| /* |
| * xxHash - Fast Hash algorithm |
| * Copyright (c) 2012-2020, Yann Collet, Facebook, Inc. |
| * |
| * You can contact the author at : |
| * - xxHash homepage: http://www.xxhash.com |
| * - xxHash source repository : https://github.com/Cyan4973/xxHash |
| * |
| * This source code is licensed under both the BSD-style license (found in the |
| * LICENSE file in the root directory of this source tree) and the GPLv2 (found |
| * in the COPYING file in the root directory of this source tree). |
| * You may select, at your option, one of the above-listed licenses. |
| */ |
| |
| |
| /* ************************************* |
| * Tuning parameters |
| ***************************************/ |
| /*!XXH_FORCE_MEMORY_ACCESS : |
| * By default, access to unaligned memory is controlled by `memcpy()`, which is safe and portable. |
| * Unfortunately, on some target/compiler combinations, the generated assembly is sub-optimal. |
| * The below switch allow to select different access method for improved performance. |
| * Method 0 (default) : use `memcpy()`. Safe and portable. |
| * Method 1 : `__packed` statement. It depends on compiler extension (ie, not portable). |
| * This method is safe if your compiler supports it, and *generally* as fast or faster than `memcpy`. |
| * Method 2 : direct access. This method doesn't depend on compiler but violate C standard. |
| * It can generate buggy code on targets which do not support unaligned memory accesses. |
| * But in some circumstances, it's the only known way to get the most performance (ie GCC + ARMv6) |
| * See http://stackoverflow.com/a/32095106/646947 for details. |
| * Prefer these methods in priority order (0 > 1 > 2) |
| */ |
| #ifndef XXH_FORCE_MEMORY_ACCESS /* can be defined externally, on command line for example */ |
| # if defined(__GNUC__) && ( defined(__ARM_ARCH_6__) || defined(__ARM_ARCH_6J__) || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6Z__) || defined(__ARM_ARCH_6ZK__) || defined(__ARM_ARCH_6T2__) ) |
| # define XXH_FORCE_MEMORY_ACCESS 2 |
| # elif (defined(__INTEL_COMPILER) && !defined(WIN32)) || \ |
| (defined(__GNUC__) && ( defined(__ARM_ARCH_7__) || defined(__ARM_ARCH_7A__) || defined(__ARM_ARCH_7R__) || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7S__) )) || \ |
| defined(__ICCARM__) |
| # define XXH_FORCE_MEMORY_ACCESS 1 |
| # endif |
| #endif |
| |
| /*!XXH_ACCEPT_NULL_INPUT_POINTER : |
| * If the input pointer is a null pointer, xxHash default behavior is to trigger a memory access error, since it is a bad pointer. |
| * When this option is enabled, xxHash output for null input pointers will be the same as a null-length input. |
| * By default, this option is disabled. To enable it, uncomment below define : |
| */ |
| /* #define XXH_ACCEPT_NULL_INPUT_POINTER 1 */ |
| |
| /*!XXH_FORCE_NATIVE_FORMAT : |
| * By default, xxHash library provides endian-independent Hash values, based on little-endian convention. |
| * Results are therefore identical for little-endian and big-endian CPU. |
| * This comes at a performance cost for big-endian CPU, since some swapping is required to emulate little-endian format. |
| * Should endian-independence be of no importance for your application, you may set the #define below to 1, |
| * to improve speed for Big-endian CPU. |
| * This option has no impact on Little_Endian CPU. |
| */ |
| #ifndef XXH_FORCE_NATIVE_FORMAT /* can be defined externally */ |
| # define XXH_FORCE_NATIVE_FORMAT 0 |
| #endif |
| |
| /*!XXH_FORCE_ALIGN_CHECK : |
| * This is a minor performance trick, only useful with lots of very small keys. |
| * It means : check for aligned/unaligned input. |
| * The check costs one initial branch per hash; set to 0 when the input data |
| * is guaranteed to be aligned. |
| */ |
| #ifndef XXH_FORCE_ALIGN_CHECK /* can be defined externally */ |
| # if defined(__i386) || defined(_M_IX86) || defined(__x86_64__) || defined(_M_X64) |
| # define XXH_FORCE_ALIGN_CHECK 0 |
| # else |
| # define XXH_FORCE_ALIGN_CHECK 1 |
| # endif |
| #endif |
| |
| |
| /* ************************************* |
| * Includes & Memory related functions |
| ***************************************/ |
| /* Modify the local functions below should you wish to use some other memory routines */ |
| /* for ZSTD_malloc(), ZSTD_free() */ |
| #define ZSTD_DEPS_NEED_MALLOC |
| #include "zstd_deps.h" /* size_t, ZSTD_malloc, ZSTD_free, ZSTD_memcpy */ |
| static void* XXH_malloc(size_t s) { return ZSTD_malloc(s); } |
| static void XXH_free (void* p) { ZSTD_free(p); } |
| static void* XXH_memcpy(void* dest, const void* src, size_t size) { return ZSTD_memcpy(dest,src,size); } |
| |
| #ifndef XXH_STATIC_LINKING_ONLY |
| # define XXH_STATIC_LINKING_ONLY |
| #endif |
| #include "xxhash.h" |
| |
| |
| /* ************************************* |
| * Compiler Specific Options |
| ***************************************/ |
| #include "compiler.h" |
| |
| |
| /* ************************************* |
| * Basic Types |
| ***************************************/ |
| #include "mem.h" /* BYTE, U32, U64, size_t */ |
| |
| #if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2)) |
| |
| /* Force direct memory access. Only works on CPU which support unaligned memory access in hardware */ |
| static U32 XXH_read32(const void* memPtr) { return *(const U32*) memPtr; } |
| static U64 XXH_read64(const void* memPtr) { return *(const U64*) memPtr; } |
| |
| #elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1)) |
| |
| /* __pack instructions are safer, but compiler specific, hence potentially problematic for some compilers */ |
| /* currently only defined for gcc and icc */ |
| typedef union { U32 u32; U64 u64; } __attribute__((packed)) unalign; |
| |
| static U32 XXH_read32(const void* ptr) { return ((const unalign*)ptr)->u32; } |
| static U64 XXH_read64(const void* ptr) { return ((const unalign*)ptr)->u64; } |
| |
| #else |
| |
| /* portable and safe solution. Generally efficient. |
| * see : http://stackoverflow.com/a/32095106/646947 |
| */ |
| |
| static U32 XXH_read32(const void* memPtr) |
| { |
| U32 val; |
| ZSTD_memcpy(&val, memPtr, sizeof(val)); |
| return val; |
| } |
| |
| static U64 XXH_read64(const void* memPtr) |
| { |
| U64 val; |
| ZSTD_memcpy(&val, memPtr, sizeof(val)); |
| return val; |
| } |
| |
| #endif /* XXH_FORCE_DIRECT_MEMORY_ACCESS */ |
| |
| |
| /* **************************************** |
| * Compiler-specific Functions and Macros |
| ******************************************/ |
| #define GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__) |
| |
| /* Note : although _rotl exists for minGW (GCC under windows), performance seems poor */ |
| #if defined(_MSC_VER) |
| # define XXH_rotl32(x,r) _rotl(x,r) |
| # define XXH_rotl64(x,r) _rotl64(x,r) |
| #else |
| #if defined(__ICCARM__) |
| # include <intrinsics.h> |
| # define XXH_rotl32(x,r) __ROR(x,(32 - r)) |
| #else |
| # define XXH_rotl32(x,r) ((x << r) | (x >> (32 - r))) |
| #endif |
| # define XXH_rotl64(x,r) ((x << r) | (x >> (64 - r))) |
| #endif |
| |
| #if defined(_MSC_VER) /* Visual Studio */ |
| # define XXH_swap32 _byteswap_ulong |
| # define XXH_swap64 _byteswap_uint64 |
| #elif GCC_VERSION >= 403 |
| # define XXH_swap32 __builtin_bswap32 |
| # define XXH_swap64 __builtin_bswap64 |
| #else |
| static U32 XXH_swap32 (U32 x) |
| { |
| return ((x << 24) & 0xff000000 ) | |
| ((x << 8) & 0x00ff0000 ) | |
| ((x >> 8) & 0x0000ff00 ) | |
| ((x >> 24) & 0x000000ff ); |
| } |
| static U64 XXH_swap64 (U64 x) |
| { |
| return ((x << 56) & 0xff00000000000000ULL) | |
| ((x << 40) & 0x00ff000000000000ULL) | |
| ((x << 24) & 0x0000ff0000000000ULL) | |
| ((x << 8) & 0x000000ff00000000ULL) | |
| ((x >> 8) & 0x00000000ff000000ULL) | |
| ((x >> 24) & 0x0000000000ff0000ULL) | |
| ((x >> 40) & 0x000000000000ff00ULL) | |
| ((x >> 56) & 0x00000000000000ffULL); |
| } |
| #endif |
| |
| |
| /* ************************************* |
| * Architecture Macros |
| ***************************************/ |
| typedef enum { XXH_bigEndian=0, XXH_littleEndian=1 } XXH_endianess; |
| |
| /* XXH_CPU_LITTLE_ENDIAN can be defined externally, for example on the compiler command line */ |
| #ifndef XXH_CPU_LITTLE_ENDIAN |
| static const int g_one = 1; |
| # define XXH_CPU_LITTLE_ENDIAN (*(const char*)(&g_one)) |
| #endif |
| |
| |
| /* *************************** |
| * Memory reads |
| *****************************/ |
| typedef enum { XXH_aligned, XXH_unaligned } XXH_alignment; |
| |
| FORCE_INLINE_TEMPLATE U32 XXH_readLE32_align(const void* ptr, XXH_endianess endian, XXH_alignment align) |
| { |
| if (align==XXH_unaligned) |
| return endian==XXH_littleEndian ? XXH_read32(ptr) : XXH_swap32(XXH_read32(ptr)); |
| else |
| return endian==XXH_littleEndian ? *(const U32*)ptr : XXH_swap32(*(const U32*)ptr); |
| } |
| |
| FORCE_INLINE_TEMPLATE U32 XXH_readLE32(const void* ptr, XXH_endianess endian) |
| { |
| return XXH_readLE32_align(ptr, endian, XXH_unaligned); |
| } |
| |
| static U32 XXH_readBE32(const void* ptr) |
| { |
| return XXH_CPU_LITTLE_ENDIAN ? XXH_swap32(XXH_read32(ptr)) : XXH_read32(ptr); |
| } |
| |
| FORCE_INLINE_TEMPLATE U64 XXH_readLE64_align(const void* ptr, XXH_endianess endian, XXH_alignment align) |
| { |
| if (align==XXH_unaligned) |
| return endian==XXH_littleEndian ? XXH_read64(ptr) : XXH_swap64(XXH_read64(ptr)); |
| else |
| return endian==XXH_littleEndian ? *(const U64*)ptr : XXH_swap64(*(const U64*)ptr); |
| } |
| |
| FORCE_INLINE_TEMPLATE U64 XXH_readLE64(const void* ptr, XXH_endianess endian) |
| { |
| return XXH_readLE64_align(ptr, endian, XXH_unaligned); |
| } |
| |
| static U64 XXH_readBE64(const void* ptr) |
| { |
| return XXH_CPU_LITTLE_ENDIAN ? XXH_swap64(XXH_read64(ptr)) : XXH_read64(ptr); |
| } |
| |
| |
| /* ************************************* |
| * Macros |
| ***************************************/ |
| #define XXH_STATIC_ASSERT(c) { enum { XXH_static_assert = 1/(int)(!!(c)) }; } /* use only *after* variable declarations */ |
| |
| |
| /* ************************************* |
| * Constants |
| ***************************************/ |
| static const U32 PRIME32_1 = 2654435761U; |
| static const U32 PRIME32_2 = 2246822519U; |
| static const U32 PRIME32_3 = 3266489917U; |
| static const U32 PRIME32_4 = 668265263U; |
| static const U32 PRIME32_5 = 374761393U; |
| |
| static const U64 PRIME64_1 = 11400714785074694791ULL; |
| static const U64 PRIME64_2 = 14029467366897019727ULL; |
| static const U64 PRIME64_3 = 1609587929392839161ULL; |
| static const U64 PRIME64_4 = 9650029242287828579ULL; |
| static const U64 PRIME64_5 = 2870177450012600261ULL; |
| |
| XXH_PUBLIC_API unsigned XXH_versionNumber (void) { return XXH_VERSION_NUMBER; } |
| |
| |
| /* ************************** |
| * Utils |
| ****************************/ |
| XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t* restrict dstState, const XXH32_state_t* restrict srcState) |
| { |
| ZSTD_memcpy(dstState, srcState, sizeof(*dstState)); |
| } |
| |
| XXH_PUBLIC_API void XXH64_copyState(XXH64_state_t* restrict dstState, const XXH64_state_t* restrict srcState) |
| { |
| ZSTD_memcpy(dstState, srcState, sizeof(*dstState)); |
| } |
| |
| |
| /* *************************** |
| * Simple Hash Functions |
| *****************************/ |
| |
| static U32 XXH32_round(U32 seed, U32 input) |
| { |
| seed += input * PRIME32_2; |
| seed = XXH_rotl32(seed, 13); |
| seed *= PRIME32_1; |
| return seed; |
| } |
| |
| FORCE_INLINE_TEMPLATE U32 XXH32_endian_align(const void* input, size_t len, U32 seed, XXH_endianess endian, XXH_alignment align) |
| { |
| const BYTE* p = (const BYTE*)input; |
| const BYTE* bEnd = p + len; |
| U32 h32; |
| #define XXH_get32bits(p) XXH_readLE32_align(p, endian, align) |
| |
| #ifdef XXH_ACCEPT_NULL_INPUT_POINTER |
| if (p==NULL) { |
| len=0; |
| bEnd=p=(const BYTE*)(size_t)16; |
| } |
| #endif |
| |
| if (len>=16) { |
| const BYTE* const limit = bEnd - 16; |
| U32 v1 = seed + PRIME32_1 + PRIME32_2; |
| U32 v2 = seed + PRIME32_2; |
| U32 v3 = seed + 0; |
| U32 v4 = seed - PRIME32_1; |
| |
| do { |
| v1 = XXH32_round(v1, XXH_get32bits(p)); p+=4; |
| v2 = XXH32_round(v2, XXH_get32bits(p)); p+=4; |
| v3 = XXH32_round(v3, XXH_get32bits(p)); p+=4; |
| v4 = XXH32_round(v4, XXH_get32bits(p)); p+=4; |
| } while (p<=limit); |
| |
| h32 = XXH_rotl32(v1, 1) + XXH_rotl32(v2, 7) + XXH_rotl32(v3, 12) + XXH_rotl32(v4, 18); |
| } else { |
| h32 = seed + PRIME32_5; |
| } |
| |
| h32 += (U32) len; |
| |
| while (p+4<=bEnd) { |
| h32 += XXH_get32bits(p) * PRIME32_3; |
| h32 = XXH_rotl32(h32, 17) * PRIME32_4 ; |
| p+=4; |
| } |
| |
| while (p<bEnd) { |
| h32 += (*p) * PRIME32_5; |
| h32 = XXH_rotl32(h32, 11) * PRIME32_1 ; |
| p++; |
| } |
| |
| h32 ^= h32 >> 15; |
| h32 *= PRIME32_2; |
| h32 ^= h32 >> 13; |
| h32 *= PRIME32_3; |
| h32 ^= h32 >> 16; |
| |
| return h32; |
| } |
| |
| |
| XXH_PUBLIC_API unsigned int XXH32 (const void* input, size_t len, unsigned int seed) |
| { |
| #if 0 |
| /* Simple version, good for code maintenance, but unfortunately slow for small inputs */ |
| XXH32_CREATESTATE_STATIC(state); |
| XXH32_reset(state, seed); |
| XXH32_update(state, input, len); |
| return XXH32_digest(state); |
| #else |
| XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN; |
| |
| if (XXH_FORCE_ALIGN_CHECK) { |
| if ((((size_t)input) & 3) == 0) { /* Input is 4-bytes aligned, leverage the speed benefit */ |
| if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) |
| return XXH32_endian_align(input, len, seed, XXH_littleEndian, XXH_aligned); |
| else |
| return XXH32_endian_align(input, len, seed, XXH_bigEndian, XXH_aligned); |
| } } |
| |
| if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) |
| return XXH32_endian_align(input, len, seed, XXH_littleEndian, XXH_unaligned); |
| else |
| return XXH32_endian_align(input, len, seed, XXH_bigEndian, XXH_unaligned); |
| #endif |
| } |
| |
| |
| static U64 XXH64_round(U64 acc, U64 input) |
| { |
| acc += input * PRIME64_2; |
| acc = XXH_rotl64(acc, 31); |
| acc *= PRIME64_1; |
| return acc; |
| } |
| |
| static U64 XXH64_mergeRound(U64 acc, U64 val) |
| { |
| val = XXH64_round(0, val); |
| acc ^= val; |
| acc = acc * PRIME64_1 + PRIME64_4; |
| return acc; |
| } |
| |
| FORCE_INLINE_TEMPLATE U64 XXH64_endian_align(const void* input, size_t len, U64 seed, XXH_endianess endian, XXH_alignment align) |
| { |
| const BYTE* p = (const BYTE*)input; |
| const BYTE* const bEnd = p + len; |
| U64 h64; |
| #define XXH_get64bits(p) XXH_readLE64_align(p, endian, align) |
| |
| #ifdef XXH_ACCEPT_NULL_INPUT_POINTER |
| if (p==NULL) { |
| len=0; |
| bEnd=p=(const BYTE*)(size_t)32; |
| } |
| #endif |
| |
| if (len>=32) { |
| const BYTE* const limit = bEnd - 32; |
| U64 v1 = seed + PRIME64_1 + PRIME64_2; |
| U64 v2 = seed + PRIME64_2; |
| U64 v3 = seed + 0; |
| U64 v4 = seed - PRIME64_1; |
| |
| do { |
| v1 = XXH64_round(v1, XXH_get64bits(p)); p+=8; |
| v2 = XXH64_round(v2, XXH_get64bits(p)); p+=8; |
| v3 = XXH64_round(v3, XXH_get64bits(p)); p+=8; |
| v4 = XXH64_round(v4, XXH_get64bits(p)); p+=8; |
| } while (p<=limit); |
| |
| h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18); |
| h64 = XXH64_mergeRound(h64, v1); |
| h64 = XXH64_mergeRound(h64, v2); |
| h64 = XXH64_mergeRound(h64, v3); |
| h64 = XXH64_mergeRound(h64, v4); |
| |
| } else { |
| h64 = seed + PRIME64_5; |
| } |
| |
| h64 += (U64) len; |
| |
| while (p+8<=bEnd) { |
| U64 const k1 = XXH64_round(0, XXH_get64bits(p)); |
| h64 ^= k1; |
| h64 = XXH_rotl64(h64,27) * PRIME64_1 + PRIME64_4; |
| p+=8; |
| } |
| |
| if (p+4<=bEnd) { |
| h64 ^= (U64)(XXH_get32bits(p)) * PRIME64_1; |
| h64 = XXH_rotl64(h64, 23) * PRIME64_2 + PRIME64_3; |
| p+=4; |
| } |
| |
| while (p<bEnd) { |
| h64 ^= (*p) * PRIME64_5; |
| h64 = XXH_rotl64(h64, 11) * PRIME64_1; |
| p++; |
| } |
| |
| h64 ^= h64 >> 33; |
| h64 *= PRIME64_2; |
| h64 ^= h64 >> 29; |
| h64 *= PRIME64_3; |
| h64 ^= h64 >> 32; |
| |
| return h64; |
| } |
| |
| |
| XXH_PUBLIC_API unsigned long long XXH64 (const void* input, size_t len, unsigned long long seed) |
| { |
| #if 0 |
| /* Simple version, good for code maintenance, but unfortunately slow for small inputs */ |
| XXH64_CREATESTATE_STATIC(state); |
| XXH64_reset(state, seed); |
| XXH64_update(state, input, len); |
| return XXH64_digest(state); |
| #else |
| XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN; |
| |
| if (XXH_FORCE_ALIGN_CHECK) { |
| if ((((size_t)input) & 7)==0) { /* Input is aligned, let's leverage the speed advantage */ |
| if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) |
| return XXH64_endian_align(input, len, seed, XXH_littleEndian, XXH_aligned); |
| else |
| return XXH64_endian_align(input, len, seed, XXH_bigEndian, XXH_aligned); |
| } } |
| |
| if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) |
| return XXH64_endian_align(input, len, seed, XXH_littleEndian, XXH_unaligned); |
| else |
| return XXH64_endian_align(input, len, seed, XXH_bigEndian, XXH_unaligned); |
| #endif |
| } |
| |
| |
| /* ************************************************** |
| * Advanced Hash Functions |
| ****************************************************/ |
| |
| XXH_PUBLIC_API XXH32_state_t* XXH32_createState(void) |
| { |
| return (XXH32_state_t*)XXH_malloc(sizeof(XXH32_state_t)); |
| } |
| XXH_PUBLIC_API XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr) |
| { |
| XXH_free(statePtr); |
| return XXH_OK; |
| } |
| |
| XXH_PUBLIC_API XXH64_state_t* XXH64_createState(void) |
| { |
| return (XXH64_state_t*)XXH_malloc(sizeof(XXH64_state_t)); |
| } |
| XXH_PUBLIC_API XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr) |
| { |
| XXH_free(statePtr); |
| return XXH_OK; |
| } |
| |
| |
| /*** Hash feed ***/ |
| |
| XXH_PUBLIC_API XXH_errorcode XXH32_reset(XXH32_state_t* statePtr, unsigned int seed) |
| { |
| XXH32_state_t state; /* using a local state to memcpy() in order to avoid strict-aliasing warnings */ |
| ZSTD_memset(&state, 0, sizeof(state)-4); /* do not write into reserved, for future removal */ |
| state.v1 = seed + PRIME32_1 + PRIME32_2; |
| state.v2 = seed + PRIME32_2; |
| state.v3 = seed + 0; |
| state.v4 = seed - PRIME32_1; |
| ZSTD_memcpy(statePtr, &state, sizeof(state)); |
| return XXH_OK; |
| } |
| |
| |
| XXH_PUBLIC_API XXH_errorcode XXH64_reset(XXH64_state_t* statePtr, unsigned long long seed) |
| { |
| XXH64_state_t state; /* using a local state to memcpy() in order to avoid strict-aliasing warnings */ |
| ZSTD_memset(&state, 0, sizeof(state)-8); /* do not write into reserved, for future removal */ |
| state.v1 = seed + PRIME64_1 + PRIME64_2; |
| state.v2 = seed + PRIME64_2; |
| state.v3 = seed + 0; |
| state.v4 = seed - PRIME64_1; |
| ZSTD_memcpy(statePtr, &state, sizeof(state)); |
| return XXH_OK; |
| } |
| |
| |
| FORCE_INLINE_TEMPLATE XXH_errorcode XXH32_update_endian (XXH32_state_t* state, const void* input, size_t len, XXH_endianess endian) |
| { |
| const BYTE* p = (const BYTE*)input; |
| const BYTE* const bEnd = p + len; |
| |
| #ifdef XXH_ACCEPT_NULL_INPUT_POINTER |
| if (input==NULL) return XXH_ERROR; |
| #endif |
| |
| state->total_len_32 += (unsigned)len; |
| state->large_len |= (len>=16) | (state->total_len_32>=16); |
| |
| if (state->memsize + len < 16) { /* fill in tmp buffer */ |
| XXH_memcpy((BYTE*)(state->mem32) + state->memsize, input, len); |
| state->memsize += (unsigned)len; |
| return XXH_OK; |
| } |
| |
| if (state->memsize) { /* some data left from previous update */ |
| XXH_memcpy((BYTE*)(state->mem32) + state->memsize, input, 16-state->memsize); |
| { const U32* p32 = state->mem32; |
| state->v1 = XXH32_round(state->v1, XXH_readLE32(p32, endian)); p32++; |
| state->v2 = XXH32_round(state->v2, XXH_readLE32(p32, endian)); p32++; |
| state->v3 = XXH32_round(state->v3, XXH_readLE32(p32, endian)); p32++; |
| state->v4 = XXH32_round(state->v4, XXH_readLE32(p32, endian)); p32++; |
| } |
| p += 16-state->memsize; |
| state->memsize = 0; |
| } |
| |
| if (p <= bEnd-16) { |
| const BYTE* const limit = bEnd - 16; |
| U32 v1 = state->v1; |
| U32 v2 = state->v2; |
| U32 v3 = state->v3; |
| U32 v4 = state->v4; |
| |
| do { |
| v1 = XXH32_round(v1, XXH_readLE32(p, endian)); p+=4; |
| v2 = XXH32_round(v2, XXH_readLE32(p, endian)); p+=4; |
| v3 = XXH32_round(v3, XXH_readLE32(p, endian)); p+=4; |
| v4 = XXH32_round(v4, XXH_readLE32(p, endian)); p+=4; |
| } while (p<=limit); |
| |
| state->v1 = v1; |
| state->v2 = v2; |
| state->v3 = v3; |
| state->v4 = v4; |
| } |
| |
| if (p < bEnd) { |
| XXH_memcpy(state->mem32, p, (size_t)(bEnd-p)); |
| state->memsize = (unsigned)(bEnd-p); |
| } |
| |
| return XXH_OK; |
| } |
| |
| XXH_PUBLIC_API XXH_errorcode XXH32_update (XXH32_state_t* state_in, const void* input, size_t len) |
| { |
| XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN; |
| |
| if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) |
| return XXH32_update_endian(state_in, input, len, XXH_littleEndian); |
| else |
| return XXH32_update_endian(state_in, input, len, XXH_bigEndian); |
| } |
| |
| |
| |
| FORCE_INLINE_TEMPLATE U32 XXH32_digest_endian (const XXH32_state_t* state, XXH_endianess endian) |
| { |
| const BYTE * p = (const BYTE*)state->mem32; |
| const BYTE* const bEnd = (const BYTE*)(state->mem32) + state->memsize; |
| U32 h32; |
| |
| if (state->large_len) { |
| h32 = XXH_rotl32(state->v1, 1) + XXH_rotl32(state->v2, 7) + XXH_rotl32(state->v3, 12) + XXH_rotl32(state->v4, 18); |
| } else { |
| h32 = state->v3 /* == seed */ + PRIME32_5; |
| } |
| |
| h32 += state->total_len_32; |
| |
| while (p+4<=bEnd) { |
| h32 += XXH_readLE32(p, endian) * PRIME32_3; |
| h32 = XXH_rotl32(h32, 17) * PRIME32_4; |
| p+=4; |
| } |
| |
| while (p<bEnd) { |
| h32 += (*p) * PRIME32_5; |
| h32 = XXH_rotl32(h32, 11) * PRIME32_1; |
| p++; |
| } |
| |
| h32 ^= h32 >> 15; |
| h32 *= PRIME32_2; |
| h32 ^= h32 >> 13; |
| h32 *= PRIME32_3; |
| h32 ^= h32 >> 16; |
| |
| return h32; |
| } |
| |
| |
| XXH_PUBLIC_API unsigned int XXH32_digest (const XXH32_state_t* state_in) |
| { |
| XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN; |
| |
| if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) |
| return XXH32_digest_endian(state_in, XXH_littleEndian); |
| else |
| return XXH32_digest_endian(state_in, XXH_bigEndian); |
| } |
| |
| |
| |
| /* **** XXH64 **** */ |
| |
| FORCE_INLINE_TEMPLATE XXH_errorcode XXH64_update_endian (XXH64_state_t* state, const void* input, size_t len, XXH_endianess endian) |
| { |
| const BYTE* p = (const BYTE*)input; |
| const BYTE* const bEnd = p + len; |
| |
| #ifdef XXH_ACCEPT_NULL_INPUT_POINTER |
| if (input==NULL) return XXH_ERROR; |
| #endif |
| |
| state->total_len += len; |
| |
| if (state->memsize + len < 32) { /* fill in tmp buffer */ |
| if (input != NULL) { |
| XXH_memcpy(((BYTE*)state->mem64) + state->memsize, input, len); |
| } |
| state->memsize += (U32)len; |
| return XXH_OK; |
| } |
| |
| if (state->memsize) { /* tmp buffer is full */ |
| XXH_memcpy(((BYTE*)state->mem64) + state->memsize, input, 32-state->memsize); |
| state->v1 = XXH64_round(state->v1, XXH_readLE64(state->mem64+0, endian)); |
| state->v2 = XXH64_round(state->v2, XXH_readLE64(state->mem64+1, endian)); |
| state->v3 = XXH64_round(state->v3, XXH_readLE64(state->mem64+2, endian)); |
| state->v4 = XXH64_round(state->v4, XXH_readLE64(state->mem64+3, endian)); |
| p += 32-state->memsize; |
| state->memsize = 0; |
| } |
| |
| if (p+32 <= bEnd) { |
| const BYTE* const limit = bEnd - 32; |
| U64 v1 = state->v1; |
| U64 v2 = state->v2; |
| U64 v3 = state->v3; |
| U64 v4 = state->v4; |
| |
| do { |
| v1 = XXH64_round(v1, XXH_readLE64(p, endian)); p+=8; |
| v2 = XXH64_round(v2, XXH_readLE64(p, endian)); p+=8; |
| v3 = XXH64_round(v3, XXH_readLE64(p, endian)); p+=8; |
| v4 = XXH64_round(v4, XXH_readLE64(p, endian)); p+=8; |
| } while (p<=limit); |
| |
| state->v1 = v1; |
| state->v2 = v2; |
| state->v3 = v3; |
| state->v4 = v4; |
| } |
| |
| if (p < bEnd) { |
| XXH_memcpy(state->mem64, p, (size_t)(bEnd-p)); |
| state->memsize = (unsigned)(bEnd-p); |
| } |
| |
| return XXH_OK; |
| } |
| |
| XXH_PUBLIC_API XXH_errorcode XXH64_update (XXH64_state_t* state_in, const void* input, size_t len) |
| { |
| XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN; |
| |
| if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) |
| return XXH64_update_endian(state_in, input, len, XXH_littleEndian); |
| else |
| return XXH64_update_endian(state_in, input, len, XXH_bigEndian); |
| } |
| |
| |
| |
| FORCE_INLINE_TEMPLATE U64 XXH64_digest_endian (const XXH64_state_t* state, XXH_endianess endian) |
| { |
| const BYTE * p = (const BYTE*)state->mem64; |
| const BYTE* const bEnd = (const BYTE*)state->mem64 + state->memsize; |
| U64 h64; |
| |
| if (state->total_len >= 32) { |
| U64 const v1 = state->v1; |
| U64 const v2 = state->v2; |
| U64 const v3 = state->v3; |
| U64 const v4 = state->v4; |
| |
| h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18); |
| h64 = XXH64_mergeRound(h64, v1); |
| h64 = XXH64_mergeRound(h64, v2); |
| h64 = XXH64_mergeRound(h64, v3); |
| h64 = XXH64_mergeRound(h64, v4); |
| } else { |
| h64 = state->v3 + PRIME64_5; |
| } |
| |
| h64 += (U64) state->total_len; |
| |
| while (p+8<=bEnd) { |
| U64 const k1 = XXH64_round(0, XXH_readLE64(p, endian)); |
| h64 ^= k1; |
| h64 = XXH_rotl64(h64,27) * PRIME64_1 + PRIME64_4; |
| p+=8; |
| } |
| |
| if (p+4<=bEnd) { |
| h64 ^= (U64)(XXH_readLE32(p, endian)) * PRIME64_1; |
| h64 = XXH_rotl64(h64, 23) * PRIME64_2 + PRIME64_3; |
| p+=4; |
| } |
| |
| while (p<bEnd) { |
| h64 ^= (*p) * PRIME64_5; |
| h64 = XXH_rotl64(h64, 11) * PRIME64_1; |
| p++; |
| } |
| |
| h64 ^= h64 >> 33; |
| h64 *= PRIME64_2; |
| h64 ^= h64 >> 29; |
| h64 *= PRIME64_3; |
| h64 ^= h64 >> 32; |
| |
| return h64; |
| } |
| |
| |
| XXH_PUBLIC_API unsigned long long XXH64_digest (const XXH64_state_t* state_in) |
| { |
| XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN; |
| |
| if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) |
| return XXH64_digest_endian(state_in, XXH_littleEndian); |
| else |
| return XXH64_digest_endian(state_in, XXH_bigEndian); |
| } |
| |
| |
| /* ************************** |
| * Canonical representation |
| ****************************/ |
| |
| /*! Default XXH result types are basic unsigned 32 and 64 bits. |
| * The canonical representation follows human-readable write convention, aka big-endian (large digits first). |
| * These functions allow transformation of hash result into and from its canonical format. |
| * This way, hash values can be written into a file or buffer, and remain comparable across different systems and programs. |
| */ |
| |
| XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash) |
| { |
| XXH_STATIC_ASSERT(sizeof(XXH32_canonical_t) == sizeof(XXH32_hash_t)); |
| if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap32(hash); |
| ZSTD_memcpy(dst, &hash, sizeof(*dst)); |
| } |
| |
| XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH64_canonical_t* dst, XXH64_hash_t hash) |
| { |
| XXH_STATIC_ASSERT(sizeof(XXH64_canonical_t) == sizeof(XXH64_hash_t)); |
| if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap64(hash); |
| ZSTD_memcpy(dst, &hash, sizeof(*dst)); |
| } |
| |
| XXH_PUBLIC_API XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src) |
| { |
| return XXH_readBE32(src); |
| } |
| |
| XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(const XXH64_canonical_t* src) |
| { |
| return XXH_readBE64(src); |
| } |