blob: 623877defd3bc109c23c76bb59255b20ccd11ad8 [file] [log] [blame]
/*
* Copyright (c) 2015 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "video/payload_router.h"
#include "modules/rtp_rtcp/include/rtp_rtcp.h"
#include "modules/rtp_rtcp/include/rtp_rtcp_defines.h"
#include "modules/video_coding/include/video_codec_interface.h"
#include "rtc_base/checks.h"
#include "rtc_base/random.h"
#include "rtc_base/timeutils.h"
namespace webrtc {
namespace {
// Map information from info into rtp.
void CopyCodecSpecific(const CodecSpecificInfo* info, RTPVideoHeader* rtp) {
RTC_DCHECK(info);
rtp->codec = info->codecType;
switch (info->codecType) {
case kVideoCodecVP8: {
rtp->vp8().InitRTPVideoHeaderVP8();
rtp->vp8().nonReference = info->codecSpecific.VP8.nonReference;
rtp->vp8().temporalIdx = info->codecSpecific.VP8.temporalIdx;
rtp->vp8().layerSync = info->codecSpecific.VP8.layerSync;
rtp->vp8().keyIdx = info->codecSpecific.VP8.keyIdx;
rtp->simulcastIdx = info->codecSpecific.VP8.simulcastIdx;
return;
}
case kVideoCodecVP9: {
rtp->vp9().InitRTPVideoHeaderVP9();
rtp->vp9().inter_pic_predicted =
info->codecSpecific.VP9.inter_pic_predicted;
rtp->vp9().flexible_mode = info->codecSpecific.VP9.flexible_mode;
rtp->vp9().ss_data_available = info->codecSpecific.VP9.ss_data_available;
rtp->vp9().non_ref_for_inter_layer_pred =
info->codecSpecific.VP9.non_ref_for_inter_layer_pred;
rtp->vp9().temporal_idx = info->codecSpecific.VP9.temporal_idx;
rtp->vp9().spatial_idx = info->codecSpecific.VP9.spatial_idx;
rtp->vp9().temporal_up_switch =
info->codecSpecific.VP9.temporal_up_switch;
rtp->vp9().inter_layer_predicted =
info->codecSpecific.VP9.inter_layer_predicted;
rtp->vp9().gof_idx = info->codecSpecific.VP9.gof_idx;
rtp->vp9().num_spatial_layers =
info->codecSpecific.VP9.num_spatial_layers;
if (info->codecSpecific.VP9.ss_data_available) {
rtp->vp9().spatial_layer_resolution_present =
info->codecSpecific.VP9.spatial_layer_resolution_present;
if (info->codecSpecific.VP9.spatial_layer_resolution_present) {
for (size_t i = 0; i < info->codecSpecific.VP9.num_spatial_layers;
++i) {
rtp->vp9().width[i] = info->codecSpecific.VP9.width[i];
rtp->vp9().height[i] = info->codecSpecific.VP9.height[i];
}
}
rtp->vp9().gof.CopyGofInfoVP9(info->codecSpecific.VP9.gof);
}
rtp->vp9().num_ref_pics = info->codecSpecific.VP9.num_ref_pics;
for (int i = 0; i < info->codecSpecific.VP9.num_ref_pics; ++i) {
rtp->vp9().pid_diff[i] = info->codecSpecific.VP9.p_diff[i];
}
rtp->vp9().end_of_picture = info->codecSpecific.VP9.end_of_picture;
return;
}
case kVideoCodecH264:
rtp->h264().packetization_mode =
info->codecSpecific.H264.packetization_mode;
rtp->simulcastIdx = info->codecSpecific.H264.simulcast_idx;
return;
case kVideoCodecMultiplex:
case kVideoCodecGeneric:
rtp->codec = kVideoCodecGeneric;
rtp->simulcastIdx = info->codecSpecific.generic.simulcast_idx;
return;
default:
return;
}
}
void SetVideoTiming(VideoSendTiming* timing, const EncodedImage& image) {
if (image.timing_.flags == VideoSendTiming::TimingFrameFlags::kInvalid ||
image.timing_.flags == VideoSendTiming::TimingFrameFlags::kNotTriggered) {
timing->flags = VideoSendTiming::TimingFrameFlags::kInvalid;
return;
}
timing->encode_start_delta_ms = VideoSendTiming::GetDeltaCappedMs(
image.capture_time_ms_, image.timing_.encode_start_ms);
timing->encode_finish_delta_ms = VideoSendTiming::GetDeltaCappedMs(
image.capture_time_ms_, image.timing_.encode_finish_ms);
timing->packetization_finish_delta_ms = 0;
timing->pacer_exit_delta_ms = 0;
timing->network_timestamp_delta_ms = 0;
timing->network2_timestamp_delta_ms = 0;
timing->flags = image.timing_.flags;
}
} // namespace
// State for setting picture id and tl0 pic idx, for VP8 and VP9
// TODO(nisse): Make these properties not codec specific.
class PayloadRouter::RtpPayloadParams final {
public:
RtpPayloadParams(const uint32_t ssrc, const RtpPayloadState* state)
: ssrc_(ssrc) {
Random random(rtc::TimeMicros());
state_.picture_id =
state ? state->picture_id : (random.Rand<int16_t>() & 0x7FFF);
state_.tl0_pic_idx = state ? state->tl0_pic_idx : (random.Rand<uint8_t>());
}
~RtpPayloadParams() {}
void Set(RTPVideoHeader* rtp_video_header, bool first_frame_in_picture) {
// Always set picture id. Set tl0_pic_idx iff temporal index is set.
if (first_frame_in_picture) {
state_.picture_id =
(static_cast<uint16_t>(state_.picture_id) + 1) & 0x7FFF;
}
if (rtp_video_header->codec == kVideoCodecVP8) {
rtp_video_header->vp8().pictureId = state_.picture_id;
if (rtp_video_header->vp8().temporalIdx != kNoTemporalIdx) {
if (rtp_video_header->vp8().temporalIdx == 0) {
++state_.tl0_pic_idx;
}
rtp_video_header->vp8().tl0PicIdx = state_.tl0_pic_idx;
}
}
if (rtp_video_header->codec == kVideoCodecVP9) {
rtp_video_header->vp9().picture_id = state_.picture_id;
// Note that in the case that we have no temporal layers but we do have
// spatial layers, packets will carry layering info with a temporal_idx of
// zero, and we then have to set and increment tl0_pic_idx.
if (rtp_video_header->vp9().temporal_idx != kNoTemporalIdx ||
rtp_video_header->vp9().spatial_idx != kNoSpatialIdx) {
if (first_frame_in_picture &&
(rtp_video_header->vp9().temporal_idx == 0 ||
rtp_video_header->vp9().temporal_idx == kNoTemporalIdx)) {
++state_.tl0_pic_idx;
}
rtp_video_header->vp9().tl0_pic_idx = state_.tl0_pic_idx;
}
}
}
uint32_t ssrc() const { return ssrc_; }
RtpPayloadState state() const { return state_; }
private:
const uint32_t ssrc_;
RtpPayloadState state_;
};
PayloadRouter::PayloadRouter(const std::vector<RtpRtcp*>& rtp_modules,
const std::vector<uint32_t>& ssrcs,
int payload_type,
const std::map<uint32_t, RtpPayloadState>& states)
: active_(false), rtp_modules_(rtp_modules), payload_type_(payload_type) {
RTC_DCHECK_EQ(ssrcs.size(), rtp_modules.size());
// SSRCs are assumed to be sorted in the same order as |rtp_modules|.
for (uint32_t ssrc : ssrcs) {
// Restore state if it previously existed.
const RtpPayloadState* state = nullptr;
auto it = states.find(ssrc);
if (it != states.end()) {
state = &it->second;
}
params_.push_back(RtpPayloadParams(ssrc, state));
}
}
PayloadRouter::~PayloadRouter() {}
void PayloadRouter::SetActive(bool active) {
rtc::CritScope lock(&crit_);
if (active_ == active)
return;
const std::vector<bool> active_modules(rtp_modules_.size(), active);
SetActiveModules(active_modules);
}
void PayloadRouter::SetActiveModules(const std::vector<bool> active_modules) {
rtc::CritScope lock(&crit_);
RTC_DCHECK_EQ(rtp_modules_.size(), active_modules.size());
active_ = false;
for (size_t i = 0; i < active_modules.size(); ++i) {
if (active_modules[i]) {
active_ = true;
}
// Sends a kRtcpByeCode when going from true to false.
rtp_modules_[i]->SetSendingStatus(active_modules[i]);
// If set to false this module won't send media.
rtp_modules_[i]->SetSendingMediaStatus(active_modules[i]);
}
}
bool PayloadRouter::IsActive() {
rtc::CritScope lock(&crit_);
return active_ && !rtp_modules_.empty();
}
std::map<uint32_t, RtpPayloadState> PayloadRouter::GetRtpPayloadStates() const {
rtc::CritScope lock(&crit_);
std::map<uint32_t, RtpPayloadState> payload_states;
for (const auto& param : params_) {
payload_states[param.ssrc()] = param.state();
}
return payload_states;
}
EncodedImageCallback::Result PayloadRouter::OnEncodedImage(
const EncodedImage& encoded_image,
const CodecSpecificInfo* codec_specific_info,
const RTPFragmentationHeader* fragmentation) {
rtc::CritScope lock(&crit_);
RTC_DCHECK(!rtp_modules_.empty());
if (!active_)
return Result(Result::ERROR_SEND_FAILED);
RTPVideoHeader rtp_video_header;
memset(&rtp_video_header, 0, sizeof(RTPVideoHeader));
if (codec_specific_info)
CopyCodecSpecific(codec_specific_info, &rtp_video_header);
rtp_video_header.rotation = encoded_image.rotation_;
rtp_video_header.content_type = encoded_image.content_type_;
rtp_video_header.playout_delay = encoded_image.playout_delay_;
SetVideoTiming(&rtp_video_header.video_timing, encoded_image);
int stream_index = rtp_video_header.simulcastIdx;
RTC_DCHECK_LT(stream_index, rtp_modules_.size());
// Sets picture id and tl0 pic idx.
const bool first_frame_in_picture =
(codec_specific_info && codec_specific_info->codecType == kVideoCodecVP9)
? codec_specific_info->codecSpecific.VP9.first_frame_in_picture
: true;
params_[stream_index].Set(&rtp_video_header, first_frame_in_picture);
uint32_t frame_id;
if (!rtp_modules_[stream_index]->Sending()) {
// The payload router could be active but this module isn't sending.
return Result(Result::ERROR_SEND_FAILED);
}
bool send_result = rtp_modules_[stream_index]->SendOutgoingData(
encoded_image._frameType, payload_type_, encoded_image._timeStamp,
encoded_image.capture_time_ms_, encoded_image._buffer,
encoded_image._length, fragmentation, &rtp_video_header, &frame_id);
if (!send_result)
return Result(Result::ERROR_SEND_FAILED);
return Result(Result::OK, frame_id);
}
void PayloadRouter::OnBitrateAllocationUpdated(
const VideoBitrateAllocation& bitrate) {
rtc::CritScope lock(&crit_);
if (IsActive()) {
if (rtp_modules_.size() == 1) {
// If spatial scalability is enabled, it is covered by a single stream.
rtp_modules_[0]->SetVideoBitrateAllocation(bitrate);
} else {
// Simulcast is in use, split the VideoBitrateAllocation into one struct
// per rtp stream, moving over the temporal layer allocation.
for (size_t si = 0; si < rtp_modules_.size(); ++si) {
// Don't send empty TargetBitrate messages on streams not being relayed.
if (!bitrate.IsSpatialLayerUsed(si)) {
// The next spatial layer could be used if the current one is
// inactive.
continue;
}
VideoBitrateAllocation layer_bitrate;
for (int tl = 0; tl < kMaxTemporalStreams; ++tl) {
if (bitrate.HasBitrate(si, tl))
layer_bitrate.SetBitrate(0, tl, bitrate.GetBitrate(si, tl));
}
rtp_modules_[si]->SetVideoBitrateAllocation(layer_bitrate);
}
}
}
}
} // namespace webrtc