| /** |
| * Copyright (c) 2016-present, Yann Collet, Facebook, Inc. |
| * All rights reserved. |
| * |
| * This source code is licensed under the BSD-style license found in the |
| * LICENSE file in the root directory of this source tree. An additional grant |
| * of patent rights can be found in the PATENTS file in the same directory. |
| */ |
| |
| |
| #include <stddef.h> /* size_t, ptrdiff_t */ |
| #include "zstd_v02.h" |
| #include "error_private.h" |
| |
| |
| /****************************************** |
| * Compiler-specific |
| ******************************************/ |
| #if defined(_MSC_VER) /* Visual Studio */ |
| # include <stdlib.h> /* _byteswap_ulong */ |
| # include <intrin.h> /* _byteswap_* */ |
| #endif |
| |
| |
| /* ****************************************************************** |
| mem.h |
| low-level memory access routines |
| Copyright (C) 2013-2015, Yann Collet. |
| |
| BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php) |
| |
| Redistribution and use in source and binary forms, with or without |
| modification, are permitted provided that the following conditions are |
| met: |
| |
| * Redistributions of source code must retain the above copyright |
| notice, this list of conditions and the following disclaimer. |
| * Redistributions in binary form must reproduce the above |
| copyright notice, this list of conditions and the following disclaimer |
| in the documentation and/or other materials provided with the |
| distribution. |
| |
| THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| You can contact the author at : |
| - FSE source repository : https://github.com/Cyan4973/FiniteStateEntropy |
| - Public forum : https://groups.google.com/forum/#!forum/lz4c |
| ****************************************************************** */ |
| #ifndef MEM_H_MODULE |
| #define MEM_H_MODULE |
| |
| #if defined (__cplusplus) |
| extern "C" { |
| #endif |
| |
| /****************************************** |
| * Includes |
| ******************************************/ |
| #include <stddef.h> /* size_t, ptrdiff_t */ |
| #include <string.h> /* memcpy */ |
| |
| |
| /****************************************** |
| * Compiler-specific |
| ******************************************/ |
| #if defined(__GNUC__) |
| # define MEM_STATIC static __attribute__((unused)) |
| #elif defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) |
| # define MEM_STATIC static inline |
| #elif defined(_MSC_VER) |
| # define MEM_STATIC static __inline |
| #else |
| # define MEM_STATIC static /* this version may generate warnings for unused static functions; disable the relevant warning */ |
| #endif |
| |
| |
| /**************************************************************** |
| * Basic Types |
| *****************************************************************/ |
| #if defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) |
| # include <stdint.h> |
| typedef uint8_t BYTE; |
| typedef uint16_t U16; |
| typedef int16_t S16; |
| typedef uint32_t U32; |
| typedef int32_t S32; |
| typedef uint64_t U64; |
| typedef int64_t S64; |
| #else |
| typedef unsigned char BYTE; |
| typedef unsigned short U16; |
| typedef signed short S16; |
| typedef unsigned int U32; |
| typedef signed int S32; |
| typedef unsigned long long U64; |
| typedef signed long long S64; |
| #endif |
| |
| |
| /**************************************************************** |
| * Memory I/O |
| *****************************************************************/ |
| /* MEM_FORCE_MEMORY_ACCESS |
| * By default, access to unaligned memory is controlled by `memcpy()`, which is safe and portable. |
| * Unfortunately, on some target/compiler combinations, the generated assembly is sub-optimal. |
| * The below switch allow to select different access method for improved performance. |
| * Method 0 (default) : use `memcpy()`. Safe and portable. |
| * Method 1 : `__packed` statement. It depends on compiler extension (ie, not portable). |
| * This method is safe if your compiler supports it, and *generally* as fast or faster than `memcpy`. |
| * Method 2 : direct access. This method is portable but violate C standard. |
| * It can generate buggy code on targets generating assembly depending on alignment. |
| * But in some circumstances, it's the only known way to get the most performance (ie GCC + ARMv6) |
| * See http://fastcompression.blogspot.fr/2015/08/accessing-unaligned-memory.html for details. |
| * Prefer these methods in priority order (0 > 1 > 2) |
| */ |
| #ifndef MEM_FORCE_MEMORY_ACCESS /* can be defined externally, on command line for example */ |
| # if defined(__GNUC__) && ( defined(__ARM_ARCH_6__) || defined(__ARM_ARCH_6J__) || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6Z__) || defined(__ARM_ARCH_6ZK__) || defined(__ARM_ARCH_6T2__) ) |
| # define MEM_FORCE_MEMORY_ACCESS 2 |
| # elif (defined(__INTEL_COMPILER) && !defined(WIN32)) || \ |
| (defined(__GNUC__) && ( defined(__ARM_ARCH_7__) || defined(__ARM_ARCH_7A__) || defined(__ARM_ARCH_7R__) || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7S__) )) |
| # define MEM_FORCE_MEMORY_ACCESS 1 |
| # endif |
| #endif |
| |
| MEM_STATIC unsigned MEM_32bits(void) { return sizeof(void*)==4; } |
| MEM_STATIC unsigned MEM_64bits(void) { return sizeof(void*)==8; } |
| |
| MEM_STATIC unsigned MEM_isLittleEndian(void) |
| { |
| const union { U32 u; BYTE c[4]; } one = { 1 }; /* don't use static : performance detrimental */ |
| return one.c[0]; |
| } |
| |
| #if defined(MEM_FORCE_MEMORY_ACCESS) && (MEM_FORCE_MEMORY_ACCESS==2) |
| |
| /* violates C standard on structure alignment. |
| Only use if no other choice to achieve best performance on target platform */ |
| MEM_STATIC U16 MEM_read16(const void* memPtr) { return *(const U16*) memPtr; } |
| MEM_STATIC U32 MEM_read32(const void* memPtr) { return *(const U32*) memPtr; } |
| MEM_STATIC U64 MEM_read64(const void* memPtr) { return *(const U64*) memPtr; } |
| |
| MEM_STATIC void MEM_write16(void* memPtr, U16 value) { *(U16*)memPtr = value; } |
| |
| #elif defined(MEM_FORCE_MEMORY_ACCESS) && (MEM_FORCE_MEMORY_ACCESS==1) |
| |
| /* __pack instructions are safer, but compiler specific, hence potentially problematic for some compilers */ |
| /* currently only defined for gcc and icc */ |
| typedef union { U16 u16; U32 u32; U64 u64; } __attribute__((packed)) unalign; |
| |
| MEM_STATIC U16 MEM_read16(const void* ptr) { return ((const unalign*)ptr)->u16; } |
| MEM_STATIC U32 MEM_read32(const void* ptr) { return ((const unalign*)ptr)->u32; } |
| MEM_STATIC U64 MEM_read64(const void* ptr) { return ((const unalign*)ptr)->u64; } |
| |
| MEM_STATIC void MEM_write16(void* memPtr, U16 value) { ((unalign*)memPtr)->u16 = value; } |
| |
| #else |
| |
| /* default method, safe and standard. |
| can sometimes prove slower */ |
| |
| MEM_STATIC U16 MEM_read16(const void* memPtr) |
| { |
| U16 val; memcpy(&val, memPtr, sizeof(val)); return val; |
| } |
| |
| MEM_STATIC U32 MEM_read32(const void* memPtr) |
| { |
| U32 val; memcpy(&val, memPtr, sizeof(val)); return val; |
| } |
| |
| MEM_STATIC U64 MEM_read64(const void* memPtr) |
| { |
| U64 val; memcpy(&val, memPtr, sizeof(val)); return val; |
| } |
| |
| MEM_STATIC void MEM_write16(void* memPtr, U16 value) |
| { |
| memcpy(memPtr, &value, sizeof(value)); |
| } |
| |
| #endif // MEM_FORCE_MEMORY_ACCESS |
| |
| |
| MEM_STATIC U16 MEM_readLE16(const void* memPtr) |
| { |
| if (MEM_isLittleEndian()) |
| return MEM_read16(memPtr); |
| else |
| { |
| const BYTE* p = (const BYTE*)memPtr; |
| return (U16)(p[0] + (p[1]<<8)); |
| } |
| } |
| |
| MEM_STATIC void MEM_writeLE16(void* memPtr, U16 val) |
| { |
| if (MEM_isLittleEndian()) |
| { |
| MEM_write16(memPtr, val); |
| } |
| else |
| { |
| BYTE* p = (BYTE*)memPtr; |
| p[0] = (BYTE)val; |
| p[1] = (BYTE)(val>>8); |
| } |
| } |
| |
| MEM_STATIC U32 MEM_readLE32(const void* memPtr) |
| { |
| if (MEM_isLittleEndian()) |
| return MEM_read32(memPtr); |
| else |
| { |
| const BYTE* p = (const BYTE*)memPtr; |
| return (U32)((U32)p[0] + ((U32)p[1]<<8) + ((U32)p[2]<<16) + ((U32)p[3]<<24)); |
| } |
| } |
| |
| |
| MEM_STATIC U64 MEM_readLE64(const void* memPtr) |
| { |
| if (MEM_isLittleEndian()) |
| return MEM_read64(memPtr); |
| else |
| { |
| const BYTE* p = (const BYTE*)memPtr; |
| return (U64)((U64)p[0] + ((U64)p[1]<<8) + ((U64)p[2]<<16) + ((U64)p[3]<<24) |
| + ((U64)p[4]<<32) + ((U64)p[5]<<40) + ((U64)p[6]<<48) + ((U64)p[7]<<56)); |
| } |
| } |
| |
| |
| MEM_STATIC size_t MEM_readLEST(const void* memPtr) |
| { |
| if (MEM_32bits()) |
| return (size_t)MEM_readLE32(memPtr); |
| else |
| return (size_t)MEM_readLE64(memPtr); |
| } |
| |
| #if defined (__cplusplus) |
| } |
| #endif |
| |
| #endif /* MEM_H_MODULE */ |
| |
| |
| /* ****************************************************************** |
| bitstream |
| Part of NewGen Entropy library |
| header file (to include) |
| Copyright (C) 2013-2015, Yann Collet. |
| |
| BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php) |
| |
| Redistribution and use in source and binary forms, with or without |
| modification, are permitted provided that the following conditions are |
| met: |
| |
| * Redistributions of source code must retain the above copyright |
| notice, this list of conditions and the following disclaimer. |
| * Redistributions in binary form must reproduce the above |
| copyright notice, this list of conditions and the following disclaimer |
| in the documentation and/or other materials provided with the |
| distribution. |
| |
| THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| You can contact the author at : |
| - Source repository : https://github.com/Cyan4973/FiniteStateEntropy |
| - Public forum : https://groups.google.com/forum/#!forum/lz4c |
| ****************************************************************** */ |
| #ifndef BITSTREAM_H_MODULE |
| #define BITSTREAM_H_MODULE |
| |
| #if defined (__cplusplus) |
| extern "C" { |
| #endif |
| |
| |
| /* |
| * This API consists of small unitary functions, which highly benefit from being inlined. |
| * Since link-time-optimization is not available for all compilers, |
| * these functions are defined into a .h to be included. |
| */ |
| |
| |
| /********************************************** |
| * bitStream decompression API (read backward) |
| **********************************************/ |
| typedef struct |
| { |
| size_t bitContainer; |
| unsigned bitsConsumed; |
| const char* ptr; |
| const char* start; |
| } BIT_DStream_t; |
| |
| typedef enum { BIT_DStream_unfinished = 0, |
| BIT_DStream_endOfBuffer = 1, |
| BIT_DStream_completed = 2, |
| BIT_DStream_overflow = 3 } BIT_DStream_status; /* result of BIT_reloadDStream() */ |
| /* 1,2,4,8 would be better for bitmap combinations, but slows down performance a bit ... :( */ |
| |
| MEM_STATIC size_t BIT_initDStream(BIT_DStream_t* bitD, const void* srcBuffer, size_t srcSize); |
| MEM_STATIC size_t BIT_readBits(BIT_DStream_t* bitD, unsigned nbBits); |
| MEM_STATIC BIT_DStream_status BIT_reloadDStream(BIT_DStream_t* bitD); |
| MEM_STATIC unsigned BIT_endOfDStream(const BIT_DStream_t* bitD); |
| |
| |
| /* |
| * Start by invoking BIT_initDStream(). |
| * A chunk of the bitStream is then stored into a local register. |
| * Local register size is 64-bits on 64-bits systems, 32-bits on 32-bits systems (size_t). |
| * You can then retrieve bitFields stored into the local register, **in reverse order**. |
| * Local register is manually filled from memory by the BIT_reloadDStream() method. |
| * A reload guarantee a minimum of ((8*sizeof(size_t))-7) bits when its result is BIT_DStream_unfinished. |
| * Otherwise, it can be less than that, so proceed accordingly. |
| * Checking if DStream has reached its end can be performed with BIT_endOfDStream() |
| */ |
| |
| |
| /****************************************** |
| * unsafe API |
| ******************************************/ |
| MEM_STATIC size_t BIT_readBitsFast(BIT_DStream_t* bitD, unsigned nbBits); |
| /* faster, but works only if nbBits >= 1 */ |
| |
| |
| |
| /**************************************************************** |
| * Helper functions |
| ****************************************************************/ |
| MEM_STATIC unsigned BIT_highbit32 (register U32 val) |
| { |
| # if defined(_MSC_VER) /* Visual */ |
| unsigned long r=0; |
| _BitScanReverse ( &r, val ); |
| return (unsigned) r; |
| # elif defined(__GNUC__) && (__GNUC__ >= 3) /* Use GCC Intrinsic */ |
| return 31 - __builtin_clz (val); |
| # else /* Software version */ |
| static const unsigned DeBruijnClz[32] = { 0, 9, 1, 10, 13, 21, 2, 29, 11, 14, 16, 18, 22, 25, 3, 30, 8, 12, 20, 28, 15, 17, 24, 7, 19, 27, 23, 6, 26, 5, 4, 31 }; |
| U32 v = val; |
| unsigned r; |
| v |= v >> 1; |
| v |= v >> 2; |
| v |= v >> 4; |
| v |= v >> 8; |
| v |= v >> 16; |
| r = DeBruijnClz[ (U32) (v * 0x07C4ACDDU) >> 27]; |
| return r; |
| # endif |
| } |
| |
| |
| |
| /********************************************************** |
| * bitStream decoding |
| **********************************************************/ |
| |
| /*!BIT_initDStream |
| * Initialize a BIT_DStream_t. |
| * @bitD : a pointer to an already allocated BIT_DStream_t structure |
| * @srcBuffer must point at the beginning of a bitStream |
| * @srcSize must be the exact size of the bitStream |
| * @result : size of stream (== srcSize) or an errorCode if a problem is detected |
| */ |
| MEM_STATIC size_t BIT_initDStream(BIT_DStream_t* bitD, const void* srcBuffer, size_t srcSize) |
| { |
| if (srcSize < 1) { memset(bitD, 0, sizeof(*bitD)); return ERROR(srcSize_wrong); } |
| |
| if (srcSize >= sizeof(size_t)) /* normal case */ |
| { |
| U32 contain32; |
| bitD->start = (const char*)srcBuffer; |
| bitD->ptr = (const char*)srcBuffer + srcSize - sizeof(size_t); |
| bitD->bitContainer = MEM_readLEST(bitD->ptr); |
| contain32 = ((const BYTE*)srcBuffer)[srcSize-1]; |
| if (contain32 == 0) return ERROR(GENERIC); /* endMark not present */ |
| bitD->bitsConsumed = 8 - BIT_highbit32(contain32); |
| } |
| else |
| { |
| U32 contain32; |
| bitD->start = (const char*)srcBuffer; |
| bitD->ptr = bitD->start; |
| bitD->bitContainer = *(const BYTE*)(bitD->start); |
| switch(srcSize) |
| { |
| case 7: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[6]) << (sizeof(size_t)*8 - 16); |
| case 6: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[5]) << (sizeof(size_t)*8 - 24); |
| case 5: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[4]) << (sizeof(size_t)*8 - 32); |
| case 4: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[3]) << 24; |
| case 3: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[2]) << 16; |
| case 2: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[1]) << 8; |
| default:; |
| } |
| contain32 = ((const BYTE*)srcBuffer)[srcSize-1]; |
| if (contain32 == 0) return ERROR(GENERIC); /* endMark not present */ |
| bitD->bitsConsumed = 8 - BIT_highbit32(contain32); |
| bitD->bitsConsumed += (U32)(sizeof(size_t) - srcSize)*8; |
| } |
| |
| return srcSize; |
| } |
| |
| /*!BIT_lookBits |
| * Provides next n bits from local register |
| * local register is not modified (bits are still present for next read/look) |
| * On 32-bits, maxNbBits==25 |
| * On 64-bits, maxNbBits==57 |
| * @return : value extracted |
| */ |
| MEM_STATIC size_t BIT_lookBits(BIT_DStream_t* bitD, U32 nbBits) |
| { |
| const U32 bitMask = sizeof(bitD->bitContainer)*8 - 1; |
| return ((bitD->bitContainer << (bitD->bitsConsumed & bitMask)) >> 1) >> ((bitMask-nbBits) & bitMask); |
| } |
| |
| /*! BIT_lookBitsFast : |
| * unsafe version; only works only if nbBits >= 1 */ |
| MEM_STATIC size_t BIT_lookBitsFast(BIT_DStream_t* bitD, U32 nbBits) |
| { |
| const U32 bitMask = sizeof(bitD->bitContainer)*8 - 1; |
| return (bitD->bitContainer << (bitD->bitsConsumed & bitMask)) >> (((bitMask+1)-nbBits) & bitMask); |
| } |
| |
| MEM_STATIC void BIT_skipBits(BIT_DStream_t* bitD, U32 nbBits) |
| { |
| bitD->bitsConsumed += nbBits; |
| } |
| |
| /*!BIT_readBits |
| * Read next n bits from local register. |
| * pay attention to not read more than nbBits contained into local register. |
| * @return : extracted value. |
| */ |
| MEM_STATIC size_t BIT_readBits(BIT_DStream_t* bitD, U32 nbBits) |
| { |
| size_t value = BIT_lookBits(bitD, nbBits); |
| BIT_skipBits(bitD, nbBits); |
| return value; |
| } |
| |
| /*!BIT_readBitsFast : |
| * unsafe version; only works only if nbBits >= 1 */ |
| MEM_STATIC size_t BIT_readBitsFast(BIT_DStream_t* bitD, U32 nbBits) |
| { |
| size_t value = BIT_lookBitsFast(bitD, nbBits); |
| BIT_skipBits(bitD, nbBits); |
| return value; |
| } |
| |
| MEM_STATIC BIT_DStream_status BIT_reloadDStream(BIT_DStream_t* bitD) |
| { |
| if (bitD->bitsConsumed > (sizeof(bitD->bitContainer)*8)) /* should never happen */ |
| return BIT_DStream_overflow; |
| |
| if (bitD->ptr >= bitD->start + sizeof(bitD->bitContainer)) |
| { |
| bitD->ptr -= bitD->bitsConsumed >> 3; |
| bitD->bitsConsumed &= 7; |
| bitD->bitContainer = MEM_readLEST(bitD->ptr); |
| return BIT_DStream_unfinished; |
| } |
| if (bitD->ptr == bitD->start) |
| { |
| if (bitD->bitsConsumed < sizeof(bitD->bitContainer)*8) return BIT_DStream_endOfBuffer; |
| return BIT_DStream_completed; |
| } |
| { |
| U32 nbBytes = bitD->bitsConsumed >> 3; |
| BIT_DStream_status result = BIT_DStream_unfinished; |
| if (bitD->ptr - nbBytes < bitD->start) |
| { |
| nbBytes = (U32)(bitD->ptr - bitD->start); /* ptr > start */ |
| result = BIT_DStream_endOfBuffer; |
| } |
| bitD->ptr -= nbBytes; |
| bitD->bitsConsumed -= nbBytes*8; |
| bitD->bitContainer = MEM_readLEST(bitD->ptr); /* reminder : srcSize > sizeof(bitD) */ |
| return result; |
| } |
| } |
| |
| /*! BIT_endOfDStream |
| * @return Tells if DStream has reached its exact end |
| */ |
| MEM_STATIC unsigned BIT_endOfDStream(const BIT_DStream_t* DStream) |
| { |
| return ((DStream->ptr == DStream->start) && (DStream->bitsConsumed == sizeof(DStream->bitContainer)*8)); |
| } |
| |
| #if defined (__cplusplus) |
| } |
| #endif |
| |
| #endif /* BITSTREAM_H_MODULE */ |
| /* ****************************************************************** |
| Error codes and messages |
| Copyright (C) 2013-2015, Yann Collet |
| |
| BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php) |
| |
| Redistribution and use in source and binary forms, with or without |
| modification, are permitted provided that the following conditions are |
| met: |
| |
| * Redistributions of source code must retain the above copyright |
| notice, this list of conditions and the following disclaimer. |
| * Redistributions in binary form must reproduce the above |
| copyright notice, this list of conditions and the following disclaimer |
| in the documentation and/or other materials provided with the |
| distribution. |
| |
| THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| You can contact the author at : |
| - Source repository : https://github.com/Cyan4973/FiniteStateEntropy |
| - Public forum : https://groups.google.com/forum/#!forum/lz4c |
| ****************************************************************** */ |
| #ifndef ERROR_H_MODULE |
| #define ERROR_H_MODULE |
| |
| #if defined (__cplusplus) |
| extern "C" { |
| #endif |
| |
| |
| /****************************************** |
| * Compiler-specific |
| ******************************************/ |
| #if defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) |
| # define ERR_STATIC static inline |
| #elif defined(_MSC_VER) |
| # define ERR_STATIC static __inline |
| #elif defined(__GNUC__) |
| # define ERR_STATIC static __attribute__((unused)) |
| #else |
| # define ERR_STATIC static /* this version may generate warnings for unused static functions; disable the relevant warning */ |
| #endif |
| |
| |
| /****************************************** |
| * Error Management |
| ******************************************/ |
| #define PREFIX(name) ZSTD_error_##name |
| |
| #define ERROR(name) (size_t)-PREFIX(name) |
| |
| #define ERROR_LIST(ITEM) \ |
| ITEM(PREFIX(No_Error)) ITEM(PREFIX(GENERIC)) \ |
| ITEM(PREFIX(dstSize_tooSmall)) ITEM(PREFIX(srcSize_wrong)) \ |
| ITEM(PREFIX(prefix_unknown)) ITEM(PREFIX(corruption_detected)) \ |
| ITEM(PREFIX(tableLog_tooLarge)) ITEM(PREFIX(maxSymbolValue_tooLarge)) ITEM(PREFIX(maxSymbolValue_tooSmall)) \ |
| ITEM(PREFIX(maxCode)) |
| |
| #define ERROR_GENERATE_ENUM(ENUM) ENUM, |
| typedef enum { ERROR_LIST(ERROR_GENERATE_ENUM) } ERR_codes; /* enum is exposed, to detect & handle specific errors; compare function result to -enum value */ |
| |
| #define ERROR_CONVERTTOSTRING(STRING) #STRING, |
| #define ERROR_GENERATE_STRING(EXPR) ERROR_CONVERTTOSTRING(EXPR) |
| static const char* ERR_strings[] = { ERROR_LIST(ERROR_GENERATE_STRING) }; |
| |
| ERR_STATIC unsigned ERR_isError(size_t code) { return (code > ERROR(maxCode)); } |
| |
| ERR_STATIC const char* ERR_getErrorName(size_t code) |
| { |
| static const char* codeError = "Unspecified error code"; |
| if (ERR_isError(code)) return ERR_strings[-(int)(code)]; |
| return codeError; |
| } |
| |
| |
| #if defined (__cplusplus) |
| } |
| #endif |
| |
| #endif /* ERROR_H_MODULE */ |
| /* |
| Constructor and Destructor of type FSE_CTable |
| Note that its size depends on 'tableLog' and 'maxSymbolValue' */ |
| typedef unsigned FSE_CTable; /* don't allocate that. It's just a way to be more restrictive than void* */ |
| typedef unsigned FSE_DTable; /* don't allocate that. It's just a way to be more restrictive than void* */ |
| |
| |
| /* ****************************************************************** |
| FSE : Finite State Entropy coder |
| header file for static linking (only) |
| Copyright (C) 2013-2015, Yann Collet |
| |
| BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php) |
| |
| Redistribution and use in source and binary forms, with or without |
| modification, are permitted provided that the following conditions are |
| met: |
| |
| * Redistributions of source code must retain the above copyright |
| notice, this list of conditions and the following disclaimer. |
| * Redistributions in binary form must reproduce the above |
| copyright notice, this list of conditions and the following disclaimer |
| in the documentation and/or other materials provided with the |
| distribution. |
| |
| THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| You can contact the author at : |
| - Source repository : https://github.com/Cyan4973/FiniteStateEntropy |
| - Public forum : https://groups.google.com/forum/#!forum/lz4c |
| ****************************************************************** */ |
| #if defined (__cplusplus) |
| extern "C" { |
| #endif |
| |
| |
| /****************************************** |
| * Static allocation |
| ******************************************/ |
| /* FSE buffer bounds */ |
| #define FSE_NCOUNTBOUND 512 |
| #define FSE_BLOCKBOUND(size) (size + (size>>7)) |
| #define FSE_COMPRESSBOUND(size) (FSE_NCOUNTBOUND + FSE_BLOCKBOUND(size)) /* Macro version, useful for static allocation */ |
| |
| /* You can statically allocate FSE CTable/DTable as a table of unsigned using below macro */ |
| #define FSE_CTABLE_SIZE_U32(maxTableLog, maxSymbolValue) (1 + (1<<(maxTableLog-1)) + ((maxSymbolValue+1)*2)) |
| #define FSE_DTABLE_SIZE_U32(maxTableLog) (1 + (1<<maxTableLog)) |
| |
| |
| /****************************************** |
| * FSE advanced API |
| ******************************************/ |
| static size_t FSE_buildDTable_raw (FSE_DTable* dt, unsigned nbBits); |
| /* build a fake FSE_DTable, designed to read an uncompressed bitstream where each symbol uses nbBits */ |
| |
| static size_t FSE_buildDTable_rle (FSE_DTable* dt, unsigned char symbolValue); |
| /* build a fake FSE_DTable, designed to always generate the same symbolValue */ |
| |
| |
| /****************************************** |
| * FSE symbol decompression API |
| ******************************************/ |
| typedef struct |
| { |
| size_t state; |
| const void* table; /* precise table may vary, depending on U16 */ |
| } FSE_DState_t; |
| |
| |
| static void FSE_initDState(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD, const FSE_DTable* dt); |
| |
| static unsigned char FSE_decodeSymbol(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD); |
| |
| static unsigned FSE_endOfDState(const FSE_DState_t* DStatePtr); |
| |
| /* |
| Let's now decompose FSE_decompress_usingDTable() into its unitary components. |
| You will decode FSE-encoded symbols from the bitStream, |
| and also any other bitFields you put in, **in reverse order**. |
| |
| You will need a few variables to track your bitStream. They are : |
| |
| BIT_DStream_t DStream; // Stream context |
| FSE_DState_t DState; // State context. Multiple ones are possible |
| FSE_DTable* DTablePtr; // Decoding table, provided by FSE_buildDTable() |
| |
| The first thing to do is to init the bitStream. |
| errorCode = BIT_initDStream(&DStream, srcBuffer, srcSize); |
| |
| You should then retrieve your initial state(s) |
| (in reverse flushing order if you have several ones) : |
| errorCode = FSE_initDState(&DState, &DStream, DTablePtr); |
| |
| You can then decode your data, symbol after symbol. |
| For information the maximum number of bits read by FSE_decodeSymbol() is 'tableLog'. |
| Keep in mind that symbols are decoded in reverse order, like a LIFO stack (last in, first out). |
| unsigned char symbol = FSE_decodeSymbol(&DState, &DStream); |
| |
| You can retrieve any bitfield you eventually stored into the bitStream (in reverse order) |
| Note : maximum allowed nbBits is 25, for 32-bits compatibility |
| size_t bitField = BIT_readBits(&DStream, nbBits); |
| |
| All above operations only read from local register (which size depends on size_t). |
| Refueling the register from memory is manually performed by the reload method. |
| endSignal = FSE_reloadDStream(&DStream); |
| |
| BIT_reloadDStream() result tells if there is still some more data to read from DStream. |
| BIT_DStream_unfinished : there is still some data left into the DStream. |
| BIT_DStream_endOfBuffer : Dstream reached end of buffer. Its container may no longer be completely filled. |
| BIT_DStream_completed : Dstream reached its exact end, corresponding in general to decompression completed. |
| BIT_DStream_tooFar : Dstream went too far. Decompression result is corrupted. |
| |
| When reaching end of buffer (BIT_DStream_endOfBuffer), progress slowly, notably if you decode multiple symbols per loop, |
| to properly detect the exact end of stream. |
| After each decoded symbol, check if DStream is fully consumed using this simple test : |
| BIT_reloadDStream(&DStream) >= BIT_DStream_completed |
| |
| When it's done, verify decompression is fully completed, by checking both DStream and the relevant states. |
| Checking if DStream has reached its end is performed by : |
| BIT_endOfDStream(&DStream); |
| Check also the states. There might be some symbols left there, if some high probability ones (>50%) are possible. |
| FSE_endOfDState(&DState); |
| */ |
| |
| |
| /****************************************** |
| * FSE unsafe API |
| ******************************************/ |
| static unsigned char FSE_decodeSymbolFast(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD); |
| /* faster, but works only if nbBits is always >= 1 (otherwise, result will be corrupted) */ |
| |
| |
| /****************************************** |
| * Implementation of inline functions |
| ******************************************/ |
| |
| /* decompression */ |
| |
| typedef struct { |
| U16 tableLog; |
| U16 fastMode; |
| } FSE_DTableHeader; /* sizeof U32 */ |
| |
| typedef struct |
| { |
| unsigned short newState; |
| unsigned char symbol; |
| unsigned char nbBits; |
| } FSE_decode_t; /* size == U32 */ |
| |
| MEM_STATIC void FSE_initDState(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD, const FSE_DTable* dt) |
| { |
| FSE_DTableHeader DTableH; |
| memcpy(&DTableH, dt, sizeof(DTableH)); |
| DStatePtr->state = BIT_readBits(bitD, DTableH.tableLog); |
| BIT_reloadDStream(bitD); |
| DStatePtr->table = dt + 1; |
| } |
| |
| MEM_STATIC BYTE FSE_decodeSymbol(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD) |
| { |
| const FSE_decode_t DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state]; |
| const U32 nbBits = DInfo.nbBits; |
| BYTE symbol = DInfo.symbol; |
| size_t lowBits = BIT_readBits(bitD, nbBits); |
| |
| DStatePtr->state = DInfo.newState + lowBits; |
| return symbol; |
| } |
| |
| MEM_STATIC BYTE FSE_decodeSymbolFast(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD) |
| { |
| const FSE_decode_t DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state]; |
| const U32 nbBits = DInfo.nbBits; |
| BYTE symbol = DInfo.symbol; |
| size_t lowBits = BIT_readBitsFast(bitD, nbBits); |
| |
| DStatePtr->state = DInfo.newState + lowBits; |
| return symbol; |
| } |
| |
| MEM_STATIC unsigned FSE_endOfDState(const FSE_DState_t* DStatePtr) |
| { |
| return DStatePtr->state == 0; |
| } |
| |
| |
| #if defined (__cplusplus) |
| } |
| #endif |
| /* ****************************************************************** |
| Huff0 : Huffman coder, part of New Generation Entropy library |
| header file for static linking (only) |
| Copyright (C) 2013-2015, Yann Collet |
| |
| BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php) |
| |
| Redistribution and use in source and binary forms, with or without |
| modification, are permitted provided that the following conditions are |
| met: |
| |
| * Redistributions of source code must retain the above copyright |
| notice, this list of conditions and the following disclaimer. |
| * Redistributions in binary form must reproduce the above |
| copyright notice, this list of conditions and the following disclaimer |
| in the documentation and/or other materials provided with the |
| distribution. |
| |
| THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| You can contact the author at : |
| - Source repository : https://github.com/Cyan4973/FiniteStateEntropy |
| - Public forum : https://groups.google.com/forum/#!forum/lz4c |
| ****************************************************************** */ |
| |
| #if defined (__cplusplus) |
| extern "C" { |
| #endif |
| |
| /****************************************** |
| * Static allocation macros |
| ******************************************/ |
| /* Huff0 buffer bounds */ |
| #define HUF_CTABLEBOUND 129 |
| #define HUF_BLOCKBOUND(size) (size + (size>>8) + 8) /* only true if incompressible pre-filtered with fast heuristic */ |
| #define HUF_COMPRESSBOUND(size) (HUF_CTABLEBOUND + HUF_BLOCKBOUND(size)) /* Macro version, useful for static allocation */ |
| |
| /* static allocation of Huff0's DTable */ |
| #define HUF_DTABLE_SIZE(maxTableLog) (1 + (1<<maxTableLog)) /* nb Cells; use unsigned short for X2, unsigned int for X4 */ |
| #define HUF_CREATE_STATIC_DTABLEX2(DTable, maxTableLog) \ |
| unsigned short DTable[HUF_DTABLE_SIZE(maxTableLog)] = { maxTableLog } |
| #define HUF_CREATE_STATIC_DTABLEX4(DTable, maxTableLog) \ |
| unsigned int DTable[HUF_DTABLE_SIZE(maxTableLog)] = { maxTableLog } |
| #define HUF_CREATE_STATIC_DTABLEX6(DTable, maxTableLog) \ |
| unsigned int DTable[HUF_DTABLE_SIZE(maxTableLog) * 3 / 2] = { maxTableLog } |
| |
| |
| /****************************************** |
| * Advanced functions |
| ******************************************/ |
| static size_t HUF_decompress4X2 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /* single-symbol decoder */ |
| static size_t HUF_decompress4X4 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /* double-symbols decoder */ |
| static size_t HUF_decompress4X6 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /* quad-symbols decoder */ |
| |
| |
| #if defined (__cplusplus) |
| } |
| #endif |
| |
| /* |
| zstd - standard compression library |
| Header File |
| Copyright (C) 2014-2015, Yann Collet. |
| |
| BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php) |
| |
| Redistribution and use in source and binary forms, with or without |
| modification, are permitted provided that the following conditions are |
| met: |
| * Redistributions of source code must retain the above copyright |
| notice, this list of conditions and the following disclaimer. |
| * Redistributions in binary form must reproduce the above |
| copyright notice, this list of conditions and the following disclaimer |
| in the documentation and/or other materials provided with the |
| distribution. |
| THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| You can contact the author at : |
| - zstd source repository : https://github.com/Cyan4973/zstd |
| - ztsd public forum : https://groups.google.com/forum/#!forum/lz4c |
| */ |
| |
| #if defined (__cplusplus) |
| extern "C" { |
| #endif |
| |
| /* ************************************* |
| * Includes |
| ***************************************/ |
| #include <stddef.h> /* size_t */ |
| |
| |
| /* ************************************* |
| * Version |
| ***************************************/ |
| #define ZSTD_VERSION_MAJOR 0 /* for breaking interface changes */ |
| #define ZSTD_VERSION_MINOR 2 /* for new (non-breaking) interface capabilities */ |
| #define ZSTD_VERSION_RELEASE 2 /* for tweaks, bug-fixes, or development */ |
| #define ZSTD_VERSION_NUMBER (ZSTD_VERSION_MAJOR *100*100 + ZSTD_VERSION_MINOR *100 + ZSTD_VERSION_RELEASE) |
| |
| |
| /* ************************************* |
| * Advanced functions |
| ***************************************/ |
| typedef struct ZSTD_CCtx_s ZSTD_CCtx; /* incomplete type */ |
| |
| #if defined (__cplusplus) |
| } |
| #endif |
| /* |
| zstd - standard compression library |
| Header File for static linking only |
| Copyright (C) 2014-2015, Yann Collet. |
| |
| BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php) |
| |
| Redistribution and use in source and binary forms, with or without |
| modification, are permitted provided that the following conditions are |
| met: |
| * Redistributions of source code must retain the above copyright |
| notice, this list of conditions and the following disclaimer. |
| * Redistributions in binary form must reproduce the above |
| copyright notice, this list of conditions and the following disclaimer |
| in the documentation and/or other materials provided with the |
| distribution. |
| THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| You can contact the author at : |
| - zstd source repository : https://github.com/Cyan4973/zstd |
| - ztsd public forum : https://groups.google.com/forum/#!forum/lz4c |
| */ |
| |
| /* The objects defined into this file should be considered experimental. |
| * They are not labelled stable, as their prototype may change in the future. |
| * You can use them for tests, provide feedback, or if you can endure risk of future changes. |
| */ |
| |
| #if defined (__cplusplus) |
| extern "C" { |
| #endif |
| |
| /* ************************************* |
| * Streaming functions |
| ***************************************/ |
| |
| typedef struct ZSTD_DCtx_s ZSTD_DCtx; |
| |
| /* |
| Use above functions alternatively. |
| ZSTD_nextSrcSizeToDecompress() tells how much bytes to provide as 'srcSize' to ZSTD_decompressContinue(). |
| ZSTD_decompressContinue() will use previous data blocks to improve compression if they are located prior to current block. |
| Result is the number of bytes regenerated within 'dst'. |
| It can be zero, which is not an error; it just means ZSTD_decompressContinue() has decoded some header. |
| */ |
| |
| /* ************************************* |
| * Prefix - version detection |
| ***************************************/ |
| #define ZSTD_magicNumber 0xFD2FB522 /* v0.2 (current)*/ |
| |
| |
| #if defined (__cplusplus) |
| } |
| #endif |
| /* ****************************************************************** |
| FSE : Finite State Entropy coder |
| Copyright (C) 2013-2015, Yann Collet. |
| |
| BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php) |
| |
| Redistribution and use in source and binary forms, with or without |
| modification, are permitted provided that the following conditions are |
| met: |
| |
| * Redistributions of source code must retain the above copyright |
| notice, this list of conditions and the following disclaimer. |
| * Redistributions in binary form must reproduce the above |
| copyright notice, this list of conditions and the following disclaimer |
| in the documentation and/or other materials provided with the |
| distribution. |
| |
| THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| You can contact the author at : |
| - FSE source repository : https://github.com/Cyan4973/FiniteStateEntropy |
| - Public forum : https://groups.google.com/forum/#!forum/lz4c |
| ****************************************************************** */ |
| |
| #ifndef FSE_COMMONDEFS_ONLY |
| |
| /**************************************************************** |
| * Tuning parameters |
| ****************************************************************/ |
| /* MEMORY_USAGE : |
| * Memory usage formula : N->2^N Bytes (examples : 10 -> 1KB; 12 -> 4KB ; 16 -> 64KB; 20 -> 1MB; etc.) |
| * Increasing memory usage improves compression ratio |
| * Reduced memory usage can improve speed, due to cache effect |
| * Recommended max value is 14, for 16KB, which nicely fits into Intel x86 L1 cache */ |
| #define FSE_MAX_MEMORY_USAGE 14 |
| #define FSE_DEFAULT_MEMORY_USAGE 13 |
| |
| /* FSE_MAX_SYMBOL_VALUE : |
| * Maximum symbol value authorized. |
| * Required for proper stack allocation */ |
| #define FSE_MAX_SYMBOL_VALUE 255 |
| |
| |
| /**************************************************************** |
| * template functions type & suffix |
| ****************************************************************/ |
| #define FSE_FUNCTION_TYPE BYTE |
| #define FSE_FUNCTION_EXTENSION |
| |
| |
| /**************************************************************** |
| * Byte symbol type |
| ****************************************************************/ |
| #endif /* !FSE_COMMONDEFS_ONLY */ |
| |
| |
| /**************************************************************** |
| * Compiler specifics |
| ****************************************************************/ |
| #ifdef _MSC_VER /* Visual Studio */ |
| # define FORCE_INLINE static __forceinline |
| # include <intrin.h> /* For Visual 2005 */ |
| # pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */ |
| # pragma warning(disable : 4214) /* disable: C4214: non-int bitfields */ |
| #else |
| # if defined (__cplusplus) || defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L /* C99 */ |
| # ifdef __GNUC__ |
| # define FORCE_INLINE static inline __attribute__((always_inline)) |
| # else |
| # define FORCE_INLINE static inline |
| # endif |
| # else |
| # define FORCE_INLINE static |
| # endif /* __STDC_VERSION__ */ |
| #endif |
| |
| |
| /**************************************************************** |
| * Includes |
| ****************************************************************/ |
| #include <stdlib.h> /* malloc, free, qsort */ |
| #include <string.h> /* memcpy, memset */ |
| #include <stdio.h> /* printf (debug) */ |
| |
| /**************************************************************** |
| * Constants |
| *****************************************************************/ |
| #define FSE_MAX_TABLELOG (FSE_MAX_MEMORY_USAGE-2) |
| #define FSE_MAX_TABLESIZE (1U<<FSE_MAX_TABLELOG) |
| #define FSE_MAXTABLESIZE_MASK (FSE_MAX_TABLESIZE-1) |
| #define FSE_DEFAULT_TABLELOG (FSE_DEFAULT_MEMORY_USAGE-2) |
| #define FSE_MIN_TABLELOG 5 |
| |
| #define FSE_TABLELOG_ABSOLUTE_MAX 15 |
| #if FSE_MAX_TABLELOG > FSE_TABLELOG_ABSOLUTE_MAX |
| #error "FSE_MAX_TABLELOG > FSE_TABLELOG_ABSOLUTE_MAX is not supported" |
| #endif |
| |
| |
| /**************************************************************** |
| * Error Management |
| ****************************************************************/ |
| #define FSE_STATIC_ASSERT(c) { enum { FSE_static_assert = 1/(int)(!!(c)) }; } /* use only *after* variable declarations */ |
| |
| |
| /**************************************************************** |
| * Complex types |
| ****************************************************************/ |
| typedef U32 DTable_max_t[FSE_DTABLE_SIZE_U32(FSE_MAX_TABLELOG)]; |
| |
| |
| /**************************************************************** |
| * Templates |
| ****************************************************************/ |
| /* |
| designed to be included |
| for type-specific functions (template emulation in C) |
| Objective is to write these functions only once, for improved maintenance |
| */ |
| |
| /* safety checks */ |
| #ifndef FSE_FUNCTION_EXTENSION |
| # error "FSE_FUNCTION_EXTENSION must be defined" |
| #endif |
| #ifndef FSE_FUNCTION_TYPE |
| # error "FSE_FUNCTION_TYPE must be defined" |
| #endif |
| |
| /* Function names */ |
| #define FSE_CAT(X,Y) X##Y |
| #define FSE_FUNCTION_NAME(X,Y) FSE_CAT(X,Y) |
| #define FSE_TYPE_NAME(X,Y) FSE_CAT(X,Y) |
| |
| |
| /* Function templates */ |
| |
| #define FSE_DECODE_TYPE FSE_decode_t |
| |
| static U32 FSE_tableStep(U32 tableSize) { return (tableSize>>1) + (tableSize>>3) + 3; } |
| |
| static size_t FSE_buildDTable |
| (FSE_DTable* dt, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog) |
| { |
| void* ptr = dt+1; |
| FSE_DECODE_TYPE* const tableDecode = (FSE_DECODE_TYPE*)ptr; |
| FSE_DTableHeader DTableH; |
| const U32 tableSize = 1 << tableLog; |
| const U32 tableMask = tableSize-1; |
| const U32 step = FSE_tableStep(tableSize); |
| U16 symbolNext[FSE_MAX_SYMBOL_VALUE+1]; |
| U32 position = 0; |
| U32 highThreshold = tableSize-1; |
| const S16 largeLimit= (S16)(1 << (tableLog-1)); |
| U32 noLarge = 1; |
| U32 s; |
| |
| /* Sanity Checks */ |
| if (maxSymbolValue > FSE_MAX_SYMBOL_VALUE) return ERROR(maxSymbolValue_tooLarge); |
| if (tableLog > FSE_MAX_TABLELOG) return ERROR(tableLog_tooLarge); |
| |
| /* Init, lay down lowprob symbols */ |
| DTableH.tableLog = (U16)tableLog; |
| for (s=0; s<=maxSymbolValue; s++) |
| { |
| if (normalizedCounter[s]==-1) |
| { |
| tableDecode[highThreshold--].symbol = (FSE_FUNCTION_TYPE)s; |
| symbolNext[s] = 1; |
| } |
| else |
| { |
| if (normalizedCounter[s] >= largeLimit) noLarge=0; |
| symbolNext[s] = normalizedCounter[s]; |
| } |
| } |
| |
| /* Spread symbols */ |
| for (s=0; s<=maxSymbolValue; s++) |
| { |
| int i; |
| for (i=0; i<normalizedCounter[s]; i++) |
| { |
| tableDecode[position].symbol = (FSE_FUNCTION_TYPE)s; |
| position = (position + step) & tableMask; |
| while (position > highThreshold) position = (position + step) & tableMask; /* lowprob area */ |
| } |
| } |
| |
| if (position!=0) return ERROR(GENERIC); /* position must reach all cells once, otherwise normalizedCounter is incorrect */ |
| |
| /* Build Decoding table */ |
| { |
| U32 i; |
| for (i=0; i<tableSize; i++) |
| { |
| FSE_FUNCTION_TYPE symbol = (FSE_FUNCTION_TYPE)(tableDecode[i].symbol); |
| U16 nextState = symbolNext[symbol]++; |
| tableDecode[i].nbBits = (BYTE) (tableLog - BIT_highbit32 ((U32)nextState) ); |
| tableDecode[i].newState = (U16) ( (nextState << tableDecode[i].nbBits) - tableSize); |
| } |
| } |
| |
| DTableH.fastMode = (U16)noLarge; |
| memcpy(dt, &DTableH, sizeof(DTableH)); /* memcpy(), to avoid strict aliasing warnings */ |
| return 0; |
| } |
| |
| |
| #ifndef FSE_COMMONDEFS_ONLY |
| /****************************************** |
| * FSE helper functions |
| ******************************************/ |
| static unsigned FSE_isError(size_t code) { return ERR_isError(code); } |
| |
| |
| /**************************************************************** |
| * FSE NCount encoding-decoding |
| ****************************************************************/ |
| static short FSE_abs(short a) |
| { |
| return (short)(a<0 ? -a : a); |
| } |
| |
| static size_t FSE_readNCount (short* normalizedCounter, unsigned* maxSVPtr, unsigned* tableLogPtr, |
| const void* headerBuffer, size_t hbSize) |
| { |
| const BYTE* const istart = (const BYTE*) headerBuffer; |
| const BYTE* const iend = istart + hbSize; |
| const BYTE* ip = istart; |
| int nbBits; |
| int remaining; |
| int threshold; |
| U32 bitStream; |
| int bitCount; |
| unsigned charnum = 0; |
| int previous0 = 0; |
| |
| if (hbSize < 4) return ERROR(srcSize_wrong); |
| bitStream = MEM_readLE32(ip); |
| nbBits = (bitStream & 0xF) + FSE_MIN_TABLELOG; /* extract tableLog */ |
| if (nbBits > FSE_TABLELOG_ABSOLUTE_MAX) return ERROR(tableLog_tooLarge); |
| bitStream >>= 4; |
| bitCount = 4; |
| *tableLogPtr = nbBits; |
| remaining = (1<<nbBits)+1; |
| threshold = 1<<nbBits; |
| nbBits++; |
| |
| while ((remaining>1) && (charnum<=*maxSVPtr)) |
| { |
| if (previous0) |
| { |
| unsigned n0 = charnum; |
| while ((bitStream & 0xFFFF) == 0xFFFF) |
| { |
| n0+=24; |
| if (ip < iend-5) |
| { |
| ip+=2; |
| bitStream = MEM_readLE32(ip) >> bitCount; |
| } |
| else |
| { |
| bitStream >>= 16; |
| bitCount+=16; |
| } |
| } |
| while ((bitStream & 3) == 3) |
| { |
| n0+=3; |
| bitStream>>=2; |
| bitCount+=2; |
| } |
| n0 += bitStream & 3; |
| bitCount += 2; |
| if (n0 > *maxSVPtr) return ERROR(maxSymbolValue_tooSmall); |
| while (charnum < n0) normalizedCounter[charnum++] = 0; |
| if ((ip <= iend-7) || (ip + (bitCount>>3) <= iend-4)) |
| { |
| ip += bitCount>>3; |
| bitCount &= 7; |
| bitStream = MEM_readLE32(ip) >> bitCount; |
| } |
| else |
| bitStream >>= 2; |
| } |
| { |
| const short max = (short)((2*threshold-1)-remaining); |
| short count; |
| |
| if ((bitStream & (threshold-1)) < (U32)max) |
| { |
| count = (short)(bitStream & (threshold-1)); |
| bitCount += nbBits-1; |
| } |
| else |
| { |
| count = (short)(bitStream & (2*threshold-1)); |
| if (count >= threshold) count -= max; |
| bitCount += nbBits; |
| } |
| |
| count--; /* extra accuracy */ |
| remaining -= FSE_abs(count); |
| normalizedCounter[charnum++] = count; |
| previous0 = !count; |
| while (remaining < threshold) |
| { |
| nbBits--; |
| threshold >>= 1; |
| } |
| |
| { |
| if ((ip <= iend-7) || (ip + (bitCount>>3) <= iend-4)) |
| { |
| ip += bitCount>>3; |
| bitCount &= 7; |
| } |
| else |
| { |
| bitCount -= (int)(8 * (iend - 4 - ip)); |
| ip = iend - 4; |
| } |
| bitStream = MEM_readLE32(ip) >> (bitCount & 31); |
| } |
| } |
| } |
| if (remaining != 1) return ERROR(GENERIC); |
| *maxSVPtr = charnum-1; |
| |
| ip += (bitCount+7)>>3; |
| if ((size_t)(ip-istart) > hbSize) return ERROR(srcSize_wrong); |
| return ip-istart; |
| } |
| |
| |
| /********************************************************* |
| * Decompression (Byte symbols) |
| *********************************************************/ |
| static size_t FSE_buildDTable_rle (FSE_DTable* dt, BYTE symbolValue) |
| { |
| void* ptr = dt; |
| FSE_DTableHeader* const DTableH = (FSE_DTableHeader*)ptr; |
| FSE_decode_t* const cell = (FSE_decode_t*)(ptr) + 1; /* because dt is unsigned */ |
| |
| DTableH->tableLog = 0; |
| DTableH->fastMode = 0; |
| |
| cell->newState = 0; |
| cell->symbol = symbolValue; |
| cell->nbBits = 0; |
| |
| return 0; |
| } |
| |
| |
| static size_t FSE_buildDTable_raw (FSE_DTable* dt, unsigned nbBits) |
| { |
| void* ptr = dt; |
| FSE_DTableHeader* const DTableH = (FSE_DTableHeader*)ptr; |
| FSE_decode_t* const dinfo = (FSE_decode_t*)(ptr) + 1; /* because dt is unsigned */ |
| const unsigned tableSize = 1 << nbBits; |
| const unsigned tableMask = tableSize - 1; |
| const unsigned maxSymbolValue = tableMask; |
| unsigned s; |
| |
| /* Sanity checks */ |
| if (nbBits < 1) return ERROR(GENERIC); /* min size */ |
| |
| /* Build Decoding Table */ |
| DTableH->tableLog = (U16)nbBits; |
| DTableH->fastMode = 1; |
| for (s=0; s<=maxSymbolValue; s++) |
| { |
| dinfo[s].newState = 0; |
| dinfo[s].symbol = (BYTE)s; |
| dinfo[s].nbBits = (BYTE)nbBits; |
| } |
| |
| return 0; |
| } |
| |
| FORCE_INLINE size_t FSE_decompress_usingDTable_generic( |
| void* dst, size_t maxDstSize, |
| const void* cSrc, size_t cSrcSize, |
| const FSE_DTable* dt, const unsigned fast) |
| { |
| BYTE* const ostart = (BYTE*) dst; |
| BYTE* op = ostart; |
| BYTE* const omax = op + maxDstSize; |
| BYTE* const olimit = omax-3; |
| |
| BIT_DStream_t bitD; |
| FSE_DState_t state1; |
| FSE_DState_t state2; |
| size_t errorCode; |
| |
| /* Init */ |
| errorCode = BIT_initDStream(&bitD, cSrc, cSrcSize); /* replaced last arg by maxCompressed Size */ |
| if (FSE_isError(errorCode)) return errorCode; |
| |
| FSE_initDState(&state1, &bitD, dt); |
| FSE_initDState(&state2, &bitD, dt); |
| |
| #define FSE_GETSYMBOL(statePtr) fast ? FSE_decodeSymbolFast(statePtr, &bitD) : FSE_decodeSymbol(statePtr, &bitD) |
| |
| /* 4 symbols per loop */ |
| for ( ; (BIT_reloadDStream(&bitD)==BIT_DStream_unfinished) && (op<olimit) ; op+=4) |
| { |
| op[0] = FSE_GETSYMBOL(&state1); |
| |
| if (FSE_MAX_TABLELOG*2+7 > sizeof(bitD.bitContainer)*8) /* This test must be static */ |
| BIT_reloadDStream(&bitD); |
| |
| op[1] = FSE_GETSYMBOL(&state2); |
| |
| if (FSE_MAX_TABLELOG*4+7 > sizeof(bitD.bitContainer)*8) /* This test must be static */ |
| { if (BIT_reloadDStream(&bitD) > BIT_DStream_unfinished) { op+=2; break; } } |
| |
| op[2] = FSE_GETSYMBOL(&state1); |
| |
| if (FSE_MAX_TABLELOG*2+7 > sizeof(bitD.bitContainer)*8) /* This test must be static */ |
| BIT_reloadDStream(&bitD); |
| |
| op[3] = FSE_GETSYMBOL(&state2); |
| } |
| |
| /* tail */ |
| /* note : BIT_reloadDStream(&bitD) >= FSE_DStream_partiallyFilled; Ends at exactly BIT_DStream_completed */ |
| while (1) |
| { |
| if ( (BIT_reloadDStream(&bitD)>BIT_DStream_completed) || (op==omax) || (BIT_endOfDStream(&bitD) && (fast || FSE_endOfDState(&state1))) ) |
| break; |
| |
| *op++ = FSE_GETSYMBOL(&state1); |
| |
| if ( (BIT_reloadDStream(&bitD)>BIT_DStream_completed) || (op==omax) || (BIT_endOfDStream(&bitD) && (fast || FSE_endOfDState(&state2))) ) |
| break; |
| |
| *op++ = FSE_GETSYMBOL(&state2); |
| } |
| |
| /* end ? */ |
| if (BIT_endOfDStream(&bitD) && FSE_endOfDState(&state1) && FSE_endOfDState(&state2)) |
| return op-ostart; |
| |
| if (op==omax) return ERROR(dstSize_tooSmall); /* dst buffer is full, but cSrc unfinished */ |
| |
| return ERROR(corruption_detected); |
| } |
| |
| |
| static size_t FSE_decompress_usingDTable(void* dst, size_t originalSize, |
| const void* cSrc, size_t cSrcSize, |
| const FSE_DTable* dt) |
| { |
| FSE_DTableHeader DTableH; |
| memcpy(&DTableH, dt, sizeof(DTableH)); |
| |
| /* select fast mode (static) */ |
| if (DTableH.fastMode) return FSE_decompress_usingDTable_generic(dst, originalSize, cSrc, cSrcSize, dt, 1); |
| return FSE_decompress_usingDTable_generic(dst, originalSize, cSrc, cSrcSize, dt, 0); |
| } |
| |
| |
| static size_t FSE_decompress(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize) |
| { |
| const BYTE* const istart = (const BYTE*)cSrc; |
| const BYTE* ip = istart; |
| short counting[FSE_MAX_SYMBOL_VALUE+1]; |
| DTable_max_t dt; /* Static analyzer seems unable to understand this table will be properly initialized later */ |
| unsigned tableLog; |
| unsigned maxSymbolValue = FSE_MAX_SYMBOL_VALUE; |
| size_t errorCode; |
| |
| if (cSrcSize<2) return ERROR(srcSize_wrong); /* too small input size */ |
| |
| /* normal FSE decoding mode */ |
| errorCode = FSE_readNCount (counting, &maxSymbolValue, &tableLog, istart, cSrcSize); |
| if (FSE_isError(errorCode)) return errorCode; |
| if (errorCode >= cSrcSize) return ERROR(srcSize_wrong); /* too small input size */ |
| ip += errorCode; |
| cSrcSize -= errorCode; |
| |
| errorCode = FSE_buildDTable (dt, counting, maxSymbolValue, tableLog); |
| if (FSE_isError(errorCode)) return errorCode; |
| |
| /* always return, even if it is an error code */ |
| return FSE_decompress_usingDTable (dst, maxDstSize, ip, cSrcSize, dt); |
| } |
| |
| |
| |
| #endif /* FSE_COMMONDEFS_ONLY */ |
| /* ****************************************************************** |
| Huff0 : Huffman coder, part of New Generation Entropy library |
| Copyright (C) 2013-2015, Yann Collet. |
| |
| BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php) |
| |
| Redistribution and use in source and binary forms, with or without |
| modification, are permitted provided that the following conditions are |
| met: |
| |
| * Redistributions of source code must retain the above copyright |
| notice, this list of conditions and the following disclaimer. |
| * Redistributions in binary form must reproduce the above |
| copyright notice, this list of conditions and the following disclaimer |
| in the documentation and/or other materials provided with the |
| distribution. |
| |
| THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| You can contact the author at : |
| - FSE+Huff0 source repository : https://github.com/Cyan4973/FiniteStateEntropy |
| - Public forum : https://groups.google.com/forum/#!forum/lz4c |
| ****************************************************************** */ |
| |
| /**************************************************************** |
| * Compiler specifics |
| ****************************************************************/ |
| #if defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) |
| /* inline is defined */ |
| #elif defined(_MSC_VER) |
| # define inline __inline |
| #else |
| # define inline /* disable inline */ |
| #endif |
| |
| |
| #ifdef _MSC_VER /* Visual Studio */ |
| # pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */ |
| #endif |
| |
| |
| /**************************************************************** |
| * Includes |
| ****************************************************************/ |
| #include <stdlib.h> /* malloc, free, qsort */ |
| #include <string.h> /* memcpy, memset */ |
| #include <stdio.h> /* printf (debug) */ |
| |
| /**************************************************************** |
| * Error Management |
| ****************************************************************/ |
| #define HUF_STATIC_ASSERT(c) { enum { HUF_static_assert = 1/(int)(!!(c)) }; } /* use only *after* variable declarations */ |
| |
| |
| /****************************************** |
| * Helper functions |
| ******************************************/ |
| static unsigned HUF_isError(size_t code) { return ERR_isError(code); } |
| |
| #define HUF_ABSOLUTEMAX_TABLELOG 16 /* absolute limit of HUF_MAX_TABLELOG. Beyond that value, code does not work */ |
| #define HUF_MAX_TABLELOG 12 /* max configured tableLog (for static allocation); can be modified up to HUF_ABSOLUTEMAX_TABLELOG */ |
| #define HUF_DEFAULT_TABLELOG HUF_MAX_TABLELOG /* tableLog by default, when not specified */ |
| #define HUF_MAX_SYMBOL_VALUE 255 |
| #if (HUF_MAX_TABLELOG > HUF_ABSOLUTEMAX_TABLELOG) |
| # error "HUF_MAX_TABLELOG is too large !" |
| #endif |
| |
| |
| |
| /********************************************************* |
| * Huff0 : Huffman block decompression |
| *********************************************************/ |
| typedef struct { BYTE byte; BYTE nbBits; } HUF_DEltX2; /* single-symbol decoding */ |
| |
| typedef struct { U16 sequence; BYTE nbBits; BYTE length; } HUF_DEltX4; /* double-symbols decoding */ |
| |
| typedef struct { BYTE symbol; BYTE weight; } sortedSymbol_t; |
| |
| /*! HUF_readStats |
| Read compact Huffman tree, saved by HUF_writeCTable |
| @huffWeight : destination buffer |
| @return : size read from `src` |
| */ |
| static size_t HUF_readStats(BYTE* huffWeight, size_t hwSize, U32* rankStats, |
| U32* nbSymbolsPtr, U32* tableLogPtr, |
| const void* src, size_t srcSize) |
| { |
| U32 weightTotal; |
| U32 tableLog; |
| const BYTE* ip = (const BYTE*) src; |
| size_t iSize; |
| size_t oSize; |
| U32 n; |
| |
| if (!srcSize) return ERROR(srcSize_wrong); |
| iSize = ip[0]; |
| //memset(huffWeight, 0, hwSize); /* is not necessary, even though some analyzer complain ... */ |
| |
| if (iSize >= 128) /* special header */ |
| { |
| if (iSize >= (242)) /* RLE */ |
| { |
| static int l[14] = { 1, 2, 3, 4, 7, 8, 15, 16, 31, 32, 63, 64, 127, 128 }; |
| oSize = l[iSize-242]; |
| memset(huffWeight, 1, hwSize); |
| iSize = 0; |
| } |
| else /* Incompressible */ |
| { |
| oSize = iSize - 127; |
| iSize = ((oSize+1)/2); |
| if (iSize+1 > srcSize) return ERROR(srcSize_wrong); |
| if (oSize >= hwSize) return ERROR(corruption_detected); |
| ip += 1; |
| for (n=0; n<oSize; n+=2) |
| { |
| huffWeight[n] = ip[n/2] >> 4; |
| huffWeight[n+1] = ip[n/2] & 15; |
| } |
| } |
| } |
| else /* header compressed with FSE (normal case) */ |
| { |
| if (iSize+1 > srcSize) return ERROR(srcSize_wrong); |
| oSize = FSE_decompress(huffWeight, hwSize-1, ip+1, iSize); /* max (hwSize-1) values decoded, as last one is implied */ |
| if (FSE_isError(oSize)) return oSize; |
| } |
| |
| /* collect weight stats */ |
| memset(rankStats, 0, (HUF_ABSOLUTEMAX_TABLELOG + 1) * sizeof(U32)); |
| weightTotal = 0; |
| for (n=0; n<oSize; n++) |
| { |
| if (huffWeight[n] >= HUF_ABSOLUTEMAX_TABLELOG) return ERROR(corruption_detected); |
| rankStats[huffWeight[n]]++; |
| weightTotal += (1 << huffWeight[n]) >> 1; |
| } |
| if (weightTotal == 0) return ERROR(corruption_detected); |
| |
| /* get last non-null symbol weight (implied, total must be 2^n) */ |
| tableLog = BIT_highbit32(weightTotal) + 1; |
| if (tableLog > HUF_ABSOLUTEMAX_TABLELOG) return ERROR(corruption_detected); |
| { |
| U32 total = 1 << tableLog; |
| U32 rest = total - weightTotal; |
| U32 verif = 1 << BIT_highbit32(rest); |
| U32 lastWeight = BIT_highbit32(rest) + 1; |
| if (verif != rest) return ERROR(corruption_detected); /* last value must be a clean power of 2 */ |
| huffWeight[oSize] = (BYTE)lastWeight; |
| rankStats[lastWeight]++; |
| } |
| |
| /* check tree construction validity */ |
| if ((rankStats[1] < 2) || (rankStats[1] & 1)) return ERROR(corruption_detected); /* by construction : at least 2 elts of rank 1, must be even */ |
| |
| /* results */ |
| *nbSymbolsPtr = (U32)(oSize+1); |
| *tableLogPtr = tableLog; |
| return iSize+1; |
| } |
| |
| |
| /**************************/ |
| /* single-symbol decoding */ |
| /**************************/ |
| |
| static size_t HUF_readDTableX2 (U16* DTable, const void* src, size_t srcSize) |
| { |
| BYTE huffWeight[HUF_MAX_SYMBOL_VALUE + 1]; |
| U32 rankVal[HUF_ABSOLUTEMAX_TABLELOG + 1]; /* large enough for values from 0 to 16 */ |
| U32 tableLog = 0; |
| const BYTE* ip = (const BYTE*) src; |
| size_t iSize = ip[0]; |
| U32 nbSymbols = 0; |
| U32 n; |
| U32 nextRankStart; |
| void* ptr = DTable+1; |
| HUF_DEltX2* const dt = (HUF_DEltX2*)ptr; |
| |
| HUF_STATIC_ASSERT(sizeof(HUF_DEltX2) == sizeof(U16)); /* if compilation fails here, assertion is false */ |
| //memset(huffWeight, 0, sizeof(huffWeight)); /* is not necessary, even though some analyzer complain ... */ |
| |
| iSize = HUF_readStats(huffWeight, HUF_MAX_SYMBOL_VALUE + 1, rankVal, &nbSymbols, &tableLog, src, srcSize); |
| if (HUF_isError(iSize)) return iSize; |
| |
| /* check result */ |
| if (tableLog > DTable[0]) return ERROR(tableLog_tooLarge); /* DTable is too small */ |
| DTable[0] = (U16)tableLog; /* maybe should separate sizeof DTable, as allocated, from used size of DTable, in case of DTable re-use */ |
| |
| /* Prepare ranks */ |
| nextRankStart = 0; |
| for (n=1; n<=tableLog; n++) |
| { |
| U32 current = nextRankStart; |
| nextRankStart += (rankVal[n] << (n-1)); |
| rankVal[n] = current; |
| } |
| |
| /* fill DTable */ |
| for (n=0; n<nbSymbols; n++) |
| { |
| const U32 w = huffWeight[n]; |
| const U32 length = (1 << w) >> 1; |
| U32 i; |
| HUF_DEltX2 D; |
| D.byte = (BYTE)n; D.nbBits = (BYTE)(tableLog + 1 - w); |
| for (i = rankVal[w]; i < rankVal[w] + length; i++) |
| dt[i] = D; |
| rankVal[w] += length; |
| } |
| |
| return iSize; |
| } |
| |
| static BYTE HUF_decodeSymbolX2(BIT_DStream_t* Dstream, const HUF_DEltX2* dt, const U32 dtLog) |
| { |
| const size_t val = BIT_lookBitsFast(Dstream, dtLog); /* note : dtLog >= 1 */ |
| const BYTE c = dt[val].byte; |
| BIT_skipBits(Dstream, dt[val].nbBits); |
| return c; |
| } |
| |
| #define HUF_DECODE_SYMBOLX2_0(ptr, DStreamPtr) \ |
| *ptr++ = HUF_decodeSymbolX2(DStreamPtr, dt, dtLog) |
| |
| #define HUF_DECODE_SYMBOLX2_1(ptr, DStreamPtr) \ |
| if (MEM_64bits() || (HUF_MAX_TABLELOG<=12)) \ |
| HUF_DECODE_SYMBOLX2_0(ptr, DStreamPtr) |
| |
| #define HUF_DECODE_SYMBOLX2_2(ptr, DStreamPtr) \ |
| if (MEM_64bits()) \ |
| HUF_DECODE_SYMBOLX2_0(ptr, DStreamPtr) |
| |
| static inline size_t HUF_decodeStreamX2(BYTE* p, BIT_DStream_t* const bitDPtr, BYTE* const pEnd, const HUF_DEltX2* const dt, const U32 dtLog) |
| { |
| BYTE* const pStart = p; |
| |
| /* up to 4 symbols at a time */ |
| while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) && (p <= pEnd-4)) |
| { |
| HUF_DECODE_SYMBOLX2_2(p, bitDPtr); |
| HUF_DECODE_SYMBOLX2_1(p, bitDPtr); |
| HUF_DECODE_SYMBOLX2_2(p, bitDPtr); |
| HUF_DECODE_SYMBOLX2_0(p, bitDPtr); |
| } |
| |
| /* closer to the end */ |
| while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) && (p < pEnd)) |
| HUF_DECODE_SYMBOLX2_0(p, bitDPtr); |
| |
| /* no more data to retrieve from bitstream, hence no need to reload */ |
| while (p < pEnd) |
| HUF_DECODE_SYMBOLX2_0(p, bitDPtr); |
| |
| return pEnd-pStart; |
| } |
| |
| |
| static size_t HUF_decompress4X2_usingDTable( |
| void* dst, size_t dstSize, |
| const void* cSrc, size_t cSrcSize, |
| const U16* DTable) |
| { |
| if (cSrcSize < 10) return ERROR(corruption_detected); /* strict minimum : jump table + 1 byte per stream */ |
| |
| { |
| const BYTE* const istart = (const BYTE*) cSrc; |
| BYTE* const ostart = (BYTE*) dst; |
| BYTE* const oend = ostart + dstSize; |
| |
| const void* ptr = DTable; |
| const HUF_DEltX2* const dt = ((const HUF_DEltX2*)ptr) +1; |
| const U32 dtLog = DTable[0]; |
| size_t errorCode; |
| |
| /* Init */ |
| BIT_DStream_t bitD1; |
| BIT_DStream_t bitD2; |
| BIT_DStream_t bitD3; |
| BIT_DStream_t bitD4; |
| const size_t length1 = MEM_readLE16(istart); |
| const size_t length2 = MEM_readLE16(istart+2); |
| const size_t length3 = MEM_readLE16(istart+4); |
| size_t length4; |
| const BYTE* const istart1 = istart + 6; /* jumpTable */ |
| const BYTE* const istart2 = istart1 + length1; |
| const BYTE* const istart3 = istart2 + length2; |
| const BYTE* const istart4 = istart3 + length3; |
| const size_t segmentSize = (dstSize+3) / 4; |
| BYTE* const opStart2 = ostart + segmentSize; |
| BYTE* const opStart3 = opStart2 + segmentSize; |
| BYTE* const opStart4 = opStart3 + segmentSize; |
| BYTE* op1 = ostart; |
| BYTE* op2 = opStart2; |
| BYTE* op3 = opStart3; |
| BYTE* op4 = opStart4; |
| U32 endSignal; |
| |
| length4 = cSrcSize - (length1 + length2 + length3 + 6); |
| if (length4 > cSrcSize) return ERROR(corruption_detected); /* overflow */ |
| errorCode = BIT_initDStream(&bitD1, istart1, length1); |
| if (HUF_isError(errorCode)) return errorCode; |
| errorCode = BIT_initDStream(&bitD2, istart2, length2); |
| if (HUF_isError(errorCode)) return errorCode; |
| errorCode = BIT_initDStream(&bitD3, istart3, length3); |
| if (HUF_isError(errorCode)) return errorCode; |
| errorCode = BIT_initDStream(&bitD4, istart4, length4); |
| if (HUF_isError(errorCode)) return errorCode; |
| |
| /* 16-32 symbols per loop (4-8 symbols per stream) */ |
| endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4); |
| for ( ; (endSignal==BIT_DStream_unfinished) && (op4<(oend-7)) ; ) |
| { |
| HUF_DECODE_SYMBOLX2_2(op1, &bitD1); |
| HUF_DECODE_SYMBOLX2_2(op2, &bitD2); |
| HUF_DECODE_SYMBOLX2_2(op3, &bitD3); |
| HUF_DECODE_SYMBOLX2_2(op4, &bitD4); |
| HUF_DECODE_SYMBOLX2_1(op1, &bitD1); |
| HUF_DECODE_SYMBOLX2_1(op2, &bitD2); |
| HUF_DECODE_SYMBOLX2_1(op3, &bitD3); |
| HUF_DECODE_SYMBOLX2_1(op4, &bitD4); |
| HUF_DECODE_SYMBOLX2_2(op1, &bitD1); |
| HUF_DECODE_SYMBOLX2_2(op2, &bitD2); |
| HUF_DECODE_SYMBOLX2_2(op3, &bitD3); |
| HUF_DECODE_SYMBOLX2_2(op4, &bitD4); |
| HUF_DECODE_SYMBOLX2_0(op1, &bitD1); |
| HUF_DECODE_SYMBOLX2_0(op2, &bitD2); |
| HUF_DECODE_SYMBOLX2_0(op3, &bitD3); |
| HUF_DECODE_SYMBOLX2_0(op4, &bitD4); |
| |
| endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4); |
| } |
| |
| /* check corruption */ |
| if (op1 > opStart2) return ERROR(corruption_detected); |
| if (op2 > opStart3) return ERROR(corruption_detected); |
| if (op3 > opStart4) return ERROR(corruption_detected); |
| /* note : op4 supposed already verified within main loop */ |
| |
| /* finish bitStreams one by one */ |
| HUF_decodeStreamX2(op1, &bitD1, opStart2, dt, dtLog); |
| HUF_decodeStreamX2(op2, &bitD2, opStart3, dt, dtLog); |
| HUF_decodeStreamX2(op3, &bitD3, opStart4, dt, dtLog); |
| HUF_decodeStreamX2(op4, &bitD4, oend, dt, dtLog); |
| |
| /* check */ |
| endSignal = BIT_endOfDStream(&bitD1) & BIT_endOfDStream(&bitD2) & BIT_endOfDStream(&bitD3) & BIT_endOfDStream(&bitD4); |
| if (!endSignal) return ERROR(corruption_detected); |
| |
| /* decoded size */ |
| return dstSize; |
| } |
| } |
| |
| |
| static size_t HUF_decompress4X2 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize) |
| { |
| HUF_CREATE_STATIC_DTABLEX2(DTable, HUF_MAX_TABLELOG); |
| const BYTE* ip = (const BYTE*) cSrc; |
| size_t errorCode; |
| |
| errorCode = HUF_readDTableX2 (DTable, cSrc, cSrcSize); |
| if (HUF_isError(errorCode)) return errorCode; |
| if (errorCode >= cSrcSize) return ERROR(srcSize_wrong); |
| ip += errorCode; |
| cSrcSize -= errorCode; |
| |
| return HUF_decompress4X2_usingDTable (dst, dstSize, ip, cSrcSize, DTable); |
| } |
| |
| |
| /***************************/ |
| /* double-symbols decoding */ |
| /***************************/ |
| |
| static void HUF_fillDTableX4Level2(HUF_DEltX4* DTable, U32 sizeLog, const U32 consumed, |
| const U32* rankValOrigin, const int minWeight, |
| const sortedSymbol_t* sortedSymbols, const U32 sortedListSize, |
| U32 nbBitsBaseline, U16 baseSeq) |
| { |
| HUF_DEltX4 DElt; |
| U32 rankVal[HUF_ABSOLUTEMAX_TABLELOG + 1]; |
| U32 s; |
| |
| /* get pre-calculated rankVal */ |
| memcpy(rankVal, rankValOrigin, sizeof(rankVal)); |
| |
| /* fill skipped values */ |
| if (minWeight>1) |
| { |
| U32 i, skipSize = rankVal[minWeight]; |
| MEM_writeLE16(&(DElt.sequence), baseSeq); |
| DElt.nbBits = (BYTE)(consumed); |
| DElt.length = 1; |
| for (i = 0; i < skipSize; i++) |
| DTable[i] = DElt; |
| } |
| |
| /* fill DTable */ |
| for (s=0; s<sortedListSize; s++) /* note : sortedSymbols already skipped */ |
| { |
| const U32 symbol = sortedSymbols[s].symbol; |
| const U32 weight = sortedSymbols[s].weight; |
| const U32 nbBits = nbBitsBaseline - weight; |
| const U32 length = 1 << (sizeLog-nbBits); |
| const U32 start = rankVal[weight]; |
| U32 i = start; |
| const U32 end = start + length; |
| |
| MEM_writeLE16(&(DElt.sequence), (U16)(baseSeq + (symbol << 8))); |
| DElt.nbBits = (BYTE)(nbBits + consumed); |
| DElt.length = 2; |
| do { DTable[i++] = DElt; } while (i<end); /* since length >= 1 */ |
| |
| rankVal[weight] += length; |
| } |
| } |
| |
| typedef U32 rankVal_t[HUF_ABSOLUTEMAX_TABLELOG][HUF_ABSOLUTEMAX_TABLELOG + 1]; |
| |
| static void HUF_fillDTableX4(HUF_DEltX4* DTable, const U32 targetLog, |
| const sortedSymbol_t* sortedList, const U32 sortedListSize, |
| const U32* rankStart, rankVal_t rankValOrigin, const U32 maxWeight, |
| const U32 nbBitsBaseline) |
| { |
| U32 rankVal[HUF_ABSOLUTEMAX_TABLELOG + 1]; |
| const int scaleLog = nbBitsBaseline - targetLog; /* note : targetLog >= srcLog, hence scaleLog <= 1 */ |
| const U32 minBits = nbBitsBaseline - maxWeight; |
| U32 s; |
| |
| memcpy(rankVal, rankValOrigin, sizeof(rankVal)); |
| |
| /* fill DTable */ |
| for (s=0; s<sortedListSize; s++) |
| { |
| const U16 symbol = sortedList[s].symbol; |
| const U32 weight = sortedList[s].weight; |
| const U32 nbBits = nbBitsBaseline - weight; |
| const U32 start = rankVal[weight]; |
| const U32 length = 1 << (targetLog-nbBits); |
| |
| if (targetLog-nbBits >= minBits) /* enough room for a second symbol */ |
| { |
| U32 sortedRank; |
| int minWeight = nbBits + scaleLog; |
| if (minWeight < 1) minWeight = 1; |
| sortedRank = rankStart[minWeight]; |
| HUF_fillDTableX4Level2(DTable+start, targetLog-nbBits, nbBits, |
| rankValOrigin[nbBits], minWeight, |
| sortedList+sortedRank, sortedListSize-sortedRank, |
| nbBitsBaseline, symbol); |
| } |
| else |
| { |
| U32 i; |
| const U32 end = start + length; |
| HUF_DEltX4 DElt; |
| |
| MEM_writeLE16(&(DElt.sequence), symbol); |
| DElt.nbBits = (BYTE)(nbBits); |
| DElt.length = 1; |
| for (i = start; i < end; i++) |
| DTable[i] = DElt; |
| } |
| rankVal[weight] += length; |
| } |
| } |
| |
| static size_t HUF_readDTableX4 (U32* DTable, const void* src, size_t srcSize) |
| { |
| BYTE weightList[HUF_MAX_SYMBOL_VALUE + 1]; |
| sortedSymbol_t sortedSymbol[HUF_MAX_SYMBOL_VALUE + 1]; |
| U32 rankStats[HUF_ABSOLUTEMAX_TABLELOG + 1] = { 0 }; |
| U32 rankStart0[HUF_ABSOLUTEMAX_TABLELOG + 2] = { 0 }; |
| U32* const rankStart = rankStart0+1; |
| rankVal_t rankVal; |
| U32 tableLog, maxW, sizeOfSort, nbSymbols; |
| const U32 memLog = DTable[0]; |
| const BYTE* ip = (const BYTE*) src; |
| size_t iSize = ip[0]; |
| void* ptr = DTable; |
| HUF_DEltX4* const dt = ((HUF_DEltX4*)ptr) + 1; |
| |
| HUF_STATIC_ASSERT(sizeof(HUF_DEltX4) == sizeof(U32)); /* if compilation fails here, assertion is false */ |
| if (memLog > HUF_ABSOLUTEMAX_TABLELOG) return ERROR(tableLog_tooLarge); |
| //memset(weightList, 0, sizeof(weightList)); /* is not necessary, even though some analyzer complain ... */ |
| |
| iSize = HUF_readStats(weightList, HUF_MAX_SYMBOL_VALUE + 1, rankStats, &nbSymbols, &tableLog, src, srcSize); |
| if (HUF_isError(iSize)) return iSize; |
| |
| /* check result */ |
| if (tableLog > memLog) return ERROR(tableLog_tooLarge); /* DTable can't fit code depth */ |
| |
| /* find maxWeight */ |
| for (maxW = tableLog; rankStats[maxW]==0; maxW--) |
| {if (!maxW) return ERROR(GENERIC); } /* necessarily finds a solution before maxW==0 */ |
| |
| /* Get start index of each weight */ |
| { |
| U32 w, nextRankStart = 0; |
| for (w=1; w<=maxW; w++) |
| { |
| U32 current = nextRankStart; |
| nextRankStart += rankStats[w]; |
| rankStart[w] = current; |
| } |
| rankStart[0] = nextRankStart; /* put all 0w symbols at the end of sorted list*/ |
| sizeOfSort = nextRankStart; |
| } |
| |
| /* sort symbols by weight */ |
| { |
| U32 s; |
| for (s=0; s<nbSymbols; s++) |
| { |
| U32 w = weightList[s]; |
| U32 r = rankStart[w]++; |
| sortedSymbol[r].symbol = (BYTE)s; |
| sortedSymbol[r].weight = (BYTE)w; |
| } |
| rankStart[0] = 0; /* forget 0w symbols; this is beginning of weight(1) */ |
| } |
| |
| /* Build rankVal */ |
| { |
| const U32 minBits = tableLog+1 - maxW; |
| U32 nextRankVal = 0; |
| U32 w, consumed; |
| const int rescale = (memLog-tableLog) - 1; /* tableLog <= memLog */ |
| U32* rankVal0 = rankVal[0]; |
| for (w=1; w<=maxW; w++) |
| { |
| U32 current = nextRankVal; |
| nextRankVal += rankStats[w] << (w+rescale); |
| rankVal0[w] = current; |
| } |
| for (consumed = minBits; consumed <= memLog - minBits; consumed++) |
| { |
| U32* rankValPtr = rankVal[consumed]; |
| for (w = 1; w <= maxW; w++) |
| { |
| rankValPtr[w] = rankVal0[w] >> consumed; |
| } |
| } |
| } |
| |
| HUF_fillDTableX4(dt, memLog, |
| sortedSymbol, sizeOfSort, |
| rankStart0, rankVal, maxW, |
| tableLog+1); |
| |
| return iSize; |
| } |
| |
| |
| static U32 HUF_decodeSymbolX4(void* op, BIT_DStream_t* DStream, const HUF_DEltX4* dt, const U32 dtLog) |
| { |
| const size_t val = BIT_lookBitsFast(DStream, dtLog); /* note : dtLog >= 1 */ |
| memcpy(op, dt+val, 2); |
| BIT_skipBits(DStream, dt[val].nbBits); |
| return dt[val].length; |
| } |
| |
| static U32 HUF_decodeLastSymbolX4(void* op, BIT_DStream_t* DStream, const HUF_DEltX4* dt, const U32 dtLog) |
| { |
| const size_t val = BIT_lookBitsFast(DStream, dtLog); /* note : dtLog >= 1 */ |
| memcpy(op, dt+val, 1); |
| if (dt[val].length==1) BIT_skipBits(DStream, dt[val].nbBits); |
| else |
| { |
| if (DStream->bitsConsumed < (sizeof(DStream->bitContainer)*8)) |
| { |
| BIT_skipBits(DStream, dt[val].nbBits); |
| if (DStream->bitsConsumed > (sizeof(DStream->bitContainer)*8)) |
| DStream->bitsConsumed = (sizeof(DStream->bitContainer)*8); /* ugly hack; works only because it's the last symbol. Note : can't easily extract nbBits from just this symbol */ |
| } |
| } |
| return 1; |
| } |
| |
| |
| #define HUF_DECODE_SYMBOLX4_0(ptr, DStreamPtr) \ |
| ptr += HUF_decodeSymbolX4(ptr, DStreamPtr, dt, dtLog) |
| |
| #define HUF_DECODE_SYMBOLX4_1(ptr, DStreamPtr) \ |
| if (MEM_64bits() || (HUF_MAX_TABLELOG<=12)) \ |
| ptr += HUF_decodeSymbolX4(ptr, DStreamPtr, dt, dtLog) |
| |
| #define HUF_DECODE_SYMBOLX4_2(ptr, DStreamPtr) \ |
| if (MEM_64bits()) \ |
| ptr += HUF_decodeSymbolX4(ptr, DStreamPtr, dt, dtLog) |
| |
| static inline size_t HUF_decodeStreamX4(BYTE* p, BIT_DStream_t* bitDPtr, BYTE* const pEnd, const HUF_DEltX4* const dt, const U32 dtLog) |
| { |
| BYTE* const pStart = p; |
| |
| /* up to 8 symbols at a time */ |
| while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) && (p < pEnd-7)) |
| { |
| HUF_DECODE_SYMBOLX4_2(p, bitDPtr); |
| HUF_DECODE_SYMBOLX4_1(p, bitDPtr); |
| HUF_DECODE_SYMBOLX4_2(p, bitDPtr); |
| HUF_DECODE_SYMBOLX4_0(p, bitDPtr); |
| } |
| |
| /* closer to the end */ |
| while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) && (p <= pEnd-2)) |
| HUF_DECODE_SYMBOLX4_0(p, bitDPtr); |
| |
| while (p <= pEnd-2) |
| HUF_DECODE_SYMBOLX4_0(p, bitDPtr); /* no need to reload : reached the end of DStream */ |
| |
| if (p < pEnd) |
| p += HUF_decodeLastSymbolX4(p, bitDPtr, dt, dtLog); |
| |
| return p-pStart; |
| } |
| |
| |
| |
| static size_t HUF_decompress4X4_usingDTable( |
| void* dst, size_t dstSize, |
| const void* cSrc, size_t cSrcSize, |
| const U32* DTable) |
| { |
| if (cSrcSize < 10) return ERROR(corruption_detected); /* strict minimum : jump table + 1 byte per stream */ |
| |
| { |
| const BYTE* const istart = (const BYTE*) cSrc; |
| BYTE* const ostart = (BYTE*) dst; |
| BYTE* const oend = ostart + dstSize; |
| |
| const void* ptr = DTable; |
| const HUF_DEltX4* const dt = ((const HUF_DEltX4*)ptr) +1; |
| const U32 dtLog = DTable[0]; |
| size_t errorCode; |
| |
| /* Init */ |
| BIT_DStream_t bitD1; |
| BIT_DStream_t bitD2; |
| BIT_DStream_t bitD3; |
| BIT_DStream_t bitD4; |
| const size_t length1 = MEM_readLE16(istart); |
| const size_t length2 = MEM_readLE16(istart+2); |
| const size_t length3 = MEM_readLE16(istart+4); |
| size_t length4; |
| const BYTE* const istart1 = istart + 6; /* jumpTable */ |
| const BYTE* const istart2 = istart1 + length1; |
| const BYTE* const istart3 = istart2 + length2; |
| const BYTE* const istart4 = istart3 + length3; |
| const size_t segmentSize = (dstSize+3) / 4; |
| BYTE* const opStart2 = ostart + segmentSize; |
| BYTE* const opStart3 = opStart2 + segmentSize; |
| BYTE* const opStart4 = opStart3 + segmentSize; |
| BYTE* op1 = ostart; |
| BYTE* op2 = opStart2; |
| BYTE* op3 = opStart3; |
| BYTE* op4 = opStart4; |
| U32 endSignal; |
| |
| length4 = cSrcSize - (length1 + length2 + length3 + 6); |
| if (length4 > cSrcSize) return ERROR(corruption_detected); /* overflow */ |
| errorCode = BIT_initDStream(&bitD1, istart1, length1); |
| if (HUF_isError(errorCode)) return errorCode; |
| errorCode = BIT_initDStream(&bitD2, istart2, length2); |
| if (HUF_isError(errorCode)) return errorCode; |
| errorCode = BIT_initDStream(&bitD3, istart3, length3); |
| if (HUF_isError(errorCode)) return errorCode; |
| errorCode = BIT_initDStream(&bitD4, istart4, length4); |
| if (HUF_isError(errorCode)) return errorCode; |
| |
| /* 16-32 symbols per loop (4-8 symbols per stream) */ |
| endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4); |
| for ( ; (endSignal==BIT_DStream_unfinished) && (op4<(oend-7)) ; ) |
| { |
| HUF_DECODE_SYMBOLX4_2(op1, &bitD1); |
| HUF_DECODE_SYMBOLX4_2(op2, &bitD2); |
| HUF_DECODE_SYMBOLX4_2(op3, &bitD3); |
| HUF_DECODE_SYMBOLX4_2(op4, &bitD4); |
| HUF_DECODE_SYMBOLX4_1(op1, &bitD1); |
| HUF_DECODE_SYMBOLX4_1(op2, &bitD2); |
| HUF_DECODE_SYMBOLX4_1(op3, &bitD3); |
| HUF_DECODE_SYMBOLX4_1(op4, &bitD4); |
| HUF_DECODE_SYMBOLX4_2(op1, &bitD1); |
| HUF_DECODE_SYMBOLX4_2(op2, &bitD2); |
| HUF_DECODE_SYMBOLX4_2(op3, &bitD3); |
| HUF_DECODE_SYMBOLX4_2(op4, &bitD4); |
| HUF_DECODE_SYMBOLX4_0(op1, &bitD1); |
| HUF_DECODE_SYMBOLX4_0(op2, &bitD2); |
| HUF_DECODE_SYMBOLX4_0(op3, &bitD3); |
| HUF_DECODE_SYMBOLX4_0(op4, &bitD4); |
| |
| endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4); |
| } |
| |
| /* check corruption */ |
| if (op1 > opStart2) return ERROR(corruption_detected); |
| if (op2 > opStart3) return ERROR(corruption_detected); |
| if (op3 > opStart4) return ERROR(corruption_detected); |
| /* note : op4 supposed already verified within main loop */ |
| |
| /* finish bitStreams one by one */ |
| HUF_decodeStreamX4(op1, &bitD1, opStart2, dt, dtLog); |
| HUF_decodeStreamX4(op2, &bitD2, opStart3, dt, dtLog); |
| HUF_decodeStreamX4(op3, &bitD3, opStart4, dt, dtLog); |
| HUF_decodeStreamX4(op4, &bitD4, oend, dt, dtLog); |
| |
| /* check */ |
| endSignal = BIT_endOfDStream(&bitD1) & BIT_endOfDStream(&bitD2) & BIT_endOfDStream(&bitD3) & BIT_endOfDStream(&bitD4); |
| if (!endSignal) return ERROR(corruption_detected); |
| |
| /* decoded size */ |
| return dstSize; |
| } |
| } |
| |
| |
| static size_t HUF_decompress4X4 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize) |
| { |
| HUF_CREATE_STATIC_DTABLEX4(DTable, HUF_MAX_TABLELOG); |
| const BYTE* ip = (const BYTE*) cSrc; |
| |
| size_t hSize = HUF_readDTableX4 (DTable, cSrc, cSrcSize); |
| if (HUF_isError(hSize)) return hSize; |
| if (hSize >= cSrcSize) return ERROR(srcSize_wrong); |
| ip += hSize; |
| cSrcSize -= hSize; |
| |
| return HUF_decompress4X4_usingDTable (dst, dstSize, ip, cSrcSize, DTable); |
| } |
| |
| |
| /**********************************/ |
| /* quad-symbol decoding */ |
| /**********************************/ |
| typedef struct { BYTE nbBits; BYTE nbBytes; } HUF_DDescX6; |
| typedef union { BYTE byte[4]; U32 sequence; } HUF_DSeqX6; |
| |
| /* recursive, up to level 3; may benefit from <template>-like strategy to nest each level inline */ |
| static void HUF_fillDTableX6LevelN(HUF_DDescX6* DDescription, HUF_DSeqX6* DSequence, int sizeLog, |
| const rankVal_t rankValOrigin, const U32 consumed, const int minWeight, const U32 maxWeight, |
| const sortedSymbol_t* sortedSymbols, const U32 sortedListSize, const U32* rankStart, |
| const U32 nbBitsBaseline, HUF_DSeqX6 baseSeq, HUF_DDescX6 DDesc) |
| { |
| const int scaleLog = nbBitsBaseline - sizeLog; /* note : targetLog >= (nbBitsBaseline-1), hence scaleLog <= 1 */ |
| const int minBits = nbBitsBaseline - maxWeight; |
| const U32 level = DDesc.nbBytes; |
| U32 rankVal[HUF_ABSOLUTEMAX_TABLELOG + 1]; |
| U32 symbolStartPos, s; |
| |
| /* local rankVal, will be modified */ |
| memcpy(rankVal, rankValOrigin[consumed], sizeof(rankVal)); |
| |
| /* fill skipped values */ |
| if (minWeight>1) |
| { |
| U32 i; |
| const U32 skipSize = rankVal[minWeight]; |
| for (i = 0; i < skipSize; i++) |
| { |
| DSequence[i] = baseSeq; |
| DDescription[i] = DDesc; |
| } |
| } |
| |
| /* fill DTable */ |
| DDesc.nbBytes++; |
| symbolStartPos = rankStart[minWeight]; |
| for (s=symbolStartPos; s<sortedListSize; s++) |
| { |
| const BYTE symbol = sortedSymbols[s].symbol; |
| const U32 weight = sortedSymbols[s].weight; /* >= 1 (sorted) */ |
| const int nbBits = nbBitsBaseline - weight; /* >= 1 (by construction) */ |
| const int totalBits = consumed+nbBits; |
| const U32 start = rankVal[weight]; |
| const U32 length = 1 << (sizeLog-nbBits); |
| baseSeq.byte[level] = symbol; |
| DDesc.nbBits = (BYTE)totalBits; |
| |
| if ((level<3) && (sizeLog-totalBits >= minBits)) /* enough room for another symbol */ |
| { |
| int nextMinWeight = totalBits + scaleLog; |
| if (nextMinWeight < 1) nextMinWeight = 1; |
| HUF_fillDTableX6LevelN(DDescription+start, DSequence+start, sizeLog-nbBits, |
| rankValOrigin, totalBits, nextMinWeight, maxWeight, |
| sortedSymbols, sortedListSize, rankStart, |
| nbBitsBaseline, baseSeq, DDesc); /* recursive (max : level 3) */ |
| } |
| else |
| { |
| U32 i; |
| const U32 end = start + length; |
| for (i = start; i < end; i++) |
| { |
| DDescription[i] = DDesc; |
| DSequence[i] = baseSeq; |
| } |
| } |
| rankVal[weight] += length; |
| } |
| } |
| |
| |
| /* note : same preparation as X4 */ |
| static size_t HUF_readDTableX6 (U32* DTable, const void* src, size_t srcSize) |
| { |
| BYTE weightList[HUF_MAX_SYMBOL_VALUE + 1]; |
| sortedSymbol_t sortedSymbol[HUF_MAX_SYMBOL_VALUE + 1]; |
| U32 rankStats[HUF_ABSOLUTEMAX_TABLELOG + 1] = { 0 }; |
| U32 rankStart0[HUF_ABSOLUTEMAX_TABLELOG + 2] = { 0 }; |
| U32* const rankStart = rankStart0+1; |
| U32 tableLog, maxW, sizeOfSort, nbSymbols; |
| rankVal_t rankVal; |
| const U32 memLog = DTable[0]; |
| const BYTE* ip = (const BYTE*) src; |
| size_t iSize = ip[0]; |
| |
| if (memLog > HUF_ABSOLUTEMAX_TABLELOG) return ERROR(tableLog_tooLarge); |
| //memset(weightList, 0, sizeof(weightList)); /* is not necessary, even though some analyzer complain ... */ |
| |
| iSize = HUF_readStats(weightList, HUF_MAX_SYMBOL_VALUE + 1, rankStats, &nbSymbols, &tableLog, src, srcSize); |
| if (HUF_isError(iSize)) return iSize; |
| |
| /* check result */ |
| if (tableLog > memLog) return ERROR(tableLog_tooLarge); /* DTable is too small */ |
| |
| /* find maxWeight */ |
| for (maxW = tableLog; rankStats[maxW]==0; maxW--) |
| { if (!maxW) return ERROR(GENERIC); } /* necessarily finds a solution before maxW==0 */ |
| |
| |
| /* Get start index of each weight */ |
| { |
| U32 w, nextRankStart = 0; |
| for (w=1; w<=maxW; w++) |
| { |
| U32 current = nextRankStart; |
| nextRankStart += rankStats[w]; |
| rankStart[w] = current; |
| } |
| rankStart[0] = nextRankStart; /* put all 0w symbols at the end of sorted list*/ |
| sizeOfSort = nextRankStart; |
| } |
| |
| /* sort symbols by weight */ |
| { |
| U32 s; |
| for (s=0; s<nbSymbols; s++) |
| { |
| U32 w = weightList[s]; |
| U32 r = rankStart[w]++; |
| sortedSymbol[r].symbol = (BYTE)s; |
| sortedSymbol[r].weight = (BYTE)w; |
| } |
| rankStart[0] = 0; /* forget 0w symbols; this is beginning of weight(1) */ |
| } |
| |
| /* Build rankVal */ |
| { |
| const U32 minBits = tableLog+1 - maxW; |
| U32 nextRankVal = 0; |
| U32 w, consumed; |
| const int rescale = (memLog-tableLog) - 1; /* tableLog <= memLog */ |
| U32* rankVal0 = rankVal[0]; |
| for (w=1; w<=maxW; w++) |
| { |
| U32 current = nextRankVal; |
| nextRankVal += rankStats[w] << (w+rescale); |
| rankVal0[w] = current; |
| } |
| for (consumed = minBits; consumed <= memLog - minBits; consumed++) |
| { |
| U32* rankValPtr = rankVal[consumed]; |
| for (w = 1; w <= maxW; w++) |
| { |
| rankValPtr[w] = rankVal0[w] >> consumed; |
| } |
| } |
| } |
| |
| |
| /* fill tables */ |
| { |
| void* ptr = DTable+1; |
| HUF_DDescX6* DDescription = (HUF_DDescX6*)(ptr); |
| void* dSeqStart = DTable + 1 + ((size_t)1<<(memLog-1)); |
| HUF_DSeqX6* DSequence = (HUF_DSeqX6*)(dSeqStart); |
| HUF_DSeqX6 DSeq; |
| HUF_DDescX6 DDesc; |
| DSeq.sequence = 0; |
| DDesc.nbBits = 0; |
| DDesc.nbBytes = 0; |
| HUF_fillDTableX6LevelN(DDescription, DSequence, memLog, |
| (const U32 (*)[HUF_ABSOLUTEMAX_TABLELOG + 1])rankVal, 0, 1, maxW, |
| sortedSymbol, sizeOfSort, rankStart0, |
| tableLog+1, DSeq, DDesc); |
| } |
| |
| return iSize; |
| } |
| |
| |
| static U32 HUF_decodeSymbolX6(void* op, BIT_DStream_t* DStream, const HUF_DDescX6* dd, const HUF_DSeqX6* ds, const U32 dtLog) |
| { |
| const size_t val = BIT_lookBitsFast(DStream, dtLog); /* note : dtLog >= 1 */ |
| memcpy(op, ds+val, sizeof(HUF_DSeqX6)); |
| BIT_skipBits(DStream, dd[val].nbBits); |
| return dd[val].nbBytes; |
| } |
| |
| static U32 HUF_decodeLastSymbolsX6(void* op, const U32 maxL, BIT_DStream_t* DStream, |
| const HUF_DDescX6* dd, const HUF_DSeqX6* ds, const U32 dtLog) |
| { |
| const size_t val = BIT_lookBitsFast(DStream, dtLog); /* note : dtLog >= 1 */ |
| U32 length = dd[val].nbBytes; |
| if (length <= maxL) |
| { |
| memcpy(op, ds+val, length); |
| BIT_skipBits(DStream, dd[val].nbBits); |
| return length; |
| } |
| memcpy(op, ds+val, maxL); |
| if (DStream->bitsConsumed < (sizeof(DStream->bitContainer)*8)) |
| { |
| BIT_skipBits(DStream, dd[val].nbBits); |
| if (DStream->bitsConsumed > (sizeof(DStream->bitContainer)*8)) |
| DStream->bitsConsumed = (sizeof(DStream->bitContainer)*8); /* ugly hack; works only because it's the last symbol. Note : can't easily extract nbBits from just this symbol */ |
| } |
| return maxL; |
| } |
| |
| |
| #define HUF_DECODE_SYMBOLX6_0(ptr, DStreamPtr) \ |
| ptr += HUF_decodeSymbolX6(ptr, DStreamPtr, dd, ds, dtLog) |
| |
| #define HUF_DECODE_SYMBOLX6_1(ptr, DStreamPtr) \ |
| if (MEM_64bits() || (HUF_MAX_TABLELOG<=12)) \ |
| HUF_DECODE_SYMBOLX6_0(ptr, DStreamPtr) |
| |
| #define HUF_DECODE_SYMBOLX6_2(ptr, DStreamPtr) \ |
| if (MEM_64bits()) \ |
| HUF_DECODE_SYMBOLX6_0(ptr, DStreamPtr) |
| |
| static inline size_t HUF_decodeStreamX6(BYTE* p, BIT_DStream_t* bitDPtr, BYTE* const pEnd, const U32* DTable, const U32 dtLog) |
| { |
| const void* ddPtr = DTable+1; |
| const HUF_DDescX6* dd = (const HUF_DDescX6*)(ddPtr); |
| const void* dsPtr = DTable + 1 + ((size_t)1<<(dtLog-1)); |
| const HUF_DSeqX6* ds = (const HUF_DSeqX6*)(dsPtr); |
| BYTE* const pStart = p; |
| |
| /* up to 16 symbols at a time */ |
| while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) && (p <= pEnd-16)) |
| { |
| HUF_DECODE_SYMBOLX6_2(p, bitDPtr); |
| HUF_DECODE_SYMBOLX6_1(p, bitDPtr); |
| HUF_DECODE_SYMBOLX6_2(p, bitDPtr); |
| HUF_DECODE_SYMBOLX6_0(p, bitDPtr); |
| } |
| |
| /* closer to the end, up to 4 symbols at a time */ |
| while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) && (p <= pEnd-4)) |
| HUF_DECODE_SYMBOLX6_0(p, bitDPtr); |
| |
| while (p <= pEnd-4) |
| HUF_DECODE_SYMBOLX6_0(p, bitDPtr); /* no need to reload : reached the end of DStream */ |
| |
| while (p < pEnd) |
| p += HUF_decodeLastSymbolsX6(p, (U32)(pEnd-p), bitDPtr, dd, ds, dtLog); |
| |
| return p-pStart; |
| } |
| |
| |
| |
| static size_t HUF_decompress4X6_usingDTable( |
| void* dst, size_t dstSize, |
| const void* cSrc, size_t cSrcSize, |
| const U32* DTable) |
| { |
| if (cSrcSize < 10) return ERROR(corruption_detected); /* strict minimum : jump table + 1 byte per stream */ |
| |
| { |
| const BYTE* const istart = (const BYTE*) cSrc; |
| BYTE* const ostart = (BYTE*) dst; |
| BYTE* const oend = ostart + dstSize; |
| |
| const U32 dtLog = DTable[0]; |
| const void* ddPtr = DTable+1; |
| const HUF_DDescX6* dd = (const HUF_DDescX6*)(ddPtr); |
| const void* dsPtr = DTable + 1 + ((size_t)1<<(dtLog-1)); |
| const HUF_DSeqX6* ds = (const HUF_DSeqX6*)(dsPtr); |
| size_t errorCode; |
| |
| /* Init */ |
| BIT_DStream_t bitD1; |
| BIT_DStream_t bitD2; |
| BIT_DStream_t bitD3; |
| BIT_DStream_t bitD4; |
| const size_t length1 = MEM_readLE16(istart); |
| const size_t length2 = MEM_readLE16(istart+2); |
| const size_t length3 = MEM_readLE16(istart+4); |
| size_t length4; |
| const BYTE* const istart1 = istart + 6; /* jumpTable */ |
| const BYTE* const istart2 = istart1 + length1; |
| const BYTE* const istart3 = istart2 + length2; |
| const BYTE* const istart4 = istart3 + length3; |
| const size_t segmentSize = (dstSize+3) / 4; |
| BYTE* const opStart2 = ostart + segmentSize; |
| BYTE* const opStart3 = opStart2 + segmentSize; |
| BYTE* const opStart4 = opStart3 + segmentSize; |
| BYTE* op1 = ostart; |
| BYTE* op2 = opStart2; |
| BYTE* op3 = opStart3; |
| BYTE* op4 = opStart4; |
| U32 endSignal; |
| |
| length4 = cSrcSize - (length1 + length2 + length3 + 6); |
| if (length4 > cSrcSize) return ERROR(corruption_detected); /* overflow */ |
| errorCode = BIT_initDStream(&bitD1, istart1, length1); |
| if (HUF_isError(errorCode)) return errorCode; |
| errorCode = BIT_initDStream(&bitD2, istart2, length2); |
| if (HUF_isError(errorCode)) return errorCode; |
| errorCode = BIT_initDStream(&bitD3, istart3, length3); |
| if (HUF_isError(errorCode)) return errorCode; |
| errorCode = BIT_initDStream(&bitD4, istart4, length4); |
| if (HUF_isError(errorCode)) return errorCode; |
| |
| /* 16-64 symbols per loop (4-16 symbols per stream) */ |
| endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4); |
| for ( ; (op3 <= opStart4) && (endSignal==BIT_DStream_unfinished) && (op4<=(oend-16)) ; ) |
| { |
| HUF_DECODE_SYMBOLX6_2(op1, &bitD1); |
| HUF_DECODE_SYMBOLX6_2(op2, &bitD2); |
| HUF_DECODE_SYMBOLX6_2(op3, &bitD3); |
| HUF_DECODE_SYMBOLX6_2(op4, &bitD4); |
| HUF_DECODE_SYMBOLX6_1(op1, &bitD1); |
| HUF_DECODE_SYMBOLX6_1(op2, &bitD2); |
| HUF_DECODE_SYMBOLX6_1(op3, &bitD3); |
| HUF_DECODE_SYMBOLX6_1(op4, &bitD4); |
| HUF_DECODE_SYMBOLX6_2(op1, &bitD1); |
| HUF_DECODE_SYMBOLX6_2(op2, &bitD2); |
| HUF_DECODE_SYMBOLX6_2(op3, &bitD3); |
| HUF_DECODE_SYMBOLX6_2(op4, &bitD4); |
| HUF_DECODE_SYMBOLX6_0(op1, &bitD1); |
| HUF_DECODE_SYMBOLX6_0(op2, &bitD2); |
| HUF_DECODE_SYMBOLX6_0(op3, &bitD3); |
| HUF_DECODE_SYMBOLX6_0(op4, &bitD4); |
| |
| endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4); |
| } |
| |
| /* check corruption */ |
| if (op1 > opStart2) return ERROR(corruption_detected); |
| if (op2 > opStart3) return ERROR(corruption_detected); |
| if (op3 > opStart4) return ERROR(corruption_detected); |
| /* note : op4 supposed already verified within main loop */ |
| |
| /* finish bitStreams one by one */ |
| HUF_decodeStreamX6(op1, &bitD1, opStart2, DTable, dtLog); |
| HUF_decodeStreamX6(op2, &bitD2, opStart3, DTable, dtLog); |
| HUF_decodeStreamX6(op3, &bitD3, opStart4, DTable, dtLog); |
| HUF_decodeStreamX6(op4, &bitD4, oend, DTable, dtLog); |
| |
| /* check */ |
| endSignal = BIT_endOfDStream(&bitD1) & BIT_endOfDStream(&bitD2) & BIT_endOfDStream(&bitD3) & BIT_endOfDStream(&bitD4); |
| if (!endSignal) return ERROR(corruption_detected); |
| |
| /* decoded size */ |
| return dstSize; |
| } |
| } |
| |
| |
| static size_t HUF_decompress4X6 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize) |
| { |
| HUF_CREATE_STATIC_DTABLEX6(DTable, HUF_MAX_TABLELOG); |
| const BYTE* ip = (const BYTE*) cSrc; |
| |
| size_t hSize = HUF_readDTableX6 (DTable, cSrc, cSrcSize); |
| if (HUF_isError(hSize)) return hSize; |
| if (hSize >= cSrcSize) return ERROR(srcSize_wrong); |
| ip += hSize; |
| cSrcSize -= hSize; |
| |
| return HUF_decompress4X6_usingDTable (dst, dstSize, ip, cSrcSize, DTable); |
| } |
| |
| |
| /**********************************/ |
| /* Generic decompression selector */ |
| /**********************************/ |
| |
| typedef struct { U32 tableTime; U32 decode256Time; } algo_time_t; |
| static const algo_time_t algoTime[16 /* Quantization */][3 /* single, double, quad */] = |
| { |
| /* single, double, quad */ |
| {{0,0}, {1,1}, {2,2}}, /* Q==0 : impossible */ |
| {{0,0}, {1,1}, {2,2}}, /* Q==1 : impossible */ |
| {{ 38,130}, {1313, 74}, {2151, 38}}, /* Q == 2 : 12-18% */ |
| {{ 448,128}, {1353, 74}, {2238, 41}}, /* Q == 3 : 18-25% */ |
| {{ 556,128}, {1353, 74}, {2238, 47}}, /* Q == 4 : 25-32% */ |
| {{ 714,128}, {1418, 74}, {2436, 53}}, /* Q == 5 : 32-38% */ |
| {{ 883,128}, {1437, 74}, {2464, 61}}, /* Q == 6 : 38-44% */ |
| {{ 897,128}, {1515, 75}, {2622, 68}}, /* Q == 7 : 44-50% */ |
| {{ 926,128}, {1613, 75}, {2730, 75}}, /* Q == 8 : 50-56% */ |
| {{ 947,128}, {1729, 77}, {3359, 77}}, /* Q == 9 : 56-62% */ |
| {{1107,128}, {2083, 81}, {4006, 84}}, /* Q ==10 : 62-69% */ |
| {{1177,128}, {2379, 87}, {4785, 88}}, /* Q ==11 : 69-75% */ |
| {{1242,128}, {2415, 93}, {5155, 84}}, /* Q ==12 : 75-81% */ |
| {{1349,128}, {2644,106}, {5260,106}}, /* Q ==13 : 81-87% */ |
| {{1455,128}, {2422,124}, {4174,124}}, /* Q ==14 : 87-93% */ |
| {{ 722,128}, {1891,145}, {1936,146}}, /* Q ==15 : 93-99% */ |
| }; |
| |
| typedef size_t (*decompressionAlgo)(void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); |
| |
| static size_t HUF_decompress (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize) |
| { |
| static const decompressionAlgo decompress[3] = { HUF_decompress4X2, HUF_decompress4X4, HUF_decompress4X6 }; |
| /* estimate decompression time */ |
| U32 Q; |
| const U32 D256 = (U32)(dstSize >> 8); |
| U32 Dtime[3]; |
| U32 algoNb = 0; |
| int n; |
| |
| /* validation checks */ |
| if (dstSize == 0) return ERROR(dstSize_tooSmall); |
| if (cSrcSize > dstSize) return ERROR(corruption_detected); /* invalid */ |
| if (cSrcSize == dstSize) { memcpy(dst, cSrc, dstSize); return dstSize; } /* not compressed */ |
| if (cSrcSize == 1) { memset(dst, *(const BYTE*)cSrc, dstSize); return dstSize; } /* RLE */ |
| |
| /* decoder timing evaluation */ |
| Q = (U32)(cSrcSize * 16 / dstSize); /* Q < 16 since dstSize > cSrcSize */ |
| for (n=0; n<3; n++) |
| Dtime[n] = algoTime[Q][n].tableTime + (algoTime[Q][n].decode256Time * D256); |
| |
| Dtime[1] += Dtime[1] >> 4; Dtime[2] += Dtime[2] >> 3; /* advantage to algorithms using less memory, for cache eviction */ |
| |
| if (Dtime[1] < Dtime[0]) algoNb = 1; |
| if (Dtime[2] < Dtime[algoNb]) algoNb = 2; |
| |
| return decompress[algoNb](dst, dstSize, cSrc, cSrcSize); |
| |
| //return HUF_decompress4X2(dst, dstSize, cSrc, cSrcSize); /* multi-streams single-symbol decoding */ |
| //return HUF_decompress4X4(dst, dstSize, cSrc, cSrcSize); /* multi-streams double-symbols decoding */ |
| //return HUF_decompress4X6(dst, dstSize, cSrc, cSrcSize); /* multi-streams quad-symbols decoding */ |
| } |
| /* |
| zstd - standard compression library |
| Copyright (C) 2014-2015, Yann Collet. |
| |
| BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php) |
| |
| Redistribution and use in source and binary forms, with or without |
| modification, are permitted provided that the following conditions are |
| met: |
| * Redistributions of source code must retain the above copyright |
| notice, this list of conditions and the following disclaimer. |
| * Redistributions in binary form must reproduce the above |
| copyright notice, this list of conditions and the following disclaimer |
| in the documentation and/or other materials provided with the |
| distribution. |
| THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| You can contact the author at : |
| - zstd source repository : https://github.com/Cyan4973/zstd |
| - ztsd public forum : https://groups.google.com/forum/#!forum/lz4c |
| */ |
| |
| /* *************************************************************** |
| * Tuning parameters |
| *****************************************************************/ |
| /*! |
| * MEMORY_USAGE : |
| * Memory usage formula : N->2^N Bytes (examples : 10 -> 1KB; 12 -> 4KB ; 16 -> 64KB; 20 -> 1MB; etc.) |
| * Increasing memory usage improves compression ratio |
| * Reduced memory usage can improve speed, due to cache effect |
| */ |
| #define ZSTD_MEMORY_USAGE 17 |
| |
| /*! |
| * HEAPMODE : |
| * Select how default compression functions will allocate memory for their hash table, |
| * in memory stack (0, fastest), or in memory heap (1, requires malloc()) |
| * Note that compression context is fairly large, as a consequence heap memory is recommended. |
| */ |
| #ifndef ZSTD_HEAPMODE |
| # define ZSTD_HEAPMODE 1 |
| #endif /* ZSTD_HEAPMODE */ |
| |
| /*! |
| * LEGACY_SUPPORT : |
| * decompressor can decode older formats (starting from Zstd 0.1+) |
| */ |
| #ifndef ZSTD_LEGACY_SUPPORT |
| # define ZSTD_LEGACY_SUPPORT 1 |
| #endif |
| |
| |
| /* ******************************************************* |
| * Includes |
| *********************************************************/ |
| #include <stdlib.h> /* calloc */ |
| #include <string.h> /* memcpy, memmove */ |
| #include <stdio.h> /* debug : printf */ |
| |
| |
| /* ******************************************************* |
| * Compiler specifics |
| *********************************************************/ |
| #ifdef __AVX2__ |
| # include <immintrin.h> /* AVX2 intrinsics */ |
| #endif |
| |
| #ifdef _MSC_VER /* Visual Studio */ |
| # include <intrin.h> /* For Visual 2005 */ |
| # pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */ |
| # pragma warning(disable : 4324) /* disable: C4324: padded structure */ |
| #endif |
| |
| |
| /* ******************************************************* |
| * Constants |
| *********************************************************/ |
| #define HASH_LOG (ZSTD_MEMORY_USAGE - 2) |
| #define HASH_TABLESIZE (1 << HASH_LOG) |
| #define HASH_MASK (HASH_TABLESIZE - 1) |
| |
| #define KNUTH 2654435761 |
| |
| #define BIT7 128 |
| #define BIT6 64 |
| #define BIT5 32 |
| #define BIT4 16 |
| #define BIT1 2 |
| #define BIT0 1 |
| |
| #define KB *(1 <<10) |
| #define MB *(1 <<20) |
| #define GB *(1U<<30) |
| |
| #define BLOCKSIZE (128 KB) /* define, for static allocation */ |
| #define MIN_SEQUENCES_SIZE (2 /*seqNb*/ + 2 /*dumps*/ + 3 /*seqTables*/ + 1 /*bitStream*/) |
| #define MIN_CBLOCK_SIZE (3 /*litCSize*/ + MIN_SEQUENCES_SIZE) |
| #define IS_RAW BIT0 |
| #define IS_RLE BIT1 |
| |
| #define WORKPLACESIZE (BLOCKSIZE*3) |
| #define MINMATCH 4 |
| #define MLbits 7 |
| #define LLbits 6 |
| #define Offbits 5 |
| #define MaxML ((1<<MLbits )-1) |
| #define MaxLL ((1<<LLbits )-1) |
| #define MaxOff 31 |
| #define LitFSELog 11 |
| #define MLFSELog 10 |
| #define LLFSELog 10 |
| #define OffFSELog 9 |
| #define MAX(a,b) ((a)<(b)?(b):(a)) |
| #define MaxSeq MAX(MaxLL, MaxML) |
| |
| #define LITERAL_NOENTROPY 63 |
| #define COMMAND_NOENTROPY 7 /* to remove */ |
| |
| static const size_t ZSTD_blockHeaderSize = 3; |
| static const size_t ZSTD_frameHeaderSize = 4; |
| |
| |
| /* ******************************************************* |
| * Memory operations |
| **********************************************************/ |
| static void ZSTD_copy4(void* dst, const void* src) { memcpy(dst, src, 4); } |
| |
| static void ZSTD_copy8(void* dst, const void* src) { memcpy(dst, src, 8); } |
| |
| #define COPY8(d,s) { ZSTD_copy8(d,s); d+=8; s+=8; } |
| |
| /*! ZSTD_wildcopy : custom version of memcpy(), can copy up to 7-8 bytes too many */ |
| static void ZSTD_wildcopy(void* dst, const void* src, ptrdiff_t length) |
| { |
| const BYTE* ip = (const BYTE*)src; |
| BYTE* op = (BYTE*)dst; |
| BYTE* const oend = op + length; |
| do COPY8(op, ip) while (op < oend); |
| } |
| |
| |
| /* ************************************** |
| * Local structures |
| ****************************************/ |
| typedef enum { bt_compressed, bt_raw, bt_rle, bt_end } blockType_t; |
| |
| typedef struct |
| { |
| blockType_t blockType; |
| U32 origSize; |
| } blockProperties_t; |
| |
| typedef struct { |
| void* buffer; |
| U32* offsetStart; |
| U32* offset; |
| BYTE* offCodeStart; |
| BYTE* offCode; |
| BYTE* litStart; |
| BYTE* lit; |
| BYTE* litLengthStart; |
| BYTE* litLength; |
| BYTE* matchLengthStart; |
| BYTE* matchLength; |
| BYTE* dumpsStart; |
| BYTE* dumps; |
| } seqStore_t; |
| |
| |
| /* ************************************* |
| * Error Management |
| ***************************************/ |
| /*! ZSTD_isError |
| * tells if a return value is an error code */ |
| static unsigned ZSTD_isError(size_t code) { return ERR_isError(code); } |
| |
| |
| |
| /* ************************************************************* |
| * Decompression section |
| ***************************************************************/ |
| struct ZSTD_DCtx_s |
| { |
| U32 LLTable[FSE_DTABLE_SIZE_U32(LLFSELog)]; |
| U32 OffTable[FSE_DTABLE_SIZE_U32(OffFSELog)]; |
| U32 MLTable[FSE_DTABLE_SIZE_U32(MLFSELog)]; |
| void* previousDstEnd; |
| void* base; |
| size_t expected; |
| blockType_t bType; |
| U32 phase; |
| const BYTE* litPtr; |
| size_t litSize; |
| BYTE litBuffer[BLOCKSIZE + 8 /* margin for wildcopy */]; |
| }; /* typedef'd to ZSTD_Dctx within "zstd_static.h" */ |
| |
| |
| static size_t ZSTD_getcBlockSize(const void* src, size_t srcSize, blockProperties_t* bpPtr) |
| { |
| const BYTE* const in = (const BYTE* const)src; |
| BYTE headerFlags; |
| U32 cSize; |
| |
| if (srcSize < 3) return ERROR(srcSize_wrong); |
| |
| headerFlags = *in; |
| cSize = in[2] + (in[1]<<8) + ((in[0] & 7)<<16); |
| |
| bpPtr->blockType = (blockType_t)(headerFlags >> 6); |
| bpPtr->origSize = (bpPtr->blockType == bt_rle) ? cSize : 0; |
| |
| if (bpPtr->blockType == bt_end) return 0; |
| if (bpPtr->blockType == bt_rle) return 1; |
| return cSize; |
| } |
| |
| static size_t ZSTD_copyUncompressedBlock(void* dst, size_t maxDstSize, const void* src, size_t srcSize) |
| { |
| if (srcSize > maxDstSize) return ERROR(dstSize_tooSmall); |
| memcpy(dst, src, srcSize); |
| return srcSize; |
| } |
| |
| |
| /** ZSTD_decompressLiterals |
| @return : nb of bytes read from src, or an error code*/ |
| static size_t ZSTD_decompressLiterals(void* dst, size_t* maxDstSizePtr, |
| const void* src, size_t srcSize) |
| { |
| const BYTE* ip = (const BYTE*)src; |
| |
| const size_t litSize = (MEM_readLE32(src) & 0x1FFFFF) >> 2; /* no buffer issue : srcSize >= MIN_CBLOCK_SIZE */ |
| const size_t litCSize = (MEM_readLE32(ip+2) & 0xFFFFFF) >> 5; /* no buffer issue : srcSize >= MIN_CBLOCK_SIZE */ |
| |
| if (litSize > *maxDstSizePtr) return ERROR(corruption_detected); |
| if (litCSize + 5 > srcSize) return ERROR(corruption_detected); |
| |
| if (HUF_isError(HUF_decompress(dst, litSize, ip+5, litCSize))) return ERROR(corruption_detected); |
| |
| *maxDstSizePtr = litSize; |
| return litCSize + 5; |
| } |
| |
| |
| /** ZSTD_decodeLiteralsBlock |
| @return : nb of bytes read from src (< srcSize )*/ |
| static size_t ZSTD_decodeLiteralsBlock(void* ctx, |
| const void* src, size_t srcSize) |
| { |
| ZSTD_DCtx* dctx = (ZSTD_DCtx*)ctx; |
| const BYTE* const istart = (const BYTE* const)src; |
| |
| /* any compressed block with literals segment must be at least this size */ |
| if (srcSize < MIN_CBLOCK_SIZE) return ERROR(corruption_detected); |
| |
| switch(*istart & 3) |
| { |
| default: |
| case 0: |
| { |
| size_t litSize = BLOCKSIZE; |
| const size_t readSize = ZSTD_decompressLiterals(dctx->litBuffer, &litSize, src, srcSize); |
| dctx->litPtr = dctx->litBuffer; |
| dctx->litSize = litSize; |
| memset(dctx->litBuffer + dctx->litSize, 0, 8); |
| return readSize; /* works if it's an error too */ |
| } |
| case IS_RAW: |
| { |
| const size_t litSize = (MEM_readLE32(istart) & 0xFFFFFF) >> 2; /* no buffer issue : srcSize >= MIN_CBLOCK_SIZE */ |
| if (litSize > srcSize-11) /* risk of reading too far with wildcopy */ |
| { |
| if (litSize > srcSize-3) return ERROR(corruption_detected); |
| memcpy(dctx->litBuffer, istart, litSize); |
| dctx->litPtr = dctx->litBuffer; |
| dctx->litSize = litSize; |
| memset(dctx->litBuffer + dctx->litSize, 0, 8); |
| return litSize+3; |
| } |
| /* direct reference into compressed stream */ |
| dctx->litPtr = istart+3; |
| dctx->litSize = litSize; |
| return litSize+3; |
| } |
| case IS_RLE: |
| { |
| const size_t litSize = (MEM_readLE32(istart) & 0xFFFFFF) >> 2; /* no buffer issue : srcSize >= MIN_CBLOCK_SIZE */ |
| if (litSize > BLOCKSIZE) return ERROR(corruption_detected); |
| memset(dctx->litBuffer, istart[3], litSize + 8); |
| dctx->litPtr = dctx->litBuffer; |
| dctx->litSize = litSize; |
| return 4; |
| } |
| } |
| } |
| |
| |
| static size_t ZSTD_decodeSeqHeaders(int* nbSeq, const BYTE** dumpsPtr, size_t* dumpsLengthPtr, |
| FSE_DTable* DTableLL, FSE_DTable* DTableML, FSE_DTable* DTableOffb, |
| const void* src, size_t srcSize) |
| { |
| const BYTE* const istart = (const BYTE* const)src; |
| const BYTE* ip = istart; |
| const BYTE* const iend = istart + srcSize; |
| U32 LLtype, Offtype, MLtype; |
| U32 LLlog, Offlog, MLlog; |
| size_t dumpsLength; |
| |
| /* check */ |
| if (srcSize < 5) return ERROR(srcSize_wrong); |
| |
| /* SeqHead */ |
| *nbSeq = MEM_readLE16(ip); ip+=2; |
| LLtype = *ip >> 6; |
| Offtype = (*ip >> 4) & 3; |
| MLtype = (*ip >> 2) & 3; |
| if (*ip & 2) |
| { |
| dumpsLength = ip[2]; |
| dumpsLength += ip[1] << 8; |
| ip += 3; |
| } |
| else |
| { |
| dumpsLength = ip[1]; |
| dumpsLength += (ip[0] & 1) << 8; |
| ip += 2; |
| } |
| *dumpsPtr = ip; |
| ip += dumpsLength; |
| *dumpsLengthPtr = dumpsLength; |
| |
| /* check */ |
| if (ip > iend-3) return ERROR(srcSize_wrong); /* min : all 3 are "raw", hence no header, but at least xxLog bits per type */ |
| |
| /* sequences */ |
| { |
| S16 norm[MaxML+1]; /* assumption : MaxML >= MaxLL and MaxOff */ |
| size_t headerSize; |
| |
| /* Build DTables */ |
| switch(LLtype) |
| { |
| case bt_rle : |
| LLlog = 0; |
| FSE_buildDTable_rle(DTableLL, *ip++); break; |
| case bt_raw : |
| LLlog = LLbits; |
| FSE_buildDTable_raw(DTableLL, LLbits); break; |
| default : |
| { U32 max = MaxLL; |
| headerSize = FSE_readNCount(norm, &max, &LLlog, ip, iend-ip); |
| if (FSE_isError(headerSize)) return ERROR(GENERIC); |
| if (LLlog > LLFSELog) return ERROR(corruption_detected); |
| ip += headerSize; |
| FSE_buildDTable(DTableLL, norm, max, LLlog); |
| } } |
| |
| switch(Offtype) |
| { |
| case bt_rle : |
| Offlog = 0; |
| if (ip > iend-2) return ERROR(srcSize_wrong); /* min : "raw", hence no header, but at least xxLog bits */ |
| FSE_buildDTable_rle(DTableOffb, *ip++ & MaxOff); /* if *ip > MaxOff, data is corrupted */ |
| break; |
| case bt_raw : |
| Offlog = Offbits; |
| FSE_buildDTable_raw(DTableOffb, Offbits); break; |
| default : |
| { U32 max = MaxOff; |
| headerSize = FSE_readNCount(norm, &max, &Offlog, ip, iend-ip); |
| if (FSE_isError(headerSize)) return ERROR(GENERIC); |
| if (Offlog > OffFSELog) return ERROR(corruption_detected); |
| ip += headerSize; |
| FSE_buildDTable(DTableOffb, norm, max, Offlog); |
| } } |
| |
| switch(MLtype) |
| { |
| case bt_rle : |
| MLlog = 0; |
| if (ip > iend-2) return ERROR(srcSize_wrong); /* min : "raw", hence no header, but at least xxLog bits */ |
| FSE_buildDTable_rle(DTableML, *ip++); break; |
| case bt_raw : |
| MLlog = MLbits; |
| FSE_buildDTable_raw(DTableML, MLbits); break; |
| default : |
| { U32 max = MaxML; |
| headerSize = FSE_readNCount(norm, &max, &MLlog, ip, iend-ip); |
| if (FSE_isError(headerSize)) return ERROR(GENERIC); |
| if (MLlog > MLFSELog) return ERROR(corruption_detected); |
| ip += headerSize; |
| FSE_buildDTable(DTableML, norm, max, MLlog); |
| } } } |
| |
| return ip-istart; |
| } |
| |
| |
| typedef struct { |
| size_t litLength; |
| size_t offset; |
| size_t matchLength; |
| } seq_t; |
| |
| typedef struct { |
| BIT_DStream_t DStream; |
| FSE_DState_t stateLL; |
| FSE_DState_t stateOffb; |
| FSE_DState_t stateML; |
| size_t prevOffset; |
| const BYTE* dumps; |
| const BYTE* dumpsEnd; |
| } seqState_t; |
| |
| |
| static void ZSTD_decodeSequence(seq_t* seq, seqState_t* seqState) |
| { |
| size_t litLength; |
| size_t prevOffset; |
| size_t offset; |
| size_t matchLength; |
| const BYTE* dumps = seqState->dumps; |
| const BYTE* const de = seqState->dumpsEnd; |
| |
| /* Literal length */ |
| litLength = FSE_decodeSymbol(&(seqState->stateLL), &(seqState->DStream)); |
| prevOffset = litLength ? seq->offset : seqState->prevOffset; |
| seqState->prevOffset = seq->offset; |
| if (litLength == MaxLL) |
| { |
| U32 add = *dumps++; |
| if (add < 255) litLength += add; |
| else |
| { |
| litLength = MEM_readLE32(dumps) & 0xFFFFFF; /* no pb : dumps is always followed by seq tables > 1 byte */ |
| dumps += 3; |
| } |
| if (dumps >= de) dumps = de-1; /* late correction, to avoid read overflow (data is now corrupted anyway) */ |
| } |
| |
| /* Offset */ |
| { |
| static const size_t offsetPrefix[MaxOff+1] = { /* note : size_t faster than U32 */ |
| 1 /*fake*/, 1, 2, 4, 8, 16, 32, 64, 128, 256, |
| 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144, |
| 524288, 1048576, 2097152, 4194304, 8388608, 16777216, 33554432, /*fake*/ 1, 1, 1, 1, 1 }; |
| U32 offsetCode, nbBits; |
| offsetCode = FSE_decodeSymbol(&(seqState->stateOffb), &(seqState->DStream)); /* <= maxOff, by table construction */ |
| if (MEM_32bits()) BIT_reloadDStream(&(seqState->DStream)); |
| nbBits = offsetCode - 1; |
| if (offsetCode==0) nbBits = 0; /* cmove */ |
| offset = offsetPrefix[offsetCode] + BIT_readBits(&(seqState->DStream), nbBits); |
| if (MEM_32bits()) BIT_reloadDStream(&(seqState->DStream)); |
| if (offsetCode==0) offset = prevOffset; /* cmove */ |
| } |
| |
| /* MatchLength */ |
| matchLength = FSE_decodeSymbol(&(seqState->stateML), &(seqState->DStream)); |
| if (matchLength == MaxML) |
| { |
| U32 add = *dumps++; |
| if (add < 255) matchLength += add; |
| else |
| { |
| matchLength = MEM_readLE32(dumps) & 0xFFFFFF; /* no pb : dumps is always followed by seq tables > 1 byte */ |
| dumps += 3; |
| } |
| if (dumps >= de) dumps = de-1; /* late correction, to avoid read overflow (data is now corrupted anyway) */ |
| } |
| matchLength += MINMATCH; |
| |
| /* save result */ |
| seq->litLength = litLength; |
| seq->offset = offset; |
| seq->matchLength = matchLength; |
| seqState->dumps = dumps; |
| } |
| |
| |
| static size_t ZSTD_execSequence(BYTE* op, |
| seq_t sequence, |
| const BYTE** litPtr, const BYTE* const litLimit, |
| BYTE* const base, BYTE* const oend) |
| { |
| static const int dec32table[] = {0, 1, 2, 1, 4, 4, 4, 4}; /* added */ |
| static const int dec64table[] = {8, 8, 8, 7, 8, 9,10,11}; /* substracted */ |
| const BYTE* const ostart = op; |
| BYTE* const oLitEnd = op + sequence.litLength; |
| BYTE* const oMatchEnd = op + sequence.litLength + sequence.matchLength; /* risk : address space overflow (32-bits) */ |
| BYTE* const oend_8 = oend-8; |
| const BYTE* const litEnd = *litPtr + sequence.litLength; |
| |
| /* checks */ |
| if (oLitEnd > oend_8) return ERROR(dstSize_tooSmall); /* last match must start at a minimum distance of 8 from oend */ |
| if (oMatchEnd > oend) return ERROR(dstSize_tooSmall); /* overwrite beyond dst buffer */ |
| if (litEnd > litLimit) return ERROR(corruption_detected); /* overRead beyond lit buffer */ |
| |
| /* copy Literals */ |
| ZSTD_wildcopy(op, *litPtr, sequence.litLength); /* note : oLitEnd <= oend-8 : no risk of overwrite beyond oend */ |
| op = oLitEnd; |
| *litPtr = litEnd; /* update for next sequence */ |
| |
| /* copy Match */ |
| { |
| const BYTE* match = op - sequence.offset; |
| |
| /* check */ |
| if (sequence.offset > (size_t)op) return ERROR(corruption_detected); /* address space overflow test (this test seems kept by clang optimizer) */ |
| //if (match > op) return ERROR(corruption_detected); /* address space overflow test (is clang optimizer removing this test ?) */ |
| if (match < base) return ERROR(corruption_detected); |
| |
| /* close range match, overlap */ |
| if (sequence.offset < 8) |
| { |
| const int dec64 = dec64table[sequence.offset]; |
| op[0] = match[0]; |
| op[1] = match[1]; |
| op[2] = match[2]; |
| op[3] = match[3]; |
| match += dec32table[sequence.offset]; |
| ZSTD_copy4(op+4, match); |
| match -= dec64; |
| } |
| else |
| { |
| ZSTD_copy8(op, match); |
| } |
| op += 8; match += 8; |
| |
| if (oMatchEnd > oend-(16-MINMATCH)) |
| { |
| if (op < oend_8) |
| { |
| ZSTD_wildcopy(op, match, oend_8 - op); |
| match += oend_8 - op; |
| op = oend_8; |
| } |
| while (op < oMatchEnd) *op++ = *match++; |
| } |
| else |
| { |
| ZSTD_wildcopy(op, match, (ptrdiff_t)sequence.matchLength-8); /* works even if matchLength < 8 */ |
| } |
| } |
| |
| return oMatchEnd - ostart; |
| } |
| |
| static size_t ZSTD_decompressSequences( |
| void* ctx, |
| void* dst, size_t maxDstSize, |
| const void* seqStart, size_t seqSize) |
| { |
| ZSTD_DCtx* dctx = (ZSTD_DCtx*)ctx; |
| const BYTE* ip = (const BYTE*)seqStart; |
| const BYTE* const iend = ip + seqSize; |
| BYTE* const ostart = (BYTE* const)dst; |
| BYTE* op = ostart; |
| BYTE* const oend = ostart + maxDstSize; |
| size_t errorCode, dumpsLength; |
| const BYTE* litPtr = dctx->litPtr; |
| const BYTE* const litEnd = litPtr + dctx->litSize; |
| int nbSeq; |
| const BYTE* dumps; |
| U32* DTableLL = dctx->LLTable; |
| U32* DTableML = dctx->MLTable; |
| U32* DTableOffb = dctx->OffTable; |
| BYTE* const base = (BYTE*) (dctx->base); |
| |
| /* Build Decoding Tables */ |
| errorCode = ZSTD_decodeSeqHeaders(&nbSeq, &dumps, &dumpsLength, |
| DTableLL, DTableML, DTableOffb, |
| ip, iend-ip); |
| if (ZSTD_isError(errorCode)) return errorCode; |
| ip += errorCode; |
| |
| /* Regen sequences */ |
| { |
| seq_t sequence; |
| seqState_t seqState; |
| |
| memset(&sequence, 0, sizeof(sequence)); |
| seqState.dumps = dumps; |
| seqState.dumpsEnd = dumps + dumpsLength; |
| seqState.prevOffset = 1; |
| errorCode = BIT_initDStream(&(seqState.DStream), ip, iend-ip); |
| if (ERR_isError(errorCode)) return ERROR(corruption_detected); |
| FSE_initDState(&(seqState.stateLL), &(seqState.DStream), DTableLL); |
| FSE_initDState(&(seqState.stateOffb), &(seqState.DStream), DTableOffb); |
| FSE_initDState(&(seqState.stateML), &(seqState.DStream), DTableML); |
| |
| for ( ; (BIT_reloadDStream(&(seqState.DStream)) <= BIT_DStream_completed) && (nbSeq>0) ; ) |
| { |
| size_t oneSeqSize; |
| nbSeq--; |
| ZSTD_decodeSequence(&sequence, &seqState); |
| oneSeqSize = ZSTD_execSequence(op, sequence, &litPtr, litEnd, base, oend); |
| if (ZSTD_isError(oneSeqSize)) return oneSeqSize; |
| op += oneSeqSize; |
| } |
| |
| /* check if reached exact end */ |
| if ( !BIT_endOfDStream(&(seqState.DStream)) ) return ERROR(corruption_detected); /* requested too much : data is corrupted */ |
| if (nbSeq<0) return ERROR(corruption_detected); /* requested too many sequences : data is corrupted */ |
| |
| /* last literal segment */ |
| { |
| size_t lastLLSize = litEnd - litPtr; |
| if (litPtr > litEnd) return ERROR(corruption_detected); |
| if (op+lastLLSize > oend) return ERROR(dstSize_tooSmall); |
| if (op != litPtr) memmove(op, litPtr, lastLLSize); |
| op += lastLLSize; |
| } |
| } |
| |
| return op-ostart; |
| } |
| |
| |
| static size_t ZSTD_decompressBlock( |
| void* ctx, |
| void* dst, size_t maxDstSize, |
| const void* src, size_t srcSize) |
| { |
| /* blockType == blockCompressed */ |
| const BYTE* ip = (const BYTE*)src; |
| |
| /* Decode literals sub-block */ |
| size_t litCSize = ZSTD_decodeLiteralsBlock(ctx, src, srcSize); |
| if (ZSTD_isError(litCSize)) return litCSize; |
| ip += litCSize; |
| srcSize -= litCSize; |
| |
| return ZSTD_decompressSequences(ctx, dst, maxDstSize, ip, srcSize); |
| } |
| |
| |
| static size_t ZSTD_decompressDCtx(void* ctx, void* dst, size_t maxDstSize, const void* src, size_t srcSize) |
| { |
| const BYTE* ip = (const BYTE*)src; |
| const BYTE* iend = ip + srcSize; |
| BYTE* const ostart = (BYTE* const)dst; |
| BYTE* op = ostart; |
| BYTE* const oend = ostart + maxDstSize; |
| size_t remainingSize = srcSize; |
| U32 magicNumber; |
| blockProperties_t blockProperties; |
| |
| /* Frame Header */ |
| if (srcSize < ZSTD_frameHeaderSize+ZSTD_blockHeaderSize) return ERROR(srcSize_wrong); |
| magicNumber = MEM_readLE32(src); |
| if (magicNumber != ZSTD_magicNumber) return ERROR(prefix_unknown); |
| ip += ZSTD_frameHeaderSize; remainingSize -= ZSTD_frameHeaderSize; |
| |
| /* Loop on each block */ |
| while (1) |
| { |
| size_t decodedSize=0; |
| size_t cBlockSize = ZSTD_getcBlockSize(ip, iend-ip, &blockProperties); |
| if (ZSTD_isError(cBlockSize)) return cBlockSize; |
| |
| ip += ZSTD_blockHeaderSize; |
| remainingSize -= ZSTD_blockHeaderSize; |
| if (cBlockSize > remainingSize) return ERROR(srcSize_wrong); |
| |
| switch(blockProperties.blockType) |
| { |
| case bt_compressed: |
| decodedSize = ZSTD_decompressBlock(ctx, op, oend-op, ip, cBlockSize); |
| break; |
| case bt_raw : |
| decodedSize = ZSTD_copyUncompressedBlock(op, oend-op, ip, cBlockSize); |
| break; |
| case bt_rle : |
| return ERROR(GENERIC); /* not yet supported */ |
| break; |
| case bt_end : |
| /* end of frame */ |
| if (remainingSize) return ERROR(srcSize_wrong); |
| break; |
| default: |
| return ERROR(GENERIC); /* impossible */ |
| } |
| if (cBlockSize == 0) break; /* bt_end */ |
| |
| if (ZSTD_isError(decodedSize)) return decodedSize; |
| op += decodedSize; |
| ip += cBlockSize; |
| remainingSize -= cBlockSize; |
| } |
| |
| return op-ostart; |
| } |
| |
| static size_t ZSTD_decompress(void* dst, size_t maxDstSize, const void* src, size_t srcSize) |
| { |
| ZSTD_DCtx ctx; |
| ctx.base = dst; |
| return ZSTD_decompressDCtx(&ctx, dst, maxDstSize, src, srcSize); |
| } |
| |
| static size_t ZSTD_findFrameCompressedSize(const void *src, size_t srcSize) |
| { |
| |
| const BYTE* ip = (const BYTE*)src; |
| size_t remainingSize = srcSize; |
| U32 magicNumber; |
| blockProperties_t blockProperties; |
| |
| /* Frame Header */ |
| if (srcSize < ZSTD_frameHeaderSize+ZSTD_blockHeaderSize) return ERROR(srcSize_wrong); |
| magicNumber = MEM_readLE32(src); |
| if (magicNumber != ZSTD_magicNumber) return ERROR(prefix_unknown); |
| ip += ZSTD_frameHeaderSize; remainingSize -= ZSTD_frameHeaderSize; |
| |
| /* Loop on each block */ |
| while (1) |
| { |
| size_t cBlockSize = ZSTD_getcBlockSize(ip, remainingSize, &blockProperties); |
| if (ZSTD_isError(cBlockSize)) return cBlockSize; |
| |
| ip += ZSTD_blockHeaderSize; |
| remainingSize -= ZSTD_blockHeaderSize; |
| if (cBlockSize > remainingSize) return ERROR(srcSize_wrong); |
| |
| if (cBlockSize == 0) break; /* bt_end */ |
| |
| ip += cBlockSize; |
| remainingSize -= cBlockSize; |
| } |
| |
| return ip - (const BYTE*)src; |
| } |
| |
| /******************************* |
| * Streaming Decompression API |
| *******************************/ |
| |
| static size_t ZSTD_resetDCtx(ZSTD_DCtx* dctx) |
| { |
| dctx->expected = ZSTD_frameHeaderSize; |
| dctx->phase = 0; |
| dctx->previousDstEnd = NULL; |
| dctx->base = NULL; |
| return 0; |
| } |
| |
| static ZSTD_DCtx* ZSTD_createDCtx(void) |
| { |
| ZSTD_DCtx* dctx = (ZSTD_DCtx*)malloc(sizeof(ZSTD_DCtx)); |
| if (dctx==NULL) return NULL; |
| ZSTD_resetDCtx(dctx); |
| return dctx; |
| } |
| |
| static size_t ZSTD_freeDCtx(ZSTD_DCtx* dctx) |
| { |
| free(dctx); |
| return 0; |
| } |
| |
| static size_t ZSTD_nextSrcSizeToDecompress(ZSTD_DCtx* dctx) |
| { |
| return dctx->expected; |
| } |
| |
| static size_t ZSTD_decompressContinue(ZSTD_DCtx* ctx, void* dst, size_t maxDstSize, const void* src, size_t srcSize) |
| { |
| /* Sanity check */ |
| if (srcSize != ctx->expected) return ERROR(srcSize_wrong); |
| if (dst != ctx->previousDstEnd) /* not contiguous */ |
| ctx->base = dst; |
| |
| /* Decompress : frame header */ |
| if (ctx->phase == 0) |
| { |
| /* Check frame magic header */ |
| U32 magicNumber = MEM_readLE32(src); |
| if (magicNumber != ZSTD_magicNumber) return ERROR(prefix_unknown); |
| ctx->phase = 1; |
| ctx->expected = ZSTD_blockHeaderSize; |
| return 0; |
| } |
| |
| /* Decompress : block header */ |
| if (ctx->phase == 1) |
| { |
| blockProperties_t bp; |
| size_t blockSize = ZSTD_getcBlockSize(src, ZSTD_blockHeaderSize, &bp); |
| if (ZSTD_isError(blockSize)) return blockSize; |
| if (bp.blockType == bt_end) |
| { |
| ctx->expected = 0; |
| ctx->phase = 0; |
| } |
| else |
| { |
| ctx->expected = blockSize; |
| ctx->bType = bp.blockType; |
| ctx->phase = 2; |
| } |
| |
| return 0; |
| } |
| |
| /* Decompress : block content */ |
| { |
| size_t rSize; |
| switch(ctx->bType) |
| { |
| case bt_compressed: |
| rSize = ZSTD_decompressBlock(ctx, dst, maxDstSize, src, srcSize); |
| break; |
| case bt_raw : |
| rSize = ZSTD_copyUncompressedBlock(dst, maxDstSize, src, srcSize); |
| break; |
| case bt_rle : |
| return ERROR(GENERIC); /* not yet handled */ |
| break; |
| case bt_end : /* should never happen (filtered at phase 1) */ |
| rSize = 0; |
| break; |
| default: |
| return ERROR(GENERIC); |
| } |
| ctx->phase = 1; |
| ctx->expected = ZSTD_blockHeaderSize; |
| ctx->previousDstEnd = (void*)( ((char*)dst) + rSize); |
| return rSize; |
| } |
| |
| } |
| |
| |
| /* wrapper layer */ |
| |
| unsigned ZSTDv02_isError(size_t code) |
| { |
| return ZSTD_isError(code); |
| } |
| |
| size_t ZSTDv02_decompress( void* dst, size_t maxOriginalSize, |
| const void* src, size_t compressedSize) |
| { |
| return ZSTD_decompress(dst, maxOriginalSize, src, compressedSize); |
| } |
| |
| size_t ZSTDv02_findFrameCompressedSize(const void *src, size_t compressedSize) |
| { |
| return ZSTD_findFrameCompressedSize(src, compressedSize); |
| } |
| |
| ZSTDv02_Dctx* ZSTDv02_createDCtx(void) |
| { |
| return (ZSTDv02_Dctx*)ZSTD_createDCtx(); |
| } |
| |
| size_t ZSTDv02_freeDCtx(ZSTDv02_Dctx* dctx) |
| { |
| return ZSTD_freeDCtx((ZSTD_DCtx*)dctx); |
| } |
| |
| size_t ZSTDv02_resetDCtx(ZSTDv02_Dctx* dctx) |
| { |
| return ZSTD_resetDCtx((ZSTD_DCtx*)dctx); |
| } |
| |
| size_t ZSTDv02_nextSrcSizeToDecompress(ZSTDv02_Dctx* dctx) |
| { |
| return ZSTD_nextSrcSizeToDecompress((ZSTD_DCtx*)dctx); |
| } |
| |
| size_t ZSTDv02_decompressContinue(ZSTDv02_Dctx* dctx, void* dst, size_t maxDstSize, const void* src, size_t srcSize) |
| { |
| return ZSTD_decompressContinue((ZSTD_DCtx*)dctx, dst, maxDstSize, src, srcSize); |
| } |