blob: 5bfdb7344d54602a45ff1699c2165dbf9ce66f9c [file] [log] [blame]
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* This file includes unit tests for the RTCPReceiver.
*/
#include <gtest/gtest.h>
// Note: This file has no directory. Lint warning must be ignored.
#include "common_types.h"
#include "modules/rtp_rtcp/source/rtp_utility.h"
#include "modules/rtp_rtcp/source/rtcp_sender.h"
#include "modules/rtp_rtcp/source/rtcp_receiver.h"
#include "modules/rtp_rtcp/source/rtp_rtcp_impl.h"
namespace webrtc {
namespace { // Anonymous namespace; hide utility functions and classes.
// A very simple packet builder class for building RTCP packets.
class PacketBuilder {
public:
static const int kMaxPacketSize = 1024;
PacketBuilder()
: pos_(0),
pos_of_len_(0) {
}
void Add8(WebRtc_UWord8 byte) {
EXPECT_LT(pos_, kMaxPacketSize - 1);
buffer_[pos_] = byte;
++ pos_;
}
void Add16(WebRtc_UWord16 word) {
Add8(word >> 8);
Add8(word & 0xFF);
}
void Add32(WebRtc_UWord32 word) {
Add8(word >> 24);
Add8((word >> 16) & 0xFF);
Add8((word >> 8) & 0xFF);
Add8(word & 0xFF);
}
void Add64(WebRtc_UWord32 upper_half, WebRtc_UWord32 lower_half) {
Add32(upper_half);
Add32(lower_half);
}
// Set the 5-bit value in the 1st byte of the header
// and the payload type. Set aside room for the length field,
// and make provision for backpatching it.
// Note: No way to set the padding bit.
void AddRtcpHeader(int payload, int format_or_count) {
PatchLengthField();
Add8(0x80 | (format_or_count & 0x1F));
Add8(payload);
pos_of_len_ = pos_;
Add16(0xDEAD); // Initialize length to "clearly illegal".
}
void AddTmmbrBandwidth(int mantissa, int exponent, int overhead) {
// 6 bits exponent, 17 bits mantissa, 9 bits overhead.
WebRtc_UWord32 word = 0;
word |= (exponent << 26);
word |= ((mantissa & 0x1FFFF) << 9);
word |= (overhead & 0x1FF);
Add32(word);
}
void AddSrPacket(WebRtc_UWord32 sender_ssrc) {
AddRtcpHeader(200, 0);
Add32(sender_ssrc);
Add64(0x10203, 0x4050607); // NTP timestamp
Add32(0x10203); // RTP timestamp
Add32(0); // Sender's packet count
Add32(0); // Sender's octet count
}
const WebRtc_UWord8* packet() {
PatchLengthField();
return buffer_;
}
unsigned int length() {
return pos_;
}
private:
void PatchLengthField() {
if (pos_of_len_ > 0) {
// Backpatch the packet length. The client must have taken
// care of proper padding to 32-bit words.
int this_packet_length = (pos_ - pos_of_len_ - 2);
ASSERT_EQ(0, this_packet_length % 4)
<< "Packets must be a multiple of 32 bits long"
<< " pos " << pos_ << " pos_of_len " << pos_of_len_;
buffer_[pos_of_len_] = this_packet_length >> 10;
buffer_[pos_of_len_+1] = (this_packet_length >> 2) & 0xFF;
pos_of_len_ = 0;
}
}
int pos_;
// Where the length field of the current packet is.
// Note that 0 is not a legal value, so is used for "uninitialized".
int pos_of_len_;
WebRtc_UWord8 buffer_[kMaxPacketSize];
};
// Fake system clock, controllable to the millisecond.
// The Epoch for this clock is Jan 1, 1970, as evidenced
// by the NTP calculation.
class FakeSystemClock : public RtpRtcpClock {
public:
FakeSystemClock()
: time_in_ms_(1335900000) {} // A nonzero, but fake, value.
virtual WebRtc_UWord32 GetTimeInMS() {
return time_in_ms_;
}
virtual void CurrentNTP(WebRtc_UWord32& secs,
WebRtc_UWord32& frac) {
secs = (time_in_ms_ / 1000) + ModuleRTPUtility::NTP_JAN_1970;
// NTP_FRAC is 2^32 - number of ticks per second in the NTP fraction.
frac = (WebRtc_UWord32)((time_in_ms_ % 1000)
* ModuleRTPUtility::NTP_FRAC / 1000);
}
void AdvanceClock(int ms_to_advance) {
time_in_ms_ += ms_to_advance;
}
private:
WebRtc_UWord32 time_in_ms_;
};
// This test transport verifies that no functions get called.
class TestTransport : public Transport,
public RtpData {
public:
explicit TestTransport(RTCPReceiver* rtcp_receiver) :
rtcp_receiver_(rtcp_receiver) {
}
virtual int SendPacket(int /*ch*/, const void* /*data*/, int /*len*/) {
ADD_FAILURE(); // FAIL() gives a compile error.
return -1;
}
// Injects an RTCP packet into the receiver.
virtual int SendRTCPPacket(int /* ch */, const void *packet, int packet_len) {
ADD_FAILURE();
return 0;
}
virtual int OnReceivedPayloadData(const WebRtc_UWord8* payloadData,
const WebRtc_UWord16 payloadSize,
const WebRtcRTPHeader* rtpHeader) {
ADD_FAILURE();
return 0;
}
RTCPReceiver* rtcp_receiver_;
};
class RtcpReceiverTest : public ::testing::Test {
protected:
RtcpReceiverTest() {
// system_clock_ = ModuleRTPUtility::GetSystemClock();
system_clock_ = new FakeSystemClock();
rtp_rtcp_impl_ = new ModuleRtpRtcpImpl(0, false, system_clock_);
rtcp_receiver_ = new RTCPReceiver(0, system_clock_, rtp_rtcp_impl_);
test_transport_ = new TestTransport(rtcp_receiver_);
EXPECT_EQ(0, rtp_rtcp_impl_->RegisterIncomingDataCallback(test_transport_));
}
~RtcpReceiverTest() {
delete rtcp_receiver_;
delete rtp_rtcp_impl_;
delete test_transport_;
delete system_clock_;
}
// Injects an RTCP packet into the receiver.
// Returns 0 for OK, non-0 for failure.
int InjectRtcpPacket(const WebRtc_UWord8* packet,
WebRtc_UWord16 packet_len) {
RTCPUtility::RTCPParserV2 rtcpParser(packet,
packet_len,
true); // Allow non-compound RTCP
RTCPHelp::RTCPPacketInformation rtcpPacketInformation;
int result = rtcp_receiver_->IncomingRTCPPacket(rtcpPacketInformation,
&rtcpParser);
rtcp_packet_info_ = rtcpPacketInformation;
return result;
}
FakeSystemClock* system_clock_;
ModuleRtpRtcpImpl* rtp_rtcp_impl_;
RTCPReceiver* rtcp_receiver_;
TestTransport* test_transport_;
RTCPHelp::RTCPPacketInformation rtcp_packet_info_;
};
TEST_F(RtcpReceiverTest, BrokenPacketIsIgnored) {
const WebRtc_UWord8 bad_packet[] = {0, 0, 0, 0};
EXPECT_EQ(0, InjectRtcpPacket(bad_packet, sizeof(bad_packet)));
EXPECT_EQ(0U, rtcp_packet_info_.rtcpPacketTypeFlags);
}
TEST_F(RtcpReceiverTest, InjectSrPacket) {
const WebRtc_UWord32 kSenderSsrc = 0x10203;
PacketBuilder p;
p.AddSrPacket(kSenderSsrc);
EXPECT_EQ(0, InjectRtcpPacket(p.packet(), p.length()));
// The parser will note the remote SSRC on a SR from other than his
// expected peer, but will not flag that he's gotten a packet.
EXPECT_EQ(kSenderSsrc, rtcp_packet_info_.remoteSSRC);
EXPECT_EQ(0U,
kRtcpSr & rtcp_packet_info_.rtcpPacketTypeFlags);
}
TEST_F(RtcpReceiverTest, TmmbrReceivedWithNoIncomingPacket) {
// This call is expected to fail because no data has arrived.
EXPECT_EQ(-1, rtcp_receiver_->TMMBRReceived(0, 0, NULL));
}
TEST_F(RtcpReceiverTest, TmmbrPacketAccepted) {
const WebRtc_UWord32 kMediaFlowSsrc = 0x2040608;
const WebRtc_UWord32 kSenderSsrc = 0x10203;
const WebRtc_UWord32 kMediaRecipientSsrc = 0x101;
rtcp_receiver_->SetSSRC(kMediaFlowSsrc); // Matches "media source" above.
PacketBuilder p;
p.AddSrPacket(kSenderSsrc);
// TMMBR packet.
p.AddRtcpHeader(205, 3);
p.Add32(kSenderSsrc);
p.Add32(kMediaRecipientSsrc);
p.Add32(kMediaFlowSsrc);
p.AddTmmbrBandwidth(30000, 0, 0); // 30 Kbits/sec bandwidth, no overhead.
EXPECT_EQ(0, InjectRtcpPacket(p.packet(), p.length()));
EXPECT_EQ(1, rtcp_receiver_->TMMBRReceived(0, 0, NULL));
TMMBRSet candidate_set;
candidate_set.VerifyAndAllocateSet(1);
EXPECT_EQ(1, rtcp_receiver_->TMMBRReceived(1, 0, &candidate_set));
EXPECT_LT(0U, candidate_set.Tmmbr(0));
EXPECT_EQ(kMediaRecipientSsrc, candidate_set.Ssrc(0));
}
TEST_F(RtcpReceiverTest, TmmbrPacketNotForUsIgnored) {
const WebRtc_UWord32 kMediaFlowSsrc = 0x2040608;
const WebRtc_UWord32 kSenderSsrc = 0x10203;
const WebRtc_UWord32 kMediaRecipientSsrc = 0x101;
const WebRtc_UWord32 kOtherMediaFlowSsrc = 0x9999;
PacketBuilder p;
p.AddSrPacket(kSenderSsrc);
// TMMBR packet.
p.AddRtcpHeader(205, 3);
p.Add32(kSenderSsrc);
p.Add32(kMediaRecipientSsrc);
p.Add32(kOtherMediaFlowSsrc); // This SSRC is not what we're sending.
p.AddTmmbrBandwidth(30000, 0, 0);
rtcp_receiver_->SetSSRC(kMediaFlowSsrc);
EXPECT_EQ(0, InjectRtcpPacket(p.packet(), p.length()));
EXPECT_EQ(0, rtcp_receiver_->TMMBRReceived(0, 0, NULL));
}
TEST_F(RtcpReceiverTest, TmmbrPacketZeroRateIgnored) {
const WebRtc_UWord32 kMediaFlowSsrc = 0x2040608;
const WebRtc_UWord32 kSenderSsrc = 0x10203;
const WebRtc_UWord32 kMediaRecipientSsrc = 0x101;
rtcp_receiver_->SetSSRC(kMediaFlowSsrc); // Matches "media source" above.
PacketBuilder p;
p.AddSrPacket(kSenderSsrc);
// TMMBR packet.
p.AddRtcpHeader(205, 3);
p.Add32(kSenderSsrc);
p.Add32(kMediaRecipientSsrc);
p.Add32(kMediaFlowSsrc);
p.AddTmmbrBandwidth(0, 0, 0); // Rate zero.
EXPECT_EQ(0, InjectRtcpPacket(p.packet(), p.length()));
EXPECT_EQ(0, rtcp_receiver_->TMMBRReceived(0, 0, NULL));
}
TEST_F(RtcpReceiverTest, TmmbrThreeConstraintsTimeOut) {
const WebRtc_UWord32 kMediaFlowSsrc = 0x2040608;
const WebRtc_UWord32 kSenderSsrc = 0x10203;
const WebRtc_UWord32 kMediaRecipientSsrc = 0x101;
rtcp_receiver_->SetSSRC(kMediaFlowSsrc); // Matches "media source" above.
// Inject 3 packets "from" kMediaRecipientSsrc, Ssrc+1, Ssrc+2.
// The times of arrival are starttime + 0, starttime + 5 and starttime + 10.
for (WebRtc_UWord32 ssrc = kMediaRecipientSsrc;
ssrc < kMediaRecipientSsrc+3; ++ssrc) {
PacketBuilder p;
p.AddSrPacket(kSenderSsrc);
// TMMBR packet.
p.AddRtcpHeader(205, 3);
p.Add32(kSenderSsrc);
p.Add32(ssrc);
p.Add32(kMediaFlowSsrc);
p.AddTmmbrBandwidth(30000, 0, 0); // 30 Kbits/sec bandwidth, no overhead.
EXPECT_EQ(0, InjectRtcpPacket(p.packet(), p.length()));
system_clock_->AdvanceClock(5000); // 5 seconds between each packet.
}
// It is now starttime+15.
EXPECT_EQ(3, rtcp_receiver_->TMMBRReceived(0, 0, NULL));
TMMBRSet candidate_set;
candidate_set.VerifyAndAllocateSet(3);
EXPECT_EQ(3, rtcp_receiver_->TMMBRReceived(3, 0, &candidate_set));
EXPECT_LT(0U, candidate_set.Tmmbr(0));
// We expect the timeout to be 25 seconds. Advance the clock by 12
// seconds, timing out the first packet.
system_clock_->AdvanceClock(12000);
// Odd behaviour: Just counting them does not trigger the timeout.
EXPECT_EQ(3, rtcp_receiver_->TMMBRReceived(0, 0, NULL));
// Odd behaviour: There's only one left after timeout, not 2.
EXPECT_EQ(1, rtcp_receiver_->TMMBRReceived(3, 0, &candidate_set));
EXPECT_EQ(kMediaRecipientSsrc + 2, candidate_set.Ssrc(0));
}
} // Anonymous namespace
} // namespace webrtc