blob: d20aea822a6a5becc52431e605fc037e73f23330 [file] [log] [blame]
kwiberg7885d3f2017-04-25 12:35:07 -07001/*
2 * Copyright 2017 The WebRTC Project Authors. All rights reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
Henrik Kjellanderec78f1c2017-06-29 07:52:50 +020011// Minimum and maximum
12// ===================
13//
14// rtc::SafeMin(x, y)
15// rtc::SafeMax(x, y)
16//
17// (These are both constexpr.)
18//
19// Accept two arguments of either any two integral or any two floating-point
20// types, and return the smaller and larger value, respectively, with no
21// truncation or wrap-around. If only one of the input types is statically
22// guaranteed to be able to represent the result, the return type is that type;
23// if either one would do, the result type is the smaller type. (One of these
24// two cases always applies.)
25//
26// * The case with one floating-point and one integral type is not allowed,
27// because the floating-point type will have greater range, but may not
28// have sufficient precision to represent the integer value exactly.)
29//
30// Clamp (a.k.a. constrain to a given interval)
31// ============================================
32//
33// rtc::SafeClamp(x, a, b)
34//
35// Accepts three arguments of any mix of integral types or any mix of
36// floating-point types, and returns the value in the closed interval [a, b]
37// that is closest to x (that is, if x < a it returns a; if x > b it returns b;
38// and if a <= x <= b it returns x). As for SafeMin() and SafeMax(), there is
39// no truncation or wrap-around. The result type
40//
41// 1. is statically guaranteed to be able to represent the result;
42//
43// 2. is no larger than the largest of the three argument types; and
44//
45// 3. has the same signedness as the type of the third argument, if this is
46// possible without violating the First or Second Law.
47//
48// There is always at least one type that meets criteria 1 and 2. If more than
49// one type meets these criteria equally well, the result type is one of the
50// types that is smallest. Note that unlike SafeMin() and SafeMax(),
51// SafeClamp() will sometimes pick a return type that isn't the type of any of
52// its arguments.
53//
54// * In this context, a type A is smaller than a type B if it has a smaller
55// range; that is, if A::max() - A::min() < B::max() - B::min(). For
56// example, int8_t < int16_t == uint16_t < int32_t, and all integral types
57// are smaller than all floating-point types.)
58//
59// * As for SafeMin and SafeMax, mixing integer and floating-point arguments
60// is not allowed, because floating-point types have greater range than
61// integer types, but do not have sufficient precision to represent the
62// values of most integer types exactly.
63//
64// Requesting a specific return type
65// =================================
66//
67// All three functions allow callers to explicitly specify the return type as a
68// template parameter, overriding the default return type. E.g.
69//
70// rtc::SafeMin<int>(x, y) // returns an int
71//
72// If the requested type is statically guaranteed to be able to represent the
73// result, then everything's fine, and the return type is as requested. But if
74// the requested type is too small, a static_assert is triggered.
75
Mirko Bonadei92ea95e2017-09-15 06:47:31 +020076#ifndef RTC_BASE_SAFE_MINMAX_H_
77#define RTC_BASE_SAFE_MINMAX_H_
kwiberg7885d3f2017-04-25 12:35:07 -070078
Henrik Kjellanderec78f1c2017-06-29 07:52:50 +020079#include <limits>
80#include <type_traits>
81
Mirko Bonadei92ea95e2017-09-15 06:47:31 +020082#include "rtc_base/checks.h"
83#include "rtc_base/safe_compare.h"
84#include "rtc_base/type_traits.h"
Henrik Kjellanderec78f1c2017-06-29 07:52:50 +020085
86namespace rtc {
87
88namespace safe_minmax_impl {
89
90// Make the range of a type available via something other than a constexpr
91// function, to work around MSVC limitations. See
92// https://blogs.msdn.microsoft.com/vcblog/2015/12/02/partial-support-for-expression-sfinae-in-vs-2015-update-1/
93template <typename T>
94struct Limits {
95 static constexpr T lowest = std::numeric_limits<T>::lowest();
96 static constexpr T max = std::numeric_limits<T>::max();
97};
98
99template <typename T, bool is_enum = std::is_enum<T>::value>
100struct UnderlyingType;
101
102template <typename T>
103struct UnderlyingType<T, false> {
104 using type = T;
105};
106
107template <typename T>
108struct UnderlyingType<T, true> {
109 using type = typename std::underlying_type<T>::type;
110};
111
112// Given two types T1 and T2, find types that can hold the smallest (in
113// ::min_t) and the largest (in ::max_t) of the two values.
114template <typename T1,
115 typename T2,
116 bool int1 = IsIntlike<T1>::value,
117 bool int2 = IsIntlike<T2>::value>
118struct MType {
119 static_assert(int1 == int2,
120 "You may not mix integral and floating-point arguments");
121};
122
123// Specialization for when neither type is integral (and therefore presumably
124// floating-point).
125template <typename T1, typename T2>
126struct MType<T1, T2, false, false> {
127 using min_t = typename std::common_type<T1, T2>::type;
128 static_assert(std::is_same<min_t, T1>::value ||
129 std::is_same<min_t, T2>::value,
130 "");
131
132 using max_t = typename std::common_type<T1, T2>::type;
133 static_assert(std::is_same<max_t, T1>::value ||
134 std::is_same<max_t, T2>::value,
135 "");
136};
137
138// Specialization for when both types are integral.
139template <typename T1, typename T2>
140struct MType<T1, T2, true, true> {
141 // The type with the lowest minimum value. In case of a tie, the type with
142 // the lowest maximum value. In case that too is a tie, the types have the
143 // same range, and we arbitrarily pick T1.
144 using min_t = typename std::conditional<
145 SafeLt(Limits<T1>::lowest, Limits<T2>::lowest),
146 T1,
147 typename std::conditional<
148 SafeGt(Limits<T1>::lowest, Limits<T2>::lowest),
149 T2,
150 typename std::conditional<SafeLe(Limits<T1>::max, Limits<T2>::max),
151 T1,
152 T2>::type>::type>::type;
153 static_assert(std::is_same<min_t, T1>::value ||
154 std::is_same<min_t, T2>::value,
155 "");
156
157 // The type with the highest maximum value. In case of a tie, the types have
158 // the same range (because in C++, integer types with the same maximum also
159 // have the same minimum).
160 static_assert(SafeNe(Limits<T1>::max, Limits<T2>::max) ||
161 SafeEq(Limits<T1>::lowest, Limits<T2>::lowest),
162 "integer types with the same max should have the same min");
163 using max_t = typename std::
164 conditional<SafeGe(Limits<T1>::max, Limits<T2>::max), T1, T2>::type;
165 static_assert(std::is_same<max_t, T1>::value ||
166 std::is_same<max_t, T2>::value,
167 "");
168};
169
170// A dummy type that we pass around at compile time but never actually use.
171// Declared but not defined.
172struct DefaultType;
173
174// ::type is A, except we fall back to B if A is DefaultType. We static_assert
175// that the chosen type can hold all values that B can hold.
176template <typename A, typename B>
177struct TypeOr {
178 using type = typename std::
179 conditional<std::is_same<A, DefaultType>::value, B, A>::type;
180 static_assert(SafeLe(Limits<type>::lowest, Limits<B>::lowest) &&
181 SafeGe(Limits<type>::max, Limits<B>::max),
182 "The specified type isn't large enough");
183 static_assert(IsIntlike<type>::value == IsIntlike<B>::value &&
184 std::is_floating_point<type>::value ==
185 std::is_floating_point<type>::value,
186 "float<->int conversions not allowed");
187};
188
189} // namespace safe_minmax_impl
190
191template <
192 typename R = safe_minmax_impl::DefaultType,
193 typename T1 = safe_minmax_impl::DefaultType,
194 typename T2 = safe_minmax_impl::DefaultType,
195 typename R2 = typename safe_minmax_impl::TypeOr<
196 R,
197 typename safe_minmax_impl::MType<
198 typename safe_minmax_impl::UnderlyingType<T1>::type,
199 typename safe_minmax_impl::UnderlyingType<T2>::type>::min_t>::type>
200constexpr R2 SafeMin(T1 a, T2 b) {
201 static_assert(IsIntlike<T1>::value || std::is_floating_point<T1>::value,
202 "The first argument must be integral or floating-point");
203 static_assert(IsIntlike<T2>::value || std::is_floating_point<T2>::value,
204 "The second argument must be integral or floating-point");
205 return SafeLt(a, b) ? static_cast<R2>(a) : static_cast<R2>(b);
206}
207
208template <
209 typename R = safe_minmax_impl::DefaultType,
210 typename T1 = safe_minmax_impl::DefaultType,
211 typename T2 = safe_minmax_impl::DefaultType,
212 typename R2 = typename safe_minmax_impl::TypeOr<
213 R,
214 typename safe_minmax_impl::MType<
215 typename safe_minmax_impl::UnderlyingType<T1>::type,
216 typename safe_minmax_impl::UnderlyingType<T2>::type>::max_t>::type>
217constexpr R2 SafeMax(T1 a, T2 b) {
218 static_assert(IsIntlike<T1>::value || std::is_floating_point<T1>::value,
219 "The first argument must be integral or floating-point");
220 static_assert(IsIntlike<T2>::value || std::is_floating_point<T2>::value,
221 "The second argument must be integral or floating-point");
222 return SafeGt(a, b) ? static_cast<R2>(a) : static_cast<R2>(b);
223}
224
225namespace safe_minmax_impl {
226
227// Given three types T, L, and H, let ::type be a suitable return value for
228// SafeClamp(T, L, H). See the docs at the top of this file for details.
229template <typename T,
230 typename L,
231 typename H,
232 bool int1 = IsIntlike<T>::value,
233 bool int2 = IsIntlike<L>::value,
234 bool int3 = IsIntlike<H>::value>
235struct ClampType {
236 static_assert(int1 == int2 && int1 == int3,
237 "You may not mix integral and floating-point arguments");
238};
239
240// Specialization for when all three types are floating-point.
241template <typename T, typename L, typename H>
242struct ClampType<T, L, H, false, false, false> {
243 using type = typename std::common_type<T, L, H>::type;
244};
245
246// Specialization for when all three types are integral.
247template <typename T, typename L, typename H>
248struct ClampType<T, L, H, true, true, true> {
249 private:
250 // Range of the return value. The return type must be able to represent this
251 // full range.
252 static constexpr auto r_min =
253 SafeMax(Limits<L>::lowest, SafeMin(Limits<H>::lowest, Limits<T>::lowest));
254 static constexpr auto r_max =
255 SafeMin(Limits<H>::max, SafeMax(Limits<L>::max, Limits<T>::max));
256
257 // Is the given type an acceptable return type? (That is, can it represent
258 // all possible return values, and is it no larger than the largest of the
259 // input types?)
260 template <typename A>
261 struct AcceptableType {
262 private:
263 static constexpr bool not_too_large = sizeof(A) <= sizeof(L) ||
264 sizeof(A) <= sizeof(H) ||
265 sizeof(A) <= sizeof(T);
266 static constexpr bool range_contained =
267 SafeLe(Limits<A>::lowest, r_min) && SafeLe(r_max, Limits<A>::max);
268
269 public:
270 static constexpr bool value = not_too_large && range_contained;
271 };
272
273 using best_signed_type = typename std::conditional<
274 AcceptableType<int8_t>::value,
275 int8_t,
276 typename std::conditional<
277 AcceptableType<int16_t>::value,
278 int16_t,
279 typename std::conditional<AcceptableType<int32_t>::value,
280 int32_t,
281 int64_t>::type>::type>::type;
282
283 using best_unsigned_type = typename std::conditional<
284 AcceptableType<uint8_t>::value,
285 uint8_t,
286 typename std::conditional<
287 AcceptableType<uint16_t>::value,
288 uint16_t,
289 typename std::conditional<AcceptableType<uint32_t>::value,
290 uint32_t,
291 uint64_t>::type>::type>::type;
292
293 public:
294 // Pick the best type, preferring the same signedness as T but falling back
295 // to the other one if necessary.
296 using type = typename std::conditional<
297 std::is_signed<T>::value,
298 typename std::conditional<AcceptableType<best_signed_type>::value,
299 best_signed_type,
300 best_unsigned_type>::type,
301 typename std::conditional<AcceptableType<best_unsigned_type>::value,
302 best_unsigned_type,
303 best_signed_type>::type>::type;
304 static_assert(AcceptableType<type>::value, "");
305};
306
307} // namespace safe_minmax_impl
308
309template <
310 typename R = safe_minmax_impl::DefaultType,
311 typename T = safe_minmax_impl::DefaultType,
312 typename L = safe_minmax_impl::DefaultType,
313 typename H = safe_minmax_impl::DefaultType,
314 typename R2 = typename safe_minmax_impl::TypeOr<
315 R,
316 typename safe_minmax_impl::ClampType<
317 typename safe_minmax_impl::UnderlyingType<T>::type,
318 typename safe_minmax_impl::UnderlyingType<L>::type,
319 typename safe_minmax_impl::UnderlyingType<H>::type>::type>::type>
320R2 SafeClamp(T x, L min, H max) {
321 static_assert(IsIntlike<H>::value || std::is_floating_point<H>::value,
322 "The first argument must be integral or floating-point");
323 static_assert(IsIntlike<T>::value || std::is_floating_point<T>::value,
324 "The second argument must be integral or floating-point");
325 static_assert(IsIntlike<L>::value || std::is_floating_point<L>::value,
326 "The third argument must be integral or floating-point");
327 RTC_DCHECK_LE(min, max);
328 return SafeLe(x, min)
329 ? static_cast<R2>(min)
330 : SafeGe(x, max) ? static_cast<R2>(max) : static_cast<R2>(x);
331}
332
333} // namespace rtc
kwiberg7885d3f2017-04-25 12:35:07 -0700334
Mirko Bonadei92ea95e2017-09-15 06:47:31 +0200335#endif // RTC_BASE_SAFE_MINMAX_H_