| /* |
| * Copyright 2004 The WebRTC Project Authors. All rights reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "rtc_base/virtualsocketserver.h" |
| |
| #include <errno.h> |
| #include <math.h> |
| |
| #include <algorithm> |
| #include <map> |
| #include <memory> |
| #include <vector> |
| |
| #include "rtc_base/checks.h" |
| #include "rtc_base/fakeclock.h" |
| #include "rtc_base/logging.h" |
| #include "rtc_base/physicalsocketserver.h" |
| #include "rtc_base/socketaddresspair.h" |
| #include "rtc_base/thread.h" |
| #include "rtc_base/timeutils.h" |
| |
| namespace rtc { |
| #if defined(WEBRTC_WIN) |
| const in_addr kInitialNextIPv4 = { { { 0x01, 0, 0, 0 } } }; |
| #else |
| // This value is entirely arbitrary, hence the lack of concern about endianness. |
| const in_addr kInitialNextIPv4 = { 0x01000000 }; |
| #endif |
| // Starts at ::2 so as to not cause confusion with ::1. |
| const in6_addr kInitialNextIPv6 = { { { |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2 |
| } } }; |
| |
| const uint16_t kFirstEphemeralPort = 49152; |
| const uint16_t kLastEphemeralPort = 65535; |
| const uint16_t kEphemeralPortCount = |
| kLastEphemeralPort - kFirstEphemeralPort + 1; |
| const uint32_t kDefaultNetworkCapacity = 64 * 1024; |
| const uint32_t kDefaultTcpBufferSize = 32 * 1024; |
| |
| const uint32_t UDP_HEADER_SIZE = 28; // IP + UDP headers |
| const uint32_t TCP_HEADER_SIZE = 40; // IP + TCP headers |
| const uint32_t TCP_MSS = 1400; // Maximum segment size |
| |
| // Note: The current algorithm doesn't work for sample sizes smaller than this. |
| const int NUM_SAMPLES = 1000; |
| |
| enum { |
| MSG_ID_PACKET, |
| MSG_ID_ADDRESS_BOUND, |
| MSG_ID_CONNECT, |
| MSG_ID_DISCONNECT, |
| MSG_ID_SIGNALREADEVENT, |
| }; |
| |
| // Packets are passed between sockets as messages. We copy the data just like |
| // the kernel does. |
| class Packet : public MessageData { |
| public: |
| Packet(const char* data, size_t size, const SocketAddress& from) |
| : size_(size), consumed_(0), from_(from) { |
| RTC_DCHECK(nullptr != data); |
| data_ = new char[size_]; |
| memcpy(data_, data, size_); |
| } |
| |
| ~Packet() override { |
| delete[] data_; |
| } |
| |
| const char* data() const { return data_ + consumed_; } |
| size_t size() const { return size_ - consumed_; } |
| const SocketAddress& from() const { return from_; } |
| |
| // Remove the first size bytes from the data. |
| void Consume(size_t size) { |
| RTC_DCHECK(size + consumed_ < size_); |
| consumed_ += size; |
| } |
| |
| private: |
| char* data_; |
| size_t size_, consumed_; |
| SocketAddress from_; |
| }; |
| |
| struct MessageAddress : public MessageData { |
| explicit MessageAddress(const SocketAddress& a) : addr(a) { } |
| SocketAddress addr; |
| }; |
| |
| VirtualSocket::VirtualSocket(VirtualSocketServer* server, |
| int family, |
| int type, |
| bool async) |
| : server_(server), |
| type_(type), |
| async_(async), |
| state_(CS_CLOSED), |
| error_(0), |
| listen_queue_(nullptr), |
| network_size_(0), |
| recv_buffer_size_(0), |
| bound_(false), |
| was_any_(false) { |
| RTC_DCHECK((type_ == SOCK_DGRAM) || (type_ == SOCK_STREAM)); |
| RTC_DCHECK(async_ || |
| (type_ != SOCK_STREAM)); // We only support async streams |
| server->SignalReadyToSend.connect(this, |
| &VirtualSocket::OnSocketServerReadyToSend); |
| } |
| |
| VirtualSocket::~VirtualSocket() { |
| Close(); |
| |
| for (RecvBuffer::iterator it = recv_buffer_.begin(); it != recv_buffer_.end(); |
| ++it) { |
| delete *it; |
| } |
| } |
| |
| SocketAddress VirtualSocket::GetLocalAddress() const { |
| return local_addr_; |
| } |
| |
| SocketAddress VirtualSocket::GetRemoteAddress() const { |
| return remote_addr_; |
| } |
| |
| void VirtualSocket::SetLocalAddress(const SocketAddress& addr) { |
| local_addr_ = addr; |
| } |
| |
| int VirtualSocket::Bind(const SocketAddress& addr) { |
| if (!local_addr_.IsNil()) { |
| error_ = EINVAL; |
| return -1; |
| } |
| local_addr_ = addr; |
| int result = server_->Bind(this, &local_addr_); |
| if (result != 0) { |
| local_addr_.Clear(); |
| error_ = EADDRINUSE; |
| } else { |
| bound_ = true; |
| was_any_ = addr.IsAnyIP(); |
| // Post a message here such that test case could have chance to |
| // process the local address. (i.e. SetAlternativeLocalAddress). |
| server_->msg_queue_->Post(RTC_FROM_HERE, this, MSG_ID_ADDRESS_BOUND); |
| } |
| return result; |
| } |
| |
| int VirtualSocket::Connect(const SocketAddress& addr) { |
| return InitiateConnect(addr, true); |
| } |
| |
| int VirtualSocket::Close() { |
| if (!local_addr_.IsNil() && bound_) { |
| // Remove from the binding table. |
| server_->Unbind(local_addr_, this); |
| bound_ = false; |
| } |
| |
| if (SOCK_STREAM == type_) { |
| // Cancel pending sockets |
| if (listen_queue_) { |
| while (!listen_queue_->empty()) { |
| SocketAddress addr = listen_queue_->front(); |
| |
| // Disconnect listening socket. |
| server_->Disconnect(server_->LookupBinding(addr)); |
| listen_queue_->pop_front(); |
| } |
| delete listen_queue_; |
| listen_queue_ = nullptr; |
| } |
| // Disconnect stream sockets |
| if (CS_CONNECTED == state_) { |
| // Disconnect remote socket, check if it is a child of a server socket. |
| VirtualSocket* socket = |
| server_->LookupConnection(local_addr_, remote_addr_); |
| if (!socket) { |
| // Not a server socket child, then see if it is bound. |
| // TODO(tbd): If this is indeed a server socket that has no |
| // children this will cause the server socket to be |
| // closed. This might lead to unexpected results, how to fix this? |
| socket = server_->LookupBinding(remote_addr_); |
| } |
| server_->Disconnect(socket); |
| |
| // Remove mapping for both directions. |
| server_->RemoveConnection(remote_addr_, local_addr_); |
| server_->RemoveConnection(local_addr_, remote_addr_); |
| } |
| // Cancel potential connects |
| MessageList msgs; |
| if (server_->msg_queue_) { |
| server_->msg_queue_->Clear(this, MSG_ID_CONNECT, &msgs); |
| } |
| for (MessageList::iterator it = msgs.begin(); it != msgs.end(); ++it) { |
| RTC_DCHECK(nullptr != it->pdata); |
| MessageAddress* data = static_cast<MessageAddress*>(it->pdata); |
| |
| // Lookup remote side. |
| VirtualSocket* socket = |
| server_->LookupConnection(local_addr_, data->addr); |
| if (socket) { |
| // Server socket, remote side is a socket retreived by |
| // accept. Accepted sockets are not bound so we will not |
| // find it by looking in the bindings table. |
| server_->Disconnect(socket); |
| server_->RemoveConnection(local_addr_, data->addr); |
| } else { |
| server_->Disconnect(server_->LookupBinding(data->addr)); |
| } |
| delete data; |
| } |
| // Clear incoming packets and disconnect messages |
| if (server_->msg_queue_) { |
| server_->msg_queue_->Clear(this); |
| } |
| } |
| |
| state_ = CS_CLOSED; |
| local_addr_.Clear(); |
| remote_addr_.Clear(); |
| return 0; |
| } |
| |
| int VirtualSocket::Send(const void* pv, size_t cb) { |
| if (CS_CONNECTED != state_) { |
| error_ = ENOTCONN; |
| return -1; |
| } |
| if (SOCK_DGRAM == type_) { |
| return SendUdp(pv, cb, remote_addr_); |
| } else { |
| return SendTcp(pv, cb); |
| } |
| } |
| |
| int VirtualSocket::SendTo(const void* pv, |
| size_t cb, |
| const SocketAddress& addr) { |
| if (SOCK_DGRAM == type_) { |
| return SendUdp(pv, cb, addr); |
| } else { |
| if (CS_CONNECTED != state_) { |
| error_ = ENOTCONN; |
| return -1; |
| } |
| return SendTcp(pv, cb); |
| } |
| } |
| |
| int VirtualSocket::Recv(void* pv, size_t cb, int64_t* timestamp) { |
| SocketAddress addr; |
| return RecvFrom(pv, cb, &addr, timestamp); |
| } |
| |
| int VirtualSocket::RecvFrom(void* pv, |
| size_t cb, |
| SocketAddress* paddr, |
| int64_t* timestamp) { |
| if (timestamp) { |
| *timestamp = -1; |
| } |
| // If we don't have a packet, then either error or wait for one to arrive. |
| if (recv_buffer_.empty()) { |
| if (async_) { |
| error_ = EAGAIN; |
| return -1; |
| } |
| while (recv_buffer_.empty()) { |
| Message msg; |
| server_->msg_queue_->Get(&msg); |
| server_->msg_queue_->Dispatch(&msg); |
| } |
| } |
| |
| // Return the packet at the front of the queue. |
| Packet* packet = recv_buffer_.front(); |
| size_t data_read = std::min(cb, packet->size()); |
| memcpy(pv, packet->data(), data_read); |
| *paddr = packet->from(); |
| |
| if (data_read < packet->size()) { |
| packet->Consume(data_read); |
| } else { |
| recv_buffer_.pop_front(); |
| delete packet; |
| } |
| |
| // To behave like a real socket, SignalReadEvent should fire in the next |
| // message loop pass if there's still data buffered. |
| if (!recv_buffer_.empty()) { |
| // Clear the message so it doesn't end up posted multiple times. |
| server_->msg_queue_->Clear(this, MSG_ID_SIGNALREADEVENT); |
| server_->msg_queue_->Post(RTC_FROM_HERE, this, MSG_ID_SIGNALREADEVENT); |
| } |
| |
| if (SOCK_STREAM == type_) { |
| bool was_full = (recv_buffer_size_ == server_->recv_buffer_capacity_); |
| recv_buffer_size_ -= data_read; |
| if (was_full) { |
| VirtualSocket* sender = server_->LookupBinding(remote_addr_); |
| RTC_DCHECK(nullptr != sender); |
| server_->SendTcp(sender); |
| } |
| } |
| |
| return static_cast<int>(data_read); |
| } |
| |
| int VirtualSocket::Listen(int backlog) { |
| RTC_DCHECK(SOCK_STREAM == type_); |
| RTC_DCHECK(CS_CLOSED == state_); |
| if (local_addr_.IsNil()) { |
| error_ = EINVAL; |
| return -1; |
| } |
| RTC_DCHECK(nullptr == listen_queue_); |
| listen_queue_ = new ListenQueue; |
| state_ = CS_CONNECTING; |
| return 0; |
| } |
| |
| VirtualSocket* VirtualSocket::Accept(SocketAddress* paddr) { |
| if (nullptr == listen_queue_) { |
| error_ = EINVAL; |
| return nullptr; |
| } |
| while (!listen_queue_->empty()) { |
| VirtualSocket* socket = new VirtualSocket(server_, AF_INET, type_, async_); |
| |
| // Set the new local address to the same as this server socket. |
| socket->SetLocalAddress(local_addr_); |
| // Sockets made from a socket that 'was Any' need to inherit that. |
| socket->set_was_any(was_any_); |
| SocketAddress remote_addr(listen_queue_->front()); |
| int result = socket->InitiateConnect(remote_addr, false); |
| listen_queue_->pop_front(); |
| if (result != 0) { |
| delete socket; |
| continue; |
| } |
| socket->CompleteConnect(remote_addr, false); |
| if (paddr) { |
| *paddr = remote_addr; |
| } |
| return socket; |
| } |
| error_ = EWOULDBLOCK; |
| return nullptr; |
| } |
| |
| int VirtualSocket::GetError() const { |
| return error_; |
| } |
| |
| void VirtualSocket::SetError(int error) { |
| error_ = error; |
| } |
| |
| Socket::ConnState VirtualSocket::GetState() const { |
| return state_; |
| } |
| |
| int VirtualSocket::GetOption(Option opt, int* value) { |
| OptionsMap::const_iterator it = options_map_.find(opt); |
| if (it == options_map_.end()) { |
| return -1; |
| } |
| *value = it->second; |
| return 0; // 0 is success to emulate getsockopt() |
| } |
| |
| int VirtualSocket::SetOption(Option opt, int value) { |
| options_map_[opt] = value; |
| return 0; // 0 is success to emulate setsockopt() |
| } |
| |
| void VirtualSocket::OnMessage(Message* pmsg) { |
| if (pmsg->message_id == MSG_ID_PACKET) { |
| RTC_DCHECK(nullptr != pmsg->pdata); |
| Packet* packet = static_cast<Packet*>(pmsg->pdata); |
| |
| recv_buffer_.push_back(packet); |
| |
| if (async_) { |
| SignalReadEvent(this); |
| } |
| } else if (pmsg->message_id == MSG_ID_CONNECT) { |
| RTC_DCHECK(nullptr != pmsg->pdata); |
| MessageAddress* data = static_cast<MessageAddress*>(pmsg->pdata); |
| if (listen_queue_ != nullptr) { |
| listen_queue_->push_back(data->addr); |
| if (async_) { |
| SignalReadEvent(this); |
| } |
| } else if ((SOCK_STREAM == type_) && (CS_CONNECTING == state_)) { |
| CompleteConnect(data->addr, true); |
| } else { |
| RTC_LOG(LS_VERBOSE) << "Socket at " << local_addr_.ToString() |
| << " is not listening"; |
| server_->Disconnect(server_->LookupBinding(data->addr)); |
| } |
| delete data; |
| } else if (pmsg->message_id == MSG_ID_DISCONNECT) { |
| RTC_DCHECK(SOCK_STREAM == type_); |
| if (CS_CLOSED != state_) { |
| int error = (CS_CONNECTING == state_) ? ECONNREFUSED : 0; |
| state_ = CS_CLOSED; |
| remote_addr_.Clear(); |
| if (async_) { |
| SignalCloseEvent(this, error); |
| } |
| } |
| } else if (pmsg->message_id == MSG_ID_ADDRESS_BOUND) { |
| SignalAddressReady(this, GetLocalAddress()); |
| } else if (pmsg->message_id == MSG_ID_SIGNALREADEVENT) { |
| if (!recv_buffer_.empty()) { |
| SignalReadEvent(this); |
| } |
| } else { |
| RTC_NOTREACHED(); |
| } |
| } |
| |
| int VirtualSocket::InitiateConnect(const SocketAddress& addr, bool use_delay) { |
| if (!remote_addr_.IsNil()) { |
| error_ = (CS_CONNECTED == state_) ? EISCONN : EINPROGRESS; |
| return -1; |
| } |
| if (local_addr_.IsNil()) { |
| // If there's no local address set, grab a random one in the correct AF. |
| int result = 0; |
| if (addr.ipaddr().family() == AF_INET) { |
| result = Bind(SocketAddress("0.0.0.0", 0)); |
| } else if (addr.ipaddr().family() == AF_INET6) { |
| result = Bind(SocketAddress("::", 0)); |
| } |
| if (result != 0) { |
| return result; |
| } |
| } |
| if (type_ == SOCK_DGRAM) { |
| remote_addr_ = addr; |
| state_ = CS_CONNECTED; |
| } else { |
| int result = server_->Connect(this, addr, use_delay); |
| if (result != 0) { |
| error_ = EHOSTUNREACH; |
| return -1; |
| } |
| state_ = CS_CONNECTING; |
| } |
| return 0; |
| } |
| |
| void VirtualSocket::CompleteConnect(const SocketAddress& addr, bool notify) { |
| RTC_DCHECK(CS_CONNECTING == state_); |
| remote_addr_ = addr; |
| state_ = CS_CONNECTED; |
| server_->AddConnection(remote_addr_, local_addr_, this); |
| if (async_ && notify) { |
| SignalConnectEvent(this); |
| } |
| } |
| |
| int VirtualSocket::SendUdp(const void* pv, |
| size_t cb, |
| const SocketAddress& addr) { |
| // If we have not been assigned a local port, then get one. |
| if (local_addr_.IsNil()) { |
| local_addr_ = EmptySocketAddressWithFamily(addr.ipaddr().family()); |
| int result = server_->Bind(this, &local_addr_); |
| if (result != 0) { |
| local_addr_.Clear(); |
| error_ = EADDRINUSE; |
| return result; |
| } |
| } |
| |
| // Send the data in a message to the appropriate socket. |
| return server_->SendUdp(this, static_cast<const char*>(pv), cb, addr); |
| } |
| |
| int VirtualSocket::SendTcp(const void* pv, size_t cb) { |
| size_t capacity = server_->send_buffer_capacity_ - send_buffer_.size(); |
| if (0 == capacity) { |
| ready_to_send_ = false; |
| error_ = EWOULDBLOCK; |
| return -1; |
| } |
| size_t consumed = std::min(cb, capacity); |
| const char* cpv = static_cast<const char*>(pv); |
| send_buffer_.insert(send_buffer_.end(), cpv, cpv + consumed); |
| server_->SendTcp(this); |
| return static_cast<int>(consumed); |
| } |
| |
| void VirtualSocket::OnSocketServerReadyToSend() { |
| if (ready_to_send_) { |
| // This socket didn't encounter EWOULDBLOCK, so there's nothing to do. |
| return; |
| } |
| if (type_ == SOCK_DGRAM) { |
| ready_to_send_ = true; |
| SignalWriteEvent(this); |
| } else { |
| RTC_DCHECK(type_ == SOCK_STREAM); |
| // This will attempt to empty the full send buffer, and will fire |
| // SignalWriteEvent if successful. |
| server_->SendTcp(this); |
| } |
| } |
| |
| VirtualSocketServer::VirtualSocketServer() : VirtualSocketServer(nullptr) {} |
| |
| VirtualSocketServer::VirtualSocketServer(FakeClock* fake_clock) |
| : fake_clock_(fake_clock), |
| wakeup_(/*manual_reset=*/false, /*initially_signaled=*/false), |
| msg_queue_(nullptr), |
| stop_on_idle_(false), |
| next_ipv4_(kInitialNextIPv4), |
| next_ipv6_(kInitialNextIPv6), |
| next_port_(kFirstEphemeralPort), |
| bindings_(new AddressMap()), |
| connections_(new ConnectionMap()), |
| bandwidth_(0), |
| network_capacity_(kDefaultNetworkCapacity), |
| send_buffer_capacity_(kDefaultTcpBufferSize), |
| recv_buffer_capacity_(kDefaultTcpBufferSize), |
| delay_mean_(0), |
| delay_stddev_(0), |
| delay_samples_(NUM_SAMPLES), |
| drop_prob_(0.0) { |
| UpdateDelayDistribution(); |
| } |
| |
| VirtualSocketServer::~VirtualSocketServer() { |
| delete bindings_; |
| delete connections_; |
| } |
| |
| IPAddress VirtualSocketServer::GetNextIP(int family) { |
| if (family == AF_INET) { |
| IPAddress next_ip(next_ipv4_); |
| next_ipv4_.s_addr = |
| HostToNetwork32(NetworkToHost32(next_ipv4_.s_addr) + 1); |
| return next_ip; |
| } else if (family == AF_INET6) { |
| IPAddress next_ip(next_ipv6_); |
| uint32_t* as_ints = reinterpret_cast<uint32_t*>(&next_ipv6_.s6_addr); |
| as_ints[3] += 1; |
| return next_ip; |
| } |
| return IPAddress(); |
| } |
| |
| uint16_t VirtualSocketServer::GetNextPort() { |
| uint16_t port = next_port_; |
| if (next_port_ < kLastEphemeralPort) { |
| ++next_port_; |
| } else { |
| next_port_ = kFirstEphemeralPort; |
| } |
| return port; |
| } |
| |
| void VirtualSocketServer::SetSendingBlocked(bool blocked) { |
| if (blocked == sending_blocked_) { |
| // Unchanged; nothing to do. |
| return; |
| } |
| sending_blocked_ = blocked; |
| if (!sending_blocked_) { |
| // Sending was blocked, but is now unblocked. This signal gives sockets a |
| // chance to fire SignalWriteEvent, and for TCP, send buffered data. |
| SignalReadyToSend(); |
| } |
| } |
| |
| Socket* VirtualSocketServer::CreateSocket(int type) { |
| return CreateSocket(AF_INET, type); |
| } |
| |
| Socket* VirtualSocketServer::CreateSocket(int family, int type) { |
| return CreateSocketInternal(family, type); |
| } |
| |
| AsyncSocket* VirtualSocketServer::CreateAsyncSocket(int type) { |
| return CreateAsyncSocket(AF_INET, type); |
| } |
| |
| AsyncSocket* VirtualSocketServer::CreateAsyncSocket(int family, int type) { |
| return CreateSocketInternal(family, type); |
| } |
| |
| VirtualSocket* VirtualSocketServer::CreateSocketInternal(int family, int type) { |
| VirtualSocket* socket = new VirtualSocket(this, family, type, true); |
| SignalSocketCreated(socket); |
| return socket; |
| } |
| |
| void VirtualSocketServer::SetMessageQueue(MessageQueue* msg_queue) { |
| msg_queue_ = msg_queue; |
| if (msg_queue_) { |
| msg_queue_->SignalQueueDestroyed.connect(this, |
| &VirtualSocketServer::OnMessageQueueDestroyed); |
| } |
| } |
| |
| bool VirtualSocketServer::Wait(int cmsWait, bool process_io) { |
| RTC_DCHECK(msg_queue_ == Thread::Current()); |
| if (stop_on_idle_ && Thread::Current()->empty()) { |
| return false; |
| } |
| // Note: we don't need to do anything with |process_io| since we don't have |
| // any real I/O. Received packets come in the form of queued messages, so |
| // MessageQueue will ensure WakeUp is called if another thread sends a |
| // packet. |
| wakeup_.Wait(cmsWait); |
| return true; |
| } |
| |
| void VirtualSocketServer::WakeUp() { |
| wakeup_.Set(); |
| } |
| |
| void VirtualSocketServer::SetAlternativeLocalAddress( |
| const rtc::IPAddress& address, |
| const rtc::IPAddress& alternative) { |
| alternative_address_mapping_[address] = alternative; |
| } |
| |
| bool VirtualSocketServer::ProcessMessagesUntilIdle() { |
| RTC_DCHECK(msg_queue_ == Thread::Current()); |
| stop_on_idle_ = true; |
| while (!msg_queue_->empty()) { |
| if (fake_clock_) { |
| // If using a fake clock, advance it in millisecond increments until the |
| // queue is empty. |
| fake_clock_->AdvanceTime(rtc::TimeDelta::FromMilliseconds(1)); |
| } else { |
| // Otherwise, run a normal message loop. |
| Message msg; |
| if (msg_queue_->Get(&msg, Thread::kForever)) { |
| msg_queue_->Dispatch(&msg); |
| } |
| } |
| } |
| stop_on_idle_ = false; |
| return !msg_queue_->IsQuitting(); |
| } |
| |
| void VirtualSocketServer::SetNextPortForTesting(uint16_t port) { |
| next_port_ = port; |
| } |
| |
| bool VirtualSocketServer::CloseTcpConnections( |
| const SocketAddress& addr_local, |
| const SocketAddress& addr_remote) { |
| VirtualSocket* socket = LookupConnection(addr_local, addr_remote); |
| if (!socket) { |
| return false; |
| } |
| // Signal the close event on the local connection first. |
| socket->SignalCloseEvent(socket, 0); |
| |
| // Trigger the remote connection's close event. |
| socket->Close(); |
| |
| return true; |
| } |
| |
| int VirtualSocketServer::Bind(VirtualSocket* socket, |
| const SocketAddress& addr) { |
| RTC_DCHECK(nullptr != socket); |
| // Address must be completely specified at this point |
| RTC_DCHECK(!IPIsUnspec(addr.ipaddr())); |
| RTC_DCHECK(addr.port() != 0); |
| |
| // Normalize the address (turns v6-mapped addresses into v4-addresses). |
| SocketAddress normalized(addr.ipaddr().Normalized(), addr.port()); |
| |
| AddressMap::value_type entry(normalized, socket); |
| return bindings_->insert(entry).second ? 0 : -1; |
| } |
| |
| int VirtualSocketServer::Bind(VirtualSocket* socket, SocketAddress* addr) { |
| RTC_DCHECK(nullptr != socket); |
| |
| // Normalize the IP. |
| if (!IPIsUnspec(addr->ipaddr())) { |
| addr->SetIP(addr->ipaddr().Normalized()); |
| } else { |
| RTC_NOTREACHED(); |
| } |
| |
| // If the IP appears in |alternative_address_mapping_|, meaning the test has |
| // configured sockets bound to this IP to actually use another IP, replace |
| // the IP here. |
| auto alternative = alternative_address_mapping_.find(addr->ipaddr()); |
| if (alternative != alternative_address_mapping_.end()) { |
| addr->SetIP(alternative->second); |
| } |
| |
| // Assign a port if not assigned. |
| if (addr->port() == 0) { |
| for (int i = 0; i < kEphemeralPortCount; ++i) { |
| addr->SetPort(GetNextPort()); |
| if (bindings_->find(*addr) == bindings_->end()) { |
| break; |
| } |
| } |
| } |
| |
| return Bind(socket, *addr); |
| } |
| |
| VirtualSocket* VirtualSocketServer::LookupBinding(const SocketAddress& addr) { |
| SocketAddress normalized(addr.ipaddr().Normalized(), |
| addr.port()); |
| AddressMap::iterator it = bindings_->find(normalized); |
| if (it != bindings_->end()) { |
| return it->second; |
| } |
| |
| IPAddress default_ip = GetDefaultRoute(addr.ipaddr().family()); |
| if (!IPIsUnspec(default_ip) && addr.ipaddr() == default_ip) { |
| // If we can't find a binding for the packet which is sent to the interface |
| // corresponding to the default route, it should match a binding with the |
| // correct port to the any address. |
| SocketAddress sock_addr = |
| EmptySocketAddressWithFamily(addr.ipaddr().family()); |
| sock_addr.SetPort(addr.port()); |
| return LookupBinding(sock_addr); |
| } |
| |
| return nullptr; |
| } |
| |
| int VirtualSocketServer::Unbind(const SocketAddress& addr, |
| VirtualSocket* socket) { |
| SocketAddress normalized(addr.ipaddr().Normalized(), |
| addr.port()); |
| RTC_DCHECK((*bindings_)[normalized] == socket); |
| bindings_->erase(bindings_->find(normalized)); |
| return 0; |
| } |
| |
| void VirtualSocketServer::AddConnection(const SocketAddress& local, |
| const SocketAddress& remote, |
| VirtualSocket* remote_socket) { |
| // Add this socket pair to our routing table. This will allow |
| // multiple clients to connect to the same server address. |
| SocketAddress local_normalized(local.ipaddr().Normalized(), |
| local.port()); |
| SocketAddress remote_normalized(remote.ipaddr().Normalized(), |
| remote.port()); |
| SocketAddressPair address_pair(local_normalized, remote_normalized); |
| connections_->insert(std::pair<SocketAddressPair, |
| VirtualSocket*>(address_pair, remote_socket)); |
| } |
| |
| VirtualSocket* VirtualSocketServer::LookupConnection( |
| const SocketAddress& local, |
| const SocketAddress& remote) { |
| SocketAddress local_normalized(local.ipaddr().Normalized(), |
| local.port()); |
| SocketAddress remote_normalized(remote.ipaddr().Normalized(), |
| remote.port()); |
| SocketAddressPair address_pair(local_normalized, remote_normalized); |
| ConnectionMap::iterator it = connections_->find(address_pair); |
| return (connections_->end() != it) ? it->second : nullptr; |
| } |
| |
| void VirtualSocketServer::RemoveConnection(const SocketAddress& local, |
| const SocketAddress& remote) { |
| SocketAddress local_normalized(local.ipaddr().Normalized(), |
| local.port()); |
| SocketAddress remote_normalized(remote.ipaddr().Normalized(), |
| remote.port()); |
| SocketAddressPair address_pair(local_normalized, remote_normalized); |
| connections_->erase(address_pair); |
| } |
| |
| static double Random() { |
| return static_cast<double>(rand()) / RAND_MAX; |
| } |
| |
| int VirtualSocketServer::Connect(VirtualSocket* socket, |
| const SocketAddress& remote_addr, |
| bool use_delay) { |
| uint32_t delay = use_delay ? GetTransitDelay(socket) : 0; |
| VirtualSocket* remote = LookupBinding(remote_addr); |
| if (!CanInteractWith(socket, remote)) { |
| RTC_LOG(LS_INFO) << "Address family mismatch between " |
| << socket->GetLocalAddress().ToString() << " and " |
| << remote_addr.ToString(); |
| return -1; |
| } |
| if (remote != nullptr) { |
| SocketAddress addr = socket->GetLocalAddress(); |
| msg_queue_->PostDelayed(RTC_FROM_HERE, delay, remote, MSG_ID_CONNECT, |
| new MessageAddress(addr)); |
| } else { |
| RTC_LOG(LS_INFO) << "No one listening at " << remote_addr.ToString(); |
| msg_queue_->PostDelayed(RTC_FROM_HERE, delay, socket, MSG_ID_DISCONNECT); |
| } |
| return 0; |
| } |
| |
| bool VirtualSocketServer::Disconnect(VirtualSocket* socket) { |
| if (socket) { |
| // If we simulate packets being delayed, we should simulate the |
| // equivalent of a FIN being delayed as well. |
| uint32_t delay = GetTransitDelay(socket); |
| // Remove the mapping. |
| msg_queue_->PostDelayed(RTC_FROM_HERE, delay, socket, MSG_ID_DISCONNECT); |
| return true; |
| } |
| return false; |
| } |
| |
| int VirtualSocketServer::SendUdp(VirtualSocket* socket, |
| const char* data, size_t data_size, |
| const SocketAddress& remote_addr) { |
| ++sent_packets_; |
| if (sending_blocked_) { |
| CritScope cs(&socket->crit_); |
| socket->ready_to_send_ = false; |
| socket->error_ = EWOULDBLOCK; |
| return -1; |
| } |
| |
| // See if we want to drop this packet. |
| if (Random() < drop_prob_) { |
| RTC_LOG(LS_VERBOSE) << "Dropping packet: bad luck"; |
| return static_cast<int>(data_size); |
| } |
| |
| VirtualSocket* recipient = LookupBinding(remote_addr); |
| if (!recipient) { |
| // Make a fake recipient for address family checking. |
| std::unique_ptr<VirtualSocket> dummy_socket( |
| CreateSocketInternal(AF_INET, SOCK_DGRAM)); |
| dummy_socket->SetLocalAddress(remote_addr); |
| if (!CanInteractWith(socket, dummy_socket.get())) { |
| RTC_LOG(LS_VERBOSE) << "Incompatible address families: " |
| << socket->GetLocalAddress().ToString() << " and " |
| << remote_addr.ToString(); |
| return -1; |
| } |
| RTC_LOG(LS_VERBOSE) << "No one listening at " << remote_addr.ToString(); |
| return static_cast<int>(data_size); |
| } |
| |
| if (!CanInteractWith(socket, recipient)) { |
| RTC_LOG(LS_VERBOSE) << "Incompatible address families: " |
| << socket->GetLocalAddress().ToString() << " and " |
| << remote_addr.ToString(); |
| return -1; |
| } |
| |
| { |
| CritScope cs(&socket->crit_); |
| |
| int64_t cur_time = TimeMillis(); |
| PurgeNetworkPackets(socket, cur_time); |
| |
| // Determine whether we have enough bandwidth to accept this packet. To do |
| // this, we need to update the send queue. Once we know it's current size, |
| // we know whether we can fit this packet. |
| // |
| // NOTE: There are better algorithms for maintaining such a queue (such as |
| // "Derivative Random Drop"); however, this algorithm is a more accurate |
| // simulation of what a normal network would do. |
| |
| size_t packet_size = data_size + UDP_HEADER_SIZE; |
| if (socket->network_size_ + packet_size > network_capacity_) { |
| RTC_LOG(LS_VERBOSE) << "Dropping packet: network capacity exceeded"; |
| return static_cast<int>(data_size); |
| } |
| |
| AddPacketToNetwork(socket, recipient, cur_time, data, data_size, |
| UDP_HEADER_SIZE, false); |
| |
| return static_cast<int>(data_size); |
| } |
| } |
| |
| void VirtualSocketServer::SendTcp(VirtualSocket* socket) { |
| ++sent_packets_; |
| if (sending_blocked_) { |
| // Eventually the socket's buffer will fill and VirtualSocket::SendTcp will |
| // set EWOULDBLOCK. |
| return; |
| } |
| |
| // TCP can't send more data than will fill up the receiver's buffer. |
| // We track the data that is in the buffer plus data in flight using the |
| // recipient's recv_buffer_size_. Anything beyond that must be stored in the |
| // sender's buffer. We will trigger the buffered data to be sent when data |
| // is read from the recv_buffer. |
| |
| // Lookup the local/remote pair in the connections table. |
| VirtualSocket* recipient = LookupConnection(socket->local_addr_, |
| socket->remote_addr_); |
| if (!recipient) { |
| RTC_LOG(LS_VERBOSE) << "Sending data to no one."; |
| return; |
| } |
| |
| CritScope cs(&socket->crit_); |
| |
| int64_t cur_time = TimeMillis(); |
| PurgeNetworkPackets(socket, cur_time); |
| |
| while (true) { |
| size_t available = recv_buffer_capacity_ - recipient->recv_buffer_size_; |
| size_t max_data_size = |
| std::min<size_t>(available, TCP_MSS - TCP_HEADER_SIZE); |
| size_t data_size = std::min(socket->send_buffer_.size(), max_data_size); |
| if (0 == data_size) |
| break; |
| |
| AddPacketToNetwork(socket, recipient, cur_time, &socket->send_buffer_[0], |
| data_size, TCP_HEADER_SIZE, true); |
| recipient->recv_buffer_size_ += data_size; |
| |
| size_t new_buffer_size = socket->send_buffer_.size() - data_size; |
| // Avoid undefined access beyond the last element of the vector. |
| // This only happens when new_buffer_size is 0. |
| if (data_size < socket->send_buffer_.size()) { |
| // memmove is required for potentially overlapping source/destination. |
| memmove(&socket->send_buffer_[0], &socket->send_buffer_[data_size], |
| new_buffer_size); |
| } |
| socket->send_buffer_.resize(new_buffer_size); |
| } |
| |
| if (!socket->ready_to_send_ && |
| (socket->send_buffer_.size() < send_buffer_capacity_)) { |
| socket->ready_to_send_ = true; |
| socket->SignalWriteEvent(socket); |
| } |
| } |
| |
| void VirtualSocketServer::AddPacketToNetwork(VirtualSocket* sender, |
| VirtualSocket* recipient, |
| int64_t cur_time, |
| const char* data, |
| size_t data_size, |
| size_t header_size, |
| bool ordered) { |
| VirtualSocket::NetworkEntry entry; |
| entry.size = data_size + header_size; |
| |
| sender->network_size_ += entry.size; |
| uint32_t send_delay = SendDelay(static_cast<uint32_t>(sender->network_size_)); |
| entry.done_time = cur_time + send_delay; |
| sender->network_.push_back(entry); |
| |
| // Find the delay for crossing the many virtual hops of the network. |
| uint32_t transit_delay = GetTransitDelay(sender); |
| |
| // When the incoming packet is from a binding of the any address, translate it |
| // to the default route here such that the recipient will see the default |
| // route. |
| SocketAddress sender_addr = sender->local_addr_; |
| IPAddress default_ip = GetDefaultRoute(sender_addr.ipaddr().family()); |
| if (sender_addr.IsAnyIP() && !IPIsUnspec(default_ip)) { |
| sender_addr.SetIP(default_ip); |
| } |
| |
| // Post the packet as a message to be delivered (on our own thread) |
| Packet* p = new Packet(data, data_size, sender_addr); |
| |
| int64_t ts = TimeAfter(send_delay + transit_delay); |
| if (ordered) { |
| // Ensure that new packets arrive after previous ones |
| ts = std::max(ts, sender->last_delivery_time_); |
| // A socket should not have both ordered and unordered delivery, so its last |
| // delivery time only needs to be updated when it has ordered delivery. |
| sender->last_delivery_time_ = ts; |
| } |
| msg_queue_->PostAt(RTC_FROM_HERE, ts, recipient, MSG_ID_PACKET, p); |
| } |
| |
| void VirtualSocketServer::PurgeNetworkPackets(VirtualSocket* socket, |
| int64_t cur_time) { |
| while (!socket->network_.empty() && |
| (socket->network_.front().done_time <= cur_time)) { |
| RTC_DCHECK(socket->network_size_ >= socket->network_.front().size); |
| socket->network_size_ -= socket->network_.front().size; |
| socket->network_.pop_front(); |
| } |
| } |
| |
| uint32_t VirtualSocketServer::SendDelay(uint32_t size) { |
| if (bandwidth_ == 0) |
| return 0; |
| else |
| return 1000 * size / bandwidth_; |
| } |
| |
| #if 0 |
| void PrintFunction(std::vector<std::pair<double, double> >* f) { |
| return; |
| double sum = 0; |
| for (uint32_t i = 0; i < f->size(); ++i) { |
| std::cout << (*f)[i].first << '\t' << (*f)[i].second << std::endl; |
| sum += (*f)[i].second; |
| } |
| if (!f->empty()) { |
| const double mean = sum / f->size(); |
| double sum_sq_dev = 0; |
| for (uint32_t i = 0; i < f->size(); ++i) { |
| double dev = (*f)[i].second - mean; |
| sum_sq_dev += dev * dev; |
| } |
| std::cout << "Mean = " << mean << " StdDev = " |
| << sqrt(sum_sq_dev / f->size()) << std::endl; |
| } |
| } |
| #endif // <unused> |
| |
| void VirtualSocketServer::UpdateDelayDistribution() { |
| Function* dist = CreateDistribution(delay_mean_, delay_stddev_, |
| delay_samples_); |
| // We take a lock just to make sure we don't leak memory. |
| { |
| CritScope cs(&delay_crit_); |
| delay_dist_.reset(dist); |
| } |
| } |
| |
| static double PI = 4 * atan(1.0); |
| |
| static double Normal(double x, double mean, double stddev) { |
| double a = (x - mean) * (x - mean) / (2 * stddev * stddev); |
| return exp(-a) / (stddev * sqrt(2 * PI)); |
| } |
| |
| #if 0 // static unused gives a warning |
| static double Pareto(double x, double min, double k) { |
| if (x < min) |
| return 0; |
| else |
| return k * std::pow(min, k) / std::pow(x, k+1); |
| } |
| #endif |
| |
| VirtualSocketServer::Function* VirtualSocketServer::CreateDistribution( |
| uint32_t mean, |
| uint32_t stddev, |
| uint32_t samples) { |
| Function* f = new Function(); |
| |
| if (0 == stddev) { |
| f->push_back(Point(mean, 1.0)); |
| } else { |
| double start = 0; |
| if (mean >= 4 * static_cast<double>(stddev)) |
| start = mean - 4 * static_cast<double>(stddev); |
| double end = mean + 4 * static_cast<double>(stddev); |
| |
| for (uint32_t i = 0; i < samples; i++) { |
| double x = start + (end - start) * i / (samples - 1); |
| double y = Normal(x, mean, stddev); |
| f->push_back(Point(x, y)); |
| } |
| } |
| return Resample(Invert(Accumulate(f)), 0, 1, samples); |
| } |
| |
| uint32_t VirtualSocketServer::GetTransitDelay(Socket* socket) { |
| // Use the delay based on the address if it is set. |
| auto iter = delay_by_ip_.find(socket->GetLocalAddress().ipaddr()); |
| if (iter != delay_by_ip_.end()) { |
| return static_cast<uint32_t>(iter->second); |
| } |
| // Otherwise, use the delay from the distribution distribution. |
| size_t index = rand() % delay_dist_->size(); |
| double delay = (*delay_dist_)[index].second; |
| // RTC_LOG_F(LS_INFO) << "random[" << index << "] = " << delay; |
| return static_cast<uint32_t>(delay); |
| } |
| |
| struct FunctionDomainCmp { |
| bool operator()(const VirtualSocketServer::Point& p1, |
| const VirtualSocketServer::Point& p2) { |
| return p1.first < p2.first; |
| } |
| bool operator()(double v1, const VirtualSocketServer::Point& p2) { |
| return v1 < p2.first; |
| } |
| bool operator()(const VirtualSocketServer::Point& p1, double v2) { |
| return p1.first < v2; |
| } |
| }; |
| |
| VirtualSocketServer::Function* VirtualSocketServer::Accumulate(Function* f) { |
| RTC_DCHECK(f->size() >= 1); |
| double v = 0; |
| for (Function::size_type i = 0; i < f->size() - 1; ++i) { |
| double dx = (*f)[i + 1].first - (*f)[i].first; |
| double avgy = ((*f)[i + 1].second + (*f)[i].second) / 2; |
| (*f)[i].second = v; |
| v = v + dx * avgy; |
| } |
| (*f)[f->size()-1].second = v; |
| return f; |
| } |
| |
| VirtualSocketServer::Function* VirtualSocketServer::Invert(Function* f) { |
| for (Function::size_type i = 0; i < f->size(); ++i) |
| std::swap((*f)[i].first, (*f)[i].second); |
| |
| std::sort(f->begin(), f->end(), FunctionDomainCmp()); |
| return f; |
| } |
| |
| VirtualSocketServer::Function* VirtualSocketServer::Resample(Function* f, |
| double x1, |
| double x2, |
| uint32_t samples) { |
| Function* g = new Function(); |
| |
| for (size_t i = 0; i < samples; i++) { |
| double x = x1 + (x2 - x1) * i / (samples - 1); |
| double y = Evaluate(f, x); |
| g->push_back(Point(x, y)); |
| } |
| |
| delete f; |
| return g; |
| } |
| |
| double VirtualSocketServer::Evaluate(Function* f, double x) { |
| Function::iterator iter = |
| std::lower_bound(f->begin(), f->end(), x, FunctionDomainCmp()); |
| if (iter == f->begin()) { |
| return (*f)[0].second; |
| } else if (iter == f->end()) { |
| RTC_DCHECK(f->size() >= 1); |
| return (*f)[f->size() - 1].second; |
| } else if (iter->first == x) { |
| return iter->second; |
| } else { |
| double x1 = (iter - 1)->first; |
| double y1 = (iter - 1)->second; |
| double x2 = iter->first; |
| double y2 = iter->second; |
| return y1 + (y2 - y1) * (x - x1) / (x2 - x1); |
| } |
| } |
| |
| bool VirtualSocketServer::CanInteractWith(VirtualSocket* local, |
| VirtualSocket* remote) { |
| if (!local || !remote) { |
| return false; |
| } |
| IPAddress local_ip = local->GetLocalAddress().ipaddr(); |
| IPAddress remote_ip = remote->GetLocalAddress().ipaddr(); |
| IPAddress local_normalized = local_ip.Normalized(); |
| IPAddress remote_normalized = remote_ip.Normalized(); |
| // Check if the addresses are the same family after Normalization (turns |
| // mapped IPv6 address into IPv4 addresses). |
| // This will stop unmapped V6 addresses from talking to mapped V6 addresses. |
| if (local_normalized.family() == remote_normalized.family()) { |
| return true; |
| } |
| |
| // If ip1 is IPv4 and ip2 is :: and ip2 is not IPV6_V6ONLY. |
| int remote_v6_only = 0; |
| remote->GetOption(Socket::OPT_IPV6_V6ONLY, &remote_v6_only); |
| if (local_ip.family() == AF_INET && !remote_v6_only && IPIsAny(remote_ip)) { |
| return true; |
| } |
| // Same check, backwards. |
| int local_v6_only = 0; |
| local->GetOption(Socket::OPT_IPV6_V6ONLY, &local_v6_only); |
| if (remote_ip.family() == AF_INET && !local_v6_only && IPIsAny(local_ip)) { |
| return true; |
| } |
| |
| // Check to see if either socket was explicitly bound to IPv6-any. |
| // These sockets can talk with anyone. |
| if (local_ip.family() == AF_INET6 && local->was_any()) { |
| return true; |
| } |
| if (remote_ip.family() == AF_INET6 && remote->was_any()) { |
| return true; |
| } |
| |
| return false; |
| } |
| |
| IPAddress VirtualSocketServer::GetDefaultRoute(int family) { |
| if (family == AF_INET) { |
| return default_route_v4_; |
| } |
| if (family == AF_INET6) { |
| return default_route_v6_; |
| } |
| return IPAddress(); |
| } |
| void VirtualSocketServer::SetDefaultRoute(const IPAddress& from_addr) { |
| RTC_DCHECK(!IPIsAny(from_addr)); |
| if (from_addr.family() == AF_INET) { |
| default_route_v4_ = from_addr; |
| } else if (from_addr.family() == AF_INET6) { |
| default_route_v6_ = from_addr; |
| } |
| } |
| |
| } // namespace rtc |