| /* |
| * Copyright 2004 The WebRTC Project Authors. All rights reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "rtc_base/opensslidentity.h" |
| |
| #include <memory> |
| |
| // Must be included first before openssl headers. |
| #include "rtc_base/win32.h" // NOLINT |
| |
| #include <openssl/bio.h> |
| #include <openssl/bn.h> |
| #include <openssl/crypto.h> |
| #include <openssl/err.h> |
| #include <openssl/pem.h> |
| #include <openssl/rsa.h> |
| |
| #include "rtc_base/checks.h" |
| #include "rtc_base/helpers.h" |
| #include "rtc_base/logging.h" |
| #include "rtc_base/openssl.h" |
| #include "rtc_base/openssldigest.h" |
| #include "rtc_base/ptr_util.h" |
| |
| namespace rtc { |
| |
| // We could have exposed a myriad of parameters for the crypto stuff, |
| // but keeping it simple seems best. |
| |
| // Random bits for certificate serial number |
| static const int SERIAL_RAND_BITS = 64; |
| |
| // Generate a key pair. Caller is responsible for freeing the returned object. |
| static EVP_PKEY* MakeKey(const KeyParams& key_params) { |
| RTC_LOG(LS_INFO) << "Making key pair"; |
| EVP_PKEY* pkey = EVP_PKEY_new(); |
| if (key_params.type() == KT_RSA) { |
| int key_length = key_params.rsa_params().mod_size; |
| BIGNUM* exponent = BN_new(); |
| RSA* rsa = RSA_new(); |
| if (!pkey || !exponent || !rsa || |
| !BN_set_word(exponent, key_params.rsa_params().pub_exp) || |
| !RSA_generate_key_ex(rsa, key_length, exponent, nullptr) || |
| !EVP_PKEY_assign_RSA(pkey, rsa)) { |
| EVP_PKEY_free(pkey); |
| BN_free(exponent); |
| RSA_free(rsa); |
| RTC_LOG(LS_ERROR) << "Failed to make RSA key pair"; |
| return nullptr; |
| } |
| // ownership of rsa struct was assigned, don't free it. |
| BN_free(exponent); |
| } else if (key_params.type() == KT_ECDSA) { |
| if (key_params.ec_curve() == EC_NIST_P256) { |
| EC_KEY* ec_key = EC_KEY_new_by_curve_name(NID_X9_62_prime256v1); |
| |
| // Ensure curve name is included when EC key is serialized. |
| // Without this call, OpenSSL versions before 1.1.0 will create |
| // certificates that don't work for TLS. |
| // This is a no-op for BoringSSL and OpenSSL 1.1.0+ |
| EC_KEY_set_asn1_flag(ec_key, OPENSSL_EC_NAMED_CURVE); |
| |
| if (!pkey || !ec_key || !EC_KEY_generate_key(ec_key) || |
| !EVP_PKEY_assign_EC_KEY(pkey, ec_key)) { |
| EVP_PKEY_free(pkey); |
| EC_KEY_free(ec_key); |
| RTC_LOG(LS_ERROR) << "Failed to make EC key pair"; |
| return nullptr; |
| } |
| // ownership of ec_key struct was assigned, don't free it. |
| } else { |
| // Add generation of any other curves here. |
| EVP_PKEY_free(pkey); |
| RTC_LOG(LS_ERROR) << "ECDSA key requested for unknown curve"; |
| return nullptr; |
| } |
| } else { |
| EVP_PKEY_free(pkey); |
| RTC_LOG(LS_ERROR) << "Key type requested not understood"; |
| return nullptr; |
| } |
| |
| RTC_LOG(LS_INFO) << "Returning key pair"; |
| return pkey; |
| } |
| |
| // Generate a self-signed certificate, with the public key from the |
| // given key pair. Caller is responsible for freeing the returned object. |
| static X509* MakeCertificate(EVP_PKEY* pkey, const SSLIdentityParams& params) { |
| RTC_LOG(LS_INFO) << "Making certificate for " << params.common_name; |
| X509* x509 = nullptr; |
| BIGNUM* serial_number = nullptr; |
| X509_NAME* name = nullptr; |
| time_t epoch_off = 0; // Time offset since epoch. |
| |
| if ((x509 = X509_new()) == nullptr) |
| goto error; |
| |
| if (!X509_set_pubkey(x509, pkey)) |
| goto error; |
| |
| // serial number |
| // temporary reference to serial number inside x509 struct |
| ASN1_INTEGER* asn1_serial_number; |
| if ((serial_number = BN_new()) == nullptr || |
| !BN_pseudo_rand(serial_number, SERIAL_RAND_BITS, 0, 0) || |
| (asn1_serial_number = X509_get_serialNumber(x509)) == nullptr || |
| !BN_to_ASN1_INTEGER(serial_number, asn1_serial_number)) |
| goto error; |
| |
| if (!X509_set_version(x509, 2L)) // version 3 |
| goto error; |
| |
| // There are a lot of possible components for the name entries. In |
| // our P2P SSL mode however, the certificates are pre-exchanged |
| // (through the secure XMPP channel), and so the certificate |
| // identification is arbitrary. It can't be empty, so we set some |
| // arbitrary common_name. Note that this certificate goes out in |
| // clear during SSL negotiation, so there may be a privacy issue in |
| // putting anything recognizable here. |
| if ((name = X509_NAME_new()) == nullptr || |
| !X509_NAME_add_entry_by_NID(name, NID_commonName, MBSTRING_UTF8, |
| (unsigned char*)params.common_name.c_str(), |
| -1, -1, 0) || |
| !X509_set_subject_name(x509, name) || !X509_set_issuer_name(x509, name)) |
| goto error; |
| |
| if (!X509_time_adj(X509_get_notBefore(x509), params.not_before, &epoch_off) || |
| !X509_time_adj(X509_get_notAfter(x509), params.not_after, &epoch_off)) |
| goto error; |
| |
| if (!X509_sign(x509, pkey, EVP_sha256())) |
| goto error; |
| |
| BN_free(serial_number); |
| X509_NAME_free(name); |
| RTC_LOG(LS_INFO) << "Returning certificate"; |
| return x509; |
| |
| error: |
| BN_free(serial_number); |
| X509_NAME_free(name); |
| X509_free(x509); |
| return nullptr; |
| } |
| |
| // This dumps the SSL error stack to the log. |
| static void LogSSLErrors(const std::string& prefix) { |
| char error_buf[200]; |
| unsigned long err; |
| |
| while ((err = ERR_get_error()) != 0) { |
| ERR_error_string_n(err, error_buf, sizeof(error_buf)); |
| RTC_LOG(LS_ERROR) << prefix << ": " << error_buf << "\n"; |
| } |
| } |
| |
| OpenSSLKeyPair* OpenSSLKeyPair::Generate(const KeyParams& key_params) { |
| EVP_PKEY* pkey = MakeKey(key_params); |
| if (!pkey) { |
| LogSSLErrors("Generating key pair"); |
| return nullptr; |
| } |
| return new OpenSSLKeyPair(pkey); |
| } |
| |
| OpenSSLKeyPair* OpenSSLKeyPair::FromPrivateKeyPEMString( |
| const std::string& pem_string) { |
| BIO* bio = BIO_new_mem_buf(const_cast<char*>(pem_string.c_str()), -1); |
| if (!bio) { |
| RTC_LOG(LS_ERROR) << "Failed to create a new BIO buffer."; |
| return nullptr; |
| } |
| BIO_set_mem_eof_return(bio, 0); |
| EVP_PKEY* pkey = |
| PEM_read_bio_PrivateKey(bio, nullptr, nullptr, const_cast<char*>("\0")); |
| BIO_free(bio); // Frees the BIO, but not the pointed-to string. |
| if (!pkey) { |
| RTC_LOG(LS_ERROR) << "Failed to create the private key from PEM string."; |
| return nullptr; |
| } |
| if (EVP_PKEY_missing_parameters(pkey) != 0) { |
| RTC_LOG(LS_ERROR) |
| << "The resulting key pair is missing public key parameters."; |
| EVP_PKEY_free(pkey); |
| return nullptr; |
| } |
| return new OpenSSLKeyPair(pkey); |
| } |
| |
| OpenSSLKeyPair::~OpenSSLKeyPair() { |
| EVP_PKEY_free(pkey_); |
| } |
| |
| OpenSSLKeyPair* OpenSSLKeyPair::GetReference() { |
| AddReference(); |
| return new OpenSSLKeyPair(pkey_); |
| } |
| |
| void OpenSSLKeyPair::AddReference() { |
| #if defined(OPENSSL_IS_BORINGSSL) |
| EVP_PKEY_up_ref(pkey_); |
| #else |
| CRYPTO_add(&pkey_->references, 1, CRYPTO_LOCK_EVP_PKEY); |
| #endif |
| } |
| |
| std::string OpenSSLKeyPair::PrivateKeyToPEMString() const { |
| BIO* temp_memory_bio = BIO_new(BIO_s_mem()); |
| if (!temp_memory_bio) { |
| RTC_LOG_F(LS_ERROR) << "Failed to allocate temporary memory bio"; |
| RTC_NOTREACHED(); |
| return ""; |
| } |
| if (!PEM_write_bio_PrivateKey(temp_memory_bio, pkey_, nullptr, nullptr, 0, |
| nullptr, nullptr)) { |
| RTC_LOG_F(LS_ERROR) << "Failed to write private key"; |
| BIO_free(temp_memory_bio); |
| RTC_NOTREACHED(); |
| return ""; |
| } |
| BIO_write(temp_memory_bio, "\0", 1); |
| char* buffer; |
| BIO_get_mem_data(temp_memory_bio, &buffer); |
| std::string priv_key_str = buffer; |
| BIO_free(temp_memory_bio); |
| return priv_key_str; |
| } |
| |
| std::string OpenSSLKeyPair::PublicKeyToPEMString() const { |
| BIO* temp_memory_bio = BIO_new(BIO_s_mem()); |
| if (!temp_memory_bio) { |
| RTC_LOG_F(LS_ERROR) << "Failed to allocate temporary memory bio"; |
| RTC_NOTREACHED(); |
| return ""; |
| } |
| if (!PEM_write_bio_PUBKEY(temp_memory_bio, pkey_)) { |
| RTC_LOG_F(LS_ERROR) << "Failed to write public key"; |
| BIO_free(temp_memory_bio); |
| RTC_NOTREACHED(); |
| return ""; |
| } |
| BIO_write(temp_memory_bio, "\0", 1); |
| char* buffer; |
| BIO_get_mem_data(temp_memory_bio, &buffer); |
| std::string pub_key_str = buffer; |
| BIO_free(temp_memory_bio); |
| return pub_key_str; |
| } |
| |
| bool OpenSSLKeyPair::operator==(const OpenSSLKeyPair& other) const { |
| return EVP_PKEY_cmp(this->pkey_, other.pkey_) == 1; |
| } |
| |
| bool OpenSSLKeyPair::operator!=(const OpenSSLKeyPair& other) const { |
| return !(*this == other); |
| } |
| |
| #if !defined(NDEBUG) |
| // Print a certificate to the log, for debugging. |
| static void PrintCert(X509* x509) { |
| BIO* temp_memory_bio = BIO_new(BIO_s_mem()); |
| if (!temp_memory_bio) { |
| RTC_LOG_F(LS_ERROR) << "Failed to allocate temporary memory bio"; |
| return; |
| } |
| X509_print_ex(temp_memory_bio, x509, XN_FLAG_SEP_CPLUS_SPC, 0); |
| BIO_write(temp_memory_bio, "\0", 1); |
| char* buffer; |
| BIO_get_mem_data(temp_memory_bio, &buffer); |
| RTC_LOG(LS_VERBOSE) << buffer; |
| BIO_free(temp_memory_bio); |
| } |
| #endif |
| |
| OpenSSLCertificate::OpenSSLCertificate(X509* x509) : x509_(x509) { |
| AddReference(); |
| } |
| |
| OpenSSLCertificate* OpenSSLCertificate::Generate( |
| OpenSSLKeyPair* key_pair, |
| const SSLIdentityParams& params) { |
| SSLIdentityParams actual_params(params); |
| if (actual_params.common_name.empty()) { |
| // Use a random string, arbitrarily 8chars long. |
| actual_params.common_name = CreateRandomString(8); |
| } |
| X509* x509 = MakeCertificate(key_pair->pkey(), actual_params); |
| if (!x509) { |
| LogSSLErrors("Generating certificate"); |
| return nullptr; |
| } |
| #if !defined(NDEBUG) |
| PrintCert(x509); |
| #endif |
| OpenSSLCertificate* ret = new OpenSSLCertificate(x509); |
| X509_free(x509); |
| return ret; |
| } |
| |
| OpenSSLCertificate* OpenSSLCertificate::FromPEMString( |
| const std::string& pem_string) { |
| BIO* bio = BIO_new_mem_buf(const_cast<char*>(pem_string.c_str()), -1); |
| if (!bio) |
| return nullptr; |
| BIO_set_mem_eof_return(bio, 0); |
| X509* x509 = |
| PEM_read_bio_X509(bio, nullptr, nullptr, const_cast<char*>("\0")); |
| BIO_free(bio); // Frees the BIO, but not the pointed-to string. |
| |
| if (!x509) |
| return nullptr; |
| |
| OpenSSLCertificate* ret = new OpenSSLCertificate(x509); |
| X509_free(x509); |
| return ret; |
| } |
| |
| // NOTE: This implementation only functions correctly after InitializeSSL |
| // and before CleanupSSL. |
| bool OpenSSLCertificate::GetSignatureDigestAlgorithm( |
| std::string* algorithm) const { |
| int nid = OBJ_obj2nid(x509_->sig_alg->algorithm); |
| switch (nid) { |
| case NID_md5WithRSA: |
| case NID_md5WithRSAEncryption: |
| *algorithm = DIGEST_MD5; |
| break; |
| case NID_ecdsa_with_SHA1: |
| case NID_dsaWithSHA1: |
| case NID_dsaWithSHA1_2: |
| case NID_sha1WithRSA: |
| case NID_sha1WithRSAEncryption: |
| *algorithm = DIGEST_SHA_1; |
| break; |
| case NID_ecdsa_with_SHA224: |
| case NID_sha224WithRSAEncryption: |
| case NID_dsa_with_SHA224: |
| *algorithm = DIGEST_SHA_224; |
| break; |
| case NID_ecdsa_with_SHA256: |
| case NID_sha256WithRSAEncryption: |
| case NID_dsa_with_SHA256: |
| *algorithm = DIGEST_SHA_256; |
| break; |
| case NID_ecdsa_with_SHA384: |
| case NID_sha384WithRSAEncryption: |
| *algorithm = DIGEST_SHA_384; |
| break; |
| case NID_ecdsa_with_SHA512: |
| case NID_sha512WithRSAEncryption: |
| *algorithm = DIGEST_SHA_512; |
| break; |
| default: |
| // Unknown algorithm. There are several unhandled options that are less |
| // common and more complex. |
| RTC_LOG(LS_ERROR) << "Unknown signature algorithm NID: " << nid; |
| algorithm->clear(); |
| return false; |
| } |
| return true; |
| } |
| |
| std::unique_ptr<SSLCertChain> OpenSSLCertificate::GetChain() const { |
| return nullptr; |
| } |
| |
| bool OpenSSLCertificate::ComputeDigest(const std::string& algorithm, |
| unsigned char* digest, |
| size_t size, |
| size_t* length) const { |
| return ComputeDigest(x509_, algorithm, digest, size, length); |
| } |
| |
| bool OpenSSLCertificate::ComputeDigest(const X509* x509, |
| const std::string& algorithm, |
| unsigned char* digest, |
| size_t size, |
| size_t* length) { |
| const EVP_MD* md; |
| unsigned int n; |
| |
| if (!OpenSSLDigest::GetDigestEVP(algorithm, &md)) |
| return false; |
| |
| if (size < static_cast<size_t>(EVP_MD_size(md))) |
| return false; |
| |
| X509_digest(x509, md, digest, &n); |
| |
| *length = n; |
| |
| return true; |
| } |
| |
| OpenSSLCertificate::~OpenSSLCertificate() { |
| X509_free(x509_); |
| } |
| |
| OpenSSLCertificate* OpenSSLCertificate::GetReference() const { |
| return new OpenSSLCertificate(x509_); |
| } |
| |
| std::string OpenSSLCertificate::ToPEMString() const { |
| BIO* bio = BIO_new(BIO_s_mem()); |
| if (!bio) { |
| FATAL() << "unreachable code"; |
| } |
| if (!PEM_write_bio_X509(bio, x509_)) { |
| BIO_free(bio); |
| FATAL() << "unreachable code"; |
| } |
| BIO_write(bio, "\0", 1); |
| char* buffer; |
| BIO_get_mem_data(bio, &buffer); |
| std::string ret(buffer); |
| BIO_free(bio); |
| return ret; |
| } |
| |
| void OpenSSLCertificate::ToDER(Buffer* der_buffer) const { |
| // In case of failure, make sure to leave the buffer empty. |
| der_buffer->SetSize(0); |
| |
| // Calculates the DER representation of the certificate, from scratch. |
| BIO* bio = BIO_new(BIO_s_mem()); |
| if (!bio) { |
| FATAL() << "unreachable code"; |
| } |
| if (!i2d_X509_bio(bio, x509_)) { |
| BIO_free(bio); |
| FATAL() << "unreachable code"; |
| } |
| char* data; |
| size_t length = BIO_get_mem_data(bio, &data); |
| der_buffer->SetData(data, length); |
| BIO_free(bio); |
| } |
| |
| void OpenSSLCertificate::AddReference() const { |
| RTC_DCHECK(x509_ != nullptr); |
| #if defined(OPENSSL_IS_BORINGSSL) |
| X509_up_ref(x509_); |
| #else |
| CRYPTO_add(&x509_->references, 1, CRYPTO_LOCK_X509); |
| #endif |
| } |
| |
| bool OpenSSLCertificate::operator==(const OpenSSLCertificate& other) const { |
| return X509_cmp(x509_, other.x509_) == 0; |
| } |
| |
| bool OpenSSLCertificate::operator!=(const OpenSSLCertificate& other) const { |
| return !(*this == other); |
| } |
| |
| // Documented in sslidentity.h. |
| int64_t OpenSSLCertificate::CertificateExpirationTime() const { |
| ASN1_TIME* expire_time = X509_get_notAfter(x509_); |
| bool long_format; |
| |
| if (expire_time->type == V_ASN1_UTCTIME) { |
| long_format = false; |
| } else if (expire_time->type == V_ASN1_GENERALIZEDTIME) { |
| long_format = true; |
| } else { |
| return -1; |
| } |
| |
| return ASN1TimeToSec(expire_time->data, expire_time->length, long_format); |
| } |
| |
| OpenSSLIdentity::OpenSSLIdentity( |
| std::unique_ptr<OpenSSLKeyPair> key_pair, |
| std::unique_ptr<OpenSSLCertificate> certificate) |
| : key_pair_(std::move(key_pair)) { |
| RTC_DCHECK(key_pair_ != nullptr); |
| RTC_DCHECK(certificate != nullptr); |
| std::vector<std::unique_ptr<SSLCertificate>> certs; |
| certs.push_back(std::move(certificate)); |
| cert_chain_.reset(new SSLCertChain(std::move(certs))); |
| } |
| |
| OpenSSLIdentity::OpenSSLIdentity(std::unique_ptr<OpenSSLKeyPair> key_pair, |
| std::unique_ptr<SSLCertChain> cert_chain) |
| : key_pair_(std::move(key_pair)), cert_chain_(std::move(cert_chain)) { |
| RTC_DCHECK(key_pair_ != nullptr); |
| RTC_DCHECK(cert_chain_ != nullptr); |
| } |
| |
| OpenSSLIdentity::~OpenSSLIdentity() = default; |
| |
| OpenSSLIdentity* OpenSSLIdentity::GenerateInternal( |
| const SSLIdentityParams& params) { |
| std::unique_ptr<OpenSSLKeyPair> key_pair( |
| OpenSSLKeyPair::Generate(params.key_params)); |
| if (key_pair) { |
| std::unique_ptr<OpenSSLCertificate> certificate( |
| OpenSSLCertificate::Generate(key_pair.get(), params)); |
| if (certificate != nullptr) |
| return new OpenSSLIdentity(std::move(key_pair), std::move(certificate)); |
| } |
| RTC_LOG(LS_INFO) << "Identity generation failed"; |
| return nullptr; |
| } |
| |
| OpenSSLIdentity* OpenSSLIdentity::GenerateWithExpiration( |
| const std::string& common_name, |
| const KeyParams& key_params, |
| time_t certificate_lifetime) { |
| SSLIdentityParams params; |
| params.key_params = key_params; |
| params.common_name = common_name; |
| time_t now = time(nullptr); |
| params.not_before = now + kCertificateWindowInSeconds; |
| params.not_after = now + certificate_lifetime; |
| if (params.not_before > params.not_after) |
| return nullptr; |
| return GenerateInternal(params); |
| } |
| |
| OpenSSLIdentity* OpenSSLIdentity::GenerateForTest( |
| const SSLIdentityParams& params) { |
| return GenerateInternal(params); |
| } |
| |
| SSLIdentity* OpenSSLIdentity::FromPEMStrings(const std::string& private_key, |
| const std::string& certificate) { |
| std::unique_ptr<OpenSSLCertificate> cert( |
| OpenSSLCertificate::FromPEMString(certificate)); |
| if (!cert) { |
| RTC_LOG(LS_ERROR) << "Failed to create OpenSSLCertificate from PEM string."; |
| return nullptr; |
| } |
| |
| std::unique_ptr<OpenSSLKeyPair> key_pair( |
| OpenSSLKeyPair::FromPrivateKeyPEMString(private_key)); |
| if (!key_pair) { |
| RTC_LOG(LS_ERROR) << "Failed to create key pair from PEM string."; |
| return nullptr; |
| } |
| |
| return new OpenSSLIdentity(std::move(key_pair), std::move(cert)); |
| } |
| |
| SSLIdentity* OpenSSLIdentity::FromPEMChainStrings( |
| const std::string& private_key, |
| const std::string& certificate_chain) { |
| BIO* bio = |
| BIO_new_mem_buf(certificate_chain.data(), certificate_chain.size()); |
| if (!bio) |
| return nullptr; |
| BIO_set_mem_eof_return(bio, 0); |
| std::vector<std::unique_ptr<SSLCertificate>> certs; |
| while (true) { |
| X509* x509 = |
| PEM_read_bio_X509(bio, nullptr, nullptr, const_cast<char*>("\0")); |
| if (x509 == nullptr) { |
| uint32_t err = ERR_peek_error(); |
| if (ERR_GET_LIB(err) == ERR_LIB_PEM && |
| ERR_GET_REASON(err) == PEM_R_NO_START_LINE) { |
| break; |
| } |
| RTC_LOG(LS_ERROR) << "Failed to parse certificate from PEM string."; |
| BIO_free(bio); |
| return nullptr; |
| } |
| certs.emplace_back(new OpenSSLCertificate(x509)); |
| X509_free(x509); |
| } |
| BIO_free(bio); |
| if (certs.empty()) { |
| RTC_LOG(LS_ERROR) << "Found no certificates in PEM string."; |
| return nullptr; |
| } |
| |
| std::unique_ptr<OpenSSLKeyPair> key_pair( |
| OpenSSLKeyPair::FromPrivateKeyPEMString(private_key)); |
| if (!key_pair) { |
| RTC_LOG(LS_ERROR) << "Failed to create key pair from PEM string."; |
| return nullptr; |
| } |
| |
| return new OpenSSLIdentity(std::move(key_pair), |
| MakeUnique<SSLCertChain>(std::move(certs))); |
| } |
| |
| const OpenSSLCertificate& OpenSSLIdentity::certificate() const { |
| return *static_cast<const OpenSSLCertificate*>(&cert_chain_->Get(0)); |
| } |
| |
| OpenSSLIdentity* OpenSSLIdentity::GetReference() const { |
| return new OpenSSLIdentity(WrapUnique(key_pair_->GetReference()), |
| WrapUnique(cert_chain_->Copy())); |
| } |
| |
| bool OpenSSLIdentity::ConfigureIdentity(SSL_CTX* ctx) { |
| // 1 is the documented success return code. |
| const OpenSSLCertificate* cert = &certificate(); |
| if (SSL_CTX_use_certificate(ctx, cert->x509()) != 1 || |
| SSL_CTX_use_PrivateKey(ctx, key_pair_->pkey()) != 1) { |
| LogSSLErrors("Configuring key and certificate"); |
| return false; |
| } |
| // If a chain is available, use it. |
| for (size_t i = 1; i < cert_chain_->GetSize(); ++i) { |
| cert = static_cast<const OpenSSLCertificate*>(&cert_chain_->Get(i)); |
| if (SSL_CTX_add1_chain_cert(ctx, cert->x509()) != 1) { |
| LogSSLErrors("Configuring intermediate certificate"); |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| std::string OpenSSLIdentity::PrivateKeyToPEMString() const { |
| return key_pair_->PrivateKeyToPEMString(); |
| } |
| |
| std::string OpenSSLIdentity::PublicKeyToPEMString() const { |
| return key_pair_->PublicKeyToPEMString(); |
| } |
| |
| bool OpenSSLIdentity::operator==(const OpenSSLIdentity& other) const { |
| return *this->key_pair_ == *other.key_pair_ && |
| this->certificate() == other.certificate(); |
| } |
| |
| bool OpenSSLIdentity::operator!=(const OpenSSLIdentity& other) const { |
| return !(*this == other); |
| } |
| |
| } // namespace rtc |