blob: a9bcafbdc5f5adcbd2f6e65e6e85a39ec8a868e8 [file] [log] [blame]
nisse191b3592016-06-22 08:36:53 -07001/*
2 * Copyright (c) 2016 The WebRTC project authors. All Rights Reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
nissea0758482016-09-14 00:37:00 -070011#include <limits>
12
Mirko Bonadei92ea95e2017-09-15 06:47:31 +020013#include "rtc_base/checks.h"
14#include "rtc_base/logging.h"
15#include "rtc_base/timestampaligner.h"
16#include "rtc_base/timeutils.h"
nisse191b3592016-06-22 08:36:53 -070017
18namespace rtc {
19
nissea0758482016-09-14 00:37:00 -070020TimestampAligner::TimestampAligner()
21 : frames_seen_(0),
22 offset_us_(0),
23 clip_bias_us_(0),
24 prev_translated_time_us_(std::numeric_limits<int64_t>::min()) {}
nisse76f91cd2016-08-24 01:58:42 -070025
nisse191b3592016-06-22 08:36:53 -070026TimestampAligner::~TimestampAligner() {}
27
nissea0758482016-09-14 00:37:00 -070028int64_t TimestampAligner::TranslateTimestamp(int64_t camera_time_us,
29 int64_t system_time_us) {
30 return ClipTimestamp(
31 camera_time_us + UpdateOffset(camera_time_us, system_time_us),
32 system_time_us);
33}
34
nisse191b3592016-06-22 08:36:53 -070035int64_t TimestampAligner::UpdateOffset(int64_t camera_time_us,
36 int64_t system_time_us) {
37 // Estimate the offset between system monotonic time and the capture
38 // time from the camera. The camera is assumed to provide more
39 // accurate timestamps than we get from the system time. But the
40 // camera may use its own free-running clock with a large offset and
41 // a small drift compared to the system clock. So the model is
42 // basically
43 //
44 // y_k = c_0 + c_1 * x_k + v_k
45 //
46 // where x_k is the camera timestamp, believed to be accurate in its
47 // own scale. y_k is our reading of the system clock. v_k is the
48 // measurement noise, i.e., the delay from frame capture until the
49 // system clock was read.
50 //
51 // It's possible to do (weighted) least-squares estimation of both
52 // c_0 and c_1. Then we get the constants as c_1 = Cov(x,y) /
53 // Var(x), and c_0 = mean(y) - c_1 * mean(x). Substituting this c_0,
54 // we can rearrange the model as
55 //
56 // y_k = mean(y) + (x_k - mean(x)) + (c_1 - 1) * (x_k - mean(x)) + v_k
57 //
58 // Now if we use a weighted average which gradually forgets old
59 // values, x_k - mean(x) is bounded, of the same order as the time
60 // constant (and close to constant for a steady frame rate). In
61 // addition, the frequency error |c_1 - 1| should be small. Cameras
62 // with a frequency error up to 3000 ppm (3 ms drift per second)
63 // have been observed, but frequency errors below 100 ppm could be
64 // expected of any cheap crystal.
65 //
66 // Bottom line is that we ignore the c_1 term, and use only the estimator
67 //
68 // x_k + mean(y-x)
69 //
70 // where mean is plain averaging for initial samples, followed by
71 // exponential averaging.
72
73 // The input for averaging, y_k - x_k in the above notation.
74 int64_t diff_us = system_time_us - camera_time_us;
75 // The deviation from the current average.
76 int64_t error_us = diff_us - offset_us_;
77
78 // If the current difference is far from the currently estimated
79 // offset, the filter is reset. This could happen, e.g., if the
80 // camera clock is reset, or cameras are plugged in and out, or if
nissea0758482016-09-14 00:37:00 -070081 // the application process is temporarily suspended. Expected to
82 // happen for the very first timestamp (|frames_seen_| = 0). The
83 // threshold of 300 ms should make this unlikely in normal
84 // operation, and at the same time, converging gradually rather than
85 // resetting the filter should be tolerable for jumps in camera time
86 // below this threshold.
87 static const int64_t kResetThresholdUs = 300000;
88 if (std::abs(error_us) > kResetThresholdUs) {
Mirko Bonadei675513b2017-11-09 11:09:25 +010089 RTC_LOG(LS_INFO) << "Resetting timestamp translation after averaging "
90 << frames_seen_ << " frames. Old offset: " << offset_us_
91 << ", new offset: " << diff_us;
nisse191b3592016-06-22 08:36:53 -070092 frames_seen_ = 0;
nissea0758482016-09-14 00:37:00 -070093 clip_bias_us_ = 0;
nisse191b3592016-06-22 08:36:53 -070094 }
95
96 static const int kWindowSize = 100;
97 if (frames_seen_ < kWindowSize) {
98 ++frames_seen_;
99 }
100 offset_us_ += error_us / frames_seen_;
101 return offset_us_;
102}
103
nissea0758482016-09-14 00:37:00 -0700104int64_t TimestampAligner::ClipTimestamp(int64_t filtered_time_us,
nisse191b3592016-06-22 08:36:53 -0700105 int64_t system_time_us) {
nissea0758482016-09-14 00:37:00 -0700106 const int64_t kMinFrameIntervalUs = rtc::kNumMicrosecsPerMillisec;
107 // Clip to make sure we don't produce timestamps in the future.
108 int64_t time_us = filtered_time_us - clip_bias_us_;
nisse191b3592016-06-22 08:36:53 -0700109 if (time_us > system_time_us) {
110 clip_bias_us_ += time_us - system_time_us;
111 time_us = system_time_us;
112 }
nissea0758482016-09-14 00:37:00 -0700113 // Make timestamps monotonic, with a minimum inter-frame interval of 1 ms.
114 else if (time_us < prev_translated_time_us_ + kMinFrameIntervalUs) {
115 time_us = prev_translated_time_us_ + kMinFrameIntervalUs;
116 if (time_us > system_time_us) {
117 // In the anomalous case that this function is called with values of
118 // |system_time_us| less than |kMinFrameIntervalUs| apart, we may output
119 // timestamps with with too short inter-frame interval. We may even return
120 // duplicate timestamps in case this function is called several times with
121 // exactly the same |system_time_us|.
Mirko Bonadei675513b2017-11-09 11:09:25 +0100122 RTC_LOG(LS_WARNING) << "too short translated timestamp interval: "
123 << "system time (us) = " << system_time_us
124 << ", interval (us) = "
125 << system_time_us - prev_translated_time_us_;
nissea0758482016-09-14 00:37:00 -0700126 time_us = system_time_us;
127 }
128 }
129 RTC_DCHECK_GE(time_us, prev_translated_time_us_);
130 RTC_DCHECK_LE(time_us, system_time_us);
131 prev_translated_time_us_ = time_us;
nisse191b3592016-06-22 08:36:53 -0700132 return time_us;
133}
134
135} // namespace rtc