blob: 5aaf315363b4f8f63cb118c4c8f2fd1f77d35980 [file] [log] [blame]
/*
* Copyright 2004 The WebRTC Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <list>
#include <memory>
#include "absl/memory/memory.h"
#include "p2p/base/basicpacketsocketfactory.h"
#include "p2p/base/p2pconstants.h"
#include "p2p/base/relayport.h"
#include "p2p/base/stunport.h"
#include "p2p/base/tcpport.h"
#include "p2p/base/testrelayserver.h"
#include "p2p/base/teststunserver.h"
#include "p2p/base/testturnserver.h"
#include "p2p/base/turnport.h"
#include "rtc_base/arraysize.h"
#include "rtc_base/buffer.h"
#include "rtc_base/crc32.h"
#include "rtc_base/gunit.h"
#include "rtc_base/helpers.h"
#include "rtc_base/logging.h"
#include "rtc_base/natserver.h"
#include "rtc_base/natsocketfactory.h"
#include "rtc_base/socketaddress.h"
#include "rtc_base/ssladapter.h"
#include "rtc_base/stringutils.h"
#include "rtc_base/thread.h"
#include "rtc_base/virtualsocketserver.h"
using rtc::AsyncPacketSocket;
using rtc::Buffer;
using rtc::ByteBufferReader;
using rtc::ByteBufferWriter;
using rtc::NATType;
using rtc::NAT_OPEN_CONE;
using rtc::NAT_ADDR_RESTRICTED;
using rtc::NAT_PORT_RESTRICTED;
using rtc::NAT_SYMMETRIC;
using rtc::PacketSocketFactory;
using rtc::Socket;
using rtc::SocketAddress;
namespace cricket {
namespace {
constexpr int kDefaultTimeout = 3000;
constexpr int kShortTimeout = 1000;
constexpr int kMaxExpectedSimulatedRtt = 200;
const SocketAddress kLocalAddr1("192.168.1.2", 0);
const SocketAddress kLocalAddr2("192.168.1.3", 0);
const SocketAddress kNatAddr1("77.77.77.77", rtc::NAT_SERVER_UDP_PORT);
const SocketAddress kNatAddr2("88.88.88.88", rtc::NAT_SERVER_UDP_PORT);
const SocketAddress kStunAddr("99.99.99.1", STUN_SERVER_PORT);
const SocketAddress kRelayUdpIntAddr("99.99.99.2", 5000);
const SocketAddress kRelayUdpExtAddr("99.99.99.3", 5001);
const SocketAddress kRelayTcpIntAddr("99.99.99.2", 5002);
const SocketAddress kRelayTcpExtAddr("99.99.99.3", 5003);
const SocketAddress kRelaySslTcpIntAddr("99.99.99.2", 5004);
const SocketAddress kRelaySslTcpExtAddr("99.99.99.3", 5005);
const SocketAddress kTurnUdpIntAddr("99.99.99.4", STUN_SERVER_PORT);
const SocketAddress kTurnTcpIntAddr("99.99.99.4", 5010);
const SocketAddress kTurnUdpExtAddr("99.99.99.5", 0);
const RelayCredentials kRelayCredentials("test", "test");
// TODO(?): Update these when RFC5245 is completely supported.
// Magic value of 30 is from RFC3484, for IPv4 addresses.
const uint32_t kDefaultPrflxPriority = ICE_TYPE_PREFERENCE_PRFLX << 24 |
30 << 8 |
(256 - ICE_CANDIDATE_COMPONENT_DEFAULT);
constexpr int kTiebreaker1 = 11111;
constexpr int kTiebreaker2 = 22222;
const char* data = "ABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890";
constexpr int kGturnUserNameLength = 16;
Candidate GetCandidate(Port* port) {
RTC_DCHECK_GE(port->Candidates().size(), 1);
return port->Candidates()[0];
}
SocketAddress GetAddress(Port* port) {
return GetCandidate(port).address();
}
IceMessage* CopyStunMessage(const IceMessage* src) {
IceMessage* dst = new IceMessage();
ByteBufferWriter buf;
src->Write(&buf);
ByteBufferReader read_buf(buf);
dst->Read(&read_buf);
return dst;
}
bool WriteStunMessage(const StunMessage* msg, ByteBufferWriter* buf) {
buf->Resize(0); // clear out any existing buffer contents
return msg->Write(buf);
}
} // namespace
// Stub port class for testing STUN generation and processing.
class TestPort : public Port {
public:
TestPort(rtc::Thread* thread,
const std::string& type,
rtc::PacketSocketFactory* factory,
rtc::Network* network,
uint16_t min_port,
uint16_t max_port,
const std::string& username_fragment,
const std::string& password)
: Port(thread,
type,
factory,
network,
min_port,
max_port,
username_fragment,
password) {}
~TestPort() {}
// Expose GetStunMessage so that we can test it.
using cricket::Port::GetStunMessage;
// The last StunMessage that was sent on this Port.
// TODO(?): Make these const; requires changes to SendXXXXResponse.
Buffer* last_stun_buf() { return last_stun_buf_.get(); }
IceMessage* last_stun_msg() { return last_stun_msg_.get(); }
int last_stun_error_code() {
int code = 0;
if (last_stun_msg_) {
const StunErrorCodeAttribute* error_attr = last_stun_msg_->GetErrorCode();
if (error_attr) {
code = error_attr->code();
}
}
return code;
}
virtual void PrepareAddress() {
// Act as if the socket was bound to the best IP on the network, to the
// first port in the allowed range.
rtc::SocketAddress addr(Network()->GetBestIP(), min_port());
AddAddress(addr, addr, rtc::SocketAddress(), "udp", "", "", Type(),
ICE_TYPE_PREFERENCE_HOST, 0, "", true);
}
virtual bool SupportsProtocol(const std::string& protocol) const {
return true;
}
virtual ProtocolType GetProtocol() const { return PROTO_UDP; }
// Exposed for testing candidate building.
void AddCandidateAddress(const rtc::SocketAddress& addr) {
AddAddress(addr, addr, rtc::SocketAddress(), "udp", "", "", Type(),
type_preference_, 0, "", false);
}
void AddCandidateAddress(const rtc::SocketAddress& addr,
const rtc::SocketAddress& base_address,
const std::string& type,
int type_preference,
bool final) {
AddAddress(addr, base_address, rtc::SocketAddress(), "udp", "", "", type,
type_preference, 0, "", final);
}
virtual Connection* CreateConnection(const Candidate& remote_candidate,
CandidateOrigin origin) {
Connection* conn = new ProxyConnection(this, 0, remote_candidate);
AddOrReplaceConnection(conn);
// Set use-candidate attribute flag as this will add USE-CANDIDATE attribute
// in STUN binding requests.
conn->set_use_candidate_attr(true);
return conn;
}
virtual int SendTo(const void* data,
size_t size,
const rtc::SocketAddress& addr,
const rtc::PacketOptions& options,
bool payload) {
if (!payload) {
IceMessage* msg = new IceMessage;
Buffer* buf = new Buffer(static_cast<const char*>(data), size);
ByteBufferReader read_buf(*buf);
if (!msg->Read(&read_buf)) {
delete msg;
delete buf;
return -1;
}
last_stun_buf_.reset(buf);
last_stun_msg_.reset(msg);
}
return static_cast<int>(size);
}
virtual int SetOption(rtc::Socket::Option opt, int value) { return 0; }
virtual int GetOption(rtc::Socket::Option opt, int* value) { return -1; }
virtual int GetError() { return 0; }
void Reset() {
last_stun_buf_.reset();
last_stun_msg_.reset();
}
void set_type_preference(int type_preference) {
type_preference_ = type_preference;
}
private:
void OnSentPacket(rtc::AsyncPacketSocket* socket,
const rtc::SentPacket& sent_packet) {
PortInterface::SignalSentPacket(sent_packet);
}
std::unique_ptr<Buffer> last_stun_buf_;
std::unique_ptr<IceMessage> last_stun_msg_;
int type_preference_ = 0;
};
static void SendPingAndReceiveResponse(Connection* lconn,
TestPort* lport,
Connection* rconn,
TestPort* rport,
rtc::ScopedFakeClock* clock,
int64_t ms) {
lconn->Ping(rtc::TimeMillis());
ASSERT_TRUE_WAIT(lport->last_stun_msg(), kDefaultTimeout);
ASSERT_TRUE(lport->last_stun_buf());
rconn->OnReadPacket(lport->last_stun_buf()->data<char>(),
lport->last_stun_buf()->size(), rtc::PacketTime());
clock->AdvanceTime(webrtc::TimeDelta::ms(ms));
ASSERT_TRUE_WAIT(rport->last_stun_msg(), kDefaultTimeout);
ASSERT_TRUE(rport->last_stun_buf());
lconn->OnReadPacket(rport->last_stun_buf()->data<char>(),
rport->last_stun_buf()->size(), rtc::PacketTime());
}
class TestChannel : public sigslot::has_slots<> {
public:
// Takes ownership of |p1| (but not |p2|).
explicit TestChannel(Port* p1)
: ice_mode_(ICEMODE_FULL),
port_(p1),
complete_count_(0),
conn_(NULL),
remote_request_(),
nominated_(false) {
port_->SignalPortComplete.connect(this, &TestChannel::OnPortComplete);
port_->SignalUnknownAddress.connect(this, &TestChannel::OnUnknownAddress);
port_->SignalDestroyed.connect(this, &TestChannel::OnSrcPortDestroyed);
}
int complete_count() { return complete_count_; }
Connection* conn() { return conn_; }
const SocketAddress& remote_address() { return remote_address_; }
const std::string remote_fragment() { return remote_frag_; }
void Start() { port_->PrepareAddress(); }
void CreateConnection(const Candidate& remote_candidate) {
conn_ = port_->CreateConnection(remote_candidate, Port::ORIGIN_MESSAGE);
IceMode remote_ice_mode =
(ice_mode_ == ICEMODE_FULL) ? ICEMODE_LITE : ICEMODE_FULL;
conn_->set_remote_ice_mode(remote_ice_mode);
conn_->set_use_candidate_attr(remote_ice_mode == ICEMODE_FULL);
conn_->SignalStateChange.connect(this,
&TestChannel::OnConnectionStateChange);
conn_->SignalDestroyed.connect(this, &TestChannel::OnDestroyed);
conn_->SignalReadyToSend.connect(this,
&TestChannel::OnConnectionReadyToSend);
connection_ready_to_send_ = false;
}
void OnConnectionStateChange(Connection* conn) {
if (conn->write_state() == Connection::STATE_WRITABLE) {
conn->set_use_candidate_attr(true);
nominated_ = true;
}
}
void AcceptConnection(const Candidate& remote_candidate) {
ASSERT_TRUE(remote_request_.get() != NULL);
Candidate c = remote_candidate;
c.set_address(remote_address_);
conn_ = port_->CreateConnection(c, Port::ORIGIN_MESSAGE);
conn_->SignalDestroyed.connect(this, &TestChannel::OnDestroyed);
port_->SendBindingResponse(remote_request_.get(), remote_address_);
remote_request_.reset();
}
void Ping() { Ping(0); }
void Ping(int64_t now) { conn_->Ping(now); }
void Stop() {
if (conn_) {
conn_->Destroy();
}
}
void OnPortComplete(Port* port) { complete_count_++; }
void SetIceMode(IceMode ice_mode) { ice_mode_ = ice_mode; }
int SendData(const char* data, size_t len) {
rtc::PacketOptions options;
return conn_->Send(data, len, options);
}
void OnUnknownAddress(PortInterface* port,
const SocketAddress& addr,
ProtocolType proto,
IceMessage* msg,
const std::string& rf,
bool /*port_muxed*/) {
ASSERT_EQ(port_.get(), port);
if (!remote_address_.IsNil()) {
ASSERT_EQ(remote_address_, addr);
}
const cricket::StunUInt32Attribute* priority_attr =
msg->GetUInt32(STUN_ATTR_PRIORITY);
const cricket::StunByteStringAttribute* mi_attr =
msg->GetByteString(STUN_ATTR_MESSAGE_INTEGRITY);
const cricket::StunUInt32Attribute* fingerprint_attr =
msg->GetUInt32(STUN_ATTR_FINGERPRINT);
EXPECT_TRUE(priority_attr != NULL);
EXPECT_TRUE(mi_attr != NULL);
EXPECT_TRUE(fingerprint_attr != NULL);
remote_address_ = addr;
remote_request_.reset(CopyStunMessage(msg));
remote_frag_ = rf;
}
void OnDestroyed(Connection* conn) {
ASSERT_EQ(conn_, conn);
RTC_LOG(INFO) << "OnDestroy connection " << conn << " deleted";
conn_ = NULL;
// When the connection is destroyed, also clear these fields so future
// connections are possible.
remote_request_.reset();
remote_address_.Clear();
}
void OnSrcPortDestroyed(PortInterface* port) {
Port* destroyed_src = port_.release();
ASSERT_EQ(destroyed_src, port);
}
Port* port() { return port_.get(); }
bool nominated() const { return nominated_; }
void set_connection_ready_to_send(bool ready) {
connection_ready_to_send_ = ready;
}
bool connection_ready_to_send() const { return connection_ready_to_send_; }
private:
// ReadyToSend will only issue after a Connection recovers from ENOTCONN
void OnConnectionReadyToSend(Connection* conn) {
ASSERT_EQ(conn, conn_);
connection_ready_to_send_ = true;
}
IceMode ice_mode_;
std::unique_ptr<Port> port_;
int complete_count_;
Connection* conn_;
SocketAddress remote_address_;
std::unique_ptr<StunMessage> remote_request_;
std::string remote_frag_;
bool nominated_;
bool connection_ready_to_send_ = false;
};
class PortTest : public testing::Test, public sigslot::has_slots<> {
public:
PortTest()
: ss_(new rtc::VirtualSocketServer()),
main_(ss_.get()),
socket_factory_(rtc::Thread::Current()),
nat_factory1_(ss_.get(), kNatAddr1, SocketAddress()),
nat_factory2_(ss_.get(), kNatAddr2, SocketAddress()),
nat_socket_factory1_(&nat_factory1_),
nat_socket_factory2_(&nat_factory2_),
stun_server_(TestStunServer::Create(&main_, kStunAddr)),
turn_server_(&main_, kTurnUdpIntAddr, kTurnUdpExtAddr),
relay_server_(&main_,
kRelayUdpIntAddr,
kRelayUdpExtAddr,
kRelayTcpIntAddr,
kRelayTcpExtAddr,
kRelaySslTcpIntAddr,
kRelaySslTcpExtAddr),
username_(rtc::CreateRandomString(ICE_UFRAG_LENGTH)),
password_(rtc::CreateRandomString(ICE_PWD_LENGTH)),
role_conflict_(false),
ports_destroyed_(0) {}
protected:
void TestLocalToLocal() {
Port* port1 = CreateUdpPort(kLocalAddr1);
port1->SetIceRole(cricket::ICEROLE_CONTROLLING);
Port* port2 = CreateUdpPort(kLocalAddr2);
port2->SetIceRole(cricket::ICEROLE_CONTROLLED);
TestConnectivity("udp", port1, "udp", port2, true, true, true, true);
}
void TestLocalToStun(NATType ntype) {
Port* port1 = CreateUdpPort(kLocalAddr1);
port1->SetIceRole(cricket::ICEROLE_CONTROLLING);
nat_server2_.reset(CreateNatServer(kNatAddr2, ntype));
Port* port2 = CreateStunPort(kLocalAddr2, &nat_socket_factory2_);
port2->SetIceRole(cricket::ICEROLE_CONTROLLED);
TestConnectivity("udp", port1, StunName(ntype), port2,
ntype == NAT_OPEN_CONE, true, ntype != NAT_SYMMETRIC,
true);
}
void TestLocalToRelay(RelayType rtype, ProtocolType proto) {
Port* port1 = CreateUdpPort(kLocalAddr1);
port1->SetIceRole(cricket::ICEROLE_CONTROLLING);
Port* port2 = CreateRelayPort(kLocalAddr2, rtype, proto, PROTO_UDP);
port2->SetIceRole(cricket::ICEROLE_CONTROLLED);
TestConnectivity("udp", port1, RelayName(rtype, proto), port2,
rtype == RELAY_GTURN, true, true, true);
}
void TestStunToLocal(NATType ntype) {
nat_server1_.reset(CreateNatServer(kNatAddr1, ntype));
Port* port1 = CreateStunPort(kLocalAddr1, &nat_socket_factory1_);
port1->SetIceRole(cricket::ICEROLE_CONTROLLING);
Port* port2 = CreateUdpPort(kLocalAddr2);
port2->SetIceRole(cricket::ICEROLE_CONTROLLED);
TestConnectivity(StunName(ntype), port1, "udp", port2, true,
ntype != NAT_SYMMETRIC, true, true);
}
void TestStunToStun(NATType ntype1, NATType ntype2) {
nat_server1_.reset(CreateNatServer(kNatAddr1, ntype1));
Port* port1 = CreateStunPort(kLocalAddr1, &nat_socket_factory1_);
port1->SetIceRole(cricket::ICEROLE_CONTROLLING);
nat_server2_.reset(CreateNatServer(kNatAddr2, ntype2));
Port* port2 = CreateStunPort(kLocalAddr2, &nat_socket_factory2_);
port2->SetIceRole(cricket::ICEROLE_CONTROLLED);
TestConnectivity(StunName(ntype1), port1, StunName(ntype2), port2,
ntype2 == NAT_OPEN_CONE, ntype1 != NAT_SYMMETRIC,
ntype2 != NAT_SYMMETRIC,
ntype1 + ntype2 < (NAT_PORT_RESTRICTED + NAT_SYMMETRIC));
}
void TestStunToRelay(NATType ntype, RelayType rtype, ProtocolType proto) {
nat_server1_.reset(CreateNatServer(kNatAddr1, ntype));
Port* port1 = CreateStunPort(kLocalAddr1, &nat_socket_factory1_);
port1->SetIceRole(cricket::ICEROLE_CONTROLLING);
Port* port2 = CreateRelayPort(kLocalAddr2, rtype, proto, PROTO_UDP);
port2->SetIceRole(cricket::ICEROLE_CONTROLLED);
TestConnectivity(StunName(ntype), port1, RelayName(rtype, proto), port2,
rtype == RELAY_GTURN, ntype != NAT_SYMMETRIC, true, true);
}
void TestTcpToTcp() {
Port* port1 = CreateTcpPort(kLocalAddr1);
port1->SetIceRole(cricket::ICEROLE_CONTROLLING);
Port* port2 = CreateTcpPort(kLocalAddr2);
port2->SetIceRole(cricket::ICEROLE_CONTROLLED);
TestConnectivity("tcp", port1, "tcp", port2, true, false, true, true);
}
void TestTcpToRelay(RelayType rtype, ProtocolType proto) {
Port* port1 = CreateTcpPort(kLocalAddr1);
port1->SetIceRole(cricket::ICEROLE_CONTROLLING);
Port* port2 = CreateRelayPort(kLocalAddr2, rtype, proto, PROTO_TCP);
port2->SetIceRole(cricket::ICEROLE_CONTROLLED);
TestConnectivity("tcp", port1, RelayName(rtype, proto), port2,
rtype == RELAY_GTURN, false, true, true);
}
void TestSslTcpToRelay(RelayType rtype, ProtocolType proto) {
Port* port1 = CreateTcpPort(kLocalAddr1);
port1->SetIceRole(cricket::ICEROLE_CONTROLLING);
Port* port2 = CreateRelayPort(kLocalAddr2, rtype, proto, PROTO_SSLTCP);
port2->SetIceRole(cricket::ICEROLE_CONTROLLED);
TestConnectivity("ssltcp", port1, RelayName(rtype, proto), port2,
rtype == RELAY_GTURN, false, true, true);
}
rtc::Network* MakeNetwork(const SocketAddress& addr) {
networks_.emplace_back("unittest", "unittest", addr.ipaddr(), 32);
networks_.back().AddIP(addr.ipaddr());
return &networks_.back();
}
// helpers for above functions
UDPPort* CreateUdpPort(const SocketAddress& addr) {
return CreateUdpPort(addr, &socket_factory_);
}
UDPPort* CreateUdpPort(const SocketAddress& addr,
PacketSocketFactory* socket_factory) {
return UDPPort::Create(&main_, socket_factory, MakeNetwork(addr), 0, 0,
username_, password_, std::string(), true,
absl::nullopt);
}
TCPPort* CreateTcpPort(const SocketAddress& addr) {
return CreateTcpPort(addr, &socket_factory_);
}
TCPPort* CreateTcpPort(const SocketAddress& addr,
PacketSocketFactory* socket_factory) {
return TCPPort::Create(&main_, socket_factory, MakeNetwork(addr), 0, 0,
username_, password_, true);
}
StunPort* CreateStunPort(const SocketAddress& addr,
rtc::PacketSocketFactory* factory) {
ServerAddresses stun_servers;
stun_servers.insert(kStunAddr);
return StunPort::Create(&main_, factory, MakeNetwork(addr), 0, 0, username_,
password_, stun_servers, std::string(),
absl::nullopt);
}
Port* CreateRelayPort(const SocketAddress& addr,
RelayType rtype,
ProtocolType int_proto,
ProtocolType ext_proto) {
if (rtype == RELAY_TURN) {
return CreateTurnPort(addr, &socket_factory_, int_proto, ext_proto);
} else {
return CreateGturnPort(addr, int_proto, ext_proto);
}
}
TurnPort* CreateTurnPort(const SocketAddress& addr,
PacketSocketFactory* socket_factory,
ProtocolType int_proto,
ProtocolType ext_proto) {
SocketAddress server_addr =
int_proto == PROTO_TCP ? kTurnTcpIntAddr : kTurnUdpIntAddr;
return CreateTurnPort(addr, socket_factory, int_proto, ext_proto,
server_addr);
}
TurnPort* CreateTurnPort(const SocketAddress& addr,
PacketSocketFactory* socket_factory,
ProtocolType int_proto,
ProtocolType ext_proto,
const rtc::SocketAddress& server_addr) {
return TurnPort::Create(
&main_, socket_factory, MakeNetwork(addr), 0, 0, username_, password_,
ProtocolAddress(server_addr, int_proto), kRelayCredentials, 0,
std::string(), std::vector<std::string>(), std::vector<std::string>(),
nullptr, nullptr);
}
RelayPort* CreateGturnPort(const SocketAddress& addr,
ProtocolType int_proto,
ProtocolType ext_proto) {
RelayPort* port = CreateGturnPort(addr);
SocketAddress addrs[] = {kRelayUdpIntAddr, kRelayTcpIntAddr,
kRelaySslTcpIntAddr};
port->AddServerAddress(ProtocolAddress(addrs[int_proto], int_proto));
return port;
}
RelayPort* CreateGturnPort(const SocketAddress& addr) {
// TODO(pthatcher): Remove GTURN.
// Generate a username with length of 16 for Gturn only.
std::string username = rtc::CreateRandomString(kGturnUserNameLength);
return RelayPort::Create(&main_, &socket_factory_, MakeNetwork(addr), 0, 0,
username, password_);
// TODO(?): Add an external address for ext_proto, so that the
// other side can connect to this port using a non-UDP protocol.
}
rtc::NATServer* CreateNatServer(const SocketAddress& addr,
rtc::NATType type) {
return new rtc::NATServer(type, ss_.get(), addr, addr, ss_.get(), addr);
}
static const char* StunName(NATType type) {
switch (type) {
case NAT_OPEN_CONE:
return "stun(open cone)";
case NAT_ADDR_RESTRICTED:
return "stun(addr restricted)";
case NAT_PORT_RESTRICTED:
return "stun(port restricted)";
case NAT_SYMMETRIC:
return "stun(symmetric)";
default:
return "stun(?)";
}
}
static const char* RelayName(RelayType type, ProtocolType proto) {
if (type == RELAY_TURN) {
switch (proto) {
case PROTO_UDP:
return "turn(udp)";
case PROTO_TCP:
return "turn(tcp)";
case PROTO_SSLTCP:
return "turn(ssltcp)";
case PROTO_TLS:
return "turn(tls)";
default:
return "turn(?)";
}
} else {
switch (proto) {
case PROTO_UDP:
return "gturn(udp)";
case PROTO_TCP:
return "gturn(tcp)";
case PROTO_SSLTCP:
return "gturn(ssltcp)";
case PROTO_TLS:
return "gturn(tls)";
default:
return "gturn(?)";
}
}
}
void TestCrossFamilyPorts(int type);
void ExpectPortsCanConnect(bool can_connect, Port* p1, Port* p2);
// This does all the work and then deletes |port1| and |port2|.
void TestConnectivity(const char* name1,
Port* port1,
const char* name2,
Port* port2,
bool accept,
bool same_addr1,
bool same_addr2,
bool possible);
// This connects the provided channels which have already started. |ch1|
// should have its Connection created (either through CreateConnection() or
// TCP reconnecting mechanism before entering this function.
void ConnectStartedChannels(TestChannel* ch1, TestChannel* ch2) {
ASSERT_TRUE(ch1->conn());
EXPECT_TRUE_WAIT(ch1->conn()->connected(),
kDefaultTimeout); // for TCP connect
ch1->Ping();
WAIT(!ch2->remote_address().IsNil(), kShortTimeout);
// Send a ping from dst to src.
ch2->AcceptConnection(GetCandidate(ch1->port()));
ch2->Ping();
EXPECT_EQ_WAIT(Connection::STATE_WRITABLE, ch2->conn()->write_state(),
kDefaultTimeout);
}
// This connects and disconnects the provided channels in the same sequence as
// TestConnectivity with all options set to |true|. It does not delete either
// channel.
void StartConnectAndStopChannels(TestChannel* ch1, TestChannel* ch2) {
// Acquire addresses.
ch1->Start();
ch2->Start();
ch1->CreateConnection(GetCandidate(ch2->port()));
ConnectStartedChannels(ch1, ch2);
// Destroy the connections.
ch1->Stop();
ch2->Stop();
}
// This disconnects both end's Connection and make sure ch2 ready for new
// connection.
void DisconnectTcpTestChannels(TestChannel* ch1, TestChannel* ch2) {
TCPConnection* tcp_conn1 = static_cast<TCPConnection*>(ch1->conn());
TCPConnection* tcp_conn2 = static_cast<TCPConnection*>(ch2->conn());
ASSERT_TRUE(
ss_->CloseTcpConnections(tcp_conn1->socket()->GetLocalAddress(),
tcp_conn2->socket()->GetLocalAddress()));
// Wait for both OnClose are delivered.
EXPECT_TRUE_WAIT(!ch1->conn()->connected(), kDefaultTimeout);
EXPECT_TRUE_WAIT(!ch2->conn()->connected(), kDefaultTimeout);
// Ensure redundant SignalClose events on TcpConnection won't break tcp
// reconnection. Chromium will fire SignalClose for all outstanding IPC
// packets during reconnection.
tcp_conn1->socket()->SignalClose(tcp_conn1->socket(), 0);
tcp_conn2->socket()->SignalClose(tcp_conn2->socket(), 0);
// Speed up destroying ch2's connection such that the test is ready to
// accept a new connection from ch1 before ch1's connection destroys itself.
ch2->conn()->Destroy();
EXPECT_TRUE_WAIT(ch2->conn() == NULL, kDefaultTimeout);
}
void TestTcpReconnect(bool ping_after_disconnected,
bool send_after_disconnected) {
Port* port1 = CreateTcpPort(kLocalAddr1);
port1->SetIceRole(cricket::ICEROLE_CONTROLLING);
Port* port2 = CreateTcpPort(kLocalAddr2);
port2->SetIceRole(cricket::ICEROLE_CONTROLLED);
port1->set_component(cricket::ICE_CANDIDATE_COMPONENT_DEFAULT);
port2->set_component(cricket::ICE_CANDIDATE_COMPONENT_DEFAULT);
// Set up channels and ensure both ports will be deleted.
TestChannel ch1(port1);
TestChannel ch2(port2);
EXPECT_EQ(0, ch1.complete_count());
EXPECT_EQ(0, ch2.complete_count());
ch1.Start();
ch2.Start();
ASSERT_EQ_WAIT(1, ch1.complete_count(), kDefaultTimeout);
ASSERT_EQ_WAIT(1, ch2.complete_count(), kDefaultTimeout);
// Initial connecting the channel, create connection on channel1.
ch1.CreateConnection(GetCandidate(port2));
ConnectStartedChannels(&ch1, &ch2);
// Shorten the timeout period.
const int kTcpReconnectTimeout = kDefaultTimeout;
static_cast<TCPConnection*>(ch1.conn())
->set_reconnection_timeout(kTcpReconnectTimeout);
static_cast<TCPConnection*>(ch2.conn())
->set_reconnection_timeout(kTcpReconnectTimeout);
EXPECT_FALSE(ch1.connection_ready_to_send());
EXPECT_FALSE(ch2.connection_ready_to_send());
// Once connected, disconnect them.
DisconnectTcpTestChannels(&ch1, &ch2);
if (send_after_disconnected || ping_after_disconnected) {
if (send_after_disconnected) {
// First SendData after disconnect should fail but will trigger
// reconnect.
EXPECT_EQ(-1, ch1.SendData(data, static_cast<int>(strlen(data))));
}
if (ping_after_disconnected) {
// Ping should trigger reconnect.
ch1.Ping();
}
// Wait for channel's outgoing TCPConnection connected.
EXPECT_TRUE_WAIT(ch1.conn()->connected(), kDefaultTimeout);
// Verify that we could still connect channels.
ConnectStartedChannels(&ch1, &ch2);
EXPECT_TRUE_WAIT(ch1.connection_ready_to_send(), kTcpReconnectTimeout);
// Channel2 is the passive one so a new connection is created during
// reconnect. This new connection should never have issued ENOTCONN
// hence the connection_ready_to_send() should be false.
EXPECT_FALSE(ch2.connection_ready_to_send());
} else {
EXPECT_EQ(ch1.conn()->write_state(), Connection::STATE_WRITABLE);
// Since the reconnection never happens, the connections should have been
// destroyed after the timeout.
EXPECT_TRUE_WAIT(!ch1.conn(), kTcpReconnectTimeout + kDefaultTimeout);
EXPECT_TRUE(!ch2.conn());
}
// Tear down and ensure that goes smoothly.
ch1.Stop();
ch2.Stop();
EXPECT_TRUE_WAIT(ch1.conn() == NULL, kDefaultTimeout);
EXPECT_TRUE_WAIT(ch2.conn() == NULL, kDefaultTimeout);
}
IceMessage* CreateStunMessage(int type) {
IceMessage* msg = new IceMessage();
msg->SetType(type);
msg->SetTransactionID("TESTTESTTEST");
return msg;
}
IceMessage* CreateStunMessageWithUsername(int type,
const std::string& username) {
IceMessage* msg = CreateStunMessage(type);
msg->AddAttribute(absl::make_unique<StunByteStringAttribute>(
STUN_ATTR_USERNAME, username));
return msg;
}
TestPort* CreateTestPort(const rtc::SocketAddress& addr,
const std::string& username,
const std::string& password) {
TestPort* port = new TestPort(&main_, "test", &socket_factory_,
MakeNetwork(addr), 0, 0, username, password);
port->SignalRoleConflict.connect(this, &PortTest::OnRoleConflict);
return port;
}
TestPort* CreateTestPort(const rtc::SocketAddress& addr,
const std::string& username,
const std::string& password,
cricket::IceRole role,
int tiebreaker) {
TestPort* port = CreateTestPort(addr, username, password);
port->SetIceRole(role);
port->SetIceTiebreaker(tiebreaker);
return port;
}
// Overload to create a test port given an rtc::Network directly.
TestPort* CreateTestPort(rtc::Network* network,
const std::string& username,
const std::string& password) {
TestPort* port = new TestPort(&main_, "test", &socket_factory_, network, 0,
0, username, password);
port->SignalRoleConflict.connect(this, &PortTest::OnRoleConflict);
return port;
}
void OnRoleConflict(PortInterface* port) { role_conflict_ = true; }
bool role_conflict() const { return role_conflict_; }
void ConnectToSignalDestroyed(PortInterface* port) {
port->SignalDestroyed.connect(this, &PortTest::OnDestroyed);
}
void OnDestroyed(PortInterface* port) { ++ports_destroyed_; }
int ports_destroyed() const { return ports_destroyed_; }
rtc::BasicPacketSocketFactory* nat_socket_factory1() {
return &nat_socket_factory1_;
}
rtc::VirtualSocketServer* vss() { return ss_.get(); }
private:
// When a "create port" helper method is called with an IP, we create a
// Network with that IP and add it to this list. Using a list instead of a
// vector so that when it grows, pointers aren't invalidated.
std::list<rtc::Network> networks_;
std::unique_ptr<rtc::VirtualSocketServer> ss_;
rtc::AutoSocketServerThread main_;
rtc::BasicPacketSocketFactory socket_factory_;
std::unique_ptr<rtc::NATServer> nat_server1_;
std::unique_ptr<rtc::NATServer> nat_server2_;
rtc::NATSocketFactory nat_factory1_;
rtc::NATSocketFactory nat_factory2_;
rtc::BasicPacketSocketFactory nat_socket_factory1_;
rtc::BasicPacketSocketFactory nat_socket_factory2_;
std::unique_ptr<TestStunServer> stun_server_;
TestTurnServer turn_server_;
TestRelayServer relay_server_;
std::string username_;
std::string password_;
bool role_conflict_;
int ports_destroyed_;
};
void PortTest::TestConnectivity(const char* name1,
Port* port1,
const char* name2,
Port* port2,
bool accept,
bool same_addr1,
bool same_addr2,
bool possible) {
rtc::ScopedFakeClock clock;
RTC_LOG(LS_INFO) << "Test: " << name1 << " to " << name2 << ": ";
port1->set_component(cricket::ICE_CANDIDATE_COMPONENT_DEFAULT);
port2->set_component(cricket::ICE_CANDIDATE_COMPONENT_DEFAULT);
// Set up channels and ensure both ports will be deleted.
TestChannel ch1(port1);
TestChannel ch2(port2);
EXPECT_EQ(0, ch1.complete_count());
EXPECT_EQ(0, ch2.complete_count());
// Acquire addresses.
ch1.Start();
ch2.Start();
ASSERT_EQ_SIMULATED_WAIT(1, ch1.complete_count(), kDefaultTimeout, clock);
ASSERT_EQ_SIMULATED_WAIT(1, ch2.complete_count(), kDefaultTimeout, clock);
// Send a ping from src to dst. This may or may not make it.
ch1.CreateConnection(GetCandidate(port2));
ASSERT_TRUE(ch1.conn() != NULL);
EXPECT_TRUE_SIMULATED_WAIT(ch1.conn()->connected(), kDefaultTimeout,
clock); // for TCP connect
ch1.Ping();
SIMULATED_WAIT(!ch2.remote_address().IsNil(), kShortTimeout, clock);
if (accept) {
// We are able to send a ping from src to dst. This is the case when
// sending to UDP ports and cone NATs.
EXPECT_TRUE(ch1.remote_address().IsNil());
EXPECT_EQ(ch2.remote_fragment(), port1->username_fragment());
// Ensure the ping came from the same address used for src.
// This is the case unless the source NAT was symmetric.
if (same_addr1)
EXPECT_EQ(ch2.remote_address(), GetAddress(port1));
EXPECT_TRUE(same_addr2);
// Send a ping from dst to src.
ch2.AcceptConnection(GetCandidate(port1));
ASSERT_TRUE(ch2.conn() != NULL);
ch2.Ping();
EXPECT_EQ_SIMULATED_WAIT(Connection::STATE_WRITABLE,
ch2.conn()->write_state(), kDefaultTimeout, clock);
} else {
// We can't send a ping from src to dst, so flip it around. This will happen
// when the destination NAT is addr/port restricted or symmetric.
EXPECT_TRUE(ch1.remote_address().IsNil());
EXPECT_TRUE(ch2.remote_address().IsNil());
// Send a ping from dst to src. Again, this may or may not make it.
ch2.CreateConnection(GetCandidate(port1));
ASSERT_TRUE(ch2.conn() != NULL);
ch2.Ping();
SIMULATED_WAIT(ch2.conn()->write_state() == Connection::STATE_WRITABLE,
kShortTimeout, clock);
if (same_addr1 && same_addr2) {
// The new ping got back to the source.
EXPECT_TRUE(ch1.conn()->receiving());
EXPECT_EQ(Connection::STATE_WRITABLE, ch2.conn()->write_state());
// First connection may not be writable if the first ping did not get
// through. So we will have to do another.
if (ch1.conn()->write_state() == Connection::STATE_WRITE_INIT) {
ch1.Ping();
EXPECT_EQ_SIMULATED_WAIT(Connection::STATE_WRITABLE,
ch1.conn()->write_state(), kDefaultTimeout,
clock);
}
} else if (!same_addr1 && possible) {
// The new ping went to the candidate address, but that address was bad.
// This will happen when the source NAT is symmetric.
EXPECT_TRUE(ch1.remote_address().IsNil());
EXPECT_TRUE(ch2.remote_address().IsNil());
// However, since we have now sent a ping to the source IP, we should be
// able to get a ping from it. This gives us the real source address.
ch1.Ping();
EXPECT_TRUE_SIMULATED_WAIT(!ch2.remote_address().IsNil(), kDefaultTimeout,
clock);
EXPECT_FALSE(ch2.conn()->receiving());
EXPECT_TRUE(ch1.remote_address().IsNil());
// Pick up the actual address and establish the connection.
ch2.AcceptConnection(GetCandidate(port1));
ASSERT_TRUE(ch2.conn() != NULL);
ch2.Ping();
EXPECT_EQ_SIMULATED_WAIT(Connection::STATE_WRITABLE,
ch2.conn()->write_state(), kDefaultTimeout,
clock);
} else if (!same_addr2 && possible) {
// The new ping came in, but from an unexpected address. This will happen
// when the destination NAT is symmetric.
EXPECT_FALSE(ch1.remote_address().IsNil());
EXPECT_FALSE(ch1.conn()->receiving());
// Update our address and complete the connection.
ch1.AcceptConnection(GetCandidate(port2));
ch1.Ping();
EXPECT_EQ_SIMULATED_WAIT(Connection::STATE_WRITABLE,
ch1.conn()->write_state(), kDefaultTimeout,
clock);
} else { // (!possible)
// There should be s no way for the pings to reach each other. Check it.
EXPECT_TRUE(ch1.remote_address().IsNil());
EXPECT_TRUE(ch2.remote_address().IsNil());
ch1.Ping();
SIMULATED_WAIT(!ch2.remote_address().IsNil(), kShortTimeout, clock);
EXPECT_TRUE(ch1.remote_address().IsNil());
EXPECT_TRUE(ch2.remote_address().IsNil());
}
}
// Everything should be good, unless we know the situation is impossible.
ASSERT_TRUE(ch1.conn() != NULL);
ASSERT_TRUE(ch2.conn() != NULL);
if (possible) {
EXPECT_TRUE(ch1.conn()->receiving());
EXPECT_EQ(Connection::STATE_WRITABLE, ch1.conn()->write_state());
EXPECT_TRUE(ch2.conn()->receiving());
EXPECT_EQ(Connection::STATE_WRITABLE, ch2.conn()->write_state());
} else {
EXPECT_FALSE(ch1.conn()->receiving());
EXPECT_NE(Connection::STATE_WRITABLE, ch1.conn()->write_state());
EXPECT_FALSE(ch2.conn()->receiving());
EXPECT_NE(Connection::STATE_WRITABLE, ch2.conn()->write_state());
}
// Tear down and ensure that goes smoothly.
ch1.Stop();
ch2.Stop();
EXPECT_TRUE_SIMULATED_WAIT(ch1.conn() == NULL, kDefaultTimeout, clock);
EXPECT_TRUE_SIMULATED_WAIT(ch2.conn() == NULL, kDefaultTimeout, clock);
}
class FakePacketSocketFactory : public rtc::PacketSocketFactory {
public:
FakePacketSocketFactory()
: next_udp_socket_(NULL),
next_server_tcp_socket_(NULL),
next_client_tcp_socket_(NULL) {}
~FakePacketSocketFactory() override {}
AsyncPacketSocket* CreateUdpSocket(const SocketAddress& address,
uint16_t min_port,
uint16_t max_port) override {
EXPECT_TRUE(next_udp_socket_ != NULL);
AsyncPacketSocket* result = next_udp_socket_;
next_udp_socket_ = NULL;
return result;
}
AsyncPacketSocket* CreateServerTcpSocket(const SocketAddress& local_address,
uint16_t min_port,
uint16_t max_port,
int opts) override {
EXPECT_TRUE(next_server_tcp_socket_ != NULL);
AsyncPacketSocket* result = next_server_tcp_socket_;
next_server_tcp_socket_ = NULL;
return result;
}
// TODO(?): |proxy_info| and |user_agent| should be set
// per-factory and not when socket is created.
AsyncPacketSocket* CreateClientTcpSocket(const SocketAddress& local_address,
const SocketAddress& remote_address,
const rtc::ProxyInfo& proxy_info,
const std::string& user_agent,
int opts) override {
EXPECT_TRUE(next_client_tcp_socket_ != NULL);
AsyncPacketSocket* result = next_client_tcp_socket_;
next_client_tcp_socket_ = NULL;
return result;
}
void set_next_udp_socket(AsyncPacketSocket* next_udp_socket) {
next_udp_socket_ = next_udp_socket;
}
void set_next_server_tcp_socket(AsyncPacketSocket* next_server_tcp_socket) {
next_server_tcp_socket_ = next_server_tcp_socket;
}
void set_next_client_tcp_socket(AsyncPacketSocket* next_client_tcp_socket) {
next_client_tcp_socket_ = next_client_tcp_socket;
}
rtc::AsyncResolverInterface* CreateAsyncResolver() override { return NULL; }
private:
AsyncPacketSocket* next_udp_socket_;
AsyncPacketSocket* next_server_tcp_socket_;
AsyncPacketSocket* next_client_tcp_socket_;
};
class FakeAsyncPacketSocket : public AsyncPacketSocket {
public:
// Returns current local address. Address may be set to NULL if the
// socket is not bound yet (GetState() returns STATE_BINDING).
virtual SocketAddress GetLocalAddress() const { return SocketAddress(); }
// Returns remote address. Returns zeroes if this is not a client TCP socket.
virtual SocketAddress GetRemoteAddress() const { return SocketAddress(); }
// Send a packet.
virtual int Send(const void* pv,
size_t cb,
const rtc::PacketOptions& options) {
return static_cast<int>(cb);
}
virtual int SendTo(const void* pv,
size_t cb,
const SocketAddress& addr,
const rtc::PacketOptions& options) {
return static_cast<int>(cb);
}
virtual int Close() { return 0; }
virtual State GetState() const { return state_; }
virtual int GetOption(Socket::Option opt, int* value) { return 0; }
virtual int SetOption(Socket::Option opt, int value) { return 0; }
virtual int GetError() const { return 0; }
virtual void SetError(int error) {}
void set_state(State state) { state_ = state; }
private:
State state_;
};
// Local -> XXXX
TEST_F(PortTest, TestLocalToLocal) {
TestLocalToLocal();
}
TEST_F(PortTest, TestLocalToConeNat) {
TestLocalToStun(NAT_OPEN_CONE);
}
TEST_F(PortTest, TestLocalToARNat) {
TestLocalToStun(NAT_ADDR_RESTRICTED);
}
TEST_F(PortTest, TestLocalToPRNat) {
TestLocalToStun(NAT_PORT_RESTRICTED);
}
TEST_F(PortTest, TestLocalToSymNat) {
TestLocalToStun(NAT_SYMMETRIC);
}
// Flaky: https://code.google.com/p/webrtc/issues/detail?id=3316.
TEST_F(PortTest, DISABLED_TestLocalToTurn) {
TestLocalToRelay(RELAY_TURN, PROTO_UDP);
}
TEST_F(PortTest, TestLocalToGturn) {
TestLocalToRelay(RELAY_GTURN, PROTO_UDP);
}
TEST_F(PortTest, TestLocalToTcpGturn) {
TestLocalToRelay(RELAY_GTURN, PROTO_TCP);
}
TEST_F(PortTest, TestLocalToSslTcpGturn) {
TestLocalToRelay(RELAY_GTURN, PROTO_SSLTCP);
}
// Cone NAT -> XXXX
TEST_F(PortTest, TestConeNatToLocal) {
TestStunToLocal(NAT_OPEN_CONE);
}
TEST_F(PortTest, TestConeNatToConeNat) {
TestStunToStun(NAT_OPEN_CONE, NAT_OPEN_CONE);
}
TEST_F(PortTest, TestConeNatToARNat) {
TestStunToStun(NAT_OPEN_CONE, NAT_ADDR_RESTRICTED);
}
TEST_F(PortTest, TestConeNatToPRNat) {
TestStunToStun(NAT_OPEN_CONE, NAT_PORT_RESTRICTED);
}
TEST_F(PortTest, TestConeNatToSymNat) {
TestStunToStun(NAT_OPEN_CONE, NAT_SYMMETRIC);
}
TEST_F(PortTest, TestConeNatToTurn) {
TestStunToRelay(NAT_OPEN_CONE, RELAY_TURN, PROTO_UDP);
}
TEST_F(PortTest, TestConeNatToGturn) {
TestStunToRelay(NAT_OPEN_CONE, RELAY_GTURN, PROTO_UDP);
}
TEST_F(PortTest, TestConeNatToTcpGturn) {
TestStunToRelay(NAT_OPEN_CONE, RELAY_GTURN, PROTO_TCP);
}
// Address-restricted NAT -> XXXX
TEST_F(PortTest, TestARNatToLocal) {
TestStunToLocal(NAT_ADDR_RESTRICTED);
}
TEST_F(PortTest, TestARNatToConeNat) {
TestStunToStun(NAT_ADDR_RESTRICTED, NAT_OPEN_CONE);
}
TEST_F(PortTest, TestARNatToARNat) {
TestStunToStun(NAT_ADDR_RESTRICTED, NAT_ADDR_RESTRICTED);
}
TEST_F(PortTest, TestARNatToPRNat) {
TestStunToStun(NAT_ADDR_RESTRICTED, NAT_PORT_RESTRICTED);
}
TEST_F(PortTest, TestARNatToSymNat) {
TestStunToStun(NAT_ADDR_RESTRICTED, NAT_SYMMETRIC);
}
TEST_F(PortTest, TestARNatToTurn) {
TestStunToRelay(NAT_ADDR_RESTRICTED, RELAY_TURN, PROTO_UDP);
}
TEST_F(PortTest, TestARNatToGturn) {
TestStunToRelay(NAT_ADDR_RESTRICTED, RELAY_GTURN, PROTO_UDP);
}
TEST_F(PortTest, TestARNATNatToTcpGturn) {
TestStunToRelay(NAT_ADDR_RESTRICTED, RELAY_GTURN, PROTO_TCP);
}
// Port-restricted NAT -> XXXX
TEST_F(PortTest, TestPRNatToLocal) {
TestStunToLocal(NAT_PORT_RESTRICTED);
}
TEST_F(PortTest, TestPRNatToConeNat) {
TestStunToStun(NAT_PORT_RESTRICTED, NAT_OPEN_CONE);
}
TEST_F(PortTest, TestPRNatToARNat) {
TestStunToStun(NAT_PORT_RESTRICTED, NAT_ADDR_RESTRICTED);
}
TEST_F(PortTest, TestPRNatToPRNat) {
TestStunToStun(NAT_PORT_RESTRICTED, NAT_PORT_RESTRICTED);
}
TEST_F(PortTest, TestPRNatToSymNat) {
// Will "fail"
TestStunToStun(NAT_PORT_RESTRICTED, NAT_SYMMETRIC);
}
TEST_F(PortTest, TestPRNatToTurn) {
TestStunToRelay(NAT_PORT_RESTRICTED, RELAY_TURN, PROTO_UDP);
}
TEST_F(PortTest, TestPRNatToGturn) {
TestStunToRelay(NAT_PORT_RESTRICTED, RELAY_GTURN, PROTO_UDP);
}
TEST_F(PortTest, TestPRNatToTcpGturn) {
TestStunToRelay(NAT_PORT_RESTRICTED, RELAY_GTURN, PROTO_TCP);
}
// Symmetric NAT -> XXXX
TEST_F(PortTest, TestSymNatToLocal) {
TestStunToLocal(NAT_SYMMETRIC);
}
TEST_F(PortTest, TestSymNatToConeNat) {
TestStunToStun(NAT_SYMMETRIC, NAT_OPEN_CONE);
}
TEST_F(PortTest, TestSymNatToARNat) {
TestStunToStun(NAT_SYMMETRIC, NAT_ADDR_RESTRICTED);
}
TEST_F(PortTest, TestSymNatToPRNat) {
// Will "fail"
TestStunToStun(NAT_SYMMETRIC, NAT_PORT_RESTRICTED);
}
TEST_F(PortTest, TestSymNatToSymNat) {
// Will "fail"
TestStunToStun(NAT_SYMMETRIC, NAT_SYMMETRIC);
}
TEST_F(PortTest, TestSymNatToTurn) {
TestStunToRelay(NAT_SYMMETRIC, RELAY_TURN, PROTO_UDP);
}
TEST_F(PortTest, TestSymNatToGturn) {
TestStunToRelay(NAT_SYMMETRIC, RELAY_GTURN, PROTO_UDP);
}
TEST_F(PortTest, TestSymNatToTcpGturn) {
TestStunToRelay(NAT_SYMMETRIC, RELAY_GTURN, PROTO_TCP);
}
// Outbound TCP -> XXXX
TEST_F(PortTest, TestTcpToTcp) {
TestTcpToTcp();
}
TEST_F(PortTest, TestTcpReconnectOnSendPacket) {
TestTcpReconnect(false /* ping */, true /* send */);
}
TEST_F(PortTest, TestTcpReconnectOnPing) {
TestTcpReconnect(true /* ping */, false /* send */);
}
TEST_F(PortTest, TestTcpReconnectTimeout) {
TestTcpReconnect(false /* ping */, false /* send */);
}
// Test when TcpConnection never connects, the OnClose() will be called to
// destroy the connection.
TEST_F(PortTest, TestTcpNeverConnect) {
Port* port1 = CreateTcpPort(kLocalAddr1);
port1->SetIceRole(cricket::ICEROLE_CONTROLLING);
port1->set_component(cricket::ICE_CANDIDATE_COMPONENT_DEFAULT);
// Set up a channel and ensure the port will be deleted.
TestChannel ch1(port1);
EXPECT_EQ(0, ch1.complete_count());
ch1.Start();
ASSERT_EQ_WAIT(1, ch1.complete_count(), kDefaultTimeout);
std::unique_ptr<rtc::AsyncSocket> server(
vss()->CreateAsyncSocket(kLocalAddr2.family(), SOCK_STREAM));
// Bind but not listen.
EXPECT_EQ(0, server->Bind(kLocalAddr2));
Candidate c = GetCandidate(port1);
c.set_address(server->GetLocalAddress());
ch1.CreateConnection(c);
EXPECT_TRUE(ch1.conn());
EXPECT_TRUE_WAIT(!ch1.conn(), kDefaultTimeout); // for TCP connect
}
/* TODO(?): Enable these once testrelayserver can accept external TCP.
TEST_F(PortTest, TestTcpToTcpRelay) {
TestTcpToRelay(PROTO_TCP);
}
TEST_F(PortTest, TestTcpToSslTcpRelay) {
TestTcpToRelay(PROTO_SSLTCP);
}
*/
// Outbound SSLTCP -> XXXX
/* TODO(?): Enable these once testrelayserver can accept external SSL.
TEST_F(PortTest, TestSslTcpToTcpRelay) {
TestSslTcpToRelay(PROTO_TCP);
}
TEST_F(PortTest, TestSslTcpToSslTcpRelay) {
TestSslTcpToRelay(PROTO_SSLTCP);
}
*/
// Test that a connection will be dead and deleted if
// i) it has never received anything for MIN_CONNECTION_LIFETIME milliseconds
// since it was created, or
// ii) it has not received anything for DEAD_CONNECTION_RECEIVE_TIMEOUT
// milliseconds since last receiving.
TEST_F(PortTest, TestConnectionDead) {
UDPPort* port1 = CreateUdpPort(kLocalAddr1);
UDPPort* port2 = CreateUdpPort(kLocalAddr2);
TestChannel ch1(port1);
TestChannel ch2(port2);
// Acquire address.
ch1.Start();
ch2.Start();
ASSERT_EQ_WAIT(1, ch1.complete_count(), kDefaultTimeout);
ASSERT_EQ_WAIT(1, ch2.complete_count(), kDefaultTimeout);
// Test case that the connection has never received anything.
int64_t before_created = rtc::TimeMillis();
ch1.CreateConnection(GetCandidate(port2));
int64_t after_created = rtc::TimeMillis();
Connection* conn = ch1.conn();
ASSERT_NE(conn, nullptr);
// It is not dead if it is after MIN_CONNECTION_LIFETIME but not pruned.
conn->UpdateState(after_created + MIN_CONNECTION_LIFETIME + 1);
rtc::Thread::Current()->ProcessMessages(0);
EXPECT_TRUE(ch1.conn() != nullptr);
// It is not dead if it is before MIN_CONNECTION_LIFETIME and pruned.
conn->UpdateState(before_created + MIN_CONNECTION_LIFETIME - 1);
conn->Prune();
rtc::Thread::Current()->ProcessMessages(0);
EXPECT_TRUE(ch1.conn() != nullptr);
// It will be dead after MIN_CONNECTION_LIFETIME and pruned.
conn->UpdateState(after_created + MIN_CONNECTION_LIFETIME + 1);
EXPECT_TRUE_WAIT(ch1.conn() == nullptr, kDefaultTimeout);
// Test case that the connection has received something.
// Create a connection again and receive a ping.
ch1.CreateConnection(GetCandidate(port2));
conn = ch1.conn();
ASSERT_NE(conn, nullptr);
int64_t before_last_receiving = rtc::TimeMillis();
conn->ReceivedPing();
int64_t after_last_receiving = rtc::TimeMillis();
// The connection will be dead after DEAD_CONNECTION_RECEIVE_TIMEOUT
conn->UpdateState(before_last_receiving + DEAD_CONNECTION_RECEIVE_TIMEOUT -
1);
rtc::Thread::Current()->ProcessMessages(100);
EXPECT_TRUE(ch1.conn() != nullptr);
conn->UpdateState(after_last_receiving + DEAD_CONNECTION_RECEIVE_TIMEOUT + 1);
EXPECT_TRUE_WAIT(ch1.conn() == nullptr, kDefaultTimeout);
}
// This test case verifies standard ICE features in STUN messages. Currently it
// verifies Message Integrity attribute in STUN messages and username in STUN
// binding request will have colon (":") between remote and local username.
TEST_F(PortTest, TestLocalToLocalStandard) {
UDPPort* port1 = CreateUdpPort(kLocalAddr1);
port1->SetIceRole(cricket::ICEROLE_CONTROLLING);
port1->SetIceTiebreaker(kTiebreaker1);
UDPPort* port2 = CreateUdpPort(kLocalAddr2);
port2->SetIceRole(cricket::ICEROLE_CONTROLLED);
port2->SetIceTiebreaker(kTiebreaker2);
// Same parameters as TestLocalToLocal above.
TestConnectivity("udp", port1, "udp", port2, true, true, true, true);
}
// This test is trying to validate a successful and failure scenario in a
// loopback test when protocol is RFC5245. For success IceTiebreaker, username
// should remain equal to the request generated by the port and role of port
// must be in controlling.
TEST_F(PortTest, TestLoopbackCall) {
std::unique_ptr<TestPort> lport(
CreateTestPort(kLocalAddr1, "lfrag", "lpass"));
lport->SetIceRole(cricket::ICEROLE_CONTROLLING);
lport->SetIceTiebreaker(kTiebreaker1);
lport->PrepareAddress();
ASSERT_FALSE(lport->Candidates().empty());
Connection* conn =
lport->CreateConnection(lport->Candidates()[0], Port::ORIGIN_MESSAGE);
conn->Ping(0);
ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, kDefaultTimeout);
IceMessage* msg = lport->last_stun_msg();
EXPECT_EQ(STUN_BINDING_REQUEST, msg->type());
conn->OnReadPacket(lport->last_stun_buf()->data<char>(),
lport->last_stun_buf()->size(), rtc::PacketTime());
ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, kDefaultTimeout);
msg = lport->last_stun_msg();
EXPECT_EQ(STUN_BINDING_RESPONSE, msg->type());
// If the tiebreaker value is different from port, we expect a error
// response.
lport->Reset();
lport->AddCandidateAddress(kLocalAddr2);
// Creating a different connection as |conn| is receiving.
Connection* conn1 =
lport->CreateConnection(lport->Candidates()[1], Port::ORIGIN_MESSAGE);
conn1->Ping(0);
ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, kDefaultTimeout);
msg = lport->last_stun_msg();
EXPECT_EQ(STUN_BINDING_REQUEST, msg->type());
std::unique_ptr<IceMessage> modified_req(
CreateStunMessage(STUN_BINDING_REQUEST));
const StunByteStringAttribute* username_attr =
msg->GetByteString(STUN_ATTR_USERNAME);
modified_req->AddAttribute(absl::make_unique<StunByteStringAttribute>(
STUN_ATTR_USERNAME, username_attr->GetString()));
// To make sure we receive error response, adding tiebreaker less than
// what's present in request.
modified_req->AddAttribute(absl::make_unique<StunUInt64Attribute>(
STUN_ATTR_ICE_CONTROLLING, kTiebreaker1 - 1));
modified_req->AddMessageIntegrity("lpass");
modified_req->AddFingerprint();
lport->Reset();
std::unique_ptr<ByteBufferWriter> buf(new ByteBufferWriter());
WriteStunMessage(modified_req.get(), buf.get());
conn1->OnReadPacket(buf->Data(), buf->Length(), rtc::PacketTime());
ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, kDefaultTimeout);
msg = lport->last_stun_msg();
EXPECT_EQ(STUN_BINDING_ERROR_RESPONSE, msg->type());
}
// This test verifies role conflict signal is received when there is
// conflict in the role. In this case both ports are in controlling and
// |rport| has higher tiebreaker value than |lport|. Since |lport| has lower
// value of tiebreaker, when it receives ping request from |rport| it will
// send role conflict signal.
TEST_F(PortTest, TestIceRoleConflict) {
std::unique_ptr<TestPort> lport(
CreateTestPort(kLocalAddr1, "lfrag", "lpass"));
lport->SetIceRole(cricket::ICEROLE_CONTROLLING);
lport->SetIceTiebreaker(kTiebreaker1);
std::unique_ptr<TestPort> rport(
CreateTestPort(kLocalAddr2, "rfrag", "rpass"));
rport->SetIceRole(cricket::ICEROLE_CONTROLLING);
rport->SetIceTiebreaker(kTiebreaker2);
lport->PrepareAddress();
rport->PrepareAddress();
ASSERT_FALSE(lport->Candidates().empty());
ASSERT_FALSE(rport->Candidates().empty());
Connection* lconn =
lport->CreateConnection(rport->Candidates()[0], Port::ORIGIN_MESSAGE);
Connection* rconn =
rport->CreateConnection(lport->Candidates()[0], Port::ORIGIN_MESSAGE);
rconn->Ping(0);
ASSERT_TRUE_WAIT(rport->last_stun_msg() != NULL, kDefaultTimeout);
IceMessage* msg = rport->last_stun_msg();
EXPECT_EQ(STUN_BINDING_REQUEST, msg->type());
// Send rport binding request to lport.
lconn->OnReadPacket(rport->last_stun_buf()->data<char>(),
rport->last_stun_buf()->size(), rtc::PacketTime());
ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, kDefaultTimeout);
EXPECT_EQ(STUN_BINDING_RESPONSE, lport->last_stun_msg()->type());
EXPECT_TRUE(role_conflict());
}
TEST_F(PortTest, TestTcpNoDelay) {
TCPPort* port1 = CreateTcpPort(kLocalAddr1);
port1->SetIceRole(cricket::ICEROLE_CONTROLLING);
int option_value = -1;
int success = port1->GetOption(rtc::Socket::OPT_NODELAY, &option_value);
ASSERT_EQ(0, success); // GetOption() should complete successfully w/ 0
ASSERT_EQ(1, option_value);
delete port1;
}
TEST_F(PortTest, TestDelayedBindingUdp) {
FakeAsyncPacketSocket* socket = new FakeAsyncPacketSocket();
FakePacketSocketFactory socket_factory;
socket_factory.set_next_udp_socket(socket);
std::unique_ptr<UDPPort> port(CreateUdpPort(kLocalAddr1, &socket_factory));
socket->set_state(AsyncPacketSocket::STATE_BINDING);
port->PrepareAddress();
EXPECT_EQ(0U, port->Candidates().size());
socket->SignalAddressReady(socket, kLocalAddr2);
EXPECT_EQ(1U, port->Candidates().size());
}
TEST_F(PortTest, TestDelayedBindingTcp) {
FakeAsyncPacketSocket* socket = new FakeAsyncPacketSocket();
FakePacketSocketFactory socket_factory;
socket_factory.set_next_server_tcp_socket(socket);
std::unique_ptr<TCPPort> port(CreateTcpPort(kLocalAddr1, &socket_factory));
socket->set_state(AsyncPacketSocket::STATE_BINDING);
port->PrepareAddress();
EXPECT_EQ(0U, port->Candidates().size());
socket->SignalAddressReady(socket, kLocalAddr2);
EXPECT_EQ(1U, port->Candidates().size());
}
void PortTest::TestCrossFamilyPorts(int type) {
FakePacketSocketFactory factory;
std::unique_ptr<Port> ports[4];
SocketAddress addresses[4] = {
SocketAddress("192.168.1.3", 0), SocketAddress("192.168.1.4", 0),
SocketAddress("2001:db8::1", 0), SocketAddress("2001:db8::2", 0)};
for (int i = 0; i < 4; i++) {
FakeAsyncPacketSocket* socket = new FakeAsyncPacketSocket();
if (type == SOCK_DGRAM) {
factory.set_next_udp_socket(socket);
ports[i].reset(CreateUdpPort(addresses[i], &factory));
} else if (type == SOCK_STREAM) {
factory.set_next_server_tcp_socket(socket);
ports[i].reset(CreateTcpPort(addresses[i], &factory));
}
socket->set_state(AsyncPacketSocket::STATE_BINDING);
socket->SignalAddressReady(socket, addresses[i]);
ports[i]->PrepareAddress();
}
// IPv4 Port, connects to IPv6 candidate and then to IPv4 candidate.
if (type == SOCK_STREAM) {
FakeAsyncPacketSocket* clientsocket = new FakeAsyncPacketSocket();
factory.set_next_client_tcp_socket(clientsocket);
}
Connection* c = ports[0]->CreateConnection(GetCandidate(ports[2].get()),
Port::ORIGIN_MESSAGE);
EXPECT_TRUE(NULL == c);
EXPECT_EQ(0U, ports[0]->connections().size());
c = ports[0]->CreateConnection(GetCandidate(ports[1].get()),
Port::ORIGIN_MESSAGE);
EXPECT_FALSE(NULL == c);
EXPECT_EQ(1U, ports[0]->connections().size());
// IPv6 Port, connects to IPv4 candidate and to IPv6 candidate.
if (type == SOCK_STREAM) {
FakeAsyncPacketSocket* clientsocket = new FakeAsyncPacketSocket();
factory.set_next_client_tcp_socket(clientsocket);
}
c = ports[2]->CreateConnection(GetCandidate(ports[0].get()),
Port::ORIGIN_MESSAGE);
EXPECT_TRUE(NULL == c);
EXPECT_EQ(0U, ports[2]->connections().size());
c = ports[2]->CreateConnection(GetCandidate(ports[3].get()),
Port::ORIGIN_MESSAGE);
EXPECT_FALSE(NULL == c);
EXPECT_EQ(1U, ports[2]->connections().size());
}
TEST_F(PortTest, TestSkipCrossFamilyTcp) {
TestCrossFamilyPorts(SOCK_STREAM);
}
TEST_F(PortTest, TestSkipCrossFamilyUdp) {
TestCrossFamilyPorts(SOCK_DGRAM);
}
void PortTest::ExpectPortsCanConnect(bool can_connect, Port* p1, Port* p2) {
Connection* c = p1->CreateConnection(GetCandidate(p2), Port::ORIGIN_MESSAGE);
if (can_connect) {
EXPECT_FALSE(NULL == c);
EXPECT_EQ(1U, p1->connections().size());
} else {
EXPECT_TRUE(NULL == c);
EXPECT_EQ(0U, p1->connections().size());
}
}
TEST_F(PortTest, TestUdpV6CrossTypePorts) {
FakePacketSocketFactory factory;
std::unique_ptr<Port> ports[4];
SocketAddress addresses[4] = {
SocketAddress("2001:db8::1", 0), SocketAddress("fe80::1", 0),
SocketAddress("fe80::2", 0), SocketAddress("::1", 0)};
for (int i = 0; i < 4; i++) {
FakeAsyncPacketSocket* socket = new FakeAsyncPacketSocket();
factory.set_next_udp_socket(socket);
ports[i].reset(CreateUdpPort(addresses[i], &factory));
socket->set_state(AsyncPacketSocket::STATE_BINDING);
socket->SignalAddressReady(socket, addresses[i]);
ports[i]->PrepareAddress();
}
Port* standard = ports[0].get();
Port* link_local1 = ports[1].get();
Port* link_local2 = ports[2].get();
Port* localhost = ports[3].get();
ExpectPortsCanConnect(false, link_local1, standard);
ExpectPortsCanConnect(false, standard, link_local1);
ExpectPortsCanConnect(false, link_local1, localhost);
ExpectPortsCanConnect(false, localhost, link_local1);
ExpectPortsCanConnect(true, link_local1, link_local2);
ExpectPortsCanConnect(true, localhost, standard);
ExpectPortsCanConnect(true, standard, localhost);
}
// This test verifies DSCP value set through SetOption interface can be
// get through DefaultDscpValue.
TEST_F(PortTest, TestDefaultDscpValue) {
int dscp;
std::unique_ptr<UDPPort> udpport(CreateUdpPort(kLocalAddr1));
EXPECT_EQ(0, udpport->SetOption(rtc::Socket::OPT_DSCP, rtc::DSCP_CS6));
EXPECT_EQ(0, udpport->GetOption(rtc::Socket::OPT_DSCP, &dscp));
std::unique_ptr<TCPPort> tcpport(CreateTcpPort(kLocalAddr1));
EXPECT_EQ(0, tcpport->SetOption(rtc::Socket::OPT_DSCP, rtc::DSCP_AF31));
EXPECT_EQ(0, tcpport->GetOption(rtc::Socket::OPT_DSCP, &dscp));
EXPECT_EQ(rtc::DSCP_AF31, dscp);
std::unique_ptr<StunPort> stunport(
CreateStunPort(kLocalAddr1, nat_socket_factory1()));
EXPECT_EQ(0, stunport->SetOption(rtc::Socket::OPT_DSCP, rtc::DSCP_AF41));
EXPECT_EQ(0, stunport->GetOption(rtc::Socket::OPT_DSCP, &dscp));
EXPECT_EQ(rtc::DSCP_AF41, dscp);
std::unique_ptr<TurnPort> turnport1(
CreateTurnPort(kLocalAddr1, nat_socket_factory1(), PROTO_UDP, PROTO_UDP));
// Socket is created in PrepareAddress.
turnport1->PrepareAddress();
EXPECT_EQ(0, turnport1->SetOption(rtc::Socket::OPT_DSCP, rtc::DSCP_CS7));
EXPECT_EQ(0, turnport1->GetOption(rtc::Socket::OPT_DSCP, &dscp));
EXPECT_EQ(rtc::DSCP_CS7, dscp);
// This will verify correct value returned without the socket.
std::unique_ptr<TurnPort> turnport2(
CreateTurnPort(kLocalAddr1, nat_socket_factory1(), PROTO_UDP, PROTO_UDP));
EXPECT_EQ(0, turnport2->SetOption(rtc::Socket::OPT_DSCP, rtc::DSCP_CS6));
EXPECT_EQ(0, turnport2->GetOption(rtc::Socket::OPT_DSCP, &dscp));
EXPECT_EQ(rtc::DSCP_CS6, dscp);
}
// Test sending STUN messages.
TEST_F(PortTest, TestSendStunMessage) {
std::unique_ptr<TestPort> lport(
CreateTestPort(kLocalAddr1, "lfrag", "lpass"));
std::unique_ptr<TestPort> rport(
CreateTestPort(kLocalAddr2, "rfrag", "rpass"));
lport->SetIceRole(cricket::ICEROLE_CONTROLLING);
lport->SetIceTiebreaker(kTiebreaker1);
rport->SetIceRole(cricket::ICEROLE_CONTROLLED);
rport->SetIceTiebreaker(kTiebreaker2);
// Send a fake ping from lport to rport.
lport->PrepareAddress();
rport->PrepareAddress();
ASSERT_FALSE(rport->Candidates().empty());
Connection* lconn =
lport->CreateConnection(rport->Candidates()[0], Port::ORIGIN_MESSAGE);
Connection* rconn =
rport->CreateConnection(lport->Candidates()[0], Port::ORIGIN_MESSAGE);
lconn->Ping(0);
// Check that it's a proper BINDING-REQUEST.
ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, kDefaultTimeout);
IceMessage* msg = lport->last_stun_msg();
EXPECT_EQ(STUN_BINDING_REQUEST, msg->type());
EXPECT_FALSE(msg->IsLegacy());
const StunByteStringAttribute* username_attr =
msg->GetByteString(STUN_ATTR_USERNAME);
ASSERT_TRUE(username_attr != NULL);
const StunUInt32Attribute* priority_attr = msg->GetUInt32(STUN_ATTR_PRIORITY);
ASSERT_TRUE(priority_attr != NULL);
EXPECT_EQ(kDefaultPrflxPriority, priority_attr->value());
EXPECT_EQ("rfrag:lfrag", username_attr->GetString());
EXPECT_TRUE(msg->GetByteString(STUN_ATTR_MESSAGE_INTEGRITY) != NULL);
EXPECT_TRUE(StunMessage::ValidateMessageIntegrity(
lport->last_stun_buf()->data<char>(), lport->last_stun_buf()->size(),
"rpass"));
const StunUInt64Attribute* ice_controlling_attr =
msg->GetUInt64(STUN_ATTR_ICE_CONTROLLING);
ASSERT_TRUE(ice_controlling_attr != NULL);
EXPECT_EQ(lport->IceTiebreaker(), ice_controlling_attr->value());
EXPECT_TRUE(msg->GetByteString(STUN_ATTR_ICE_CONTROLLED) == NULL);
EXPECT_TRUE(msg->GetByteString(STUN_ATTR_USE_CANDIDATE) != NULL);
EXPECT_TRUE(msg->GetUInt32(STUN_ATTR_FINGERPRINT) != NULL);
EXPECT_TRUE(StunMessage::ValidateFingerprint(
lport->last_stun_buf()->data<char>(), lport->last_stun_buf()->size()));
// Request should not include ping count.
ASSERT_TRUE(msg->GetUInt32(STUN_ATTR_RETRANSMIT_COUNT) == NULL);
// Save a copy of the BINDING-REQUEST for use below.
std::unique_ptr<IceMessage> request(CopyStunMessage(msg));
// Receive the BINDING-REQUEST and respond with BINDING-RESPONSE.
rconn->OnReadPacket(lport->last_stun_buf()->data<char>(),
lport->last_stun_buf()->size(), rtc::PacketTime());
msg = rport->last_stun_msg();
ASSERT_TRUE(msg != NULL);
EXPECT_EQ(STUN_BINDING_RESPONSE, msg->type());
// Received a BINDING-RESPONSE.
lconn->OnReadPacket(rport->last_stun_buf()->data<char>(),
rport->last_stun_buf()->size(), rtc::PacketTime());
// Verify the STUN Stats.
EXPECT_EQ(1U, lconn->stats().sent_ping_requests_total);
EXPECT_EQ(1U, lconn->stats().sent_ping_requests_before_first_response);
EXPECT_EQ(1U, lconn->stats().recv_ping_responses);
EXPECT_EQ(1U, rconn->stats().recv_ping_requests);
EXPECT_EQ(1U, rconn->stats().sent_ping_responses);
EXPECT_FALSE(msg->IsLegacy());
const StunAddressAttribute* addr_attr =
msg->GetAddress(STUN_ATTR_XOR_MAPPED_ADDRESS);
ASSERT_TRUE(addr_attr != NULL);
EXPECT_EQ(lport->Candidates()[0].address(), addr_attr->GetAddress());
EXPECT_TRUE(msg->GetByteString(STUN_ATTR_MESSAGE_INTEGRITY) != NULL);
EXPECT_TRUE(StunMessage::ValidateMessageIntegrity(
rport->last_stun_buf()->data<char>(), rport->last_stun_buf()->size(),
"rpass"));
EXPECT_TRUE(msg->GetUInt32(STUN_ATTR_FINGERPRINT) != NULL);
EXPECT_TRUE(StunMessage::ValidateFingerprint(
lport->last_stun_buf()->data<char>(), lport->last_stun_buf()->size()));
// No USERNAME or PRIORITY in ICE responses.
EXPECT_TRUE(msg->GetByteString(STUN_ATTR_USERNAME) == NULL);
EXPECT_TRUE(msg->GetByteString(STUN_ATTR_PRIORITY) == NULL);
EXPECT_TRUE(msg->GetByteString(STUN_ATTR_MAPPED_ADDRESS) == NULL);
EXPECT_TRUE(msg->GetByteString(STUN_ATTR_ICE_CONTROLLING) == NULL);
EXPECT_TRUE(msg->GetByteString(STUN_ATTR_ICE_CONTROLLED) == NULL);
EXPECT_TRUE(msg->GetByteString(STUN_ATTR_USE_CANDIDATE) == NULL);
// Response should not include ping count.
ASSERT_TRUE(msg->GetUInt32(STUN_ATTR_RETRANSMIT_COUNT) == NULL);
// Respond with a BINDING-ERROR-RESPONSE. This wouldn't happen in real life,
// but we can do it here.
rport->SendBindingErrorResponse(
request.get(), lport->Candidates()[0].address(), STUN_ERROR_SERVER_ERROR,
STUN_ERROR_REASON_SERVER_ERROR);
msg = rport->last_stun_msg();
ASSERT_TRUE(msg != NULL);
EXPECT_EQ(STUN_BINDING_ERROR_RESPONSE, msg->type());
EXPECT_FALSE(msg->IsLegacy());
const StunErrorCodeAttribute* error_attr = msg->GetErrorCode();
ASSERT_TRUE(error_attr != NULL);
EXPECT_EQ(STUN_ERROR_SERVER_ERROR, error_attr->code());
EXPECT_EQ(std::string(STUN_ERROR_REASON_SERVER_ERROR), error_attr->reason());
EXPECT_TRUE(msg->GetByteString(STUN_ATTR_MESSAGE_INTEGRITY) != NULL);
EXPECT_TRUE(StunMessage::ValidateMessageIntegrity(
rport->last_stun_buf()->data<char>(), rport->last_stun_buf()->size(),
"rpass"));
EXPECT_TRUE(msg->GetUInt32(STUN_ATTR_FINGERPRINT) != NULL);
EXPECT_TRUE(StunMessage::ValidateFingerprint(
lport->last_stun_buf()->data<char>(), lport->last_stun_buf()->size()));
// No USERNAME with ICE.
EXPECT_TRUE(msg->GetByteString(STUN_ATTR_USERNAME) == NULL);
EXPECT_TRUE(msg->GetByteString(STUN_ATTR_PRIORITY) == NULL);
// Testing STUN binding requests from rport --> lport, having ICE_CONTROLLED
// and (incremented) RETRANSMIT_COUNT attributes.
rport->Reset();
rport->set_send_retransmit_count_attribute(true);
rconn->Ping(0);
rconn->Ping(0);
rconn->Ping(0);
ASSERT_TRUE_WAIT(rport->last_stun_msg() != NULL, kDefaultTimeout);
msg = rport->last_stun_msg();
EXPECT_EQ(STUN_BINDING_REQUEST, msg->type());
const StunUInt64Attribute* ice_controlled_attr =
msg->GetUInt64(STUN_ATTR_ICE_CONTROLLED);
ASSERT_TRUE(ice_controlled_attr != NULL);
EXPECT_EQ(rport->IceTiebreaker(), ice_controlled_attr->value());
EXPECT_TRUE(msg->GetByteString(STUN_ATTR_USE_CANDIDATE) == NULL);
// Request should include ping count.
const StunUInt32Attribute* retransmit_attr =
msg->GetUInt32(STUN_ATTR_RETRANSMIT_COUNT);
ASSERT_TRUE(retransmit_attr != NULL);
EXPECT_EQ(2U, retransmit_attr->value());
// Respond with a BINDING-RESPONSE.
request.reset(CopyStunMessage(msg));
lconn->OnReadPacket(rport->last_stun_buf()->data<char>(),
rport->last_stun_buf()->size(), rtc::PacketTime());
msg = lport->last_stun_msg();
// Receive the BINDING-RESPONSE.
rconn->OnReadPacket(lport->last_stun_buf()->data<char>(),
lport->last_stun_buf()->size(), rtc::PacketTime());
// Verify the Stun ping stats.
EXPECT_EQ(3U, rconn->stats().sent_ping_requests_total);
EXPECT_EQ(3U, rconn->stats().sent_ping_requests_before_first_response);
EXPECT_EQ(1U, rconn->stats().recv_ping_responses);
EXPECT_EQ(1U, lconn->stats().sent_ping_responses);
EXPECT_EQ(1U, lconn->stats().recv_ping_requests);
// Ping after receiver the first response
rconn->Ping(0);
rconn->Ping(0);
EXPECT_EQ(5U, rconn->stats().sent_ping_requests_total);
EXPECT_EQ(3U, rconn->stats().sent_ping_requests_before_first_response);
// Response should include same ping count.
retransmit_attr = msg->GetUInt32(STUN_ATTR_RETRANSMIT_COUNT);
ASSERT_TRUE(retransmit_attr != NULL);
EXPECT_EQ(2U, retransmit_attr->value());
}
TEST_F(PortTest, TestNomination) {
std::unique_ptr<TestPort> lport(
CreateTestPort(kLocalAddr1, "lfrag", "lpass"));
std::unique_ptr<TestPort> rport(
CreateTestPort(kLocalAddr2, "rfrag", "rpass"));
lport->SetIceRole(cricket::ICEROLE_CONTROLLING);
lport->SetIceTiebreaker(kTiebreaker1);
rport->SetIceRole(cricket::ICEROLE_CONTROLLED);
rport->SetIceTiebreaker(kTiebreaker2);
lport->PrepareAddress();
rport->PrepareAddress();
ASSERT_FALSE(lport->Candidates().empty());
ASSERT_FALSE(rport->Candidates().empty());
Connection* lconn =
lport->CreateConnection(rport->Candidates()[0], Port::ORIGIN_MESSAGE);
Connection* rconn =
rport->CreateConnection(lport->Candidates()[0], Port::ORIGIN_MESSAGE);
// |lconn| is controlling, |rconn| is controlled.
uint32_t nomination = 1234;
lconn->set_nomination(nomination);
EXPECT_FALSE(lconn->nominated());
EXPECT_FALSE(rconn->nominated());
EXPECT_EQ(lconn->nominated(), lconn->stats().nominated);
EXPECT_EQ(rconn->nominated(), rconn->stats().nominated);
// Send ping (including the nomination value) from |lconn| to |rconn|. This
// should set the remote nomination of |rconn|.
lconn->Ping(0);
ASSERT_TRUE_WAIT(lport->last_stun_msg(), kDefaultTimeout);
ASSERT_TRUE(lport->last_stun_buf());
rconn->OnReadPacket(lport->last_stun_buf()->data<char>(),
lport->last_stun_buf()->size(), rtc::PacketTime());
EXPECT_EQ(nomination, rconn->remote_nomination());
EXPECT_FALSE(lconn->nominated());
EXPECT_TRUE(rconn->nominated());
EXPECT_EQ(lconn->nominated(), lconn->stats().nominated);
EXPECT_EQ(rconn->nominated(), rconn->stats().nominated);
// This should result in an acknowledgment sent back from |rconn| to |lconn|,
// updating the acknowledged nomination of |lconn|.
ASSERT_TRUE_WAIT(rport->last_stun_msg(), kDefaultTimeout);
ASSERT_TRUE(rport->last_stun_buf());
lconn->OnReadPacket(rport->last_stun_buf()->data<char>(),
rport->last_stun_buf()->size(), rtc::PacketTime());
EXPECT_EQ(nomination, lconn->acked_nomination());
EXPECT_TRUE(lconn->nominated());
EXPECT_TRUE(rconn->nominated());
EXPECT_EQ(lconn->nominated(), lconn->stats().nominated);
EXPECT_EQ(rconn->nominated(), rconn->stats().nominated);
}
TEST_F(PortTest, TestRoundTripTime) {
rtc::ScopedFakeClock clock;
std::unique_ptr<TestPort> lport(
CreateTestPort(kLocalAddr1, "lfrag", "lpass"));
std::unique_ptr<TestPort> rport(
CreateTestPort(kLocalAddr2, "rfrag", "rpass"));
lport->SetIceRole(cricket::ICEROLE_CONTROLLING);
lport->SetIceTiebreaker(kTiebreaker1);
rport->SetIceRole(cricket::ICEROLE_CONTROLLED);
rport->SetIceTiebreaker(kTiebreaker2);
lport->PrepareAddress();
rport->PrepareAddress();
ASSERT_FALSE(lport->Candidates().empty());
ASSERT_FALSE(rport->Candidates().empty());
Connection* lconn =
lport->CreateConnection(rport->Candidates()[0], Port::ORIGIN_MESSAGE);
Connection* rconn =
rport->CreateConnection(lport->Candidates()[0], Port::ORIGIN_MESSAGE);
EXPECT_EQ(0u, lconn->stats().total_round_trip_time_ms);
EXPECT_FALSE(lconn->stats().current_round_trip_time_ms);
SendPingAndReceiveResponse(lconn, lport.get(), rconn, rport.get(), &clock,
10);
EXPECT_EQ(10u, lconn->stats().total_round_trip_time_ms);
ASSERT_TRUE(lconn->stats().current_round_trip_time_ms);
EXPECT_EQ(10u, *lconn->stats().current_round_trip_time_ms);
SendPingAndReceiveResponse(lconn, lport.get(), rconn, rport.get(), &clock,
20);
EXPECT_EQ(30u, lconn->stats().total_round_trip_time_ms);
ASSERT_TRUE(lconn->stats().current_round_trip_time_ms);
EXPECT_EQ(20u, *lconn->stats().current_round_trip_time_ms);
SendPingAndReceiveResponse(lconn, lport.get(), rconn, rport.get(), &clock,
30);
EXPECT_EQ(60u, lconn->stats().total_round_trip_time_ms);
ASSERT_TRUE(lconn->stats().current_round_trip_time_ms);
EXPECT_EQ(30u, *lconn->stats().current_round_trip_time_ms);
}
TEST_F(PortTest, TestUseCandidateAttribute) {
std::unique_ptr<TestPort> lport(
CreateTestPort(kLocalAddr1, "lfrag", "lpass"));
std::unique_ptr<TestPort> rport(
CreateTestPort(kLocalAddr2, "rfrag", "rpass"));
lport->SetIceRole(cricket::ICEROLE_CONTROLLING);
lport->SetIceTiebreaker(kTiebreaker1);
rport->SetIceRole(cricket::ICEROLE_CONTROLLED);
rport->SetIceTiebreaker(kTiebreaker2);
// Send a fake ping from lport to rport.
lport->PrepareAddress();
rport->PrepareAddress();
ASSERT_FALSE(rport->Candidates().empty());
Connection* lconn =
lport->CreateConnection(rport->Candidates()[0], Port::ORIGIN_MESSAGE);
lconn->Ping(0);
ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, kDefaultTimeout);
IceMessage* msg = lport->last_stun_msg();
const StunUInt64Attribute* ice_controlling_attr =
msg->GetUInt64(STUN_ATTR_ICE_CONTROLLING);
ASSERT_TRUE(ice_controlling_attr != NULL);
const StunByteStringAttribute* use_candidate_attr =
msg->GetByteString(STUN_ATTR_USE_CANDIDATE);
ASSERT_TRUE(use_candidate_attr != NULL);
}
// Tests that when the network type changes, the network cost of the port will
// change, the network cost of the local candidates will change. Also tests that
// the remote network costs are updated with the stun binding requests.
TEST_F(PortTest, TestNetworkCostChange) {
rtc::Network* test_network = MakeNetwork(kLocalAddr1);
std::unique_ptr<TestPort> lport(
CreateTestPort(test_network, "lfrag", "lpass"));
std::unique_ptr<TestPort> rport(
CreateTestPort(test_network, "rfrag", "rpass"));
lport->SetIceRole(cricket::ICEROLE_CONTROLLING);
lport->SetIceTiebreaker(kTiebreaker1);
rport->SetIceRole(cricket::ICEROLE_CONTROLLED);
rport->SetIceTiebreaker(kTiebreaker2);
lport->PrepareAddress();
rport->PrepareAddress();
// Default local port cost is rtc::kNetworkCostUnknown.
EXPECT_EQ(rtc::kNetworkCostUnknown, lport->network_cost());
ASSERT_TRUE(!lport->Candidates().empty());
for (const cricket::Candidate& candidate : lport->Candidates()) {
EXPECT_EQ(rtc::kNetworkCostUnknown, candidate.network_cost());
}
// Change the network type to wifi.
test_network->set_type(rtc::ADAPTER_TYPE_WIFI);
EXPECT_EQ(rtc::kNetworkCostLow, lport->network_cost());
for (const cricket::Candidate& candidate : lport->Candidates()) {
EXPECT_EQ(rtc::kNetworkCostLow, candidate.network_cost());
}
// Add a connection and then change the network type.
Connection* lconn =
lport->CreateConnection(rport->Candidates()[0], Port::ORIGIN_MESSAGE);
// Change the network type to cellular.
test_network->set_type(rtc::ADAPTER_TYPE_CELLULAR);
EXPECT_EQ(rtc::kNetworkCostHigh, lport->network_cost());
for (const cricket::Candidate& candidate : lport->Candidates()) {
EXPECT_EQ(rtc::kNetworkCostHigh, candidate.network_cost());
}
test_network->set_type(rtc::ADAPTER_TYPE_WIFI);
Connection* rconn =
rport->CreateConnection(lport->Candidates()[0], Port::ORIGIN_MESSAGE);
test_network->set_type(rtc::ADAPTER_TYPE_CELLULAR);
lconn->Ping(0);
// The rconn's remote candidate cost is rtc::kNetworkCostLow, but the ping
// contains an attribute of network cost of rtc::kNetworkCostHigh. Once the
// message is handled in rconn, The rconn's remote candidate will have cost
// rtc::kNetworkCostHigh;
EXPECT_EQ(rtc::kNetworkCostLow, rconn->remote_candidate().network_cost());
ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, kDefaultTimeout);
IceMessage* msg = lport->last_stun_msg();
EXPECT_EQ(STUN_BINDING_REQUEST, msg->type());
// Pass the binding request to rport.
rconn->OnReadPacket(lport->last_stun_buf()->data<char>(),
lport->last_stun_buf()->size(), rtc::PacketTime());
// Wait until rport sends the response and then check the remote network cost.
ASSERT_TRUE_WAIT(rport->last_stun_msg() != NULL, kDefaultTimeout);
EXPECT_EQ(rtc::kNetworkCostHigh, rconn->remote_candidate().network_cost());
}
TEST_F(PortTest, TestNetworkInfoAttribute) {
rtc::Network* test_network = MakeNetwork(kLocalAddr1);
std::unique_ptr<TestPort> lport(
CreateTestPort(test_network, "lfrag", "lpass"));
std::unique_ptr<TestPort> rport(
CreateTestPort(test_network, "rfrag", "rpass"));
lport->SetIceRole(cricket::ICEROLE_CONTROLLING);
lport->SetIceTiebreaker(kTiebreaker1);
rport->SetIceRole(cricket::ICEROLE_CONTROLLED);
rport->SetIceTiebreaker(kTiebreaker2);
uint16_t lnetwork_id = 9;
lport->Network()->set_id(lnetwork_id);
// Send a fake ping from lport to rport.
lport->PrepareAddress();
rport->PrepareAddress();
Connection* lconn =
lport->CreateConnection(rport->Candidates()[0], Port::ORIGIN_MESSAGE);
lconn->Ping(0);
ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, kDefaultTimeout);
IceMessage* msg = lport->last_stun_msg();
const StunUInt32Attribute* network_info_attr =
msg->GetUInt32(STUN_ATTR_NETWORK_INFO);
ASSERT_TRUE(network_info_attr != NULL);
uint32_t network_info = network_info_attr->value();
EXPECT_EQ(lnetwork_id, network_info >> 16);
// Default network has unknown type and cost kNetworkCostUnknown.
EXPECT_EQ(rtc::kNetworkCostUnknown, network_info & 0xFFFF);
// Set the network type to be cellular so its cost will be kNetworkCostHigh.
// Send a fake ping from rport to lport.
test_network->set_type(rtc::ADAPTER_TYPE_CELLULAR);
uint16_t rnetwork_id = 8;
rport->Network()->set_id(rnetwork_id);
Connection* rconn =
rport->CreateConnection(lport->Candidates()[0], Port::ORIGIN_MESSAGE);
rconn->Ping(0);
ASSERT_TRUE_WAIT(rport->last_stun_msg() != NULL, kDefaultTimeout);
msg = rport->last_stun_msg();
network_info_attr = msg->GetUInt32(STUN_ATTR_NETWORK_INFO);
ASSERT_TRUE(network_info_attr != NULL);
network_info = network_info_attr->value();
EXPECT_EQ(rnetwork_id, network_info >> 16);
EXPECT_EQ(rtc::kNetworkCostHigh, network_info & 0xFFFF);
}
// Test handling STUN messages.
TEST_F(PortTest, TestHandleStunMessage) {
// Our port will act as the "remote" port.
std::unique_ptr<TestPort> port(CreateTestPort(kLocalAddr2, "rfrag", "rpass"));
std::unique_ptr<IceMessage> in_msg, out_msg;
std::unique_ptr<ByteBufferWriter> buf(new ByteBufferWriter());
rtc::SocketAddress addr(kLocalAddr1);
std::string username;
// BINDING-REQUEST from local to remote with valid ICE username,
// MESSAGE-INTEGRITY, and FINGERPRINT.
in_msg.reset(
CreateStunMessageWithUsername(STUN_BINDING_REQUEST, "rfrag:lfrag"));
in_msg->AddMessageIntegrity("rpass");
in_msg->AddFingerprint();
WriteStunMessage(in_msg.get(), buf.get());
EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr, &out_msg,
&username));
EXPECT_TRUE(out_msg.get() != NULL);
EXPECT_EQ("lfrag", username);
// BINDING-RESPONSE without username, with MESSAGE-INTEGRITY and FINGERPRINT.
in_msg.reset(CreateStunMessage(STUN_BINDING_RESPONSE));
in_msg->AddAttribute(absl::make_unique<StunXorAddressAttribute>(
STUN_ATTR_XOR_MAPPED_ADDRESS, kLocalAddr2));
in_msg->AddMessageIntegrity("rpass");
in_msg->AddFingerprint();
WriteStunMessage(in_msg.get(), buf.get());
EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr, &out_msg,
&username));
EXPECT_TRUE(out_msg.get() != NULL);
EXPECT_EQ("", username);
// BINDING-ERROR-RESPONSE without username, with error, M-I, and FINGERPRINT.
in_msg.reset(CreateStunMessage(STUN_BINDING_ERROR_RESPONSE));
in_msg->AddAttribute(absl::make_unique<StunErrorCodeAttribute>(
STUN_ATTR_ERROR_CODE, STUN_ERROR_SERVER_ERROR,
STUN_ERROR_REASON_SERVER_ERROR));
in_msg->AddFingerprint();
WriteStunMessage(in_msg.get(), buf.get());
EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr, &out_msg,
&username));
EXPECT_TRUE(out_msg.get() != NULL);
EXPECT_EQ("", username);
ASSERT_TRUE(out_msg->GetErrorCode() != NULL);
EXPECT_EQ(STUN_ERROR_SERVER_ERROR, out_msg->GetErrorCode()->code());
EXPECT_EQ(std::string(STUN_ERROR_REASON_SERVER_ERROR),
out_msg->GetErrorCode()->reason());
}
// Tests handling of ICE binding requests with missing or incorrect usernames.
TEST_F(PortTest, TestHandleStunMessageBadUsername) {
std::unique_ptr<TestPort> port(CreateTestPort(kLocalAddr2, "rfrag", "rpass"));
std::unique_ptr<IceMessage> in_msg, out_msg;
std::unique_ptr<ByteBufferWriter> buf(new ByteBufferWriter());
rtc::SocketAddress addr(kLocalAddr1);
std::string username;
// BINDING-REQUEST with no username.
in_msg.reset(CreateStunMessage(STUN_BINDING_REQUEST));
in_msg->AddMessageIntegrity("rpass");
in_msg->AddFingerprint();
WriteStunMessage(in_msg.get(), buf.get());
EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr, &out_msg,
&username));
EXPECT_TRUE(out_msg.get() == NULL);
EXPECT_EQ("", username);
EXPECT_EQ(STUN_ERROR_BAD_REQUEST, port->last_stun_error_code());
// BINDING-REQUEST with empty username.
in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST, ""));
in_msg->AddMessageIntegrity("rpass");
in_msg->AddFingerprint();
WriteStunMessage(in_msg.get(), buf.get());
EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr, &out_msg,
&username));
EXPECT_TRUE(out_msg.get() == NULL);
EXPECT_EQ("", username);
EXPECT_EQ(STUN_ERROR_UNAUTHORIZED, port->last_stun_error_code());
// BINDING-REQUEST with too-short username.
in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST, "rfra"));
in_msg->AddMessageIntegrity("rpass");
in_msg->AddFingerprint();
WriteStunMessage(in_msg.get(), buf.get());
EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr, &out_msg,
&username));
EXPECT_TRUE(out_msg.get() == NULL);
EXPECT_EQ("", username);
EXPECT_EQ(STUN_ERROR_UNAUTHORIZED, port->last_stun_error_code());
// BINDING-REQUEST with reversed username.
in_msg.reset(
CreateStunMessageWithUsername(STUN_BINDING_REQUEST, "lfrag:rfrag"));
in_msg->AddMessageIntegrity("rpass");
in_msg->AddFingerprint();
WriteStunMessage(in_msg.get(), buf.get());
EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr, &out_msg,
&username));
EXPECT_TRUE(out_msg.get() == NULL);
EXPECT_EQ("", username);
EXPECT_EQ(STUN_ERROR_UNAUTHORIZED, port->last_stun_error_code());
// BINDING-REQUEST with garbage username.
in_msg.reset(
CreateStunMessageWithUsername(STUN_BINDING_REQUEST, "abcd:efgh"));
in_msg->AddMessageIntegrity("rpass");
in_msg->AddFingerprint();
WriteStunMessage(in_msg.get(), buf.get());
EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr, &out_msg,
&username));
EXPECT_TRUE(out_msg.get() == NULL);
EXPECT_EQ("", username);
EXPECT_EQ(STUN_ERROR_UNAUTHORIZED, port->last_stun_error_code());
}
// Test handling STUN messages with missing or malformed M-I.
TEST_F(PortTest, TestHandleStunMessageBadMessageIntegrity) {
// Our port will act as the "remote" port.
std::unique_ptr<TestPort> port(CreateTestPort(kLocalAddr2, "rfrag", "rpass"));
std::unique_ptr<IceMessage> in_msg, out_msg;
std::unique_ptr<ByteBufferWriter> buf(new ByteBufferWriter());
rtc::SocketAddress addr(kLocalAddr1);
std::string username;
// BINDING-REQUEST from local to remote with valid ICE username and
// FINGERPRINT, but no MESSAGE-INTEGRITY.
in_msg.reset(
CreateStunMessageWithUsername(STUN_BINDING_REQUEST, "rfrag:lfrag"));
in_msg->AddFingerprint();
WriteStunMessage(in_msg.get(), buf.get());
EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr, &out_msg,
&username));
EXPECT_TRUE(out_msg.get() == NULL);
EXPECT_EQ("", username);
EXPECT_EQ(STUN_ERROR_BAD_REQUEST, port->last_stun_error_code());
// BINDING-REQUEST from local to remote with valid ICE username and
// FINGERPRINT, but invalid MESSAGE-INTEGRITY.
in_msg.reset(
CreateStunMessageWithUsername(STUN_BINDING_REQUEST, "rfrag:lfrag"));
in_msg->AddMessageIntegrity("invalid");
in_msg->AddFingerprint();
WriteStunMessage(in_msg.get(), buf.get());
EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr, &out_msg,
&username));
EXPECT_TRUE(out_msg.get() == NULL);
EXPECT_EQ("", username);
EXPECT_EQ(STUN_ERROR_UNAUTHORIZED, port->last_stun_error_code());
// TODO(?): BINDING-RESPONSES and BINDING-ERROR-RESPONSES are checked
// by the Connection, not the Port, since they require the remote username.
// Change this test to pass in data via Connection::OnReadPacket instead.
}
// Test handling STUN messages with missing or malformed FINGERPRINT.
TEST_F(PortTest, TestHandleStunMessageBadFingerprint) {
// Our port will act as the "remote" port.
std::unique_ptr<TestPort> port(CreateTestPort(kLocalAddr2, "rfrag", "rpass"));
std::unique_ptr<IceMessage> in_msg, out_msg;
std::unique_ptr<ByteBufferWriter> buf(new ByteBufferWriter());
rtc::SocketAddress addr(kLocalAddr1);
std::string username;
// BINDING-REQUEST from local to remote with valid ICE username and
// MESSAGE-INTEGRITY, but no FINGERPRINT; GetStunMessage should fail.
in_msg.reset(
CreateStunMessageWithUsername(STUN_BINDING_REQUEST, "rfrag:lfrag"));
in_msg->AddMessageIntegrity("rpass");
WriteStunMessage(in_msg.get(), buf.get());
EXPECT_FALSE(port->GetStunMessage(buf->Data(), buf->Length(), addr, &out_msg,
&username));
EXPECT_EQ(0, port->last_stun_error_code());
// Now, add a fingerprint, but munge the message so it's not valid.
in_msg->AddFingerprint();
in_msg->SetTransactionID("TESTTESTBADD");
WriteStunMessage(in_msg.get(), buf.get());
EXPECT_FALSE(port->GetStunMessage(buf->Data(), buf->Length(), addr, &out_msg,
&username));
EXPECT_EQ(0, port->last_stun_error_code());
// Valid BINDING-RESPONSE, except no FINGERPRINT.
in_msg.reset(CreateStunMessage(STUN_BINDING_RESPONSE));
in_msg->AddAttribute(absl::make_unique<StunXorAddressAttribute>(
STUN_ATTR_XOR_MAPPED_ADDRESS, kLocalAddr2));
in_msg->AddMessageIntegrity("rpass");
WriteStunMessage(in_msg.get(), buf.get());
EXPECT_FALSE(port->GetStunMessage(buf->Data(), buf->Length(), addr, &out_msg,
&username));
EXPECT_EQ(0, port->last_stun_error_code());
// Now, add a fingerprint, but munge the message so it's not valid.
in_msg->AddFingerprint();
in_msg->SetTransactionID("TESTTESTBADD");
WriteStunMessage(in_msg.get(), buf.get());
EXPECT_FALSE(port->GetStunMessage(buf->Data(), buf->Length(), addr, &out_msg,
&username));
EXPECT_EQ(0, port->last_stun_error_code());
// Valid BINDING-ERROR-RESPONSE, except no FINGERPRINT.
in_msg.reset(CreateStunMessage(STUN_BINDING_ERROR_RESPONSE));
in_msg->AddAttribute(absl::make_unique<StunErrorCodeAttribute>(
STUN_ATTR_ERROR_CODE, STUN_ERROR_SERVER_ERROR,
STUN_ERROR_REASON_SERVER_ERROR));
in_msg->AddMessageIntegrity("rpass");
WriteStunMessage(in_msg.get(), buf.get());
EXPECT_FALSE(port->GetStunMessage(buf->Data(), buf->Length(), addr, &out_msg,
&username));
EXPECT_EQ(0, port->last_stun_error_code());
// Now, add a fingerprint, but munge the message so it's not valid.
in_msg->AddFingerprint();
in_msg->SetTransactionID("TESTTESTBADD");
WriteStunMessage(in_msg.get(), buf.get());
EXPECT_FALSE(port->GetStunMessage(buf->Data(), buf->Length(), addr, &out_msg,
&username));
EXPECT_EQ(0, port->last_stun_error_code());
}
// Test handling of STUN binding indication messages . STUN binding
// indications are allowed only to the connection which is in read mode.
TEST_F(PortTest, TestHandleStunBindingIndication) {
std::unique_ptr<TestPort> lport(
CreateTestPort(kLocalAddr2, "lfrag", "lpass"));
lport->SetIceRole(cricket::ICEROLE_CONTROLLING);
lport->SetIceTiebreaker(kTiebreaker1);
// Verifying encoding and decoding STUN indication message.
std::unique_ptr<IceMessage> in_msg, out_msg;
std::unique_ptr<ByteBufferWriter> buf(new ByteBufferWriter());
rtc::SocketAddress addr(kLocalAddr1);
std::string username;
in_msg.reset(CreateStunMessage(STUN_BINDING_INDICATION));
in_msg->AddFingerprint();
WriteStunMessage(in_msg.get(), buf.get());
EXPECT_TRUE(lport->GetStunMessage(buf->Data(), buf->Length(), addr, &out_msg,
&username));
EXPECT_TRUE(out_msg.get() != NULL);
EXPECT_EQ(out_msg->type(), STUN_BINDING_INDICATION);
EXPECT_EQ("", username);
// Verify connection can handle STUN indication and updates
// last_ping_received.
std::unique_ptr<TestPort> rport(
CreateTestPort(kLocalAddr2, "rfrag", "rpass"));
rport->SetIceRole(cricket::ICEROLE_CONTROLLED);
rport->SetIceTiebreaker(kTiebreaker2);
lport->PrepareAddress();
rport->PrepareAddress();
ASSERT_FALSE(lport->Candidates().empty());
ASSERT_FALSE(rport->Candidates().empty());
Connection* lconn =
lport->CreateConnection(rport->Candidates()[0], Port::ORIGIN_MESSAGE);
Connection* rconn =
rport->CreateConnection(lport->Candidates()[0], Port::ORIGIN_MESSAGE);
rconn->Ping(0);
ASSERT_TRUE_WAIT(rport->last_stun_msg() != NULL, kDefaultTimeout);
IceMessage* msg = rport->last_stun_msg();
EXPECT_EQ(STUN_BINDING_REQUEST, msg->type());
// Send rport binding request to lport.
lconn->OnReadPacket(rport->last_stun_buf()->data<char>(),
rport->last_stun_buf()->size(), rtc::PacketTime());
ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, kDefaultTimeout);
EXPECT_EQ(STUN_BINDING_RESPONSE, lport->last_stun_msg()->type());
int64_t last_ping_received1 = lconn->last_ping_received();
// Adding a delay of 100ms.
rtc::Thread::Current()->ProcessMessages(100);
// Pinging lconn using stun indication message.
lconn->OnReadPacket(buf->Data(), buf->Length(), rtc::PacketTime());
int64_t last_ping_received2 = lconn->last_ping_received();
EXPECT_GT(last_ping_received2, last_ping_received1);
}
TEST_F(PortTest, TestComputeCandidatePriority) {
std::unique_ptr<TestPort> port(CreateTestPort(kLocalAddr1, "name", "pass"));
port->set_type_preference(90);
port->set_component(177);
port->AddCandidateAddress(SocketAddress("192.168.1.4", 1234));
port->AddCandidateAddress(SocketAddress("2001:db8::1234", 1234));
port->AddCandidateAddress(SocketAddress("fc12:3456::1234", 1234));
port->AddCandidateAddress(SocketAddress("::ffff:192.168.1.4", 1234));
port->AddCandidateAddress(SocketAddress("::192.168.1.4", 1234));
port->AddCandidateAddress(SocketAddress("2002::1234:5678", 1234));
port->AddCandidateAddress(SocketAddress("2001::1234:5678", 1234));
port->AddCandidateAddress(SocketAddress("fecf::1234:5678", 1234));
port->AddCandidateAddress(SocketAddress("3ffe::1234:5678", 1234));
// These should all be:
// (90 << 24) | ([rfc3484 pref value] << 8) | (256 - 177)
uint32_t expected_priority_v4 = 1509957199U;
uint32_t expected_priority_v6 = 1509959759U;
uint32_t expected_priority_ula = 1509962319U;
uint32_t expected_priority_v4mapped = expected_priority_v4;
uint32_t expected_priority_v4compat = 1509949775U;
uint32_t expected_priority_6to4 = 1509954639U;
uint32_t expected_priority_teredo = 1509952079U;
uint32_t expected_priority_sitelocal = 1509949775U;
uint32_t expected_priority_6bone = 1509949775U;
ASSERT_EQ(expected_priority_v4, port->Candidates()[0].priority());
ASSERT_EQ(expected_priority_v6, port->Candidates()[1].priority());
ASSERT_EQ(expected_priority_ula, port->Candidates()[2].priority());
ASSERT_EQ(expected_priority_v4mapped, port->Candidates()[3].priority());
ASSERT_EQ(expected_priority_v4compat, port->Candidates()[4].priority());
ASSERT_EQ(expected_priority_6to4, port->Candidates()[5].priority());
ASSERT_EQ(expected_priority_teredo, port->Candidates()[6].priority());
ASSERT_EQ(expected_priority_sitelocal, port->Candidates()[7].priority());
ASSERT_EQ(expected_priority_6bone, port->Candidates()[8].priority());
}
// In the case of shared socket, one port may be shared by local and stun.
// Test that candidates with different types will have different foundation.
TEST_F(PortTest, TestFoundation) {
std::unique_ptr<TestPort> testport(
CreateTestPort(kLocalAddr1, "name", "pass"));
testport->AddCandidateAddress(kLocalAddr1, kLocalAddr1, LOCAL_PORT_TYPE,
cricket::ICE_TYPE_PREFERENCE_HOST, false);
testport->AddCandidateAddress(kLocalAddr2, kLocalAddr1, STUN_PORT_TYPE,
cricket::ICE_TYPE_PREFERENCE_SRFLX, true);
EXPECT_NE(testport->Candidates()[0].foundation(),
testport->Candidates()[1].foundation());
}
// This test verifies the foundation of different types of ICE candidates.
TEST_F(PortTest, TestCandidateFoundation) {
std::unique_ptr<rtc::NATServer> nat_server(
CreateNatServer(kNatAddr1, NAT_OPEN_CONE));
std::unique_ptr<UDPPort> udpport1(CreateUdpPort(kLocalAddr1));
udpport1->PrepareAddress();
std::unique_ptr<UDPPort> udpport2(CreateUdpPort(kLocalAddr1));
udpport2->PrepareAddress();
EXPECT_EQ(udpport1->Candidates()[0].foundation(),
udpport2->Candidates()[0].foundation());
std::unique_ptr<TCPPort> tcpport1(CreateTcpPort(kLocalAddr1));
tcpport1->PrepareAddress();
std::unique_ptr<TCPPort> tcpport2(CreateTcpPort(kLocalAddr1));
tcpport2->PrepareAddress();
EXPECT_EQ(tcpport1->Candidates()[0].foundation(),
tcpport2->Candidates()[0].foundation());
std::unique_ptr<Port> stunport(
CreateStunPort(kLocalAddr1, nat_socket_factory1()));
stunport->PrepareAddress();
ASSERT_EQ_WAIT(1U, stunport->Candidates().size(), kDefaultTimeout);
EXPECT_NE(tcpport1->Candidates()[0].foundation(),
stunport->Candidates()[0].foundation());
EXPECT_NE(tcpport2->Candidates()[0].foundation(),
stunport->Candidates()[0].foundation());
EXPECT_NE(udpport1->Candidates()[0].foundation(),
stunport->Candidates()[0].foundation());
EXPECT_NE(udpport2->Candidates()[0].foundation(),
stunport->Candidates()[0].foundation());
// Verify GTURN candidate foundation.
std::unique_ptr<RelayPort> relayport(CreateGturnPort(kLocalAddr1));
relayport->AddServerAddress(
cricket::ProtocolAddress(kRelayUdpIntAddr, cricket::PROTO_UDP));
relayport->PrepareAddress();
ASSERT_EQ_WAIT(1U, relayport->Candidates().size(), kDefaultTimeout);
EXPECT_NE(udpport1->Candidates()[0].foundation(),
relayport->Candidates()[0].foundation());
EXPECT_NE(udpport2->Candidates()[0].foundation(),
relayport->Candidates()[0].foundation());
// Verifying TURN candidate foundation.
std::unique_ptr<Port> turnport1(
CreateTurnPort(kLocalAddr1, nat_socket_factory1(), PROTO_UDP, PROTO_UDP));
turnport1->PrepareAddress();
ASSERT_EQ_WAIT(1U, turnport1->Candidates().size(), kDefaultTimeout);
EXPECT_NE(udpport1->Candidates()[0].foundation(),
turnport1->Candidates()[0].foundation());
EXPECT_NE(udpport2->Candidates()[0].foundation(),
turnport1->Candidates()[0].foundation());
EXPECT_NE(stunport->Candidates()[0].foundation(),
turnport1->Candidates()[0].foundation());
std::unique_ptr<Port> turnport2(
CreateTurnPort(kLocalAddr1, nat_socket_factory1(), PROTO_UDP, PROTO_UDP));
turnport2->PrepareAddress();
ASSERT_EQ_WAIT(1U, turnport2->Candidates().size(), kDefaultTimeout);
EXPECT_EQ(turnport1->Candidates()[0].foundation(),
turnport2->Candidates()[0].foundation());
// Running a second turn server, to get different base IP address.
SocketAddress kTurnUdpIntAddr2("99.99.98.4", STUN_SERVER_PORT);
SocketAddress kTurnUdpExtAddr2("99.99.98.5", 0);
TestTurnServer turn_server2(rtc::Thread::Current(), kTurnUdpIntAddr2,
kTurnUdpExtAddr2);
std::unique_ptr<Port> turnport3(
CreateTurnPort(kLocalAddr1, nat_socket_factory1(), PROTO_UDP, PROTO_UDP,
kTurnUdpIntAddr2));
turnport3->PrepareAddress();
ASSERT_EQ_WAIT(1U, turnport3->Candidates().size(), kDefaultTimeout);
EXPECT_NE(turnport3->Candidates()[0].foundation(),
turnport2->Candidates()[0].foundation());
// Start a TCP turn server, and check that two turn candidates have
// different foundations if their relay protocols are different.
TestTurnServer turn_server3(rtc::Thread::Current(), kTurnTcpIntAddr,
kTurnUdpExtAddr, PROTO_TCP);
std::unique_ptr<Port> turnport4(
CreateTurnPort(kLocalAddr1, nat_socket_factory1(), PROTO_TCP, PROTO_UDP));
turnport4->PrepareAddress();
ASSERT_EQ_WAIT(1U, turnport4->Candidates().size(), kDefaultTimeout);
EXPECT_NE(turnport2->Candidates()[0].foundation(),
turnport4->Candidates()[0].foundation());
}
// This test verifies the related addresses of different types of
// ICE candiates.
TEST_F(PortTest, TestCandidateRelatedAddress) {
std::unique_ptr<rtc::NATServer> nat_server(
CreateNatServer(kNatAddr1, NAT_OPEN_CONE));
std::unique_ptr<UDPPort> udpport(CreateUdpPort(kLocalAddr1));
udpport->PrepareAddress();
// For UDPPort, related address will be empty.
EXPECT_TRUE(udpport->Candidates()[0].related_address().IsNil());
// Testing related address for stun candidates.
// For stun candidate related address must be equal to the base
// socket address.
std::unique_ptr<StunPort> stunport(
CreateStunPort(kLocalAddr1, nat_socket_factory1()));
stunport->PrepareAddress();
ASSERT_EQ_WAIT(1U, stunport->Candidates().size(), kDefaultTimeout);
// Check STUN candidate address.
EXPECT_EQ(stunport->Candidates()[0].address().ipaddr(), kNatAddr1.ipaddr());
// Check STUN candidate related address.
EXPECT_EQ(stunport->Candidates()[0].related_address(),
stunport->GetLocalAddress());
// Verifying the related address for the GTURN candidates.
// NOTE: In case of GTURN related address will be equal to the mapped
// address, but address(mapped) will not be XOR.
std::unique_ptr<RelayPort> relayport(CreateGturnPort(kLocalAddr1));
relayport->AddServerAddress(
cricket::ProtocolAddress(kRelayUdpIntAddr, cricket::PROTO_UDP));
relayport->PrepareAddress();
ASSERT_EQ_WAIT(1U, relayport->Candidates().size(), kDefaultTimeout);
// For Gturn related address is set to "0.0.0.0:0"
EXPECT_EQ(rtc::SocketAddress(), relayport->Candidates()[0].related_address());
// Verifying the related address for TURN candidate.
// For TURN related address must be equal to the mapped address.
std::unique_ptr<Port> turnport(
CreateTurnPort(kLocalAddr1, nat_socket_factory1(), PROTO_UDP, PROTO_UDP));
turnport->PrepareAddress();
ASSERT_EQ_WAIT(1U, turnport->Candidates().size(), kDefaultTimeout);
EXPECT_EQ(kTurnUdpExtAddr.ipaddr(),
turnport->Candidates()[0].address().ipaddr());
EXPECT_EQ(kNatAddr1.ipaddr(),
turnport->Candidates()[0].related_address().ipaddr());
}
// Test priority value overflow handling when preference is set to 3.
TEST_F(PortTest, TestCandidatePriority) {
cricket::Candidate cand1;
cand1.set_priority(3);
cricket::Candidate cand2;
cand2.set_priority(1);
EXPECT_TRUE(cand1.priority() > cand2.priority());
}
// Test the Connection priority is calculated correctly.
TEST_F(PortTest, TestConnectionPriority) {
std::unique_ptr<TestPort> lport(
CreateTestPort(kLocalAddr1, "lfrag", "lpass"));
lport->set_type_preference(cricket::ICE_TYPE_PREFERENCE_HOST);
std::unique_ptr<TestPort> rport(
CreateTestPort(kLocalAddr2, "rfrag", "rpass"));
rport->set_type_preference(cricket::ICE_TYPE_PREFERENCE_RELAY_UDP);
lport->set_component(123);
lport->AddCandidateAddress(SocketAddress("192.168.1.4", 1234));
rport->set_component(23);
rport->AddCandidateAddress(SocketAddress("10.1.1.100", 1234));
EXPECT_EQ(0x7E001E85U, lport->Candidates()[0].priority());
EXPECT_EQ(0x2001EE9U, rport->Candidates()[0].priority());
// RFC 5245
// pair priority = 2^32*MIN(G,D) + 2*MAX(G,D) + (G>D?1:0)
lport->SetIceRole(cricket::ICEROLE_CONTROLLING);
rport->SetIceRole(cricket::ICEROLE_CONTROLLED);
Connection* lconn =
lport->CreateConnection(rport->Candidates()[0], Port::ORIGIN_MESSAGE);
#if defined(WEBRTC_WIN)
EXPECT_EQ(0x2001EE9FC003D0BU, lconn->priority());
#else
EXPECT_EQ(0x2001EE9FC003D0BLLU, lconn->priority());
#endif
lport->SetIceRole(cricket::ICEROLE_CONTROLLED);
rport->SetIceRole(cricket::ICEROLE_CONTROLLING);
Connection* rconn =
rport->CreateConnection(lport->Candidates()[0], Port::ORIGIN_MESSAGE);
#if defined(WEBRTC_WIN)
EXPECT_EQ(0x2001EE9FC003D0AU, rconn->priority());
#else
EXPECT_EQ(0x2001EE9FC003D0ALLU, rconn->priority());
#endif
}
// Note that UpdateState takes into account the estimated RTT, and the
// correctness of using |kMaxExpectedSimulatedRtt| as an upper bound of RTT in
// the following tests depends on the link rate and the delay distriubtion
// configured in VirtualSocketServer::AddPacketToNetwork. The tests below use
// the default setup where the RTT is deterministically one, which generates an
// estimate given by |MINIMUM_RTT| = 100.
TEST_F(PortTest, TestWritableState) {
rtc::ScopedFakeClock clock;
UDPPort* port1 = CreateUdpPort(kLocalAddr1);
port1->SetIceRole(cricket::ICEROLE_CONTROLLING);
UDPPort* port2 = CreateUdpPort(kLocalAddr2);
port2->SetIceRole(cricket::ICEROLE_CONTROLLED);
// Set up channels.
TestChannel ch1(port1);
TestChannel ch2(port2);
// Acquire addresses.
ch1.Start();
ch2.Start();
ASSERT_EQ_SIMULATED_WAIT(1, ch1.complete_count(), kDefaultTimeout, clock);
ASSERT_EQ_SIMULATED_WAIT(1, ch2.complete_count(), kDefaultTimeout, clock);
// Send a ping from src to dst.
ch1.CreateConnection(GetCandidate(port2));
ASSERT_TRUE(ch1.conn() != NULL);
EXPECT_EQ(Connection::STATE_WRITE_INIT, ch1.conn()->write_state());
// for TCP connect
EXPECT_TRUE_SIMULATED_WAIT(ch1.conn()->connected(), kDefaultTimeout, clock);
ch1.Ping();
SIMULATED_WAIT(!ch2.remote_address().IsNil(), kShortTimeout, clock);
// Data should be sendable before the connection is accepted.
char data[] = "abcd";
int data_size = arraysize(data);
rtc::PacketOptions options;
EXPECT_EQ(data_size, ch1.conn()->Send(data, data_size, options));
// Accept the connection to return the binding response, transition to
// writable, and allow data to be sent.
ch2.AcceptConnection(GetCandidate(port1));
EXPECT_EQ_SIMULATED_WAIT(Connection::STATE_WRITABLE,
ch1.conn()->write_state(), kDefaultTimeout, clock);
EXPECT_EQ(data_size, ch1.conn()->Send(data, data_size, options));
// Ask the connection to update state as if enough time has passed to lose
// full writability and 5 pings went unresponded to. We'll accomplish the
// latter by sending pings but not pumping messages.
for (uint32_t i = 1; i <= CONNECTION_WRITE_CONNECT_FAILURES; ++i) {
ch1.Ping(i);
}
int unreliable_timeout_delay =
CONNECTION_WRITE_CONNECT_TIMEOUT + kMaxExpectedSimulatedRtt;
ch1.conn()->UpdateState(unreliable_timeout_delay);
EXPECT_EQ(Connection::STATE_WRITE_UNRELIABLE, ch1.conn()->write_state());
// Data should be able to be sent in this state.
EXPECT_EQ(data_size, ch1.conn()->Send(data, data_size, options));
// And now allow the other side to process the pings and send binding
// responses.
EXPECT_EQ_SIMULATED_WAIT(Connection::STATE_WRITABLE,
ch1.conn()->write_state(), kDefaultTimeout, clock);
// Wait long enough for a full timeout (past however long we've already
// waited).
for (uint32_t i = 1; i <= CONNECTION_WRITE_CONNECT_FAILURES; ++i) {
ch1.Ping(unreliable_timeout_delay + i);
}
ch1.conn()->UpdateState(unreliable_timeout_delay + CONNECTION_WRITE_TIMEOUT +
kMaxExpectedSimulatedRtt);
EXPECT_EQ(Connection::STATE_WRITE_TIMEOUT, ch1.conn()->write_state());
// Even if the connection has timed out, the Connection shouldn't block
// the sending of data.
EXPECT_EQ(data_size, ch1.conn()->Send(data, data_size, options));
ch1.Stop();
ch2.Stop();
}
// Test writability states using the configured threshold value to replace
// the default value given by |CONNECTION_WRITE_CONNECT_TIMEOUT| and
// |CONNECTION_WRITE_CONNECT_FAILURES|.
TEST_F(PortTest, TestWritableStateWithConfiguredThreshold) {
rtc::ScopedFakeClock clock;
UDPPort* port1 = CreateUdpPort(kLocalAddr1);
port1->SetIceRole(cricket::ICEROLE_CONTROLLING);
UDPPort* port2 = CreateUdpPort(kLocalAddr2);
port2->SetIceRole(cricket::ICEROLE_CONTROLLED);
// Set up channels.
TestChannel ch1(port1);
TestChannel ch2(port2);
// Acquire addresses.
ch1.Start();
ch2.Start();
ASSERT_EQ_SIMULATED_WAIT(1, ch1.complete_count(), kDefaultTimeout, clock);
ASSERT_EQ_SIMULATED_WAIT(1, ch2.complete_count(), kDefaultTimeout, clock);
// Send a ping from src to dst.
ch1.CreateConnection(GetCandidate(port2));
ASSERT_TRUE(ch1.conn() != NULL);
ch1.Ping();
SIMULATED_WAIT(!ch2.remote_address().IsNil(), kShortTimeout, clock);
// Accept the connection to return the binding response, transition to
// writable, and allow data to be sent.
ch2.AcceptConnection(GetCandidate(port1));
EXPECT_EQ_SIMULATED_WAIT(Connection::STATE_WRITABLE,
ch1.conn()->write_state(), kDefaultTimeout, clock);
ch1.conn()->set_unwritable_timeout(1000);
ch1.conn()->set_unwritable_min_checks(3);
// Send two checks.
ch1.Ping(1);
ch1.Ping(2);
// We have not reached the timeout nor have we sent the minimum number of
// checks to change the state to Unreliable.
ch1.conn()->UpdateState(999);
EXPECT_EQ(Connection::STATE_WRITABLE, ch1.conn()->write_state());
// We have not sent the minimum number of checks without responses.
ch1.conn()->UpdateState(1000 + kMaxExpectedSimulatedRtt);
EXPECT_EQ(Connection::STATE_WRITABLE, ch1.conn()->write_state());
// Last ping after which the candidate pair should become Unreliable after
// timeout.
ch1.Ping(3);
// We have not reached the timeout.
ch1.conn()->UpdateState(999);
EXPECT_EQ(Connection::STATE_WRITABLE, ch1.conn()->write_state());
// We should be in the state Unreliable now.
ch1.conn()->UpdateState(1000 + kMaxExpectedSimulatedRtt);
EXPECT_EQ(Connection::STATE_WRITE_UNRELIABLE, ch1.conn()->write_state());
ch1.Stop();
ch2.Stop();
}
TEST_F(PortTest, TestTimeoutForNeverWritable) {
UDPPort* port1 = CreateUdpPort(kLocalAddr1);
port1->SetIceRole(cricket::ICEROLE_CONTROLLING);
UDPPort* port2 = CreateUdpPort(kLocalAddr2);
port2->SetIceRole(cricket::ICEROLE_CONTROLLED);
// Set up channels.
TestChannel ch1(port1);
TestChannel ch2(port2);
// Acquire addresses.
ch1.Start();
ch2.Start();
ch1.CreateConnection(GetCandidate(port2));
ASSERT_TRUE(ch1.conn() != NULL);
EXPECT_EQ(Connection::STATE_WRITE_INIT, ch1.conn()->write_state());
// Attempt to go directly to write timeout.
for (uint32_t i = 1; i <= CONNECTION_WRITE_CONNECT_FAILURES; ++i) {
ch1.Ping(i);
}
ch1.conn()->UpdateState(CONNECTION_WRITE_TIMEOUT + kMaxExpectedSimulatedRtt);
EXPECT_EQ(Connection::STATE_WRITE_TIMEOUT, ch1.conn()->write_state());
}
// This test verifies the connection setup between ICEMODE_FULL
// and ICEMODE_LITE.
// In this test |ch1| behaves like FULL mode client and we have created
// port which responds to the ping message just like LITE client.
TEST_F(PortTest, TestIceLiteConnectivity) {
TestPort* ice_full_port =
CreateTestPort(kLocalAddr1, "lfrag", "lpass",
cricket::ICEROLE_CONTROLLING, kTiebreaker1);
std::unique_ptr<TestPort> ice_lite_port(
CreateTestPort(kLocalAddr2, "rfrag", "rpass", cricket::ICEROLE_CONTROLLED,
kTiebreaker2));
// Setup TestChannel. This behaves like FULL mode client.
TestChannel ch1(ice_full_port);
ch1.SetIceMode(ICEMODE_FULL);
// Start gathering candidates.
ch1.Start();
ice_lite_port->PrepareAddress();
ASSERT_EQ_WAIT(1, ch1.complete_count(), kDefaultTimeout);
ASSERT_FALSE(ice_lite_port->Candidates().empty());
ch1.CreateConnection(GetCandidate(ice_lite_port.get()));
ASSERT_TRUE(ch1.conn() != NULL);
EXPECT_EQ(Connection::STATE_WRITE_INIT, ch1.conn()->write_state());
// Send ping from full mode client.
// This ping must not have USE_CANDIDATE_ATTR.
ch1.Ping();
// Verify stun ping is without USE_CANDIDATE_ATTR. Getting message directly
// from port.
ASSERT_TRUE_WAIT(ice_full_port->last_stun_msg() != NULL, kDefaultTimeout);
IceMessage* msg = ice_full_port->last_stun_msg();
EXPECT_TRUE(msg->GetByteString(STUN_ATTR_USE_CANDIDATE) == NULL);
// Respond with a BINDING-RESPONSE from litemode client.
// NOTE: Ideally we should't create connection at this stage from lite
// port, as it should be done only after receiving ping with USE_CANDIDATE.
// But we need a connection to send a response message.
ice_lite_port->CreateConnection(ice_full_port->Candidates()[0],
cricket::Port::ORIGIN_MESSAGE);
std::unique_ptr<IceMessage> request(CopyStunMessage(msg));
ice_lite_port->SendBindingResponse(request.get(),
ice_full_port->Candidates()[0].address());
// Feeding the respone message from litemode to the full mode connection.
ch1.conn()->OnReadPacket(ice_lite_port->last_stun_buf()->data<char>(),
ice_lite_port->last_stun_buf()->size(),
rtc::PacketTime());
// Verifying full mode connection becomes writable from the response.
EXPECT_EQ_WAIT(Connection::STATE_WRITABLE, ch1.conn()->write_state(),
kDefaultTimeout);
EXPECT_TRUE_WAIT(ch1.nominated(), kDefaultTimeout);
// Clear existing stun messsages. Otherwise we will process old stun
// message right after we send ping.
ice_full_port->Reset();
// Send ping. This must have USE_CANDIDATE_ATTR.
ch1.Ping();
ASSERT_TRUE_WAIT(ice_full_port->last_stun_msg() != NULL, kDefaultTimeout);
msg = ice_full_port->last_stun_msg();
EXPECT_TRUE(msg->GetByteString(STUN_ATTR_USE_CANDIDATE) != NULL);
ch1.Stop();
}
// This test case verifies that both the controlling port and the controlled
// port will time out after connectivity is lost, if they are not marked as
// "keep alive until pruned."
TEST_F(PortTest, TestPortTimeoutIfNotKeptAlive) {
rtc::ScopedFakeClock clock;
int timeout_delay = 100;
UDPPort* port1 = CreateUdpPort(kLocalAddr1);
ConnectToSignalDestroyed(port1);
port1->set_timeout_delay(timeout_delay); // milliseconds
port1->SetIceRole(cricket::ICEROLE_CONTROLLING);
port1->SetIceTiebreaker(kTiebreaker1);
UDPPort* port2 = CreateUdpPort(kLocalAddr2);
ConnectToSignalDestroyed(port2);
port2->set_timeout_delay(timeout_delay); // milliseconds
port2->SetIceRole(cricket::ICEROLE_CONTROLLED);
port2->SetIceTiebreaker(kTiebreaker2);
// Set up channels and ensure both ports will be deleted.
TestChannel ch1(port1);
TestChannel ch2(port2);
// Simulate a connection that succeeds, and then is destroyed.
StartConnectAndStopChannels(&ch1, &ch2);
// After the connection is destroyed, the port will be destroyed because
// none of them is marked as "keep alive until pruned.
EXPECT_EQ_SIMULATED_WAIT(2, ports_destroyed(), 110, clock);
}
// Test that if after all connection are destroyed, new connections are created
// and destroyed again, ports won't be destroyed until a timeout period passes
// after the last set of connections are all destroyed.
TEST_F(PortTest, TestPortTimeoutAfterNewConnectionCreatedAndDestroyed) {
rtc::ScopedFakeClock clock;
int timeout_delay = 100;
UDPPort* port1 = CreateUdpPort(kLocalAddr1);
ConnectToSignalDestroyed(port1);
port1->set_timeout_delay(timeout_delay); // milliseconds
port1->SetIceRole(cricket::ICEROLE_CONTROLLING);
port1->SetIceTiebreaker(kTiebreaker1);
UDPPort* port2 = CreateUdpPort(kLocalAddr2);
ConnectToSignalDestroyed(port2);
port2->set_timeout_delay(timeout_delay); // milliseconds
port2->SetIceRole(cricket::ICEROLE_CONTROLLED);
port2->SetIceTiebreaker(kTiebreaker2);
// Set up channels and ensure both ports will be deleted.
TestChannel ch1(port1);
TestChannel ch2(port2);
// Simulate a connection that succeeds, and then is destroyed.
StartConnectAndStopChannels(&ch1, &ch2);
SIMULATED_WAIT(ports_destroyed() > 0, 80, clock);
EXPECT_EQ(0, ports_destroyed());
// Start the second set of connection and destroy them.
ch1.CreateConnection(GetCandidate(ch2.port()));
ch2.CreateConnection(GetCandidate(ch1.port()));
ch1.Stop();
ch2.Stop();
SIMULATED_WAIT(ports_destroyed() > 0, 80, clock);
EXPECT_EQ(0, ports_destroyed());
// The ports on both sides should be destroyed after timeout.
EXPECT_TRUE_SIMULATED_WAIT(ports_destroyed() == 2, 30, clock);
}
// This test case verifies that neither the controlling port nor the controlled
// port will time out after connectivity is lost if they are marked as "keep
// alive until pruned". They will time out after they are pruned.
TEST_F(PortTest, TestPortNotTimeoutUntilPruned) {
rtc::ScopedFakeClock clock;
int timeout_delay = 100;
UDPPort* port1 = CreateUdpPort(kLocalAddr1);
ConnectToSignalDestroyed(port1);
port1->set_timeout_delay(timeout_delay); // milliseconds
port1->SetIceRole(cricket::ICEROLE_CONTROLLING);
port1->SetIceTiebreaker(kTiebreaker1);
UDPPort* port2 = CreateUdpPort(kLocalAddr2);
ConnectToSignalDestroyed(port2);
port2->set_timeout_delay(timeout_delay); // milliseconds
port2->SetIceRole(cricket::ICEROLE_CONTROLLED);
port2->SetIceTiebreaker(kTiebreaker2);
// The connection must not be destroyed before a connection is attempted.
EXPECT_EQ(0, ports_destroyed());
port1->set_component(cricket::ICE_CANDIDATE_COMPONENT_DEFAULT);
port2->set_component(cricket::ICE_CANDIDATE_COMPONENT_DEFAULT);
// Set up channels and keep the port alive.
TestChannel ch1(port1);
TestChannel ch2(port2);
// Simulate a connection that succeeds, and then is destroyed. But ports
// are kept alive. Ports won't be destroyed.
StartConnectAndStopChannels(&ch1, &ch2);
port1->KeepAliveUntilPruned();
port2->KeepAliveUntilPruned();
SIMULATED_WAIT(ports_destroyed() > 0, 150, clock);
EXPECT_EQ(0, ports_destroyed());
// If they are pruned now, they will be destroyed right away.
port1->Prune();
port2->Prune();
// The ports on both sides should be destroyed after timeout.
EXPECT_TRUE_SIMULATED_WAIT(ports_destroyed() == 2, 1, clock);
}
TEST_F(PortTest, TestSupportsProtocol) {
std::unique_ptr<Port> udp_port(CreateUdpPort(kLocalAddr1));
EXPECT_TRUE(udp_port->SupportsProtocol(UDP_PROTOCOL_NAME));
EXPECT_FALSE(udp_port->SupportsProtocol(TCP_PROTOCOL_NAME));
std::unique_ptr<Port> stun_port(
CreateStunPort(kLocalAddr1, nat_socket_factory1()));
EXPECT_TRUE(stun_port->SupportsProtocol(UDP_PROTOCOL_NAME));
EXPECT_FALSE(stun_port->SupportsProtocol(TCP_PROTOCOL_NAME));
std::unique_ptr<Port> tcp_port(CreateTcpPort(kLocalAddr1));
EXPECT_TRUE(tcp_port->SupportsProtocol(TCP_PROTOCOL_NAME));
EXPECT_TRUE(tcp_port->SupportsProtocol(SSLTCP_PROTOCOL_NAME));
EXPECT_FALSE(tcp_port->SupportsProtocol(UDP_PROTOCOL_NAME));
std::unique_ptr<Port> turn_port(
CreateTurnPort(kLocalAddr1, nat_socket_factory1(), PROTO_UDP, PROTO_UDP));
EXPECT_TRUE(turn_port->SupportsProtocol(UDP_PROTOCOL_NAME));
EXPECT_FALSE(turn_port->SupportsProtocol(TCP_PROTOCOL_NAME));
}
// Test that SetIceParameters updates the component, ufrag and password
// on both the port itself and its candidates.
TEST_F(PortTest, TestSetIceParameters) {
std::unique_ptr<TestPort> port(
CreateTestPort(kLocalAddr1, "ufrag1", "password1"));
port->PrepareAddress();
EXPECT_EQ(1UL, port->Candidates().size());
port->SetIceParameters(1, "ufrag2", "password2");
EXPECT_EQ(1, port->component());
EXPECT_EQ("ufrag2", port->username_fragment());
EXPECT_EQ("password2", port->password());
const Candidate& candidate = port->Candidates()[0];
EXPECT_EQ(1, candidate.component());
EXPECT_EQ("ufrag2", candidate.username());
EXPECT_EQ("password2", candidate.password());
}
TEST_F(PortTest, TestAddConnectionWithSameAddress) {
std::unique_ptr<TestPort> port(
CreateTestPort(kLocalAddr1, "ufrag1", "password1"));
port->PrepareAddress();
EXPECT_EQ(1u, port->Candidates().size());
rtc::SocketAddress address("1.1.1.1", 5000);
cricket::Candidate candidate(1, "udp", address, 0, "", "", "relay", 0, "");
cricket::Connection* conn1 =
port->CreateConnection(candidate, Port::ORIGIN_MESSAGE);
cricket::Connection* conn_in_use = port->GetConnection(address);
EXPECT_EQ(conn1, conn_in_use);
EXPECT_EQ(0u, conn_in_use->remote_candidate().generation());
// Creating with a candidate with the same address again will get us a
// different connection with the new candidate.
candidate.set_generation(2);
cricket::Connection* conn2 =
port->CreateConnection(candidate, Port::ORIGIN_MESSAGE);
EXPECT_NE(conn1, conn2);
conn_in_use = port->GetConnection(address);
EXPECT_EQ(conn2, conn_in_use);
EXPECT_EQ(2u, conn_in_use->remote_candidate().generation());
// Make sure the new connection was not deleted.
rtc::Thread::Current()->ProcessMessages(300);
EXPECT_TRUE(port->GetConnection(address) != nullptr);
}
} // namespace cricket