| henrike@webrtc.org | 28e2075 | 2013-07-10 00:45:36 +0000 | [diff] [blame] | 1 | /* | 
 | 2 |  * libjingle | 
 | 3 |  * Copyright 2004--2005, Google Inc. | 
 | 4 |  * | 
 | 5 |  * Redistribution and use in source and binary forms, with or without | 
 | 6 |  * modification, are permitted provided that the following conditions are met: | 
 | 7 |  * | 
 | 8 |  *  1. Redistributions of source code must retain the above copyright notice, | 
 | 9 |  *     this list of conditions and the following disclaimer. | 
 | 10 |  *  2. Redistributions in binary form must reproduce the above copyright notice, | 
 | 11 |  *     this list of conditions and the following disclaimer in the documentation | 
 | 12 |  *     and/or other materials provided with the distribution. | 
 | 13 |  *  3. The name of the author may not be used to endorse or promote products | 
 | 14 |  *     derived from this software without specific prior written permission. | 
 | 15 |  * | 
 | 16 |  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED | 
 | 17 |  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF | 
 | 18 |  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO | 
 | 19 |  * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | 
 | 20 |  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, | 
 | 21 |  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; | 
 | 22 |  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, | 
 | 23 |  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR | 
 | 24 |  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF | 
 | 25 |  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 
 | 26 |  */ | 
 | 27 |  | 
 | 28 | #include "talk/base/win32.h" | 
 | 29 |  | 
 | 30 | #include <winsock2.h> | 
 | 31 | #include <ws2tcpip.h> | 
 | 32 | #include <algorithm> | 
 | 33 |  | 
 | 34 | #include "talk/base/basictypes.h" | 
 | 35 | #include "talk/base/byteorder.h" | 
 | 36 | #include "talk/base/common.h" | 
 | 37 | #include "talk/base/logging.h" | 
 | 38 |  | 
 | 39 | namespace talk_base { | 
 | 40 |  | 
 | 41 | // Helper function declarations for inet_ntop/inet_pton. | 
 | 42 | static const char* inet_ntop_v4(const void* src, char* dst, socklen_t size); | 
 | 43 | static const char* inet_ntop_v6(const void* src, char* dst, socklen_t size); | 
 | 44 | static int inet_pton_v4(const char* src, void* dst); | 
 | 45 | static int inet_pton_v6(const char* src, void* dst); | 
 | 46 |  | 
 | 47 | // Implementation of inet_ntop (create a printable representation of an | 
 | 48 | // ip address). XP doesn't have its own inet_ntop, and | 
 | 49 | // WSAAddressToString requires both IPv6 to be  installed and for Winsock | 
 | 50 | // to be initialized. | 
 | 51 | const char* win32_inet_ntop(int af, const void *src, | 
 | 52 |                             char* dst, socklen_t size) { | 
 | 53 |   if (!src || !dst) { | 
 | 54 |     return NULL; | 
 | 55 |   } | 
 | 56 |   switch (af) { | 
 | 57 |     case AF_INET: { | 
 | 58 |       return inet_ntop_v4(src, dst, size); | 
 | 59 |     } | 
 | 60 |     case AF_INET6: { | 
 | 61 |       return inet_ntop_v6(src, dst, size); | 
 | 62 |     } | 
 | 63 |   } | 
 | 64 |   return NULL; | 
 | 65 | } | 
 | 66 |  | 
 | 67 | // As above, but for inet_pton. Implements inet_pton for v4 and v6. | 
 | 68 | // Note that our inet_ntop will output normal 'dotted' v4 addresses only. | 
 | 69 | int win32_inet_pton(int af, const char* src, void* dst) { | 
 | 70 |   if (!src || !dst) { | 
 | 71 |     return 0; | 
 | 72 |   } | 
 | 73 |   if (af == AF_INET) { | 
 | 74 |     return inet_pton_v4(src, dst); | 
 | 75 |   } else if (af == AF_INET6) { | 
 | 76 |     return inet_pton_v6(src, dst); | 
 | 77 |   } | 
 | 78 |   return -1; | 
 | 79 | } | 
 | 80 |  | 
 | 81 | // Helper function for inet_ntop for IPv4 addresses. | 
 | 82 | // Outputs "dotted-quad" decimal notation. | 
 | 83 | const char* inet_ntop_v4(const void* src, char* dst, socklen_t size) { | 
 | 84 |   if (size < INET_ADDRSTRLEN) { | 
 | 85 |     return NULL; | 
 | 86 |   } | 
 | 87 |   const struct in_addr* as_in_addr = | 
 | 88 |       reinterpret_cast<const struct in_addr*>(src); | 
 | 89 |   talk_base::sprintfn(dst, size, "%d.%d.%d.%d", | 
 | 90 |                       as_in_addr->S_un.S_un_b.s_b1, | 
 | 91 |                       as_in_addr->S_un.S_un_b.s_b2, | 
 | 92 |                       as_in_addr->S_un.S_un_b.s_b3, | 
 | 93 |                       as_in_addr->S_un.S_un_b.s_b4); | 
 | 94 |   return dst; | 
 | 95 | } | 
 | 96 |  | 
 | 97 | // Helper function for inet_ntop for IPv6 addresses. | 
 | 98 | const char* inet_ntop_v6(const void* src, char* dst, socklen_t size) { | 
 | 99 |   if (size < INET6_ADDRSTRLEN) { | 
 | 100 |     return NULL; | 
 | 101 |   } | 
 | 102 |   const uint16* as_shorts = | 
 | 103 |       reinterpret_cast<const uint16*>(src); | 
 | 104 |   int runpos[8]; | 
 | 105 |   int current = 1; | 
 | 106 |   int max = 1; | 
 | 107 |   int maxpos = -1; | 
 | 108 |   int run_array_size = ARRAY_SIZE(runpos); | 
 | 109 |   // Run over the address marking runs of 0s. | 
 | 110 |   for (int i = 0; i < run_array_size; ++i) { | 
 | 111 |     if (as_shorts[i] == 0) { | 
 | 112 |       runpos[i] = current; | 
 | 113 |       if (current > max) { | 
 | 114 |         maxpos = i; | 
 | 115 |         max = current; | 
 | 116 |       } | 
 | 117 |       ++current; | 
 | 118 |     } else { | 
 | 119 |       runpos[i] = -1; | 
 | 120 |       current =1; | 
 | 121 |     } | 
 | 122 |   } | 
 | 123 |  | 
 | 124 |   if (max > 1) { | 
 | 125 |     int tmpmax = maxpos; | 
 | 126 |     // Run back through, setting -1 for all but the longest run. | 
 | 127 |     for (int i = run_array_size - 1; i >= 0; i--) { | 
 | 128 |       if (i > tmpmax) { | 
 | 129 |         runpos[i] = -1; | 
 | 130 |       } else if (runpos[i] == -1) { | 
 | 131 |         // We're less than maxpos, we hit a -1, so the 'good' run is done. | 
 | 132 |         // Setting tmpmax -1 means all remaining positions get set to -1. | 
 | 133 |         tmpmax = -1; | 
 | 134 |       } | 
 | 135 |     } | 
 | 136 |   } | 
 | 137 |  | 
 | 138 |   char* cursor = dst; | 
 | 139 |   // Print IPv4 compatible and IPv4 mapped addresses using the IPv4 helper. | 
 | 140 |   // These addresses have an initial run of either eight zero-bytes followed | 
 | 141 |   // by 0xFFFF, or an initial run of ten zero-bytes. | 
 | 142 |   if (runpos[0] == 1 && (maxpos == 5 || | 
 | 143 |                          (maxpos == 4 && as_shorts[5] == 0xFFFF))) { | 
 | 144 |     *cursor++ = ':'; | 
 | 145 |     *cursor++ = ':'; | 
 | 146 |     if (maxpos == 4) { | 
 | 147 |       cursor += talk_base::sprintfn(cursor, INET6_ADDRSTRLEN - 2, "ffff:"); | 
 | 148 |     } | 
 | 149 |     const struct in_addr* as_v4 = | 
 | 150 |         reinterpret_cast<const struct in_addr*>(&(as_shorts[6])); | 
 | 151 |     inet_ntop_v4(as_v4, cursor, | 
 | 152 |                  static_cast<socklen_t>(INET6_ADDRSTRLEN - (cursor - dst))); | 
 | 153 |   } else { | 
 | 154 |     for (int i = 0; i < run_array_size; ++i) { | 
 | 155 |       if (runpos[i] == -1) { | 
 | 156 |         cursor += talk_base::sprintfn(cursor, | 
 | 157 |                                       INET6_ADDRSTRLEN - (cursor - dst), | 
 | 158 |                                       "%x", NetworkToHost16(as_shorts[i])); | 
 | 159 |         if (i != 7 && runpos[i + 1] != 1) { | 
 | 160 |           *cursor++ = ':'; | 
 | 161 |         } | 
 | 162 |       } else if (runpos[i] == 1) { | 
 | 163 |         // Entered the run; print the colons and skip the run. | 
 | 164 |         *cursor++ = ':'; | 
 | 165 |         *cursor++ = ':'; | 
 | 166 |         i += (max - 1); | 
 | 167 |       } | 
 | 168 |     } | 
 | 169 |   } | 
 | 170 |   return dst; | 
 | 171 | } | 
 | 172 |  | 
 | 173 | // Helper function for inet_pton for IPv4 addresses. | 
 | 174 | // |src| points to a character string containing an IPv4 network address in | 
 | 175 | // dotted-decimal format, "ddd.ddd.ddd.ddd", where ddd is a decimal number | 
 | 176 | // of up to three digits in the range 0 to 255. | 
 | 177 | // The address is converted and copied to dst, | 
 | 178 | // which must be sizeof(struct in_addr) (4) bytes (32 bits) long. | 
 | 179 | int inet_pton_v4(const char* src, void* dst) { | 
 | 180 |   const int kIpv4AddressSize = 4; | 
 | 181 |   int found = 0; | 
 | 182 |   const char* src_pos = src; | 
 | 183 |   unsigned char result[kIpv4AddressSize] = {0}; | 
 | 184 |  | 
 | 185 |   while (*src_pos != '\0') { | 
 | 186 |     // strtol won't treat whitespace characters in the begining as an error, | 
 | 187 |     // so check to ensure this is started with digit before passing to strtol. | 
 | 188 |     if (!isdigit(*src_pos)) { | 
 | 189 |       return 0; | 
 | 190 |     } | 
 | 191 |     char* end_pos; | 
 | 192 |     long value = strtol(src_pos, &end_pos, 10); | 
 | 193 |     if (value < 0 || value > 255 || src_pos == end_pos) { | 
 | 194 |       return 0; | 
 | 195 |     } | 
 | 196 |     ++found; | 
 | 197 |     if (found > kIpv4AddressSize) { | 
 | 198 |       return 0; | 
 | 199 |     } | 
 | 200 |     result[found - 1] = static_cast<unsigned char>(value); | 
 | 201 |     src_pos = end_pos; | 
 | 202 |     if (*src_pos == '.') { | 
 | 203 |       // There's more. | 
 | 204 |       ++src_pos; | 
 | 205 |     } else if (*src_pos != '\0') { | 
 | 206 |       // If it's neither '.' nor '\0' then return fail. | 
 | 207 |       return 0; | 
 | 208 |     } | 
 | 209 |   } | 
 | 210 |   if (found != kIpv4AddressSize) { | 
 | 211 |     return 0; | 
 | 212 |   } | 
 | 213 |   memcpy(dst, result, sizeof(result)); | 
 | 214 |   return 1; | 
 | 215 | } | 
 | 216 |  | 
 | 217 | // Helper function for inet_pton for IPv6 addresses. | 
 | 218 | int inet_pton_v6(const char* src, void* dst) { | 
 | 219 |   // sscanf will pick any other invalid chars up, but it parses 0xnnnn as hex. | 
 | 220 |   // Check for literal x in the input string. | 
 | 221 |   const char* readcursor = src; | 
 | 222 |   char c = *readcursor++; | 
 | 223 |   while (c) { | 
 | 224 |     if (c == 'x') { | 
 | 225 |       return 0; | 
 | 226 |     } | 
 | 227 |     c = *readcursor++; | 
 | 228 |   } | 
 | 229 |   readcursor = src; | 
 | 230 |  | 
 | 231 |   struct in6_addr an_addr; | 
 | 232 |   memset(&an_addr, 0, sizeof(an_addr)); | 
 | 233 |  | 
 | 234 |   uint16* addr_cursor = reinterpret_cast<uint16*>(&an_addr.s6_addr[0]); | 
 | 235 |   uint16* addr_end = reinterpret_cast<uint16*>(&an_addr.s6_addr[16]); | 
 | 236 |   bool seencompressed = false; | 
 | 237 |  | 
 | 238 |   // Addresses that start with "::" (i.e., a run of initial zeros) or | 
 | 239 |   // "::ffff:" can potentially be IPv4 mapped or compatibility addresses. | 
 | 240 |   // These have dotted-style IPv4 addresses on the end (e.g. "::192.168.7.1"). | 
 | 241 |   if (*readcursor == ':' && *(readcursor+1) == ':' && | 
 | 242 |       *(readcursor + 2) != 0) { | 
 | 243 |     // Check for periods, which we'll take as a sign of v4 addresses. | 
 | 244 |     const char* addrstart = readcursor + 2; | 
 | 245 |     if (talk_base::strchr(addrstart, ".")) { | 
 | 246 |       const char* colon = talk_base::strchr(addrstart, "::"); | 
 | 247 |       if (colon) { | 
 | 248 |         uint16 a_short; | 
 | 249 |         int bytesread = 0; | 
 | 250 |         if (sscanf(addrstart, "%hx%n", &a_short, &bytesread) != 1 || | 
 | 251 |             a_short != 0xFFFF || bytesread != 4) { | 
 | 252 |           // Colons + periods means has to be ::ffff:a.b.c.d. But it wasn't. | 
 | 253 |           return 0; | 
 | 254 |         } else { | 
 | 255 |           an_addr.s6_addr[10] = 0xFF; | 
 | 256 |           an_addr.s6_addr[11] = 0xFF; | 
 | 257 |           addrstart = colon + 1; | 
 | 258 |         } | 
 | 259 |       } | 
 | 260 |       struct in_addr v4; | 
 | 261 |       if (inet_pton_v4(addrstart, &v4.s_addr)) { | 
 | 262 |         memcpy(&an_addr.s6_addr[12], &v4, sizeof(v4)); | 
 | 263 |         memcpy(dst, &an_addr, sizeof(an_addr)); | 
 | 264 |         return 1; | 
 | 265 |       } else { | 
 | 266 |         // Invalid v4 address. | 
 | 267 |         return 0; | 
 | 268 |       } | 
 | 269 |     } | 
 | 270 |   } | 
 | 271 |  | 
 | 272 |   // For addresses without a trailing IPv4 component ('normal' IPv6 addresses). | 
 | 273 |   while (*readcursor != 0 && addr_cursor < addr_end) { | 
 | 274 |     if (*readcursor == ':') { | 
 | 275 |       if (*(readcursor + 1) == ':') { | 
 | 276 |         if (seencompressed) { | 
 | 277 |           // Can only have one compressed run of zeroes ("::") per address. | 
 | 278 |           return 0; | 
 | 279 |         } | 
 | 280 |         // Hit a compressed run. Count colons to figure out how much of the | 
 | 281 |         // address is skipped. | 
 | 282 |         readcursor += 2; | 
 | 283 |         const char* coloncounter = readcursor; | 
 | 284 |         int coloncount = 0; | 
 | 285 |         if (*coloncounter == 0) { | 
 | 286 |           // Special case - trailing ::. | 
 | 287 |           addr_cursor = addr_end; | 
 | 288 |         } else { | 
 | 289 |           while (*coloncounter) { | 
 | 290 |             if (*coloncounter == ':') { | 
 | 291 |               ++coloncount; | 
 | 292 |             } | 
 | 293 |             ++coloncounter; | 
 | 294 |           } | 
 | 295 |           // (coloncount + 1) is the number of shorts left in the address. | 
 | 296 |           addr_cursor = addr_end - (coloncount + 1); | 
 | 297 |           seencompressed = true; | 
 | 298 |         } | 
 | 299 |       } else { | 
 | 300 |         ++readcursor; | 
 | 301 |       } | 
 | 302 |     } else { | 
 | 303 |       uint16 word; | 
 | 304 |       int bytesread = 0; | 
 | 305 |       if (sscanf(readcursor, "%hx%n", &word, &bytesread) != 1) { | 
 | 306 |         return 0; | 
 | 307 |       } else { | 
 | 308 |         *addr_cursor = HostToNetwork16(word); | 
 | 309 |         ++addr_cursor; | 
 | 310 |         readcursor += bytesread; | 
 | 311 |         if (*readcursor != ':' && *readcursor != '\0') { | 
 | 312 |           return 0; | 
 | 313 |         } | 
 | 314 |       } | 
 | 315 |     } | 
 | 316 |   } | 
 | 317 |  | 
 | 318 |   if (*readcursor != '\0' || addr_cursor < addr_end) { | 
 | 319 |     // Catches addresses too short or too long. | 
 | 320 |     return 0; | 
 | 321 |   } | 
 | 322 |   memcpy(dst, &an_addr, sizeof(an_addr)); | 
 | 323 |   return 1; | 
 | 324 | } | 
 | 325 |  | 
 | 326 | // | 
 | 327 | // Unix time is in seconds relative to 1/1/1970.  So we compute the windows | 
 | 328 | // FILETIME of that time/date, then we add/subtract in appropriate units to | 
 | 329 | // convert to/from unix time. | 
 | 330 | // The units of FILETIME are 100ns intervals, so by multiplying by or dividing | 
 | 331 | // by 10000000, we can convert to/from seconds. | 
 | 332 | // | 
 | 333 | // FileTime = UnixTime*10000000 + FileTime(1970) | 
 | 334 | // UnixTime = (FileTime-FileTime(1970))/10000000 | 
 | 335 | // | 
 | 336 |  | 
 | 337 | void FileTimeToUnixTime(const FILETIME& ft, time_t* ut) { | 
 | 338 |   ASSERT(NULL != ut); | 
 | 339 |  | 
 | 340 |   // FILETIME has an earlier date base than time_t (1/1/1970), so subtract off | 
 | 341 |   // the difference. | 
 | 342 |   SYSTEMTIME base_st; | 
 | 343 |   memset(&base_st, 0, sizeof(base_st)); | 
 | 344 |   base_st.wDay = 1; | 
 | 345 |   base_st.wMonth = 1; | 
 | 346 |   base_st.wYear = 1970; | 
 | 347 |  | 
 | 348 |   FILETIME base_ft; | 
 | 349 |   SystemTimeToFileTime(&base_st, &base_ft); | 
 | 350 |  | 
 | 351 |   ULARGE_INTEGER base_ul, current_ul; | 
 | 352 |   memcpy(&base_ul, &base_ft, sizeof(FILETIME)); | 
 | 353 |   memcpy(¤t_ul, &ft, sizeof(FILETIME)); | 
 | 354 |  | 
 | 355 |   // Divide by big number to convert to seconds, then subtract out the 1970 | 
 | 356 |   // base date value. | 
 | 357 |   const ULONGLONG RATIO = 10000000; | 
 | 358 |   *ut = static_cast<time_t>((current_ul.QuadPart - base_ul.QuadPart) / RATIO); | 
 | 359 | } | 
 | 360 |  | 
 | 361 | void UnixTimeToFileTime(const time_t& ut, FILETIME* ft) { | 
 | 362 |   ASSERT(NULL != ft); | 
 | 363 |  | 
 | 364 |   // FILETIME has an earlier date base than time_t (1/1/1970), so add in | 
 | 365 |   // the difference. | 
 | 366 |   SYSTEMTIME base_st; | 
 | 367 |   memset(&base_st, 0, sizeof(base_st)); | 
 | 368 |   base_st.wDay = 1; | 
 | 369 |   base_st.wMonth = 1; | 
 | 370 |   base_st.wYear = 1970; | 
 | 371 |  | 
 | 372 |   FILETIME base_ft; | 
 | 373 |   SystemTimeToFileTime(&base_st, &base_ft); | 
 | 374 |  | 
 | 375 |   ULARGE_INTEGER base_ul; | 
 | 376 |   memcpy(&base_ul, &base_ft, sizeof(FILETIME)); | 
 | 377 |  | 
 | 378 |   // Multiply by big number to convert to 100ns units, then add in the 1970 | 
 | 379 |   // base date value. | 
 | 380 |   const ULONGLONG RATIO = 10000000; | 
 | 381 |   ULARGE_INTEGER current_ul; | 
 | 382 |   current_ul.QuadPart = base_ul.QuadPart + static_cast<int64>(ut) * RATIO; | 
 | 383 |   memcpy(ft, ¤t_ul, sizeof(FILETIME)); | 
 | 384 | } | 
 | 385 |  | 
 | 386 | bool Utf8ToWindowsFilename(const std::string& utf8, std::wstring* filename) { | 
 | 387 |   // TODO: Integrate into fileutils.h | 
 | 388 |   // TODO: Handle wide and non-wide cases via TCHAR? | 
 | 389 |   // TODO: Skip \\?\ processing if the length is not > MAX_PATH? | 
 | 390 |   // TODO: Write unittests | 
 | 391 |  | 
 | 392 |   // Convert to Utf16 | 
 | 393 |   int wlen = ::MultiByteToWideChar(CP_UTF8, 0, utf8.c_str(), | 
 | 394 |                                    static_cast<int>(utf8.length() + 1), NULL, | 
 | 395 |                                    0); | 
 | 396 |   if (0 == wlen) { | 
 | 397 |     return false; | 
 | 398 |   } | 
 | 399 |   wchar_t* wfilename = STACK_ARRAY(wchar_t, wlen); | 
 | 400 |   if (0 == ::MultiByteToWideChar(CP_UTF8, 0, utf8.c_str(), | 
 | 401 |                                  static_cast<int>(utf8.length() + 1), | 
 | 402 |                                  wfilename, wlen)) { | 
 | 403 |     return false; | 
 | 404 |   } | 
 | 405 |   // Replace forward slashes with backslashes | 
 | 406 |   std::replace(wfilename, wfilename + wlen, L'/', L'\\'); | 
 | 407 |   // Convert to complete filename | 
 | 408 |   DWORD full_len = ::GetFullPathName(wfilename, 0, NULL, NULL); | 
 | 409 |   if (0 == full_len) { | 
 | 410 |     return false; | 
 | 411 |   } | 
 | 412 |   wchar_t* filepart = NULL; | 
 | 413 |   wchar_t* full_filename = STACK_ARRAY(wchar_t, full_len + 6); | 
 | 414 |   wchar_t* start = full_filename + 6; | 
 | 415 |   if (0 == ::GetFullPathName(wfilename, full_len, start, &filepart)) { | 
 | 416 |     return false; | 
 | 417 |   } | 
 | 418 |   // Add long-path prefix | 
 | 419 |   const wchar_t kLongPathPrefix[] = L"\\\\?\\UNC"; | 
 | 420 |   if ((start[0] != L'\\') || (start[1] != L'\\')) { | 
 | 421 |     // Non-unc path:     <pathname> | 
 | 422 |     //      Becomes: \\?\<pathname> | 
 | 423 |     start -= 4; | 
 | 424 |     ASSERT(start >= full_filename); | 
 | 425 |     memcpy(start, kLongPathPrefix, 4 * sizeof(wchar_t)); | 
 | 426 |   } else if (start[2] != L'?') { | 
 | 427 |     // Unc path:       \\<server>\<pathname> | 
 | 428 |     //  Becomes: \\?\UNC\<server>\<pathname> | 
 | 429 |     start -= 6; | 
 | 430 |     ASSERT(start >= full_filename); | 
 | 431 |     memcpy(start, kLongPathPrefix, 7 * sizeof(wchar_t)); | 
 | 432 |   } else { | 
 | 433 |     // Already in long-path form. | 
 | 434 |   } | 
 | 435 |   filename->assign(start); | 
 | 436 |   return true; | 
 | 437 | } | 
 | 438 |  | 
 | 439 | bool GetOsVersion(int* major, int* minor, int* build) { | 
 | 440 |   OSVERSIONINFO info = {0}; | 
 | 441 |   info.dwOSVersionInfoSize = sizeof(info); | 
 | 442 |   if (GetVersionEx(&info)) { | 
 | 443 |     if (major) *major = info.dwMajorVersion; | 
 | 444 |     if (minor) *minor = info.dwMinorVersion; | 
 | 445 |     if (build) *build = info.dwBuildNumber; | 
 | 446 |     return true; | 
 | 447 |   } | 
 | 448 |   return false; | 
 | 449 | } | 
 | 450 |  | 
 | 451 | bool GetCurrentProcessIntegrityLevel(int* level) { | 
 | 452 |   bool ret = false; | 
 | 453 |   HANDLE process = ::GetCurrentProcess(), token; | 
 | 454 |   if (OpenProcessToken(process, TOKEN_QUERY | TOKEN_QUERY_SOURCE, &token)) { | 
 | 455 |     DWORD size; | 
 | 456 |     if (!GetTokenInformation(token, TokenIntegrityLevel, NULL, 0, &size) && | 
 | 457 |         GetLastError() == ERROR_INSUFFICIENT_BUFFER) { | 
 | 458 |  | 
 | 459 |       char* buf = STACK_ARRAY(char, size); | 
 | 460 |       TOKEN_MANDATORY_LABEL* til = | 
 | 461 |           reinterpret_cast<TOKEN_MANDATORY_LABEL*>(buf); | 
 | 462 |       if (GetTokenInformation(token, TokenIntegrityLevel, til, size, &size)) { | 
 | 463 |  | 
 | 464 |         DWORD count = *GetSidSubAuthorityCount(til->Label.Sid); | 
 | 465 |         *level = *GetSidSubAuthority(til->Label.Sid, count - 1); | 
 | 466 |         ret = true; | 
 | 467 |       } | 
 | 468 |     } | 
 | 469 |     CloseHandle(token); | 
 | 470 |   } | 
 | 471 |   return ret; | 
 | 472 | } | 
 | 473 | }  // namespace talk_base |