| /* |
| * Copyright 2004 The WebRTC Project Authors. All rights reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #ifndef RTC_BASE_BUFFER_H_ |
| #define RTC_BASE_BUFFER_H_ |
| |
| #include <algorithm> |
| #include <cstring> |
| #include <memory> |
| #include <type_traits> |
| #include <utility> |
| |
| #include "api/array_view.h" |
| #include "rtc_base/checks.h" |
| #include "rtc_base/type_traits.h" |
| #include "rtc_base/zero_memory.h" |
| |
| namespace rtc { |
| |
| namespace internal { |
| |
| // (Internal; please don't use outside this file.) Determines if elements of |
| // type U are compatible with a BufferT<T>. For most types, we just ignore |
| // top-level const and forbid top-level volatile and require T and U to be |
| // otherwise equal, but all byte-sized integers (notably char, int8_t, and |
| // uint8_t) are compatible with each other. (Note: We aim to get rid of this |
| // behavior, and treat all types the same.) |
| template <typename T, typename U> |
| struct BufferCompat { |
| static constexpr bool value = |
| !std::is_volatile<U>::value && |
| ((std::is_integral<T>::value && sizeof(T) == 1) |
| ? (std::is_integral<U>::value && sizeof(U) == 1) |
| : (std::is_same<T, typename std::remove_const<U>::type>::value)); |
| }; |
| |
| } // namespace internal |
| |
| // Basic buffer class, can be grown and shrunk dynamically. |
| // Unlike std::string/vector, does not initialize data when increasing size. |
| // If "ZeroOnFree" is true, any memory is explicitly cleared before releasing. |
| // The type alias "ZeroOnFreeBuffer" below should be used instead of setting |
| // "ZeroOnFree" in the template manually to "true". |
| template <typename T, bool ZeroOnFree = false> |
| class BufferT { |
| // We want T's destructor and default constructor to be trivial, i.e. perform |
| // no action, so that we don't have to touch the memory we allocate and |
| // deallocate. And we want T to be trivially copyable, so that we can copy T |
| // instances with std::memcpy. This is precisely the definition of a trivial |
| // type. |
| static_assert(std::is_trivial<T>::value, "T must be a trivial type."); |
| |
| // This class relies heavily on being able to mutate its data. |
| static_assert(!std::is_const<T>::value, "T may not be const"); |
| |
| public: |
| using value_type = T; |
| |
| // An empty BufferT. |
| BufferT() : size_(0), capacity_(0), data_(nullptr) { |
| RTC_DCHECK(IsConsistent()); |
| } |
| |
| // Disable copy construction and copy assignment, since copying a buffer is |
| // expensive enough that we want to force the user to be explicit about it. |
| BufferT(const BufferT&) = delete; |
| BufferT& operator=(const BufferT&) = delete; |
| |
| BufferT(BufferT&& buf) |
| : size_(buf.size()), |
| capacity_(buf.capacity()), |
| data_(std::move(buf.data_)) { |
| RTC_DCHECK(IsConsistent()); |
| buf.OnMovedFrom(); |
| } |
| |
| // Construct a buffer with the specified number of uninitialized elements. |
| explicit BufferT(size_t size) : BufferT(size, size) {} |
| |
| BufferT(size_t size, size_t capacity) |
| : size_(size), |
| capacity_(std::max(size, capacity)), |
| data_(capacity_ > 0 ? new T[capacity_] : nullptr) { |
| RTC_DCHECK(IsConsistent()); |
| } |
| |
| // Construct a buffer and copy the specified number of elements into it. |
| template <typename U, |
| typename std::enable_if< |
| internal::BufferCompat<T, U>::value>::type* = nullptr> |
| BufferT(const U* data, size_t size) : BufferT(data, size, size) {} |
| |
| template <typename U, |
| typename std::enable_if< |
| internal::BufferCompat<T, U>::value>::type* = nullptr> |
| BufferT(U* data, size_t size, size_t capacity) : BufferT(size, capacity) { |
| static_assert(sizeof(T) == sizeof(U), ""); |
| std::memcpy(data_.get(), data, size * sizeof(U)); |
| } |
| |
| // Construct a buffer from the contents of an array. |
| template <typename U, |
| size_t N, |
| typename std::enable_if< |
| internal::BufferCompat<T, U>::value>::type* = nullptr> |
| BufferT(U (&array)[N]) : BufferT(array, N) {} |
| |
| ~BufferT() { MaybeZeroCompleteBuffer(); } |
| |
| // Get a pointer to the data. Just .data() will give you a (const) T*, but if |
| // T is a byte-sized integer, you may also use .data<U>() for any other |
| // byte-sized integer U. |
| template <typename U = T, |
| typename std::enable_if< |
| internal::BufferCompat<T, U>::value>::type* = nullptr> |
| const U* data() const { |
| RTC_DCHECK(IsConsistent()); |
| return reinterpret_cast<U*>(data_.get()); |
| } |
| |
| template <typename U = T, |
| typename std::enable_if< |
| internal::BufferCompat<T, U>::value>::type* = nullptr> |
| U* data() { |
| RTC_DCHECK(IsConsistent()); |
| return reinterpret_cast<U*>(data_.get()); |
| } |
| |
| bool empty() const { |
| RTC_DCHECK(IsConsistent()); |
| return size_ == 0; |
| } |
| |
| size_t size() const { |
| RTC_DCHECK(IsConsistent()); |
| return size_; |
| } |
| |
| size_t capacity() const { |
| RTC_DCHECK(IsConsistent()); |
| return capacity_; |
| } |
| |
| BufferT& operator=(BufferT&& buf) { |
| RTC_DCHECK(buf.IsConsistent()); |
| size_ = buf.size_; |
| capacity_ = buf.capacity_; |
| data_ = std::move(buf.data_); |
| buf.OnMovedFrom(); |
| return *this; |
| } |
| |
| bool operator==(const BufferT& buf) const { |
| RTC_DCHECK(IsConsistent()); |
| if (size_ != buf.size_) { |
| return false; |
| } |
| if (std::is_integral<T>::value) { |
| // Optimization. |
| return std::memcmp(data_.get(), buf.data_.get(), size_ * sizeof(T)) == 0; |
| } |
| for (size_t i = 0; i < size_; ++i) { |
| if (data_[i] != buf.data_[i]) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| bool operator!=(const BufferT& buf) const { return !(*this == buf); } |
| |
| T& operator[](size_t index) { |
| RTC_DCHECK_LT(index, size_); |
| return data()[index]; |
| } |
| |
| T operator[](size_t index) const { |
| RTC_DCHECK_LT(index, size_); |
| return data()[index]; |
| } |
| |
| T* begin() { return data(); } |
| T* end() { return data() + size(); } |
| const T* begin() const { return data(); } |
| const T* end() const { return data() + size(); } |
| const T* cbegin() const { return data(); } |
| const T* cend() const { return data() + size(); } |
| |
| // The SetData functions replace the contents of the buffer. They accept the |
| // same input types as the constructors. |
| template <typename U, |
| typename std::enable_if< |
| internal::BufferCompat<T, U>::value>::type* = nullptr> |
| void SetData(const U* data, size_t size) { |
| RTC_DCHECK(IsConsistent()); |
| const size_t old_size = size_; |
| size_ = 0; |
| AppendData(data, size); |
| if (ZeroOnFree && size_ < old_size) { |
| ZeroTrailingData(old_size - size_); |
| } |
| } |
| |
| template <typename U, |
| size_t N, |
| typename std::enable_if< |
| internal::BufferCompat<T, U>::value>::type* = nullptr> |
| void SetData(const U (&array)[N]) { |
| SetData(array, N); |
| } |
| |
| template <typename W, |
| typename std::enable_if< |
| HasDataAndSize<const W, const T>::value>::type* = nullptr> |
| void SetData(const W& w) { |
| SetData(w.data(), w.size()); |
| } |
| |
| // Replaces the data in the buffer with at most |max_elements| of data, using |
| // the function |setter|, which should have the following signature: |
| // |
| // size_t setter(ArrayView<U> view) |
| // |
| // |setter| is given an appropriately typed ArrayView of length exactly |
| // |max_elements| that describes the area where it should write the data; it |
| // should return the number of elements actually written. (If it doesn't fill |
| // the whole ArrayView, it should leave the unused space at the end.) |
| template <typename U = T, |
| typename F, |
| typename std::enable_if< |
| internal::BufferCompat<T, U>::value>::type* = nullptr> |
| size_t SetData(size_t max_elements, F&& setter) { |
| RTC_DCHECK(IsConsistent()); |
| const size_t old_size = size_; |
| size_ = 0; |
| const size_t written = AppendData<U>(max_elements, std::forward<F>(setter)); |
| if (ZeroOnFree && size_ < old_size) { |
| ZeroTrailingData(old_size - size_); |
| } |
| return written; |
| } |
| |
| // The AppendData functions add data to the end of the buffer. They accept |
| // the same input types as the constructors. |
| template <typename U, |
| typename std::enable_if< |
| internal::BufferCompat<T, U>::value>::type* = nullptr> |
| void AppendData(const U* data, size_t size) { |
| RTC_DCHECK(IsConsistent()); |
| const size_t new_size = size_ + size; |
| EnsureCapacityWithHeadroom(new_size, true); |
| static_assert(sizeof(T) == sizeof(U), ""); |
| std::memcpy(data_.get() + size_, data, size * sizeof(U)); |
| size_ = new_size; |
| RTC_DCHECK(IsConsistent()); |
| } |
| |
| template <typename U, |
| size_t N, |
| typename std::enable_if< |
| internal::BufferCompat<T, U>::value>::type* = nullptr> |
| void AppendData(const U (&array)[N]) { |
| AppendData(array, N); |
| } |
| |
| template <typename W, |
| typename std::enable_if< |
| HasDataAndSize<const W, const T>::value>::type* = nullptr> |
| void AppendData(const W& w) { |
| AppendData(w.data(), w.size()); |
| } |
| |
| template <typename U, |
| typename std::enable_if< |
| internal::BufferCompat<T, U>::value>::type* = nullptr> |
| void AppendData(const U& item) { |
| AppendData(&item, 1); |
| } |
| |
| // Appends at most |max_elements| to the end of the buffer, using the function |
| // |setter|, which should have the following signature: |
| // |
| // size_t setter(ArrayView<U> view) |
| // |
| // |setter| is given an appropriately typed ArrayView of length exactly |
| // |max_elements| that describes the area where it should write the data; it |
| // should return the number of elements actually written. (If it doesn't fill |
| // the whole ArrayView, it should leave the unused space at the end.) |
| template <typename U = T, |
| typename F, |
| typename std::enable_if< |
| internal::BufferCompat<T, U>::value>::type* = nullptr> |
| size_t AppendData(size_t max_elements, F&& setter) { |
| RTC_DCHECK(IsConsistent()); |
| const size_t old_size = size_; |
| SetSize(old_size + max_elements); |
| U* base_ptr = data<U>() + old_size; |
| size_t written_elements = setter(rtc::ArrayView<U>(base_ptr, max_elements)); |
| |
| RTC_CHECK_LE(written_elements, max_elements); |
| size_ = old_size + written_elements; |
| RTC_DCHECK(IsConsistent()); |
| return written_elements; |
| } |
| |
| // Sets the size of the buffer. If the new size is smaller than the old, the |
| // buffer contents will be kept but truncated; if the new size is greater, |
| // the existing contents will be kept and the new space will be |
| // uninitialized. |
| void SetSize(size_t size) { |
| const size_t old_size = size_; |
| EnsureCapacityWithHeadroom(size, true); |
| size_ = size; |
| if (ZeroOnFree && size_ < old_size) { |
| ZeroTrailingData(old_size - size_); |
| } |
| } |
| |
| // Ensure that the buffer size can be increased to at least capacity without |
| // further reallocation. (Of course, this operation might need to reallocate |
| // the buffer.) |
| void EnsureCapacity(size_t capacity) { |
| // Don't allocate extra headroom, since the user is asking for a specific |
| // capacity. |
| EnsureCapacityWithHeadroom(capacity, false); |
| } |
| |
| // Resets the buffer to zero size without altering capacity. Works even if the |
| // buffer has been moved from. |
| void Clear() { |
| MaybeZeroCompleteBuffer(); |
| size_ = 0; |
| RTC_DCHECK(IsConsistent()); |
| } |
| |
| // Swaps two buffers. Also works for buffers that have been moved from. |
| friend void swap(BufferT& a, BufferT& b) { |
| using std::swap; |
| swap(a.size_, b.size_); |
| swap(a.capacity_, b.capacity_); |
| swap(a.data_, b.data_); |
| } |
| |
| private: |
| void EnsureCapacityWithHeadroom(size_t capacity, bool extra_headroom) { |
| RTC_DCHECK(IsConsistent()); |
| if (capacity <= capacity_) |
| return; |
| |
| // If the caller asks for extra headroom, ensure that the new capacity is |
| // >= 1.5 times the old capacity. Any constant > 1 is sufficient to prevent |
| // quadratic behavior; as to why we pick 1.5 in particular, see |
| // https://github.com/facebook/folly/blob/master/folly/docs/FBVector.md and |
| // http://www.gahcep.com/cpp-internals-stl-vector-part-1/. |
| const size_t new_capacity = |
| extra_headroom ? std::max(capacity, capacity_ + capacity_ / 2) |
| : capacity; |
| |
| std::unique_ptr<T[]> new_data(new T[new_capacity]); |
| std::memcpy(new_data.get(), data_.get(), size_ * sizeof(T)); |
| MaybeZeroCompleteBuffer(); |
| data_ = std::move(new_data); |
| capacity_ = new_capacity; |
| RTC_DCHECK(IsConsistent()); |
| } |
| |
| // Zero the complete buffer if template argument "ZeroOnFree" is true. |
| void MaybeZeroCompleteBuffer() { |
| if (ZeroOnFree && capacity_) { |
| // It would be sufficient to only zero "size_" elements, as all other |
| // methods already ensure that the unused capacity contains no sensitive |
| // data - but better safe than sorry. |
| ExplicitZeroMemory(data_.get(), capacity_ * sizeof(T)); |
| } |
| } |
| |
| // Zero the first "count" elements of unused capacity. |
| void ZeroTrailingData(size_t count) { |
| RTC_DCHECK(IsConsistent()); |
| RTC_DCHECK_LE(count, capacity_ - size_); |
| ExplicitZeroMemory(data_.get() + size_, count * sizeof(T)); |
| } |
| |
| // Precondition for all methods except Clear, operator= and the destructor. |
| // Postcondition for all methods except move construction and move |
| // assignment, which leave the moved-from object in a possibly inconsistent |
| // state. |
| bool IsConsistent() const { |
| return (data_ || capacity_ == 0) && capacity_ >= size_; |
| } |
| |
| // Called when *this has been moved from. Conceptually it's a no-op, but we |
| // can mutate the state slightly to help subsequent sanity checks catch bugs. |
| void OnMovedFrom() { |
| #if RTC_DCHECK_IS_ON |
| // Ensure that *this is always inconsistent, to provoke bugs. |
| size_ = 1; |
| capacity_ = 0; |
| #else |
| // Make *this consistent and empty. Shouldn't be necessary, but better safe |
| // than sorry. |
| size_ = 0; |
| capacity_ = 0; |
| #endif |
| } |
| |
| size_t size_; |
| size_t capacity_; |
| std::unique_ptr<T[]> data_; |
| }; |
| |
| // By far the most common sort of buffer. |
| using Buffer = BufferT<uint8_t>; |
| |
| // A buffer that zeros memory before releasing it. |
| template <typename T> |
| using ZeroOnFreeBuffer = BufferT<T, true>; |
| |
| } // namespace rtc |
| |
| #endif // RTC_BASE_BUFFER_H_ |