blob: 7c1c15cdf9bf1135187227096751de4de6022e2f [file] [log] [blame]
perkj8ff860a2016-10-03 00:30:04 -07001/*
2 * Copyright 2016 The WebRTC Project Authors. All rights reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
Mirko Bonadei92ea95e2017-09-15 06:47:31 +020011#ifndef RTC_BASE_WEAK_PTR_H_
12#define RTC_BASE_WEAK_PTR_H_
perkj8ff860a2016-10-03 00:30:04 -070013
Henrik Kjellanderec78f1c2017-06-29 07:52:50 +020014#include <memory>
perkj8ff860a2016-10-03 00:30:04 -070015
Henrik Kjellanderec78f1c2017-06-29 07:52:50 +020016#include <utility>
17
Mirko Bonadei92ea95e2017-09-15 06:47:31 +020018#include "rtc_base/refcount.h"
19#include "rtc_base/scoped_ref_ptr.h"
20#include "rtc_base/sequenced_task_checker.h"
Henrik Kjellanderec78f1c2017-06-29 07:52:50 +020021
22// The implementation is borrowed from chromium except that it does not
23// implement SupportsWeakPtr.
24
25// Weak pointers are pointers to an object that do not affect its lifetime,
26// and which may be invalidated (i.e. reset to nullptr) by the object, or its
27// owner, at any time, most commonly when the object is about to be deleted.
28
29// Weak pointers are useful when an object needs to be accessed safely by one
30// or more objects other than its owner, and those callers can cope with the
31// object vanishing and e.g. tasks posted to it being silently dropped.
32// Reference-counting such an object would complicate the ownership graph and
33// make it harder to reason about the object's lifetime.
34
35// EXAMPLE:
36//
37// class Controller {
38// public:
39// Controller() : weak_factory_(this) {}
40// void SpawnWorker() { Worker::StartNew(weak_factory_.GetWeakPtr()); }
41// void WorkComplete(const Result& result) { ... }
42// private:
43// // Member variables should appear before the WeakPtrFactory, to ensure
44// // that any WeakPtrs to Controller are invalidated before its members
45// // variable's destructors are executed, rendering them invalid.
46// WeakPtrFactory<Controller> weak_factory_;
47// };
48//
49// class Worker {
50// public:
51// static void StartNew(const WeakPtr<Controller>& controller) {
52// Worker* worker = new Worker(controller);
53// // Kick off asynchronous processing...
54// }
55// private:
56// Worker(const WeakPtr<Controller>& controller)
57// : controller_(controller) {}
58// void DidCompleteAsynchronousProcessing(const Result& result) {
59// if (controller_)
60// controller_->WorkComplete(result);
61// }
62// WeakPtr<Controller> controller_;
63// };
64//
65// With this implementation a caller may use SpawnWorker() to dispatch multiple
66// Workers and subsequently delete the Controller, without waiting for all
67// Workers to have completed.
68
69// ------------------------- IMPORTANT: Thread-safety -------------------------
70
71// Weak pointers may be passed safely between threads, but must always be
72// dereferenced and invalidated on the same TaskQueue or thread, otherwise
73// checking the pointer would be racey.
74//
75// To ensure correct use, the first time a WeakPtr issued by a WeakPtrFactory
76// is dereferenced, the factory and its WeakPtrs become bound to the calling
77// TaskQueue/thread, and cannot be dereferenced or
78// invalidated on any other TaskQueue/thread. Bound WeakPtrs can still be handed
79// off to other TaskQueues, e.g. to use to post tasks back to object on the
80// bound sequence.
81//
82// Thus, at least one WeakPtr object must exist and have been dereferenced on
83// the correct thread to enforce that other WeakPtr objects will enforce they
84// are used on the desired thread.
85
86namespace rtc {
87
88namespace internal {
89
90class WeakReference {
91 public:
92 // Although Flag is bound to a specific sequence, it may be
93 // deleted from another via base::WeakPtr::~WeakPtr().
94 class Flag : public RefCountInterface {
95 public:
96 Flag();
97
98 void Invalidate();
99 bool IsValid() const;
100
101 private:
102 friend class RefCountedObject<Flag>;
103
104 ~Flag() override;
105
106 SequencedTaskChecker checker_;
107 bool is_valid_;
108 };
109
110 WeakReference();
111 explicit WeakReference(const Flag* flag);
112 ~WeakReference();
113
114 WeakReference(WeakReference&& other);
115 WeakReference(const WeakReference& other);
116 WeakReference& operator=(WeakReference&& other) = default;
117 WeakReference& operator=(const WeakReference& other) = default;
118
119 bool is_valid() const;
120
121 private:
122 scoped_refptr<const Flag> flag_;
123};
124
125class WeakReferenceOwner {
126 public:
127 WeakReferenceOwner();
128 ~WeakReferenceOwner();
129
130 WeakReference GetRef() const;
131
132 bool HasRefs() const { return flag_.get() && !flag_->HasOneRef(); }
133
134 void Invalidate();
135
136 private:
137 SequencedTaskChecker checker_;
138 mutable scoped_refptr<RefCountedObject<WeakReference::Flag>> flag_;
139};
140
141// This class simplifies the implementation of WeakPtr's type conversion
142// constructor by avoiding the need for a public accessor for ref_. A
143// WeakPtr<T> cannot access the private members of WeakPtr<U>, so this
144// base class gives us a way to access ref_ in a protected fashion.
145class WeakPtrBase {
146 public:
147 WeakPtrBase();
148 ~WeakPtrBase();
149
150 WeakPtrBase(const WeakPtrBase& other) = default;
151 WeakPtrBase(WeakPtrBase&& other) = default;
152 WeakPtrBase& operator=(const WeakPtrBase& other) = default;
153 WeakPtrBase& operator=(WeakPtrBase&& other) = default;
154
155 protected:
156 explicit WeakPtrBase(const WeakReference& ref);
157
158 WeakReference ref_;
159};
160
161} // namespace internal
162
163template <typename T>
164class WeakPtrFactory;
165
166template <typename T>
167class WeakPtr : public internal::WeakPtrBase {
168 public:
169 WeakPtr() : ptr_(nullptr) {}
170
171 // Allow conversion from U to T provided U "is a" T. Note that this
172 // is separate from the (implicit) copy and move constructors.
173 template <typename U>
174 WeakPtr(const WeakPtr<U>& other)
175 : internal::WeakPtrBase(other), ptr_(other.ptr_) {}
176 template <typename U>
177 WeakPtr(WeakPtr<U>&& other)
178 : internal::WeakPtrBase(std::move(other)), ptr_(other.ptr_) {}
179
180 T* get() const { return ref_.is_valid() ? ptr_ : nullptr; }
181
182 T& operator*() const {
183 RTC_DCHECK(get() != nullptr);
184 return *get();
185 }
186 T* operator->() const {
187 RTC_DCHECK(get() != nullptr);
188 return get();
189 }
190
191 void reset() {
192 ref_ = internal::WeakReference();
193 ptr_ = nullptr;
194 }
195
196 // Allow conditionals to test validity, e.g. if (weak_ptr) {...};
197 explicit operator bool() const { return get() != nullptr; }
198
199 private:
200 template <typename U>
201 friend class WeakPtr;
202 friend class WeakPtrFactory<T>;
203
204 WeakPtr(const internal::WeakReference& ref, T* ptr)
205 : internal::WeakPtrBase(ref), ptr_(ptr) {}
206
207 // This pointer is only valid when ref_.is_valid() is true. Otherwise, its
208 // value is undefined (as opposed to nullptr).
209 T* ptr_;
210};
211
212// Allow callers to compare WeakPtrs against nullptr to test validity.
213template <class T>
214bool operator!=(const WeakPtr<T>& weak_ptr, std::nullptr_t) {
215 return !(weak_ptr == nullptr);
216}
217template <class T>
218bool operator!=(std::nullptr_t, const WeakPtr<T>& weak_ptr) {
219 return weak_ptr != nullptr;
220}
221template <class T>
222bool operator==(const WeakPtr<T>& weak_ptr, std::nullptr_t) {
223 return weak_ptr.get() == nullptr;
224}
225template <class T>
226bool operator==(std::nullptr_t, const WeakPtr<T>& weak_ptr) {
227 return weak_ptr == nullptr;
228}
229
230// A class may be composed of a WeakPtrFactory and thereby
231// control how it exposes weak pointers to itself. This is helpful if you only
232// need weak pointers within the implementation of a class. This class is also
233// useful when working with primitive types. For example, you could have a
234// WeakPtrFactory<bool> that is used to pass around a weak reference to a bool.
235
236// Note that GetWeakPtr must be called on one and only one TaskQueue or thread
237// and the WeakPtr must only be dereferenced and invalidated on that same
238// TaskQueue/thread. A WeakPtr instance can be copied and posted to other
239// sequences though as long as it is not dereferenced (WeakPtr<T>::get()).
240template <class T>
241class WeakPtrFactory {
242 public:
243 explicit WeakPtrFactory(T* ptr) : ptr_(ptr) {}
244
245 ~WeakPtrFactory() { ptr_ = nullptr; }
246
247 WeakPtr<T> GetWeakPtr() {
248 RTC_DCHECK(ptr_);
249 return WeakPtr<T>(weak_reference_owner_.GetRef(), ptr_);
250 }
251
252 // Call this method to invalidate all existing weak pointers.
253 void InvalidateWeakPtrs() {
254 RTC_DCHECK(ptr_);
255 weak_reference_owner_.Invalidate();
256 }
257
258 // Call this method to determine if any weak pointers exist.
259 bool HasWeakPtrs() const {
260 RTC_DCHECK(ptr_);
261 return weak_reference_owner_.HasRefs();
262 }
263
264 private:
265 internal::WeakReferenceOwner weak_reference_owner_;
266 T* ptr_;
267 RTC_DISALLOW_IMPLICIT_CONSTRUCTORS(WeakPtrFactory);
268};
269
270} // namespace rtc
perkj8ff860a2016-10-03 00:30:04 -0700271
Mirko Bonadei92ea95e2017-09-15 06:47:31 +0200272#endif // RTC_BASE_WEAK_PTR_H_