blob: ee46355c159ee56349ee6c237a1efab40dc3e879 [file] [log] [blame]
/*
* Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "media/engine/internalencoderfactory.h"
#include "media/engine/simulcast_encoder_adapter.h"
#include "modules/rtp_rtcp/source/rtp_format.h"
#include "modules/video_coding/codecs/vp9/include/vp9.h"
#include "rtc_base/numerics/sequence_number_util.h"
#include "test/call_test.h"
#include "test/field_trial.h"
namespace webrtc {
namespace {
const int kFrameMaxWidth = 1280;
const int kFrameMaxHeight = 720;
const int kFrameRate = 30;
const int kMaxSecondsLost = 5;
const int kMaxFramesLost = kFrameRate * kMaxSecondsLost;
const int kMinPacketsToObserve = 10;
const int kEncoderBitrateBps = 100000;
const uint32_t kPictureIdWraparound = (1 << 15);
const size_t kNumTemporalLayers[] = {1, 2, 3};
const char kVp8ForcedFallbackEncoderEnabled[] =
"WebRTC-VP8-Forced-Fallback-Encoder-v2/Enabled/";
RtpVideoCodecTypes PayloadNameToRtpVideoCodecType(
const std::string& payload_name) {
if (payload_name == "VP8") {
return kRtpVideoVp8;
} else if (payload_name == "VP9") {
return kRtpVideoVp9;
} else {
RTC_NOTREACHED();
return kRtpVideoNone;
}
}
} // namespace
class PictureIdObserver : public test::RtpRtcpObserver {
public:
explicit PictureIdObserver(RtpVideoCodecTypes codec_type)
: test::RtpRtcpObserver(test::CallTest::kDefaultTimeoutMs),
codec_type_(codec_type),
max_expected_picture_id_gap_(0),
max_expected_tl0_idx_gap_(0),
num_ssrcs_to_observe_(1) {}
void SetExpectedSsrcs(size_t num_expected_ssrcs) {
rtc::CritScope lock(&crit_);
num_ssrcs_to_observe_ = num_expected_ssrcs;
}
void ResetObservedSsrcs() {
rtc::CritScope lock(&crit_);
// Do not clear the timestamp and picture_id, to ensure that we check
// consistency between reinits and recreations.
num_packets_sent_.clear();
observed_ssrcs_.clear();
}
void SetMaxExpectedPictureIdGap(int max_expected_picture_id_gap) {
rtc::CritScope lock(&crit_);
max_expected_picture_id_gap_ = max_expected_picture_id_gap;
// Expect smaller gap for |tl0_pic_idx| (running index for temporal_idx 0).
max_expected_tl0_idx_gap_ = max_expected_picture_id_gap_ / 2;
}
private:
struct ParsedPacket {
uint32_t timestamp;
uint32_t ssrc;
int16_t picture_id;
int16_t tl0_pic_idx;
uint8_t temporal_idx;
FrameType frame_type;
};
bool ParsePayload(const uint8_t* packet,
size_t length,
ParsedPacket* parsed) const {
RTPHeader header;
EXPECT_TRUE(parser_->Parse(packet, length, &header));
EXPECT_TRUE(header.ssrc == test::CallTest::kVideoSendSsrcs[0] ||
header.ssrc == test::CallTest::kVideoSendSsrcs[1] ||
header.ssrc == test::CallTest::kVideoSendSsrcs[2])
<< "Unknown SSRC sent.";
EXPECT_GE(length, header.headerLength + header.paddingLength);
size_t payload_length = length - header.headerLength - header.paddingLength;
if (payload_length == 0) {
return false; // Padding packet.
}
parsed->timestamp = header.timestamp;
parsed->ssrc = header.ssrc;
std::unique_ptr<RtpDepacketizer> depacketizer(
RtpDepacketizer::Create(codec_type_));
RtpDepacketizer::ParsedPayload parsed_payload;
EXPECT_TRUE(depacketizer->Parse(
&parsed_payload, &packet[header.headerLength], payload_length));
switch (codec_type_) {
case kRtpVideoVp8:
parsed->picture_id =
parsed_payload.type.Video.codecHeader.VP8.pictureId;
parsed->tl0_pic_idx =
parsed_payload.type.Video.codecHeader.VP8.tl0PicIdx;
parsed->temporal_idx =
parsed_payload.type.Video.codecHeader.VP8.temporalIdx;
break;
case kRtpVideoVp9:
parsed->picture_id =
parsed_payload.type.Video.codecHeader.VP9.picture_id;
parsed->tl0_pic_idx =
parsed_payload.type.Video.codecHeader.VP9.tl0_pic_idx;
parsed->temporal_idx =
parsed_payload.type.Video.codecHeader.VP9.temporal_idx;
break;
default:
RTC_NOTREACHED();
break;
}
parsed->frame_type = parsed_payload.frame_type;
return true;
}
// Verify continuity and monotonicity of picture_id sequence.
void VerifyPictureId(const ParsedPacket& current,
const ParsedPacket& last) const
RTC_EXCLUSIVE_LOCKS_REQUIRED(&crit_) {
if (current.timestamp == last.timestamp) {
EXPECT_EQ(last.picture_id, current.picture_id);
return; // Same frame.
}
// Packet belongs to a new frame.
// Picture id should be increasing.
EXPECT_TRUE((AheadOf<uint16_t, kPictureIdWraparound>(current.picture_id,
last.picture_id)));
// Expect continuously increasing picture id.
int diff = ForwardDiff<uint16_t, kPictureIdWraparound>(last.picture_id,
current.picture_id);
if (diff > 1) {
// If the VideoSendStream is destroyed, any frames still in queue is lost.
// Gaps only possible for first frame after a recreation, i.e. key frames.
EXPECT_EQ(kVideoFrameKey, current.frame_type);
EXPECT_LE(diff - 1, max_expected_picture_id_gap_);
}
}
void VerifyTl0Idx(const ParsedPacket& current, const ParsedPacket& last) const
RTC_EXCLUSIVE_LOCKS_REQUIRED(&crit_) {
if (current.tl0_pic_idx == kNoTl0PicIdx ||
current.temporal_idx == kNoTemporalIdx) {
return; // No temporal layers.
}
if (current.timestamp == last.timestamp || current.temporal_idx != 0) {
EXPECT_EQ(last.tl0_pic_idx, current.tl0_pic_idx);
return;
}
// New frame with |temporal_idx| 0.
// |tl0_pic_idx| should be increasing.
EXPECT_TRUE(AheadOf<uint8_t>(current.tl0_pic_idx, last.tl0_pic_idx));
// Expect continuously increasing idx.
int diff = ForwardDiff<uint8_t>(last.tl0_pic_idx, current.tl0_pic_idx);
if (diff > 1) {
// If the VideoSendStream is destroyed, any frames still in queue is lost.
// Gaps only possible for first frame after a recreation, i.e. key frames.
EXPECT_EQ(kVideoFrameKey, current.frame_type);
EXPECT_LE(diff - 1, max_expected_tl0_idx_gap_);
}
}
Action OnSendRtp(const uint8_t* packet, size_t length) override {
rtc::CritScope lock(&crit_);
ParsedPacket parsed;
if (!ParsePayload(packet, length, &parsed))
return SEND_PACKET;
uint32_t ssrc = parsed.ssrc;
if (last_observed_packet_.find(ssrc) != last_observed_packet_.end()) {
// Compare to last packet.
VerifyPictureId(parsed, last_observed_packet_[ssrc]);
VerifyTl0Idx(parsed, last_observed_packet_[ssrc]);
}
last_observed_packet_[ssrc] = parsed;
// Pass the test when enough media packets have been received on all
// streams.
if (++num_packets_sent_[ssrc] >= kMinPacketsToObserve &&
observed_ssrcs_.find(ssrc) == observed_ssrcs_.end()) {
observed_ssrcs_.insert(ssrc);
if (observed_ssrcs_.size() == num_ssrcs_to_observe_) {
observation_complete_.Set();
}
}
return SEND_PACKET;
}
rtc::CriticalSection crit_;
const RtpVideoCodecTypes codec_type_;
std::map<uint32_t, ParsedPacket> last_observed_packet_ RTC_GUARDED_BY(crit_);
std::map<uint32_t, size_t> num_packets_sent_ RTC_GUARDED_BY(crit_);
int max_expected_picture_id_gap_ RTC_GUARDED_BY(crit_);
int max_expected_tl0_idx_gap_ RTC_GUARDED_BY(crit_);
size_t num_ssrcs_to_observe_ RTC_GUARDED_BY(crit_);
std::set<uint32_t> observed_ssrcs_ RTC_GUARDED_BY(crit_);
};
class PictureIdTest : public test::CallTest,
public ::testing::WithParamInterface<
::testing::tuple<std::string, size_t>> {
public:
PictureIdTest()
: scoped_field_trial_(::testing::get<0>(GetParam())),
num_temporal_layers_(::testing::get<1>(GetParam())) {}
virtual ~PictureIdTest() {
EXPECT_EQ(nullptr, video_send_stream_);
EXPECT_TRUE(video_receive_streams_.empty());
task_queue_.SendTask([this]() {
Stop();
DestroyStreams();
send_transport_.reset();
receive_transport_.reset();
DestroyCalls();
});
}
void SetupEncoder(VideoEncoder* encoder, const std::string& payload_name);
void TestPictureIdContinuousAfterReconfigure(
const std::vector<int>& ssrc_counts);
void TestPictureIdIncreaseAfterRecreateStreams(
const std::vector<int>& ssrc_counts);
private:
test::ScopedFieldTrials scoped_field_trial_;
const size_t num_temporal_layers_;
std::unique_ptr<PictureIdObserver> observer_;
};
INSTANTIATE_TEST_CASE_P(
TestWithForcedFallbackEncoderEnabled,
PictureIdTest,
::testing::Combine(::testing::Values(kVp8ForcedFallbackEncoderEnabled, ""),
::testing::ValuesIn(kNumTemporalLayers)));
// Use a special stream factory to ensure that all simulcast streams are being
// sent.
class VideoStreamFactory
: public VideoEncoderConfig::VideoStreamFactoryInterface {
public:
explicit VideoStreamFactory(size_t num_temporal_layers)
: num_of_temporal_layers_(num_temporal_layers) {}
private:
std::vector<VideoStream> CreateEncoderStreams(
int width,
int height,
const VideoEncoderConfig& encoder_config) override {
std::vector<VideoStream> streams =
test::CreateVideoStreams(width, height, encoder_config);
if (encoder_config.number_of_streams > 1) {
RTC_DCHECK_EQ(3, encoder_config.number_of_streams);
for (size_t i = 0; i < encoder_config.number_of_streams; ++i) {
streams[i].min_bitrate_bps = kEncoderBitrateBps;
streams[i].target_bitrate_bps = kEncoderBitrateBps;
streams[i].max_bitrate_bps = kEncoderBitrateBps;
streams[i].temporal_layer_thresholds_bps.resize(
num_of_temporal_layers_ - 1);
}
// test::CreateVideoStreams does not return frame sizes for the lower
// streams that are accepted by VP8Impl::InitEncode.
// TODO(brandtr): Fix the problem in test::CreateVideoStreams, rather
// than overriding the values here.
streams[1].width = streams[2].width / 2;
streams[1].height = streams[2].height / 2;
streams[0].width = streams[1].width / 2;
streams[0].height = streams[1].height / 2;
} else {
// Use the same total bitrates when sending a single stream to avoid
// lowering the bitrate estimate and requiring a subsequent rampup.
streams[0].min_bitrate_bps = 3 * kEncoderBitrateBps;
streams[0].target_bitrate_bps = 3 * kEncoderBitrateBps;
streams[0].max_bitrate_bps = 3 * kEncoderBitrateBps;
streams[0].temporal_layer_thresholds_bps.resize(num_of_temporal_layers_ -
1);
}
return streams;
}
const size_t num_of_temporal_layers_;
};
void PictureIdTest::SetupEncoder(VideoEncoder* encoder,
const std::string& payload_name) {
observer_.reset(
new PictureIdObserver(PayloadNameToRtpVideoCodecType(payload_name)));
task_queue_.SendTask([this, &encoder, payload_name]() {
Call::Config config(event_log_.get());
CreateCalls(config, config);
send_transport_.reset(new test::PacketTransport(
&task_queue_, sender_call_.get(), observer_.get(),
test::PacketTransport::kSender, payload_type_map_,
FakeNetworkPipe::Config()));
CreateSendConfig(kNumSsrcs, 0, 0, send_transport_.get());
video_send_config_.encoder_settings.encoder = encoder;
video_send_config_.encoder_settings.payload_name = payload_name;
video_encoder_config_.video_stream_factory =
new rtc::RefCountedObject<VideoStreamFactory>(num_temporal_layers_);
video_encoder_config_.number_of_streams = 1;
});
}
void PictureIdTest::TestPictureIdContinuousAfterReconfigure(
const std::vector<int>& ssrc_counts) {
task_queue_.SendTask([this]() {
CreateVideoStreams();
CreateFrameGeneratorCapturer(kFrameRate, kFrameMaxWidth, kFrameMaxHeight);
// Initial test with a single stream.
Start();
});
EXPECT_TRUE(observer_->Wait()) << "Timed out waiting for packets.";
// Reconfigure VideoEncoder and test picture id increase.
// Expect continuously increasing picture id, equivalent to no gaps.
observer_->SetMaxExpectedPictureIdGap(0);
for (int ssrc_count : ssrc_counts) {
video_encoder_config_.number_of_streams = ssrc_count;
observer_->SetExpectedSsrcs(ssrc_count);
observer_->ResetObservedSsrcs();
// Make sure the picture_id sequence is continuous on reinit and recreate.
task_queue_.SendTask([this]() {
video_send_stream_->ReconfigureVideoEncoder(video_encoder_config_.Copy());
});
EXPECT_TRUE(observer_->Wait()) << "Timed out waiting for packets.";
}
task_queue_.SendTask([this]() {
Stop();
DestroyStreams();
send_transport_.reset();
receive_transport_.reset();
DestroyCalls();
});
}
void PictureIdTest::TestPictureIdIncreaseAfterRecreateStreams(
const std::vector<int>& ssrc_counts) {
task_queue_.SendTask([this]() {
CreateVideoStreams();
CreateFrameGeneratorCapturer(kFrameRate, kFrameMaxWidth, kFrameMaxHeight);
// Initial test with a single stream.
Start();
});
EXPECT_TRUE(observer_->Wait()) << "Timed out waiting for packets.";
// Recreate VideoSendStream and test picture id increase.
// When the VideoSendStream is destroyed, any frames still in queue is lost
// with it, therefore it is expected that some frames might be lost.
observer_->SetMaxExpectedPictureIdGap(kMaxFramesLost);
for (int ssrc_count : ssrc_counts) {
task_queue_.SendTask([this, &ssrc_count]() {
frame_generator_capturer_->Stop();
sender_call_->DestroyVideoSendStream(video_send_stream_);
video_encoder_config_.number_of_streams = ssrc_count;
observer_->SetExpectedSsrcs(ssrc_count);
observer_->ResetObservedSsrcs();
video_send_stream_ = sender_call_->CreateVideoSendStream(
video_send_config_.Copy(), video_encoder_config_.Copy());
video_send_stream_->Start();
CreateFrameGeneratorCapturer(kFrameRate, kFrameMaxWidth, kFrameMaxHeight);
frame_generator_capturer_->Start();
});
EXPECT_TRUE(observer_->Wait()) << "Timed out waiting for packets.";
}
task_queue_.SendTask([this]() {
Stop();
DestroyStreams();
send_transport_.reset();
receive_transport_.reset();
});
}
TEST_P(PictureIdTest, ContinuousAfterReconfigureVp8) {
std::unique_ptr<VideoEncoder> encoder(VP8Encoder::Create());
SetupEncoder(encoder.get(), "VP8");
TestPictureIdContinuousAfterReconfigure({1, 3, 3, 1, 1});
}
TEST_P(PictureIdTest, IncreasingAfterRecreateStreamVp8) {
std::unique_ptr<VideoEncoder> encoder(VP8Encoder::Create());
SetupEncoder(encoder.get(), "VP8");
TestPictureIdIncreaseAfterRecreateStreams({1, 3, 3, 1, 1});
}
TEST_P(PictureIdTest, ContinuousAfterStreamCountChangeVp8) {
std::unique_ptr<VideoEncoder> encoder(VP8Encoder::Create());
// Make sure that the picture id is not reset if the stream count goes
// down and then up.
SetupEncoder(encoder.get(), "VP8");
TestPictureIdContinuousAfterReconfigure({3, 1, 3});
}
TEST_P(PictureIdTest, ContinuousAfterReconfigureSimulcastEncoderAdapter) {
InternalEncoderFactory internal_encoder_factory;
SimulcastEncoderAdapter simulcast_encoder_adapter(&internal_encoder_factory);
SetupEncoder(&simulcast_encoder_adapter, "VP8");
TestPictureIdContinuousAfterReconfigure({1, 3, 3, 1, 1});
}
TEST_P(PictureIdTest, IncreasingAfterRecreateStreamSimulcastEncoderAdapter) {
InternalEncoderFactory internal_encoder_factory;
SimulcastEncoderAdapter simulcast_encoder_adapter(&internal_encoder_factory);
SetupEncoder(&simulcast_encoder_adapter, "VP8");
TestPictureIdIncreaseAfterRecreateStreams({1, 3, 3, 1, 1});
}
// When using the simulcast encoder adapter, the picture id is randomly set
// when the ssrc count is reduced and then increased. This means that we are
// not spec compliant in that particular case.
TEST_P(PictureIdTest, ContinuousAfterStreamCountChangeSimulcastEncoderAdapter) {
// If forced fallback is enabled, the picture id is set in the PayloadRouter
// and the sequence should be continuous.
if (::testing::get<0>(GetParam()) == kVp8ForcedFallbackEncoderEnabled &&
::testing::get<1>(GetParam()) == 1) { // No temporal layers.
InternalEncoderFactory internal_encoder_factory;
SimulcastEncoderAdapter simulcast_encoder_adapter(
&internal_encoder_factory);
// Make sure that the picture id is not reset if the stream count goes
// down and then up.
SetupEncoder(&simulcast_encoder_adapter, "VP8");
TestPictureIdContinuousAfterReconfigure({3, 1, 3});
}
}
TEST_P(PictureIdTest, IncreasingAfterRecreateStreamVp9) {
std::unique_ptr<VideoEncoder> encoder(VP9Encoder::Create());
SetupEncoder(encoder.get(), "VP9");
TestPictureIdIncreaseAfterRecreateStreams({1, 1});
}
} // namespace webrtc