
549
550 //! Returns the reciprocal of the positive square root of x.
551 ///
552 /// @see gtx_simd_vec4
553 detail::fvec4SIMD inversesqrt(
554 detail::fvec4SIMD const & x);
555
556 //! Returns the reciprocal of the positive square root of x.
557 //! Faster than inversesqrt but less accurate.
558 ///
559 /// @see gtx_simd_vec4
560 detail::fvec4SIMD fastInversesqrt(
561 detail::fvec4SIMD const & x);
562
563 /// @}
564}//namespace glm
565
566#include "simd_vec4.inl"
567
568#if (GLM_COMPILER & GLM_COMPILER_VC)
569# pragma warning(pop)
570#endif
571
572#endif//(GLM_ARCH != GLM_ARCH_PURE)
573
574#endif//GLM_GTX_simd_vec4