blob: fedea4ad3c54dea3577041f6aefabbb6b11a667f [file] [log] [blame]
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "video_engine/stream_synchronization.h"
#include <assert.h>
#include <algorithm>
#include <cmath>
#include "system_wrappers/interface/trace.h"
namespace webrtc {
const int kMaxVideoDiffMs = 80;
const int kMaxAudioDiffMs = 80;
const int kMaxDelay = 1500;
const double kNtpFracPerMs = 4.294967296E6;
namespace synchronization {
RtcpMeasurement::RtcpMeasurement()
: ntp_secs(0), ntp_frac(0), rtp_timestamp(0) {}
RtcpMeasurement::RtcpMeasurement(uint32_t ntp_secs, uint32_t ntp_frac,
uint32_t timestamp)
: ntp_secs(ntp_secs), ntp_frac(ntp_frac), rtp_timestamp(timestamp) {}
// Calculates the RTP timestamp frequency from two pairs of NTP and RTP
// timestamps.
bool CalculateFrequency(
int64_t rtcp_ntp_ms1,
uint32_t rtp_timestamp1,
int64_t rtcp_ntp_ms2,
uint32_t rtp_timestamp2,
double* frequency_khz) {
if (rtcp_ntp_ms1 == rtcp_ntp_ms2) {
return false;
}
assert(rtcp_ntp_ms1 > rtcp_ntp_ms2);
*frequency_khz = static_cast<double>(rtp_timestamp1 - rtp_timestamp2) /
static_cast<double>(rtcp_ntp_ms1 - rtcp_ntp_ms2);
return true;
}
// Detects if there has been a wraparound between |old_timestamp| and
// |new_timestamp|, and compensates by adding 2^32 if that is the case.
bool CompensateForWrapAround(uint32_t new_timestamp,
uint32_t old_timestamp,
int64_t* compensated_timestamp) {
assert(compensated_timestamp);
int64_t wraps = synchronization::CheckForWrapArounds(new_timestamp,
old_timestamp);
if (wraps < 0) {
// Reordering, don't use this packet.
return false;
}
*compensated_timestamp = new_timestamp + (wraps << 32);
return true;
}
// Converts an NTP timestamp to a millisecond timestamp.
int64_t NtpToMs(uint32_t ntp_secs, uint32_t ntp_frac) {
const double ntp_frac_ms = static_cast<double>(ntp_frac) / kNtpFracPerMs;
return ntp_secs * 1000 + ntp_frac_ms + 0.5;
}
// Converts |rtp_timestamp| to the NTP time base using the NTP and RTP timestamp
// pairs in |rtcp|. The converted timestamp is returned in
// |rtp_timestamp_in_ms|. This function compensates for wrap arounds in RTP
// timestamps and returns false if it can't do the conversion due to reordering.
bool RtpToNtpMs(int64_t rtp_timestamp,
const synchronization::RtcpList& rtcp,
int64_t* rtp_timestamp_in_ms) {
assert(rtcp.size() == 2);
int64_t rtcp_ntp_ms_new = synchronization::NtpToMs(rtcp.front().ntp_secs,
rtcp.front().ntp_frac);
int64_t rtcp_ntp_ms_old = synchronization::NtpToMs(rtcp.back().ntp_secs,
rtcp.back().ntp_frac);
int64_t rtcp_timestamp_new = rtcp.front().rtp_timestamp;
int64_t rtcp_timestamp_old = rtcp.back().rtp_timestamp;
if (!CompensateForWrapAround(rtcp_timestamp_new,
rtcp_timestamp_old,
&rtcp_timestamp_new)) {
return false;
}
double freq_khz;
if (!CalculateFrequency(rtcp_ntp_ms_new,
rtcp_timestamp_new,
rtcp_ntp_ms_old,
rtcp_timestamp_old,
&freq_khz)) {
return false;
}
double offset = rtcp_timestamp_new - freq_khz * rtcp_ntp_ms_new;
int64_t rtp_timestamp_unwrapped;
if (!CompensateForWrapAround(rtp_timestamp, rtcp_timestamp_old,
&rtp_timestamp_unwrapped)) {
return false;
}
double rtp_timestamp_ntp_ms = (static_cast<double>(rtp_timestamp_unwrapped) -
offset) / freq_khz + 0.5f;
assert(rtp_timestamp_ntp_ms >= 0);
*rtp_timestamp_in_ms = rtp_timestamp_ntp_ms;
return true;
}
int CheckForWrapArounds(uint32_t new_timestamp, uint32_t old_timestamp) {
if (new_timestamp < old_timestamp) {
// This difference should be less than -2^31 if we have had a wrap around
// (e.g. |new_timestamp| = 1, |rtcp_rtp_timestamp| = 2^32 - 1). Since it is
// cast to a int32_t, it should be positive.
if (static_cast<int32_t>(new_timestamp - old_timestamp) > 0) {
// Forward wrap around.
return 1;
}
} else if (static_cast<int32_t>(old_timestamp - new_timestamp) > 0) {
// This difference should be less than -2^31 if we have had a backward wrap
// around. Since it is cast to a int32_t, it should be positive.
return -1;
}
return 0;
}
} // namespace synchronization
struct ViESyncDelay {
ViESyncDelay() {
extra_video_delay_ms = 0;
last_video_delay_ms = 0;
extra_audio_delay_ms = 0;
last_sync_delay = 0;
network_delay = 120;
}
int extra_video_delay_ms;
int last_video_delay_ms;
int extra_audio_delay_ms;
int last_sync_delay;
int network_delay;
};
StreamSynchronization::StreamSynchronization(int audio_channel_id,
int video_channel_id)
: channel_delay_(new ViESyncDelay),
audio_channel_id_(audio_channel_id),
video_channel_id_(video_channel_id) {}
StreamSynchronization::~StreamSynchronization() {
delete channel_delay_;
}
bool StreamSynchronization::ComputeRelativeDelay(
const Measurements& audio_measurement,
const Measurements& video_measurement,
int* relative_delay_ms) {
assert(relative_delay_ms);
if (audio_measurement.rtcp.size() < 2 || video_measurement.rtcp.size() < 2) {
// We need two RTCP SR reports per stream to do synchronization.
return false;
}
int64_t audio_last_capture_time_ms;
if (!synchronization::RtpToNtpMs(audio_measurement.latest_timestamp,
audio_measurement.rtcp,
&audio_last_capture_time_ms)) {
return false;
}
int64_t video_last_capture_time_ms;
if (!synchronization::RtpToNtpMs(video_measurement.latest_timestamp,
video_measurement.rtcp,
&video_last_capture_time_ms)) {
return false;
}
if (video_last_capture_time_ms < 0) {
return false;
}
// Positive diff means that video_measurement is behind audio_measurement.
*relative_delay_ms = video_measurement.latest_receive_time_ms -
audio_measurement.latest_receive_time_ms -
(video_last_capture_time_ms - audio_last_capture_time_ms);
if (*relative_delay_ms > 1000 || *relative_delay_ms < -1000) {
return false;
}
return true;
}
bool StreamSynchronization::ComputeDelays(int relative_delay_ms,
int current_audio_delay_ms,
int* extra_audio_delay_ms,
int* total_video_delay_target_ms) {
assert(extra_audio_delay_ms && total_video_delay_target_ms);
WEBRTC_TRACE(webrtc::kTraceInfo, webrtc::kTraceVideo, video_channel_id_,
"Audio delay is: %d for voice channel: %d",
current_audio_delay_ms, audio_channel_id_);
WEBRTC_TRACE(webrtc::kTraceInfo, webrtc::kTraceVideo, video_channel_id_,
"Network delay diff is: %d for voice channel: %d",
channel_delay_->network_delay, audio_channel_id_);
// Calculate the difference between the lowest possible video delay and
// the current audio delay.
WEBRTC_TRACE(webrtc::kTraceInfo, webrtc::kTraceVideo, video_channel_id_,
"Current diff is: %d for audio channel: %d",
relative_delay_ms, audio_channel_id_);
int current_diff_ms = *total_video_delay_target_ms - current_audio_delay_ms +
relative_delay_ms;
int video_delay_ms = 0;
if (current_diff_ms > 0) {
// The minimum video delay is longer than the current audio delay.
// We need to decrease extra video delay, if we have added extra delay
// earlier, or add extra audio delay.
if (channel_delay_->extra_video_delay_ms > 0) {
// We have extra delay added to ViE. Reduce this delay before adding
// extra delay to VoE.
// This is the desired delay, we can't reduce more than this.
video_delay_ms = *total_video_delay_target_ms;
// Check that we don't reduce the delay more than what is allowed.
if (video_delay_ms <
channel_delay_->last_video_delay_ms - kMaxVideoDiffMs) {
video_delay_ms =
channel_delay_->last_video_delay_ms - kMaxVideoDiffMs;
channel_delay_->extra_video_delay_ms =
video_delay_ms - *total_video_delay_target_ms;
} else {
channel_delay_->extra_video_delay_ms = 0;
}
channel_delay_->last_video_delay_ms = video_delay_ms;
channel_delay_->last_sync_delay = -1;
channel_delay_->extra_audio_delay_ms = 0;
} else { // channel_delay_->extra_video_delay_ms > 0
// We have no extra video delay to remove, increase the audio delay.
if (channel_delay_->last_sync_delay >= 0) {
// We have increased the audio delay earlier, increase it even more.
int audio_diff_ms = current_diff_ms / 2;
if (audio_diff_ms > kMaxAudioDiffMs) {
// We only allow a maximum change of KMaxAudioDiffMS for audio
// due to NetEQ maximum changes.
audio_diff_ms = kMaxAudioDiffMs;
}
// Increase the audio delay
channel_delay_->extra_audio_delay_ms += audio_diff_ms;
// Don't set a too high delay.
if (channel_delay_->extra_audio_delay_ms > kMaxDelay) {
channel_delay_->extra_audio_delay_ms = kMaxDelay;
}
// Don't add any extra video delay.
video_delay_ms = *total_video_delay_target_ms;
channel_delay_->extra_video_delay_ms = 0;
channel_delay_->last_video_delay_ms = video_delay_ms;
channel_delay_->last_sync_delay = 1;
} else { // channel_delay_->last_sync_delay >= 0
// First time after a delay change, don't add any extra delay.
// This is to not toggle back and forth too much.
channel_delay_->extra_audio_delay_ms = 0;
// Set minimum video delay
video_delay_ms = *total_video_delay_target_ms;
channel_delay_->extra_video_delay_ms = 0;
channel_delay_->last_video_delay_ms = video_delay_ms;
channel_delay_->last_sync_delay = 0;
}
}
} else { // if (current_diffMS > 0)
// The minimum video delay is lower than the current audio delay.
// We need to decrease possible extra audio delay, or
// add extra video delay.
if (channel_delay_->extra_audio_delay_ms > 0) {
// We have extra delay in VoiceEngine
// Start with decreasing the voice delay
int audio_diff_ms = current_diff_ms / 2;
if (audio_diff_ms < -1 * kMaxAudioDiffMs) {
// Don't change the delay too much at once.
audio_diff_ms = -1 * kMaxAudioDiffMs;
}
// Add the negative difference.
channel_delay_->extra_audio_delay_ms += audio_diff_ms;
if (channel_delay_->extra_audio_delay_ms < 0) {
// Negative values not allowed.
channel_delay_->extra_audio_delay_ms = 0;
channel_delay_->last_sync_delay = 0;
} else {
// There is more audio delay to use for the next round.
channel_delay_->last_sync_delay = 1;
}
// Keep the video delay at the minimum values.
video_delay_ms = *total_video_delay_target_ms;
channel_delay_->extra_video_delay_ms = 0;
channel_delay_->last_video_delay_ms = video_delay_ms;
} else { // channel_delay_->extra_audio_delay_ms > 0
// We have no extra delay in VoiceEngine, increase the video delay.
channel_delay_->extra_audio_delay_ms = 0;
// Make the difference positive.
int video_diff_ms = -1 * current_diff_ms;
// This is the desired delay.
video_delay_ms = *total_video_delay_target_ms + video_diff_ms;
if (video_delay_ms > channel_delay_->last_video_delay_ms) {
if (video_delay_ms >
channel_delay_->last_video_delay_ms + kMaxVideoDiffMs) {
// Don't increase the delay too much at once
video_delay_ms =
channel_delay_->last_video_delay_ms + kMaxVideoDiffMs;
}
// Verify we don't go above the maximum allowed delay
if (video_delay_ms > kMaxDelay) {
video_delay_ms = kMaxDelay;
}
} else {
if (video_delay_ms <
channel_delay_->last_video_delay_ms - kMaxVideoDiffMs) {
// Don't decrease the delay too much at once
video_delay_ms =
channel_delay_->last_video_delay_ms - kMaxVideoDiffMs;
}
// Verify we don't go below the minimum delay
if (video_delay_ms < *total_video_delay_target_ms) {
video_delay_ms = *total_video_delay_target_ms;
}
}
// Store the values
channel_delay_->extra_video_delay_ms =
video_delay_ms - *total_video_delay_target_ms;
channel_delay_->last_video_delay_ms = video_delay_ms;
channel_delay_->last_sync_delay = -1;
}
}
WEBRTC_TRACE(webrtc::kTraceInfo, webrtc::kTraceVideo, video_channel_id_,
"Sync video delay %d ms for video channel and audio delay %d for audio "
"channel %d",
video_delay_ms, channel_delay_->extra_audio_delay_ms, audio_channel_id_);
*extra_audio_delay_ms = channel_delay_->extra_audio_delay_ms;
if (video_delay_ms < 0) {
video_delay_ms = 0;
}
*total_video_delay_target_ms =
(*total_video_delay_target_ms > video_delay_ms) ?
*total_video_delay_target_ms : video_delay_ms;
return true;
}
} // namespace webrtc