niklase@google.com | 77ae29b | 2011-05-30 11:22:19 +0000 | [diff] [blame] | 1 | /* |
| 2 | * http://www.kurims.kyoto-u.ac.jp/~ooura/fft.html |
| 3 | * Copyright Takuya OOURA, 1996-2001 |
| 4 | * |
| 5 | * You may use, copy, modify and distribute this code for any purpose (include |
| 6 | * commercial use) and without fee. Please refer to this package when you modify |
| 7 | * this code. |
| 8 | * |
| 9 | * Changes: |
| 10 | * Trivial type modifications by the WebRTC authors. |
| 11 | */ |
| 12 | |
| 13 | /* |
| 14 | Fast Fourier/Cosine/Sine Transform |
| 15 | dimension :one |
| 16 | data length :power of 2 |
| 17 | decimation :frequency |
| 18 | radix :4, 2 |
| 19 | data :inplace |
| 20 | table :use |
| 21 | functions |
| 22 | cdft: Complex Discrete Fourier Transform |
| 23 | rdft: Real Discrete Fourier Transform |
| 24 | ddct: Discrete Cosine Transform |
| 25 | ddst: Discrete Sine Transform |
| 26 | dfct: Cosine Transform of RDFT (Real Symmetric DFT) |
| 27 | dfst: Sine Transform of RDFT (Real Anti-symmetric DFT) |
| 28 | function prototypes |
| 29 | void cdft(int, int, float *, int *, float *); |
| 30 | void rdft(int, int, float *, int *, float *); |
| 31 | void ddct(int, int, float *, int *, float *); |
| 32 | void ddst(int, int, float *, int *, float *); |
| 33 | void dfct(int, float *, float *, int *, float *); |
| 34 | void dfst(int, float *, float *, int *, float *); |
| 35 | |
| 36 | |
| 37 | -------- Complex DFT (Discrete Fourier Transform) -------- |
| 38 | [definition] |
| 39 | <case1> |
| 40 | X[k] = sum_j=0^n-1 x[j]*exp(2*pi*i*j*k/n), 0<=k<n |
| 41 | <case2> |
| 42 | X[k] = sum_j=0^n-1 x[j]*exp(-2*pi*i*j*k/n), 0<=k<n |
| 43 | (notes: sum_j=0^n-1 is a summation from j=0 to n-1) |
| 44 | [usage] |
| 45 | <case1> |
| 46 | ip[0] = 0; // first time only |
| 47 | cdft(2*n, 1, a, ip, w); |
| 48 | <case2> |
| 49 | ip[0] = 0; // first time only |
| 50 | cdft(2*n, -1, a, ip, w); |
| 51 | [parameters] |
| 52 | 2*n :data length (int) |
| 53 | n >= 1, n = power of 2 |
| 54 | a[0...2*n-1] :input/output data (float *) |
| 55 | input data |
| 56 | a[2*j] = Re(x[j]), |
| 57 | a[2*j+1] = Im(x[j]), 0<=j<n |
| 58 | output data |
| 59 | a[2*k] = Re(X[k]), |
| 60 | a[2*k+1] = Im(X[k]), 0<=k<n |
| 61 | ip[0...*] :work area for bit reversal (int *) |
| 62 | length of ip >= 2+sqrt(n) |
| 63 | strictly, |
| 64 | length of ip >= |
| 65 | 2+(1<<(int)(log(n+0.5)/log(2))/2). |
| 66 | ip[0],ip[1] are pointers of the cos/sin table. |
| 67 | w[0...n/2-1] :cos/sin table (float *) |
| 68 | w[],ip[] are initialized if ip[0] == 0. |
| 69 | [remark] |
| 70 | Inverse of |
| 71 | cdft(2*n, -1, a, ip, w); |
| 72 | is |
| 73 | cdft(2*n, 1, a, ip, w); |
| 74 | for (j = 0; j <= 2 * n - 1; j++) { |
| 75 | a[j] *= 1.0 / n; |
| 76 | } |
| 77 | . |
| 78 | |
| 79 | |
| 80 | -------- Real DFT / Inverse of Real DFT -------- |
| 81 | [definition] |
| 82 | <case1> RDFT |
| 83 | R[k] = sum_j=0^n-1 a[j]*cos(2*pi*j*k/n), 0<=k<=n/2 |
| 84 | I[k] = sum_j=0^n-1 a[j]*sin(2*pi*j*k/n), 0<k<n/2 |
| 85 | <case2> IRDFT (excluding scale) |
| 86 | a[k] = (R[0] + R[n/2]*cos(pi*k))/2 + |
| 87 | sum_j=1^n/2-1 R[j]*cos(2*pi*j*k/n) + |
| 88 | sum_j=1^n/2-1 I[j]*sin(2*pi*j*k/n), 0<=k<n |
| 89 | [usage] |
| 90 | <case1> |
| 91 | ip[0] = 0; // first time only |
| 92 | rdft(n, 1, a, ip, w); |
| 93 | <case2> |
| 94 | ip[0] = 0; // first time only |
| 95 | rdft(n, -1, a, ip, w); |
| 96 | [parameters] |
| 97 | n :data length (int) |
| 98 | n >= 2, n = power of 2 |
| 99 | a[0...n-1] :input/output data (float *) |
| 100 | <case1> |
| 101 | output data |
| 102 | a[2*k] = R[k], 0<=k<n/2 |
| 103 | a[2*k+1] = I[k], 0<k<n/2 |
| 104 | a[1] = R[n/2] |
| 105 | <case2> |
| 106 | input data |
| 107 | a[2*j] = R[j], 0<=j<n/2 |
| 108 | a[2*j+1] = I[j], 0<j<n/2 |
| 109 | a[1] = R[n/2] |
| 110 | ip[0...*] :work area for bit reversal (int *) |
| 111 | length of ip >= 2+sqrt(n/2) |
| 112 | strictly, |
| 113 | length of ip >= |
| 114 | 2+(1<<(int)(log(n/2+0.5)/log(2))/2). |
| 115 | ip[0],ip[1] are pointers of the cos/sin table. |
| 116 | w[0...n/2-1] :cos/sin table (float *) |
| 117 | w[],ip[] are initialized if ip[0] == 0. |
| 118 | [remark] |
| 119 | Inverse of |
| 120 | rdft(n, 1, a, ip, w); |
| 121 | is |
| 122 | rdft(n, -1, a, ip, w); |
| 123 | for (j = 0; j <= n - 1; j++) { |
| 124 | a[j] *= 2.0 / n; |
| 125 | } |
| 126 | . |
| 127 | |
| 128 | |
| 129 | -------- DCT (Discrete Cosine Transform) / Inverse of DCT -------- |
| 130 | [definition] |
| 131 | <case1> IDCT (excluding scale) |
| 132 | C[k] = sum_j=0^n-1 a[j]*cos(pi*j*(k+1/2)/n), 0<=k<n |
| 133 | <case2> DCT |
| 134 | C[k] = sum_j=0^n-1 a[j]*cos(pi*(j+1/2)*k/n), 0<=k<n |
| 135 | [usage] |
| 136 | <case1> |
| 137 | ip[0] = 0; // first time only |
| 138 | ddct(n, 1, a, ip, w); |
| 139 | <case2> |
| 140 | ip[0] = 0; // first time only |
| 141 | ddct(n, -1, a, ip, w); |
| 142 | [parameters] |
| 143 | n :data length (int) |
| 144 | n >= 2, n = power of 2 |
| 145 | a[0...n-1] :input/output data (float *) |
| 146 | output data |
| 147 | a[k] = C[k], 0<=k<n |
| 148 | ip[0...*] :work area for bit reversal (int *) |
| 149 | length of ip >= 2+sqrt(n/2) |
| 150 | strictly, |
| 151 | length of ip >= |
| 152 | 2+(1<<(int)(log(n/2+0.5)/log(2))/2). |
| 153 | ip[0],ip[1] are pointers of the cos/sin table. |
| 154 | w[0...n*5/4-1] :cos/sin table (float *) |
| 155 | w[],ip[] are initialized if ip[0] == 0. |
| 156 | [remark] |
| 157 | Inverse of |
| 158 | ddct(n, -1, a, ip, w); |
| 159 | is |
| 160 | a[0] *= 0.5; |
| 161 | ddct(n, 1, a, ip, w); |
| 162 | for (j = 0; j <= n - 1; j++) { |
| 163 | a[j] *= 2.0 / n; |
| 164 | } |
| 165 | . |
| 166 | |
| 167 | |
| 168 | -------- DST (Discrete Sine Transform) / Inverse of DST -------- |
| 169 | [definition] |
| 170 | <case1> IDST (excluding scale) |
| 171 | S[k] = sum_j=1^n A[j]*sin(pi*j*(k+1/2)/n), 0<=k<n |
| 172 | <case2> DST |
| 173 | S[k] = sum_j=0^n-1 a[j]*sin(pi*(j+1/2)*k/n), 0<k<=n |
| 174 | [usage] |
| 175 | <case1> |
| 176 | ip[0] = 0; // first time only |
| 177 | ddst(n, 1, a, ip, w); |
| 178 | <case2> |
| 179 | ip[0] = 0; // first time only |
| 180 | ddst(n, -1, a, ip, w); |
| 181 | [parameters] |
| 182 | n :data length (int) |
| 183 | n >= 2, n = power of 2 |
| 184 | a[0...n-1] :input/output data (float *) |
| 185 | <case1> |
| 186 | input data |
| 187 | a[j] = A[j], 0<j<n |
| 188 | a[0] = A[n] |
| 189 | output data |
| 190 | a[k] = S[k], 0<=k<n |
| 191 | <case2> |
| 192 | output data |
| 193 | a[k] = S[k], 0<k<n |
| 194 | a[0] = S[n] |
| 195 | ip[0...*] :work area for bit reversal (int *) |
| 196 | length of ip >= 2+sqrt(n/2) |
| 197 | strictly, |
| 198 | length of ip >= |
| 199 | 2+(1<<(int)(log(n/2+0.5)/log(2))/2). |
| 200 | ip[0],ip[1] are pointers of the cos/sin table. |
| 201 | w[0...n*5/4-1] :cos/sin table (float *) |
| 202 | w[],ip[] are initialized if ip[0] == 0. |
| 203 | [remark] |
| 204 | Inverse of |
| 205 | ddst(n, -1, a, ip, w); |
| 206 | is |
| 207 | a[0] *= 0.5; |
| 208 | ddst(n, 1, a, ip, w); |
| 209 | for (j = 0; j <= n - 1; j++) { |
| 210 | a[j] *= 2.0 / n; |
| 211 | } |
| 212 | . |
| 213 | |
| 214 | |
| 215 | -------- Cosine Transform of RDFT (Real Symmetric DFT) -------- |
| 216 | [definition] |
| 217 | C[k] = sum_j=0^n a[j]*cos(pi*j*k/n), 0<=k<=n |
| 218 | [usage] |
| 219 | ip[0] = 0; // first time only |
| 220 | dfct(n, a, t, ip, w); |
| 221 | [parameters] |
| 222 | n :data length - 1 (int) |
| 223 | n >= 2, n = power of 2 |
| 224 | a[0...n] :input/output data (float *) |
| 225 | output data |
| 226 | a[k] = C[k], 0<=k<=n |
| 227 | t[0...n/2] :work area (float *) |
| 228 | ip[0...*] :work area for bit reversal (int *) |
| 229 | length of ip >= 2+sqrt(n/4) |
| 230 | strictly, |
| 231 | length of ip >= |
| 232 | 2+(1<<(int)(log(n/4+0.5)/log(2))/2). |
| 233 | ip[0],ip[1] are pointers of the cos/sin table. |
| 234 | w[0...n*5/8-1] :cos/sin table (float *) |
| 235 | w[],ip[] are initialized if ip[0] == 0. |
| 236 | [remark] |
| 237 | Inverse of |
| 238 | a[0] *= 0.5; |
| 239 | a[n] *= 0.5; |
| 240 | dfct(n, a, t, ip, w); |
| 241 | is |
| 242 | a[0] *= 0.5; |
| 243 | a[n] *= 0.5; |
| 244 | dfct(n, a, t, ip, w); |
| 245 | for (j = 0; j <= n; j++) { |
| 246 | a[j] *= 2.0 / n; |
| 247 | } |
| 248 | . |
| 249 | |
| 250 | |
| 251 | -------- Sine Transform of RDFT (Real Anti-symmetric DFT) -------- |
| 252 | [definition] |
| 253 | S[k] = sum_j=1^n-1 a[j]*sin(pi*j*k/n), 0<k<n |
| 254 | [usage] |
| 255 | ip[0] = 0; // first time only |
| 256 | dfst(n, a, t, ip, w); |
| 257 | [parameters] |
| 258 | n :data length + 1 (int) |
| 259 | n >= 2, n = power of 2 |
| 260 | a[0...n-1] :input/output data (float *) |
| 261 | output data |
| 262 | a[k] = S[k], 0<k<n |
| 263 | (a[0] is used for work area) |
| 264 | t[0...n/2-1] :work area (float *) |
| 265 | ip[0...*] :work area for bit reversal (int *) |
| 266 | length of ip >= 2+sqrt(n/4) |
| 267 | strictly, |
| 268 | length of ip >= |
| 269 | 2+(1<<(int)(log(n/4+0.5)/log(2))/2). |
| 270 | ip[0],ip[1] are pointers of the cos/sin table. |
| 271 | w[0...n*5/8-1] :cos/sin table (float *) |
| 272 | w[],ip[] are initialized if ip[0] == 0. |
| 273 | [remark] |
| 274 | Inverse of |
| 275 | dfst(n, a, t, ip, w); |
| 276 | is |
| 277 | dfst(n, a, t, ip, w); |
| 278 | for (j = 1; j <= n - 1; j++) { |
| 279 | a[j] *= 2.0 / n; |
| 280 | } |
| 281 | . |
| 282 | |
| 283 | |
| 284 | Appendix : |
| 285 | The cos/sin table is recalculated when the larger table required. |
| 286 | w[] and ip[] are compatible with all routines. |
| 287 | */ |
| 288 | |
| 289 | void cdft(int n, int isgn, float *a, int *ip, float *w) |
| 290 | { |
| 291 | void makewt(int nw, int *ip, float *w); |
| 292 | void bitrv2(int n, int *ip, float *a); |
| 293 | void bitrv2conj(int n, int *ip, float *a); |
| 294 | void cftfsub(int n, float *a, float *w); |
| 295 | void cftbsub(int n, float *a, float *w); |
| 296 | |
| 297 | if (n > (ip[0] << 2)) { |
| 298 | makewt(n >> 2, ip, w); |
| 299 | } |
| 300 | if (n > 4) { |
| 301 | if (isgn >= 0) { |
| 302 | bitrv2(n, ip + 2, a); |
| 303 | cftfsub(n, a, w); |
| 304 | } else { |
| 305 | bitrv2conj(n, ip + 2, a); |
| 306 | cftbsub(n, a, w); |
| 307 | } |
| 308 | } else if (n == 4) { |
| 309 | cftfsub(n, a, w); |
| 310 | } |
| 311 | } |
| 312 | |
| 313 | |
| 314 | void rdft(int n, int isgn, float *a, int *ip, float *w) |
| 315 | { |
| 316 | void makewt(int nw, int *ip, float *w); |
| 317 | void makect(int nc, int *ip, float *c); |
| 318 | void bitrv2(int n, int *ip, float *a); |
| 319 | void cftfsub(int n, float *a, float *w); |
| 320 | void cftbsub(int n, float *a, float *w); |
| 321 | void rftfsub(int n, float *a, int nc, float *c); |
| 322 | void rftbsub(int n, float *a, int nc, float *c); |
| 323 | int nw, nc; |
| 324 | float xi; |
| 325 | |
| 326 | nw = ip[0]; |
| 327 | if (n > (nw << 2)) { |
| 328 | nw = n >> 2; |
| 329 | makewt(nw, ip, w); |
| 330 | } |
| 331 | nc = ip[1]; |
| 332 | if (n > (nc << 2)) { |
| 333 | nc = n >> 2; |
| 334 | makect(nc, ip, w + nw); |
| 335 | } |
| 336 | if (isgn >= 0) { |
| 337 | if (n > 4) { |
| 338 | bitrv2(n, ip + 2, a); |
| 339 | cftfsub(n, a, w); |
| 340 | rftfsub(n, a, nc, w + nw); |
| 341 | } else if (n == 4) { |
| 342 | cftfsub(n, a, w); |
| 343 | } |
| 344 | xi = a[0] - a[1]; |
| 345 | a[0] += a[1]; |
| 346 | a[1] = xi; |
| 347 | } else { |
| 348 | a[1] = 0.5f * (a[0] - a[1]); |
| 349 | a[0] -= a[1]; |
| 350 | if (n > 4) { |
| 351 | rftbsub(n, a, nc, w + nw); |
| 352 | bitrv2(n, ip + 2, a); |
| 353 | cftbsub(n, a, w); |
| 354 | } else if (n == 4) { |
| 355 | cftfsub(n, a, w); |
| 356 | } |
| 357 | } |
| 358 | } |
| 359 | |
| 360 | |
| 361 | void ddct(int n, int isgn, float *a, int *ip, float *w) |
| 362 | { |
| 363 | void makewt(int nw, int *ip, float *w); |
| 364 | void makect(int nc, int *ip, float *c); |
| 365 | void bitrv2(int n, int *ip, float *a); |
| 366 | void cftfsub(int n, float *a, float *w); |
| 367 | void cftbsub(int n, float *a, float *w); |
| 368 | void rftfsub(int n, float *a, int nc, float *c); |
| 369 | void rftbsub(int n, float *a, int nc, float *c); |
| 370 | void dctsub(int n, float *a, int nc, float *c); |
| 371 | int j, nw, nc; |
| 372 | float xr; |
| 373 | |
| 374 | nw = ip[0]; |
| 375 | if (n > (nw << 2)) { |
| 376 | nw = n >> 2; |
| 377 | makewt(nw, ip, w); |
| 378 | } |
| 379 | nc = ip[1]; |
| 380 | if (n > nc) { |
| 381 | nc = n; |
| 382 | makect(nc, ip, w + nw); |
| 383 | } |
| 384 | if (isgn < 0) { |
| 385 | xr = a[n - 1]; |
| 386 | for (j = n - 2; j >= 2; j -= 2) { |
| 387 | a[j + 1] = a[j] - a[j - 1]; |
| 388 | a[j] += a[j - 1]; |
| 389 | } |
| 390 | a[1] = a[0] - xr; |
| 391 | a[0] += xr; |
| 392 | if (n > 4) { |
| 393 | rftbsub(n, a, nc, w + nw); |
| 394 | bitrv2(n, ip + 2, a); |
| 395 | cftbsub(n, a, w); |
| 396 | } else if (n == 4) { |
| 397 | cftfsub(n, a, w); |
| 398 | } |
| 399 | } |
| 400 | dctsub(n, a, nc, w + nw); |
| 401 | if (isgn >= 0) { |
| 402 | if (n > 4) { |
| 403 | bitrv2(n, ip + 2, a); |
| 404 | cftfsub(n, a, w); |
| 405 | rftfsub(n, a, nc, w + nw); |
| 406 | } else if (n == 4) { |
| 407 | cftfsub(n, a, w); |
| 408 | } |
| 409 | xr = a[0] - a[1]; |
| 410 | a[0] += a[1]; |
| 411 | for (j = 2; j < n; j += 2) { |
| 412 | a[j - 1] = a[j] - a[j + 1]; |
| 413 | a[j] += a[j + 1]; |
| 414 | } |
| 415 | a[n - 1] = xr; |
| 416 | } |
| 417 | } |
| 418 | |
| 419 | |
| 420 | void ddst(int n, int isgn, float *a, int *ip, float *w) |
| 421 | { |
| 422 | void makewt(int nw, int *ip, float *w); |
| 423 | void makect(int nc, int *ip, float *c); |
| 424 | void bitrv2(int n, int *ip, float *a); |
| 425 | void cftfsub(int n, float *a, float *w); |
| 426 | void cftbsub(int n, float *a, float *w); |
| 427 | void rftfsub(int n, float *a, int nc, float *c); |
| 428 | void rftbsub(int n, float *a, int nc, float *c); |
| 429 | void dstsub(int n, float *a, int nc, float *c); |
| 430 | int j, nw, nc; |
| 431 | float xr; |
| 432 | |
| 433 | nw = ip[0]; |
| 434 | if (n > (nw << 2)) { |
| 435 | nw = n >> 2; |
| 436 | makewt(nw, ip, w); |
| 437 | } |
| 438 | nc = ip[1]; |
| 439 | if (n > nc) { |
| 440 | nc = n; |
| 441 | makect(nc, ip, w + nw); |
| 442 | } |
| 443 | if (isgn < 0) { |
| 444 | xr = a[n - 1]; |
| 445 | for (j = n - 2; j >= 2; j -= 2) { |
| 446 | a[j + 1] = -a[j] - a[j - 1]; |
| 447 | a[j] -= a[j - 1]; |
| 448 | } |
| 449 | a[1] = a[0] + xr; |
| 450 | a[0] -= xr; |
| 451 | if (n > 4) { |
| 452 | rftbsub(n, a, nc, w + nw); |
| 453 | bitrv2(n, ip + 2, a); |
| 454 | cftbsub(n, a, w); |
| 455 | } else if (n == 4) { |
| 456 | cftfsub(n, a, w); |
| 457 | } |
| 458 | } |
| 459 | dstsub(n, a, nc, w + nw); |
| 460 | if (isgn >= 0) { |
| 461 | if (n > 4) { |
| 462 | bitrv2(n, ip + 2, a); |
| 463 | cftfsub(n, a, w); |
| 464 | rftfsub(n, a, nc, w + nw); |
| 465 | } else if (n == 4) { |
| 466 | cftfsub(n, a, w); |
| 467 | } |
| 468 | xr = a[0] - a[1]; |
| 469 | a[0] += a[1]; |
| 470 | for (j = 2; j < n; j += 2) { |
| 471 | a[j - 1] = -a[j] - a[j + 1]; |
| 472 | a[j] -= a[j + 1]; |
| 473 | } |
| 474 | a[n - 1] = -xr; |
| 475 | } |
| 476 | } |
| 477 | |
| 478 | |
| 479 | void dfct(int n, float *a, float *t, int *ip, float *w) |
| 480 | { |
| 481 | void makewt(int nw, int *ip, float *w); |
| 482 | void makect(int nc, int *ip, float *c); |
| 483 | void bitrv2(int n, int *ip, float *a); |
| 484 | void cftfsub(int n, float *a, float *w); |
| 485 | void rftfsub(int n, float *a, int nc, float *c); |
| 486 | void dctsub(int n, float *a, int nc, float *c); |
| 487 | int j, k, l, m, mh, nw, nc; |
| 488 | float xr, xi, yr, yi; |
| 489 | |
| 490 | nw = ip[0]; |
| 491 | if (n > (nw << 3)) { |
| 492 | nw = n >> 3; |
| 493 | makewt(nw, ip, w); |
| 494 | } |
| 495 | nc = ip[1]; |
| 496 | if (n > (nc << 1)) { |
| 497 | nc = n >> 1; |
| 498 | makect(nc, ip, w + nw); |
| 499 | } |
| 500 | m = n >> 1; |
| 501 | yi = a[m]; |
| 502 | xi = a[0] + a[n]; |
| 503 | a[0] -= a[n]; |
| 504 | t[0] = xi - yi; |
| 505 | t[m] = xi + yi; |
| 506 | if (n > 2) { |
| 507 | mh = m >> 1; |
| 508 | for (j = 1; j < mh; j++) { |
| 509 | k = m - j; |
| 510 | xr = a[j] - a[n - j]; |
| 511 | xi = a[j] + a[n - j]; |
| 512 | yr = a[k] - a[n - k]; |
| 513 | yi = a[k] + a[n - k]; |
| 514 | a[j] = xr; |
| 515 | a[k] = yr; |
| 516 | t[j] = xi - yi; |
| 517 | t[k] = xi + yi; |
| 518 | } |
| 519 | t[mh] = a[mh] + a[n - mh]; |
| 520 | a[mh] -= a[n - mh]; |
| 521 | dctsub(m, a, nc, w + nw); |
| 522 | if (m > 4) { |
| 523 | bitrv2(m, ip + 2, a); |
| 524 | cftfsub(m, a, w); |
| 525 | rftfsub(m, a, nc, w + nw); |
| 526 | } else if (m == 4) { |
| 527 | cftfsub(m, a, w); |
| 528 | } |
| 529 | a[n - 1] = a[0] - a[1]; |
| 530 | a[1] = a[0] + a[1]; |
| 531 | for (j = m - 2; j >= 2; j -= 2) { |
| 532 | a[2 * j + 1] = a[j] + a[j + 1]; |
| 533 | a[2 * j - 1] = a[j] - a[j + 1]; |
| 534 | } |
| 535 | l = 2; |
| 536 | m = mh; |
| 537 | while (m >= 2) { |
| 538 | dctsub(m, t, nc, w + nw); |
| 539 | if (m > 4) { |
| 540 | bitrv2(m, ip + 2, t); |
| 541 | cftfsub(m, t, w); |
| 542 | rftfsub(m, t, nc, w + nw); |
| 543 | } else if (m == 4) { |
| 544 | cftfsub(m, t, w); |
| 545 | } |
| 546 | a[n - l] = t[0] - t[1]; |
| 547 | a[l] = t[0] + t[1]; |
| 548 | k = 0; |
| 549 | for (j = 2; j < m; j += 2) { |
| 550 | k += l << 2; |
| 551 | a[k - l] = t[j] - t[j + 1]; |
| 552 | a[k + l] = t[j] + t[j + 1]; |
| 553 | } |
| 554 | l <<= 1; |
| 555 | mh = m >> 1; |
| 556 | for (j = 0; j < mh; j++) { |
| 557 | k = m - j; |
| 558 | t[j] = t[m + k] - t[m + j]; |
| 559 | t[k] = t[m + k] + t[m + j]; |
| 560 | } |
| 561 | t[mh] = t[m + mh]; |
| 562 | m = mh; |
| 563 | } |
| 564 | a[l] = t[0]; |
| 565 | a[n] = t[2] - t[1]; |
| 566 | a[0] = t[2] + t[1]; |
| 567 | } else { |
| 568 | a[1] = a[0]; |
| 569 | a[2] = t[0]; |
| 570 | a[0] = t[1]; |
| 571 | } |
| 572 | } |
| 573 | |
| 574 | |
| 575 | void dfst(int n, float *a, float *t, int *ip, float *w) |
| 576 | { |
| 577 | void makewt(int nw, int *ip, float *w); |
| 578 | void makect(int nc, int *ip, float *c); |
| 579 | void bitrv2(int n, int *ip, float *a); |
| 580 | void cftfsub(int n, float *a, float *w); |
| 581 | void rftfsub(int n, float *a, int nc, float *c); |
| 582 | void dstsub(int n, float *a, int nc, float *c); |
| 583 | int j, k, l, m, mh, nw, nc; |
| 584 | float xr, xi, yr, yi; |
| 585 | |
| 586 | nw = ip[0]; |
| 587 | if (n > (nw << 3)) { |
| 588 | nw = n >> 3; |
| 589 | makewt(nw, ip, w); |
| 590 | } |
| 591 | nc = ip[1]; |
| 592 | if (n > (nc << 1)) { |
| 593 | nc = n >> 1; |
| 594 | makect(nc, ip, w + nw); |
| 595 | } |
| 596 | if (n > 2) { |
| 597 | m = n >> 1; |
| 598 | mh = m >> 1; |
| 599 | for (j = 1; j < mh; j++) { |
| 600 | k = m - j; |
| 601 | xr = a[j] + a[n - j]; |
| 602 | xi = a[j] - a[n - j]; |
| 603 | yr = a[k] + a[n - k]; |
| 604 | yi = a[k] - a[n - k]; |
| 605 | a[j] = xr; |
| 606 | a[k] = yr; |
| 607 | t[j] = xi + yi; |
| 608 | t[k] = xi - yi; |
| 609 | } |
| 610 | t[0] = a[mh] - a[n - mh]; |
| 611 | a[mh] += a[n - mh]; |
| 612 | a[0] = a[m]; |
| 613 | dstsub(m, a, nc, w + nw); |
| 614 | if (m > 4) { |
| 615 | bitrv2(m, ip + 2, a); |
| 616 | cftfsub(m, a, w); |
| 617 | rftfsub(m, a, nc, w + nw); |
| 618 | } else if (m == 4) { |
| 619 | cftfsub(m, a, w); |
| 620 | } |
| 621 | a[n - 1] = a[1] - a[0]; |
| 622 | a[1] = a[0] + a[1]; |
| 623 | for (j = m - 2; j >= 2; j -= 2) { |
| 624 | a[2 * j + 1] = a[j] - a[j + 1]; |
| 625 | a[2 * j - 1] = -a[j] - a[j + 1]; |
| 626 | } |
| 627 | l = 2; |
| 628 | m = mh; |
| 629 | while (m >= 2) { |
| 630 | dstsub(m, t, nc, w + nw); |
| 631 | if (m > 4) { |
| 632 | bitrv2(m, ip + 2, t); |
| 633 | cftfsub(m, t, w); |
| 634 | rftfsub(m, t, nc, w + nw); |
| 635 | } else if (m == 4) { |
| 636 | cftfsub(m, t, w); |
| 637 | } |
| 638 | a[n - l] = t[1] - t[0]; |
| 639 | a[l] = t[0] + t[1]; |
| 640 | k = 0; |
| 641 | for (j = 2; j < m; j += 2) { |
| 642 | k += l << 2; |
| 643 | a[k - l] = -t[j] - t[j + 1]; |
| 644 | a[k + l] = t[j] - t[j + 1]; |
| 645 | } |
| 646 | l <<= 1; |
| 647 | mh = m >> 1; |
| 648 | for (j = 1; j < mh; j++) { |
| 649 | k = m - j; |
| 650 | t[j] = t[m + k] + t[m + j]; |
| 651 | t[k] = t[m + k] - t[m + j]; |
| 652 | } |
| 653 | t[0] = t[m + mh]; |
| 654 | m = mh; |
| 655 | } |
| 656 | a[l] = t[0]; |
| 657 | } |
| 658 | a[0] = 0; |
| 659 | } |
| 660 | |
| 661 | |
| 662 | /* -------- initializing routines -------- */ |
| 663 | |
| 664 | |
| 665 | #include <math.h> |
| 666 | |
| 667 | void makewt(int nw, int *ip, float *w) |
| 668 | { |
| 669 | void bitrv2(int n, int *ip, float *a); |
| 670 | int j, nwh; |
| 671 | float delta, x, y; |
| 672 | |
| 673 | ip[0] = nw; |
| 674 | ip[1] = 1; |
| 675 | if (nw > 2) { |
| 676 | nwh = nw >> 1; |
| 677 | delta = (float)atan(1.0f) / nwh; |
| 678 | w[0] = 1; |
| 679 | w[1] = 0; |
| 680 | w[nwh] = (float)cos(delta * nwh); |
| 681 | w[nwh + 1] = w[nwh]; |
| 682 | if (nwh > 2) { |
| 683 | for (j = 2; j < nwh; j += 2) { |
| 684 | x = (float)cos(delta * j); |
| 685 | y = (float)sin(delta * j); |
| 686 | w[j] = x; |
| 687 | w[j + 1] = y; |
| 688 | w[nw - j] = y; |
| 689 | w[nw - j + 1] = x; |
| 690 | } |
| 691 | bitrv2(nw, ip + 2, w); |
| 692 | } |
| 693 | } |
| 694 | } |
| 695 | |
| 696 | |
| 697 | void makect(int nc, int *ip, float *c) |
| 698 | { |
| 699 | int j, nch; |
| 700 | float delta; |
| 701 | |
| 702 | ip[1] = nc; |
| 703 | if (nc > 1) { |
| 704 | nch = nc >> 1; |
| 705 | delta = (float)atan(1.0f) / nch; |
| 706 | c[0] = (float)cos(delta * nch); |
| 707 | c[nch] = 0.5f * c[0]; |
| 708 | for (j = 1; j < nch; j++) { |
| 709 | c[j] = 0.5f * (float)cos(delta * j); |
| 710 | c[nc - j] = 0.5f * (float)sin(delta * j); |
| 711 | } |
| 712 | } |
| 713 | } |
| 714 | |
| 715 | |
| 716 | /* -------- child routines -------- */ |
| 717 | |
| 718 | |
| 719 | void bitrv2(int n, int *ip, float *a) |
| 720 | { |
| 721 | int j, j1, k, k1, l, m, m2; |
| 722 | float xr, xi, yr, yi; |
| 723 | |
| 724 | ip[0] = 0; |
| 725 | l = n; |
| 726 | m = 1; |
| 727 | while ((m << 3) < l) { |
| 728 | l >>= 1; |
| 729 | for (j = 0; j < m; j++) { |
| 730 | ip[m + j] = ip[j] + l; |
| 731 | } |
| 732 | m <<= 1; |
| 733 | } |
| 734 | m2 = 2 * m; |
| 735 | if ((m << 3) == l) { |
| 736 | for (k = 0; k < m; k++) { |
| 737 | for (j = 0; j < k; j++) { |
| 738 | j1 = 2 * j + ip[k]; |
| 739 | k1 = 2 * k + ip[j]; |
| 740 | xr = a[j1]; |
| 741 | xi = a[j1 + 1]; |
| 742 | yr = a[k1]; |
| 743 | yi = a[k1 + 1]; |
| 744 | a[j1] = yr; |
| 745 | a[j1 + 1] = yi; |
| 746 | a[k1] = xr; |
| 747 | a[k1 + 1] = xi; |
| 748 | j1 += m2; |
| 749 | k1 += 2 * m2; |
| 750 | xr = a[j1]; |
| 751 | xi = a[j1 + 1]; |
| 752 | yr = a[k1]; |
| 753 | yi = a[k1 + 1]; |
| 754 | a[j1] = yr; |
| 755 | a[j1 + 1] = yi; |
| 756 | a[k1] = xr; |
| 757 | a[k1 + 1] = xi; |
| 758 | j1 += m2; |
| 759 | k1 -= m2; |
| 760 | xr = a[j1]; |
| 761 | xi = a[j1 + 1]; |
| 762 | yr = a[k1]; |
| 763 | yi = a[k1 + 1]; |
| 764 | a[j1] = yr; |
| 765 | a[j1 + 1] = yi; |
| 766 | a[k1] = xr; |
| 767 | a[k1 + 1] = xi; |
| 768 | j1 += m2; |
| 769 | k1 += 2 * m2; |
| 770 | xr = a[j1]; |
| 771 | xi = a[j1 + 1]; |
| 772 | yr = a[k1]; |
| 773 | yi = a[k1 + 1]; |
| 774 | a[j1] = yr; |
| 775 | a[j1 + 1] = yi; |
| 776 | a[k1] = xr; |
| 777 | a[k1 + 1] = xi; |
| 778 | } |
| 779 | j1 = 2 * k + m2 + ip[k]; |
| 780 | k1 = j1 + m2; |
| 781 | xr = a[j1]; |
| 782 | xi = a[j1 + 1]; |
| 783 | yr = a[k1]; |
| 784 | yi = a[k1 + 1]; |
| 785 | a[j1] = yr; |
| 786 | a[j1 + 1] = yi; |
| 787 | a[k1] = xr; |
| 788 | a[k1 + 1] = xi; |
| 789 | } |
| 790 | } else { |
| 791 | for (k = 1; k < m; k++) { |
| 792 | for (j = 0; j < k; j++) { |
| 793 | j1 = 2 * j + ip[k]; |
| 794 | k1 = 2 * k + ip[j]; |
| 795 | xr = a[j1]; |
| 796 | xi = a[j1 + 1]; |
| 797 | yr = a[k1]; |
| 798 | yi = a[k1 + 1]; |
| 799 | a[j1] = yr; |
| 800 | a[j1 + 1] = yi; |
| 801 | a[k1] = xr; |
| 802 | a[k1 + 1] = xi; |
| 803 | j1 += m2; |
| 804 | k1 += m2; |
| 805 | xr = a[j1]; |
| 806 | xi = a[j1 + 1]; |
| 807 | yr = a[k1]; |
| 808 | yi = a[k1 + 1]; |
| 809 | a[j1] = yr; |
| 810 | a[j1 + 1] = yi; |
| 811 | a[k1] = xr; |
| 812 | a[k1 + 1] = xi; |
| 813 | } |
| 814 | } |
| 815 | } |
| 816 | } |
| 817 | |
| 818 | |
| 819 | void bitrv2conj(int n, int *ip, float *a) |
| 820 | { |
| 821 | int j, j1, k, k1, l, m, m2; |
| 822 | float xr, xi, yr, yi; |
| 823 | |
| 824 | ip[0] = 0; |
| 825 | l = n; |
| 826 | m = 1; |
| 827 | while ((m << 3) < l) { |
| 828 | l >>= 1; |
| 829 | for (j = 0; j < m; j++) { |
| 830 | ip[m + j] = ip[j] + l; |
| 831 | } |
| 832 | m <<= 1; |
| 833 | } |
| 834 | m2 = 2 * m; |
| 835 | if ((m << 3) == l) { |
| 836 | for (k = 0; k < m; k++) { |
| 837 | for (j = 0; j < k; j++) { |
| 838 | j1 = 2 * j + ip[k]; |
| 839 | k1 = 2 * k + ip[j]; |
| 840 | xr = a[j1]; |
| 841 | xi = -a[j1 + 1]; |
| 842 | yr = a[k1]; |
| 843 | yi = -a[k1 + 1]; |
| 844 | a[j1] = yr; |
| 845 | a[j1 + 1] = yi; |
| 846 | a[k1] = xr; |
| 847 | a[k1 + 1] = xi; |
| 848 | j1 += m2; |
| 849 | k1 += 2 * m2; |
| 850 | xr = a[j1]; |
| 851 | xi = -a[j1 + 1]; |
| 852 | yr = a[k1]; |
| 853 | yi = -a[k1 + 1]; |
| 854 | a[j1] = yr; |
| 855 | a[j1 + 1] = yi; |
| 856 | a[k1] = xr; |
| 857 | a[k1 + 1] = xi; |
| 858 | j1 += m2; |
| 859 | k1 -= m2; |
| 860 | xr = a[j1]; |
| 861 | xi = -a[j1 + 1]; |
| 862 | yr = a[k1]; |
| 863 | yi = -a[k1 + 1]; |
| 864 | a[j1] = yr; |
| 865 | a[j1 + 1] = yi; |
| 866 | a[k1] = xr; |
| 867 | a[k1 + 1] = xi; |
| 868 | j1 += m2; |
| 869 | k1 += 2 * m2; |
| 870 | xr = a[j1]; |
| 871 | xi = -a[j1 + 1]; |
| 872 | yr = a[k1]; |
| 873 | yi = -a[k1 + 1]; |
| 874 | a[j1] = yr; |
| 875 | a[j1 + 1] = yi; |
| 876 | a[k1] = xr; |
| 877 | a[k1 + 1] = xi; |
| 878 | } |
| 879 | k1 = 2 * k + ip[k]; |
| 880 | a[k1 + 1] = -a[k1 + 1]; |
| 881 | j1 = k1 + m2; |
| 882 | k1 = j1 + m2; |
| 883 | xr = a[j1]; |
| 884 | xi = -a[j1 + 1]; |
| 885 | yr = a[k1]; |
| 886 | yi = -a[k1 + 1]; |
| 887 | a[j1] = yr; |
| 888 | a[j1 + 1] = yi; |
| 889 | a[k1] = xr; |
| 890 | a[k1 + 1] = xi; |
| 891 | k1 += m2; |
| 892 | a[k1 + 1] = -a[k1 + 1]; |
| 893 | } |
| 894 | } else { |
| 895 | a[1] = -a[1]; |
| 896 | a[m2 + 1] = -a[m2 + 1]; |
| 897 | for (k = 1; k < m; k++) { |
| 898 | for (j = 0; j < k; j++) { |
| 899 | j1 = 2 * j + ip[k]; |
| 900 | k1 = 2 * k + ip[j]; |
| 901 | xr = a[j1]; |
| 902 | xi = -a[j1 + 1]; |
| 903 | yr = a[k1]; |
| 904 | yi = -a[k1 + 1]; |
| 905 | a[j1] = yr; |
| 906 | a[j1 + 1] = yi; |
| 907 | a[k1] = xr; |
| 908 | a[k1 + 1] = xi; |
| 909 | j1 += m2; |
| 910 | k1 += m2; |
| 911 | xr = a[j1]; |
| 912 | xi = -a[j1 + 1]; |
| 913 | yr = a[k1]; |
| 914 | yi = -a[k1 + 1]; |
| 915 | a[j1] = yr; |
| 916 | a[j1 + 1] = yi; |
| 917 | a[k1] = xr; |
| 918 | a[k1 + 1] = xi; |
| 919 | } |
| 920 | k1 = 2 * k + ip[k]; |
| 921 | a[k1 + 1] = -a[k1 + 1]; |
| 922 | a[k1 + m2 + 1] = -a[k1 + m2 + 1]; |
| 923 | } |
| 924 | } |
| 925 | } |
| 926 | |
| 927 | |
| 928 | void cftfsub(int n, float *a, float *w) |
| 929 | { |
| 930 | void cft1st(int n, float *a, float *w); |
| 931 | void cftmdl(int n, int l, float *a, float *w); |
| 932 | int j, j1, j2, j3, l; |
| 933 | float x0r, x0i, x1r, x1i, x2r, x2i, x3r, x3i; |
| 934 | |
| 935 | l = 2; |
| 936 | if (n > 8) { |
| 937 | cft1st(n, a, w); |
| 938 | l = 8; |
| 939 | while ((l << 2) < n) { |
| 940 | cftmdl(n, l, a, w); |
| 941 | l <<= 2; |
| 942 | } |
| 943 | } |
| 944 | if ((l << 2) == n) { |
| 945 | for (j = 0; j < l; j += 2) { |
| 946 | j1 = j + l; |
| 947 | j2 = j1 + l; |
| 948 | j3 = j2 + l; |
| 949 | x0r = a[j] + a[j1]; |
| 950 | x0i = a[j + 1] + a[j1 + 1]; |
| 951 | x1r = a[j] - a[j1]; |
| 952 | x1i = a[j + 1] - a[j1 + 1]; |
| 953 | x2r = a[j2] + a[j3]; |
| 954 | x2i = a[j2 + 1] + a[j3 + 1]; |
| 955 | x3r = a[j2] - a[j3]; |
| 956 | x3i = a[j2 + 1] - a[j3 + 1]; |
| 957 | a[j] = x0r + x2r; |
| 958 | a[j + 1] = x0i + x2i; |
| 959 | a[j2] = x0r - x2r; |
| 960 | a[j2 + 1] = x0i - x2i; |
| 961 | a[j1] = x1r - x3i; |
| 962 | a[j1 + 1] = x1i + x3r; |
| 963 | a[j3] = x1r + x3i; |
| 964 | a[j3 + 1] = x1i - x3r; |
| 965 | } |
| 966 | } else { |
| 967 | for (j = 0; j < l; j += 2) { |
| 968 | j1 = j + l; |
| 969 | x0r = a[j] - a[j1]; |
| 970 | x0i = a[j + 1] - a[j1 + 1]; |
| 971 | a[j] += a[j1]; |
| 972 | a[j + 1] += a[j1 + 1]; |
| 973 | a[j1] = x0r; |
| 974 | a[j1 + 1] = x0i; |
| 975 | } |
| 976 | } |
| 977 | } |
| 978 | |
| 979 | |
| 980 | void cftbsub(int n, float *a, float *w) |
| 981 | { |
| 982 | void cft1st(int n, float *a, float *w); |
| 983 | void cftmdl(int n, int l, float *a, float *w); |
| 984 | int j, j1, j2, j3, l; |
| 985 | float x0r, x0i, x1r, x1i, x2r, x2i, x3r, x3i; |
| 986 | |
| 987 | l = 2; |
| 988 | if (n > 8) { |
| 989 | cft1st(n, a, w); |
| 990 | l = 8; |
| 991 | while ((l << 2) < n) { |
| 992 | cftmdl(n, l, a, w); |
| 993 | l <<= 2; |
| 994 | } |
| 995 | } |
| 996 | if ((l << 2) == n) { |
| 997 | for (j = 0; j < l; j += 2) { |
| 998 | j1 = j + l; |
| 999 | j2 = j1 + l; |
| 1000 | j3 = j2 + l; |
| 1001 | x0r = a[j] + a[j1]; |
| 1002 | x0i = -a[j + 1] - a[j1 + 1]; |
| 1003 | x1r = a[j] - a[j1]; |
| 1004 | x1i = -a[j + 1] + a[j1 + 1]; |
| 1005 | x2r = a[j2] + a[j3]; |
| 1006 | x2i = a[j2 + 1] + a[j3 + 1]; |
| 1007 | x3r = a[j2] - a[j3]; |
| 1008 | x3i = a[j2 + 1] - a[j3 + 1]; |
| 1009 | a[j] = x0r + x2r; |
| 1010 | a[j + 1] = x0i - x2i; |
| 1011 | a[j2] = x0r - x2r; |
| 1012 | a[j2 + 1] = x0i + x2i; |
| 1013 | a[j1] = x1r - x3i; |
| 1014 | a[j1 + 1] = x1i - x3r; |
| 1015 | a[j3] = x1r + x3i; |
| 1016 | a[j3 + 1] = x1i + x3r; |
| 1017 | } |
| 1018 | } else { |
| 1019 | for (j = 0; j < l; j += 2) { |
| 1020 | j1 = j + l; |
| 1021 | x0r = a[j] - a[j1]; |
| 1022 | x0i = -a[j + 1] + a[j1 + 1]; |
| 1023 | a[j] += a[j1]; |
| 1024 | a[j + 1] = -a[j + 1] - a[j1 + 1]; |
| 1025 | a[j1] = x0r; |
| 1026 | a[j1 + 1] = x0i; |
| 1027 | } |
| 1028 | } |
| 1029 | } |
| 1030 | |
| 1031 | |
| 1032 | void cft1st(int n, float *a, float *w) |
| 1033 | { |
| 1034 | int j, k1, k2; |
| 1035 | float wk1r, wk1i, wk2r, wk2i, wk3r, wk3i; |
| 1036 | float x0r, x0i, x1r, x1i, x2r, x2i, x3r, x3i; |
| 1037 | |
| 1038 | x0r = a[0] + a[2]; |
| 1039 | x0i = a[1] + a[3]; |
| 1040 | x1r = a[0] - a[2]; |
| 1041 | x1i = a[1] - a[3]; |
| 1042 | x2r = a[4] + a[6]; |
| 1043 | x2i = a[5] + a[7]; |
| 1044 | x3r = a[4] - a[6]; |
| 1045 | x3i = a[5] - a[7]; |
| 1046 | a[0] = x0r + x2r; |
| 1047 | a[1] = x0i + x2i; |
| 1048 | a[4] = x0r - x2r; |
| 1049 | a[5] = x0i - x2i; |
| 1050 | a[2] = x1r - x3i; |
| 1051 | a[3] = x1i + x3r; |
| 1052 | a[6] = x1r + x3i; |
| 1053 | a[7] = x1i - x3r; |
| 1054 | wk1r = w[2]; |
| 1055 | x0r = a[8] + a[10]; |
| 1056 | x0i = a[9] + a[11]; |
| 1057 | x1r = a[8] - a[10]; |
| 1058 | x1i = a[9] - a[11]; |
| 1059 | x2r = a[12] + a[14]; |
| 1060 | x2i = a[13] + a[15]; |
| 1061 | x3r = a[12] - a[14]; |
| 1062 | x3i = a[13] - a[15]; |
| 1063 | a[8] = x0r + x2r; |
| 1064 | a[9] = x0i + x2i; |
| 1065 | a[12] = x2i - x0i; |
| 1066 | a[13] = x0r - x2r; |
| 1067 | x0r = x1r - x3i; |
| 1068 | x0i = x1i + x3r; |
| 1069 | a[10] = wk1r * (x0r - x0i); |
| 1070 | a[11] = wk1r * (x0r + x0i); |
| 1071 | x0r = x3i + x1r; |
| 1072 | x0i = x3r - x1i; |
| 1073 | a[14] = wk1r * (x0i - x0r); |
| 1074 | a[15] = wk1r * (x0i + x0r); |
| 1075 | k1 = 0; |
| 1076 | for (j = 16; j < n; j += 16) { |
| 1077 | k1 += 2; |
| 1078 | k2 = 2 * k1; |
| 1079 | wk2r = w[k1]; |
| 1080 | wk2i = w[k1 + 1]; |
| 1081 | wk1r = w[k2]; |
| 1082 | wk1i = w[k2 + 1]; |
| 1083 | wk3r = wk1r - 2 * wk2i * wk1i; |
| 1084 | wk3i = 2 * wk2i * wk1r - wk1i; |
| 1085 | x0r = a[j] + a[j + 2]; |
| 1086 | x0i = a[j + 1] + a[j + 3]; |
| 1087 | x1r = a[j] - a[j + 2]; |
| 1088 | x1i = a[j + 1] - a[j + 3]; |
| 1089 | x2r = a[j + 4] + a[j + 6]; |
| 1090 | x2i = a[j + 5] + a[j + 7]; |
| 1091 | x3r = a[j + 4] - a[j + 6]; |
| 1092 | x3i = a[j + 5] - a[j + 7]; |
| 1093 | a[j] = x0r + x2r; |
| 1094 | a[j + 1] = x0i + x2i; |
| 1095 | x0r -= x2r; |
| 1096 | x0i -= x2i; |
| 1097 | a[j + 4] = wk2r * x0r - wk2i * x0i; |
| 1098 | a[j + 5] = wk2r * x0i + wk2i * x0r; |
| 1099 | x0r = x1r - x3i; |
| 1100 | x0i = x1i + x3r; |
| 1101 | a[j + 2] = wk1r * x0r - wk1i * x0i; |
| 1102 | a[j + 3] = wk1r * x0i + wk1i * x0r; |
| 1103 | x0r = x1r + x3i; |
| 1104 | x0i = x1i - x3r; |
| 1105 | a[j + 6] = wk3r * x0r - wk3i * x0i; |
| 1106 | a[j + 7] = wk3r * x0i + wk3i * x0r; |
| 1107 | wk1r = w[k2 + 2]; |
| 1108 | wk1i = w[k2 + 3]; |
| 1109 | wk3r = wk1r - 2 * wk2r * wk1i; |
| 1110 | wk3i = 2 * wk2r * wk1r - wk1i; |
| 1111 | x0r = a[j + 8] + a[j + 10]; |
| 1112 | x0i = a[j + 9] + a[j + 11]; |
| 1113 | x1r = a[j + 8] - a[j + 10]; |
| 1114 | x1i = a[j + 9] - a[j + 11]; |
| 1115 | x2r = a[j + 12] + a[j + 14]; |
| 1116 | x2i = a[j + 13] + a[j + 15]; |
| 1117 | x3r = a[j + 12] - a[j + 14]; |
| 1118 | x3i = a[j + 13] - a[j + 15]; |
| 1119 | a[j + 8] = x0r + x2r; |
| 1120 | a[j + 9] = x0i + x2i; |
| 1121 | x0r -= x2r; |
| 1122 | x0i -= x2i; |
| 1123 | a[j + 12] = -wk2i * x0r - wk2r * x0i; |
| 1124 | a[j + 13] = -wk2i * x0i + wk2r * x0r; |
| 1125 | x0r = x1r - x3i; |
| 1126 | x0i = x1i + x3r; |
| 1127 | a[j + 10] = wk1r * x0r - wk1i * x0i; |
| 1128 | a[j + 11] = wk1r * x0i + wk1i * x0r; |
| 1129 | x0r = x1r + x3i; |
| 1130 | x0i = x1i - x3r; |
| 1131 | a[j + 14] = wk3r * x0r - wk3i * x0i; |
| 1132 | a[j + 15] = wk3r * x0i + wk3i * x0r; |
| 1133 | } |
| 1134 | } |
| 1135 | |
| 1136 | |
| 1137 | void cftmdl(int n, int l, float *a, float *w) |
| 1138 | { |
| 1139 | int j, j1, j2, j3, k, k1, k2, m, m2; |
| 1140 | float wk1r, wk1i, wk2r, wk2i, wk3r, wk3i; |
| 1141 | float x0r, x0i, x1r, x1i, x2r, x2i, x3r, x3i; |
| 1142 | |
| 1143 | m = l << 2; |
| 1144 | for (j = 0; j < l; j += 2) { |
| 1145 | j1 = j + l; |
| 1146 | j2 = j1 + l; |
| 1147 | j3 = j2 + l; |
| 1148 | x0r = a[j] + a[j1]; |
| 1149 | x0i = a[j + 1] + a[j1 + 1]; |
| 1150 | x1r = a[j] - a[j1]; |
| 1151 | x1i = a[j + 1] - a[j1 + 1]; |
| 1152 | x2r = a[j2] + a[j3]; |
| 1153 | x2i = a[j2 + 1] + a[j3 + 1]; |
| 1154 | x3r = a[j2] - a[j3]; |
| 1155 | x3i = a[j2 + 1] - a[j3 + 1]; |
| 1156 | a[j] = x0r + x2r; |
| 1157 | a[j + 1] = x0i + x2i; |
| 1158 | a[j2] = x0r - x2r; |
| 1159 | a[j2 + 1] = x0i - x2i; |
| 1160 | a[j1] = x1r - x3i; |
| 1161 | a[j1 + 1] = x1i + x3r; |
| 1162 | a[j3] = x1r + x3i; |
| 1163 | a[j3 + 1] = x1i - x3r; |
| 1164 | } |
| 1165 | wk1r = w[2]; |
| 1166 | for (j = m; j < l + m; j += 2) { |
| 1167 | j1 = j + l; |
| 1168 | j2 = j1 + l; |
| 1169 | j3 = j2 + l; |
| 1170 | x0r = a[j] + a[j1]; |
| 1171 | x0i = a[j + 1] + a[j1 + 1]; |
| 1172 | x1r = a[j] - a[j1]; |
| 1173 | x1i = a[j + 1] - a[j1 + 1]; |
| 1174 | x2r = a[j2] + a[j3]; |
| 1175 | x2i = a[j2 + 1] + a[j3 + 1]; |
| 1176 | x3r = a[j2] - a[j3]; |
| 1177 | x3i = a[j2 + 1] - a[j3 + 1]; |
| 1178 | a[j] = x0r + x2r; |
| 1179 | a[j + 1] = x0i + x2i; |
| 1180 | a[j2] = x2i - x0i; |
| 1181 | a[j2 + 1] = x0r - x2r; |
| 1182 | x0r = x1r - x3i; |
| 1183 | x0i = x1i + x3r; |
| 1184 | a[j1] = wk1r * (x0r - x0i); |
| 1185 | a[j1 + 1] = wk1r * (x0r + x0i); |
| 1186 | x0r = x3i + x1r; |
| 1187 | x0i = x3r - x1i; |
| 1188 | a[j3] = wk1r * (x0i - x0r); |
| 1189 | a[j3 + 1] = wk1r * (x0i + x0r); |
| 1190 | } |
| 1191 | k1 = 0; |
| 1192 | m2 = 2 * m; |
| 1193 | for (k = m2; k < n; k += m2) { |
| 1194 | k1 += 2; |
| 1195 | k2 = 2 * k1; |
| 1196 | wk2r = w[k1]; |
| 1197 | wk2i = w[k1 + 1]; |
| 1198 | wk1r = w[k2]; |
| 1199 | wk1i = w[k2 + 1]; |
| 1200 | wk3r = wk1r - 2 * wk2i * wk1i; |
| 1201 | wk3i = 2 * wk2i * wk1r - wk1i; |
| 1202 | for (j = k; j < l + k; j += 2) { |
| 1203 | j1 = j + l; |
| 1204 | j2 = j1 + l; |
| 1205 | j3 = j2 + l; |
| 1206 | x0r = a[j] + a[j1]; |
| 1207 | x0i = a[j + 1] + a[j1 + 1]; |
| 1208 | x1r = a[j] - a[j1]; |
| 1209 | x1i = a[j + 1] - a[j1 + 1]; |
| 1210 | x2r = a[j2] + a[j3]; |
| 1211 | x2i = a[j2 + 1] + a[j3 + 1]; |
| 1212 | x3r = a[j2] - a[j3]; |
| 1213 | x3i = a[j2 + 1] - a[j3 + 1]; |
| 1214 | a[j] = x0r + x2r; |
| 1215 | a[j + 1] = x0i + x2i; |
| 1216 | x0r -= x2r; |
| 1217 | x0i -= x2i; |
| 1218 | a[j2] = wk2r * x0r - wk2i * x0i; |
| 1219 | a[j2 + 1] = wk2r * x0i + wk2i * x0r; |
| 1220 | x0r = x1r - x3i; |
| 1221 | x0i = x1i + x3r; |
| 1222 | a[j1] = wk1r * x0r - wk1i * x0i; |
| 1223 | a[j1 + 1] = wk1r * x0i + wk1i * x0r; |
| 1224 | x0r = x1r + x3i; |
| 1225 | x0i = x1i - x3r; |
| 1226 | a[j3] = wk3r * x0r - wk3i * x0i; |
| 1227 | a[j3 + 1] = wk3r * x0i + wk3i * x0r; |
| 1228 | } |
| 1229 | wk1r = w[k2 + 2]; |
| 1230 | wk1i = w[k2 + 3]; |
| 1231 | wk3r = wk1r - 2 * wk2r * wk1i; |
| 1232 | wk3i = 2 * wk2r * wk1r - wk1i; |
| 1233 | for (j = k + m; j < l + (k + m); j += 2) { |
| 1234 | j1 = j + l; |
| 1235 | j2 = j1 + l; |
| 1236 | j3 = j2 + l; |
| 1237 | x0r = a[j] + a[j1]; |
| 1238 | x0i = a[j + 1] + a[j1 + 1]; |
| 1239 | x1r = a[j] - a[j1]; |
| 1240 | x1i = a[j + 1] - a[j1 + 1]; |
| 1241 | x2r = a[j2] + a[j3]; |
| 1242 | x2i = a[j2 + 1] + a[j3 + 1]; |
| 1243 | x3r = a[j2] - a[j3]; |
| 1244 | x3i = a[j2 + 1] - a[j3 + 1]; |
| 1245 | a[j] = x0r + x2r; |
| 1246 | a[j + 1] = x0i + x2i; |
| 1247 | x0r -= x2r; |
| 1248 | x0i -= x2i; |
| 1249 | a[j2] = -wk2i * x0r - wk2r * x0i; |
| 1250 | a[j2 + 1] = -wk2i * x0i + wk2r * x0r; |
| 1251 | x0r = x1r - x3i; |
| 1252 | x0i = x1i + x3r; |
| 1253 | a[j1] = wk1r * x0r - wk1i * x0i; |
| 1254 | a[j1 + 1] = wk1r * x0i + wk1i * x0r; |
| 1255 | x0r = x1r + x3i; |
| 1256 | x0i = x1i - x3r; |
| 1257 | a[j3] = wk3r * x0r - wk3i * x0i; |
| 1258 | a[j3 + 1] = wk3r * x0i + wk3i * x0r; |
| 1259 | } |
| 1260 | } |
| 1261 | } |
| 1262 | |
| 1263 | |
| 1264 | void rftfsub(int n, float *a, int nc, float *c) |
| 1265 | { |
| 1266 | int j, k, kk, ks, m; |
| 1267 | float wkr, wki, xr, xi, yr, yi; |
| 1268 | |
| 1269 | m = n >> 1; |
| 1270 | ks = 2 * nc / m; |
| 1271 | kk = 0; |
| 1272 | for (j = 2; j < m; j += 2) { |
| 1273 | k = n - j; |
| 1274 | kk += ks; |
| 1275 | wkr = 0.5f - c[nc - kk]; |
| 1276 | wki = c[kk]; |
| 1277 | xr = a[j] - a[k]; |
| 1278 | xi = a[j + 1] + a[k + 1]; |
| 1279 | yr = wkr * xr - wki * xi; |
| 1280 | yi = wkr * xi + wki * xr; |
| 1281 | a[j] -= yr; |
| 1282 | a[j + 1] -= yi; |
| 1283 | a[k] += yr; |
| 1284 | a[k + 1] -= yi; |
| 1285 | } |
| 1286 | } |
| 1287 | |
| 1288 | |
| 1289 | void rftbsub(int n, float *a, int nc, float *c) |
| 1290 | { |
| 1291 | int j, k, kk, ks, m; |
| 1292 | float wkr, wki, xr, xi, yr, yi; |
| 1293 | |
| 1294 | a[1] = -a[1]; |
| 1295 | m = n >> 1; |
| 1296 | ks = 2 * nc / m; |
| 1297 | kk = 0; |
| 1298 | for (j = 2; j < m; j += 2) { |
| 1299 | k = n - j; |
| 1300 | kk += ks; |
| 1301 | wkr = 0.5f - c[nc - kk]; |
| 1302 | wki = c[kk]; |
| 1303 | xr = a[j] - a[k]; |
| 1304 | xi = a[j + 1] + a[k + 1]; |
| 1305 | yr = wkr * xr + wki * xi; |
| 1306 | yi = wkr * xi - wki * xr; |
| 1307 | a[j] -= yr; |
| 1308 | a[j + 1] = yi - a[j + 1]; |
| 1309 | a[k] += yr; |
| 1310 | a[k + 1] = yi - a[k + 1]; |
| 1311 | } |
| 1312 | a[m + 1] = -a[m + 1]; |
| 1313 | } |
| 1314 | |
| 1315 | |
| 1316 | void dctsub(int n, float *a, int nc, float *c) |
| 1317 | { |
| 1318 | int j, k, kk, ks, m; |
| 1319 | float wkr, wki, xr; |
| 1320 | |
| 1321 | m = n >> 1; |
| 1322 | ks = nc / n; |
| 1323 | kk = 0; |
| 1324 | for (j = 1; j < m; j++) { |
| 1325 | k = n - j; |
| 1326 | kk += ks; |
| 1327 | wkr = c[kk] - c[nc - kk]; |
| 1328 | wki = c[kk] + c[nc - kk]; |
| 1329 | xr = wki * a[j] - wkr * a[k]; |
| 1330 | a[j] = wkr * a[j] + wki * a[k]; |
| 1331 | a[k] = xr; |
| 1332 | } |
| 1333 | a[m] *= c[0]; |
| 1334 | } |
| 1335 | |
| 1336 | |
| 1337 | void dstsub(int n, float *a, int nc, float *c) |
| 1338 | { |
| 1339 | int j, k, kk, ks, m; |
| 1340 | float wkr, wki, xr; |
| 1341 | |
| 1342 | m = n >> 1; |
| 1343 | ks = nc / n; |
| 1344 | kk = 0; |
| 1345 | for (j = 1; j < m; j++) { |
| 1346 | k = n - j; |
| 1347 | kk += ks; |
| 1348 | wkr = c[kk] - c[nc - kk]; |
| 1349 | wki = c[kk] + c[nc - kk]; |
| 1350 | xr = wki * a[k] - wkr * a[j]; |
| 1351 | a[k] = wkr * a[k] + wki * a[j]; |
| 1352 | a[j] = xr; |
| 1353 | } |
| 1354 | a[m] *= c[0]; |
| 1355 | } |
| 1356 | |